1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "gc/shared/cardTableBarrierSet.hpp"
  29 #include "gc/shared/collectedHeap.inline.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "prims/methodHandles.hpp"
  33 #include "runtime/biasedLocking.hpp"
  34 #include "runtime/objectMonitor.hpp"
  35 #include "runtime/os.hpp"
  36 #include "runtime/sharedRuntime.hpp"
  37 #include "runtime/stubRoutines.hpp"
  38 #include "utilities/macros.hpp"
  39 
  40 #ifdef PRODUCT
  41 #define BLOCK_COMMENT(str) /* nothing */
  42 #define STOP(error) stop(error)
  43 #else
  44 #define BLOCK_COMMENT(str) block_comment(str)
  45 #define STOP(error) block_comment(error); stop(error)
  46 #endif
  47 
  48 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  49 // Implementation of AddressLiteral
  50 
  51 // A 2-D table for managing compressed displacement(disp8) on EVEX enabled platforms.
  52 unsigned char tuple_table[Assembler::EVEX_ETUP + 1][Assembler::AVX_512bit + 1] = {
  53   // -----------------Table 4.5 -------------------- //
  54   16, 32, 64,  // EVEX_FV(0)
  55   4,  4,  4,   // EVEX_FV(1) - with Evex.b
  56   16, 32, 64,  // EVEX_FV(2) - with Evex.w
  57   8,  8,  8,   // EVEX_FV(3) - with Evex.w and Evex.b
  58   8,  16, 32,  // EVEX_HV(0)
  59   4,  4,  4,   // EVEX_HV(1) - with Evex.b
  60   // -----------------Table 4.6 -------------------- //
  61   16, 32, 64,  // EVEX_FVM(0)
  62   1,  1,  1,   // EVEX_T1S(0)
  63   2,  2,  2,   // EVEX_T1S(1)
  64   4,  4,  4,   // EVEX_T1S(2)
  65   8,  8,  8,   // EVEX_T1S(3)
  66   4,  4,  4,   // EVEX_T1F(0)
  67   8,  8,  8,   // EVEX_T1F(1)
  68   8,  8,  8,   // EVEX_T2(0)
  69   0,  16, 16,  // EVEX_T2(1)
  70   0,  16, 16,  // EVEX_T4(0)
  71   0,  0,  32,  // EVEX_T4(1)
  72   0,  0,  32,  // EVEX_T8(0)
  73   8,  16, 32,  // EVEX_HVM(0)
  74   4,  8,  16,  // EVEX_QVM(0)
  75   2,  4,  8,   // EVEX_OVM(0)
  76   16, 16, 16,  // EVEX_M128(0)
  77   8,  32, 64,  // EVEX_DUP(0)
  78   0,  0,  0    // EVEX_NTUP
  79 };
  80 
  81 AddressLiteral::AddressLiteral(address target, relocInfo::relocType rtype) {
  82   _is_lval = false;
  83   _target = target;
  84   switch (rtype) {
  85   case relocInfo::oop_type:
  86   case relocInfo::metadata_type:
  87     // Oops are a special case. Normally they would be their own section
  88     // but in cases like icBuffer they are literals in the code stream that
  89     // we don't have a section for. We use none so that we get a literal address
  90     // which is always patchable.
  91     break;
  92   case relocInfo::external_word_type:
  93     _rspec = external_word_Relocation::spec(target);
  94     break;
  95   case relocInfo::internal_word_type:
  96     _rspec = internal_word_Relocation::spec(target);
  97     break;
  98   case relocInfo::opt_virtual_call_type:
  99     _rspec = opt_virtual_call_Relocation::spec();
 100     break;
 101   case relocInfo::static_call_type:
 102     _rspec = static_call_Relocation::spec();
 103     break;
 104   case relocInfo::runtime_call_type:
 105     _rspec = runtime_call_Relocation::spec();
 106     break;
 107   case relocInfo::poll_type:
 108   case relocInfo::poll_return_type:
 109     _rspec = Relocation::spec_simple(rtype);
 110     break;
 111   case relocInfo::none:
 112     break;
 113   default:
 114     ShouldNotReachHere();
 115     break;
 116   }
 117 }
 118 
 119 // Implementation of Address
 120 
 121 #ifdef _LP64
 122 
 123 Address Address::make_array(ArrayAddress adr) {
 124   // Not implementable on 64bit machines
 125   // Should have been handled higher up the call chain.
 126   ShouldNotReachHere();
 127   return Address();
 128 }
 129 
 130 // exceedingly dangerous constructor
 131 Address::Address(int disp, address loc, relocInfo::relocType rtype) {
 132   _base  = noreg;
 133   _index = noreg;
 134   _scale = no_scale;
 135   _disp  = disp;
 136   _xmmindex = xnoreg;
 137   _isxmmindex = false;
 138   switch (rtype) {
 139     case relocInfo::external_word_type:
 140       _rspec = external_word_Relocation::spec(loc);
 141       break;
 142     case relocInfo::internal_word_type:
 143       _rspec = internal_word_Relocation::spec(loc);
 144       break;
 145     case relocInfo::runtime_call_type:
 146       // HMM
 147       _rspec = runtime_call_Relocation::spec();
 148       break;
 149     case relocInfo::poll_type:
 150     case relocInfo::poll_return_type:
 151       _rspec = Relocation::spec_simple(rtype);
 152       break;
 153     case relocInfo::none:
 154       break;
 155     default:
 156       ShouldNotReachHere();
 157   }
 158 }
 159 #else // LP64
 160 
 161 Address Address::make_array(ArrayAddress adr) {
 162   AddressLiteral base = adr.base();
 163   Address index = adr.index();
 164   assert(index._disp == 0, "must not have disp"); // maybe it can?
 165   Address array(index._base, index._index, index._scale, (intptr_t) base.target());
 166   array._rspec = base._rspec;
 167   return array;
 168 }
 169 
 170 // exceedingly dangerous constructor
 171 Address::Address(address loc, RelocationHolder spec) {
 172   _base  = noreg;
 173   _index = noreg;
 174   _scale = no_scale;
 175   _disp  = (intptr_t) loc;
 176   _rspec = spec;
 177   _xmmindex = xnoreg;
 178   _isxmmindex = false;
 179 }
 180 
 181 #endif // _LP64
 182 
 183 
 184 
 185 // Convert the raw encoding form into the form expected by the constructor for
 186 // Address.  An index of 4 (rsp) corresponds to having no index, so convert
 187 // that to noreg for the Address constructor.
 188 Address Address::make_raw(int base, int index, int scale, int disp, relocInfo::relocType disp_reloc) {
 189   RelocationHolder rspec;
 190   if (disp_reloc != relocInfo::none) {
 191     rspec = Relocation::spec_simple(disp_reloc);
 192   }
 193   bool valid_index = index != rsp->encoding();
 194   if (valid_index) {
 195     Address madr(as_Register(base), as_Register(index), (Address::ScaleFactor)scale, in_ByteSize(disp));
 196     madr._rspec = rspec;
 197     return madr;
 198   } else {
 199     Address madr(as_Register(base), noreg, Address::no_scale, in_ByteSize(disp));
 200     madr._rspec = rspec;
 201     return madr;
 202   }
 203 }
 204 
 205 // Implementation of Assembler
 206 
 207 int AbstractAssembler::code_fill_byte() {
 208   return (u_char)'\xF4'; // hlt
 209 }
 210 
 211 // make this go away someday
 212 void Assembler::emit_data(jint data, relocInfo::relocType rtype, int format) {
 213   if (rtype == relocInfo::none)
 214     emit_int32(data);
 215   else
 216     emit_data(data, Relocation::spec_simple(rtype), format);
 217 }
 218 
 219 void Assembler::emit_data(jint data, RelocationHolder const& rspec, int format) {
 220   assert(imm_operand == 0, "default format must be immediate in this file");
 221   assert(inst_mark() != NULL, "must be inside InstructionMark");
 222   if (rspec.type() !=  relocInfo::none) {
 223     #ifdef ASSERT
 224       check_relocation(rspec, format);
 225     #endif
 226     // Do not use AbstractAssembler::relocate, which is not intended for
 227     // embedded words.  Instead, relocate to the enclosing instruction.
 228 
 229     // hack. call32 is too wide for mask so use disp32
 230     if (format == call32_operand)
 231       code_section()->relocate(inst_mark(), rspec, disp32_operand);
 232     else
 233       code_section()->relocate(inst_mark(), rspec, format);
 234   }
 235   emit_int32(data);
 236 }
 237 
 238 static int encode(Register r) {
 239   int enc = r->encoding();
 240   if (enc >= 8) {
 241     enc -= 8;
 242   }
 243   return enc;
 244 }
 245 
 246 void Assembler::emit_arith_b(int op1, int op2, Register dst, int imm8) {
 247   assert(dst->has_byte_register(), "must have byte register");
 248   assert(isByte(op1) && isByte(op2), "wrong opcode");
 249   assert(isByte(imm8), "not a byte");
 250   assert((op1 & 0x01) == 0, "should be 8bit operation");
 251   emit_int24(op1, (op2 | encode(dst)), imm8);
 252 }
 253 
 254 
 255 void Assembler::emit_arith(int op1, int op2, Register dst, int32_t imm32) {
 256   assert(isByte(op1) && isByte(op2), "wrong opcode");
 257   assert((op1 & 0x01) == 1, "should be 32bit operation");
 258   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 259   if (is8bit(imm32)) {
 260     emit_int24(op1 | 0x02,        // set sign bit
 261                op2 | encode(dst),
 262                imm32 & 0xFF);
 263   } else {
 264     emit_int16(op1, (op2 | encode(dst)));
 265     emit_int32(imm32);
 266   }
 267 }
 268 
 269 // Force generation of a 4 byte immediate value even if it fits into 8bit
 270 void Assembler::emit_arith_imm32(int op1, int op2, Register dst, int32_t imm32) {
 271   assert(isByte(op1) && isByte(op2), "wrong opcode");
 272   assert((op1 & 0x01) == 1, "should be 32bit operation");
 273   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 274   emit_int16(op1, (op2 | encode(dst)));
 275   emit_int32(imm32);
 276 }
 277 
 278 // immediate-to-memory forms
 279 void Assembler::emit_arith_operand(int op1, Register rm, Address adr, int32_t imm32) {
 280   assert((op1 & 0x01) == 1, "should be 32bit operation");
 281   assert((op1 & 0x02) == 0, "sign-extension bit should not be set");
 282   if (is8bit(imm32)) {
 283     emit_int8(op1 | 0x02); // set sign bit
 284     emit_operand(rm, adr, 1);
 285     emit_int8(imm32 & 0xFF);
 286   } else {
 287     emit_int8(op1);
 288     emit_operand(rm, adr, 4);
 289     emit_int32(imm32);
 290   }
 291 }
 292 
 293 
 294 void Assembler::emit_arith(int op1, int op2, Register dst, Register src) {
 295   assert(isByte(op1) && isByte(op2), "wrong opcode");
 296   emit_int16(op1, (op2 | encode(dst) << 3 | encode(src)));
 297 }
 298 
 299 
 300 bool Assembler::query_compressed_disp_byte(int disp, bool is_evex_inst, int vector_len,
 301                                            int cur_tuple_type, int in_size_in_bits, int cur_encoding) {
 302   int mod_idx = 0;
 303   // We will test if the displacement fits the compressed format and if so
 304   // apply the compression to the displacment iff the result is8bit.
 305   if (VM_Version::supports_evex() && is_evex_inst) {
 306     switch (cur_tuple_type) {
 307     case EVEX_FV:
 308       if ((cur_encoding & VEX_W) == VEX_W) {
 309         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 310       } else {
 311         mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 312       }
 313       break;
 314 
 315     case EVEX_HV:
 316       mod_idx = ((cur_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 317       break;
 318 
 319     case EVEX_FVM:
 320       break;
 321 
 322     case EVEX_T1S:
 323       switch (in_size_in_bits) {
 324       case EVEX_8bit:
 325         break;
 326 
 327       case EVEX_16bit:
 328         mod_idx = 1;
 329         break;
 330 
 331       case EVEX_32bit:
 332         mod_idx = 2;
 333         break;
 334 
 335       case EVEX_64bit:
 336         mod_idx = 3;
 337         break;
 338       }
 339       break;
 340 
 341     case EVEX_T1F:
 342     case EVEX_T2:
 343     case EVEX_T4:
 344       mod_idx = (in_size_in_bits == EVEX_64bit) ? 1 : 0;
 345       break;
 346 
 347     case EVEX_T8:
 348       break;
 349 
 350     case EVEX_HVM:
 351       break;
 352 
 353     case EVEX_QVM:
 354       break;
 355 
 356     case EVEX_OVM:
 357       break;
 358 
 359     case EVEX_M128:
 360       break;
 361 
 362     case EVEX_DUP:
 363       break;
 364 
 365     default:
 366       assert(0, "no valid evex tuple_table entry");
 367       break;
 368     }
 369 
 370     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 371       int disp_factor = tuple_table[cur_tuple_type + mod_idx][vector_len];
 372       if ((disp % disp_factor) == 0) {
 373         int new_disp = disp / disp_factor;
 374         if ((-0x80 <= new_disp && new_disp < 0x80)) {
 375           disp = new_disp;
 376         }
 377       } else {
 378         return false;
 379       }
 380     }
 381   }
 382   return (-0x80 <= disp && disp < 0x80);
 383 }
 384 
 385 
 386 bool Assembler::emit_compressed_disp_byte(int &disp) {
 387   int mod_idx = 0;
 388   // We will test if the displacement fits the compressed format and if so
 389   // apply the compression to the displacment iff the result is8bit.
 390   if (VM_Version::supports_evex() && _attributes && _attributes->is_evex_instruction()) {
 391     int evex_encoding = _attributes->get_evex_encoding();
 392     int tuple_type = _attributes->get_tuple_type();
 393     switch (tuple_type) {
 394     case EVEX_FV:
 395       if ((evex_encoding & VEX_W) == VEX_W) {
 396         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 3 : 2;
 397       } else {
 398         mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 399       }
 400       break;
 401 
 402     case EVEX_HV:
 403       mod_idx = ((evex_encoding & EVEX_Rb) == EVEX_Rb) ? 1 : 0;
 404       break;
 405 
 406     case EVEX_FVM:
 407       break;
 408 
 409     case EVEX_T1S:
 410       switch (_attributes->get_input_size()) {
 411       case EVEX_8bit:
 412         break;
 413 
 414       case EVEX_16bit:
 415         mod_idx = 1;
 416         break;
 417 
 418       case EVEX_32bit:
 419         mod_idx = 2;
 420         break;
 421 
 422       case EVEX_64bit:
 423         mod_idx = 3;
 424         break;
 425       }
 426       break;
 427 
 428     case EVEX_T1F:
 429     case EVEX_T2:
 430     case EVEX_T4:
 431       mod_idx = (_attributes->get_input_size() == EVEX_64bit) ? 1 : 0;
 432       break;
 433 
 434     case EVEX_T8:
 435       break;
 436 
 437     case EVEX_HVM:
 438       break;
 439 
 440     case EVEX_QVM:
 441       break;
 442 
 443     case EVEX_OVM:
 444       break;
 445 
 446     case EVEX_M128:
 447       break;
 448 
 449     case EVEX_DUP:
 450       break;
 451 
 452     default:
 453       assert(0, "no valid evex tuple_table entry");
 454       break;
 455     }
 456 
 457     int vector_len = _attributes->get_vector_len();
 458     if (vector_len >= AVX_128bit && vector_len <= AVX_512bit) {
 459       int disp_factor = tuple_table[tuple_type + mod_idx][vector_len];
 460       if ((disp % disp_factor) == 0) {
 461         int new_disp = disp / disp_factor;
 462         if (is8bit(new_disp)) {
 463           disp = new_disp;
 464         }
 465       } else {
 466         return false;
 467       }
 468     }
 469   }
 470   return is8bit(disp);
 471 }
 472 
 473 static bool is_valid_encoding(int reg_enc) {
 474   return reg_enc >= 0;
 475 }
 476 
 477 static int raw_encode(Register reg) {
 478   assert(reg == noreg || reg->is_valid(), "sanity");
 479   int reg_enc = (intptr_t)reg;
 480   assert(reg_enc == -1 || is_valid_encoding(reg_enc), "sanity");
 481   return reg_enc;
 482 }
 483 
 484 static int raw_encode(XMMRegister xmmreg) {
 485   assert(xmmreg == xnoreg || xmmreg->is_valid(), "sanity");
 486   int xmmreg_enc = (intptr_t)xmmreg;
 487   assert(xmmreg_enc == -1 || is_valid_encoding(xmmreg_enc), "sanity");
 488   return xmmreg_enc;
 489 }
 490 
 491 static int modrm_encoding(int mod, int dst_enc, int src_enc) {
 492   return (mod & 3) << 6 | (dst_enc & 7) << 3 | (src_enc & 7);
 493 }
 494 
 495 static int sib_encoding(Address::ScaleFactor scale, int index_enc, int base_enc) {
 496   return (scale & 3) << 6 | (index_enc & 7) << 3 | (base_enc & 7);
 497 }
 498 
 499 inline void Assembler::emit_modrm(int mod, int dst_enc, int src_enc) {
 500   assert((mod & 3) != 0b11, "forbidden");
 501   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 502   emit_int8(modrm);
 503 }
 504 
 505 inline void Assembler::emit_modrm_disp8(int mod, int dst_enc, int src_enc,
 506                                         int disp) {
 507   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 508   emit_int16(modrm, disp & 0xFF);
 509 }
 510 
 511 inline void Assembler::emit_modrm_sib(int mod, int dst_enc, int src_enc,
 512                                       Address::ScaleFactor scale, int index_enc, int base_enc) {
 513   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 514   int sib = sib_encoding(scale, index_enc, base_enc);
 515   emit_int16(modrm, sib);
 516 }
 517 
 518 inline void Assembler::emit_modrm_sib_disp8(int mod, int dst_enc, int src_enc,
 519                                             Address::ScaleFactor scale, int index_enc, int base_enc,
 520                                             int disp) {
 521   int modrm = modrm_encoding(mod, dst_enc, src_enc);
 522   int sib = sib_encoding(scale, index_enc, base_enc);
 523   emit_int24(modrm, sib, disp & 0xFF);
 524 }
 525 
 526 void Assembler::emit_operand_helper(int reg_enc, int base_enc, int index_enc,
 527                                     Address::ScaleFactor scale, int disp,
 528                                     RelocationHolder const& rspec,
 529                                     int rip_relative_correction) {
 530   bool no_relocation = (rspec.type() == relocInfo::none);
 531 
 532   if (is_valid_encoding(base_enc)) {
 533     if (is_valid_encoding(index_enc)) {
 534       assert(scale != Address::no_scale, "inconsistent address");
 535       // [base + index*scale + disp]
 536       if (disp == 0 && no_relocation &&
 537           base_enc != rbp->encoding() LP64_ONLY(&& base_enc != r13->encoding())) {
 538         // [base + index*scale]
 539         // [00 reg 100][ss index base]
 540         emit_modrm_sib(0b00, reg_enc, 0b100,
 541                        scale, index_enc, base_enc);
 542       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 543         // [base + index*scale + imm8]
 544         // [01 reg 100][ss index base] imm8
 545         emit_modrm_sib_disp8(0b01, reg_enc, 0b100,
 546                              scale, index_enc, base_enc,
 547                              disp);
 548       } else {
 549         // [base + index*scale + disp32]
 550         // [10 reg 100][ss index base] disp32
 551         emit_modrm_sib(0b10, reg_enc, 0b100,
 552                        scale, index_enc, base_enc);
 553         emit_data(disp, rspec, disp32_operand);
 554       }
 555     } else if (base_enc == rsp->encoding() LP64_ONLY(|| base_enc == r12->encoding())) {
 556       // [rsp + disp]
 557       if (disp == 0 && no_relocation) {
 558         // [rsp]
 559         // [00 reg 100][00 100 100]
 560         emit_modrm_sib(0b00, reg_enc, 0b100,
 561                        Address::times_1, 0b100, 0b100);
 562       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 563         // [rsp + imm8]
 564         // [01 reg 100][00 100 100] disp8
 565         emit_modrm_sib_disp8(0b01, reg_enc, 0b100,
 566                              Address::times_1, 0b100, 0b100,
 567                              disp);
 568       } else {
 569         // [rsp + imm32]
 570         // [10 reg 100][00 100 100] disp32
 571         emit_modrm_sib(0b10, reg_enc, 0b100,
 572                        Address::times_1, 0b100, 0b100);
 573         emit_data(disp, rspec, disp32_operand);
 574       }
 575     } else {
 576       // [base + disp]
 577       assert(base_enc != rsp->encoding() LP64_ONLY(&& base_enc != r12->encoding()), "illegal addressing mode");
 578       if (disp == 0 && no_relocation &&
 579           base_enc != rbp->encoding() LP64_ONLY(&& base_enc != r13->encoding())) {
 580         // [base]
 581         // [00 reg base]
 582         emit_modrm(0, reg_enc, base_enc);
 583       } else if (emit_compressed_disp_byte(disp) && no_relocation) {
 584         // [base + disp8]
 585         // [01 reg base] disp8
 586         emit_modrm_disp8(0b01, reg_enc, base_enc,
 587                          disp);
 588       } else {
 589         // [base + disp32]
 590         // [10 reg base] disp32
 591         emit_modrm(0b10, reg_enc, base_enc);
 592         emit_data(disp, rspec, disp32_operand);
 593       }
 594     }
 595   } else {
 596     if (is_valid_encoding(index_enc)) {
 597       assert(scale != Address::no_scale, "inconsistent address");
 598       // base == noreg
 599       // [index*scale + disp]
 600       // [00 reg 100][ss index 101] disp32
 601       emit_modrm_sib(0b00, reg_enc, 0b100,
 602                      scale, index_enc, 0b101 /* no base */);
 603       emit_data(disp, rspec, disp32_operand);
 604     } else if (!no_relocation) {
 605       // base == noreg, index == noreg
 606       // [disp] (64bit) RIP-RELATIVE (32bit) abs
 607       // [00 reg 101] disp32
 608 
 609       emit_modrm(0b00, reg_enc, 0b101 /* no base */);
 610       // Note that the RIP-rel. correction applies to the generated
 611       // disp field, but _not_ to the target address in the rspec.
 612 
 613       // disp was created by converting the target address minus the pc
 614       // at the start of the instruction. That needs more correction here.
 615       // intptr_t disp = target - next_ip;
 616       assert(inst_mark() != NULL, "must be inside InstructionMark");
 617       address next_ip = pc() + sizeof(int32_t) + rip_relative_correction;
 618       int64_t adjusted = disp;
 619       // Do rip-rel adjustment for 64bit
 620       LP64_ONLY(adjusted -=  (next_ip - inst_mark()));
 621       assert(is_simm32(adjusted),
 622              "must be 32bit offset (RIP relative address)");
 623       emit_data((int32_t) adjusted, rspec, disp32_operand);
 624 
 625     } else {
 626       // base == noreg, index == noreg, no_relocation == true
 627       // 32bit never did this, did everything as the rip-rel/disp code above
 628       // [disp] ABSOLUTE
 629       // [00 reg 100][00 100 101] disp32
 630       emit_modrm_sib(0b00, reg_enc, 0b100 /* no base */,
 631                      Address::times_1, 0b100, 0b101);
 632       emit_data(disp, rspec, disp32_operand);
 633     }
 634   }
 635 }
 636 
 637 void Assembler::emit_operand(Register reg, Register base, Register index,
 638                              Address::ScaleFactor scale, int disp,
 639                              RelocationHolder const& rspec,
 640                              int rip_relative_correction) {
 641   assert(!index->is_valid() || index != rsp, "illegal addressing mode");
 642   emit_operand_helper(raw_encode(reg), raw_encode(base), raw_encode(index),
 643                       scale, disp, rspec, rip_relative_correction);
 644 
 645 }
 646 void Assembler::emit_operand(XMMRegister xmmreg, Register base, Register index,
 647                              Address::ScaleFactor scale, int disp,
 648                              RelocationHolder const& rspec) {
 649   assert(!index->is_valid() || index != rsp, "illegal addressing mode");
 650   assert(xmmreg->encoding() < 16 || UseAVX > 2, "not supported");
 651   emit_operand_helper(raw_encode(xmmreg), raw_encode(base), raw_encode(index),
 652                       scale, disp, rspec);
 653 }
 654 
 655 void Assembler::emit_operand(XMMRegister xmmreg, Register base, XMMRegister xmmindex,
 656                              Address::ScaleFactor scale, int disp,
 657                              RelocationHolder const& rspec) {
 658   assert(xmmreg->encoding() < 16 || UseAVX > 2, "not supported");
 659   assert(xmmindex->encoding() < 16 || UseAVX > 2, "not supported");
 660   emit_operand_helper(raw_encode(xmmreg), raw_encode(base), raw_encode(xmmindex),
 661                       scale, disp, rspec, /* rip_relative_correction */ 0);
 662 }
 663 
 664 // Secret local extension to Assembler::WhichOperand:
 665 #define end_pc_operand (_WhichOperand_limit)
 666 
 667 address Assembler::locate_operand(address inst, WhichOperand which) {
 668   // Decode the given instruction, and return the address of
 669   // an embedded 32-bit operand word.
 670 
 671   // If "which" is disp32_operand, selects the displacement portion
 672   // of an effective address specifier.
 673   // If "which" is imm64_operand, selects the trailing immediate constant.
 674   // If "which" is call32_operand, selects the displacement of a call or jump.
 675   // Caller is responsible for ensuring that there is such an operand,
 676   // and that it is 32/64 bits wide.
 677 
 678   // If "which" is end_pc_operand, find the end of the instruction.
 679 
 680   address ip = inst;
 681   bool is_64bit = false;
 682 
 683   debug_only(bool has_disp32 = false);
 684   int tail_size = 0; // other random bytes (#32, #16, etc.) at end of insn
 685 
 686   again_after_prefix:
 687   switch (0xFF & *ip++) {
 688 
 689   // These convenience macros generate groups of "case" labels for the switch.
 690 #define REP4(x) (x)+0: case (x)+1: case (x)+2: case (x)+3
 691 #define REP8(x) (x)+0: case (x)+1: case (x)+2: case (x)+3: \
 692              case (x)+4: case (x)+5: case (x)+6: case (x)+7
 693 #define REP16(x) REP8((x)+0): \
 694               case REP8((x)+8)
 695 
 696   case CS_segment:
 697   case SS_segment:
 698   case DS_segment:
 699   case ES_segment:
 700   case FS_segment:
 701   case GS_segment:
 702     // Seems dubious
 703     LP64_ONLY(assert(false, "shouldn't have that prefix"));
 704     assert(ip == inst+1, "only one prefix allowed");
 705     goto again_after_prefix;
 706 
 707   case 0x67:
 708   case REX:
 709   case REX_B:
 710   case REX_X:
 711   case REX_XB:
 712   case REX_R:
 713   case REX_RB:
 714   case REX_RX:
 715   case REX_RXB:
 716     NOT_LP64(assert(false, "64bit prefixes"));
 717     goto again_after_prefix;
 718 
 719   case REX_W:
 720   case REX_WB:
 721   case REX_WX:
 722   case REX_WXB:
 723   case REX_WR:
 724   case REX_WRB:
 725   case REX_WRX:
 726   case REX_WRXB:
 727     NOT_LP64(assert(false, "64bit prefixes"));
 728     is_64bit = true;
 729     goto again_after_prefix;
 730 
 731   case 0xFF: // pushq a; decl a; incl a; call a; jmp a
 732   case 0x88: // movb a, r
 733   case 0x89: // movl a, r
 734   case 0x8A: // movb r, a
 735   case 0x8B: // movl r, a
 736   case 0x8F: // popl a
 737     debug_only(has_disp32 = true);
 738     break;
 739 
 740   case 0x68: // pushq #32
 741     if (which == end_pc_operand) {
 742       return ip + 4;
 743     }
 744     assert(which == imm_operand && !is_64bit, "pushl has no disp32 or 64bit immediate");
 745     return ip;                  // not produced by emit_operand
 746 
 747   case 0x66: // movw ... (size prefix)
 748     again_after_size_prefix2:
 749     switch (0xFF & *ip++) {
 750     case REX:
 751     case REX_B:
 752     case REX_X:
 753     case REX_XB:
 754     case REX_R:
 755     case REX_RB:
 756     case REX_RX:
 757     case REX_RXB:
 758     case REX_W:
 759     case REX_WB:
 760     case REX_WX:
 761     case REX_WXB:
 762     case REX_WR:
 763     case REX_WRB:
 764     case REX_WRX:
 765     case REX_WRXB:
 766       NOT_LP64(assert(false, "64bit prefix found"));
 767       goto again_after_size_prefix2;
 768     case 0x8B: // movw r, a
 769     case 0x89: // movw a, r
 770       debug_only(has_disp32 = true);
 771       break;
 772     case 0xC7: // movw a, #16
 773       debug_only(has_disp32 = true);
 774       tail_size = 2;  // the imm16
 775       break;
 776     case 0x0F: // several SSE/SSE2 variants
 777       ip--;    // reparse the 0x0F
 778       goto again_after_prefix;
 779     default:
 780       ShouldNotReachHere();
 781     }
 782     break;
 783 
 784   case REP8(0xB8): // movl/q r, #32/#64(oop?)
 785     if (which == end_pc_operand)  return ip + (is_64bit ? 8 : 4);
 786     // these asserts are somewhat nonsensical
 787 #ifndef _LP64
 788     assert(which == imm_operand || which == disp32_operand,
 789            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 790 #else
 791     assert((which == call32_operand || which == imm_operand) && is_64bit ||
 792            which == narrow_oop_operand && !is_64bit,
 793            "which %d is_64_bit %d ip " INTPTR_FORMAT, which, is_64bit, p2i(ip));
 794 #endif // _LP64
 795     return ip;
 796 
 797   case 0x69: // imul r, a, #32
 798   case 0xC7: // movl a, #32(oop?)
 799     tail_size = 4;
 800     debug_only(has_disp32 = true); // has both kinds of operands!
 801     break;
 802 
 803   case 0x0F: // movx..., etc.
 804     switch (0xFF & *ip++) {
 805     case 0x3A: // pcmpestri
 806       tail_size = 1;
 807     case 0x38: // ptest, pmovzxbw
 808       ip++; // skip opcode
 809       debug_only(has_disp32 = true); // has both kinds of operands!
 810       break;
 811 
 812     case 0x70: // pshufd r, r/a, #8
 813       debug_only(has_disp32 = true); // has both kinds of operands!
 814     case 0x73: // psrldq r, #8
 815       tail_size = 1;
 816       break;
 817 
 818     case 0x12: // movlps
 819     case 0x28: // movaps
 820     case 0x2E: // ucomiss
 821     case 0x2F: // comiss
 822     case 0x54: // andps
 823     case 0x55: // andnps
 824     case 0x56: // orps
 825     case 0x57: // xorps
 826     case 0x58: // addpd
 827     case 0x59: // mulpd
 828     case 0x6E: // movd
 829     case 0x7E: // movd
 830     case 0x6F: // movdq
 831     case 0x7F: // movdq
 832     case 0xAE: // ldmxcsr, stmxcsr, fxrstor, fxsave, clflush
 833     case 0xFE: // paddd
 834       debug_only(has_disp32 = true);
 835       break;
 836 
 837     case 0xAD: // shrd r, a, %cl
 838     case 0xAF: // imul r, a
 839     case 0xBE: // movsbl r, a (movsxb)
 840     case 0xBF: // movswl r, a (movsxw)
 841     case 0xB6: // movzbl r, a (movzxb)
 842     case 0xB7: // movzwl r, a (movzxw)
 843     case REP16(0x40): // cmovl cc, r, a
 844     case 0xB0: // cmpxchgb
 845     case 0xB1: // cmpxchg
 846     case 0xC1: // xaddl
 847     case 0xC7: // cmpxchg8
 848     case REP16(0x90): // setcc a
 849       debug_only(has_disp32 = true);
 850       // fall out of the switch to decode the address
 851       break;
 852 
 853     case 0xC4: // pinsrw r, a, #8
 854       debug_only(has_disp32 = true);
 855     case 0xC5: // pextrw r, r, #8
 856       tail_size = 1;  // the imm8
 857       break;
 858 
 859     case 0xAC: // shrd r, a, #8
 860       debug_only(has_disp32 = true);
 861       tail_size = 1;  // the imm8
 862       break;
 863 
 864     case REP16(0x80): // jcc rdisp32
 865       if (which == end_pc_operand)  return ip + 4;
 866       assert(which == call32_operand, "jcc has no disp32 or imm");
 867       return ip;
 868     default:
 869       ShouldNotReachHere();
 870     }
 871     break;
 872 
 873   case 0x81: // addl a, #32; addl r, #32
 874     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 875     // on 32bit in the case of cmpl, the imm might be an oop
 876     tail_size = 4;
 877     debug_only(has_disp32 = true); // has both kinds of operands!
 878     break;
 879 
 880   case 0x83: // addl a, #8; addl r, #8
 881     // also: orl, adcl, sbbl, andl, subl, xorl, cmpl
 882     debug_only(has_disp32 = true); // has both kinds of operands!
 883     tail_size = 1;
 884     break;
 885 
 886   case 0x9B:
 887     switch (0xFF & *ip++) {
 888     case 0xD9: // fnstcw a
 889       debug_only(has_disp32 = true);
 890       break;
 891     default:
 892       ShouldNotReachHere();
 893     }
 894     break;
 895 
 896   case REP4(0x00): // addb a, r; addl a, r; addb r, a; addl r, a
 897   case REP4(0x10): // adc...
 898   case REP4(0x20): // and...
 899   case REP4(0x30): // xor...
 900   case REP4(0x08): // or...
 901   case REP4(0x18): // sbb...
 902   case REP4(0x28): // sub...
 903   case 0xF7: // mull a
 904   case 0x8D: // lea r, a
 905   case 0x87: // xchg r, a
 906   case REP4(0x38): // cmp...
 907   case 0x85: // test r, a
 908     debug_only(has_disp32 = true); // has both kinds of operands!
 909     break;
 910 
 911   case 0xC1: // sal a, #8; sar a, #8; shl a, #8; shr a, #8
 912   case 0xC6: // movb a, #8
 913   case 0x80: // cmpb a, #8
 914   case 0x6B: // imul r, a, #8
 915     debug_only(has_disp32 = true); // has both kinds of operands!
 916     tail_size = 1; // the imm8
 917     break;
 918 
 919   case 0xC4: // VEX_3bytes
 920   case 0xC5: // VEX_2bytes
 921     assert((UseAVX > 0), "shouldn't have VEX prefix");
 922     assert(ip == inst+1, "no prefixes allowed");
 923     // C4 and C5 are also used as opcodes for PINSRW and PEXTRW instructions
 924     // but they have prefix 0x0F and processed when 0x0F processed above.
 925     //
 926     // In 32-bit mode the VEX first byte C4 and C5 alias onto LDS and LES
 927     // instructions (these instructions are not supported in 64-bit mode).
 928     // To distinguish them bits [7:6] are set in the VEX second byte since
 929     // ModRM byte can not be of the form 11xxxxxx in 32-bit mode. To set
 930     // those VEX bits REX and vvvv bits are inverted.
 931     //
 932     // Fortunately C2 doesn't generate these instructions so we don't need
 933     // to check for them in product version.
 934 
 935     // Check second byte
 936     NOT_LP64(assert((0xC0 & *ip) == 0xC0, "shouldn't have LDS and LES instructions"));
 937 
 938     int vex_opcode;
 939     // First byte
 940     if ((0xFF & *inst) == VEX_3bytes) {
 941       vex_opcode = VEX_OPCODE_MASK & *ip;
 942       ip++; // third byte
 943       is_64bit = ((VEX_W & *ip) == VEX_W);
 944     } else {
 945       vex_opcode = VEX_OPCODE_0F;
 946     }
 947     ip++; // opcode
 948     // To find the end of instruction (which == end_pc_operand).
 949     switch (vex_opcode) {
 950       case VEX_OPCODE_0F:
 951         switch (0xFF & *ip) {
 952         case 0x70: // pshufd r, r/a, #8
 953         case 0x71: // ps[rl|ra|ll]w r, #8
 954         case 0x72: // ps[rl|ra|ll]d r, #8
 955         case 0x73: // ps[rl|ra|ll]q r, #8
 956         case 0xC2: // cmp[ps|pd|ss|sd] r, r, r/a, #8
 957         case 0xC4: // pinsrw r, r, r/a, #8
 958         case 0xC5: // pextrw r/a, r, #8
 959         case 0xC6: // shufp[s|d] r, r, r/a, #8
 960           tail_size = 1;  // the imm8
 961           break;
 962         }
 963         break;
 964       case VEX_OPCODE_0F_3A:
 965         tail_size = 1;
 966         break;
 967     }
 968     ip++; // skip opcode
 969     debug_only(has_disp32 = true); // has both kinds of operands!
 970     break;
 971 
 972   case 0x62: // EVEX_4bytes
 973     assert(VM_Version::supports_evex(), "shouldn't have EVEX prefix");
 974     assert(ip == inst+1, "no prefixes allowed");
 975     // no EVEX collisions, all instructions that have 0x62 opcodes
 976     // have EVEX versions and are subopcodes of 0x66
 977     ip++; // skip P0 and exmaine W in P1
 978     is_64bit = ((VEX_W & *ip) == VEX_W);
 979     ip++; // move to P2
 980     ip++; // skip P2, move to opcode
 981     // To find the end of instruction (which == end_pc_operand).
 982     switch (0xFF & *ip) {
 983     case 0x22: // pinsrd r, r/a, #8
 984     case 0x61: // pcmpestri r, r/a, #8
 985     case 0x70: // pshufd r, r/a, #8
 986     case 0x73: // psrldq r, #8
 987       tail_size = 1;  // the imm8
 988       break;
 989     default:
 990       break;
 991     }
 992     ip++; // skip opcode
 993     debug_only(has_disp32 = true); // has both kinds of operands!
 994     break;
 995 
 996   case 0xD1: // sal a, 1; sar a, 1; shl a, 1; shr a, 1
 997   case 0xD3: // sal a, %cl; sar a, %cl; shl a, %cl; shr a, %cl
 998   case 0xD9: // fld_s a; fst_s a; fstp_s a; fldcw a
 999   case 0xDD: // fld_d a; fst_d a; fstp_d a
1000   case 0xDB: // fild_s a; fistp_s a; fld_x a; fstp_x a
1001   case 0xDF: // fild_d a; fistp_d a
1002   case 0xD8: // fadd_s a; fsubr_s a; fmul_s a; fdivr_s a; fcomp_s a
1003   case 0xDC: // fadd_d a; fsubr_d a; fmul_d a; fdivr_d a; fcomp_d a
1004   case 0xDE: // faddp_d a; fsubrp_d a; fmulp_d a; fdivrp_d a; fcompp_d a
1005     debug_only(has_disp32 = true);
1006     break;
1007 
1008   case 0xE8: // call rdisp32
1009   case 0xE9: // jmp  rdisp32
1010     if (which == end_pc_operand)  return ip + 4;
1011     assert(which == call32_operand, "call has no disp32 or imm");
1012     return ip;
1013 
1014   case 0xF0:                    // Lock
1015     goto again_after_prefix;
1016 
1017   case 0xF3:                    // For SSE
1018   case 0xF2:                    // For SSE2
1019     switch (0xFF & *ip++) {
1020     case REX:
1021     case REX_B:
1022     case REX_X:
1023     case REX_XB:
1024     case REX_R:
1025     case REX_RB:
1026     case REX_RX:
1027     case REX_RXB:
1028     case REX_W:
1029     case REX_WB:
1030     case REX_WX:
1031     case REX_WXB:
1032     case REX_WR:
1033     case REX_WRB:
1034     case REX_WRX:
1035     case REX_WRXB:
1036       NOT_LP64(assert(false, "found 64bit prefix"));
1037       ip++;
1038     default:
1039       ip++;
1040     }
1041     debug_only(has_disp32 = true); // has both kinds of operands!
