1 /*
   2  * Copyright (c) 1997, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  public:
  42   // Support for VM calls
  43   //
  44   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  45   // may customize this version by overriding it for its purposes (e.g., to save/restore
  46   // additional registers when doing a VM call).
  47 
  48   virtual void call_VM_leaf_base(
  49     address entry_point,               // the entry point
  50     int     number_of_arguments        // the number of arguments to pop after the call
  51   );
  52 
  53  protected:
  54   // This is the base routine called by the different versions of call_VM. The interpreter
  55   // may customize this version by overriding it for its purposes (e.g., to save/restore
  56   // additional registers when doing a VM call).
  57   //
  58   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  59   // returns the register which contains the thread upon return. If a thread register has been
  60   // specified, the return value will correspond to that register. If no last_java_sp is specified
  61   // (noreg) than rsp will be used instead.
  62   virtual void call_VM_base(           // returns the register containing the thread upon return
  63     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  64     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  65     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  66     address  entry_point,              // the entry point
  67     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  68     bool     check_exceptions          // whether to check for pending exceptions after return
  69   );
  70 
  71   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  72 
  73   // helpers for FPU flag access
  74   // tmp is a temporary register, if none is available use noreg
  75   void save_rax   (Register tmp);
  76   void restore_rax(Register tmp);
  77 
  78  public:
  79   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  80 
  81  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  82  // The implementation is only non-empty for the InterpreterMacroAssembler,
  83  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  84  virtual void check_and_handle_popframe(Register java_thread);
  85  virtual void check_and_handle_earlyret(Register java_thread);
  86 
  87   Address as_Address(AddressLiteral adr);
  88   Address as_Address(ArrayAddress adr);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99   static bool uses_implicit_null_check(void* address);
 100 
 101   // Required platform-specific helpers for Label::patch_instructions.
 102   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 103   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 104     unsigned char op = branch[0];
 105     assert(op == 0xE8 /* call */ ||
 106         op == 0xE9 /* jmp */ ||
 107         op == 0xEB /* short jmp */ ||
 108         (op & 0xF0) == 0x70 /* short jcc */ ||
 109         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 110         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 111         "Invalid opcode at patch point");
 112 
 113     if (op == 0xEB || (op & 0xF0) == 0x70) {
 114       // short offset operators (jmp and jcc)
 115       char* disp = (char*) &branch[1];
 116       int imm8 = target - (address) &disp[1];
 117       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d",
 118                 file == NULL ? "<NULL>" : file, line);
 119       *disp = imm8;
 120     } else {
 121       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 122       int imm32 = target - (address) &disp[1];
 123       *disp = imm32;
 124     }
 125   }
 126 
 127   // The following 4 methods return the offset of the appropriate move instruction
 128 
 129   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 130   int load_unsigned_byte(Register dst, Address src);
 131   int load_unsigned_short(Register dst, Address src);
 132 
 133   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 134   int load_signed_byte(Register dst, Address src);
 135   int load_signed_short(Register dst, Address src);
 136 
 137   // Support for sign-extension (hi:lo = extend_sign(lo))
 138   void extend_sign(Register hi, Register lo);
 139 
 140   // Load and store values by size and signed-ness
 141   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 142   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 143 
 144   // Support for inc/dec with optimal instruction selection depending on value
 145 
 146   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 147   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 148 
 149   void decrementl(Address dst, int value = 1);
 150   void decrementl(Register reg, int value = 1);
 151 
 152   void decrementq(Register reg, int value = 1);
 153   void decrementq(Address dst, int value = 1);
 154 
 155   void incrementl(Address dst, int value = 1);
 156   void incrementl(Register reg, int value = 1);
 157 
 158   void incrementq(Register reg, int value = 1);
 159   void incrementq(Address dst, int value = 1);
 160 
 161   // Support optimal SSE move instructions.
 162   void movflt(XMMRegister dst, XMMRegister src) {
 163     if (dst-> encoding() == src->encoding()) return;
 164     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 165     else                       { movss (dst, src); return; }
 166   }
 167   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 168   void movflt(XMMRegister dst, AddressLiteral src);
 169   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 170 
 171   void movdbl(XMMRegister dst, XMMRegister src) {
 172     if (dst-> encoding() == src->encoding()) return;
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // jobjects
 297   void clear_jweak_tag(Register possibly_jweak);
 298   void resolve_jobject(Register value, Register thread, Register tmp);
 299 
 300   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 301   void c2bool(Register x);
 302 
 303   // C++ bool manipulation
 304 
 305   void movbool(Register dst, Address src);
 306   void movbool(Address dst, bool boolconst);
 307   void movbool(Address dst, Register src);
 308   void testbool(Register dst);
 309 
 310   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 311   void resolve_weak_handle(Register result, Register tmp);
 312   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 313   void load_method_holder_cld(Register rresult, Register rmethod);
 314 
 315   void load_method_holder(Register holder, Register method);
 316 
 317   // oop manipulations
 318   void load_klass(Register dst, Register src, Register tmp);
 319   void store_klass(Register dst, Register src, Register tmp);
 320 
 321   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 322                       Register tmp1, Register thread_tmp);
 323   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 324                        Register tmp1, Register tmp2);
 325 
 326   // Resolves obj access. Result is placed in the same register.