1042     break;
1043 
1044   default:
1045     ShouldNotReachHere();
1046 
1047 #undef REP8
1048 #undef REP16
1049   }
1050 
1051   assert(which != call32_operand, "instruction is not a call, jmp, or jcc");
1052 #ifdef _LP64
1053   assert(which != imm_operand, "instruction is not a movq reg, imm64");
1054 #else
1055   // assert(which != imm_operand || has_imm32, "instruction has no imm32 field");
1056   assert(which != imm_operand || has_disp32, "instruction has no imm32 field");
1057 #endif // LP64
1058   assert(which != disp32_operand || has_disp32, "instruction has no disp32 field");
1059 
1060   // parse the output of emit_operand
1061   int op2 = 0xFF & *ip++;
1062   int base = op2 & 0x07;
1063   int op3 = -1;
1064   const int b100 = 4;
1065   const int b101 = 5;
1066   if (base == b100 && (op2 >> 6) != 3) {
1067     op3 = 0xFF & *ip++;
1068     base = op3 & 0x07;   // refetch the base
1069   }
1070   // now ip points at the disp (if any)
1071 
1072   switch (op2 >> 6) {
1073   case 0:
1074     // [00 reg  100][ss index base]
1075     // [00 reg  100][00   100  esp]
1076     // [00 reg base]
1077     // [00 reg  100][ss index  101][disp32]
1078     // [00 reg  101]               [disp32]
1079 
1080     if (base == b101) {
1081       if (which == disp32_operand)
1082         return ip;              // caller wants the disp32
1083       ip += 4;                  // skip the disp32
1084     }
1085     break;
1086 
1087   case 1:
1088     // [01 reg  100][ss index base][disp8]
1089     // [01 reg  100][00   100  esp][disp8]
1090     // [01 reg base]               [disp8]
1091     ip += 1;                    // skip the disp8
1092     break;
1093 
1094   case 2:
1095     // [10 reg  100][ss index base][disp32]
1096     // [10 reg  100][00   100  esp][disp32]
1097     // [10 reg base]               [disp32]
1098     if (which == disp32_operand)
1099       return ip;                // caller wants the disp32
1100     ip += 4;                    // skip the disp32
1101     break;
1102 
1103   case 3:
1104     // [11 reg base]  (not a memory addressing mode)
1105     break;
1106   }
1107 
1108   if (which == end_pc_operand) {
1109     return ip + tail_size;
1110   }
1111 
1112 #ifdef _LP64
1113   assert(which == narrow_oop_operand && !is_64bit, "instruction is not a movl adr, imm32");
1114 #else
1115   assert(which == imm_operand, "instruction has only an imm field");
1116 #endif // LP64
1117   return ip;
1118 }
1119 
1120 address Assembler::locate_next_instruction(address inst) {
1121   // Secretly share code with locate_operand:
1122   return locate_operand(inst, end_pc_operand);
1123 }
1124 
1125 
1126 #ifdef ASSERT
1127 void Assembler::check_relocation(RelocationHolder const& rspec, int format) {
1128   address inst = inst_mark();
1129   assert(inst != NULL && inst < pc(), "must point to beginning of instruction");
1130   address opnd;
1131 
1132   Relocation* r = rspec.reloc();
1133   if (r->type() == relocInfo::none) {
1134     return;
1135   } else if (r->is_call() || format == call32_operand) {
1136     // assert(format == imm32_operand, "cannot specify a nonzero format");
1137     opnd = locate_operand(inst, call32_operand);
1138   } else if (r->is_data()) {
1139     assert(format == imm_operand || format == disp32_operand
1140            LP64_ONLY(|| format == narrow_oop_operand), "format ok");
1141     opnd = locate_operand(inst, (WhichOperand)format);
1142   } else {
1143     assert(format == imm_operand, "cannot specify a format");
1144     return;
1145   }
1146   assert(opnd == pc(), "must put operand where relocs can find it");
1147 }
1148 #endif // ASSERT
1149 
1150 void Assembler::emit_operand(Register reg, Address adr,
1151                              int rip_relative_correction) {
1152   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1153                adr._rspec,
1154                rip_relative_correction);
1155 }
1156 
1157 void Assembler::emit_operand(XMMRegister reg, Address adr) {
1158     if (adr.isxmmindex()) {
1159        emit_operand(reg, adr._base, adr._xmmindex, adr._scale, adr._disp, adr._rspec);
1160     } else {
1161        emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
1162        adr._rspec);
1163     }
1164 }
1165 
1166 // Now the Assembler instructions (identical for 32/64 bits)
1167 
1168 void Assembler::adcl(Address dst, int32_t imm32) {
1169   InstructionMark im(this);
1170   prefix(dst);
1171   emit_arith_operand(0x81, rdx, dst, imm32);
1172 }
1173 
1174 void Assembler::adcl(Address dst, Register src) {
1175   InstructionMark im(this);
1176   prefix(dst, src);
1177   emit_int8(0x11);
1178   emit_operand(src, dst);
1179 }
1180 
1181 void Assembler::adcl(Register dst, int32_t imm32) {
1182   prefix(dst);
1183   emit_arith(0x81, 0xD0, dst, imm32);
1184 }
1185 
1186 void Assembler::adcl(Register dst, Address src) {
1187   InstructionMark im(this);
1188   prefix(src, dst);
1189   emit_int8(0x13);
1190   emit_operand(dst, src);
1191 }
1192 
1193 void Assembler::adcl(Register dst, Register src) {
1194   (void) prefix_and_encode(dst->encoding(), src->encoding());
1195   emit_arith(0x13, 0xC0, dst, src);
1196 }
1197 
1198 void Assembler::addl(Address dst, int32_t imm32) {
1199   InstructionMark im(this);
1200   prefix(dst);
1201   emit_arith_operand(0x81, rax, dst, imm32);
1202 }
1203 
1204 void Assembler::addb(Address dst, int imm8) {
1205   InstructionMark im(this);
1206   prefix(dst);
1207   emit_int8((unsigned char)0x80);
1208   emit_operand(rax, dst, 1);
1209   emit_int8(imm8);
1210 }
1211 
1212 void Assembler::addw(Address dst, int imm16) {
1213   InstructionMark im(this);
1214   emit_int8(0x66);
1215   prefix(dst);
1216   emit_int8((unsigned char)0x81);
1217   emit_operand(rax, dst, 2);
1218   emit_int16(imm16);
1219 }
1220 
1221 void Assembler::addl(Address dst, Register src) {
1222   InstructionMark im(this);
1223   prefix(dst, src);
1224   emit_int8(0x01);
1225   emit_operand(src, dst);
1226 }
1227 
1228 void Assembler::addl(Register dst, int32_t imm32) {
1229   prefix(dst);
1230   emit_arith(0x81, 0xC0, dst, imm32);
1231 }
1232 
1233 void Assembler::addl(Register dst, Address src) {
1234   InstructionMark im(this);
1235   prefix(src, dst);
1236   emit_int8(0x03);
1237   emit_operand(dst, src);
1238 }
1239 
1240 void Assembler::addl(Register dst, Register src) {
1241   (void) prefix_and_encode(dst->encoding(), src->encoding());
1242   emit_arith(0x03, 0xC0, dst, src);
1243 }
1244 
1245 void Assembler::addr_nop_4() {
1246   assert(UseAddressNop, "no CPU support");
1247   // 4 bytes: NOP DWORD PTR [EAX+0]
1248   emit_int32(0x0F,
1249              0x1F,
1250              0x40, // emit_rm(cbuf, 0x1, EAX_enc, EAX_enc);
1251              0);   // 8-bits offset (1 byte)
1252 }
1253 
1254 void Assembler::addr_nop_5() {
1255   assert(UseAddressNop, "no CPU support");
1256   // 5 bytes: NOP DWORD PTR [EAX+EAX*0+0] 8-bits offset
1257   emit_int32(0x0F,
1258              0x1F,
1259              0x44,  // emit_rm(cbuf, 0x1, EAX_enc, 0x4);
1260              0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1261   emit_int8(0);     // 8-bits offset (1 byte)
1262 }
1263 
1264 void Assembler::addr_nop_7() {
1265   assert(UseAddressNop, "no CPU support");
1266   // 7 bytes: NOP DWORD PTR [EAX+0] 32-bits offset
1267   emit_int24(0x0F,
1268              0x1F,
1269              (unsigned char)0x80);
1270                    // emit_rm(cbuf, 0x2, EAX_enc, EAX_enc);
1271   emit_int32(0);   // 32-bits offset (4 bytes)
1272 }
1273 
1274 void Assembler::addr_nop_8() {
1275   assert(UseAddressNop, "no CPU support");
1276   // 8 bytes: NOP DWORD PTR [EAX+EAX*0+0] 32-bits offset
1277   emit_int32(0x0F,
1278              0x1F,
1279              (unsigned char)0x84,
1280                     // emit_rm(cbuf, 0x2, EAX_enc, 0x4);
1281              0x00); // emit_rm(cbuf, 0x0, EAX_enc, EAX_enc);
1282   emit_int32(0);    // 32-bits offset (4 bytes)
1283 }
1284 
1285 void Assembler::addsd(XMMRegister dst, XMMRegister src) {
1286   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1287   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1288   attributes.set_rex_vex_w_reverted();
1289   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1290   emit_int16(0x58, (0xC0 | encode));
1291 }
1292 
1293 void Assembler::addsd(XMMRegister dst, Address src) {
1294   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1295   InstructionMark im(this);
1296   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1297   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1298   attributes.set_rex_vex_w_reverted();
1299   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1300   emit_int8(0x58);
1301   emit_operand(dst, src);
1302 }
1303 
1304 void Assembler::addss(XMMRegister dst, XMMRegister src) {
1305   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1306   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1307   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1308   emit_int16(0x58, (0xC0 | encode));
1309 }
1310 
1311 void Assembler::addss(XMMRegister dst, Address src) {
1312   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1313   InstructionMark im(this);
1314   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1315   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1316   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1317   emit_int8(0x58);
1318   emit_operand(dst, src);
1319 }
1320 
1321 void Assembler::aesdec(XMMRegister dst, Address src) {
1322   assert(VM_Version::supports_aes(), "");
1323   InstructionMark im(this);
1324   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1325   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1326   emit_int8((unsigned char)0xDE);
1327   emit_operand(dst, src);
1328 }
1329 
1330 void Assembler::aesdec(XMMRegister dst, XMMRegister src) {
1331   assert(VM_Version::supports_aes(), "");
1332   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1333   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1334   emit_int16((unsigned char)0xDE, (0xC0 | encode));
1335 }
1336 
1337 void Assembler::vaesdec(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1338   assert(VM_Version::supports_avx512_vaes(), "");
1339   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1340   attributes.set_is_evex_instruction();
1341   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1342   emit_int16((unsigned char)0xDE, (0xC0 | encode));
1343 }
1344 
1345 
1346 void Assembler::aesdeclast(XMMRegister dst, Address src) {
1347   assert(VM_Version::supports_aes(), "");
1348   InstructionMark im(this);
1349   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1350   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1351   emit_int8((unsigned char)0xDF);
1352   emit_operand(dst, src);
1353 }
1354 
1355 void Assembler::aesdeclast(XMMRegister dst, XMMRegister src) {
1356   assert(VM_Version::supports_aes(), "");
1357   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1358   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1359   emit_int16((unsigned char)0xDF, (0xC0 | encode));
1360 }
1361 
1362 void Assembler::vaesdeclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1363   assert(VM_Version::supports_avx512_vaes(), "");
1364   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1365   attributes.set_is_evex_instruction();
1366   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1367   emit_int16((unsigned char)0xDF, (0xC0 | encode));
1368 }
1369 
1370 void Assembler::aesenc(XMMRegister dst, Address src) {
1371   assert(VM_Version::supports_aes(), "");
1372   InstructionMark im(this);
1373   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1374   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1375   emit_int8((unsigned char)0xDC);
1376   emit_operand(dst, src);
1377 }
1378 
1379 void Assembler::aesenc(XMMRegister dst, XMMRegister src) {
1380   assert(VM_Version::supports_aes(), "");
1381   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1382   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1383   emit_int16((unsigned char)0xDC, 0xC0 | encode);
1384 }
1385 
1386 void Assembler::vaesenc(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1387   assert(VM_Version::supports_avx512_vaes(), "requires vaes support/enabling");
1388   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1389   attributes.set_is_evex_instruction();
1390   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1391   emit_int16((unsigned char)0xDC, (0xC0 | encode));
1392 }
1393 
1394 void Assembler::aesenclast(XMMRegister dst, Address src) {
1395   assert(VM_Version::supports_aes(), "");
1396   InstructionMark im(this);
1397   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1398   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1399   emit_int8((unsigned char)0xDD);
1400   emit_operand(dst, src);
1401 }
1402 
1403 void Assembler::aesenclast(XMMRegister dst, XMMRegister src) {
1404   assert(VM_Version::supports_aes(), "");
1405   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1406   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1407   emit_int16((unsigned char)0xDD, (0xC0 | encode));
1408 }
1409 
1410 void Assembler::vaesenclast(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1411   assert(VM_Version::supports_avx512_vaes(), "requires vaes support/enabling");
1412   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1413   attributes.set_is_evex_instruction();
1414   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1415   emit_int16((unsigned char)0xDD, (0xC0 | encode));
1416 }
1417 
1418 void Assembler::andl(Address dst, int32_t imm32) {
1419   InstructionMark im(this);
1420   prefix(dst);
1421   emit_int8((unsigned char)0x81);
1422   emit_operand(rsp, dst, 4);
1423   emit_int32(imm32);
1424 }
1425 
1426 void Assembler::andl(Register dst, int32_t imm32) {
1427   prefix(dst);
1428   emit_arith(0x81, 0xE0, dst, imm32);
1429 }
1430 
1431 void Assembler::andl(Register dst, Address src) {
1432   InstructionMark im(this);
1433   prefix(src, dst);
1434   emit_int8(0x23);
1435   emit_operand(dst, src);
1436 }
1437 
1438 void Assembler::andl(Register dst, Register src) {
1439   (void) prefix_and_encode(dst->encoding(), src->encoding());
1440   emit_arith(0x23, 0xC0, dst, src);
1441 }
1442 
1443 void Assembler::andnl(Register dst, Register src1, Register src2) {
1444   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1445   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1446   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1447   emit_int16((unsigned char)0xF2, (0xC0 | encode));
1448 }
1449 
1450 void Assembler::andnl(Register dst, Register src1, Address src2) {
1451   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1452   InstructionMark im(this);
1453   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1454   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1455   emit_int8((unsigned char)0xF2);
1456   emit_operand(dst, src2);
1457 }
1458 
1459 void Assembler::bsfl(Register dst, Register src) {
1460   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1461   emit_int24(0x0F,
1462              (unsigned char)0xBC,
1463              0xC0 | encode);
1464 }
1465 
1466 void Assembler::bsrl(Register dst, Register src) {
1467   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1468   emit_int24(0x0F,
1469              (unsigned char)0xBD,
1470              0xC0 | encode);
1471 }
1472 
1473 void Assembler::bswapl(Register reg) { // bswap
1474   int encode = prefix_and_encode(reg->encoding());
1475   emit_int16(0x0F, (0xC8 | encode));
1476 }
1477 
1478 void Assembler::blsil(Register dst, Register src) {
1479   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1480   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1481   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1482   emit_int16((unsigned char)0xF3, (0xC0 | encode));
1483 }
1484 
1485 void Assembler::blsil(Register dst, Address src) {
1486   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1487   InstructionMark im(this);
1488   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1489   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1490   emit_int8((unsigned char)0xF3);
1491   emit_operand(rbx, src);
1492 }
1493 
1494 void Assembler::blsmskl(Register dst, Register src) {
1495   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1496   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1497   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1498   emit_int16((unsigned char)0xF3,
1499              0xC0 | encode);
1500 }
1501 
1502 void Assembler::blsmskl(Register dst, Address src) {
1503   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1504   InstructionMark im(this);
1505   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1506   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1507   emit_int8((unsigned char)0xF3);
1508   emit_operand(rdx, src);
1509 }
1510 
1511 void Assembler::blsrl(Register dst, Register src) {
1512   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1513   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1514   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1515   emit_int16((unsigned char)0xF3, (0xC0 | encode));
1516 }
1517 
1518 void Assembler::blsrl(Register dst, Address src) {
1519   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
1520   InstructionMark im(this);
1521   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
1522   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
1523   emit_int8((unsigned char)0xF3);
1524   emit_operand(rcx, src);
1525 }
1526 
1527 void Assembler::call(Label& L, relocInfo::relocType rtype) {
1528   // suspect disp32 is always good
1529   int operand = LP64_ONLY(disp32_operand) NOT_LP64(imm_operand);
1530 
1531   if (L.is_bound()) {
1532     const int long_size = 5;
1533     int offs = (int)( target(L) - pc() );
1534     assert(offs <= 0, "assembler error");
1535     InstructionMark im(this);
1536     // 1110 1000 #32-bit disp
1537     emit_int8((unsigned char)0xE8);
1538     emit_data(offs - long_size, rtype, operand);
1539   } else {
1540     InstructionMark im(this);
1541     // 1110 1000 #32-bit disp
1542     L.add_patch_at(code(), locator());
1543 
1544     emit_int8((unsigned char)0xE8);
1545     emit_data(int(0), rtype, operand);
1546   }
1547 }
1548 
1549 void Assembler::call(Register dst) {
1550   int encode = prefix_and_encode(dst->encoding());
1551   emit_int16((unsigned char)0xFF, (0xD0 | encode));
1552 }
1553 
1554 
1555 void Assembler::call(Address adr) {
1556   InstructionMark im(this);
1557   prefix(adr);
1558   emit_int8((unsigned char)0xFF);
1559   emit_operand(rdx, adr);
1560 }
1561 
1562 void Assembler::call_literal(address entry, RelocationHolder const& rspec) {
1563   InstructionMark im(this);
1564   emit_int8((unsigned char)0xE8);
1565   intptr_t disp = entry - (pc() + sizeof(int32_t));
1566   // Entry is NULL in case of a scratch emit.
1567   assert(entry == NULL || is_simm32(disp), "disp=" INTPTR_FORMAT " must be 32bit offset (call2)", disp);
1568   // Technically, should use call32_operand, but this format is
1569   // implied by the fact that we're emitting a call instruction.
1570 
1571   int operand = LP64_ONLY(disp32_operand) NOT_LP64(call32_operand);
1572   emit_data((int) disp, rspec, operand);
1573 }
1574 
1575 void Assembler::cdql() {
1576   emit_int8((unsigned char)0x99);
1577 }
1578 
1579 void Assembler::cld() {
1580   emit_int8((unsigned char)0xFC);
1581 }
1582 
1583 void Assembler::cmovl(Condition cc, Register dst, Register src) {
1584   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1585   int encode = prefix_and_encode(dst->encoding(), src->encoding());
1586   emit_int24(0x0F,
1587              0x40 | cc,
1588              0xC0 | encode);
1589 }
1590 
1591 
1592 void Assembler::cmovl(Condition cc, Register dst, Address src) {
1593   NOT_LP64(guarantee(VM_Version::supports_cmov(), "illegal instruction"));
1594   prefix(src, dst);
1595   emit_int16(0x0F, (0x40 | cc));
1596   emit_operand(dst, src);
1597 }
1598 
1599 void Assembler::cmpb(Address dst, int imm8) {
1600   InstructionMark im(this);
1601   prefix(dst);
1602   emit_int8((unsigned char)0x80);
1603   emit_operand(rdi, dst, 1);
1604   emit_int8(imm8);
1605 }
1606 
1607 void Assembler::cmpl(Address dst, int32_t imm32) {
1608   InstructionMark im(this);
1609   prefix(dst);
1610   emit_int8((unsigned char)0x81);
1611   emit_operand(rdi, dst, 4);
1612   emit_int32(imm32);
1613 }
1614 
1615 void Assembler::cmpl(Register dst, int32_t imm32) {
1616   prefix(dst);
1617   emit_arith(0x81, 0xF8, dst, imm32);
1618 }
1619 
1620 void Assembler::cmpl(Register dst, Register src) {
1621   (void) prefix_and_encode(dst->encoding(), src->encoding());
1622   emit_arith(0x3B, 0xC0, dst, src);
1623 }
1624 
1625 void Assembler::cmpl(Register dst, Address  src) {
1626   InstructionMark im(this);
1627   prefix(src, dst);
1628   emit_int8(0x3B);
1629   emit_operand(dst, src);
1630 }
1631 
1632 void Assembler::cmpw(Address dst, int imm16) {
1633   InstructionMark im(this);
1634   assert(!dst.base_needs_rex() && !dst.index_needs_rex(), "no extended registers");
1635   emit_int16(0x66, (unsigned char)0x81);
1636   emit_operand(rdi, dst, 2);
1637   emit_int16(imm16);
1638 }
1639 
1640 // The 32-bit cmpxchg compares the value at adr with the contents of rax,
1641 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1642 // The ZF is set if the compared values were equal, and cleared otherwise.
1643 void Assembler::cmpxchgl(Register reg, Address adr) { // cmpxchg
1644   InstructionMark im(this);
1645   prefix(adr, reg);
1646   emit_int16(0x0F, (unsigned char)0xB1);
1647   emit_operand(reg, adr);
1648 }
1649 
1650 // The 8-bit cmpxchg compares the value at adr with the contents of rax,
1651 // and stores reg into adr if so; otherwise, the value at adr is loaded into rax,.
1652 // The ZF is set if the compared values were equal, and cleared otherwise.
1653 void Assembler::cmpxchgb(Register reg, Address adr) { // cmpxchg
1654   InstructionMark im(this);
1655   prefix(adr, reg, true);
1656   emit_int16(0x0F, (unsigned char)0xB0);
1657   emit_operand(reg, adr);
1658 }
1659 
1660 void Assembler::comisd(XMMRegister dst, Address src) {
1661   // NOTE: dbx seems to decode this as comiss even though the
1662   // 0x66 is there. Strangly ucomisd comes out correct
1663   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1664   InstructionMark im(this);
1665   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);;
1666   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1667   attributes.set_rex_vex_w_reverted();
1668   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1669   emit_int8(0x2F);
1670   emit_operand(dst, src);
1671 }
1672 
1673 void Assembler::comisd(XMMRegister dst, XMMRegister src) {
1674   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1675   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1676   attributes.set_rex_vex_w_reverted();
1677   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1678   emit_int16(0x2F, (0xC0 | encode));
1679 }
1680 
1681 void Assembler::comiss(XMMRegister dst, Address src) {
1682   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1683   InstructionMark im(this);
1684   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1685   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1686   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1687   emit_int8(0x2F);
1688   emit_operand(dst, src);
1689 }
1690 
1691 void Assembler::comiss(XMMRegister dst, XMMRegister src) {
1692   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1693   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1694   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1695   emit_int16(0x2F, (0xC0 | encode));
1696 }
1697 
1698 void Assembler::cpuid() {
1699   emit_int16(0x0F, (unsigned char)0xA2);
1700 }
1701 
1702 // Opcode / Instruction                      Op /  En  64 - Bit Mode     Compat / Leg Mode Description                  Implemented
1703 // F2 0F 38 F0 / r       CRC32 r32, r / m8   RM        Valid             Valid             Accumulate CRC32 on r / m8.  v
1704 // F2 REX 0F 38 F0 / r   CRC32 r32, r / m8*  RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1705 // F2 REX.W 0F 38 F0 / r CRC32 r64, r / m8   RM        Valid             N.E.              Accumulate CRC32 on r / m8.  -
1706 //
1707 // F2 0F 38 F1 / r       CRC32 r32, r / m16  RM        Valid             Valid             Accumulate CRC32 on r / m16. v
1708 //
1709 // F2 0F 38 F1 / r       CRC32 r32, r / m32  RM        Valid             Valid             Accumulate CRC32 on r / m32. v
1710 //
1711 // F2 REX.W 0F 38 F1 / r CRC32 r64, r / m64  RM        Valid             N.E.              Accumulate CRC32 on r / m64. v
1712 void Assembler::crc32(Register crc, Register v, int8_t sizeInBytes) {
1713   assert(VM_Version::supports_sse4_2(), "");
1714   int8_t w = 0x01;
1715   Prefix p = Prefix_EMPTY;
1716 
1717   emit_int8((unsigned char)0xF2);
1718   switch (sizeInBytes) {
1719   case 1:
1720     w = 0;
1721     break;
1722   case 2:
1723   case 4:
1724     break;
1725   LP64_ONLY(case 8:)
1726     // This instruction is not valid in 32 bits
1727     // Note:
1728     // http://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
1729     //
1730     // Page B - 72   Vol. 2C says
1731     // qwreg2 to qwreg            1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : 11 qwreg1 qwreg2
1732     // mem64 to qwreg             1111 0010 : 0100 1R0B : 0000 1111 : 0011 1000 : 1111 0000 : mod qwreg r / m
1733     //                                                                            F0!!!
1734     // while 3 - 208 Vol. 2A
1735     // F2 REX.W 0F 38 F1 / r       CRC32 r64, r / m64             RM         Valid      N.E.Accumulate CRC32 on r / m64.
1736     //
1737     // the 0 on a last bit is reserved for a different flavor of this instruction :
1738     // F2 REX.W 0F 38 F0 / r       CRC32 r64, r / m8              RM         Valid      N.E.Accumulate CRC32 on r / m8.
1739     p = REX_W;
1740     break;
1741   default:
1742     assert(0, "Unsupported value for a sizeInBytes argument");
1743     break;
1744   }
1745   LP64_ONLY(prefix(crc, v, p);)
1746   emit_int32(0x0F,
1747              0x38,
1748              0xF0 | w,
1749              0xC0 | ((crc->encoding() & 0x7) << 3) | (v->encoding() & 7));
1750 }
1751 
1752 void Assembler::crc32(Register crc, Address adr, int8_t sizeInBytes) {
1753   assert(VM_Version::supports_sse4_2(), "");
1754   InstructionMark im(this);
1755   int8_t w = 0x01;
1756   Prefix p = Prefix_EMPTY;
1757 
1758   emit_int8((int8_t)0xF2);
1759   switch (sizeInBytes) {
1760   case 1:
1761     w = 0;
1762     break;
1763   case 2:
1764   case 4:
1765     break;
1766   LP64_ONLY(case 8:)
1767     // This instruction is not valid in 32 bits
1768     p = REX_W;
1769     break;
1770   default:
1771     assert(0, "Unsupported value for a sizeInBytes argument");
1772     break;
1773   }
1774   LP64_ONLY(prefix(crc, adr, p);)
1775   emit_int24(0x0F, 0x38, (0xF0 | w));
1776   emit_operand(crc, adr);
1777 }
1778 
1779 void Assembler::cvtdq2pd(XMMRegister dst, XMMRegister src) {
1780   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1781   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1782   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1783   emit_int16((unsigned char)0xE6, (0xC0 | encode));
1784 }
1785 
1786 void Assembler::cvtdq2ps(XMMRegister dst, XMMRegister src) {
1787   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1788   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1789   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
1790   emit_int16(0x5B, (0xC0 | encode));
1791 }
1792 
1793 void Assembler::cvtsd2ss(XMMRegister dst, XMMRegister src) {
1794   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1795   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1796   attributes.set_rex_vex_w_reverted();
1797   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1798   emit_int16(0x5A, (0xC0 | encode));
1799 }
1800 
1801 void Assembler::cvtsd2ss(XMMRegister dst, Address src) {
1802   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1803   InstructionMark im(this);
1804   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1805   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1806   attributes.set_rex_vex_w_reverted();
1807   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1808   emit_int8(0x5A);
1809   emit_operand(dst, src);
1810 }
1811 
1812 void Assembler::cvtsi2sdl(XMMRegister dst, Register src) {
1813   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1814   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1815   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1816   emit_int16(0x2A, (0xC0 | encode));
1817 }
1818 
1819 void Assembler::cvtsi2sdl(XMMRegister dst, Address src) {
1820   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1821   InstructionMark im(this);
1822   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1823   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1824   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1825   emit_int8(0x2A);
1826   emit_operand(dst, src);
1827 }
1828 
1829 void Assembler::cvtsi2ssl(XMMRegister dst, Register src) {
1830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1831   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1832   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1833   emit_int16(0x2A, (0xC0 | encode));
1834 }
1835 
1836 void Assembler::cvtsi2ssl(XMMRegister dst, Address src) {
1837   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1838   InstructionMark im(this);
1839   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1840   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1841   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1842   emit_int8(0x2A);
1843   emit_operand(dst, src);
1844 }
1845 
1846 void Assembler::cvtsi2ssq(XMMRegister dst, Register src) {
1847   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1848   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1849   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1850   emit_int16(0x2A, (0xC0 | encode));
1851 }
1852 
1853 void Assembler::cvtss2sd(XMMRegister dst, XMMRegister src) {
1854   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1855   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1856   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1857   emit_int16(0x5A, (0xC0 | encode));
1858 }
1859 
1860 void Assembler::cvtss2sd(XMMRegister dst, Address src) {
1861   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1862   InstructionMark im(this);
1863   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1864   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1865   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1866   emit_int8(0x5A);
1867   emit_operand(dst, src);
1868 }
1869 
1870 
1871 void Assembler::cvttsd2sil(Register dst, XMMRegister src) {
1872   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1873   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1874   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1875   emit_int16(0x2C, (0xC0 | encode));
1876 }
1877 
1878 void Assembler::cvttss2sil(Register dst, XMMRegister src) {
1879   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1880   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1881   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1882   emit_int16(0x2C, (0xC0 | encode));
1883 }
1884 
1885 void Assembler::cvttpd2dq(XMMRegister dst, XMMRegister src) {
1886   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1887   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
1888   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1889   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
1890   emit_int16((unsigned char)0xE6, (0xC0 | encode));
1891 }
1892 
1893 void Assembler::pabsb(XMMRegister dst, XMMRegister src) {
1894   assert(VM_Version::supports_ssse3(), "");
1895   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1896   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1897   emit_int16(0x1C, (0xC0 | encode));
1898 }
1899 
1900 void Assembler::pabsw(XMMRegister dst, XMMRegister src) {
1901   assert(VM_Version::supports_ssse3(), "");
1902   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1903   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1904   emit_int16(0x1D, (0xC0 | encode));
1905 }
1906 
1907 void Assembler::pabsd(XMMRegister dst, XMMRegister src) {
1908   assert(VM_Version::supports_ssse3(), "");
1909   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1910   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1911   emit_int16(0x1E, (0xC0 | encode));
1912 }
1913 
1914 void Assembler::vpabsb(XMMRegister dst, XMMRegister src, int vector_len) {
1915   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1916   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1917   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
1918   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1919   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1920   emit_int16(0x1C, (0xC0 | encode));
1921 }
1922 
1923 void Assembler::vpabsw(XMMRegister dst, XMMRegister src, int vector_len) {
1924   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1925   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1926   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
1927   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
1928   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1929   emit_int16(0x1D, (0xC0 | encode));
1930 }
1931 
1932 void Assembler::vpabsd(XMMRegister dst, XMMRegister src, int vector_len) {
1933   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
1934   vector_len == AVX_256bit? VM_Version::supports_avx2() :
1935   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, "");
1936   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1937   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1938   emit_int16(0x1E, (0xC0 | encode));
1939 }
1940 
1941 void Assembler::evpabsq(XMMRegister dst, XMMRegister src, int vector_len) {
1942   assert(UseAVX > 2, "");
1943   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
1944   attributes.set_is_evex_instruction();
1945   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
1946   emit_int16(0x1F, (0xC0 | encode));
1947 }
1948 
1949 void Assembler::decl(Address dst) {
1950   // Don't use it directly. Use MacroAssembler::decrement() instead.
1951   InstructionMark im(this);
1952   prefix(dst);
1953   emit_int8((unsigned char)0xFF);
1954   emit_operand(rcx, dst);
1955 }
1956 
1957 void Assembler::divsd(XMMRegister dst, Address src) {
1958   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1959   InstructionMark im(this);
1960   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1961   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
1962   attributes.set_rex_vex_w_reverted();
1963   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1964   emit_int8(0x5E);
1965   emit_operand(dst, src);
1966 }
1967 
1968 void Assembler::divsd(XMMRegister dst, XMMRegister src) {
1969   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
1970   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1971   attributes.set_rex_vex_w_reverted();
1972   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
1973   emit_int16(0x5E, (0xC0 | encode));
1974 }
1975 
1976 void Assembler::divss(XMMRegister dst, Address src) {
1977   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1978   InstructionMark im(this);
1979   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1980   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
1981   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1982   emit_int8(0x5E);
1983   emit_operand(dst, src);
1984 }
1985 
1986 void Assembler::divss(XMMRegister dst, XMMRegister src) {
1987   NOT_LP64(assert(VM_Version::supports_sse(), ""));
1988   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
1989   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
1990   emit_int16(0x5E, (0xC0 | encode));
1991 }
1992 
1993 void Assembler::hlt() {
1994   emit_int8((unsigned char)0xF4);
1995 }
1996 
1997 void Assembler::idivl(Register src) {
1998   int encode = prefix_and_encode(src->encoding());
1999   emit_int16((unsigned char)0xF7, (0xF8 | encode));
2000 }
2001 
2002 void Assembler::divl(Register src) { // Unsigned
2003   int encode = prefix_and_encode(src->encoding());
2004   emit_int16((unsigned char)0xF7, (0xF0 | encode));
2005 }
2006 
2007 void Assembler::imull(Register src) {
2008   int encode = prefix_and_encode(src->encoding());
2009   emit_int16((unsigned char)0xF7, (0xE8 | encode));
2010 }
2011 
2012 void Assembler::imull(Register dst, Register src) {
2013   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2014   emit_int24(0x0F,
2015              (unsigned char)0xAF,
2016              (0xC0 | encode));
2017 }
2018 
2019 
2020 void Assembler::imull(Register dst, Register src, int value) {
2021   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2022   if (is8bit(value)) {
2023     emit_int24(0x6B, (0xC0 | encode), value & 0xFF);
2024   } else {
2025     emit_int16(0x69, (0xC0 | encode));
2026     emit_int32(value);
2027   }
2028 }
2029 
2030 void Assembler::imull(Register dst, Address src) {
2031   InstructionMark im(this);
2032   prefix(src, dst);
2033   emit_int16(0x0F, (unsigned char)0xAF);
2034   emit_operand(dst, src);
2035 }
2036 
2037 
2038 void Assembler::incl(Address dst) {
2039   // Don't use it directly. Use MacroAssembler::increment() instead.
2040   InstructionMark im(this);
2041   prefix(dst);
2042   emit_int8((unsigned char)0xFF);
2043   emit_operand(rax, dst);
2044 }
2045 
2046 void Assembler::jcc(Condition cc, Label& L, bool maybe_short) {
2047   InstructionMark im(this);
2048   assert((0 <= cc) && (cc < 16), "illegal cc");
2049   if (L.is_bound()) {
2050     address dst = target(L);
2051     assert(dst != NULL, "jcc most probably wrong");
2052 
2053     const int short_size = 2;
2054     const int long_size = 6;
2055     intptr_t offs = (intptr_t)dst - (intptr_t)pc();
2056     if (maybe_short && is8bit(offs - short_size)) {
2057       // 0111 tttn #8-bit disp
2058       emit_int16(0x70 | cc, (offs - short_size) & 0xFF);
2059     } else {
2060       // 0000 1111 1000 tttn #32-bit disp
2061       assert(is_simm32(offs - long_size),
2062              "must be 32bit offset (call4)");
2063       emit_int16(0x0F, (0x80 | cc));
2064       emit_int32(offs - long_size);
2065     }
2066   } else {
2067     // Note: could eliminate cond. jumps to this jump if condition
2068     //       is the same however, seems to be rather unlikely case.
2069     // Note: use jccb() if label to be bound is very close to get
2070     //       an 8-bit displacement
2071     L.add_patch_at(code(), locator());
2072     emit_int16(0x0F, (0x80 | cc));
2073     emit_int32(0);
2074   }
2075 }
2076 
2077 void Assembler::jccb_0(Condition cc, Label& L, const char* file, int line) {
2078   if (L.is_bound()) {
2079     const int short_size = 2;
2080     address entry = target(L);
2081 #ifdef ASSERT
2082     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2083     intptr_t delta = short_branch_delta();
2084     if (delta != 0) {
2085       dist += (dist < 0 ? (-delta) :delta);
2086     }
2087     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2088 #endif
2089     intptr_t offs = (intptr_t)entry - (intptr_t)pc();
2090     // 0111 tttn #8-bit disp
2091     emit_int16(0x70 | cc, (offs - short_size) & 0xFF);
2092   } else {
2093     InstructionMark im(this);
2094     L.add_patch_at(code(), locator(), file, line);
2095     emit_int16(0x70 | cc, 0);
2096   }
2097 }
2098 
2099 void Assembler::jmp(Address adr) {
2100   InstructionMark im(this);
2101   prefix(adr);
2102   emit_int8((unsigned char)0xFF);
2103   emit_operand(rsp, adr);
2104 }
2105 
2106 void Assembler::jmp(Label& L, bool maybe_short) {
2107   if (L.is_bound()) {
2108     address entry = target(L);
2109     assert(entry != NULL, "jmp most probably wrong");
2110     InstructionMark im(this);
2111     const int short_size = 2;
2112     const int long_size = 5;
2113     intptr_t offs = entry - pc();
2114     if (maybe_short && is8bit(offs - short_size)) {
2115       emit_int16((unsigned char)0xEB, ((offs - short_size) & 0xFF));
2116     } else {
2117       emit_int8((unsigned char)0xE9);
2118       emit_int32(offs - long_size);
2119     }
2120   } else {
2121     // By default, forward jumps are always 32-bit displacements, since
2122     // we can't yet know where the label will be bound.  If you're sure that
2123     // the forward jump will not run beyond 256 bytes, use jmpb to
2124     // force an 8-bit displacement.
2125     InstructionMark im(this);
2126     L.add_patch_at(code(), locator());
2127     emit_int8((unsigned char)0xE9);
2128     emit_int32(0);
2129   }
2130 }
2131 
2132 void Assembler::jmp(Register entry) {
2133   int encode = prefix_and_encode(entry->encoding());
2134   emit_int16((unsigned char)0xFF, (0xE0 | encode));
2135 }
2136 
2137 void Assembler::jmp_literal(address dest, RelocationHolder const& rspec) {
2138   InstructionMark im(this);
2139   emit_int8((unsigned char)0xE9);
2140   assert(dest != NULL, "must have a target");
2141   intptr_t disp = dest - (pc() + sizeof(int32_t));
2142   assert(is_simm32(disp), "must be 32bit offset (jmp)");
2143   emit_data(disp, rspec.reloc(), call32_operand);
2144 }
2145 
2146 void Assembler::jmpb_0(Label& L, const char* file, int line) {
2147   if (L.is_bound()) {
2148     const int short_size = 2;
2149     address entry = target(L);
2150     assert(entry != NULL, "jmp most probably wrong");
2151 #ifdef ASSERT
2152     intptr_t dist = (intptr_t)entry - ((intptr_t)pc() + short_size);
2153     intptr_t delta = short_branch_delta();
2154     if (delta != 0) {
2155       dist += (dist < 0 ? (-delta) :delta);
2156     }
2157     assert(is8bit(dist), "Dispacement too large for a short jmp at %s:%d", file, line);
2158 #endif
2159     intptr_t offs = entry - pc();
2160     emit_int16((unsigned char)0xEB, (offs - short_size) & 0xFF);
2161   } else {
2162     InstructionMark im(this);
2163     L.add_patch_at(code(), locator(), file, line);
2164     emit_int16((unsigned char)0xEB, 0);
2165   }
2166 }
2167 
2168 void Assembler::ldmxcsr( Address src) {
2169   if (UseAVX > 0 ) {
2170     InstructionMark im(this);
2171     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2172     vex_prefix(src, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2173     emit_int8((unsigned char)0xAE);
2174     emit_operand(as_Register(2), src);
2175   } else {
2176     NOT_LP64(assert(VM_Version::supports_sse(), ""));
2177     InstructionMark im(this);
2178     prefix(src);
2179     emit_int16(0x0F, (unsigned char)0xAE);
2180     emit_operand(as_Register(2), src);
2181   }
2182 }
2183 
2184 void Assembler::leal(Register dst, Address src) {
2185   InstructionMark im(this);
2186 #ifdef _LP64
2187   emit_int8(0x67); // addr32
2188   prefix(src, dst);
2189 #endif // LP64
2190   emit_int8((unsigned char)0x8D);
2191   emit_operand(dst, src);
2192 }
2193 
2194 void Assembler::lfence() {
2195   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xE8);
2196 }
2197 
2198 void Assembler::lock() {
2199   emit_int8((unsigned char)0xF0);
2200 }
2201 
2202 void Assembler::lzcntl(Register dst, Register src) {
2203   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
2204   emit_int8((unsigned char)0xF3);
2205   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2206   emit_int24(0x0F, (unsigned char)0xBD, (0xC0 | encode));
2207 }
2208 
2209 // Emit mfence instruction
2210 void Assembler::mfence() {
2211   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2212   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xF0);
2213 }
2214 
2215 // Emit sfence instruction
2216 void Assembler::sfence() {
2217   NOT_LP64(assert(VM_Version::supports_sse2(), "unsupported");)
2218   emit_int24(0x0F, (unsigned char)0xAE, (unsigned char)0xF8);
2219 }
2220 
2221 void Assembler::mov(Register dst, Register src) {
2222   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
2223 }
2224 
2225 void Assembler::movapd(XMMRegister dst, XMMRegister src) {
2226   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2227   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2228   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2229   attributes.set_rex_vex_w_reverted();
2230   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2231   emit_int16(0x28, (0xC0 | encode));
2232 }
2233 
2234 void Assembler::movaps(XMMRegister dst, XMMRegister src) {
2235   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2236   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2237   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2238   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2239   emit_int16(0x28, (0xC0 | encode));
2240 }
2241 
2242 void Assembler::movlhps(XMMRegister dst, XMMRegister src) {
2243   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2244   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2245   int encode = simd_prefix_and_encode(dst, src, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2246   emit_int16(0x16, (0xC0 | encode));
2247 }
2248 
2249 void Assembler::movb(Register dst, Address src) {
2250   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
2251   InstructionMark im(this);
2252   prefix(src, dst, true);
2253   emit_int8((unsigned char)0x8A);
2254   emit_operand(dst, src);
2255 }
2256 
2257 void Assembler::movddup(XMMRegister dst, XMMRegister src) {
2258   NOT_LP64(assert(VM_Version::supports_sse3(), ""));
2259   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
2260   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2261   attributes.set_rex_vex_w_reverted();
2262   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2263   emit_int16(0x12, 0xC0 | encode);
2264 }
2265 
2266 void Assembler::kmovbl(KRegister dst, Register src) {
2267   assert(VM_Version::supports_avx512dq(), "");
2268   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2269   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2270   emit_int16((unsigned char)0x92, (0xC0 | encode));
2271 }
2272 
2273 void Assembler::kmovbl(Register dst, KRegister src) {
2274   assert(VM_Version::supports_avx512dq(), "");
2275   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2276   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2277   emit_int16((unsigned char)0x93, (0xC0 | encode));
2278 }
2279 
2280 void Assembler::kmovwl(KRegister dst, Register src) {
2281   assert(VM_Version::supports_evex(), "");
2282   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2283   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2284   emit_int16((unsigned char)0x92, (0xC0 | encode));
2285 }
2286 
2287 void Assembler::kmovwl(Register dst, KRegister src) {
2288   assert(VM_Version::supports_evex(), "");
2289   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2290   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2291   emit_int16((unsigned char)0x93, (0xC0 | encode));
2292 }
2293 
2294 void Assembler::kmovwl(KRegister dst, Address src) {
2295   assert(VM_Version::supports_evex(), "");
2296   InstructionMark im(this);
2297   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2298   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2299   emit_int8((unsigned char)0x90);
2300   emit_operand((Register)dst, src);
2301 }
2302 
2303 void Assembler::kmovdl(KRegister dst, Register src) {
2304   assert(VM_Version::supports_avx512bw(), "");
2305   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2306   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2307   emit_int16((unsigned char)0x92, (0xC0 | encode));
2308 }
2309 
2310 void Assembler::kmovdl(Register dst, KRegister src) {
2311   assert(VM_Version::supports_avx512bw(), "");
2312   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2313   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2314   emit_int16((unsigned char)0x93, (0xC0 | encode));
2315 }
2316 
2317 void Assembler::kmovql(KRegister dst, KRegister src) {
2318   assert(VM_Version::supports_avx512bw(), "");
2319   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2320   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2321   emit_int16((unsigned char)0x90, (0xC0 | encode));
2322 }
2323 
2324 void Assembler::kmovql(KRegister dst, Address src) {
2325   assert(VM_Version::supports_avx512bw(), "");
2326   InstructionMark im(this);
2327   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2328   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2329   emit_int8((unsigned char)0x90);
2330   emit_operand((Register)dst, src);
2331 }
2332 
2333 void Assembler::kmovql(Address dst, KRegister src) {
2334   assert(VM_Version::supports_avx512bw(), "");
2335   InstructionMark im(this);
2336   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2337   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2338   emit_int8((unsigned char)0x90);
2339   emit_operand((Register)src, dst);
2340 }
2341 
2342 void Assembler::kmovql(KRegister dst, Register src) {
2343   assert(VM_Version::supports_avx512bw(), "");
2344   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2345   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2346   emit_int16((unsigned char)0x92, (0xC0 | encode));
2347 }
2348 
2349 void Assembler::kmovql(Register dst, KRegister src) {
2350   assert(VM_Version::supports_avx512bw(), "");
2351   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2352   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2353   emit_int16((unsigned char)0x93, (0xC0 | encode));
2354 }
2355 
2356 void Assembler::knotwl(KRegister dst, KRegister src) {
2357   assert(VM_Version::supports_evex(), "");
2358   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2359   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2360   emit_int16(0x44, (0xC0 | encode));
2361 }
2362 
2363 // This instruction produces ZF or CF flags
2364 void Assembler::kortestbl(KRegister src1, KRegister src2) {
2365   assert(VM_Version::supports_avx512dq(), "");
2366   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2367   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2368   emit_int16((unsigned char)0x98, (0xC0 | encode));
2369 }
2370 
2371 // This instruction produces ZF or CF flags
2372 void Assembler::kortestwl(KRegister src1, KRegister src2) {
2373   assert(VM_Version::supports_evex(), "");
2374   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2375   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2376   emit_int16((unsigned char)0x98, (0xC0 | encode));
2377 }
2378 
2379 // This instruction produces ZF or CF flags
2380 void Assembler::kortestdl(KRegister src1, KRegister src2) {
2381   assert(VM_Version::supports_avx512bw(), "");
2382   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2383   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2384   emit_int16((unsigned char)0x98, (0xC0 | encode));
2385 }
2386 
2387 // This instruction produces ZF or CF flags
2388 void Assembler::kortestql(KRegister src1, KRegister src2) {
2389   assert(VM_Version::supports_avx512bw(), "");
2390   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2391   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2392   emit_int16((unsigned char)0x98, (0xC0 | encode));
2393 }
2394 
2395 // This instruction produces ZF or CF flags
2396 void Assembler::ktestql(KRegister src1, KRegister src2) {
2397   assert(VM_Version::supports_avx512bw(), "");
2398   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2399   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2400   emit_int16((unsigned char)0x99, (0xC0 | encode));
2401 }
2402 
2403 void Assembler::ktestq(KRegister src1, KRegister src2) {
2404   assert(VM_Version::supports_avx512bw(), "");
2405   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2406   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
2407   emit_int16((unsigned char)0x99, (0xC0 | encode));
2408 }
2409 
2410 void Assembler::ktestd(KRegister src1, KRegister src2) {
2411   assert(VM_Version::supports_avx512bw(), "");
2412   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
2413   int encode = vex_prefix_and_encode(src1->encoding(), 0, src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2414   emit_int16((unsigned char)0x99, (0xC0 | encode));
2415 }
2416 
2417 void Assembler::movb(Address dst, int imm8) {
2418   InstructionMark im(this);
2419    prefix(dst);
2420   emit_int8((unsigned char)0xC6);
2421   emit_operand(rax, dst, 1);
2422   emit_int8(imm8);
2423 }
2424 
2425 
2426 void Assembler::movb(Address dst, Register src) {
2427   assert(src->has_byte_register(), "must have byte register");
2428   InstructionMark im(this);
2429   prefix(dst, src, true);
2430   emit_int8((unsigned char)0x88);
2431   emit_operand(src, dst);
2432 }
2433 
2434 void Assembler::movdl(XMMRegister dst, Register src) {
2435   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2436   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2437   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2438   emit_int16(0x6E, (0xC0 | encode));
2439 }
2440 
2441 void Assembler::movdl(Register dst, XMMRegister src) {
2442   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2443   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2444   // swap src/dst to get correct prefix
2445   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2446   emit_int16(0x7E, (0xC0 | encode));
2447 }
2448 
2449 void Assembler::movdl(XMMRegister dst, Address src) {
2450   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2451   InstructionMark im(this);
2452   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2453   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2454   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2455   emit_int8(0x6E);
2456   emit_operand(dst, src);
2457 }
2458 
2459 void Assembler::movdl(Address dst, XMMRegister src) {
2460   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2461   InstructionMark im(this);
2462   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2463   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2464   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2465   emit_int8(0x7E);
2466   emit_operand(src, dst);
2467 }
2468 
2469 void Assembler::movdqa(XMMRegister dst, XMMRegister src) {
2470   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2471   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2472   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2473   emit_int16(0x6F, (0xC0 | encode));
2474 }
2475 
2476 void Assembler::movdqa(XMMRegister dst, Address src) {
2477   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2478   InstructionMark im(this);
2479   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2480   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2481   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2482   emit_int8(0x6F);
2483   emit_operand(dst, src);
2484 }
2485 
2486 void Assembler::movdqu(XMMRegister dst, Address src) {
2487   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2488   InstructionMark im(this);
2489   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2490   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2491   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2492   emit_int8(0x6F);
2493   emit_operand(dst, src);
2494 }
2495 
2496 void Assembler::movdqu(XMMRegister dst, XMMRegister src) {
2497   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2498   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2499   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2500   emit_int16(0x6F, (0xC0 | encode));
2501 }
2502 
2503 void Assembler::movdqu(Address dst, XMMRegister src) {
2504   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2505   InstructionMark im(this);
2506   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2507   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2508   attributes.reset_is_clear_context();
2509   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2510   emit_int8(0x7F);
2511   emit_operand(src, dst);
2512 }
2513 
2514 // Move Unaligned 256bit Vector
2515 void Assembler::vmovdqu(XMMRegister dst, XMMRegister src) {
2516   assert(UseAVX > 0, "");
2517   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2518   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2519   emit_int16(0x6F, (0xC0 | encode));
2520 }
2521 
2522 void Assembler::vmovdqu(XMMRegister dst, Address src) {
2523   assert(UseAVX > 0, "");
2524   InstructionMark im(this);
2525   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2526   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2527   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2528   emit_int8(0x6F);
2529   emit_operand(dst, src);
2530 }
2531 
2532 void Assembler::vmovdqu(Address dst, XMMRegister src) {
2533   assert(UseAVX > 0, "");
2534   InstructionMark im(this);
2535   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2536   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2537   attributes.reset_is_clear_context();
2538   // swap src<->dst for encoding
2539   assert(src != xnoreg, "sanity");
2540   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2541   emit_int8(0x7F);
2542   emit_operand(src, dst);
2543 }
2544 
2545 // Move Unaligned EVEX enabled Vector (programmable : 8,16,32,64)
2546 void Assembler::evmovdqub(XMMRegister dst, XMMRegister src, int vector_len) {
2547   assert(VM_Version::supports_evex(), "");
2548   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2549   attributes.set_is_evex_instruction();
2550   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2551   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2552   emit_int16(0x6F, (0xC0 | encode));
2553 }
2554 
2555 void Assembler::evmovdqub(XMMRegister dst, Address src, int vector_len) {
2556   assert(VM_Version::supports_evex(), "");
2557   InstructionMark im(this);
2558   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2559   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2560   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2561   attributes.set_is_evex_instruction();
2562   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2563   emit_int8(0x6F);
2564   emit_operand(dst, src);
2565 }
2566 
2567 void Assembler::evmovdqub(Address dst, XMMRegister src, int vector_len) {
2568   assert(VM_Version::supports_evex(), "");
2569   assert(src != xnoreg, "sanity");
2570   InstructionMark im(this);
2571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2572   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2573   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2574   attributes.set_is_evex_instruction();
2575   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2576   emit_int8(0x7F);
2577   emit_operand(src, dst);
2578 }
2579 
2580 void Assembler::evmovdqub(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2581   assert(VM_Version::supports_avx512vlbw(), "");
2582   InstructionMark im(this);
2583   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2584   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2585   attributes.set_embedded_opmask_register_specifier(mask);
2586   attributes.set_is_evex_instruction();
2587   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2588   emit_int8(0x6F);
2589   emit_operand(dst, src);
2590 }
2591 
2592 void Assembler::evmovdquw(XMMRegister dst, Address src, int vector_len) {
2593   assert(VM_Version::supports_evex(), "");
2594   InstructionMark im(this);
2595   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2596   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2597   attributes.set_is_evex_instruction();
2598   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2599   vex_prefix(src, 0, dst->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2600   emit_int8(0x6F);
2601   emit_operand(dst, src);
2602 }
2603 
2604 void Assembler::evmovdquw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
2605   assert(VM_Version::supports_avx512vlbw(), "");
2606   InstructionMark im(this);
2607   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2608   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2609   attributes.set_embedded_opmask_register_specifier(mask);
2610   attributes.set_is_evex_instruction();
2611   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2612   emit_int8(0x6F);
2613   emit_operand(dst, src);
2614 }
2615 
2616 void Assembler::evmovdquw(Address dst, XMMRegister src, int vector_len) {
2617   assert(VM_Version::supports_evex(), "");
2618   assert(src != xnoreg, "sanity");
2619   InstructionMark im(this);
2620   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
2621   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2622   attributes.set_is_evex_instruction();
2623   int prefix = (_legacy_mode_bw) ? VEX_SIMD_F2 : VEX_SIMD_F3;
2624   vex_prefix(dst, 0, src->encoding(), (Assembler::VexSimdPrefix)prefix, VEX_OPCODE_0F, &attributes);
2625   emit_int8(0x7F);
2626   emit_operand(src, dst);
2627 }
2628 
2629 void Assembler::evmovdquw(Address dst, KRegister mask, XMMRegister src, int vector_len) {
2630   assert(VM_Version::supports_avx512vlbw(), "");
2631   assert(src != xnoreg, "sanity");
2632   InstructionMark im(this);
2633   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
2634   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2635   attributes.reset_is_clear_context();
2636   attributes.set_embedded_opmask_register_specifier(mask);
2637   attributes.set_is_evex_instruction();
2638   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2639   emit_int8(0x7F);
2640   emit_operand(src, dst);
2641 }
2642 
2643 void Assembler::evmovdqul(XMMRegister dst, XMMRegister src, int vector_len) {
2644   assert(VM_Version::supports_evex(), "");
2645   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2646   attributes.set_is_evex_instruction();
2647   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2648   emit_int16(0x6F, (0xC0 | encode));
2649 }
2650 
2651 void Assembler::evmovdqul(XMMRegister dst, Address src, int vector_len) {
2652   assert(VM_Version::supports_evex(), "");
2653   InstructionMark im(this);
2654   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ true);
2655   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2656   attributes.set_is_evex_instruction();
2657   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2658   emit_int8(0x6F);
2659   emit_operand(dst, src);
2660 }
2661 
2662 void Assembler::evmovdqul(Address dst, XMMRegister src, int vector_len) {
2663   assert(VM_Version::supports_evex(), "");
2664   assert(src != xnoreg, "sanity");
2665   InstructionMark im(this);
2666   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2667   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2668   attributes.reset_is_clear_context();
2669   attributes.set_is_evex_instruction();
2670   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2671   emit_int8(0x7F);
2672   emit_operand(src, dst);
2673 }
2674 
2675 void Assembler::evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) {
2676   assert(VM_Version::supports_evex(), "");
2677   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2678   attributes.set_is_evex_instruction();
2679   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2680   emit_int16(0x6F, (0xC0 | encode));
2681 }
2682 
2683 void Assembler::evmovdquq(XMMRegister dst, Address src, int vector_len) {
2684   assert(VM_Version::supports_evex(), "");
2685   InstructionMark im(this);
2686   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2687   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2688   attributes.set_is_evex_instruction();
2689   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2690   emit_int8(0x6F);
2691   emit_operand(dst, src);
2692 }
2693 
2694 void Assembler::evmovdquq(Address dst, XMMRegister src, int vector_len) {
2695   assert(VM_Version::supports_evex(), "");
2696   assert(src != xnoreg, "sanity");
2697   InstructionMark im(this);
2698   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2699   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
2700   attributes.reset_is_clear_context();
2701   attributes.set_is_evex_instruction();
2702   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2703   emit_int8(0x7F);
2704   emit_operand(src, dst);
2705 }
2706 
2707 // Uses zero extension on 64bit
2708 
2709 void Assembler::movl(Register dst, int32_t imm32) {
2710   int encode = prefix_and_encode(dst->encoding());
2711   emit_int8(0xB8 | encode);
2712   emit_int32(imm32);
2713 }
2714 
2715 void Assembler::movl(Register dst, Register src) {
2716   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2717   emit_int16((unsigned char)0x8B, (0xC0 | encode));
2718 }
2719 
2720 void Assembler::movl(Register dst, Address src) {
2721   InstructionMark im(this);
2722   prefix(src, dst);
2723   emit_int8((unsigned char)0x8B);
2724   emit_operand(dst, src);
2725 }
2726 
2727 void Assembler::movl(Address dst, int32_t imm32) {
2728   InstructionMark im(this);
2729   prefix(dst);
2730   emit_int8((unsigned char)0xC7);
2731   emit_operand(rax, dst, 4);
2732   emit_int32(imm32);
2733 }
2734 
2735 void Assembler::movl(Address dst, Register src) {
2736   InstructionMark im(this);
2737   prefix(dst, src);
2738   emit_int8((unsigned char)0x89);
2739   emit_operand(src, dst);
2740 }
2741 
2742 // New cpus require to use movsd and movss to avoid partial register stall
2743 // when loading from memory. But for old Opteron use movlpd instead of movsd.
2744 // The selection is done in MacroAssembler::movdbl() and movflt().
2745 void Assembler::movlpd(XMMRegister dst, Address src) {
2746   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2747   InstructionMark im(this);
2748   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
2749   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2750   attributes.set_rex_vex_w_reverted();
2751   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2752   emit_int8(0x12);
2753   emit_operand(dst, src);
2754 }
2755 
2756 void Assembler::movq(XMMRegister dst, Address src) {
2757   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2758   InstructionMark im(this);
2759   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2760   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2761   attributes.set_rex_vex_w_reverted();
2762   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2763   emit_int8(0x7E);
2764   emit_operand(dst, src);
2765 }
2766 
2767 void Assembler::movq(Address dst, XMMRegister src) {
2768   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2769   InstructionMark im(this);
2770   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2771   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2772   attributes.set_rex_vex_w_reverted();
2773   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
2774   emit_int8((unsigned char)0xD6);
2775   emit_operand(src, dst);
2776 }
2777 
2778 void Assembler::movsbl(Register dst, Address src) { // movsxb
2779   InstructionMark im(this);
2780   prefix(src, dst);
2781   emit_int16(0x0F, (unsigned char)0xBE);
2782   emit_operand(dst, src);
2783 }
2784 
2785 void Assembler::movsbl(Register dst, Register src) { // movsxb
2786   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2787   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2788   emit_int24(0x0F, (unsigned char)0xBE, (0xC0 | encode));
2789 }
2790 
2791 void Assembler::movsd(XMMRegister dst, XMMRegister src) {
2792   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2793   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2794   attributes.set_rex_vex_w_reverted();
2795   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2796   emit_int16(0x10, (0xC0 | encode));
2797 }
2798 
2799 void Assembler::movsd(XMMRegister dst, Address src) {
2800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2801   InstructionMark im(this);
2802   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2803   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2804   attributes.set_rex_vex_w_reverted();
2805   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2806   emit_int8(0x10);
2807   emit_operand(dst, src);
2808 }
2809 
2810 void Assembler::movsd(Address dst, XMMRegister src) {
2811   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2812   InstructionMark im(this);
2813   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2814   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2815   attributes.reset_is_clear_context();
2816   attributes.set_rex_vex_w_reverted();
2817   simd_prefix(src, xnoreg, dst, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2818   emit_int8(0x11);
2819   emit_operand(src, dst);
2820 }
2821 
2822 void Assembler::movss(XMMRegister dst, XMMRegister src) {
2823   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2824   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2825   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2826   emit_int16(0x10, (0xC0 | encode));
2827 }
2828 
2829 void Assembler::movss(XMMRegister dst, Address src) {
2830   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2831   InstructionMark im(this);
2832   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2833   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2834   simd_prefix(dst, xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2835   emit_int8(0x10);
2836   emit_operand(dst, src);
2837 }
2838 
2839 void Assembler::movss(Address dst, XMMRegister src) {
2840   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2841   InstructionMark im(this);
2842   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2843   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2844   attributes.reset_is_clear_context();
2845   simd_prefix(src, xnoreg, dst, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2846   emit_int8(0x11);
2847   emit_operand(src, dst);
2848 }
2849 
2850 void Assembler::movswl(Register dst, Address src) { // movsxw
2851   InstructionMark im(this);
2852   prefix(src, dst);
2853   emit_int16(0x0F, (unsigned char)0xBF);
2854   emit_operand(dst, src);
2855 }
2856 
2857 void Assembler::movswl(Register dst, Register src) { // movsxw
2858   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2859   emit_int24(0x0F, (unsigned char)0xBF, (0xC0 | encode));
2860 }
2861 
2862 void Assembler::movw(Address dst, int imm16) {
2863   InstructionMark im(this);
2864 
2865   emit_int8(0x66); // switch to 16-bit mode
2866   prefix(dst);
2867   emit_int8((unsigned char)0xC7);
2868   emit_operand(rax, dst, 2);
2869   emit_int16(imm16);
2870 }
2871 
2872 void Assembler::movw(Register dst, Address src) {
2873   InstructionMark im(this);
2874   emit_int8(0x66);
2875   prefix(src, dst);
2876   emit_int8((unsigned char)0x8B);
2877   emit_operand(dst, src);
2878 }
2879 
2880 void Assembler::movw(Address dst, Register src) {
2881   InstructionMark im(this);
2882   emit_int8(0x66);
2883   prefix(dst, src);
2884   emit_int8((unsigned char)0x89);
2885   emit_operand(src, dst);
2886 }
2887 
2888 void Assembler::movzbl(Register dst, Address src) { // movzxb
2889   InstructionMark im(this);
2890   prefix(src, dst);
2891   emit_int16(0x0F, (unsigned char)0xB6);
2892   emit_operand(dst, src);
2893 }
2894 
2895 void Assembler::movzbl(Register dst, Register src) { // movzxb
2896   NOT_LP64(assert(src->has_byte_register(), "must have byte register"));
2897   int encode = prefix_and_encode(dst->encoding(), false, src->encoding(), true);
2898   emit_int24(0x0F, (unsigned char)0xB6, 0xC0 | encode);
2899 }
2900 
2901 void Assembler::movzwl(Register dst, Address src) { // movzxw
2902   InstructionMark im(this);
2903   prefix(src, dst);
2904   emit_int16(0x0F, (unsigned char)0xB7);
2905   emit_operand(dst, src);
2906 }
2907 
2908 void Assembler::movzwl(Register dst, Register src) { // movzxw
2909   int encode = prefix_and_encode(dst->encoding(), src->encoding());
2910   emit_int24(0x0F, (unsigned char)0xB7, 0xC0 | encode);
2911 }
2912 
2913 void Assembler::mull(Address src) {
2914   InstructionMark im(this);
2915   prefix(src);
2916   emit_int8((unsigned char)0xF7);
2917   emit_operand(rsp, src);
2918 }
2919 
2920 void Assembler::mull(Register src) {
2921   int encode = prefix_and_encode(src->encoding());
2922   emit_int16((unsigned char)0xF7, (0xE0 | encode));
2923 }
2924 
2925 void Assembler::mulsd(XMMRegister dst, Address src) {
2926   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2927   InstructionMark im(this);
2928   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2929   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
2930   attributes.set_rex_vex_w_reverted();
2931   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2932   emit_int8(0x59);
2933   emit_operand(dst, src);
2934 }
2935 
2936 void Assembler::mulsd(XMMRegister dst, XMMRegister src) {
2937   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
2938   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2939   attributes.set_rex_vex_w_reverted();
2940   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
2941   emit_int16(0x59, (0xC0 | encode));
2942 }
2943 
2944 void Assembler::mulss(XMMRegister dst, Address src) {
2945   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2946   InstructionMark im(this);
2947   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2948   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
2949   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2950   emit_int8(0x59);
2951   emit_operand(dst, src);
2952 }
2953 
2954 void Assembler::mulss(XMMRegister dst, XMMRegister src) {
2955   NOT_LP64(assert(VM_Version::supports_sse(), ""));
2956   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
2957   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
2958   emit_int16(0x59, (0xC0 | encode));
2959 }
2960 
2961 void Assembler::negl(Register dst) {
2962   int encode = prefix_and_encode(dst->encoding());
2963   emit_int16((unsigned char)0xF7, (0xD8 | encode));
2964 }
2965 
2966 void Assembler::nop(int i) {
2967 #ifdef ASSERT
2968   assert(i > 0, " ");
2969   // The fancy nops aren't currently recognized by debuggers making it a
2970   // pain to disassemble code while debugging. If asserts are on clearly
2971   // speed is not an issue so simply use the single byte traditional nop
2972   // to do alignment.
2973 
2974   for (; i > 0 ; i--) emit_int8((unsigned char)0x90);
2975   return;
2976 
2977 #endif // ASSERT
2978 
2979   if (UseAddressNop && VM_Version::is_intel()) {
2980     //
2981     // Using multi-bytes nops "0x0F 0x1F [address]" for Intel
2982     //  1: 0x90
2983     //  2: 0x66 0x90
2984     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
2985     //  4: 0x0F 0x1F 0x40 0x00
2986     //  5: 0x0F 0x1F 0x44 0x00 0x00
2987     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
2988     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
2989     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2990     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2991     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2992     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
2993 
2994     // The rest coding is Intel specific - don't use consecutive address nops
2995 
2996     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2997     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2998     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
2999     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3000 
3001     while(i >= 15) {
3002       // For Intel don't generate consecutive addess nops (mix with regular nops)
3003       i -= 15;
3004       emit_int24(0x66, 0x66, 0x66);
3005       addr_nop_8();
3006       emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3007     }
3008     switch (i) {
3009       case 14:
3010         emit_int8(0x66); // size prefix
3011       case 13:
3012         emit_int8(0x66); // size prefix
3013       case 12:
3014         addr_nop_8();
3015         emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3016         break;
3017       case 11:
3018         emit_int8(0x66); // size prefix
3019       case 10:
3020         emit_int8(0x66); // size prefix
3021       case 9:
3022         emit_int8(0x66); // size prefix
3023       case 8:
3024         addr_nop_8();
3025         break;
3026       case 7:
3027         addr_nop_7();
3028         break;
3029       case 6:
3030         emit_int8(0x66); // size prefix
3031       case 5:
3032         addr_nop_5();
3033         break;
3034       case 4:
3035         addr_nop_4();
3036         break;
3037       case 3:
3038         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3039         emit_int8(0x66); // size prefix
3040       case 2:
3041         emit_int8(0x66); // size prefix
3042       case 1:
3043         emit_int8((unsigned char)0x90);
3044                          // nop
3045         break;
3046       default:
3047         assert(i == 0, " ");
3048     }
3049     return;
3050   }
3051   if (UseAddressNop && VM_Version::is_amd_family()) {
3052     //
3053     // Using multi-bytes nops "0x0F 0x1F [address]" for AMD.
3054     //  1: 0x90
3055     //  2: 0x66 0x90
3056     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3057     //  4: 0x0F 0x1F 0x40 0x00
3058     //  5: 0x0F 0x1F 0x44 0x00 0x00
3059     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3060     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3061     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3062     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3063     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3064     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3065 
3066     // The rest coding is AMD specific - use consecutive address nops
3067 
3068     // 12: 0x66 0x0F 0x1F 0x44 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3069     // 13: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x66 0x0F 0x1F 0x44 0x00 0x00
3070     // 14: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3071     // 15: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3072     // 16: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3073     //     Size prefixes (0x66) are added for larger sizes
3074 
3075     while(i >= 22) {
3076       i -= 11;
3077       emit_int24(0x66, 0x66, 0x66);
3078       addr_nop_8();
3079     }
3080     // Generate first nop for size between 21-12
3081     switch (i) {
3082       case 21:
3083         i -= 1;
3084         emit_int8(0x66); // size prefix
3085       case 20:
3086       case 19:
3087         i -= 1;
3088         emit_int8(0x66); // size prefix
3089       case 18:
3090       case 17:
3091         i -= 1;
3092         emit_int8(0x66); // size prefix
3093       case 16:
3094       case 15:
3095         i -= 8;
3096         addr_nop_8();
3097         break;
3098       case 14:
3099       case 13:
3100         i -= 7;
3101         addr_nop_7();
3102         break;
3103       case 12:
3104         i -= 6;
3105         emit_int8(0x66); // size prefix
3106         addr_nop_5();
3107         break;
3108       default:
3109         assert(i < 12, " ");
3110     }
3111 
3112     // Generate second nop for size between 11-1
3113     switch (i) {
3114       case 11:
3115         emit_int8(0x66); // size prefix
3116       case 10:
3117         emit_int8(0x66); // size prefix
3118       case 9:
3119         emit_int8(0x66); // size prefix
3120       case 8:
3121         addr_nop_8();
3122         break;
3123       case 7:
3124         addr_nop_7();
3125         break;
3126       case 6:
3127         emit_int8(0x66); // size prefix
3128       case 5:
3129         addr_nop_5();
3130         break;
3131       case 4:
3132         addr_nop_4();
3133         break;
3134       case 3:
3135         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3136         emit_int8(0x66); // size prefix
3137       case 2:
3138         emit_int8(0x66); // size prefix
3139       case 1:
3140         emit_int8((unsigned char)0x90);
3141                          // nop
3142         break;
3143       default:
3144         assert(i == 0, " ");
3145     }
3146     return;
3147   }
3148 
3149   if (UseAddressNop && VM_Version::is_zx()) {
3150     //
3151     // Using multi-bytes nops "0x0F 0x1F [address]" for ZX
3152     //  1: 0x90
3153     //  2: 0x66 0x90
3154     //  3: 0x66 0x66 0x90 (don't use "0x0F 0x1F 0x00" - need patching safe padding)
3155     //  4: 0x0F 0x1F 0x40 0x00
3156     //  5: 0x0F 0x1F 0x44 0x00 0x00
3157     //  6: 0x66 0x0F 0x1F 0x44 0x00 0x00
3158     //  7: 0x0F 0x1F 0x80 0x00 0x00 0x00 0x00
3159     //  8: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3160     //  9: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3161     // 10: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3162     // 11: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00
3163 
3164     // The rest coding is ZX specific - don't use consecutive address nops
3165 
3166     // 12: 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3167     // 13: 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3168     // 14: 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3169     // 15: 0x66 0x66 0x66 0x0F 0x1F 0x84 0x00 0x00 0x00 0x00 0x00 0x66 0x66 0x66 0x90
3170 
3171     while (i >= 15) {
3172       // For ZX don't generate consecutive addess nops (mix with regular nops)
3173       i -= 15;
3174       emit_int24(0x66, 0x66, 0x66);
3175       addr_nop_8();
3176       emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3177     }
3178     switch (i) {
3179       case 14:
3180         emit_int8(0x66); // size prefix
3181       case 13:
3182         emit_int8(0x66); // size prefix
3183       case 12:
3184         addr_nop_8();
3185         emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3186         break;
3187       case 11:
3188         emit_int8(0x66); // size prefix
3189       case 10:
3190         emit_int8(0x66); // size prefix
3191       case 9:
3192         emit_int8(0x66); // size prefix
3193       case 8:
3194         addr_nop_8();
3195         break;
3196       case 7:
3197         addr_nop_7();
3198         break;
3199       case 6:
3200         emit_int8(0x66); // size prefix
3201       case 5:
3202         addr_nop_5();
3203         break;
3204       case 4:
3205         addr_nop_4();
3206         break;
3207       case 3:
3208         // Don't use "0x0F 0x1F 0x00" - need patching safe padding
3209         emit_int8(0x66); // size prefix
3210       case 2:
3211         emit_int8(0x66); // size prefix
3212       case 1:
3213         emit_int8((unsigned char)0x90);
3214                          // nop
3215         break;
3216       default:
3217         assert(i == 0, " ");
3218     }
3219     return;
3220   }
3221 
3222   // Using nops with size prefixes "0x66 0x90".
3223   // From AMD Optimization Guide:
3224   //  1: 0x90
3225   //  2: 0x66 0x90
3226   //  3: 0x66 0x66 0x90
3227   //  4: 0x66 0x66 0x66 0x90
3228   //  5: 0x66 0x66 0x90 0x66 0x90
3229   //  6: 0x66 0x66 0x90 0x66 0x66 0x90
3230   //  7: 0x66 0x66 0x66 0x90 0x66 0x66 0x90
3231   //  8: 0x66 0x66 0x66 0x90 0x66 0x66 0x66 0x90
3232   //  9: 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3233   // 10: 0x66 0x66 0x66 0x90 0x66 0x66 0x90 0x66 0x66 0x90
3234   //
3235   while (i > 12) {
3236     i -= 4;
3237     emit_int32(0x66, 0x66, 0x66, (unsigned char)0x90);
3238   }
3239   // 1 - 12 nops
3240   if (i > 8) {
3241     if (i > 9) {
3242       i -= 1;
3243       emit_int8(0x66);
3244     }
3245     i -= 3;
3246     emit_int24(0x66, 0x66, (unsigned char)0x90);
3247   }
3248   // 1 - 8 nops
3249   if (i > 4) {
3250     if (i > 6) {
3251       i -= 1;
3252       emit_int8(0x66);
3253     }
3254     i -= 3;
3255     emit_int24(0x66, 0x66, (unsigned char)0x90);
3256   }
3257   switch (i) {
3258     case 4:
3259       emit_int8(0x66);
3260     case 3:
3261       emit_int8(0x66);
3262     case 2:
3263       emit_int8(0x66);
3264     case 1:
3265       emit_int8((unsigned char)0x90);
3266       break;
3267     default:
3268       assert(i == 0, " ");
3269   }
3270 }
3271 
3272 void Assembler::notl(Register dst) {
3273   int encode = prefix_and_encode(dst->encoding());
3274   emit_int16((unsigned char)0xF7, (0xD0 | encode));
3275 }
3276 
3277 void Assembler::orl(Address dst, int32_t imm32) {
3278   InstructionMark im(this);
3279   prefix(dst);
3280   emit_arith_operand(0x81, rcx, dst, imm32);
3281 }
3282 
3283 void Assembler::orl(Register dst, int32_t imm32) {
3284   prefix(dst);
3285   emit_arith(0x81, 0xC8, dst, imm32);
3286 }
3287 
3288 void Assembler::orl(Register dst, Address src) {
3289   InstructionMark im(this);
3290   prefix(src, dst);
3291   emit_int8(0x0B);
3292   emit_operand(dst, src);
3293 }
3294 
3295 void Assembler::orl(Register dst, Register src) {
3296   (void) prefix_and_encode(dst->encoding(), src->encoding());
3297   emit_arith(0x0B, 0xC0, dst, src);
3298 }
3299 
3300 void Assembler::orl(Address dst, Register src) {
3301   InstructionMark im(this);
3302   prefix(dst, src);
3303   emit_int8(0x09);
3304   emit_operand(src, dst);
3305 }
3306 
3307 void Assembler::orb(Address dst, int imm8) {
3308   InstructionMark im(this);
3309   prefix(dst);
3310   emit_int8((unsigned char)0x80);
3311   emit_operand(rcx, dst, 1);
3312   emit_int8(imm8);
3313 }
3314 
3315 void Assembler::packuswb(XMMRegister dst, Address src) {
3316   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3317   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
3318   InstructionMark im(this);
3319   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3320   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3321   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3322   emit_int8(0x67);
3323   emit_operand(dst, src);
3324 }
3325 
3326 void Assembler::packuswb(XMMRegister dst, XMMRegister src) {
3327   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3328   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3329   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3330   emit_int16(0x67, (0xC0 | encode));
3331 }
3332 
3333 void Assembler::vpackuswb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3334   assert(UseAVX > 0, "some form of AVX must be enabled");
3335   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3336   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3337   emit_int16(0x67, (0xC0 | encode));
3338 }
3339 
3340 void Assembler::vpermq(XMMRegister dst, XMMRegister src, int imm8, int vector_len) {
3341   assert(VM_Version::supports_avx2(), "");
3342   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3343   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3344   emit_int24(0x00, (0xC0 | encode), imm8);
3345 }
3346 
3347 void Assembler::vpermq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3348   assert(UseAVX > 2, "requires AVX512F");
3349   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3350   attributes.set_is_evex_instruction();
3351   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3352   emit_int16(0x36, (0xC0 | encode));
3353 }
3354 
3355 void Assembler::vperm2i128(XMMRegister dst,  XMMRegister nds, XMMRegister src, int imm8) {
3356   assert(VM_Version::supports_avx2(), "");
3357   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3358   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3359   emit_int24(0x46, (0xC0 | encode), imm8);
3360 }
3361 
3362 void Assembler::vperm2f128(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8) {
3363   assert(VM_Version::supports_avx(), "");
3364   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3365   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3366   emit_int24(0x06, (0xC0 | encode), imm8);
3367 }
3368 
3369 void Assembler::evpermi2q(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3370   assert(VM_Version::supports_evex(), "");
3371   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3372   attributes.set_is_evex_instruction();
3373   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3374   emit_int16(0x76, (0xC0 | encode));
3375 }
3376 
3377 
3378 void Assembler::pause() {
3379   emit_int16((unsigned char)0xF3, (unsigned char)0x90);
3380 }
3381 
3382 void Assembler::ud2() {
3383   emit_int16(0x0F, 0x0B);
3384 }
3385 
3386 void Assembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3387   assert(VM_Version::supports_sse4_2(), "");
3388   InstructionMark im(this);
3389   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3390   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3391   emit_int8(0x61);
3392   emit_operand(dst, src);
3393   emit_int8(imm8);
3394 }
3395 
3396 void Assembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3397   assert(VM_Version::supports_sse4_2(), "");
3398   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3399   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3400   emit_int24(0x61, (0xC0 | encode), imm8);
3401 }
3402 
3403 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3404 void Assembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3405   assert(VM_Version::supports_sse2(), "");
3406   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3407   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3408   emit_int16(0x74, (0xC0 | encode));
3409 }
3410 
3411 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3412 void Assembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3413   assert(VM_Version::supports_avx(), "");
3414   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3415   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3416   emit_int16(0x74, (0xC0 | encode));
3417 }
3418 
3419 // In this context, kdst is written the mask used to process the equal components
3420 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3421   assert(VM_Version::supports_avx512bw(), "");
3422   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3423   attributes.set_is_evex_instruction();
3424   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3425   emit_int16(0x74, (0xC0 | encode));
3426 }
3427 
3428 void Assembler::evpcmpgtb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3429   assert(VM_Version::supports_avx512vlbw(), "");
3430   InstructionMark im(this);
3431   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3432   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3433   attributes.set_is_evex_instruction();
3434   int dst_enc = kdst->encoding();
3435   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3436   emit_int8(0x64);
3437   emit_operand(as_Register(dst_enc), src);
3438 }
3439 
3440 void Assembler::evpcmpgtb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3441   assert(VM_Version::supports_avx512vlbw(), "");
3442   InstructionMark im(this);
3443   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3444   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3445   attributes.reset_is_clear_context();
3446   attributes.set_embedded_opmask_register_specifier(mask);
3447   attributes.set_is_evex_instruction();
3448   int dst_enc = kdst->encoding();
3449   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3450   emit_int8(0x64);
3451   emit_operand(as_Register(dst_enc), src);
3452 }
3453 
3454 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3455   assert(VM_Version::supports_avx512vlbw(), "");
3456   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3457   attributes.set_is_evex_instruction();
3458   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3459   emit_int24(0x3E, (0xC0 | encode), vcc);
3460 }
3461 
3462 void Assembler::evpcmpuw(KRegister kdst, KRegister mask, XMMRegister nds, XMMRegister src, ComparisonPredicate vcc, int vector_len) {
3463   assert(VM_Version::supports_avx512vlbw(), "");
3464   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3465   attributes.reset_is_clear_context();
3466   attributes.set_embedded_opmask_register_specifier(mask);
3467   attributes.set_is_evex_instruction();
3468   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3469   emit_int24(0x3E, (0xC0 | encode), vcc);
3470 }
3471 
3472 void Assembler::evpcmpuw(KRegister kdst, XMMRegister nds, Address src, ComparisonPredicate vcc, int vector_len) {
3473   assert(VM_Version::supports_avx512vlbw(), "");
3474   InstructionMark im(this);
3475   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3476   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3477   attributes.set_is_evex_instruction();
3478   int dst_enc = kdst->encoding();
3479   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3480   emit_int8(0x3E);
3481   emit_operand(as_Register(dst_enc), src);
3482   emit_int8(vcc);
3483 }
3484 
3485 void Assembler::evpcmpeqb(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3486   assert(VM_Version::supports_avx512bw(), "");
3487   InstructionMark im(this);
3488   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3489   attributes.set_is_evex_instruction();
3490   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3491   int dst_enc = kdst->encoding();
3492   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3493   emit_int8(0x74);
3494   emit_operand(as_Register(dst_enc), src);
3495 }
3496 
3497 void Assembler::evpcmpeqb(KRegister kdst, KRegister mask, XMMRegister nds, Address src, int vector_len) {
3498   assert(VM_Version::supports_avx512vlbw(), "");
3499   InstructionMark im(this);
3500   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_reg_mask */ false, /* uses_vl */ true);
3501   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3502   attributes.reset_is_clear_context();
3503   attributes.set_embedded_opmask_register_specifier(mask);
3504   attributes.set_is_evex_instruction();
3505   vex_prefix(src, nds->encoding(), kdst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3506   emit_int8(0x74);
3507   emit_operand(as_Register(kdst->encoding()), src);
3508 }
3509 
3510 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3511 void Assembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3512   assert(VM_Version::supports_sse2(), "");
3513   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3514   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3515   emit_int16(0x75, (0xC0 | encode));
3516 }
3517 
3518 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3519 void Assembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3520   assert(VM_Version::supports_avx(), "");
3521   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3522   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3523   emit_int16(0x75, (0xC0 | encode));
3524 }
3525 
3526 // In this context, kdst is written the mask used to process the equal components
3527 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3528   assert(VM_Version::supports_avx512bw(), "");
3529   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3530   attributes.set_is_evex_instruction();
3531   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3532   emit_int16(0x75, (0xC0 | encode));
3533 }
3534 
3535 void Assembler::evpcmpeqw(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3536   assert(VM_Version::supports_avx512bw(), "");
3537   InstructionMark im(this);
3538   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3539   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
3540   attributes.set_is_evex_instruction();
3541   int dst_enc = kdst->encoding();
3542   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3543   emit_int8(0x75);
3544   emit_operand(as_Register(dst_enc), src);
3545 }
3546 
3547 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3548 void Assembler::pcmpeqd(XMMRegister dst, XMMRegister src) {
3549   assert(VM_Version::supports_sse2(), "");
3550   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3551   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3552   emit_int16(0x76, (0xC0 | encode));
3553 }
3554 
3555 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3556 void Assembler::vpcmpeqd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3557   assert(VM_Version::supports_avx(), "");
3558   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3559   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3560   emit_int16(0x76, (0xC0 | encode));
3561 }
3562 
3563 // In this context, kdst is written the mask used to process the equal components
3564 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3565   assert(VM_Version::supports_evex(), "");
3566   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3567   attributes.set_is_evex_instruction();
3568   attributes.reset_is_clear_context();
3569   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3570   emit_int16(0x76, (0xC0 | encode));
3571 }
3572 
3573 void Assembler::evpcmpeqd(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3574   assert(VM_Version::supports_evex(), "");
3575   InstructionMark im(this);
3576   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3577   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
3578   attributes.reset_is_clear_context();
3579   attributes.set_is_evex_instruction();
3580   int dst_enc = kdst->encoding();
3581   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3582   emit_int8(0x76);
3583   emit_operand(as_Register(dst_enc), src);
3584 }
3585 
3586 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3587 void Assembler::pcmpeqq(XMMRegister dst, XMMRegister src) {
3588   assert(VM_Version::supports_sse4_1(), "");
3589   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3590   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3591   emit_int16(0x29, (0xC0 | encode));
3592 }
3593 
3594 // In this context, the dst vector contains the components that are equal, non equal components are zeroed in dst
3595 void Assembler::vpcmpeqq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3596   assert(VM_Version::supports_avx(), "");
3597   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3598   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3599   emit_int16(0x29, (0xC0 | encode));
3600 }
3601 
3602 // In this context, kdst is written the mask used to process the equal components
3603 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, XMMRegister src, int vector_len) {
3604   assert(VM_Version::supports_evex(), "");
3605   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3606   attributes.reset_is_clear_context();
3607   attributes.set_is_evex_instruction();
3608   int encode = vex_prefix_and_encode(kdst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3609   emit_int16(0x29, (0xC0 | encode));
3610 }
3611 
3612 // In this context, kdst is written the mask used to process the equal components
3613 void Assembler::evpcmpeqq(KRegister kdst, XMMRegister nds, Address src, int vector_len) {
3614   assert(VM_Version::supports_evex(), "");
3615   InstructionMark im(this);
3616   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3617   attributes.reset_is_clear_context();
3618   attributes.set_is_evex_instruction();
3619   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
3620   int dst_enc = kdst->encoding();
3621   vex_prefix(src, nds->encoding(), dst_enc, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3622   emit_int8(0x29);
3623   emit_operand(as_Register(dst_enc), src);
3624 }
3625 
3626 void Assembler::pmovmskb(Register dst, XMMRegister src) {
3627   assert(VM_Version::supports_sse2(), "");
3628   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3629   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3630   emit_int16((unsigned char)0xD7, (0xC0 | encode));
3631 }
3632 
3633 void Assembler::vpmovmskb(Register dst, XMMRegister src) {
3634   assert(VM_Version::supports_avx2(), "");
3635   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
3636   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3637   emit_int16((unsigned char)0xD7, (0xC0 | encode));
3638 }
3639 
3640 void Assembler::pextrd(Register dst, XMMRegister src, int imm8) {
3641   assert(VM_Version::supports_sse4_1(), "");
3642   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3643   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3644   emit_int24(0x16, (0xC0 | encode), imm8);
3645 }
3646 
3647 void Assembler::pextrd(Address dst, XMMRegister src, int imm8) {
3648   assert(VM_Version::supports_sse4_1(), "");
3649   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3650   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3651   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3652   emit_int8(0x16);
3653   emit_operand(src, dst);
3654   emit_int8(imm8);
3655 }
3656 
3657 void Assembler::pextrq(Register dst, XMMRegister src, int imm8) {
3658   assert(VM_Version::supports_sse4_1(), "");
3659   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3660   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3661   emit_int24(0x16, (0xC0 | encode), imm8);
3662 }
3663 
3664 void Assembler::pextrq(Address dst, XMMRegister src, int imm8) {
3665   assert(VM_Version::supports_sse4_1(), "");
3666   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3667   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3668   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3669   emit_int8(0x16);
3670   emit_operand(src, dst);
3671   emit_int8(imm8);
3672 }
3673 
3674 void Assembler::pextrw(Register dst, XMMRegister src, int imm8) {
3675   assert(VM_Version::supports_sse2(), "");
3676   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3677   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3678   emit_int24((unsigned char)0xC5, (0xC0 | encode), imm8);
3679 }
3680 
3681 void Assembler::pextrw(Address dst, XMMRegister src, int imm8) {
3682   assert(VM_Version::supports_sse4_1(), "");
3683   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3684   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3685   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3686   emit_int8(0x15);
3687   emit_operand(src, dst);
3688   emit_int8(imm8);
3689 }
3690 
3691 void Assembler::pextrb(Address dst, XMMRegister src, int imm8) {
3692   assert(VM_Version::supports_sse4_1(), "");
3693   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3694   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3695   simd_prefix(src, xnoreg, dst, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3696   emit_int8(0x14);
3697   emit_operand(src, dst);
3698   emit_int8(imm8);
3699 }
3700 
3701 void Assembler::pinsrd(XMMRegister dst, Register src, int imm8) {
3702   assert(VM_Version::supports_sse4_1(), "");
3703   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3704   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3705   emit_int24(0x22, (0xC0 | encode), imm8);
3706 }
3707 
3708 void Assembler::pinsrd(XMMRegister dst, Address src, int imm8) {
3709   assert(VM_Version::supports_sse4_1(), "");
3710   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3711   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
3712   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3713   emit_int8(0x22);
3714   emit_operand(dst,src);
3715   emit_int8(imm8);
3716 }
3717 
3718 void Assembler::pinsrq(XMMRegister dst, Register src, int imm8) {
3719   assert(VM_Version::supports_sse4_1(), "");
3720   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3721   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3722   emit_int24(0x22, (0xC0 | encode), imm8);
3723 }
3724 
3725 void Assembler::pinsrq(XMMRegister dst, Address src, int imm8) {
3726   assert(VM_Version::supports_sse4_1(), "");
3727   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
3728   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
3729   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3730   emit_int8(0x22);
3731   emit_operand(dst, src);
3732   emit_int8(imm8);
3733 }
3734 
3735 void Assembler::pinsrw(XMMRegister dst, Register src, int imm8) {
3736   assert(VM_Version::supports_sse2(), "");
3737   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3738   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3739   emit_int24((unsigned char)0xC4, (0xC0 | encode), imm8);
3740 }
3741 
3742 void Assembler::pinsrw(XMMRegister dst, Address src, int imm8) {
3743   assert(VM_Version::supports_sse2(), "");
3744   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3745   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
3746   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3747   emit_int8((unsigned char)0xC4);
3748   emit_operand(dst, src);
3749   emit_int8(imm8);
3750 }
3751 
3752 void Assembler::pinsrb(XMMRegister dst, Address src, int imm8) {
3753   assert(VM_Version::supports_sse4_1(), "");
3754   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3755   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
3756   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
3757   emit_int8(0x20);
3758   emit_operand(dst, src);
3759   emit_int8(imm8);
3760 }
3761 
3762 void Assembler::pmovzxbw(XMMRegister dst, Address src) {
3763   assert(VM_Version::supports_sse4_1(), "");
3764   InstructionMark im(this);
3765   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3766   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3767   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3768   emit_int8(0x30);
3769   emit_operand(dst, src);
3770 }
3771 
3772 void Assembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3773   assert(VM_Version::supports_sse4_1(), "");
3774   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3775   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3776   emit_int16(0x30, (0xC0 | encode));
3777 }
3778 
3779 void Assembler::pmovsxbw(XMMRegister dst, XMMRegister src) {
3780   assert(VM_Version::supports_sse4_1(), "");
3781   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3782   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3783   emit_int16(0x20, (0xC0 | encode));
3784 }
3785 
3786 void Assembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
3787   assert(VM_Version::supports_avx(), "");
3788   InstructionMark im(this);
3789   assert(dst != xnoreg, "sanity");
3790   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3791   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3792   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3793   emit_int8(0x30);
3794   emit_operand(dst, src);
3795 }
3796 
3797 void Assembler::vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3798   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3799   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3800   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3801   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3802   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3803   emit_int16(0x30, (unsigned char) (0xC0 | encode));
3804 }
3805 
3806 void Assembler::vpmovsxbw(XMMRegister dst, XMMRegister src, int vector_len) {
3807   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3808   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3809   vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
3810   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3811   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3812   emit_int16(0x20, (0xC0 | encode));
3813 }
3814 
3815 void Assembler::evpmovzxbw(XMMRegister dst, KRegister mask, Address src, int vector_len) {
3816   assert(VM_Version::supports_avx512vlbw(), "");
3817   assert(dst != xnoreg, "sanity");
3818   InstructionMark im(this);
3819   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3820   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3821   attributes.set_embedded_opmask_register_specifier(mask);
3822   attributes.set_is_evex_instruction();
3823   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3824   emit_int8(0x30);
3825   emit_operand(dst, src);
3826 }
3827 void Assembler::evpmovwb(Address dst, XMMRegister src, int vector_len) {
3828   assert(VM_Version::supports_avx512vlbw(), "");
3829   assert(src != xnoreg, "sanity");
3830   InstructionMark im(this);
3831   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3832   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3833   attributes.set_is_evex_instruction();
3834   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3835   emit_int8(0x30);
3836   emit_operand(src, dst);
3837 }
3838 
3839 void Assembler::evpmovwb(Address dst, KRegister mask, XMMRegister src, int vector_len) {
3840   assert(VM_Version::supports_avx512vlbw(), "");
3841   assert(src != xnoreg, "sanity");
3842   InstructionMark im(this);
3843   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
3844   attributes.set_address_attributes(/* tuple_type */ EVEX_HVM, /* input_size_in_bits */ EVEX_NObit);
3845   attributes.reset_is_clear_context();
3846   attributes.set_embedded_opmask_register_specifier(mask);
3847   attributes.set_is_evex_instruction();
3848   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3849   emit_int8(0x30);
3850   emit_operand(src, dst);
3851 }
3852 
3853 void Assembler::evpmovdb(Address dst, XMMRegister src, int vector_len) {
3854   assert(VM_Version::supports_evex(), "");
3855   assert(src != xnoreg, "sanity");
3856   InstructionMark im(this);
3857   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3858   attributes.set_address_attributes(/* tuple_type */ EVEX_QVM, /* input_size_in_bits */ EVEX_NObit);
3859   attributes.set_is_evex_instruction();
3860   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F_38, &attributes);
3861   emit_int8(0x31);
3862   emit_operand(src, dst);
3863 }
3864 
3865 void Assembler::vpmovzxwd(XMMRegister dst, XMMRegister src, int vector_len) {
3866   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
3867   vector_len == AVX_256bit? VM_Version::supports_avx2() :
3868   vector_len == AVX_512bit? VM_Version::supports_evex() : 0, " ");
3869   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3870   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3871   emit_int16(0x33, (0xC0 | encode));
3872 }
3873 
3874 void Assembler::pmaddwd(XMMRegister dst, XMMRegister src) {
3875   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
3876   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3877   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3878   emit_int16((unsigned char)0xF5, (0xC0 | encode));
3879 }
3880 
3881 void Assembler::vpmaddwd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3882   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
3883     (vector_len == AVX_256bit ? VM_Version::supports_avx2() :
3884     (vector_len == AVX_512bit ? VM_Version::supports_evex() : 0)), "");
3885   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3886   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
3887   emit_int16((unsigned char)0xF5, (0xC0 | encode));
3888 }
3889 
3890 void Assembler::evpdpwssd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
3891   assert(VM_Version::supports_evex(), "");
3892   assert(VM_Version::supports_avx512_vnni(), "must support vnni");
3893   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3894   attributes.set_is_evex_instruction();
3895   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3896   emit_int16(0x52, (0xC0 | encode));
3897 }
3898 
3899 // generic
3900 void Assembler::pop(Register dst) {
3901   int encode = prefix_and_encode(dst->encoding());
3902   emit_int8(0x58 | encode);
3903 }
3904 
3905 void Assembler::popcntl(Register dst, Address src) {
3906   assert(VM_Version::supports_popcnt(), "must support");
3907   InstructionMark im(this);
3908   emit_int8((unsigned char)0xF3);
3909   prefix(src, dst);
3910   emit_int16(0x0F, (unsigned char)0xB8);
3911   emit_operand(dst, src);
3912 }
3913 
3914 void Assembler::popcntl(Register dst, Register src) {
3915   assert(VM_Version::supports_popcnt(), "must support");
3916   emit_int8((unsigned char)0xF3);
3917   int encode = prefix_and_encode(dst->encoding(), src->encoding());
3918   emit_int24(0x0F, (unsigned char)0xB8, (0xC0 | encode));
3919 }
3920 
3921 void Assembler::vpopcntd(XMMRegister dst, XMMRegister src, int vector_len) {
3922   assert(VM_Version::supports_avx512_vpopcntdq(), "must support vpopcntdq feature");
3923   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
3924   attributes.set_is_evex_instruction();
3925   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3926   emit_int16(0x55, (0xC0 | encode));
3927 }
3928 
3929 void Assembler::popf() {
3930   emit_int8((unsigned char)0x9D);
3931 }
3932 
3933 #ifndef _LP64 // no 32bit push/pop on amd64
3934 void Assembler::popl(Address dst) {
3935   // NOTE: this will adjust stack by 8byte on 64bits
3936   InstructionMark im(this);
3937   prefix(dst);
3938   emit_int8((unsigned char)0x8F);
3939   emit_operand(rax, dst);
3940 }
3941 #endif
3942 
3943 void Assembler::prefetchnta(Address src) {
3944   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3945   InstructionMark im(this);
3946   prefix(src);
3947   emit_int16(0x0F, 0x18);
3948   emit_operand(rax, src); // 0, src
3949 }
3950 
3951 void Assembler::prefetchr(Address src) {
3952   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3953   InstructionMark im(this);
3954   prefix(src);
3955   emit_int16(0x0F, 0x0D);
3956   emit_operand(rax, src); // 0, src
3957 }
3958 
3959 void Assembler::prefetcht0(Address src) {
3960   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3961   InstructionMark im(this);
3962   prefix(src);
3963   emit_int16(0x0F, 0x18);
3964   emit_operand(rcx, src); // 1, src
3965 }
3966 
3967 void Assembler::prefetcht1(Address src) {
3968   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3969   InstructionMark im(this);
3970   prefix(src);
3971   emit_int16(0x0F, 0x18);
3972   emit_operand(rdx, src); // 2, src
3973 }
3974 
3975 void Assembler::prefetcht2(Address src) {
3976   NOT_LP64(assert(VM_Version::supports_sse(), "must support"));
3977   InstructionMark im(this);
3978   prefix(src);
3979   emit_int16(0x0F, 0x18);
3980   emit_operand(rbx, src); // 3, src
3981 }
3982 
3983 void Assembler::prefetchw(Address src) {
3984   assert(VM_Version::supports_3dnow_prefetch(), "must support");
3985   InstructionMark im(this);
3986   prefix(src);
3987   emit_int16(0x0F, 0x0D);
3988   emit_operand(rcx, src); // 1, src
3989 }
3990 
3991 void Assembler::prefix(Prefix p) {
3992   emit_int8(p);
3993 }
3994 
3995 void Assembler::pshufb(XMMRegister dst, XMMRegister src) {
3996   assert(VM_Version::supports_ssse3(), "");
3997   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
3998   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
3999   emit_int16(0x00, (0xC0 | encode));
4000 }
4001 
4002 void Assembler::vpshufb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4003   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4004          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4005          vector_len == AVX_512bit? VM_Version::supports_avx512bw() : 0, "");
4006   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4007   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4008   emit_int16(0x00, (0xC0 | encode));
4009 }
4010 
4011 void Assembler::pshufb(XMMRegister dst, Address src) {
4012   assert(VM_Version::supports_ssse3(), "");
4013   InstructionMark im(this);
4014   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4015   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4016   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4017   emit_int8(0x00);
4018   emit_operand(dst, src);
4019 }
4020 
4021 void Assembler::pshufd(XMMRegister dst, XMMRegister src, int mode) {
4022   assert(isByte(mode), "invalid value");
4023   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4024   int vector_len = VM_Version::supports_avx512novl() ? AVX_512bit : AVX_128bit;
4025   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4026   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4027   emit_int24(0x70, (0xC0 | encode), mode & 0xFF);
4028 }
4029 
4030 void Assembler::vpshufd(XMMRegister dst, XMMRegister src, int mode, int vector_len) {
4031   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4032          (vector_len == AVX_256bit? VM_Version::supports_avx2() :
4033          (vector_len == AVX_512bit? VM_Version::supports_evex() : 0)), "");
4034   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4035   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4036   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4037   emit_int24(0x70, (0xC0 | encode), mode & 0xFF);
4038 }
4039 
4040 void Assembler::pshufd(XMMRegister dst, Address src, int mode) {
4041   assert(isByte(mode), "invalid value");
4042   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4043   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4044   InstructionMark im(this);
4045   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4046   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4047   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4048   emit_int8(0x70);
4049   emit_operand(dst, src);
4050   emit_int8(mode & 0xFF);
4051 }
4052 
4053 void Assembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4054   assert(isByte(mode), "invalid value");
4055   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4056   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4057   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4058   emit_int24(0x70, (0xC0 | encode), mode & 0xFF);
4059 }
4060 
4061 void Assembler::pshuflw(XMMRegister dst, Address src, int mode) {
4062   assert(isByte(mode), "invalid value");
4063   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4064   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4065   InstructionMark im(this);
4066   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4067   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4068   simd_prefix(dst, xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4069   emit_int8(0x70);
4070   emit_operand(dst, src);
4071   emit_int8(mode & 0xFF);
4072 }
4073 
4074 void Assembler::evshufi64x2(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4075   assert(VM_Version::supports_evex(), "requires EVEX support");
4076   assert(vector_len == Assembler::AVX_256bit || vector_len == Assembler::AVX_512bit, "");
4077   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4078   attributes.set_is_evex_instruction();
4079   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4080   emit_int24(0x43, (0xC0 | encode), imm8 & 0xFF);
4081 }
4082 
4083 void Assembler::psrldq(XMMRegister dst, int shift) {
4084   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4085   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4086   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4087   int encode = simd_prefix_and_encode(xmm3, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4088   emit_int24(0x73, (0xC0 | encode), shift);
4089 }
4090 
4091 void Assembler::vpsrldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4092   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4093          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4094          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4095   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4096   int encode = vex_prefix_and_encode(xmm3->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4097   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
4098 }
4099 
4100 void Assembler::pslldq(XMMRegister dst, int shift) {
4101   // Shift left 128 bit value in dst XMMRegister by shift number of bytes.
4102   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4103   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4104   // XMM7 is for /7 encoding: 66 0F 73 /7 ib
4105   int encode = simd_prefix_and_encode(xmm7, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4106   emit_int24(0x73, (0xC0 | encode), shift);
4107 }
4108 
4109 void Assembler::vpslldq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
4110   assert(vector_len == AVX_128bit ? VM_Version::supports_avx() :
4111          vector_len == AVX_256bit ? VM_Version::supports_avx2() :
4112          vector_len == AVX_512bit ? VM_Version::supports_avx512bw() : 0, "");
4113   InstructionAttr attributes(vector_len, /*vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4114   int encode = vex_prefix_and_encode(xmm7->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4115   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
4116 }
4117 
4118 void Assembler::ptest(XMMRegister dst, Address src) {
4119   assert(VM_Version::supports_sse4_1(), "");
4120   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4121   InstructionMark im(this);
4122   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4123   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4124   emit_int8(0x17);
4125   emit_operand(dst, src);
4126 }
4127 
4128 void Assembler::ptest(XMMRegister dst, XMMRegister src) {
4129   assert(VM_Version::supports_sse4_1() || VM_Version::supports_avx(), "");
4130   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4131   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4132   emit_int8(0x17);
4133   emit_int8((0xC0 | encode));
4134 }
4135 
4136 void Assembler::vptest(XMMRegister dst, Address src) {
4137   assert(VM_Version::supports_avx(), "");
4138   InstructionMark im(this);
4139   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4140   assert(dst != xnoreg, "sanity");
4141   // swap src<->dst for encoding
4142   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4143   emit_int8(0x17);
4144   emit_operand(dst, src);
4145 }
4146 
4147 void Assembler::vptest(XMMRegister dst, XMMRegister src) {
4148   assert(VM_Version::supports_avx(), "");
4149   InstructionAttr attributes(AVX_256bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4150   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4151   emit_int16(0x17, (0xC0 | encode));
4152 }
4153 
4154 void Assembler::punpcklbw(XMMRegister dst, Address src) {
4155   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4156   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4157   InstructionMark im(this);
4158   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4159   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
4160   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4161   emit_int8(0x60);
4162   emit_operand(dst, src);
4163 }
4164 
4165 void Assembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4166   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4167   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_vlbw, /* no_mask_reg */ true, /* uses_vl */ true);
4168   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4169   emit_int16(0x60, (0xC0 | encode));
4170 }
4171 
4172 void Assembler::punpckldq(XMMRegister dst, Address src) {
4173   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4174   assert((UseAVX > 0), "SSE mode requires address alignment 16 bytes");
4175   InstructionMark im(this);
4176   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4177   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
4178   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4179   emit_int8(0x62);
4180   emit_operand(dst, src);
4181 }
4182 
4183 void Assembler::punpckldq(XMMRegister dst, XMMRegister src) {
4184   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4185   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4186   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4187   emit_int16(0x62, (0xC0 | encode));
4188 }
4189 
4190 void Assembler::punpcklqdq(XMMRegister dst, XMMRegister src) {
4191   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4192   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4193   attributes.set_rex_vex_w_reverted();
4194   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4195   emit_int16(0x6C, (0xC0 | encode));
4196 }
4197 
4198 void Assembler::push(int32_t imm32) {
4199   // in 64bits we push 64bits onto the stack but only
4200   // take a 32bit immediate
4201   emit_int8(0x68);
4202   emit_int32(imm32);
4203 }
4204 
4205 void Assembler::push(Register src) {
4206   int encode = prefix_and_encode(src->encoding());
4207   emit_int8(0x50 | encode);
4208 }
4209 
4210 void Assembler::pushf() {
4211   emit_int8((unsigned char)0x9C);
4212 }
4213 
4214 #ifndef _LP64 // no 32bit push/pop on amd64
4215 void Assembler::pushl(Address src) {
4216   // Note this will push 64bit on 64bit
4217   InstructionMark im(this);
4218   prefix(src);
4219   emit_int8((unsigned char)0xFF);
4220   emit_operand(rsi, src);
4221 }
4222 #endif
4223 
4224 void Assembler::rcll(Register dst, int imm8) {
4225   assert(isShiftCount(imm8), "illegal shift count");
4226   int encode = prefix_and_encode(dst->encoding());
4227   if (imm8 == 1) {
4228     emit_int16((unsigned char)0xD1, (0xD0 | encode));
4229   } else {
4230     emit_int24((unsigned char)0xC1, (0xD0 | encode), imm8);
4231   }
4232 }
4233 
4234 void Assembler::rcpps(XMMRegister dst, XMMRegister src) {
4235   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4236   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4237   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4238   emit_int16(0x53, (0xC0 | encode));
4239 }
4240 
4241 void Assembler::rcpss(XMMRegister dst, XMMRegister src) {
4242   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4243   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4244   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4245   emit_int16(0x53, (0xC0 | encode));
4246 }
4247 
4248 void Assembler::rdtsc() {
4249   emit_int16(0x0F, 0x31);
4250 }
4251 
4252 // copies data from [esi] to [edi] using rcx pointer sized words
4253 // generic
4254 void Assembler::rep_mov() {
4255   // REP
4256   // MOVSQ
4257   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xA5);)
4258   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xA5);)
4259 }
4260 
4261 // sets rcx bytes with rax, value at [edi]
4262 void Assembler::rep_stosb() {
4263   // REP
4264   // STOSB
4265   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xAA);)
4266   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xAA);)
4267 }
4268 
4269 // sets rcx pointer sized words with rax, value at [edi]
4270 // generic
4271 void Assembler::rep_stos() {
4272   // REP
4273   // LP64:STOSQ, LP32:STOSD
4274   LP64_ONLY(emit_int24((unsigned char)0xF3, REX_W, (unsigned char)0xAB);)
4275   NOT_LP64( emit_int16((unsigned char)0xF3,        (unsigned char)0xAB);)
4276 }
4277 
4278 // scans rcx pointer sized words at [edi] for occurance of rax,
4279 // generic
4280 void Assembler::repne_scan() { // repne_scan
4281   // SCASQ
4282   LP64_ONLY(emit_int24((unsigned char)0xF2, REX_W, (unsigned char)0xAF);)
4283   NOT_LP64( emit_int16((unsigned char)0xF2,        (unsigned char)0xAF);)
4284 }
4285 
4286 #ifdef _LP64
4287 // scans rcx 4 byte words at [edi] for occurance of rax,
4288 // generic
4289 void Assembler::repne_scanl() { // repne_scan
4290   // SCASL
4291   emit_int16((unsigned char)0xF2, (unsigned char)0xAF);
4292 }
4293 #endif
4294 
4295 void Assembler::ret(int imm16) {
4296   if (imm16 == 0) {
4297     emit_int8((unsigned char)0xC3);
4298   } else {
4299     emit_int8((unsigned char)0xC2);
4300     emit_int16(imm16);
4301   }
4302 }
4303 
4304 void Assembler::roll(Register dst, int imm8) {
4305   assert(isShiftCount(imm8 >> 1), "illegal shift count");
4306   int encode = prefix_and_encode(dst->encoding());
4307   if (imm8 == 1) {
4308     emit_int16((unsigned char)0xD1, (0xC0 | encode));
4309   } else {
4310     emit_int24((unsigned char)0xC1, (0xc0 | encode), imm8);
4311   }
4312 }
4313 
4314 void Assembler::sahf() {
4315 #ifdef _LP64
4316   // Not supported in 64bit mode
4317   ShouldNotReachHere();
4318 #endif
4319   emit_int8((unsigned char)0x9E);
4320 }
4321 
4322 void Assembler::sarl(Register dst, int imm8) {
4323   int encode = prefix_and_encode(dst->encoding());
4324   assert(isShiftCount(imm8), "illegal shift count");
4325   if (imm8 == 1) {
4326     emit_int16((unsigned char)0xD1, (0xF8 | encode));
4327   } else {
4328     emit_int24((unsigned char)0xC1, (0xF8 | encode), imm8);
4329   }
4330 }
4331 
4332 void Assembler::sarl(Register dst) {
4333   int encode = prefix_and_encode(dst->encoding());
4334   emit_int16((unsigned char)0xD3, (0xF8 | encode));
4335 }
4336 
4337 void Assembler::sbbl(Address dst, int32_t imm32) {
4338   InstructionMark im(this);
4339   prefix(dst);
4340   emit_arith_operand(0x81, rbx, dst, imm32);
4341 }
4342 
4343 void Assembler::sbbl(Register dst, int32_t imm32) {
4344   prefix(dst);
4345   emit_arith(0x81, 0xD8, dst, imm32);
4346 }
4347 
4348 
4349 void Assembler::sbbl(Register dst, Address src) {
4350   InstructionMark im(this);
4351   prefix(src, dst);
4352   emit_int8(0x1B);
4353   emit_operand(dst, src);
4354 }
4355 
4356 void Assembler::sbbl(Register dst, Register src) {
4357   (void) prefix_and_encode(dst->encoding(), src->encoding());
4358   emit_arith(0x1B, 0xC0, dst, src);
4359 }
4360 
4361 void Assembler::setb(Condition cc, Register dst) {
4362   assert(0 <= cc && cc < 16, "illegal cc");
4363   int encode = prefix_and_encode(dst->encoding(), true);
4364   emit_int24(0x0F, (unsigned char)0x90 | cc, (0xC0 | encode));
4365 }
4366 
4367 void Assembler::palignr(XMMRegister dst, XMMRegister src, int imm8) {
4368   assert(VM_Version::supports_ssse3(), "");
4369   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4370   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4371   emit_int24(0x0F, (0xC0 | encode), imm8);
4372 }
4373 
4374 void Assembler::vpalignr(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
4375   assert(vector_len == AVX_128bit? VM_Version::supports_avx() :
4376          vector_len == AVX_256bit? VM_Version::supports_avx2() :
4377          0, "");
4378   InstructionAttr attributes(vector_len, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
4379   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4380   emit_int24(0x0F, (0xC0 | encode), imm8);
4381 }
4382 
4383 void Assembler::evalignq(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
4384   assert(VM_Version::supports_evex(), "");
4385   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4386   attributes.set_is_evex_instruction();
4387   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4388   emit_int24(0x3, (0xC0 | encode), imm8);
4389 }
4390 
4391 void Assembler::pblendw(XMMRegister dst, XMMRegister src, int imm8) {
4392   assert(VM_Version::supports_sse4_1(), "");
4393   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4394   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4395   emit_int24(0x0E, (0xC0 | encode), imm8);
4396 }
4397 
4398 void Assembler::sha1rnds4(XMMRegister dst, XMMRegister src, int imm8) {
4399   assert(VM_Version::supports_sha(), "");
4400   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_3A, /* rex_w */ false);
4401   emit_int24((unsigned char)0xCC, (0xC0 | encode), (unsigned char)imm8);
4402 }
4403 
4404 void Assembler::sha1nexte(XMMRegister dst, XMMRegister src) {
4405   assert(VM_Version::supports_sha(), "");
4406   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4407   emit_int16((unsigned char)0xC8, (0xC0 | encode));
4408 }
4409 
4410 void Assembler::sha1msg1(XMMRegister dst, XMMRegister src) {
4411   assert(VM_Version::supports_sha(), "");
4412   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4413   emit_int16((unsigned char)0xC9, (0xC0 | encode));
4414 }
4415 
4416 void Assembler::sha1msg2(XMMRegister dst, XMMRegister src) {
4417   assert(VM_Version::supports_sha(), "");
4418   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4419   emit_int16((unsigned char)0xCA, (0xC0 | encode));
4420 }
4421 
4422 // xmm0 is implicit additional source to this instruction.
4423 void Assembler::sha256rnds2(XMMRegister dst, XMMRegister src) {
4424   assert(VM_Version::supports_sha(), "");
4425   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4426   emit_int16((unsigned char)0xCB, (0xC0 | encode));
4427 }
4428 
4429 void Assembler::sha256msg1(XMMRegister dst, XMMRegister src) {
4430   assert(VM_Version::supports_sha(), "");
4431   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4432   emit_int16((unsigned char)0xCC, (0xC0 | encode));
4433 }
4434 
4435 void Assembler::sha256msg2(XMMRegister dst, XMMRegister src) {
4436   assert(VM_Version::supports_sha(), "");
4437   int encode = rex_prefix_and_encode(dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, /* rex_w */ false);
4438   emit_int16((unsigned char)0xCD, (0xC0 | encode));
4439 }
4440 
4441 
4442 void Assembler::shll(Register dst, int imm8) {
4443   assert(isShiftCount(imm8), "illegal shift count");
4444   int encode = prefix_and_encode(dst->encoding());
4445   if (imm8 == 1 ) {
4446     emit_int16((unsigned char)0xD1, (0xE0 | encode));
4447   } else {
4448     emit_int24((unsigned char)0xC1, (0xE0 | encode), imm8);
4449   }
4450 }
4451 
4452 void Assembler::shll(Register dst) {
4453   int encode = prefix_and_encode(dst->encoding());
4454   emit_int16((unsigned char)0xD3, (0xE0 | encode));
4455 }
4456 
4457 void Assembler::shrl(Register dst, int imm8) {
4458   assert(isShiftCount(imm8), "illegal shift count");
4459   int encode = prefix_and_encode(dst->encoding());
4460   emit_int24((unsigned char)0xC1, (0xE8 | encode), imm8);
4461 }
4462 
4463 void Assembler::shrl(Register dst) {
4464   int encode = prefix_and_encode(dst->encoding());
4465   emit_int16((unsigned char)0xD3, (0xE8 | encode));
4466 }
4467 
4468 void Assembler::shldl(Register dst, Register src) {
4469   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4470   emit_int24(0x0F, (unsigned char)0xA5, (0xC0 | encode));
4471 }
4472 
4473 void Assembler::shldl(Register dst, Register src, int8_t imm8) {
4474   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4475   emit_int32(0x0F, (unsigned char)0xA4, (0xC0 | encode), imm8);
4476 }
4477 
4478 void Assembler::shrdl(Register dst, Register src) {
4479   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4480   emit_int24(0x0F, (unsigned char)0xAD, (0xC0 | encode));
4481 }
4482 
4483 void Assembler::shrdl(Register dst, Register src, int8_t imm8) {
4484   int encode = prefix_and_encode(src->encoding(), dst->encoding());
4485   emit_int32(0x0F, (unsigned char)0xAC, (0xC0 | encode), imm8);
4486 }
4487 
4488 // copies a single word from [esi] to [edi]
4489 void Assembler::smovl() {
4490   emit_int8((unsigned char)0xA5);
4491 }
4492 
4493 void Assembler::roundsd(XMMRegister dst, XMMRegister src, int32_t rmode) {
4494   assert(VM_Version::supports_sse4_1(), "");
4495   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4496   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4497   emit_int24(0x0B, (0xC0 | encode), (unsigned char)rmode);
4498 }
4499 
4500 void Assembler::roundsd(XMMRegister dst, Address src, int32_t rmode) {
4501   assert(VM_Version::supports_sse4_1(), "");
4502   InstructionMark im(this);
4503   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4504   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
4505   emit_int8(0x0B);
4506   emit_operand(dst, src);
4507   emit_int8((unsigned char)rmode);
4508 }
4509 
4510 void Assembler::sqrtsd(XMMRegister dst, XMMRegister src) {
4511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4512   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4513   attributes.set_rex_vex_w_reverted();
4514   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4515   emit_int16(0x51, (0xC0 | encode));
4516 }
4517 
4518 void Assembler::sqrtsd(XMMRegister dst, Address src) {
4519   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4520   InstructionMark im(this);
4521   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4522   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4523   attributes.set_rex_vex_w_reverted();
4524   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4525   emit_int8(0x51);
4526   emit_operand(dst, src);
4527 }
4528 
4529 void Assembler::sqrtss(XMMRegister dst, XMMRegister src) {
4530   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4531   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4532   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4533   emit_int16(0x51, (0xC0 | encode));
4534 }
4535 
4536 void Assembler::std() {
4537   emit_int8((unsigned char)0xFD);
4538 }
4539 
4540 void Assembler::sqrtss(XMMRegister dst, Address src) {
4541   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4542   InstructionMark im(this);
4543   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4544   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4545   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4546   emit_int8(0x51);
4547   emit_operand(dst, src);
4548 }
4549 
4550 void Assembler::stmxcsr( Address dst) {
4551   if (UseAVX > 0 ) {
4552     assert(VM_Version::supports_avx(), "");
4553     InstructionMark im(this);
4554     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
4555     vex_prefix(dst, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4556     emit_int8((unsigned char)0xAE);
4557     emit_operand(as_Register(3), dst);
4558   } else {
4559     NOT_LP64(assert(VM_Version::supports_sse(), ""));
4560     InstructionMark im(this);
4561     prefix(dst);
4562     emit_int16(0x0F, (unsigned char)0xAE);
4563     emit_operand(as_Register(3), dst);
4564   }
4565 }
4566 
4567 void Assembler::subl(Address dst, int32_t imm32) {
4568   InstructionMark im(this);
4569   prefix(dst);
4570   emit_arith_operand(0x81, rbp, dst, imm32);
4571 }
4572 
4573 void Assembler::subl(Address dst, Register src) {
4574   InstructionMark im(this);
4575   prefix(dst, src);
4576   emit_int8(0x29);
4577   emit_operand(src, dst);
4578 }
4579 
4580 void Assembler::subl(Register dst, int32_t imm32) {
4581   prefix(dst);
4582   emit_arith(0x81, 0xE8, dst, imm32);
4583 }
4584 
4585 // Force generation of a 4 byte immediate value even if it fits into 8bit
4586 void Assembler::subl_imm32(Register dst, int32_t imm32) {
4587   prefix(dst);
4588   emit_arith_imm32(0x81, 0xE8, dst, imm32);
4589 }
4590 
4591 void Assembler::subl(Register dst, Address src) {
4592   InstructionMark im(this);
4593   prefix(src, dst);
4594   emit_int8(0x2B);
4595   emit_operand(dst, src);
4596 }
4597 
4598 void Assembler::subl(Register dst, Register src) {
4599   (void) prefix_and_encode(dst->encoding(), src->encoding());
4600   emit_arith(0x2B, 0xC0, dst, src);
4601 }
4602 
4603 void Assembler::subsd(XMMRegister dst, XMMRegister src) {
4604   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4605   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4606   attributes.set_rex_vex_w_reverted();
4607   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4608   emit_int16(0x5C, (0xC0 | encode));
4609 }
4610 
4611 void Assembler::subsd(XMMRegister dst, Address src) {
4612   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4613   InstructionMark im(this);
4614   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4615   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4616   attributes.set_rex_vex_w_reverted();
4617   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4618   emit_int8(0x5C);
4619   emit_operand(dst, src);
4620 }
4621 
4622 void Assembler::subss(XMMRegister dst, XMMRegister src) {
4623   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4624   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true , /* uses_vl */ false);
4625   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4626   emit_int16(0x5C, (0xC0 | encode));
4627 }
4628 
4629 void Assembler::subss(XMMRegister dst, Address src) {
4630   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4631   InstructionMark im(this);
4632   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4633   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4634   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4635   emit_int8(0x5C);
4636   emit_operand(dst, src);
4637 }
4638 
4639 void Assembler::testb(Register dst, int imm8) {
4640   NOT_LP64(assert(dst->has_byte_register(), "must have byte register"));
4641   (void) prefix_and_encode(dst->encoding(), true);
4642   emit_arith_b(0xF6, 0xC0, dst, imm8);
4643 }
4644 
4645 void Assembler::testb(Address dst, int imm8) {
4646   InstructionMark im(this);
4647   prefix(dst);
4648   emit_int8((unsigned char)0xF6);
4649   emit_operand(rax, dst, 1);
4650   emit_int8(imm8);
4651 }
4652 
4653 void Assembler::testl(Register dst, int32_t imm32) {
4654   // not using emit_arith because test
4655   // doesn't support sign-extension of
4656   // 8bit operands
4657   int encode = dst->encoding();
4658   if (encode == 0) {
4659     emit_int8((unsigned char)0xA9);
4660   } else {
4661     encode = prefix_and_encode(encode);
4662     emit_int16((unsigned char)0xF7, (0xC0 | encode));
4663   }
4664   emit_int32(imm32);
4665 }
4666 
4667 void Assembler::testl(Register dst, Register src) {
4668   (void) prefix_and_encode(dst->encoding(), src->encoding());
4669   emit_arith(0x85, 0xC0, dst, src);
4670 }
4671 
4672 void Assembler::testl(Register dst, Address src) {
4673   InstructionMark im(this);
4674   prefix(src, dst);
4675   emit_int8((unsigned char)0x85);
4676   emit_operand(dst, src);
4677 }
4678 
4679 void Assembler::tzcntl(Register dst, Register src) {
4680   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4681   emit_int8((unsigned char)0xF3);
4682   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4683   emit_int24(0x0F,
4684              (unsigned char)0xBC,
4685              0xC0 | encode);
4686 }
4687 
4688 void Assembler::tzcntq(Register dst, Register src) {
4689   assert(VM_Version::supports_bmi1(), "tzcnt instruction not supported");
4690   emit_int8((unsigned char)0xF3);
4691   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
4692   emit_int24(0x0F, (unsigned char)0xBC, (0xC0 | encode));
4693 }
4694 
4695 void Assembler::ucomisd(XMMRegister dst, Address src) {
4696   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4697   InstructionMark im(this);
4698   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4699   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4700   attributes.set_rex_vex_w_reverted();
4701   simd_prefix(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4702   emit_int8(0x2E);
4703   emit_operand(dst, src);
4704 }
4705 
4706 void Assembler::ucomisd(XMMRegister dst, XMMRegister src) {
4707   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4708   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4709   attributes.set_rex_vex_w_reverted();
4710   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
4711   emit_int16(0x2E, (0xC0 | encode));
4712 }
4713 
4714 void Assembler::ucomiss(XMMRegister dst, Address src) {
4715   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4716   InstructionMark im(this);
4717   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4718   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4719   simd_prefix(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4720   emit_int8(0x2E);
4721   emit_operand(dst, src);
4722 }
4723 
4724 void Assembler::ucomiss(XMMRegister dst, XMMRegister src) {
4725   NOT_LP64(assert(VM_Version::supports_sse(), ""));
4726   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4727   int encode = simd_prefix_and_encode(dst, xnoreg, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
4728   emit_int16(0x2E, (0xC0 | encode));
4729 }
4730 
4731 void Assembler::xabort(int8_t imm8) {
4732   emit_int24((unsigned char)0xC6, (unsigned char)0xF8, (imm8 & 0xFF));
4733 }
4734 
4735 void Assembler::xaddb(Address dst, Register src) {
4736   InstructionMark im(this);
4737   prefix(dst, src, true);
4738   emit_int16(0x0F, (unsigned char)0xC0);
4739   emit_operand(src, dst);
4740 }
4741 
4742 void Assembler::xaddw(Address dst, Register src) {
4743   InstructionMark im(this);
4744   emit_int8(0x66);
4745   prefix(dst, src);
4746   emit_int16(0x0F, (unsigned char)0xC1);
4747   emit_operand(src, dst);
4748 }
4749 
4750 void Assembler::xaddl(Address dst, Register src) {
4751   InstructionMark im(this);
4752   prefix(dst, src);
4753   emit_int16(0x0F, (unsigned char)0xC1);
4754   emit_operand(src, dst);
4755 }
4756 
4757 void Assembler::xbegin(Label& abort, relocInfo::relocType rtype) {
4758   InstructionMark im(this);
4759   relocate(rtype);
4760   if (abort.is_bound()) {
4761     address entry = target(abort);
4762     assert(entry != NULL, "abort entry NULL");
4763     intptr_t offset = entry - pc();
4764     emit_int16((unsigned char)0xC7, (unsigned char)0xF8);
4765     emit_int32(offset - 6); // 2 opcode + 4 address
4766   } else {
4767     abort.add_patch_at(code(), locator());
4768     emit_int16((unsigned char)0xC7, (unsigned char)0xF8);
4769     emit_int32(0);
4770   }
4771 }
4772 
4773 void Assembler::xchgb(Register dst, Address src) { // xchg
4774   InstructionMark im(this);
4775   prefix(src, dst, true);
4776   emit_int8((unsigned char)0x86);
4777   emit_operand(dst, src);
4778 }
4779 
4780 void Assembler::xchgw(Register dst, Address src) { // xchg
4781   InstructionMark im(this);
4782   emit_int8(0x66);
4783   prefix(src, dst);
4784   emit_int8((unsigned char)0x87);
4785   emit_operand(dst, src);
4786 }
4787 
4788 void Assembler::xchgl(Register dst, Address src) { // xchg
4789   InstructionMark im(this);
4790   prefix(src, dst);
4791   emit_int8((unsigned char)0x87);
4792   emit_operand(dst, src);
4793 }
4794 
4795 void Assembler::xchgl(Register dst, Register src) {
4796   int encode = prefix_and_encode(dst->encoding(), src->encoding());
4797   emit_int16((unsigned char)0x87, (0xC0 | encode));
4798 }
4799 
4800 void Assembler::xend() {
4801   emit_int24(0x0F, 0x01, (unsigned char)0xD5);
4802 }
4803 
4804 void Assembler::xgetbv() {
4805   emit_int24(0x0F, 0x01, (unsigned char)0xD0);
4806 }
4807 
4808 void Assembler::xorl(Register dst, int32_t imm32) {
4809   prefix(dst);
4810   emit_arith(0x81, 0xF0, dst, imm32);
4811 }
4812 
4813 void Assembler::xorl(Register dst, Address src) {
4814   InstructionMark im(this);
4815   prefix(src, dst);
4816   emit_int8(0x33);
4817   emit_operand(dst, src);
4818 }
4819 
4820 void Assembler::xorl(Register dst, Register src) {
4821   (void) prefix_and_encode(dst->encoding(), src->encoding());
4822   emit_arith(0x33, 0xC0, dst, src);
4823 }
4824 
4825 void Assembler::xorb(Register dst, Address src) {
4826   InstructionMark im(this);
4827   prefix(src, dst);
4828   emit_int8(0x32);
4829   emit_operand(dst, src);
4830 }
4831 
4832 // AVX 3-operands scalar float-point arithmetic instructions
4833 
4834 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, Address src) {
4835   assert(VM_Version::supports_avx(), "");
4836   InstructionMark im(this);
4837   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4838   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4839   attributes.set_rex_vex_w_reverted();
4840   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4841   emit_int8(0x58);
4842   emit_operand(dst, src);
4843 }
4844 
4845 void Assembler::vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4846   assert(VM_Version::supports_avx(), "");
4847   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4848   attributes.set_rex_vex_w_reverted();
4849   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4850   emit_int16(0x58, (0xC0 | encode));
4851 }
4852 
4853 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, Address src) {
4854   assert(VM_Version::supports_avx(), "");
4855   InstructionMark im(this);
4856   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4857   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4858   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4859   emit_int8(0x58);
4860   emit_operand(dst, src);
4861 }
4862 
4863 void Assembler::vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4864   assert(VM_Version::supports_avx(), "");
4865   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4866   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4867   emit_int16(0x58, (0xC0 | encode));
4868 }
4869 
4870 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, Address src) {
4871   assert(VM_Version::supports_avx(), "");
4872   InstructionMark im(this);
4873   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4874   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4875   attributes.set_rex_vex_w_reverted();
4876   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4877   emit_int8(0x5E);
4878   emit_operand(dst, src);
4879 }
4880 
4881 void Assembler::vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4882   assert(VM_Version::supports_avx(), "");
4883   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4884   attributes.set_rex_vex_w_reverted();
4885   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4886   emit_int16(0x5E, (0xC0 | encode));
4887 }
4888 
4889 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, Address src) {
4890   assert(VM_Version::supports_avx(), "");
4891   InstructionMark im(this);
4892   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4893   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4894   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4895   emit_int8(0x5E);
4896   emit_operand(dst, src);
4897 }
4898 
4899 void Assembler::vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4900   assert(VM_Version::supports_avx(), "");
4901   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4902   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4903   emit_int16(0x5E, (0xC0 | encode));
4904 }
4905 
4906 void Assembler::vfmadd231sd(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4907   assert(VM_Version::supports_fma(), "");
4908   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4909   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4910   emit_int16((unsigned char)0xB9, (0xC0 | encode));
4911 }
4912 
4913 void Assembler::vfmadd231ss(XMMRegister dst, XMMRegister src1, XMMRegister src2) {
4914   assert(VM_Version::supports_fma(), "");
4915   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4916   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
4917   emit_int16((unsigned char)0xB9, (0xC0 | encode));
4918 }
4919 
4920 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, Address src) {
4921   assert(VM_Version::supports_avx(), "");
4922   InstructionMark im(this);
4923   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4924   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4925   attributes.set_rex_vex_w_reverted();
4926   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4927   emit_int8(0x59);
4928   emit_operand(dst, src);
4929 }
4930 
4931 void Assembler::vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4932   assert(VM_Version::supports_avx(), "");
4933   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4934   attributes.set_rex_vex_w_reverted();
4935   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4936   emit_int16(0x59, (0xC0 | encode));
4937 }
4938 
4939 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, Address src) {
4940   assert(VM_Version::supports_avx(), "");
4941   InstructionMark im(this);
4942   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4943   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4944   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4945   emit_int8(0x59);
4946   emit_operand(dst, src);
4947 }
4948 
4949 void Assembler::vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4950   assert(VM_Version::supports_avx(), "");
4951   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4952   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4953   emit_int16(0x59, (0xC0 | encode));
4954 }
4955 
4956 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, Address src) {
4957   assert(VM_Version::supports_avx(), "");
4958   InstructionMark im(this);
4959   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4960   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
4961   attributes.set_rex_vex_w_reverted();
4962   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4963   emit_int8(0x5C);
4964   emit_operand(dst, src);
4965 }
4966 
4967 void Assembler::vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4968   assert(VM_Version::supports_avx(), "");
4969   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4970   attributes.set_rex_vex_w_reverted();
4971   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
4972   emit_int16(0x5C, (0xC0 | encode));
4973 }
4974 
4975 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, Address src) {
4976   assert(VM_Version::supports_avx(), "");
4977   InstructionMark im(this);
4978   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4979   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
4980   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4981   emit_int8(0x5C);
4982   emit_operand(dst, src);
4983 }
4984 
4985 void Assembler::vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
4986   assert(VM_Version::supports_avx(), "");
4987   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
4988   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
4989   emit_int16(0x5C, (0xC0 | encode));
4990 }
4991 
4992 //====================VECTOR ARITHMETIC=====================================
4993 
4994 // Float-point vector arithmetic
4995 
4996 void Assembler::addpd(XMMRegister dst, XMMRegister src) {
4997   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
4998   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
4999   attributes.set_rex_vex_w_reverted();
5000   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5001   emit_int16(0x58, (0xC0 | encode));
5002 }
5003 
5004 void Assembler::addpd(XMMRegister dst, Address src) {
5005   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5006   InstructionMark im(this);
5007   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5008   attributes.set_rex_vex_w_reverted();
5009   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5010   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5011   emit_int8(0x58);
5012   emit_operand(dst, src);
5013 }
5014 
5015 
5016 void Assembler::addps(XMMRegister dst, XMMRegister src) {
5017   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5018   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5019   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5020   emit_int16(0x58, (0xC0 | encode));
5021 }
5022 
5023 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5024   assert(VM_Version::supports_avx(), "");
5025   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5026   attributes.set_rex_vex_w_reverted();
5027   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5028   emit_int16(0x58, (0xC0 | encode));
5029 }
5030 
5031 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5032   assert(VM_Version::supports_avx(), "");
5033   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5034   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5035   emit_int16(0x58, (0xC0 | encode));
5036 }
5037 
5038 void Assembler::vaddpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5039   assert(VM_Version::supports_avx(), "");
5040   InstructionMark im(this);
5041   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5042   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5043   attributes.set_rex_vex_w_reverted();
5044   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5045   emit_int8(0x58);
5046   emit_operand(dst, src);
5047 }
5048 
5049 void Assembler::vaddps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5050   assert(VM_Version::supports_avx(), "");
5051   InstructionMark im(this);
5052   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5053   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5054   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5055   emit_int8(0x58);
5056   emit_operand(dst, src);
5057 }
5058 
5059 void Assembler::subpd(XMMRegister dst, XMMRegister src) {
5060   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5061   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5062   attributes.set_rex_vex_w_reverted();
5063   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5064   emit_int16(0x5C, (0xC0 | encode));
5065 }
5066 
5067 void Assembler::subps(XMMRegister dst, XMMRegister src) {
5068   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5069   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5070   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5071   emit_int16(0x5C, (0xC0 | encode));
5072 }
5073 
5074 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5075   assert(VM_Version::supports_avx(), "");
5076   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5077   attributes.set_rex_vex_w_reverted();
5078   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5079   emit_int16(0x5C, (0xC0 | encode));
5080 }
5081 
5082 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5083   assert(VM_Version::supports_avx(), "");
5084   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5085   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5086   emit_int16(0x5C, (0xC0 | encode));
5087 }
5088 
5089 void Assembler::vsubpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5090   assert(VM_Version::supports_avx(), "");
5091   InstructionMark im(this);
5092   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5093   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5094   attributes.set_rex_vex_w_reverted();
5095   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5096   emit_int8(0x5C);
5097   emit_operand(dst, src);
5098 }
5099 
5100 void Assembler::vsubps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5101   assert(VM_Version::supports_avx(), "");
5102   InstructionMark im(this);
5103   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5104   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5105   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5106   emit_int8(0x5C);
5107   emit_operand(dst, src);
5108 }
5109 
5110 void Assembler::mulpd(XMMRegister dst, XMMRegister src) {
5111   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5112   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5113   attributes.set_rex_vex_w_reverted();
5114   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5115   emit_int16(0x59, (0xC0 | encode));
5116 }
5117 
5118 void Assembler::mulpd(XMMRegister dst, Address src) {
5119   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5120   InstructionMark im(this);
5121   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5122   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5123   attributes.set_rex_vex_w_reverted();
5124   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5125   emit_int8(0x59);
5126   emit_operand(dst, src);
5127 }
5128 
5129 void Assembler::mulps(XMMRegister dst, XMMRegister src) {
5130   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5131   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5132   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5133   emit_int16(0x59, (0xC0 | encode));
5134 }
5135 
5136 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5137   assert(VM_Version::supports_avx(), "");
5138   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5139   attributes.set_rex_vex_w_reverted();
5140   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5141   emit_int16(0x59, (0xC0 | encode));
5142 }
5143 
5144 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5145   assert(VM_Version::supports_avx(), "");
5146   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5147   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5148   emit_int16(0x59, (0xC0 | encode));
5149 }
5150 
5151 void Assembler::vmulpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5152   assert(VM_Version::supports_avx(), "");
5153   InstructionMark im(this);
5154   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5155   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5156   attributes.set_rex_vex_w_reverted();
5157   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5158   emit_int8(0x59);
5159   emit_operand(dst, src);
5160 }
5161 
5162 void Assembler::vmulps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5163   assert(VM_Version::supports_avx(), "");
5164   InstructionMark im(this);
5165   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5166   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5167   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5168   emit_int8(0x59);
5169   emit_operand(dst, src);
5170 }
5171 
5172 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5173   assert(VM_Version::supports_fma(), "");
5174   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5175   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5176   emit_int16((unsigned char)0xB8, (0xC0 | encode));
5177 }
5178 
5179 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, XMMRegister src2, int vector_len) {
5180   assert(VM_Version::supports_fma(), "");
5181   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5182   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5183   emit_int16((unsigned char)0xB8, (0xC0 | encode));
5184 }
5185 
5186 void Assembler::vfmadd231pd(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5187   assert(VM_Version::supports_fma(), "");
5188   InstructionMark im(this);
5189   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5190   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5191   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5192   emit_int8((unsigned char)0xB8);
5193   emit_operand(dst, src2);
5194 }
5195 
5196 void Assembler::vfmadd231ps(XMMRegister dst, XMMRegister src1, Address src2, int vector_len) {
5197   assert(VM_Version::supports_fma(), "");
5198   InstructionMark im(this);
5199   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5200   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5201   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5202   emit_int8((unsigned char)0xB8);
5203   emit_operand(dst, src2);
5204 }
5205 
5206 void Assembler::divpd(XMMRegister dst, XMMRegister src) {
5207   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5208   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5209   attributes.set_rex_vex_w_reverted();
5210   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5211   emit_int16(0x5E, (0xC0 | encode));
5212 }
5213 
5214 void Assembler::divps(XMMRegister dst, XMMRegister src) {
5215   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5216   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5217   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5218   emit_int16(0x5E, (0xC0 | encode));
5219 }
5220 
5221 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5222   assert(VM_Version::supports_avx(), "");
5223   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5224   attributes.set_rex_vex_w_reverted();
5225   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5226   emit_int16(0x5E, (0xC0 | encode));
5227 }
5228 
5229 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5230   assert(VM_Version::supports_avx(), "");
5231   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5232   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5233   emit_int16(0x5E, (0xC0 | encode));
5234 }
5235 
5236 void Assembler::vdivpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5237   assert(VM_Version::supports_avx(), "");
5238   InstructionMark im(this);
5239   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5240   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5241   attributes.set_rex_vex_w_reverted();
5242   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5243   emit_int8(0x5E);
5244   emit_operand(dst, src);
5245 }
5246 
5247 void Assembler::vdivps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5248   assert(VM_Version::supports_avx(), "");
5249   InstructionMark im(this);
5250   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5251   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5252   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5253   emit_int8(0x5E);
5254   emit_operand(dst, src);
5255 }
5256 
5257 void Assembler::vroundpd(XMMRegister dst, XMMRegister src, int32_t rmode, int vector_len) {
5258   assert(VM_Version::supports_avx(), "");
5259   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5260   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5261   emit_int24(0x09, (0xC0 | encode), (rmode));
5262 }
5263 
5264 void Assembler::vroundpd(XMMRegister dst, Address src, int32_t rmode,  int vector_len) {
5265   assert(VM_Version::supports_avx(), "");
5266   InstructionMark im(this);
5267   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
5268   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5269   emit_int8(0x09);
5270   emit_operand(dst, src);
5271   emit_int8((rmode));
5272 }
5273 
5274 void Assembler::vrndscalepd(XMMRegister dst,  XMMRegister src,  int32_t rmode, int vector_len) {
5275   assert(VM_Version::supports_evex(), "requires EVEX support");
5276   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5277   attributes.set_is_evex_instruction();
5278   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5279   emit_int24(0x09, (0xC0 | encode), (rmode));
5280 }
5281 
5282 void Assembler::vrndscalepd(XMMRegister dst, Address src, int32_t rmode, int vector_len) {
5283   assert(VM_Version::supports_evex(), "requires EVEX support");
5284   assert(dst != xnoreg, "sanity");
5285   InstructionMark im(this);
5286   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5287   attributes.set_is_evex_instruction();
5288   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5289   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
5290   emit_int8(0x09);
5291   emit_operand(dst, src);
5292   emit_int8((rmode));
5293 }
5294 
5295 
5296 void Assembler::vsqrtpd(XMMRegister dst, XMMRegister src, int vector_len) {
5297   assert(VM_Version::supports_avx(), "");
5298   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5299   attributes.set_rex_vex_w_reverted();
5300   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5301   emit_int16(0x51, (0xC0 | encode));
5302 }
5303 
5304 void Assembler::vsqrtpd(XMMRegister dst, Address src, int vector_len) {
5305   assert(VM_Version::supports_avx(), "");
5306   InstructionMark im(this);
5307   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5308   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5309   attributes.set_rex_vex_w_reverted();
5310   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5311   emit_int8(0x51);
5312   emit_operand(dst, src);
5313 }
5314 
5315 void Assembler::vsqrtps(XMMRegister dst, XMMRegister src, int vector_len) {
5316   assert(VM_Version::supports_avx(), "");
5317   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5318   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5319   emit_int16(0x51, (0xC0 | encode));
5320 }
5321 
5322 void Assembler::vsqrtps(XMMRegister dst, Address src, int vector_len) {
5323   assert(VM_Version::supports_avx(), "");
5324   InstructionMark im(this);
5325   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5326   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5327   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5328   emit_int8(0x51);
5329   emit_operand(dst, src);
5330 }
5331 
5332 void Assembler::andpd(XMMRegister dst, XMMRegister src) {
5333   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5334   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5335   attributes.set_rex_vex_w_reverted();
5336   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5337   emit_int16(0x54, (0xC0 | encode));
5338 }
5339 
5340 void Assembler::andps(XMMRegister dst, XMMRegister src) {
5341   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5342   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5343   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5344   emit_int16(0x54, (0xC0 | encode));
5345 }
5346 
5347 void Assembler::andps(XMMRegister dst, Address src) {
5348   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5349   InstructionMark im(this);
5350   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5351   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5352   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5353   emit_int8(0x54);
5354   emit_operand(dst, src);
5355 }
5356 
5357 void Assembler::andpd(XMMRegister dst, Address src) {
5358   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5359   InstructionMark im(this);
5360   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5361   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5362   attributes.set_rex_vex_w_reverted();
5363   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5364   emit_int8(0x54);
5365   emit_operand(dst, src);
5366 }
5367 
5368 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5369   assert(VM_Version::supports_avx(), "");
5370   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5371   attributes.set_rex_vex_w_reverted();
5372   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5373   emit_int16(0x54, (0xC0 | encode));
5374 }
5375 
5376 void Assembler::vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5377   assert(VM_Version::supports_avx(), "");
5378   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5379   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5380   emit_int16(0x54, (0xC0 | encode));
5381 }
5382 
5383 void Assembler::vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5384   assert(VM_Version::supports_avx(), "");
5385   InstructionMark im(this);
5386   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5387   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5388   attributes.set_rex_vex_w_reverted();
5389   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5390   emit_int8(0x54);
5391   emit_operand(dst, src);
5392 }
5393 
5394 void Assembler::vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5395   assert(VM_Version::supports_avx(), "");
5396   InstructionMark im(this);
5397   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5398   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5399   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5400   emit_int8(0x54);
5401   emit_operand(dst, src);
5402 }
5403 
5404 void Assembler::unpckhpd(XMMRegister dst, XMMRegister src) {
5405   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5406   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5407   attributes.set_rex_vex_w_reverted();
5408   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5409   emit_int8(0x15);
5410   emit_int8((0xC0 | encode));
5411 }
5412 
5413 void Assembler::unpcklpd(XMMRegister dst, XMMRegister src) {
5414   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5415   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5416   attributes.set_rex_vex_w_reverted();
5417   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5418   emit_int16(0x14, (0xC0 | encode));
5419 }
5420 
5421 void Assembler::xorpd(XMMRegister dst, XMMRegister src) {
5422   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5423   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5424   attributes.set_rex_vex_w_reverted();
5425   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5426   emit_int16(0x57, (0xC0 | encode));
5427 }
5428 
5429 void Assembler::xorps(XMMRegister dst, XMMRegister src) {
5430   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5431   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5432   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5433   emit_int16(0x57, (0xC0 | encode));
5434 }
5435 
5436 void Assembler::xorpd(XMMRegister dst, Address src) {
5437   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5438   InstructionMark im(this);
5439   InstructionAttr attributes(AVX_128bit, /* rex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5440   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5441   attributes.set_rex_vex_w_reverted();
5442   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5443   emit_int8(0x57);
5444   emit_operand(dst, src);
5445 }
5446 
5447 void Assembler::xorps(XMMRegister dst, Address src) {
5448   NOT_LP64(assert(VM_Version::supports_sse(), ""));
5449   InstructionMark im(this);
5450   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5451   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5452   simd_prefix(dst, dst, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5453   emit_int8(0x57);
5454   emit_operand(dst, src);
5455 }
5456 
5457 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5458   assert(VM_Version::supports_avx(), "");
5459   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5460   attributes.set_rex_vex_w_reverted();
5461   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5462   emit_int16(0x57, (0xC0 | encode));
5463 }
5464 
5465 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5466   assert(VM_Version::supports_avx(), "");
5467   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5468   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5469   emit_int16(0x57, (0xC0 | encode));
5470 }
5471 
5472 void Assembler::vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5473   assert(VM_Version::supports_avx(), "");
5474   InstructionMark im(this);
5475   InstructionAttr attributes(vector_len, /* vex_w */ !_legacy_mode_dq, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5476   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5477   attributes.set_rex_vex_w_reverted();
5478   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5479   emit_int8(0x57);
5480   emit_operand(dst, src);
5481 }
5482 
5483 void Assembler::vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5484   assert(VM_Version::supports_avx(), "");
5485   InstructionMark im(this);
5486   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5487   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5488   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
5489   emit_int8(0x57);
5490   emit_operand(dst, src);
5491 }
5492 
5493 // Integer vector arithmetic
5494 void Assembler::vphaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5495   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5496          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5497   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5498   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5499   emit_int16(0x01, (0xC0 | encode));
5500 }
5501 
5502 void Assembler::vphaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5503   assert(VM_Version::supports_avx() && (vector_len == 0) ||
5504          VM_Version::supports_avx2(), "256 bit integer vectors requires AVX2");
5505   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5506   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5507   emit_int16(0x02, (0xC0 | encode));
5508 }
5509 
5510 void Assembler::paddb(XMMRegister dst, XMMRegister src) {
5511   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5512   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5513   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5514   emit_int16((unsigned char)0xFC, (0xC0 | encode));
5515 }
5516 
5517 void Assembler::paddw(XMMRegister dst, XMMRegister src) {
5518   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5519   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5520   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5521   emit_int16((unsigned char)0xFD, (0xC0 | encode));
5522 }
5523 
5524 void Assembler::paddd(XMMRegister dst, XMMRegister src) {
5525   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5526   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5527   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5528   emit_int16((unsigned char)0xFE, (0xC0 | encode));
5529 }
5530 
5531 void Assembler::paddd(XMMRegister dst, Address src) {
5532   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5533   InstructionMark im(this);
5534   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5535   simd_prefix(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5536   emit_int8((unsigned char)0xFE);
5537   emit_operand(dst, src);
5538 }
5539 
5540 void Assembler::paddq(XMMRegister dst, XMMRegister src) {
5541   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5542   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5543   attributes.set_rex_vex_w_reverted();
5544   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5545   emit_int16((unsigned char)0xD4, (0xC0 | encode));
5546 }
5547 
5548 void Assembler::phaddw(XMMRegister dst, XMMRegister src) {
5549   assert(VM_Version::supports_sse3(), "");
5550   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5551   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5552   emit_int16(0x01, (0xC0 | encode));
5553 }
5554 
5555 void Assembler::phaddd(XMMRegister dst, XMMRegister src) {
5556   assert(VM_Version::supports_sse3(), "");
5557   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
5558   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5559   emit_int16(0x02, (0xC0 | encode));
5560 }
5561 
5562 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5563   assert(UseAVX > 0, "requires some form of AVX");
5564   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5565   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5566   emit_int16((unsigned char)0xFC, (0xC0 | encode));
5567 }
5568 
5569 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5570   assert(UseAVX > 0, "requires some form of AVX");
5571   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5572   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5573   emit_int16((unsigned char)0xFD, (0xC0 | encode));
5574 }
5575 
5576 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5577   assert(UseAVX > 0, "requires some form of AVX");
5578   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5579   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5580   emit_int16((unsigned char)0xFE, (0xC0 | encode));
5581 }
5582 
5583 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5584   assert(UseAVX > 0, "requires some form of AVX");
5585   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5586   attributes.set_rex_vex_w_reverted();
5587   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5588   emit_int16((unsigned char)0xD4, (0xC0 | encode));
5589 }
5590 
5591 void Assembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5592   assert(UseAVX > 0, "requires some form of AVX");
5593   InstructionMark im(this);
5594   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5595   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5596   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5597   emit_int8((unsigned char)0xFC);
5598   emit_operand(dst, src);
5599 }
5600 
5601 void Assembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5602   assert(UseAVX > 0, "requires some form of AVX");
5603   InstructionMark im(this);
5604   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5605   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5606   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5607   emit_int8((unsigned char)0xFD);
5608   emit_operand(dst, src);
5609 }
5610 
5611 void Assembler::vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5612   assert(UseAVX > 0, "requires some form of AVX");
5613   InstructionMark im(this);
5614   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5615   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5616   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5617   emit_int8((unsigned char)0xFE);
5618   emit_operand(dst, src);
5619 }
5620 
5621 void Assembler::vpaddq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5622   assert(UseAVX > 0, "requires some form of AVX");
5623   InstructionMark im(this);
5624   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5625   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5626   attributes.set_rex_vex_w_reverted();
5627   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5628   emit_int8((unsigned char)0xD4);
5629   emit_operand(dst, src);
5630 }
5631 
5632 void Assembler::psubb(XMMRegister dst, XMMRegister src) {
5633   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5634   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5635   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5636   emit_int16((unsigned char)0xF8, (0xC0 | encode));
5637 }
5638 
5639 void Assembler::psubw(XMMRegister dst, XMMRegister src) {
5640   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5641   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5642   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5643   emit_int16((unsigned char)0xF9, (0xC0 | encode));
5644 }
5645 
5646 void Assembler::psubd(XMMRegister dst, XMMRegister src) {
5647   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5648   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5649   emit_int16((unsigned char)0xFA, (0xC0 | encode));
5650 }
5651 
5652 void Assembler::psubq(XMMRegister dst, XMMRegister src) {
5653   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5654   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5655   attributes.set_rex_vex_w_reverted();
5656   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5657   emit_int8((unsigned char)0xFB);
5658   emit_int8((0xC0 | encode));
5659 }
5660 
5661 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5662   assert(UseAVX > 0, "requires some form of AVX");
5663   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5664   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5665   emit_int16((unsigned char)0xF8, (0xC0 | encode));
5666 }
5667 
5668 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5669   assert(UseAVX > 0, "requires some form of AVX");
5670   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5671   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5672   emit_int16((unsigned char)0xF9, (0xC0 | encode));
5673 }
5674 
5675 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5676   assert(UseAVX > 0, "requires some form of AVX");
5677   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5678   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5679   emit_int16((unsigned char)0xFA, (0xC0 | encode));
5680 }
5681 
5682 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5683   assert(UseAVX > 0, "requires some form of AVX");
5684   InstructionAttr attributes(vector_len, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5685   attributes.set_rex_vex_w_reverted();
5686   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5687   emit_int16((unsigned char)0xFB, (0xC0 | encode));
5688 }
5689 
5690 void Assembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5691   assert(UseAVX > 0, "requires some form of AVX");
5692   InstructionMark im(this);
5693   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5694   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5695   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5696   emit_int8((unsigned char)0xF8);
5697   emit_operand(dst, src);
5698 }
5699 
5700 void Assembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5701   assert(UseAVX > 0, "requires some form of AVX");
5702   InstructionMark im(this);
5703   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5704   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5705   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5706   emit_int8((unsigned char)0xF9);
5707   emit_operand(dst, src);
5708 }
5709 
5710 void Assembler::vpsubd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5711   assert(UseAVX > 0, "requires some form of AVX");
5712   InstructionMark im(this);
5713   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5714   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5715   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5716   emit_int8((unsigned char)0xFA);
5717   emit_operand(dst, src);
5718 }
5719 
5720 void Assembler::vpsubq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5721   assert(UseAVX > 0, "requires some form of AVX");
5722   InstructionMark im(this);
5723   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5724   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5725   attributes.set_rex_vex_w_reverted();
5726   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5727   emit_int8((unsigned char)0xFB);
5728   emit_operand(dst, src);
5729 }
5730 
5731 void Assembler::pmullw(XMMRegister dst, XMMRegister src) {
5732   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5733   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5734   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5735   emit_int16((unsigned char)0xD5, (0xC0 | encode));
5736 }
5737 
5738 void Assembler::pmulld(XMMRegister dst, XMMRegister src) {
5739   assert(VM_Version::supports_sse4_1(), "");
5740   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5741   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5742   emit_int16(0x40, (0xC0 | encode));
5743 }
5744 
5745 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5746   assert(UseAVX > 0, "requires some form of AVX");
5747   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5748   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5749   emit_int16((unsigned char)0xD5, (0xC0 | encode));
5750 }
5751 
5752 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5753   assert(UseAVX > 0, "requires some form of AVX");
5754   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5755   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5756   emit_int16(0x40, (0xC0 | encode));
5757 }
5758 
5759 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5760   assert(UseAVX > 2, "requires some form of EVEX");
5761   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5762   attributes.set_is_evex_instruction();
5763   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5764   emit_int16(0x40, (0xC0 | encode));
5765 }
5766 
5767 void Assembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5768   assert(UseAVX > 0, "requires some form of AVX");
5769   InstructionMark im(this);
5770   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5771   attributes.set_address_attributes(/* tuple_type */ EVEX_FVM, /* input_size_in_bits */ EVEX_NObit);
5772   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5773   emit_int8((unsigned char)0xD5);
5774   emit_operand(dst, src);
5775 }
5776 
5777 void Assembler::vpmulld(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5778   assert(UseAVX > 0, "requires some form of AVX");
5779   InstructionMark im(this);
5780   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5781   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
5782   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5783   emit_int8(0x40);
5784   emit_operand(dst, src);
5785 }
5786 
5787 void Assembler::vpmullq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
5788   assert(UseAVX > 2, "requires some form of EVEX");
5789   InstructionMark im(this);
5790   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ _legacy_mode_dq, /* no_mask_reg */ true, /* uses_vl */ true);
5791   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
5792   attributes.set_is_evex_instruction();
5793   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5794   emit_int8(0x40);
5795   emit_operand(dst, src);
5796 }
5797 
5798 // Shift packed integers left by specified number of bits.
5799 void Assembler::psllw(XMMRegister dst, int shift) {
5800   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5801   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5802   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5803   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5804   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5805 }
5806 
5807 void Assembler::pslld(XMMRegister dst, int shift) {
5808   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5809   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5810   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5811   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5812   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5813 }
5814 
5815 void Assembler::psllq(XMMRegister dst, int shift) {
5816   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5817   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5818   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5819   int encode = simd_prefix_and_encode(xmm6, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5820   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5821 }
5822 
5823 void Assembler::psllw(XMMRegister dst, XMMRegister shift) {
5824   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5825   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5826   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5827   emit_int16((unsigned char)0xF1, (0xC0 | encode));
5828 }
5829 
5830 void Assembler::pslld(XMMRegister dst, XMMRegister shift) {
5831   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5832   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5833   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5834   emit_int16((unsigned char)0xF2, (0xC0 | encode));
5835 }
5836 
5837 void Assembler::psllq(XMMRegister dst, XMMRegister shift) {
5838   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5839   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5840   attributes.set_rex_vex_w_reverted();
5841   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5842   emit_int16((unsigned char)0xF3, (0xC0 | encode));
5843 }
5844 
5845 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5846   assert(UseAVX > 0, "requires some form of AVX");
5847   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5848   // XMM6 is for /6 encoding: 66 0F 71 /6 ib
5849   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5850   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5851 }
5852 
5853 void Assembler::vpslld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5854   assert(UseAVX > 0, "requires some form of AVX");
5855   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5856   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5857   // XMM6 is for /6 encoding: 66 0F 72 /6 ib
5858   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5859   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5860 }
5861 
5862 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5863   assert(UseAVX > 0, "requires some form of AVX");
5864   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5865   attributes.set_rex_vex_w_reverted();
5866   // XMM6 is for /6 encoding: 66 0F 73 /6 ib
5867   int encode = vex_prefix_and_encode(xmm6->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5868   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5869 }
5870 
5871 void Assembler::vpsllw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5872   assert(UseAVX > 0, "requires some form of AVX");
5873   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5874   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5875   emit_int16((unsigned char)0xF1, (0xC0 | encode));
5876 }
5877 
5878 void Assembler::vpslld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5879   assert(UseAVX > 0, "requires some form of AVX");
5880   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5881   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5882   emit_int16((unsigned char)0xF2, (0xC0 | encode));
5883 }
5884 
5885 void Assembler::vpsllq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5886   assert(UseAVX > 0, "requires some form of AVX");
5887   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5888   attributes.set_rex_vex_w_reverted();
5889   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5890   emit_int16((unsigned char)0xF3, (0xC0 | encode));
5891 }
5892 
5893 // Shift packed integers logically right by specified number of bits.
5894 void Assembler::psrlw(XMMRegister dst, int shift) {
5895   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5896   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5897   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5898   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5899   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5900 }
5901 
5902 void Assembler::psrld(XMMRegister dst, int shift) {
5903   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5904   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5905   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5906   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5907   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5908 }
5909 
5910 void Assembler::psrlq(XMMRegister dst, int shift) {
5911   // Do not confuse it with psrldq SSE2 instruction which
5912   // shifts 128 bit value in xmm register by number of bytes.
5913   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5914   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5915   attributes.set_rex_vex_w_reverted();
5916   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5917   int encode = simd_prefix_and_encode(xmm2, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5918   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5919 }
5920 
5921 void Assembler::psrlw(XMMRegister dst, XMMRegister shift) {
5922   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5923   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5924   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5925   emit_int16((unsigned char)0xD1, (0xC0 | encode));
5926 }
5927 
5928 void Assembler::psrld(XMMRegister dst, XMMRegister shift) {
5929   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5930   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5931   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5932   emit_int16((unsigned char)0xD2, (0xC0 | encode));
5933 }
5934 
5935 void Assembler::psrlq(XMMRegister dst, XMMRegister shift) {
5936   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
5937   InstructionAttr attributes(AVX_128bit, /* rex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5938   attributes.set_rex_vex_w_reverted();
5939   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5940   emit_int16((unsigned char)0xD3, (0xC0 | encode));
5941 }
5942 
5943 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5944   assert(UseAVX > 0, "requires some form of AVX");
5945   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5946   // XMM2 is for /2 encoding: 66 0F 71 /2 ib
5947   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5948   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
5949 }
5950 
5951 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5952   assert(UseAVX > 0, "requires some form of AVX");
5953   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5954   // XMM2 is for /2 encoding: 66 0F 72 /2 ib
5955   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5956   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
5957 }
5958 
5959 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
5960   assert(UseAVX > 0, "requires some form of AVX");
5961   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5962   attributes.set_rex_vex_w_reverted();
5963   // XMM2 is for /2 encoding: 66 0F 73 /2 ib
5964   int encode = vex_prefix_and_encode(xmm2->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5965   emit_int24(0x73, (0xC0 | encode), shift & 0xFF);
5966 }
5967 
5968 void Assembler::vpsrlw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5969   assert(UseAVX > 0, "requires some form of AVX");
5970   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
5971   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5972   emit_int16((unsigned char)0xD1, (0xC0 | encode));
5973 }
5974 
5975 void Assembler::vpsrld(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5976   assert(UseAVX > 0, "requires some form of AVX");
5977   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5978   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5979   emit_int16((unsigned char)0xD2, (0xC0 | encode));
5980 }
5981 
5982 void Assembler::vpsrlq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
5983   assert(UseAVX > 0, "requires some form of AVX");
5984   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5985   attributes.set_rex_vex_w_reverted();
5986   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
5987   emit_int16((unsigned char)0xD3, (0xC0 | encode));
5988 }
5989 
5990 void Assembler::evpsrlvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5991   assert(VM_Version::supports_avx512bw(), "");
5992   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
5993   attributes.set_is_evex_instruction();
5994   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
5995   emit_int16(0x10, (0xC0 | encode));
5996 }
5997 
5998 void Assembler::evpsllvw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
5999   assert(VM_Version::supports_avx512bw(), "");
6000   InstructionAttr attributes(vector_len, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6001   attributes.set_is_evex_instruction();
6002   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6003   emit_int16(0x12, (0xC0 | encode));
6004 }
6005 
6006 // Shift packed integers arithmetically right by specified number of bits.
6007 void Assembler::psraw(XMMRegister dst, int shift) {
6008   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6009   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6010   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6011   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6012   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
6013 }
6014 
6015 void Assembler::psrad(XMMRegister dst, int shift) {
6016   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6017   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6018   // XMM4 is for /4 encoding: 66 0F 72 /4 ib
6019   int encode = simd_prefix_and_encode(xmm4, dst, dst, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6020   emit_int8(0x72);
6021   emit_int8((0xC0 | encode));
6022   emit_int8(shift & 0xFF);
6023 }
6024 
6025 void Assembler::psraw(XMMRegister dst, XMMRegister shift) {
6026   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6027   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6028   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6029   emit_int16((unsigned char)0xE1, (0xC0 | encode));
6030 }
6031 
6032 void Assembler::psrad(XMMRegister dst, XMMRegister shift) {
6033   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6034   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6035   int encode = simd_prefix_and_encode(dst, dst, shift, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6036   emit_int16((unsigned char)0xE2, (0xC0 | encode));
6037 }
6038 
6039 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6040   assert(UseAVX > 0, "requires some form of AVX");
6041   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6042   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6043   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6044   emit_int24(0x71, (0xC0 | encode), shift & 0xFF);
6045 }
6046 
6047 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6048   assert(UseAVX > 0, "requires some form of AVX");
6049   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6050   // XMM4 is for /4 encoding: 66 0F 71 /4 ib
6051   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6052   emit_int24(0x72, (0xC0 | encode), shift & 0xFF);
6053 }
6054 
6055 void Assembler::vpsraw(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6056   assert(UseAVX > 0, "requires some form of AVX");
6057   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6058   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6059   emit_int16((unsigned char)0xE1, (0xC0 | encode));
6060 }
6061 
6062 void Assembler::vpsrad(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6063   assert(UseAVX > 0, "requires some form of AVX");
6064   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6065   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6066   emit_int16((unsigned char)0xE2, (0xC0 | encode));
6067 }
6068 
6069 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, int shift, int vector_len) {
6070   assert(UseAVX > 2, "requires AVX512");
6071   assert ((VM_Version::supports_avx512vl() || vector_len == 2), "requires AVX512vl");
6072   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6073   attributes.set_is_evex_instruction();
6074   int encode = vex_prefix_and_encode(xmm4->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6075   emit_int24((unsigned char)0x72, (0xC0 | encode), shift & 0xFF);
6076 }
6077 
6078 void Assembler::evpsraq(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6079   assert(UseAVX > 2, "requires AVX512");
6080   assert ((VM_Version::supports_avx512vl() || vector_len == 2), "requires AVX512vl");
6081   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6082   attributes.set_is_evex_instruction();
6083   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6084   emit_int16((unsigned char)0xE2, (0xC0 | encode));
6085 }
6086 
6087 // logical operations packed integers
6088 void Assembler::pand(XMMRegister dst, XMMRegister src) {
6089   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6090   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6091   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6092   emit_int16((unsigned char)0xDB, (0xC0 | encode));
6093 }
6094 
6095 void Assembler::vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6096   assert(UseAVX > 0, "requires some form of AVX");
6097   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6098   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6099   emit_int16((unsigned char)0xDB, (0xC0 | encode));
6100 }
6101 
6102 void Assembler::vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6103   assert(UseAVX > 0, "requires some form of AVX");
6104   InstructionMark im(this);
6105   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6106   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6107   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6108   emit_int8((unsigned char)0xDB);
6109   emit_operand(dst, src);
6110 }
6111 
6112 void Assembler::vpandq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6113   assert(VM_Version::supports_evex(), "");
6114   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6115   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6116   emit_int16((unsigned char)0xDB, (0xC0 | encode));
6117 }
6118 
6119 void Assembler::vpshldvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6120   assert(VM_Version::supports_avx512_vbmi2(), "requires vbmi2");
6121   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6122   attributes.set_is_evex_instruction();
6123   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6124   emit_int8(0x71);
6125   emit_int8((0xC0 | encode));
6126 }
6127 
6128 void Assembler::vpshrdvd(XMMRegister dst, XMMRegister src, XMMRegister shift, int vector_len) {
6129   assert(VM_Version::supports_avx512_vbmi2(), "requires vbmi2");
6130   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6131   attributes.set_is_evex_instruction();
6132   int encode = vex_prefix_and_encode(dst->encoding(), src->encoding(), shift->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6133   emit_int16(0x73, (0xC0 | encode));
6134 }
6135 
6136 void Assembler::pandn(XMMRegister dst, XMMRegister src) {
6137   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6138   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6139   attributes.set_rex_vex_w_reverted();
6140   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6141   emit_int16((unsigned char)0xDF, (0xC0 | encode));
6142 }
6143 
6144 void Assembler::vpandn(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6145   assert(UseAVX > 0, "requires some form of AVX");
6146   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6147   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6148   emit_int16((unsigned char)0xDF, (0xC0 | encode));
6149 }
6150 
6151 
6152 void Assembler::por(XMMRegister dst, XMMRegister src) {
6153   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6154   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6155   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6156   emit_int16((unsigned char)0xEB, (0xC0 | encode));
6157 }
6158 
6159 void Assembler::vpor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6160   assert(UseAVX > 0, "requires some form of AVX");
6161   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6162   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6163   emit_int16((unsigned char)0xEB, (0xC0 | encode));
6164 }
6165 
6166 void Assembler::vpor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6167   assert(UseAVX > 0, "requires some form of AVX");
6168   InstructionMark im(this);
6169   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6170   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6171   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6172   emit_int8((unsigned char)0xEB);
6173   emit_operand(dst, src);
6174 }
6175 
6176 void Assembler::vporq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6177   assert(VM_Version::supports_evex(), "");
6178   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6179   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6180   emit_int16((unsigned char)0xEB, (0xC0 | encode));
6181 }
6182 
6183 
6184 void Assembler::pxor(XMMRegister dst, XMMRegister src) {
6185   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
6186   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6187   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6188   emit_int16((unsigned char)0xEF, (0xC0 | encode));
6189 }
6190 
6191 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6192   assert(UseAVX > 0, "requires some form of AVX");
6193   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6194   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6195   emit_int16((unsigned char)0xEF, (0xC0 | encode));
6196 }
6197 
6198 void Assembler::vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6199   assert(UseAVX > 0, "requires some form of AVX");
6200   InstructionMark im(this);
6201   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6202   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_32bit);
6203   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6204   emit_int8((unsigned char)0xEF);
6205   emit_operand(dst, src);
6206 }
6207 
6208 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
6209   assert(VM_Version::supports_evex(), "requires EVEX support");
6210   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6211   attributes.set_is_evex_instruction();
6212   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6213   emit_int8((unsigned char)0xEF);
6214   emit_int8((0xC0 | encode));
6215 }
6216 
6217 void Assembler::evpxorq(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
6218   assert(VM_Version::supports_evex(), "requires EVEX support");
6219   assert(dst != xnoreg, "sanity");
6220   InstructionMark im(this);
6221   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6222   attributes.set_is_evex_instruction();
6223   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6224   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
6225   emit_int8((unsigned char)0xEF);
6226   emit_operand(dst, src);
6227 }
6228 
6229 void Assembler::vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len) {
6230   assert(VM_Version::supports_evex(), "requires EVEX support");
6231   assert(vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl(), "requires VL support");
6232   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6233   attributes.set_is_evex_instruction();
6234   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src3->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6235   emit_int8(0x25);
6236   emit_int8((unsigned char)(0xC0 | encode));
6237   emit_int8(imm8);
6238 }
6239 
6240 void Assembler::vpternlogd(XMMRegister dst, int imm8, XMMRegister src2, Address src3, int vector_len) {
6241   assert(VM_Version::supports_evex(), "requires EVEX support");
6242   assert(vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl(), "requires VL support");
6243   assert(dst != xnoreg, "sanity");
6244   InstructionMark im(this);
6245   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6246   attributes.set_is_evex_instruction();
6247   attributes.set_address_attributes(/* tuple_type */ EVEX_FV, /* input_size_in_bits */ EVEX_64bit);
6248   vex_prefix(src3, src2->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6249   emit_int8(0x25);
6250   emit_operand(dst, src3);
6251   emit_int8(imm8);
6252 }
6253 
6254 void Assembler::vpternlogq(XMMRegister dst, int imm8, XMMRegister src2, XMMRegister src3, int vector_len) {
6255   assert(VM_Version::supports_evex(), "requires EVEX support");
6256   assert(vector_len == Assembler::AVX_512bit || VM_Version::supports_avx512vl(), "requires VL support");
6257   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6258   attributes.set_is_evex_instruction();
6259   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src3->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6260   emit_int8(0x25);
6261   emit_int8((unsigned char)(0xC0 | encode));
6262   emit_int8(imm8);
6263 }
6264 
6265 // vinserti forms
6266 
6267 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6268   assert(VM_Version::supports_avx2(), "");
6269   assert(imm8 <= 0x01, "imm8: %u", imm8);
6270   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6271   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6272   // last byte:
6273   // 0x00 - insert into lower 128 bits
6274   // 0x01 - insert into upper 128 bits
6275   emit_int24(0x38, (0xC0 | encode), imm8 & 0x01);
6276 }
6277 
6278 void Assembler::vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6279   assert(VM_Version::supports_avx2(), "");
6280   assert(dst != xnoreg, "sanity");
6281   assert(imm8 <= 0x01, "imm8: %u", imm8);
6282   InstructionMark im(this);
6283   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6284   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6285   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6286   emit_int8(0x38);
6287   emit_operand(dst, src);
6288   // 0x00 - insert into lower 128 bits
6289   // 0x01 - insert into upper 128 bits
6290   emit_int8(imm8 & 0x01);
6291 }
6292 
6293 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6294   assert(VM_Version::supports_evex(), "");
6295   assert(imm8 <= 0x03, "imm8: %u", imm8);
6296   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6297   attributes.set_is_evex_instruction();
6298   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6299   // imm8:
6300   // 0x00 - insert into q0 128 bits (0..127)
6301   // 0x01 - insert into q1 128 bits (128..255)
6302   // 0x02 - insert into q2 128 bits (256..383)
6303   // 0x03 - insert into q3 128 bits (384..511)
6304   emit_int24(0x38, (0xC0 | encode), imm8 & 0x03);
6305 }
6306 
6307 void Assembler::vinserti32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6308   assert(VM_Version::supports_avx(), "");
6309   assert(dst != xnoreg, "sanity");
6310   assert(imm8 <= 0x03, "imm8: %u", imm8);
6311   InstructionMark im(this);
6312   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6313   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6314   attributes.set_is_evex_instruction();
6315   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6316   emit_int8(0x18);
6317   emit_operand(dst, src);
6318   // 0x00 - insert into q0 128 bits (0..127)
6319   // 0x01 - insert into q1 128 bits (128..255)
6320   // 0x02 - insert into q2 128 bits (256..383)
6321   // 0x03 - insert into q3 128 bits (384..511)
6322   emit_int8(imm8 & 0x03);
6323 }
6324 
6325 void Assembler::vinserti64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6326   assert(VM_Version::supports_evex(), "");
6327   assert(imm8 <= 0x01, "imm8: %u", imm8);
6328   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6329   attributes.set_is_evex_instruction();
6330   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6331   //imm8:
6332   // 0x00 - insert into lower 256 bits
6333   // 0x01 - insert into upper 256 bits
6334   emit_int24(0x3A, (0xC0 | encode), imm8 & 0x01);
6335 }
6336 
6337 
6338 // vinsertf forms
6339 
6340 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6341   assert(VM_Version::supports_avx(), "");
6342   assert(imm8 <= 0x01, "imm8: %u", imm8);
6343   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6344   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6345   // imm8:
6346   // 0x00 - insert into lower 128 bits
6347   // 0x01 - insert into upper 128 bits
6348   emit_int24(0x18, (0xC0 | encode), imm8 & 0x01);
6349 }
6350 
6351 void Assembler::vinsertf128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6352   assert(VM_Version::supports_avx(), "");
6353   assert(dst != xnoreg, "sanity");
6354   assert(imm8 <= 0x01, "imm8: %u", imm8);
6355   InstructionMark im(this);
6356   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6357   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6358   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6359   emit_int8(0x18);
6360   emit_operand(dst, src);
6361   // 0x00 - insert into lower 128 bits
6362   // 0x01 - insert into upper 128 bits
6363   emit_int8(imm8 & 0x01);
6364 }
6365 
6366 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6367   assert(VM_Version::supports_avx2(), "");
6368   assert(imm8 <= 0x03, "imm8: %u", imm8);
6369   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6370   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6371   // imm8:
6372   // 0x00 - insert into q0 128 bits (0..127)
6373   // 0x01 - insert into q1 128 bits (128..255)
6374   // 0x02 - insert into q0 128 bits (256..383)
6375   // 0x03 - insert into q1 128 bits (384..512)
6376   emit_int24(0x18, (0xC0 | encode), imm8 & 0x03);
6377 }
6378 
6379 void Assembler::vinsertf32x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6380   assert(VM_Version::supports_avx(), "");
6381   assert(dst != xnoreg, "sanity");
6382   assert(imm8 <= 0x03, "imm8: %u", imm8);
6383   InstructionMark im(this);
6384   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6385   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6386   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6387   emit_int8(0x18);
6388   emit_operand(dst, src);
6389   // 0x00 - insert into q0 128 bits (0..127)
6390   // 0x01 - insert into q1 128 bits (128..255)
6391   // 0x02 - insert into q0 128 bits (256..383)
6392   // 0x03 - insert into q1 128 bits (384..512)
6393   emit_int8(imm8 & 0x03);
6394 }
6395 
6396 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
6397   assert(VM_Version::supports_evex(), "");
6398   assert(imm8 <= 0x01, "imm8: %u", imm8);
6399   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6400   attributes.set_is_evex_instruction();
6401   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6402   // imm8:
6403   // 0x00 - insert into lower 256 bits
6404   // 0x01 - insert into upper 256 bits
6405   emit_int24(0x1A, (0xC0 | encode), imm8 & 0x01);
6406 }
6407 
6408 void Assembler::vinsertf64x4(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
6409   assert(VM_Version::supports_evex(), "");
6410   assert(dst != xnoreg, "sanity");
6411   assert(imm8 <= 0x01, "imm8: %u", imm8);
6412   InstructionMark im(this);
6413   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6414   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6415   attributes.set_is_evex_instruction();
6416   vex_prefix(src, nds->encoding(), dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6417   emit_int8(0x1A);
6418   emit_operand(dst, src);
6419   // 0x00 - insert into lower 256 bits
6420   // 0x01 - insert into upper 256 bits
6421   emit_int8(imm8 & 0x01);
6422 }
6423 
6424 
6425 // vextracti forms
6426 
6427 void Assembler::vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6428   assert(VM_Version::supports_avx2(), "");
6429   assert(imm8 <= 0x01, "imm8: %u", imm8);
6430   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6431   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6432   // imm8:
6433   // 0x00 - extract from lower 128 bits
6434   // 0x01 - extract from upper 128 bits
6435   emit_int24(0x39, (0xC0 | encode), imm8 & 0x01);
6436 }
6437 
6438 void Assembler::vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
6439   assert(VM_Version::supports_avx2(), "");
6440   assert(src != xnoreg, "sanity");
6441   assert(imm8 <= 0x01, "imm8: %u", imm8);
6442   InstructionMark im(this);
6443   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6444   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6445   attributes.reset_is_clear_context();
6446   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6447   emit_int8(0x39);
6448   emit_operand(src, dst);
6449   // 0x00 - extract from lower 128 bits
6450   // 0x01 - extract from upper 128 bits
6451   emit_int8(imm8 & 0x01);
6452 }
6453 
6454 void Assembler::vextracti32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6455   assert(VM_Version::supports_evex(), "");
6456   assert(imm8 <= 0x03, "imm8: %u", imm8);
6457   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6458   attributes.set_is_evex_instruction();
6459   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6460   // imm8:
6461   // 0x00 - extract from bits 127:0
6462   // 0x01 - extract from bits 255:128
6463   // 0x02 - extract from bits 383:256
6464   // 0x03 - extract from bits 511:384
6465   emit_int24(0x39, (0xC0 | encode), imm8 & 0x03);
6466 }
6467 
6468 void Assembler::vextracti32x4(Address dst, XMMRegister src, uint8_t imm8) {
6469   assert(VM_Version::supports_evex(), "");
6470   assert(src != xnoreg, "sanity");
6471   assert(imm8 <= 0x03, "imm8: %u", imm8);
6472   InstructionMark im(this);
6473   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6474   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6475   attributes.reset_is_clear_context();
6476   attributes.set_is_evex_instruction();
6477   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6478   emit_int8(0x39);
6479   emit_operand(src, dst);
6480   // 0x00 - extract from bits 127:0
6481   // 0x01 - extract from bits 255:128
6482   // 0x02 - extract from bits 383:256
6483   // 0x03 - extract from bits 511:384
6484   emit_int8(imm8 & 0x03);
6485 }
6486 
6487 void Assembler::vextracti64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6488   assert(VM_Version::supports_avx512dq(), "");
6489   assert(imm8 <= 0x03, "imm8: %u", imm8);
6490   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6491   attributes.set_is_evex_instruction();
6492   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6493   // imm8:
6494   // 0x00 - extract from bits 127:0
6495   // 0x01 - extract from bits 255:128
6496   // 0x02 - extract from bits 383:256
6497   // 0x03 - extract from bits 511:384
6498   emit_int24(0x39, (0xC0 | encode), imm8 & 0x03);
6499 }
6500 
6501 void Assembler::vextracti64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6502   assert(VM_Version::supports_evex(), "");
6503   assert(imm8 <= 0x01, "imm8: %u", imm8);
6504   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6505   attributes.set_is_evex_instruction();
6506   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6507   // imm8:
6508   // 0x00 - extract from lower 256 bits
6509   // 0x01 - extract from upper 256 bits
6510   emit_int24(0x3B, (0xC0 | encode), imm8 & 0x01);
6511 }
6512 
6513 void Assembler::vextracti64x4(Address dst, XMMRegister src, uint8_t imm8) {
6514   assert(VM_Version::supports_evex(), "");
6515   assert(src != xnoreg, "sanity");
6516   assert(imm8 <= 0x01, "imm8: %u", imm8);
6517   InstructionMark im(this);
6518   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6519   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_64bit);
6520   attributes.reset_is_clear_context();
6521   attributes.set_is_evex_instruction();
6522   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6523   emit_int8(0x38);
6524   emit_operand(src, dst);
6525   // 0x00 - extract from lower 256 bits
6526   // 0x01 - extract from upper 256 bits
6527   emit_int8(imm8 & 0x01);
6528 }
6529 // vextractf forms
6530 
6531 void Assembler::vextractf128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6532   assert(VM_Version::supports_avx(), "");
6533   assert(imm8 <= 0x01, "imm8: %u", imm8);
6534   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6535   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6536   // imm8:
6537   // 0x00 - extract from lower 128 bits
6538   // 0x01 - extract from upper 128 bits
6539   emit_int24(0x19, (0xC0 | encode), imm8 & 0x01);
6540 }
6541 
6542 void Assembler::vextractf128(Address dst, XMMRegister src, uint8_t imm8) {
6543   assert(VM_Version::supports_avx(), "");
6544   assert(src != xnoreg, "sanity");
6545   assert(imm8 <= 0x01, "imm8: %u", imm8);
6546   InstructionMark im(this);
6547   InstructionAttr attributes(AVX_256bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6548   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6549   attributes.reset_is_clear_context();
6550   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6551   emit_int8(0x19);
6552   emit_operand(src, dst);
6553   // 0x00 - extract from lower 128 bits
6554   // 0x01 - extract from upper 128 bits
6555   emit_int8(imm8 & 0x01);
6556 }
6557 
6558 void Assembler::vextractf32x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6559   assert(VM_Version::supports_evex(), "");
6560   assert(imm8 <= 0x03, "imm8: %u", imm8);
6561   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6562   attributes.set_is_evex_instruction();
6563   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6564   // imm8:
6565   // 0x00 - extract from bits 127:0
6566   // 0x01 - extract from bits 255:128
6567   // 0x02 - extract from bits 383:256
6568   // 0x03 - extract from bits 511:384
6569   emit_int24(0x19, (0xC0 | encode), imm8 & 0x03);
6570 }
6571 
6572 void Assembler::vextractf32x4(Address dst, XMMRegister src, uint8_t imm8) {
6573   assert(VM_Version::supports_evex(), "");
6574   assert(src != xnoreg, "sanity");
6575   assert(imm8 <= 0x03, "imm8: %u", imm8);
6576   InstructionMark im(this);
6577   InstructionAttr attributes(AVX_512bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6578   attributes.set_address_attributes(/* tuple_type */ EVEX_T4, /* input_size_in_bits */ EVEX_32bit);
6579   attributes.reset_is_clear_context();
6580   attributes.set_is_evex_instruction();
6581   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6582   emit_int8(0x19);
6583   emit_operand(src, dst);
6584   // 0x00 - extract from bits 127:0
6585   // 0x01 - extract from bits 255:128
6586   // 0x02 - extract from bits 383:256
6587   // 0x03 - extract from bits 511:384
6588   emit_int8(imm8 & 0x03);
6589 }
6590 
6591 void Assembler::vextractf64x2(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6592   assert(VM_Version::supports_avx512dq(), "");
6593   assert(imm8 <= 0x03, "imm8: %u", imm8);
6594   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6595   attributes.set_is_evex_instruction();
6596   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6597   // imm8:
6598   // 0x00 - extract from bits 127:0
6599   // 0x01 - extract from bits 255:128
6600   // 0x02 - extract from bits 383:256
6601   // 0x03 - extract from bits 511:384
6602   emit_int24(0x19, (0xC0 | encode), imm8 & 0x03);
6603 }
6604 
6605 void Assembler::vextractf64x4(XMMRegister dst, XMMRegister src, uint8_t imm8) {
6606   assert(VM_Version::supports_evex(), "");
6607   assert(imm8 <= 0x01, "imm8: %u", imm8);
6608   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6609   attributes.set_is_evex_instruction();
6610   int encode = vex_prefix_and_encode(src->encoding(), 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6611   // imm8:
6612   // 0x00 - extract from lower 256 bits
6613   // 0x01 - extract from upper 256 bits
6614   emit_int24(0x1B, (0xC0 | encode), imm8 & 0x01);
6615 }
6616 
6617 void Assembler::vextractf64x4(Address dst, XMMRegister src, uint8_t imm8) {
6618   assert(VM_Version::supports_evex(), "");
6619   assert(src != xnoreg, "sanity");
6620   assert(imm8 <= 0x01, "imm8: %u", imm8);
6621   InstructionMark im(this);
6622   InstructionAttr attributes(AVX_512bit, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6623   attributes.set_address_attributes(/* tuple_type */ EVEX_T4,/* input_size_in_bits */  EVEX_64bit);
6624   attributes.reset_is_clear_context();
6625   attributes.set_is_evex_instruction();
6626   vex_prefix(dst, 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6627   emit_int8(0x1B);
6628   emit_operand(src, dst);
6629   // 0x00 - extract from lower 256 bits
6630   // 0x01 - extract from upper 256 bits
6631   emit_int8(imm8 & 0x01);
6632 }
6633 
6634 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6635 void Assembler::vpbroadcastb(XMMRegister dst, XMMRegister src, int vector_len) {
6636   assert(VM_Version::supports_avx2(), "");
6637   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6638   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6639   emit_int16(0x78, (0xC0 | encode));
6640 }
6641 
6642 void Assembler::vpbroadcastb(XMMRegister dst, Address src, int vector_len) {
6643   assert(VM_Version::supports_avx2(), "");
6644   assert(dst != xnoreg, "sanity");
6645   InstructionMark im(this);
6646   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6647   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_8bit);
6648   // swap src<->dst for encoding
6649   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6650   emit_int8(0x78);
6651   emit_operand(dst, src);
6652 }
6653 
6654 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6655 void Assembler::vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len) {
6656   assert(VM_Version::supports_avx2(), "");
6657   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6658   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6659   emit_int16(0x79, (0xC0 | encode));
6660 }
6661 
6662 void Assembler::vpbroadcastw(XMMRegister dst, Address src, int vector_len) {
6663   assert(VM_Version::supports_avx2(), "");
6664   assert(dst != xnoreg, "sanity");
6665   InstructionMark im(this);
6666   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6667   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_16bit);
6668   // swap src<->dst for encoding
6669   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6670   emit_int8(0x79);
6671   emit_operand(dst, src);
6672 }
6673 
6674 // xmm/mem sourced byte/word/dword/qword replicate
6675 
6676 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6677 void Assembler::vpbroadcastd(XMMRegister dst, XMMRegister src, int vector_len) {
6678   assert(UseAVX >= 2, "");
6679   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6680   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6681   emit_int16(0x58, (0xC0 | encode));
6682 }
6683 
6684 void Assembler::vpbroadcastd(XMMRegister dst, Address src, int vector_len) {
6685   assert(VM_Version::supports_avx2(), "");
6686   assert(dst != xnoreg, "sanity");
6687   InstructionMark im(this);
6688   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6689   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6690   // swap src<->dst for encoding
6691   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6692   emit_int8(0x58);
6693   emit_operand(dst, src);
6694 }
6695 
6696 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6697 void Assembler::vpbroadcastq(XMMRegister dst, XMMRegister src, int vector_len) {
6698   assert(VM_Version::supports_avx2(), "");
6699   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6700   attributes.set_rex_vex_w_reverted();
6701   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6702   emit_int16(0x59, (0xC0 | encode));
6703 }
6704 
6705 void Assembler::vpbroadcastq(XMMRegister dst, Address src, int vector_len) {
6706   assert(VM_Version::supports_avx2(), "");
6707   assert(dst != xnoreg, "sanity");
6708   InstructionMark im(this);
6709   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6710   attributes.set_rex_vex_w_reverted();
6711   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6712   // swap src<->dst for encoding
6713   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6714   emit_int8(0x59);
6715   emit_operand(dst, src);
6716 }
6717 
6718 void Assembler::evbroadcasti32x4(XMMRegister dst, Address src, int vector_len) {
6719   assert(vector_len != Assembler::AVX_128bit, "");
6720   assert(VM_Version::supports_avx512dq(), "");
6721   assert(dst != xnoreg, "sanity");
6722   InstructionMark im(this);
6723   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6724   attributes.set_rex_vex_w_reverted();
6725   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6726   // swap src<->dst for encoding
6727   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6728   emit_int8(0x5A);
6729   emit_operand(dst, src);
6730 }
6731 
6732 void Assembler::evbroadcasti64x2(XMMRegister dst, XMMRegister src, int vector_len) {
6733   assert(vector_len != Assembler::AVX_128bit, "");
6734   assert(VM_Version::supports_avx512dq(), "");
6735   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6736   attributes.set_rex_vex_w_reverted();
6737   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6738   emit_int16(0x5A, (0xC0 | encode));
6739 }
6740 
6741 void Assembler::evbroadcasti64x2(XMMRegister dst, Address src, int vector_len) {
6742   assert(vector_len != Assembler::AVX_128bit, "");
6743   assert(VM_Version::supports_avx512dq(), "");
6744   assert(dst != xnoreg, "sanity");
6745   InstructionMark im(this);
6746   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6747   attributes.set_rex_vex_w_reverted();
6748   attributes.set_address_attributes(/* tuple_type */ EVEX_T2, /* input_size_in_bits */ EVEX_64bit);
6749   // swap src<->dst for encoding
6750   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6751   emit_int8(0x5A);
6752   emit_operand(dst, src);
6753 }
6754 
6755 // scalar single/double precision replicate
6756 
6757 // duplicate single precision data from src into programmed locations in dest : requires AVX512VL
6758 void Assembler::vbroadcastss(XMMRegister dst, XMMRegister src, int vector_len) {
6759   assert(VM_Version::supports_avx2(), "");
6760   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6761   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6762   emit_int16(0x18, (0xC0 | encode));
6763 }
6764 
6765 void Assembler::vbroadcastss(XMMRegister dst, Address src, int vector_len) {
6766   assert(VM_Version::supports_avx(), "");
6767   assert(dst != xnoreg, "sanity");
6768   InstructionMark im(this);
6769   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6770   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_32bit);
6771   // swap src<->dst for encoding
6772   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6773   emit_int8(0x18);
6774   emit_operand(dst, src);
6775 }
6776 
6777 // duplicate double precision data from src into programmed locations in dest : requires AVX512VL
6778 void Assembler::vbroadcastsd(XMMRegister dst, XMMRegister src, int vector_len) {
6779   assert(VM_Version::supports_avx2(), "");
6780   assert(vector_len == AVX_256bit || vector_len == AVX_512bit, "");
6781   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6782   attributes.set_rex_vex_w_reverted();
6783   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6784   emit_int16(0x19, (0xC0 | encode));
6785 }
6786 
6787 void Assembler::vbroadcastsd(XMMRegister dst, Address src, int vector_len) {
6788   assert(VM_Version::supports_avx(), "");
6789   assert(vector_len == AVX_256bit || vector_len == AVX_512bit, "");
6790   assert(dst != xnoreg, "sanity");
6791   InstructionMark im(this);
6792   InstructionAttr attributes(vector_len, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6793   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6794   attributes.set_rex_vex_w_reverted();
6795   // swap src<->dst for encoding
6796   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6797   emit_int8(0x19);
6798   emit_operand(dst, src);
6799 }
6800 
6801 
6802 // gpr source broadcast forms
6803 
6804 // duplicate 1-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6805 void Assembler::evpbroadcastb(XMMRegister dst, Register src, int vector_len) {
6806   assert(VM_Version::supports_avx512bw(), "");
6807   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6808   attributes.set_is_evex_instruction();
6809   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6810   emit_int16(0x7A, (0xC0 | encode));
6811 }
6812 
6813 // duplicate 2-byte integer data from src into programmed locations in dest : requires AVX512BW and AVX512VL
6814 void Assembler::evpbroadcastw(XMMRegister dst, Register src, int vector_len) {
6815   assert(VM_Version::supports_avx512bw(), "");
6816   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ _legacy_mode_bw, /* no_mask_reg */ true, /* uses_vl */ true);
6817   attributes.set_is_evex_instruction();
6818   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6819   emit_int16(0x7B, (0xC0 | encode));
6820 }
6821 
6822 // duplicate 4-byte integer data from src into programmed locations in dest : requires AVX512VL
6823 void Assembler::evpbroadcastd(XMMRegister dst, Register src, int vector_len) {
6824   assert(VM_Version::supports_evex(), "");
6825   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6826   attributes.set_is_evex_instruction();
6827   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6828   emit_int16(0x7C, (0xC0 | encode));
6829 }
6830 
6831 // duplicate 8-byte integer data from src into programmed locations in dest : requires AVX512VL
6832 void Assembler::evpbroadcastq(XMMRegister dst, Register src, int vector_len) {
6833   assert(VM_Version::supports_evex(), "");
6834   InstructionAttr attributes(vector_len, /* vex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6835   attributes.set_is_evex_instruction();
6836   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6837   emit_int16(0x7C, (0xC0 | encode));
6838 }
6839 void Assembler::evpgatherdd(XMMRegister dst, KRegister mask, Address src, int vector_len) {
6840   assert(VM_Version::supports_evex(), "");
6841   assert(dst != xnoreg, "sanity");
6842   InstructionMark im(this);
6843   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ false, /* uses_vl */ true);
6844   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
6845   attributes.reset_is_clear_context();
6846   attributes.set_embedded_opmask_register_specifier(mask);
6847   attributes.set_is_evex_instruction();
6848   // swap src<->dst for encoding
6849   vex_prefix(src, 0, dst->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
6850   emit_int8((unsigned char)0x90);
6851   emit_operand(dst, src);
6852 }
6853 // Carry-Less Multiplication Quadword
6854 void Assembler::pclmulqdq(XMMRegister dst, XMMRegister src, int mask) {
6855   assert(VM_Version::supports_clmul(), "");
6856   InstructionAttr attributes(AVX_128bit, /* rex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6857   int encode = simd_prefix_and_encode(dst, dst, src, VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6858   emit_int24(0x44, (0xC0 | encode), (unsigned char)mask);
6859 }
6860 
6861 // Carry-Less Multiplication Quadword
6862 void Assembler::vpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask) {
6863   assert(VM_Version::supports_avx() && VM_Version::supports_clmul(), "");
6864   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
6865   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6866   emit_int24(0x44, (0xC0 | encode), (unsigned char)mask);
6867 }
6868 
6869 void Assembler::evpclmulqdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int mask, int vector_len) {
6870   assert(VM_Version::supports_avx512_vpclmulqdq(), "Requires vector carryless multiplication support");
6871   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ true);
6872   attributes.set_is_evex_instruction();
6873   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
6874   emit_int24(0x44, (0xC0 | encode), (unsigned char)mask);
6875 }
6876 
6877 void Assembler::vzeroupper_uncached() {
6878   if (VM_Version::supports_vzeroupper()) {
6879     InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
6880     (void)vex_prefix_and_encode(0, 0, 0, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
6881     emit_int8(0x77);
6882   }
6883 }
6884 
6885 #ifndef _LP64
6886 // 32bit only pieces of the assembler
6887 
6888 void Assembler::emms() {
6889   NOT_LP64(assert(VM_Version::supports_mmx(), ""));
6890   emit_int16(0x0F, 0x77);
6891 }
6892 
6893 void Assembler::vzeroupper() {
6894   vzeroupper_uncached();
6895 }
6896 
6897 void Assembler::cmp_literal32(Register src1, int32_t imm32, RelocationHolder const& rspec) {
6898   // NO PREFIX AS NEVER 64BIT
6899   InstructionMark im(this);
6900   emit_int16((unsigned char)0x81, (0xF8 | src1->encoding()));
6901   emit_data(imm32, rspec, 0);
6902 }
6903 
6904 void Assembler::cmp_literal32(Address src1, int32_t imm32, RelocationHolder const& rspec) {
6905   // NO PREFIX AS NEVER 64BIT (not even 32bit versions of 64bit regs
6906   InstructionMark im(this);
6907   emit_int8((unsigned char)0x81);
6908   emit_operand(rdi, src1);
6909   emit_data(imm32, rspec, 0);
6910 }
6911 
6912 // The 64-bit (32bit platform) cmpxchg compares the value at adr with the contents of rdx:rax,
6913 // and stores rcx:rbx into adr if so; otherwise, the value at adr is loaded
6914 // into rdx:rax.  The ZF is set if the compared values were equal, and cleared otherwise.
6915 void Assembler::cmpxchg8(Address adr) {
6916   InstructionMark im(this);
6917   emit_int16(0x0F, (unsigned char)0xC7);
6918   emit_operand(rcx, adr);
6919 }
6920 
6921 void Assembler::decl(Register dst) {
6922   // Don't use it directly. Use MacroAssembler::decrementl() instead.
6923  emit_int8(0x48 | dst->encoding());
6924 }
6925 
6926 // 64bit doesn't use the x87
6927 
6928 void Assembler::emit_operand32(Register reg, Address adr) {
6929   assert(reg->encoding() < 8, "no extended registers");
6930   assert(!adr.base_needs_rex() && !adr.index_needs_rex(), "no extended registers");
6931   emit_operand(reg, adr._base, adr._index, adr._scale, adr._disp,
6932                adr._rspec);
6933 }
6934 
6935 void Assembler::emit_farith(int b1, int b2, int i) {
6936   assert(isByte(b1) && isByte(b2), "wrong opcode");
6937   assert(0 <= i &&  i < 8, "illegal stack offset");
6938   emit_int16(b1, b2 + i);
6939 }
6940 
6941 void Assembler::fabs() {
6942   emit_int16((unsigned char)0xD9, (unsigned char)0xE1);
6943 }
6944 
6945 void Assembler::fadd(int i) {
6946   emit_farith(0xD8, 0xC0, i);
6947 }
6948 
6949 void Assembler::fadd_d(Address src) {
6950   InstructionMark im(this);
6951   emit_int8((unsigned char)0xDC);
6952   emit_operand32(rax, src);
6953 }
6954 
6955 void Assembler::fadd_s(Address src) {
6956   InstructionMark im(this);
6957   emit_int8((unsigned char)0xD8);
6958   emit_operand32(rax, src);
6959 }
6960 
6961 void Assembler::fadda(int i) {
6962   emit_farith(0xDC, 0xC0, i);
6963 }
6964 
6965 void Assembler::faddp(int i) {
6966   emit_farith(0xDE, 0xC0, i);
6967 }
6968 
6969 void Assembler::fchs() {
6970   emit_int16((unsigned char)0xD9, (unsigned char)0xE0);
6971 }
6972 
6973 void Assembler::fcom(int i) {
6974   emit_farith(0xD8, 0xD0, i);
6975 }
6976 
6977 void Assembler::fcomp(int i) {
6978   emit_farith(0xD8, 0xD8, i);
6979 }
6980 
6981 void Assembler::fcomp_d(Address src) {
6982   InstructionMark im(this);
6983   emit_int8((unsigned char)0xDC);
6984   emit_operand32(rbx, src);
6985 }
6986 
6987 void Assembler::fcomp_s(Address src) {
6988   InstructionMark im(this);
6989   emit_int8((unsigned char)0xD8);
6990   emit_operand32(rbx, src);
6991 }
6992 
6993 void Assembler::fcompp() {
6994   emit_int16((unsigned char)0xDE, (unsigned char)0xD9);
6995 }
6996 
6997 void Assembler::fcos() {
6998   emit_int16((unsigned char)0xD9, (unsigned char)0xFF);
6999 }
7000 
7001 void Assembler::fdecstp() {
7002   emit_int16((unsigned char)0xD9, (unsigned char)0xF6);
7003 }
7004 
7005 void Assembler::fdiv(int i) {
7006   emit_farith(0xD8, 0xF0, i);
7007 }
7008 
7009 void Assembler::fdiv_d(Address src) {
7010   InstructionMark im(this);
7011   emit_int8((unsigned char)0xDC);
7012   emit_operand32(rsi, src);
7013 }
7014 
7015 void Assembler::fdiv_s(Address src) {
7016   InstructionMark im(this);
7017   emit_int8((unsigned char)0xD8);
7018   emit_operand32(rsi, src);
7019 }
7020 
7021 void Assembler::fdiva(int i) {
7022   emit_farith(0xDC, 0xF8, i);
7023 }
7024 
7025 // Note: The Intel manual (Pentium Processor User's Manual, Vol.3, 1994)
7026 //       is erroneous for some of the floating-point instructions below.
7027 
7028 void Assembler::fdivp(int i) {
7029   emit_farith(0xDE, 0xF8, i);                    // ST(0) <- ST(0) / ST(1) and pop (Intel manual wrong)
7030 }
7031 
7032 void Assembler::fdivr(int i) {
7033   emit_farith(0xD8, 0xF8, i);
7034 }
7035 
7036 void Assembler::fdivr_d(Address src) {
7037   InstructionMark im(this);
7038   emit_int8((unsigned char)0xDC);
7039   emit_operand32(rdi, src);
7040 }
7041 
7042 void Assembler::fdivr_s(Address src) {
7043   InstructionMark im(this);
7044   emit_int8((unsigned char)0xD8);
7045   emit_operand32(rdi, src);
7046 }
7047 
7048 void Assembler::fdivra(int i) {
7049   emit_farith(0xDC, 0xF0, i);
7050 }
7051 
7052 void Assembler::fdivrp(int i) {
7053   emit_farith(0xDE, 0xF0, i);                    // ST(0) <- ST(1) / ST(0) and pop (Intel manual wrong)
7054 }
7055 
7056 void Assembler::ffree(int i) {
7057   emit_farith(0xDD, 0xC0, i);
7058 }
7059 
7060 void Assembler::fild_d(Address adr) {
7061   InstructionMark im(this);
7062   emit_int8((unsigned char)0xDF);
7063   emit_operand32(rbp, adr);
7064 }
7065 
7066 void Assembler::fild_s(Address adr) {
7067   InstructionMark im(this);
7068   emit_int8((unsigned char)0xDB);
7069   emit_operand32(rax, adr);
7070 }
7071 
7072 void Assembler::fincstp() {
7073   emit_int16((unsigned char)0xD9, (unsigned char)0xF7);
7074 }
7075 
7076 void Assembler::finit() {
7077   emit_int24((unsigned char)0x9B, (unsigned char)0xDB, (unsigned char)0xE3);
7078 }
7079 
7080 void Assembler::fist_s(Address adr) {
7081   InstructionMark im(this);
7082   emit_int8((unsigned char)0xDB);
7083   emit_operand32(rdx, adr);
7084 }
7085 
7086 void Assembler::fistp_d(Address adr) {
7087   InstructionMark im(this);
7088   emit_int8((unsigned char)0xDF);
7089   emit_operand32(rdi, adr);
7090 }
7091 
7092 void Assembler::fistp_s(Address adr) {
7093   InstructionMark im(this);
7094   emit_int8((unsigned char)0xDB);
7095   emit_operand32(rbx, adr);
7096 }
7097 
7098 void Assembler::fld1() {
7099   emit_int16((unsigned char)0xD9, (unsigned char)0xE8);
7100 }
7101 
7102 void Assembler::fld_d(Address adr) {
7103   InstructionMark im(this);
7104   emit_int8((unsigned char)0xDD);
7105   emit_operand32(rax, adr);
7106 }
7107 
7108 void Assembler::fld_s(Address adr) {
7109   InstructionMark im(this);
7110   emit_int8((unsigned char)0xD9);
7111   emit_operand32(rax, adr);
7112 }
7113 
7114 
7115 void Assembler::fld_s(int index) {
7116   emit_farith(0xD9, 0xC0, index);
7117 }
7118 
7119 void Assembler::fld_x(Address adr) {
7120   InstructionMark im(this);
7121   emit_int8((unsigned char)0xDB);
7122   emit_operand32(rbp, adr);
7123 }
7124 
7125 void Assembler::fldcw(Address src) {
7126   InstructionMark im(this);
7127   emit_int8((unsigned char)0xD9);
7128   emit_operand32(rbp, src);
7129 }
7130 
7131 void Assembler::fldenv(Address src) {
7132   InstructionMark im(this);
7133   emit_int8((unsigned char)0xD9);
7134   emit_operand32(rsp, src);
7135 }
7136 
7137 void Assembler::fldlg2() {
7138   emit_int16((unsigned char)0xD9, (unsigned char)0xEC);
7139 }
7140 
7141 void Assembler::fldln2() {
7142   emit_int16((unsigned char)0xD9, (unsigned char)0xED);
7143 }
7144 
7145 void Assembler::fldz() {
7146   emit_int16((unsigned char)0xD9, (unsigned char)0xEE);
7147 }
7148 
7149 void Assembler::flog() {
7150   fldln2();
7151   fxch();
7152   fyl2x();
7153 }
7154 
7155 void Assembler::flog10() {
7156   fldlg2();
7157   fxch();
7158   fyl2x();
7159 }
7160 
7161 void Assembler::fmul(int i) {
7162   emit_farith(0xD8, 0xC8, i);
7163 }
7164 
7165 void Assembler::fmul_d(Address src) {
7166   InstructionMark im(this);
7167   emit_int8((unsigned char)0xDC);
7168   emit_operand32(rcx, src);
7169 }
7170 
7171 void Assembler::fmul_s(Address src) {
7172   InstructionMark im(this);
7173   emit_int8((unsigned char)0xD8);
7174   emit_operand32(rcx, src);
7175 }
7176 
7177 void Assembler::fmula(int i) {
7178   emit_farith(0xDC, 0xC8, i);
7179 }
7180 
7181 void Assembler::fmulp(int i) {
7182   emit_farith(0xDE, 0xC8, i);
7183 }
7184 
7185 void Assembler::fnsave(Address dst) {
7186   InstructionMark im(this);
7187   emit_int8((unsigned char)0xDD);
7188   emit_operand32(rsi, dst);
7189 }
7190 
7191 void Assembler::fnstcw(Address src) {
7192   InstructionMark im(this);
7193   emit_int16((unsigned char)0x9B, (unsigned char)0xD9);
7194   emit_operand32(rdi, src);
7195 }
7196 
7197 void Assembler::fnstsw_ax() {
7198   emit_int16((unsigned char)0xDF, (unsigned char)0xE0);
7199 }
7200 
7201 void Assembler::fprem() {
7202   emit_int16((unsigned char)0xD9, (unsigned char)0xF8);
7203 }
7204 
7205 void Assembler::fprem1() {
7206   emit_int16((unsigned char)0xD9, (unsigned char)0xF5);
7207 }
7208 
7209 void Assembler::frstor(Address src) {
7210   InstructionMark im(this);
7211   emit_int8((unsigned char)0xDD);
7212   emit_operand32(rsp, src);
7213 }
7214 
7215 void Assembler::fsin() {
7216   emit_int16((unsigned char)0xD9, (unsigned char)0xFE);
7217 }
7218 
7219 void Assembler::fsqrt() {
7220   emit_int16((unsigned char)0xD9, (unsigned char)0xFA);
7221 }
7222 
7223 void Assembler::fst_d(Address adr) {
7224   InstructionMark im(this);
7225   emit_int8((unsigned char)0xDD);
7226   emit_operand32(rdx, adr);
7227 }
7228 
7229 void Assembler::fst_s(Address adr) {
7230   InstructionMark im(this);
7231   emit_int8((unsigned char)0xD9);
7232   emit_operand32(rdx, adr);
7233 }
7234 
7235 void Assembler::fstp_d(Address adr) {
7236   InstructionMark im(this);
7237   emit_int8((unsigned char)0xDD);
7238   emit_operand32(rbx, adr);
7239 }
7240 
7241 void Assembler::fstp_d(int index) {
7242   emit_farith(0xDD, 0xD8, index);
7243 }
7244 
7245 void Assembler::fstp_s(Address adr) {
7246   InstructionMark im(this);
7247   emit_int8((unsigned char)0xD9);
7248   emit_operand32(rbx, adr);
7249 }
7250 
7251 void Assembler::fstp_x(Address adr) {
7252   InstructionMark im(this);
7253   emit_int8((unsigned char)0xDB);
7254   emit_operand32(rdi, adr);
7255 }
7256 
7257 void Assembler::fsub(int i) {
7258   emit_farith(0xD8, 0xE0, i);
7259 }
7260 
7261 void Assembler::fsub_d(Address src) {
7262   InstructionMark im(this);
7263   emit_int8((unsigned char)0xDC);
7264   emit_operand32(rsp, src);
7265 }
7266 
7267 void Assembler::fsub_s(Address src) {
7268   InstructionMark im(this);
7269   emit_int8((unsigned char)0xD8);
7270   emit_operand32(rsp, src);
7271 }
7272 
7273 void Assembler::fsuba(int i) {
7274   emit_farith(0xDC, 0xE8, i);
7275 }
7276 
7277 void Assembler::fsubp(int i) {
7278   emit_farith(0xDE, 0xE8, i);                    // ST(0) <- ST(0) - ST(1) and pop (Intel manual wrong)
7279 }
7280 
7281 void Assembler::fsubr(int i) {
7282   emit_farith(0xD8, 0xE8, i);
7283 }
7284 
7285 void Assembler::fsubr_d(Address src) {
7286   InstructionMark im(this);
7287   emit_int8((unsigned char)0xDC);
7288   emit_operand32(rbp, src);
7289 }
7290 
7291 void Assembler::fsubr_s(Address src) {
7292   InstructionMark im(this);
7293   emit_int8((unsigned char)0xD8);
7294   emit_operand32(rbp, src);
7295 }
7296 
7297 void Assembler::fsubra(int i) {
7298   emit_farith(0xDC, 0xE0, i);
7299 }
7300 
7301 void Assembler::fsubrp(int i) {
7302   emit_farith(0xDE, 0xE0, i);                    // ST(0) <- ST(1) - ST(0) and pop (Intel manual wrong)
7303 }
7304 
7305 void Assembler::ftan() {
7306   emit_int32((unsigned char)0xD9, (unsigned char)0xF2, (unsigned char)0xDD, (unsigned char)0xD8);
7307 }
7308 
7309 void Assembler::ftst() {
7310   emit_int16((unsigned char)0xD9, (unsigned char)0xE4);
7311 }
7312 
7313 void Assembler::fucomi(int i) {
7314   // make sure the instruction is supported (introduced for P6, together with cmov)
7315   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7316   emit_farith(0xDB, 0xE8, i);
7317 }
7318 
7319 void Assembler::fucomip(int i) {
7320   // make sure the instruction is supported (introduced for P6, together with cmov)
7321   guarantee(VM_Version::supports_cmov(), "illegal instruction");
7322   emit_farith(0xDF, 0xE8, i);
7323 }
7324 
7325 void Assembler::fwait() {
7326   emit_int8((unsigned char)0x9B);
7327 }
7328 
7329 void Assembler::fxch(int i) {
7330   emit_farith(0xD9, 0xC8, i);
7331 }
7332 
7333 void Assembler::fyl2x() {
7334   emit_int16((unsigned char)0xD9, (unsigned char)0xF1);
7335 }
7336 
7337 void Assembler::frndint() {
7338   emit_int16((unsigned char)0xD9, (unsigned char)0xFC);
7339 }
7340 
7341 void Assembler::f2xm1() {
7342   emit_int16((unsigned char)0xD9, (unsigned char)0xF0);
7343 }
7344 
7345 void Assembler::fldl2e() {
7346   emit_int16((unsigned char)0xD9, (unsigned char)0xEA);
7347 }
7348 #endif // !_LP64
7349 
7350 // SSE SIMD prefix byte values corresponding to VexSimdPrefix encoding.
7351 static int simd_pre[4] = { 0, 0x66, 0xF3, 0xF2 };
7352 // SSE opcode second byte values (first is 0x0F) corresponding to VexOpcode encoding.
7353 static int simd_opc[4] = { 0,    0, 0x38, 0x3A };
7354 
7355 // Generate SSE legacy REX prefix and SIMD opcode based on VEX encoding.
7356 void Assembler::rex_prefix(Address adr, XMMRegister xreg, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7357   if (pre > 0) {
7358     emit_int8(simd_pre[pre]);
7359   }
7360   if (rex_w) {
7361     prefixq(adr, xreg);
7362   } else {
7363     prefix(adr, xreg);
7364   }
7365   if (opc > 0) {
7366     emit_int8(0x0F);
7367     int opc2 = simd_opc[opc];
7368     if (opc2 > 0) {
7369       emit_int8(opc2);
7370     }
7371   }
7372 }
7373 
7374 int Assembler::rex_prefix_and_encode(int dst_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, bool rex_w) {
7375   if (pre > 0) {
7376     emit_int8(simd_pre[pre]);
7377   }
7378   int encode = (rex_w) ? prefixq_and_encode(dst_enc, src_enc) : prefix_and_encode(dst_enc, src_enc);
7379   if (opc > 0) {
7380     emit_int8(0x0F);
7381     int opc2 = simd_opc[opc];
7382     if (opc2 > 0) {
7383       emit_int8(opc2);
7384     }
7385   }
7386   return encode;
7387 }
7388 
7389 
7390 void Assembler::vex_prefix(bool vex_r, bool vex_b, bool vex_x, int nds_enc, VexSimdPrefix pre, VexOpcode opc) {
7391   int vector_len = _attributes->get_vector_len();
7392   bool vex_w = _attributes->is_rex_vex_w();
7393   if (vex_b || vex_x || vex_w || (opc == VEX_OPCODE_0F_38) || (opc == VEX_OPCODE_0F_3A)) {
7394     int byte1 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0);
7395     byte1 = (~byte1) & 0xE0;
7396     byte1 |= opc;
7397 
7398     int byte2 = ((~nds_enc) & 0xf) << 3;
7399     byte2 |= (vex_w ? VEX_W : 0) | ((vector_len > 0) ? 4 : 0) | pre;
7400 
7401     emit_int24((unsigned char)VEX_3bytes, byte1, byte2);
7402   } else {
7403     int byte1 = vex_r ? VEX_R : 0;
7404     byte1 = (~byte1) & 0x80;
7405     byte1 |= ((~nds_enc) & 0xf) << 3;
7406     byte1 |= ((vector_len > 0 ) ? 4 : 0) | pre;
7407     emit_int16((unsigned char)VEX_2bytes, byte1);
7408   }
7409 }
7410 
7411 // This is a 4 byte encoding
7412 void Assembler::evex_prefix(bool vex_r, bool vex_b, bool vex_x, bool evex_r, bool evex_v, int nds_enc, VexSimdPrefix pre, VexOpcode opc){
7413   // EVEX 0x62 prefix
7414   // byte1 = EVEX_4bytes;
7415 
7416   bool vex_w = _attributes->is_rex_vex_w();
7417   int evex_encoding = (vex_w ? VEX_W : 0);
7418   // EVEX.b is not currently used for broadcast of single element or data rounding modes
7419   _attributes->set_evex_encoding(evex_encoding);
7420 
7421   // P0: byte 2, initialized to RXBR`00mm
7422   // instead of not'd
7423   int byte2 = (vex_r ? VEX_R : 0) | (vex_x ? VEX_X : 0) | (vex_b ? VEX_B : 0) | (evex_r ? EVEX_Rb : 0);
7424   byte2 = (~byte2) & 0xF0;
7425   // confine opc opcode extensions in mm bits to lower two bits
7426   // of form {0F, 0F_38, 0F_3A}
7427   byte2 |= opc;
7428 
7429   // P1: byte 3 as Wvvvv1pp
7430   int byte3 = ((~nds_enc) & 0xf) << 3;
7431   // p[10] is always 1
7432   byte3 |= EVEX_F;
7433   byte3 |= (vex_w & 1) << 7;
7434   // confine pre opcode extensions in pp bits to lower two bits
7435   // of form {66, F3, F2}
7436   byte3 |= pre;
7437 
7438   // P2: byte 4 as zL'Lbv'aaa
7439   // kregs are implemented in the low 3 bits as aaa
7440   int byte4 = (_attributes->is_no_reg_mask()) ?
7441               0 :
7442               _attributes->get_embedded_opmask_register_specifier();
7443   // EVEX.v` for extending EVEX.vvvv or VIDX
7444   byte4 |= (evex_v ? 0: EVEX_V);
7445   // third EXEC.b for broadcast actions
7446   byte4 |= (_attributes->is_extended_context() ? EVEX_Rb : 0);
7447   // fourth EVEX.L'L for vector length : 0 is 128, 1 is 256, 2 is 512, currently we do not support 1024
7448   byte4 |= ((_attributes->get_vector_len())& 0x3) << 5;
7449   // last is EVEX.z for zero/merge actions
7450   if (_attributes->is_no_reg_mask() == false) {
7451     byte4 |= (_attributes->is_clear_context() ? EVEX_Z : 0);
7452   }
7453 
7454   emit_int32(EVEX_4bytes, byte2, byte3, byte4);
7455 }
7456 
7457 void Assembler::vex_prefix(Address adr, int nds_enc, int xreg_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7458   bool vex_r = (xreg_enc & 8) == 8;
7459   bool vex_b = adr.base_needs_rex();
7460   bool vex_x;
7461   if (adr.isxmmindex()) {
7462     vex_x = adr.xmmindex_needs_rex();
7463   } else {
7464     vex_x = adr.index_needs_rex();
7465   }
7466   set_attributes(attributes);
7467   attributes->set_current_assembler(this);
7468 
7469   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7470   // is allowed in legacy mode and has resources which will fit in it.
7471   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7472   if (!attributes->is_legacy_mode()) {
7473     if (UseAVX > 2 && !attributes->is_evex_instruction() && !is_managed()) {
7474       if ((attributes->get_vector_len() != AVX_512bit) && (nds_enc < 16) && (xreg_enc < 16)) {
7475           attributes->set_is_legacy_mode();
7476       }
7477     }
7478   }
7479 
7480   if (UseAVX > 2) {
7481     assert(((!attributes->uses_vl()) ||
7482             (attributes->get_vector_len() == AVX_512bit) ||
7483             (!_legacy_mode_vl) ||
7484             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7485     assert(((nds_enc < 16 && xreg_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7486   }
7487 
7488   clear_managed();
7489   if (UseAVX > 2 && !attributes->is_legacy_mode())
7490   {
7491     bool evex_r = (xreg_enc >= 16);
7492     bool evex_v;
7493     // EVEX.V' is set to true when VSIB is used as we may need to use higher order XMM registers (16-31)
7494     if (adr.isxmmindex())  {
7495       evex_v = ((adr._xmmindex->encoding() > 15) ? true : false);
7496     } else {
7497       evex_v = (nds_enc >= 16);
7498     }
7499     attributes->set_is_evex_instruction();
7500     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7501   } else {
7502     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7503       attributes->set_rex_vex_w(false);
7504     }
7505     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7506   }
7507 }
7508 
7509 int Assembler::vex_prefix_and_encode(int dst_enc, int nds_enc, int src_enc, VexSimdPrefix pre, VexOpcode opc, InstructionAttr *attributes) {
7510   bool vex_r = (dst_enc & 8) == 8;
7511   bool vex_b = (src_enc & 8) == 8;
7512   bool vex_x = false;
7513   set_attributes(attributes);
7514   attributes->set_current_assembler(this);
7515 
7516   // For EVEX instruction (which is not marked as pure EVEX instruction) check and see if this instruction
7517   // is allowed in legacy mode and has resources which will fit in it.
7518   // Pure EVEX instructions will have is_evex_instruction set in their definition.
7519   if (!attributes->is_legacy_mode()) {
7520     if (UseAVX > 2 && !attributes->is_evex_instruction() && !is_managed()) {
7521       if ((!attributes->uses_vl() || (attributes->get_vector_len() != AVX_512bit)) &&
7522           (dst_enc < 16) && (nds_enc < 16) && (src_enc < 16)) {
7523           attributes->set_is_legacy_mode();
7524       }
7525     }
7526   }
7527 
7528   if (UseAVX > 2) {
7529     // All the scalar fp instructions (with uses_vl as false) can have legacy_mode as false
7530     // Instruction with uses_vl true are vector instructions
7531     // All the vector instructions with AVX_512bit length can have legacy_mode as false
7532     // All the vector instructions with < AVX_512bit length can have legacy_mode as false if AVX512vl() is supported
7533     // Rest all should have legacy_mode set as true
7534     assert(((!attributes->uses_vl()) ||
7535             (attributes->get_vector_len() == AVX_512bit) ||
7536             (!_legacy_mode_vl) ||
7537             (attributes->is_legacy_mode())),"XMM register should be 0-15");
7538     // Instruction with legacy_mode true should have dst, nds and src < 15
7539     assert(((dst_enc < 16 && nds_enc < 16 && src_enc < 16) || (!attributes->is_legacy_mode())),"XMM register should be 0-15");
7540   }
7541 
7542   clear_managed();
7543   if (UseAVX > 2 && !attributes->is_legacy_mode())
7544   {
7545     bool evex_r = (dst_enc >= 16);
7546     bool evex_v = (nds_enc >= 16);
7547     // can use vex_x as bank extender on rm encoding
7548     vex_x = (src_enc >= 16);
7549     attributes->set_is_evex_instruction();
7550     evex_prefix(vex_r, vex_b, vex_x, evex_r, evex_v, nds_enc, pre, opc);
7551   } else {
7552     if (UseAVX > 2 && attributes->is_rex_vex_w_reverted()) {
7553       attributes->set_rex_vex_w(false);
7554     }
7555     vex_prefix(vex_r, vex_b, vex_x, nds_enc, pre, opc);
7556   }
7557 
7558   // return modrm byte components for operands
7559   return (((dst_enc & 7) << 3) | (src_enc & 7));
7560 }
7561 
7562 
7563 void Assembler::simd_prefix(XMMRegister xreg, XMMRegister nds, Address adr, VexSimdPrefix pre,
7564                             VexOpcode opc, InstructionAttr *attributes) {
7565   if (UseAVX > 0) {
7566     int xreg_enc = xreg->encoding();
7567     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7568     vex_prefix(adr, nds_enc, xreg_enc, pre, opc, attributes);
7569   } else {
7570     assert((nds == xreg) || (nds == xnoreg), "wrong sse encoding");
7571     rex_prefix(adr, xreg, pre, opc, attributes->is_rex_vex_w());
7572   }
7573 }
7574 
7575 int Assembler::simd_prefix_and_encode(XMMRegister dst, XMMRegister nds, XMMRegister src, VexSimdPrefix pre,
7576                                       VexOpcode opc, InstructionAttr *attributes) {
7577   int dst_enc = dst->encoding();
7578   int src_enc = src->encoding();
7579   if (UseAVX > 0) {
7580     int nds_enc = nds->is_valid() ? nds->encoding() : 0;
7581     return vex_prefix_and_encode(dst_enc, nds_enc, src_enc, pre, opc, attributes);
7582   } else {
7583     assert((nds == dst) || (nds == src) || (nds == xnoreg), "wrong sse encoding");
7584     return rex_prefix_and_encode(dst_enc, src_enc, pre, opc, attributes->is_rex_vex_w());
7585   }
7586 }
7587 
7588 void Assembler::vmaxss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7589   assert(VM_Version::supports_avx(), "");
7590   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7591   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7592   emit_int16(0x5F, (0xC0 | encode));
7593 }
7594 
7595 void Assembler::vmaxsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7596   assert(VM_Version::supports_avx(), "");
7597   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7598   attributes.set_rex_vex_w_reverted();
7599   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7600   emit_int16(0x5F, (0xC0 | encode));
7601 }
7602 
7603 void Assembler::vminss(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7604   assert(VM_Version::supports_avx(), "");
7605   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7606   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
7607   emit_int16(0x5D, (0xC0 | encode));
7608 }
7609 
7610 void Assembler::vminsd(XMMRegister dst, XMMRegister nds, XMMRegister src) {
7611   assert(VM_Version::supports_avx(), "");
7612   InstructionAttr attributes(AVX_128bit, /* vex_w */ VM_Version::supports_evex(), /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
7613   attributes.set_rex_vex_w_reverted();
7614   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
7615   emit_int16(0x5D, (0xC0 | encode));
7616 }
7617 
7618 void Assembler::cmppd(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7619   assert(VM_Version::supports_avx(), "");
7620   assert(vector_len <= AVX_256bit, "");
7621   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7622   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
7623   emit_int24((unsigned char)0xC2, (0xC0 | encode), (0xF & cop));
7624 }
7625 
7626 void Assembler::blendvpb(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7627   assert(VM_Version::supports_avx(), "");
7628   assert(vector_len <= AVX_256bit, "");
7629   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7630   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7631   int src2_enc = src2->encoding();
7632   emit_int24(0x4C, (0xC0 | encode), (0xF0 & src2_enc << 4));
7633 }
7634 
7635 void Assembler::blendvpd(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7636   assert(VM_Version::supports_avx(), "");
7637   assert(vector_len <= AVX_256bit, "");
7638   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7639   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7640   int src2_enc = src2->encoding();
7641   emit_int24(0x4B, (0xC0 | encode), (0xF0 & src2_enc << 4));
7642 }
7643 
7644 void Assembler::cmpps(XMMRegister dst, XMMRegister nds, XMMRegister src, int cop, int vector_len) {
7645   assert(VM_Version::supports_avx(), "");
7646   assert(vector_len <= AVX_256bit, "");
7647   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7648   int encode = simd_prefix_and_encode(dst, nds, src, VEX_SIMD_NONE, VEX_OPCODE_0F, &attributes);
7649   emit_int24((unsigned char)0xC2, (0xC0 | encode), (0xF & cop));
7650 }
7651 
7652 void Assembler::blendvps(XMMRegister dst, XMMRegister nds, XMMRegister src1, XMMRegister src2, int vector_len) {
7653   assert(VM_Version::supports_avx(), "");
7654   assert(vector_len <= AVX_256bit, "");
7655   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7656   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7657   int src2_enc = src2->encoding();
7658   emit_int24(0x4A, (0xC0 | encode), (0xF0 & src2_enc << 4));
7659 }
7660 
7661 void Assembler::vpblendd(XMMRegister dst, XMMRegister nds, XMMRegister src, int imm8, int vector_len) {
7662   assert(VM_Version::supports_avx2(), "");
7663   InstructionAttr attributes(vector_len, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7664   int encode = vex_prefix_and_encode(dst->encoding(), nds->encoding(), src->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_3A, &attributes);
7665   emit_int24(0x02, (0xC0 | encode), (unsigned char)imm8);
7666 }
7667 
7668 void Assembler::shlxl(Register dst, Register src1, Register src2) {
7669   assert(VM_Version::supports_bmi2(), "");
7670   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7671   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7672   emit_int16((unsigned char)0xF7, (0xC0 | encode));
7673 }
7674 
7675 void Assembler::shlxq(Register dst, Register src1, Register src2) {
7676   assert(VM_Version::supports_bmi2(), "");
7677   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ true);
7678   int encode = vex_prefix_and_encode(dst->encoding(), src2->encoding(), src1->encoding(), VEX_SIMD_66, VEX_OPCODE_0F_38, &attributes);
7679   emit_int16((unsigned char)0xF7, (0xC0 | encode));
7680 }
7681 
7682 #ifndef _LP64
7683 
7684 void Assembler::incl(Register dst) {
7685   // Don't use it directly. Use MacroAssembler::incrementl() instead.
7686   emit_int8(0x40 | dst->encoding());
7687 }
7688 
7689 void Assembler::lea(Register dst, Address src) {
7690   leal(dst, src);
7691 }
7692 
7693 void Assembler::mov_literal32(Address dst, int32_t imm32, RelocationHolder const& rspec) {
7694   InstructionMark im(this);
7695   emit_int8((unsigned char)0xC7);
7696   emit_operand(rax, dst);
7697   emit_data((int)imm32, rspec, 0);
7698 }
7699 
7700 void Assembler::mov_literal32(Register dst, int32_t imm32, RelocationHolder const& rspec) {
7701   InstructionMark im(this);
7702   int encode = prefix_and_encode(dst->encoding());
7703   emit_int8((0xB8 | encode));
7704   emit_data((int)imm32, rspec, 0);
7705 }
7706 
7707 void Assembler::popa() { // 32bit
7708   emit_int8(0x61);
7709 }
7710 
7711 void Assembler::push_literal32(int32_t imm32, RelocationHolder const& rspec) {
7712   InstructionMark im(this);
7713   emit_int8(0x68);
7714   emit_data(imm32, rspec, 0);
7715 }
7716 
7717 void Assembler::pusha() { // 32bit
7718   emit_int8(0x60);
7719 }
7720 
7721 void Assembler::set_byte_if_not_zero(Register dst) {
7722   emit_int24(0x0F, (unsigned char)0x95, (0xE0 | dst->encoding()));
7723 }
7724 
7725 #else // LP64
7726 
7727 void Assembler::set_byte_if_not_zero(Register dst) {
7728   int enc = prefix_and_encode(dst->encoding(), true);
7729   emit_int24(0x0F, (unsigned char)0x95, (0xE0 | enc));
7730 }
7731 
7732 // 64bit only pieces of the assembler
7733 // This should only be used by 64bit instructions that can use rip-relative
7734 // it cannot be used by instructions that want an immediate value.
7735 
7736 bool Assembler::reachable(AddressLiteral adr) {
7737   int64_t disp;
7738   relocInfo::relocType relocType = adr.reloc();
7739 
7740   // None will force a 64bit literal to the code stream. Likely a placeholder
7741   // for something that will be patched later and we need to certain it will
7742   // always be reachable.
7743   if (relocType == relocInfo::none) {
7744     return false;
7745   }
7746   if (relocType == relocInfo::internal_word_type) {
7747     // This should be rip relative and easily reachable.
7748     return true;
7749   }
7750   if (relocType == relocInfo::virtual_call_type ||
7751       relocType == relocInfo::opt_virtual_call_type ||
7752       relocType == relocInfo::static_call_type ||
7753       relocType == relocInfo::static_stub_type ) {
7754     // This should be rip relative within the code cache and easily
7755     // reachable until we get huge code caches. (At which point
7756     // ic code is going to have issues).
7757     return true;
7758   }
7759   if (relocType != relocInfo::external_word_type &&
7760       relocType != relocInfo::poll_return_type &&  // these are really external_word but need special
7761       relocType != relocInfo::poll_type &&         // relocs to identify them
7762       relocType != relocInfo::runtime_call_type ) {
7763     return false;
7764   }
7765 
7766   // Stress the correction code
7767   if (ForceUnreachable) {
7768     // Must be runtimecall reloc, see if it is in the codecache
7769     // Flipping stuff in the codecache to be unreachable causes issues
7770     // with things like inline caches where the additional instructions
7771     // are not handled.
7772     if (CodeCache::find_blob(adr._target) == NULL) {
7773       return false;
7774     }
7775   }
7776   // For external_word_type/runtime_call_type if it is reachable from where we
7777   // are now (possibly a temp buffer) and where we might end up
7778   // anywhere in the codeCache then we are always reachable.
7779   // This would have to change if we ever save/restore shared code
7780   // to be more pessimistic.
7781   disp = (int64_t)adr._target - ((int64_t)CodeCache::low_bound() + sizeof(int));
7782   if (!is_simm32(disp)) return false;
7783   disp = (int64_t)adr._target - ((int64_t)CodeCache::high_bound() + sizeof(int));
7784   if (!is_simm32(disp)) return false;
7785 
7786   disp = (int64_t)adr._target - ((int64_t)pc() + sizeof(int));
7787 
7788   // Because rip relative is a disp + address_of_next_instruction and we
7789   // don't know the value of address_of_next_instruction we apply a fudge factor
7790   // to make sure we will be ok no matter the size of the instruction we get placed into.
7791   // We don't have to fudge the checks above here because they are already worst case.
7792 
7793   // 12 == override/rex byte, opcode byte, rm byte, sib byte, a 4-byte disp , 4-byte literal
7794   // + 4 because better safe than sorry.
7795   const int fudge = 12 + 4;
7796   if (disp < 0) {
7797     disp -= fudge;
7798   } else {
7799     disp += fudge;
7800   }
7801   return is_simm32(disp);
7802 }
7803 
7804 void Assembler::emit_data64(jlong data,
7805                             relocInfo::relocType rtype,
7806                             int format) {
7807   if (rtype == relocInfo::none) {
7808     emit_int64(data);
7809   } else {
7810     emit_data64(data, Relocation::spec_simple(rtype), format);
7811   }
7812 }
7813 
7814 void Assembler::emit_data64(jlong data,
7815                             RelocationHolder const& rspec,
7816                             int format) {
7817   assert(imm_operand == 0, "default format must be immediate in this file");
7818   assert(imm_operand == format, "must be immediate");
7819   assert(inst_mark() != NULL, "must be inside InstructionMark");
7820   // Do not use AbstractAssembler::relocate, which is not intended for
7821   // embedded words.  Instead, relocate to the enclosing instruction.
7822   code_section()->relocate(inst_mark(), rspec, format);
7823 #ifdef ASSERT
7824   check_relocation(rspec, format);
7825 #endif
7826   emit_int64(data);
7827 }
7828 
7829 void Assembler::prefix(Register reg) {
7830   if (reg->encoding() >= 8) {
7831     prefix(REX_B);
7832   }
7833 }
7834 
7835 void Assembler::prefix(Register dst, Register src, Prefix p) {
7836   if (src->encoding() >= 8) {
7837     p = (Prefix)(p | REX_B);
7838   }
7839   if (dst->encoding() >= 8) {
7840     p = (Prefix)(p | REX_R);
7841   }
7842   if (p != Prefix_EMPTY) {
7843     // do not generate an empty prefix
7844     prefix(p);
7845   }
7846 }
7847 
7848 void Assembler::prefix(Register dst, Address adr, Prefix p) {
7849   if (adr.base_needs_rex()) {
7850     if (adr.index_needs_rex()) {
7851       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7852     } else {
7853       prefix(REX_B);
7854     }
7855   } else {
7856     if (adr.index_needs_rex()) {
7857       assert(false, "prefix(Register dst, Address adr, Prefix p) does not support handling of an X");
7858     }
7859   }
7860   if (dst->encoding() >= 8) {
7861     p = (Prefix)(p | REX_R);
7862   }
7863   if (p != Prefix_EMPTY) {
7864     // do not generate an empty prefix
7865     prefix(p);
7866   }
7867 }
7868 
7869 void Assembler::prefix(Address adr) {
7870   if (adr.base_needs_rex()) {
7871     if (adr.index_needs_rex()) {
7872       prefix(REX_XB);
7873     } else {
7874       prefix(REX_B);
7875     }
7876   } else {
7877     if (adr.index_needs_rex()) {
7878       prefix(REX_X);
7879     }
7880   }
7881 }
7882 
7883 void Assembler::prefix(Address adr, Register reg, bool byteinst) {
7884   if (reg->encoding() < 8) {
7885     if (adr.base_needs_rex()) {
7886       if (adr.index_needs_rex()) {
7887         prefix(REX_XB);
7888       } else {
7889         prefix(REX_B);
7890       }
7891     } else {
7892       if (adr.index_needs_rex()) {
7893         prefix(REX_X);
7894       } else if (byteinst && reg->encoding() >= 4) {
7895         prefix(REX);
7896       }
7897     }
7898   } else {
7899     if (adr.base_needs_rex()) {
7900       if (adr.index_needs_rex()) {
7901         prefix(REX_RXB);
7902       } else {
7903         prefix(REX_RB);
7904       }
7905     } else {
7906       if (adr.index_needs_rex()) {
7907         prefix(REX_RX);
7908       } else {
7909         prefix(REX_R);
7910       }
7911     }
7912   }
7913 }
7914 
7915 void Assembler::prefix(Address adr, XMMRegister reg) {
7916   if (reg->encoding() < 8) {
7917     if (adr.base_needs_rex()) {
7918       if (adr.index_needs_rex()) {
7919         prefix(REX_XB);
7920       } else {
7921         prefix(REX_B);
7922       }
7923     } else {
7924       if (adr.index_needs_rex()) {
7925         prefix(REX_X);
7926       }
7927     }
7928   } else {
7929     if (adr.base_needs_rex()) {
7930       if (adr.index_needs_rex()) {
7931         prefix(REX_RXB);
7932       } else {
7933         prefix(REX_RB);
7934       }
7935     } else {
7936       if (adr.index_needs_rex()) {
7937         prefix(REX_RX);
7938       } else {
7939         prefix(REX_R);
7940       }
7941     }
7942   }
7943 }
7944 
7945 int Assembler::prefix_and_encode(int reg_enc, bool byteinst) {
7946   if (reg_enc >= 8) {
7947     prefix(REX_B);
7948     reg_enc -= 8;
7949   } else if (byteinst && reg_enc >= 4) {
7950     prefix(REX);
7951   }
7952   return reg_enc;
7953 }
7954 
7955 int Assembler::prefix_and_encode(int dst_enc, bool dst_is_byte, int src_enc, bool src_is_byte) {
7956   if (dst_enc < 8) {
7957     if (src_enc >= 8) {
7958       prefix(REX_B);
7959       src_enc -= 8;
7960     } else if ((src_is_byte && src_enc >= 4) || (dst_is_byte && dst_enc >= 4)) {
7961       prefix(REX);
7962     }
7963   } else {
7964     if (src_enc < 8) {
7965       prefix(REX_R);
7966     } else {
7967       prefix(REX_RB);
7968       src_enc -= 8;
7969     }
7970     dst_enc -= 8;
7971   }
7972   return dst_enc << 3 | src_enc;
7973 }
7974 
7975 int8_t Assembler::get_prefixq(Address adr) {
7976   int8_t prfx = get_prefixq(adr, rax);
7977   assert(REX_W <= prfx && prfx <= REX_WXB, "must be");
7978   return prfx;
7979 }
7980 
7981 int8_t Assembler::get_prefixq(Address adr, Register src) {
7982   int8_t prfx = (int8_t)(REX_W +
7983                          ((int)adr.base_needs_rex()) +
7984                          ((int)adr.index_needs_rex() << 1) +
7985                          ((int)(src->encoding() >= 8) << 2));
7986 #ifdef ASSERT
7987   if (src->encoding() < 8) {
7988     if (adr.base_needs_rex()) {
7989       if (adr.index_needs_rex()) {
7990         assert(prfx == REX_WXB, "must be");
7991       } else {
7992         assert(prfx == REX_WB, "must be");
7993       }
7994     } else {
7995       if (adr.index_needs_rex()) {
7996         assert(prfx == REX_WX, "must be");
7997       } else {
7998         assert(prfx == REX_W, "must be");
7999       }
8000     }
8001   } else {
8002     if (adr.base_needs_rex()) {
8003       if (adr.index_needs_rex()) {
8004         assert(prfx == REX_WRXB, "must be");
8005       } else {
8006         assert(prfx == REX_WRB, "must be");
8007       }
8008     } else {
8009       if (adr.index_needs_rex()) {
8010         assert(prfx == REX_WRX, "must be");
8011       } else {
8012         assert(prfx == REX_WR, "must be");
8013       }
8014     }
8015   }
8016 #endif
8017   return prfx;
8018 }
8019 
8020 void Assembler::prefixq(Address adr) {
8021   emit_int8(get_prefixq(adr));
8022 }
8023 
8024 void Assembler::prefixq(Address adr, Register src) {
8025   emit_int8(get_prefixq(adr, src));
8026 }
8027 
8028 void Assembler::prefixq(Address adr, XMMRegister src) {
8029   if (src->encoding() < 8) {
8030     if (adr.base_needs_rex()) {
8031       if (adr.index_needs_rex()) {
8032         prefix(REX_WXB);
8033       } else {
8034         prefix(REX_WB);
8035       }
8036     } else {
8037       if (adr.index_needs_rex()) {
8038         prefix(REX_WX);
8039       } else {
8040         prefix(REX_W);
8041       }
8042     }
8043   } else {
8044     if (adr.base_needs_rex()) {
8045       if (adr.index_needs_rex()) {
8046         prefix(REX_WRXB);
8047       } else {
8048         prefix(REX_WRB);
8049       }
8050     } else {
8051       if (adr.index_needs_rex()) {
8052         prefix(REX_WRX);
8053       } else {
8054         prefix(REX_WR);
8055       }
8056     }
8057   }
8058 }
8059 
8060 int Assembler::prefixq_and_encode(int reg_enc) {
8061   if (reg_enc < 8) {
8062     prefix(REX_W);
8063   } else {
8064     prefix(REX_WB);
8065     reg_enc -= 8;
8066   }
8067   return reg_enc;
8068 }
8069 
8070 int Assembler::prefixq_and_encode(int dst_enc, int src_enc) {
8071   if (dst_enc < 8) {
8072     if (src_enc < 8) {
8073       prefix(REX_W);
8074     } else {
8075       prefix(REX_WB);
8076       src_enc -= 8;
8077     }
8078   } else {
8079     if (src_enc < 8) {
8080       prefix(REX_WR);
8081     } else {
8082       prefix(REX_WRB);
8083       src_enc -= 8;
8084     }
8085     dst_enc -= 8;
8086   }
8087   return dst_enc << 3 | src_enc;
8088 }
8089 
8090 void Assembler::adcq(Register dst, int32_t imm32) {
8091   (void) prefixq_and_encode(dst->encoding());
8092   emit_arith(0x81, 0xD0, dst, imm32);
8093 }
8094 
8095 void Assembler::adcq(Register dst, Address src) {
8096   InstructionMark im(this);
8097   emit_int16(get_prefixq(src, dst), 0x13);
8098   emit_operand(dst, src);
8099 }
8100 
8101 void Assembler::adcq(Register dst, Register src) {
8102   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8103   emit_arith(0x13, 0xC0, dst, src);
8104 }
8105 
8106 void Assembler::addq(Address dst, int32_t imm32) {
8107   InstructionMark im(this);
8108   prefixq(dst);
8109   emit_arith_operand(0x81, rax, dst, imm32);
8110 }
8111 
8112 void Assembler::addq(Address dst, Register src) {
8113   InstructionMark im(this);
8114   emit_int16(get_prefixq(dst, src), 0x01);
8115   emit_operand(src, dst);
8116 }
8117 
8118 void Assembler::addq(Register dst, int32_t imm32) {
8119   (void) prefixq_and_encode(dst->encoding());
8120   emit_arith(0x81, 0xC0, dst, imm32);
8121 }
8122 
8123 void Assembler::addq(Register dst, Address src) {
8124   InstructionMark im(this);
8125   emit_int16(get_prefixq(src, dst), 0x03);
8126   emit_operand(dst, src);
8127 }
8128 
8129 void Assembler::addq(Register dst, Register src) {
8130   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8131   emit_arith(0x03, 0xC0, dst, src);
8132 }
8133 
8134 void Assembler::adcxq(Register dst, Register src) {
8135   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8136   emit_int8(0x66);
8137   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8138   emit_int32(0x0F,
8139              0x38,
8140              (unsigned char)0xF6,
8141              (0xC0 | encode));
8142 }
8143 
8144 void Assembler::adoxq(Register dst, Register src) {
8145   //assert(VM_Version::supports_adx(), "adx instructions not supported");
8146   emit_int8((unsigned char)0xF3);
8147   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8148   emit_int32(0x0F,
8149              0x38,
8150              (unsigned char)0xF6,
8151              (0xC0 | encode));
8152 }
8153 
8154 void Assembler::andq(Address dst, int32_t imm32) {
8155   InstructionMark im(this);
8156   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8157   emit_operand(rsp, dst, 4);
8158   emit_int32(imm32);
8159 }
8160 
8161 void Assembler::andq(Register dst, int32_t imm32) {
8162   (void) prefixq_and_encode(dst->encoding());
8163   emit_arith(0x81, 0xE0, dst, imm32);
8164 }
8165 
8166 void Assembler::andq(Register dst, Address src) {
8167   InstructionMark im(this);
8168   emit_int16(get_prefixq(src, dst), 0x23);
8169   emit_operand(dst, src);
8170 }
8171 
8172 void Assembler::andq(Register dst, Register src) {
8173   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8174   emit_arith(0x23, 0xC0, dst, src);
8175 }
8176 
8177 void Assembler::andnq(Register dst, Register src1, Register src2) {
8178   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8179   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8180   int encode = vex_prefix_and_encode(dst->encoding(), src1->encoding(), src2->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8181   emit_int16((unsigned char)0xF2, (0xC0 | encode));
8182 }
8183 
8184 void Assembler::andnq(Register dst, Register src1, Address src2) {
8185   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8186   InstructionMark im(this);
8187   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8188   vex_prefix(src2, src1->encoding(), dst->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8189   emit_int8((unsigned char)0xF2);
8190   emit_operand(dst, src2);
8191 }
8192 
8193 void Assembler::bsfq(Register dst, Register src) {
8194   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8195   emit_int24(0x0F, (unsigned char)0xBC, (0xC0 | encode));
8196 }
8197 
8198 void Assembler::bsrq(Register dst, Register src) {
8199   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8200   emit_int24(0x0F, (unsigned char)0xBD, (0xC0 | encode));
8201 }
8202 
8203 void Assembler::bswapq(Register reg) {
8204   int encode = prefixq_and_encode(reg->encoding());
8205   emit_int16(0x0F, (0xC8 | encode));
8206 }
8207 
8208 void Assembler::blsiq(Register dst, Register src) {
8209   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8210   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8211   int encode = vex_prefix_and_encode(rbx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8212   emit_int16((unsigned char)0xF3, (0xC0 | encode));
8213 }
8214 
8215 void Assembler::blsiq(Register dst, Address src) {
8216   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8217   InstructionMark im(this);
8218   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8219   vex_prefix(src, dst->encoding(), rbx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8220   emit_int8((unsigned char)0xF3);
8221   emit_operand(rbx, src);
8222 }
8223 
8224 void Assembler::blsmskq(Register dst, Register src) {
8225   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8226   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8227   int encode = vex_prefix_and_encode(rdx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8228   emit_int16((unsigned char)0xF3, (0xC0 | encode));
8229 }
8230 
8231 void Assembler::blsmskq(Register dst, Address src) {
8232   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8233   InstructionMark im(this);
8234   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8235   vex_prefix(src, dst->encoding(), rdx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8236   emit_int8((unsigned char)0xF3);
8237   emit_operand(rdx, src);
8238 }
8239 
8240 void Assembler::blsrq(Register dst, Register src) {
8241   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8242   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8243   int encode = vex_prefix_and_encode(rcx->encoding(), dst->encoding(), src->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8244   emit_int16((unsigned char)0xF3, (0xC0 | encode));
8245 }
8246 
8247 void Assembler::blsrq(Register dst, Address src) {
8248   assert(VM_Version::supports_bmi1(), "bit manipulation instructions not supported");
8249   InstructionMark im(this);
8250   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8251   vex_prefix(src, dst->encoding(), rcx->encoding(), VEX_SIMD_NONE, VEX_OPCODE_0F_38, &attributes);
8252   emit_int8((unsigned char)0xF3);
8253   emit_operand(rcx, src);
8254 }
8255 
8256 void Assembler::cdqq() {
8257   emit_int16(REX_W, (unsigned char)0x99);
8258 }
8259 
8260 void Assembler::clflush(Address adr) {
8261   assert(VM_Version::supports_clflush(), "should do");
8262   prefix(adr);
8263   emit_int16(0x0F, (unsigned char)0xAE);
8264   emit_operand(rdi, adr);
8265 }
8266 
8267 void Assembler::clflushopt(Address adr) {
8268   assert(VM_Version::supports_clflushopt(), "should do!");
8269   // adr should be base reg only with no index or offset
8270   assert(adr.index() == noreg, "index should be noreg");
8271   assert(adr.scale() == Address::no_scale, "scale should be no_scale");
8272   assert(adr.disp() == 0, "displacement should be 0");
8273   // instruction prefix is 0x66
8274   emit_int8(0x66);
8275   prefix(adr);
8276   // opcode family is 0x0F 0xAE
8277   emit_int16(0x0F, (unsigned char)0xAE);
8278   // extended opcode byte is 7 == rdi
8279   emit_operand(rdi, adr);
8280 }
8281 
8282 void Assembler::clwb(Address adr) {
8283   assert(VM_Version::supports_clwb(), "should do!");
8284   // adr should be base reg only with no index or offset
8285   assert(adr.index() == noreg, "index should be noreg");
8286   assert(adr.scale() == Address::no_scale, "scale should be no_scale");
8287   assert(adr.disp() == 0, "displacement should be 0");
8288   // instruction prefix is 0x66
8289   emit_int8(0x66);
8290   prefix(adr);
8291   // opcode family is 0x0f 0xAE
8292   emit_int16(0x0F, (unsigned char)0xAE);
8293   // extended opcode byte is 6 == rsi
8294   emit_operand(rsi, adr);
8295 }
8296 
8297 void Assembler::cmovq(Condition cc, Register dst, Register src) {
8298   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8299   emit_int24(0x0F, (0x40 | cc), (0xC0 | encode));
8300 }
8301 
8302 void Assembler::cmovq(Condition cc, Register dst, Address src) {
8303   InstructionMark im(this);
8304   emit_int24(get_prefixq(src, dst), 0x0F, (0x40 | cc));
8305   emit_operand(dst, src);
8306 }
8307 
8308 void Assembler::cmpq(Address dst, int32_t imm32) {
8309   InstructionMark im(this);
8310   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8311   emit_operand(rdi, dst, 4);
8312   emit_int32(imm32);
8313 }
8314 
8315 void Assembler::cmpq(Register dst, int32_t imm32) {
8316   (void) prefixq_and_encode(dst->encoding());
8317   emit_arith(0x81, 0xF8, dst, imm32);
8318 }
8319 
8320 void Assembler::cmpq(Address dst, Register src) {
8321   InstructionMark im(this);
8322   emit_int16(get_prefixq(dst, src), 0x3B);
8323   emit_operand(src, dst);
8324 }
8325 
8326 void Assembler::cmpq(Register dst, Register src) {
8327   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8328   emit_arith(0x3B, 0xC0, dst, src);
8329 }
8330 
8331 void Assembler::cmpq(Register dst, Address src) {
8332   InstructionMark im(this);
8333   emit_int16(get_prefixq(src, dst), 0x3B);
8334   emit_operand(dst, src);
8335 }
8336 
8337 void Assembler::cmpxchgq(Register reg, Address adr) {
8338   InstructionMark im(this);
8339   emit_int24(get_prefixq(adr, reg), 0x0F, (unsigned char)0xB1);
8340   emit_operand(reg, adr);
8341 }
8342 
8343 void Assembler::cvtsi2sdq(XMMRegister dst, Register src) {
8344   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8345   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8346   int encode = simd_prefix_and_encode(dst, dst, as_XMMRegister(src->encoding()), VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8347   emit_int16(0x2A, (0xC0 | encode));
8348 }
8349 
8350 void Assembler::cvtsi2sdq(XMMRegister dst, Address src) {
8351   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8352   InstructionMark im(this);
8353   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8354   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8355   simd_prefix(dst, dst, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8356   emit_int8(0x2A);
8357   emit_operand(dst, src);
8358 }
8359 
8360 void Assembler::cvtsi2ssq(XMMRegister dst, Address src) {
8361   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8362   InstructionMark im(this);
8363   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8364   attributes.set_address_attributes(/* tuple_type */ EVEX_T1S, /* input_size_in_bits */ EVEX_64bit);
8365   simd_prefix(dst, dst, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8366   emit_int8(0x2A);
8367   emit_operand(dst, src);
8368 }
8369 
8370 void Assembler::cvttsd2siq(Register dst, Address src) {
8371   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8372   // F2 REX.W 0F 2C /r
8373   // CVTTSD2SI r64, xmm1/m64
8374   InstructionMark im(this);
8375   emit_int32((unsigned char)0xF2, REX_W, 0x0F, 0x2C);
8376   emit_operand(dst, src);
8377 }
8378 
8379 void Assembler::cvttsd2siq(Register dst, XMMRegister src) {
8380   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8381   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8382   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F2, VEX_OPCODE_0F, &attributes);
8383   emit_int16(0x2C, (0xC0 | encode));
8384 }
8385 
8386 void Assembler::cvttss2siq(Register dst, XMMRegister src) {
8387   NOT_LP64(assert(VM_Version::supports_sse(), ""));
8388   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8389   int encode = simd_prefix_and_encode(as_XMMRegister(dst->encoding()), xnoreg, src, VEX_SIMD_F3, VEX_OPCODE_0F, &attributes);
8390   emit_int16(0x2C, (0xC0 | encode));
8391 }
8392 
8393 void Assembler::decl(Register dst) {
8394   // Don't use it directly. Use MacroAssembler::decrementl() instead.
8395   // Use two-byte form (one-byte form is a REX prefix in 64-bit mode)
8396   int encode = prefix_and_encode(dst->encoding());
8397   emit_int16((unsigned char)0xFF, (0xC8 | encode));
8398 }
8399 
8400 void Assembler::decq(Register dst) {
8401   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8402   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8403   int encode = prefixq_and_encode(dst->encoding());
8404   emit_int16((unsigned char)0xFF, 0xC8 | encode);
8405 }
8406 
8407 void Assembler::decq(Address dst) {
8408   // Don't use it directly. Use MacroAssembler::decrementq() instead.
8409   InstructionMark im(this);
8410   emit_int16(get_prefixq(dst), (unsigned char)0xFF);
8411   emit_operand(rcx, dst);
8412 }
8413 
8414 void Assembler::fxrstor(Address src) {
8415   emit_int24(get_prefixq(src), 0x0F, (unsigned char)0xAE);
8416   emit_operand(as_Register(1), src);
8417 }
8418 
8419 void Assembler::xrstor(Address src) {
8420   emit_int24(get_prefixq(src), 0x0F, (unsigned char)0xAE);
8421   emit_operand(as_Register(5), src);
8422 }
8423 
8424 void Assembler::fxsave(Address dst) {
8425   emit_int24(get_prefixq(dst), 0x0F, (unsigned char)0xAE);
8426   emit_operand(as_Register(0), dst);
8427 }
8428 
8429 void Assembler::xsave(Address dst) {
8430   emit_int24(get_prefixq(dst), 0x0F, (unsigned char)0xAE);
8431   emit_operand(as_Register(4), dst);
8432 }
8433 
8434 void Assembler::idivq(Register src) {
8435   int encode = prefixq_and_encode(src->encoding());
8436   emit_int16((unsigned char)0xF7, (0xF8 | encode));
8437 }
8438 
8439 void Assembler::imulq(Register dst, Register src) {
8440   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8441   emit_int24(0x0F, (unsigned char)0xAF, (0xC0 | encode));
8442 }
8443 
8444 void Assembler::imulq(Register dst, Register src, int value) {
8445   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8446   if (is8bit(value)) {
8447     emit_int24(0x6B, (0xC0 | encode), (value & 0xFF));
8448   } else {
8449     emit_int16(0x69, (0xC0 | encode));
8450     emit_int32(value);
8451   }
8452 }
8453 
8454 void Assembler::imulq(Register dst, Address src) {
8455   InstructionMark im(this);
8456   emit_int24(get_prefixq(src, dst), 0x0F, (unsigned char)0xAF);
8457   emit_operand(dst, src);
8458 }
8459 
8460 void Assembler::incl(Register dst) {
8461   // Don't use it directly. Use MacroAssembler::incrementl() instead.
8462   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8463   int encode = prefix_and_encode(dst->encoding());
8464   emit_int16((unsigned char)0xFF, (0xC0 | encode));
8465 }
8466 
8467 void Assembler::incq(Register dst) {
8468   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8469   // Use two-byte form (one-byte from is a REX prefix in 64-bit mode)
8470   int encode = prefixq_and_encode(dst->encoding());
8471   emit_int16((unsigned char)0xFF, (0xC0 | encode));
8472 }
8473 
8474 void Assembler::incq(Address dst) {
8475   // Don't use it directly. Use MacroAssembler::incrementq() instead.
8476   InstructionMark im(this);
8477   emit_int16(get_prefixq(dst), (unsigned char)0xFF);
8478   emit_operand(rax, dst);
8479 }
8480 
8481 void Assembler::lea(Register dst, Address src) {
8482   leaq(dst, src);
8483 }
8484 
8485 void Assembler::leaq(Register dst, Address src) {
8486   InstructionMark im(this);
8487   emit_int16(get_prefixq(src, dst), (unsigned char)0x8D);
8488   emit_operand(dst, src);
8489 }
8490 
8491 void Assembler::mov64(Register dst, int64_t imm64) {
8492   InstructionMark im(this);
8493   int encode = prefixq_and_encode(dst->encoding());
8494   emit_int8(0xB8 | encode);
8495   emit_int64(imm64);
8496 }
8497 
8498 void Assembler::mov_literal64(Register dst, intptr_t imm64, RelocationHolder const& rspec) {
8499   InstructionMark im(this);
8500   int encode = prefixq_and_encode(dst->encoding());
8501   emit_int8(0xB8 | encode);
8502   emit_data64(imm64, rspec);
8503 }
8504 
8505 void Assembler::mov_narrow_oop(Register dst, int32_t imm32, RelocationHolder const& rspec) {
8506   InstructionMark im(this);
8507   int encode = prefix_and_encode(dst->encoding());
8508   emit_int8(0xB8 | encode);
8509   emit_data((int)imm32, rspec, narrow_oop_operand);
8510 }
8511 
8512 void Assembler::mov_narrow_oop(Address dst, int32_t imm32,  RelocationHolder const& rspec) {
8513   InstructionMark im(this);
8514   prefix(dst);
8515   emit_int8((unsigned char)0xC7);
8516   emit_operand(rax, dst, 4);
8517   emit_data((int)imm32, rspec, narrow_oop_operand);
8518 }
8519 
8520 void Assembler::cmp_narrow_oop(Register src1, int32_t imm32, RelocationHolder const& rspec) {
8521   InstructionMark im(this);
8522   int encode = prefix_and_encode(src1->encoding());
8523   emit_int16((unsigned char)0x81, (0xF8 | encode));
8524   emit_data((int)imm32, rspec, narrow_oop_operand);
8525 }
8526 
8527 void Assembler::cmp_narrow_oop(Address src1, int32_t imm32, RelocationHolder const& rspec) {
8528   InstructionMark im(this);
8529   prefix(src1);
8530   emit_int8((unsigned char)0x81);
8531   emit_operand(rax, src1, 4);
8532   emit_data((int)imm32, rspec, narrow_oop_operand);
8533 }
8534 
8535 void Assembler::lzcntq(Register dst, Register src) {
8536   assert(VM_Version::supports_lzcnt(), "encoding is treated as BSR");
8537   emit_int8((unsigned char)0xF3);
8538   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8539   emit_int24(0x0F, (unsigned char)0xBD, (0xC0 | encode));
8540 }
8541 
8542 void Assembler::movdq(XMMRegister dst, Register src) {
8543   // table D-1 says MMX/SSE2
8544   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8545   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8546   int encode = simd_prefix_and_encode(dst, xnoreg, as_XMMRegister(src->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8547   emit_int16(0x6E, (0xC0 | encode));
8548 }
8549 
8550 void Assembler::movdq(Register dst, XMMRegister src) {
8551   // table D-1 says MMX/SSE2
8552   NOT_LP64(assert(VM_Version::supports_sse2(), ""));
8553   InstructionAttr attributes(AVX_128bit, /* rex_w */ true, /* legacy_mode */ false, /* no_mask_reg */ true, /* uses_vl */ false);
8554   // swap src/dst to get correct prefix
8555   int encode = simd_prefix_and_encode(src, xnoreg, as_XMMRegister(dst->encoding()), VEX_SIMD_66, VEX_OPCODE_0F, &attributes);
8556   emit_int16(0x7E,
8557              (0xC0 | encode));
8558 }
8559 
8560 void Assembler::movq(Register dst, Register src) {
8561   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8562   emit_int16((unsigned char)0x8B,
8563              (0xC0 | encode));
8564 }
8565 
8566 void Assembler::movq(Register dst, Address src) {
8567   InstructionMark im(this);
8568   emit_int16(get_prefixq(src, dst), (unsigned char)0x8B);
8569   emit_operand(dst, src);
8570 }
8571 
8572 void Assembler::movq(Address dst, Register src) {
8573   InstructionMark im(this);
8574   emit_int16(get_prefixq(dst, src), (unsigned char)0x89);
8575   emit_operand(src, dst);
8576 }
8577 
8578 void Assembler::movsbq(Register dst, Address src) {
8579   InstructionMark im(this);
8580   emit_int24(get_prefixq(src, dst),
8581              0x0F,
8582              (unsigned char)0xBE);
8583   emit_operand(dst, src);
8584 }
8585 
8586 void Assembler::movsbq(Register dst, Register src) {
8587   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8588   emit_int24(0x0F, (unsigned char)0xBE, (0xC0 | encode));
8589 }
8590 
8591 void Assembler::movslq(Register dst, int32_t imm32) {
8592   // dbx shows movslq(rcx, 3) as movq     $0x0000000049000000,(%rbx)
8593   // and movslq(r8, 3); as movl     $0x0000000048000000,(%rbx)
8594   // as a result we shouldn't use until tested at runtime...
8595   ShouldNotReachHere();
8596   InstructionMark im(this);
8597   int encode = prefixq_and_encode(dst->encoding());
8598   emit_int8(0xC7 | encode);
8599   emit_int32(imm32);
8600 }
8601 
8602 void Assembler::movslq(Address dst, int32_t imm32) {
8603   assert(is_simm32(imm32), "lost bits");
8604   InstructionMark im(this);
8605   emit_int16(get_prefixq(dst), (unsigned char)0xC7);
8606   emit_operand(rax, dst, 4);
8607   emit_int32(imm32);
8608 }
8609 
8610 void Assembler::movslq(Register dst, Address src) {
8611   InstructionMark im(this);
8612   emit_int16(get_prefixq(src, dst), 0x63);
8613   emit_operand(dst, src);
8614 }
8615 
8616 void Assembler::movslq(Register dst, Register src) {
8617   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8618   emit_int16(0x63, (0xC0 | encode));
8619 }
8620 
8621 void Assembler::movswq(Register dst, Address src) {
8622   InstructionMark im(this);
8623   emit_int24(get_prefixq(src, dst),
8624              0x0F,
8625              (unsigned char)0xBF);
8626   emit_operand(dst, src);
8627 }
8628 
8629 void Assembler::movswq(Register dst, Register src) {
8630   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8631   emit_int24(0x0F, (unsigned char)0xBF, (0xC0 | encode));
8632 }
8633 
8634 void Assembler::movzbq(Register dst, Address src) {
8635   InstructionMark im(this);
8636   emit_int24(get_prefixq(src, dst),
8637              0x0F,
8638              (unsigned char)0xB6);
8639   emit_operand(dst, src);
8640 }
8641 
8642 void Assembler::movzbq(Register dst, Register src) {
8643   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8644   emit_int24(0x0F, (unsigned char)0xB6, (0xC0 | encode));
8645 }
8646 
8647 void Assembler::movzwq(Register dst, Address src) {
8648   InstructionMark im(this);
8649   emit_int24(get_prefixq(src, dst),
8650              0x0F,
8651              (unsigned char)0xB7);
8652   emit_operand(dst, src);
8653 }
8654 
8655 void Assembler::movzwq(Register dst, Register src) {
8656   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8657   emit_int24(0x0F, (unsigned char)0xB7, (0xC0 | encode));
8658 }
8659 
8660 void Assembler::mulq(Address src) {
8661   InstructionMark im(this);
8662   emit_int16(get_prefixq(src), (unsigned char)0xF7);
8663   emit_operand(rsp, src);
8664 }
8665 
8666 void Assembler::mulq(Register src) {
8667   int encode = prefixq_and_encode(src->encoding());
8668   emit_int16((unsigned char)0xF7, (0xE0 | encode));
8669 }
8670 
8671 void Assembler::mulxq(Register dst1, Register dst2, Register src) {
8672   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8673   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8674   int encode = vex_prefix_and_encode(dst1->encoding(), dst2->encoding(), src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_38, &attributes);
8675   emit_int16((unsigned char)0xF6, (0xC0 | encode));
8676 }
8677 
8678 void Assembler::negq(Register dst) {
8679   int encode = prefixq_and_encode(dst->encoding());
8680   emit_int16((unsigned char)0xF7, (0xD8 | encode));
8681 }
8682 
8683 void Assembler::notq(Register dst) {
8684   int encode = prefixq_and_encode(dst->encoding());
8685   emit_int16((unsigned char)0xF7, (0xD0 | encode));
8686 }
8687 
8688 void Assembler::btsq(Address dst, int imm8) {
8689   assert(isByte(imm8), "not a byte");
8690   InstructionMark im(this);
8691   emit_int24(get_prefixq(dst),
8692              0x0F,
8693              (unsigned char)0xBA);
8694   emit_operand(rbp /* 5 */, dst, 1);
8695   emit_int8(imm8);
8696 }
8697 
8698 void Assembler::btrq(Address dst, int imm8) {
8699   assert(isByte(imm8), "not a byte");
8700   InstructionMark im(this);
8701   emit_int24(get_prefixq(dst),
8702              0x0F,
8703              (unsigned char)0xBA);
8704   emit_operand(rsi /* 6 */, dst, 1);
8705   emit_int8(imm8);
8706 }
8707 
8708 void Assembler::orq(Address dst, int32_t imm32) {
8709   InstructionMark im(this);
8710   emit_int16(get_prefixq(dst), (unsigned char)0x81);
8711   emit_operand(rcx, dst, 4);
8712   emit_int32(imm32);
8713 }
8714 
8715 void Assembler::orq(Register dst, int32_t imm32) {
8716   (void) prefixq_and_encode(dst->encoding());
8717   emit_arith(0x81, 0xC8, dst, imm32);
8718 }
8719 
8720 void Assembler::orq(Register dst, Address src) {
8721   InstructionMark im(this);
8722   emit_int16(get_prefixq(src, dst), 0x0B);
8723   emit_operand(dst, src);
8724 }
8725 
8726 void Assembler::orq(Register dst, Register src) {
8727   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8728   emit_arith(0x0B, 0xC0, dst, src);
8729 }
8730 
8731 void Assembler::popcntq(Register dst, Address src) {
8732   assert(VM_Version::supports_popcnt(), "must support");
8733   InstructionMark im(this);
8734   emit_int32((unsigned char)0xF3,
8735              get_prefixq(src, dst),
8736              0x0F,
8737              (unsigned char)0xB8);
8738   emit_operand(dst, src);
8739 }
8740 
8741 void Assembler::popcntq(Register dst, Register src) {
8742   assert(VM_Version::supports_popcnt(), "must support");
8743   emit_int8((unsigned char)0xF3);
8744   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
8745   emit_int24(0x0F, (unsigned char)0xB8, (0xC0 | encode));
8746 }
8747 
8748 void Assembler::popq(Address dst) {
8749   InstructionMark im(this);
8750   emit_int16(get_prefixq(dst), (unsigned char)0x8F);
8751   emit_operand(rax, dst);
8752 }
8753 
8754 // Precomputable: popa, pusha, vzeroupper
8755 
8756 // The result of these routines are invariant from one invocation to another
8757 // invocation for the duration of a run. Caching the result on bootstrap
8758 // and copying it out on subsequent invocations can thus be beneficial
8759 static bool     precomputed = false;
8760 
8761 static u_char* popa_code  = NULL;
8762 static int     popa_len   = 0;
8763 
8764 static u_char* pusha_code = NULL;
8765 static int     pusha_len  = 0;
8766 
8767 static u_char* vzup_code  = NULL;
8768 static int     vzup_len   = 0;
8769 
8770 void Assembler::precompute_instructions() {
8771   assert(!Universe::is_fully_initialized(), "must still be single threaded");
8772   guarantee(!precomputed, "only once");
8773   precomputed = true;
8774   ResourceMark rm;
8775 
8776   // Make a temporary buffer big enough for the routines we're capturing
8777   int size = 256;
8778   char* tmp_code = NEW_RESOURCE_ARRAY(char, size);
8779   CodeBuffer buffer((address)tmp_code, size);
8780   MacroAssembler masm(&buffer);
8781 
8782   address begin_popa  = masm.code_section()->end();
8783   masm.popa_uncached();
8784   address end_popa    = masm.code_section()->end();
8785   masm.pusha_uncached();
8786   address end_pusha   = masm.code_section()->end();
8787   masm.vzeroupper_uncached();
8788   address end_vzup    = masm.code_section()->end();
8789 
8790   // Save the instructions to permanent buffers.
8791   popa_len = (int)(end_popa - begin_popa);
8792   popa_code = NEW_C_HEAP_ARRAY(u_char, popa_len, mtInternal);
8793   memcpy(popa_code, begin_popa, popa_len);
8794 
8795   pusha_len = (int)(end_pusha - end_popa);
8796   pusha_code = NEW_C_HEAP_ARRAY(u_char, pusha_len, mtInternal);
8797   memcpy(pusha_code, end_popa, pusha_len);
8798 
8799   vzup_len = (int)(end_vzup - end_pusha);
8800   if (vzup_len > 0) {
8801     vzup_code = NEW_C_HEAP_ARRAY(u_char, vzup_len, mtInternal);
8802     memcpy(vzup_code, end_pusha, vzup_len);
8803   } else {
8804     vzup_code = pusha_code; // dummy
8805   }
8806 
8807   assert(masm.code()->total_oop_size() == 0 &&
8808          masm.code()->total_metadata_size() == 0 &&
8809          masm.code()->total_relocation_size() == 0,
8810          "pre-computed code can't reference oops, metadata or contain relocations");
8811 }
8812 
8813 static void emit_copy(CodeSection* code_section, u_char* src, int src_len) {
8814   assert(src != NULL, "code to copy must have been pre-computed");
8815   assert(code_section->limit() - code_section->end() > src_len, "code buffer not large enough");
8816   address end = code_section->end();
8817   memcpy(end, src, src_len);
8818   code_section->set_end(end + src_len);
8819 }
8820 
8821 void Assembler::popa() { // 64bit
8822   emit_copy(code_section(), popa_code, popa_len);
8823 }
8824 
8825 void Assembler::popa_uncached() { // 64bit
8826   movq(r15, Address(rsp, 0));
8827   movq(r14, Address(rsp, wordSize));
8828   movq(r13, Address(rsp, 2 * wordSize));
8829   movq(r12, Address(rsp, 3 * wordSize));
8830   movq(r11, Address(rsp, 4 * wordSize));
8831   movq(r10, Address(rsp, 5 * wordSize));
8832   movq(r9,  Address(rsp, 6 * wordSize));
8833   movq(r8,  Address(rsp, 7 * wordSize));
8834   movq(rdi, Address(rsp, 8 * wordSize));
8835   movq(rsi, Address(rsp, 9 * wordSize));
8836   movq(rbp, Address(rsp, 10 * wordSize));
8837   // Skip rsp as it is restored automatically to the value
8838   // before the corresponding pusha when popa is done.
8839   movq(rbx, Address(rsp, 12 * wordSize));
8840   movq(rdx, Address(rsp, 13 * wordSize));
8841   movq(rcx, Address(rsp, 14 * wordSize));
8842   movq(rax, Address(rsp, 15 * wordSize));
8843 
8844   addq(rsp, 16 * wordSize);
8845 }
8846 
8847 // Does not actually store the value of rsp on the stack.
8848 // The slot for rsp just contains an arbitrary value.
8849 void Assembler::pusha() { // 64bit
8850   emit_copy(code_section(), pusha_code, pusha_len);
8851 }
8852 
8853 // Does not actually store the value of rsp on the stack.
8854 // The slot for rsp just contains an arbitrary value.
8855 void Assembler::pusha_uncached() { // 64bit
8856   subq(rsp, 16 * wordSize);
8857 
8858   movq(Address(rsp, 15 * wordSize), rax);
8859   movq(Address(rsp, 14 * wordSize), rcx);
8860   movq(Address(rsp, 13 * wordSize), rdx);
8861   movq(Address(rsp, 12 * wordSize), rbx);
8862   // Skip rsp as the value is normally not used. There are a few places where
8863   // the original value of rsp needs to be known but that can be computed
8864   // from the value of rsp immediately after pusha (rsp + 16 * wordSize).
8865   movq(Address(rsp, 10 * wordSize), rbp);
8866   movq(Address(rsp, 9 * wordSize), rsi);
8867   movq(Address(rsp, 8 * wordSize), rdi);
8868   movq(Address(rsp, 7 * wordSize), r8);
8869   movq(Address(rsp, 6 * wordSize), r9);
8870   movq(Address(rsp, 5 * wordSize), r10);
8871   movq(Address(rsp, 4 * wordSize), r11);
8872   movq(Address(rsp, 3 * wordSize), r12);
8873   movq(Address(rsp, 2 * wordSize), r13);
8874   movq(Address(rsp, wordSize), r14);
8875   movq(Address(rsp, 0), r15);
8876 }
8877 
8878 void Assembler::vzeroupper() {
8879   emit_copy(code_section(), vzup_code, vzup_len);
8880 }
8881 
8882 void Assembler::pushq(Address src) {
8883   InstructionMark im(this);
8884   emit_int16(get_prefixq(src), (unsigned char)0xFF);
8885   emit_operand(rsi, src);
8886 }
8887 
8888 void Assembler::rclq(Register dst, int imm8) {
8889   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8890   int encode = prefixq_and_encode(dst->encoding());
8891   if (imm8 == 1) {
8892     emit_int16((unsigned char)0xD1, (0xD0 | encode));
8893   } else {
8894     emit_int24((unsigned char)0xC1, (0xD0 | encode), imm8);
8895   }
8896 }
8897 
8898 void Assembler::rcrq(Register dst, int imm8) {
8899   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8900   int encode = prefixq_and_encode(dst->encoding());
8901   if (imm8 == 1) {
8902     emit_int16((unsigned char)0xD1, (0xD8 | encode));
8903   } else {
8904     emit_int24((unsigned char)0xC1, (0xD8 | encode), imm8);
8905   }
8906 }
8907 
8908 void Assembler::rorq(Register dst, int imm8) {
8909   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8910   int encode = prefixq_and_encode(dst->encoding());
8911   if (imm8 == 1) {
8912     emit_int16((unsigned char)0xD1, (0xC8 | encode));
8913   } else {
8914     emit_int24((unsigned char)0xC1, (0xc8 | encode), imm8);
8915   }
8916 }
8917 
8918 void Assembler::rorxq(Register dst, Register src, int imm8) {
8919   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8920   InstructionAttr attributes(AVX_128bit, /* vex_w */ true, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8921   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8922   emit_int24((unsigned char)0xF0, (0xC0 | encode), imm8);
8923 }
8924 
8925 void Assembler::rorxd(Register dst, Register src, int imm8) {
8926   assert(VM_Version::supports_bmi2(), "bit manipulation instructions not supported");
8927   InstructionAttr attributes(AVX_128bit, /* vex_w */ false, /* legacy_mode */ true, /* no_mask_reg */ true, /* uses_vl */ false);
8928   int encode = vex_prefix_and_encode(dst->encoding(), 0, src->encoding(), VEX_SIMD_F2, VEX_OPCODE_0F_3A, &attributes);
8929   emit_int24((unsigned char)0xF0, (0xC0 | encode), imm8);
8930 }
8931 
8932 void Assembler::sarq(Register dst, int imm8) {
8933   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8934   int encode = prefixq_and_encode(dst->encoding());
8935   if (imm8 == 1) {
8936     emit_int16((unsigned char)0xD1, (0xF8 | encode));
8937   } else {
8938     emit_int24((unsigned char)0xC1, (0xF8 | encode), imm8);
8939   }
8940 }
8941 
8942 void Assembler::sarq(Register dst) {
8943   int encode = prefixq_and_encode(dst->encoding());
8944   emit_int16((unsigned char)0xD3, (0xF8 | encode));
8945 }
8946 
8947 void Assembler::sbbq(Address dst, int32_t imm32) {
8948   InstructionMark im(this);
8949   prefixq(dst);
8950   emit_arith_operand(0x81, rbx, dst, imm32);
8951 }
8952 
8953 void Assembler::sbbq(Register dst, int32_t imm32) {
8954   (void) prefixq_and_encode(dst->encoding());
8955   emit_arith(0x81, 0xD8, dst, imm32);
8956 }
8957 
8958 void Assembler::sbbq(Register dst, Address src) {
8959   InstructionMark im(this);
8960   emit_int16(get_prefixq(src, dst), 0x1B);
8961   emit_operand(dst, src);
8962 }
8963 
8964 void Assembler::sbbq(Register dst, Register src) {
8965   (void) prefixq_and_encode(dst->encoding(), src->encoding());
8966   emit_arith(0x1B, 0xC0, dst, src);
8967 }
8968 
8969 void Assembler::shlq(Register dst, int imm8) {
8970   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8971   int encode = prefixq_and_encode(dst->encoding());
8972   if (imm8 == 1) {
8973     emit_int16((unsigned char)0xD1, (0xE0 | encode));
8974   } else {
8975     emit_int24((unsigned char)0xC1, (0xE0 | encode), imm8);
8976   }
8977 }
8978 
8979 void Assembler::shlq(Register dst) {
8980   int encode = prefixq_and_encode(dst->encoding());
8981   emit_int16((unsigned char)0xD3, (0xE0 | encode));
8982 }
8983 
8984 void Assembler::shrq(Register dst, int imm8) {
8985   assert(isShiftCount(imm8 >> 1), "illegal shift count");
8986   int encode = prefixq_and_encode(dst->encoding());
8987   emit_int24((unsigned char)0xC1, (0xE8 | encode), imm8);
8988 }
8989 
8990 void Assembler::shrq(Register dst) {
8991   int encode = prefixq_and_encode(dst->encoding());
8992   emit_int16((unsigned char)0xD3, 0xE8 | encode);
8993 }
8994 
8995 void Assembler::subq(Address dst, int32_t imm32) {
8996   InstructionMark im(this);
8997   prefixq(dst);
8998   emit_arith_operand(0x81, rbp, dst, imm32);
8999 }
9000 
9001 void Assembler::subq(Address dst, Register src) {
9002   InstructionMark im(this);
9003   emit_int16(get_prefixq(dst, src), 0x29);
9004   emit_operand(src, dst);
9005 }
9006 
9007 void Assembler::subq(Register dst, int32_t imm32) {
9008   (void) prefixq_and_encode(dst->encoding());
9009   emit_arith(0x81, 0xE8, dst, imm32);
9010 }
9011 
9012 // Force generation of a 4 byte immediate value even if it fits into 8bit
9013 void Assembler::subq_imm32(Register dst, int32_t imm32) {
9014   (void) prefixq_and_encode(dst->encoding());
9015   emit_arith_imm32(0x81, 0xE8, dst, imm32);
9016 }
9017 
9018 void Assembler::subq(Register dst, Address src) {
9019   InstructionMark im(this);
9020   emit_int16(get_prefixq(src, dst), 0x2B);
9021   emit_operand(dst, src);
9022 }
9023 
9024 void Assembler::subq(Register dst, Register src) {
9025   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9026   emit_arith(0x2B, 0xC0, dst, src);
9027 }
9028 
9029 void Assembler::testq(Register dst, int32_t imm32) {
9030   // not using emit_arith because test
9031   // doesn't support sign-extension of
9032   // 8bit operands
9033   int encode = dst->encoding();
9034   if (encode == 0) {
9035     emit_int16(REX_W, (unsigned char)0xA9);
9036   } else {
9037     encode = prefixq_and_encode(encode);
9038     emit_int16((unsigned char)0xF7, (0xC0 | encode));
9039   }
9040   emit_int32(imm32);
9041 }
9042 
9043 void Assembler::testq(Register dst, Register src) {
9044   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9045   emit_arith(0x85, 0xC0, dst, src);
9046 }
9047 
9048 void Assembler::testq(Register dst, Address src) {
9049   InstructionMark im(this);
9050   emit_int16(get_prefixq(src, dst), (unsigned char)0x85);
9051   emit_operand(dst, src);
9052 }
9053 
9054 void Assembler::xaddq(Address dst, Register src) {
9055   InstructionMark im(this);
9056   emit_int24(get_prefixq(dst, src), 0x0F, (unsigned char)0xC1);
9057   emit_operand(src, dst);
9058 }
9059 
9060 void Assembler::xchgq(Register dst, Address src) {
9061   InstructionMark im(this);
9062   emit_int16(get_prefixq(src, dst), (unsigned char)0x87);
9063   emit_operand(dst, src);
9064 }
9065 
9066 void Assembler::xchgq(Register dst, Register src) {
9067   int encode = prefixq_and_encode(dst->encoding(), src->encoding());
9068   emit_int16((unsigned char)0x87, (0xc0 | encode));
9069 }
9070 
9071 void Assembler::xorq(Register dst, Register src) {
9072   (void) prefixq_and_encode(dst->encoding(), src->encoding());
9073   emit_arith(0x33, 0xC0, dst, src);
9074 }
9075 
9076 void Assembler::xorq(Register dst, Address src) {
9077   InstructionMark im(this);
9078   emit_int16(get_prefixq(src, dst), 0x33);
9079   emit_operand(dst, src);
9080 }
9081 
9082 #endif // !LP64