 327   // All other registers are preserved.
 328   void resolve(DecoratorSet decorators, Register obj);
 329 
 330   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 331                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 332   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 333                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 334   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 335                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 336 
 337   // Used for storing NULL. All other oop constants should be
 338   // stored using routines that take a jobject.
 339   void store_heap_oop_null(Address dst);
 340 
 341   void load_prototype_header(Register dst, Register src, Register tmp);
 342 
 343 #ifdef _LP64
 344   void store_klass_gap(Register dst, Register src);
 345 
 346   // This dummy is to prevent a call to store_heap_oop from
 347   // converting a zero (like NULL) into a Register by giving
 348   // the compiler two choices it can't resolve
 349 
 350   void store_heap_oop(Address dst, void* dummy);
 351 
 352   void encode_heap_oop(Register r);
 353   void decode_heap_oop(Register r);
 354   void encode_heap_oop_not_null(Register r);
 355   void decode_heap_oop_not_null(Register r);
 356   void encode_heap_oop_not_null(Register dst, Register src);
 357   void decode_heap_oop_not_null(Register dst, Register src);
 358 
 359   void set_narrow_oop(Register dst, jobject obj);
 360   void set_narrow_oop(Address dst, jobject obj);
 361   void cmp_narrow_oop(Register dst, jobject obj);
 362   void cmp_narrow_oop(Address dst, jobject obj);
 363 
 364   void encode_klass_not_null(Register r, Register tmp);
 365   void decode_klass_not_null(Register r, Register tmp);
 366   void encode_and_move_klass_not_null(Register dst, Register src);
 367   void decode_and_move_klass_not_null(Register dst, Register src);
 368   void set_narrow_klass(Register dst, Klass* k);
 369   void set_narrow_klass(Address dst, Klass* k);
 370   void cmp_narrow_klass(Register dst, Klass* k);
 371   void cmp_narrow_klass(Address dst, Klass* k);
 372 
 373   // if heap base register is used - reinit it with the correct value
 374   void reinit_heapbase();
 375 
 376   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 377 
 378 #endif // _LP64
 379 
 380   // Int division/remainder for Java
 381   // (as idivl, but checks for special case as described in JVM spec.)
 382   // returns idivl instruction offset for implicit exception handling
 383   int corrected_idivl(Register reg);
 384 
 385   // Long division/remainder for Java
 386   // (as idivq, but checks for special case as described in JVM spec.)
 387   // returns idivq instruction offset for implicit exception handling
 388   int corrected_idivq(Register reg);
 389 
 390   void int3();
 391 
 392   // Long operation macros for a 32bit cpu
 393   // Long negation for Java
 394   void lneg(Register hi, Register lo);
 395 
 396   // Long multiplication for Java
 397   // (destroys contents of eax, ebx, ecx and edx)
 398   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 399 
 400   // Long shifts for Java
 401   // (semantics as described in JVM spec.)
 402   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 403   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 404 
 405   // Long compare for Java
 406   // (semantics as described in JVM spec.)
 407   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 408 
 409 
 410   // misc
 411 
 412   // Sign extension
 413   void sign_extend_short(Register reg);
 414   void sign_extend_byte(Register reg);
 415 
 416   // Division by power of 2, rounding towards 0
 417   void division_with_shift(Register reg, int shift_value);
 418 
 419 #ifndef _LP64
 420   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 421   //
 422   // CF (corresponds to C0) if x < y
 423   // PF (corresponds to C2) if unordered
 424   // ZF (corresponds to C3) if x = y
 425   //
 426   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 427   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 428   void fcmp(Register tmp);
 429   // Variant of the above which allows y to be further down the stack
 430   // and which only pops x and y if specified. If pop_right is
 431   // specified then pop_left must also be specified.
 432   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 433 
 434   // Floating-point comparison for Java
 435   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 436   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 437   // (semantics as described in JVM spec.)
 438   void fcmp2int(Register dst, bool unordered_is_less);
 439   // Variant of the above which allows y to be further down the stack
 440   // and which only pops x and y if specified. If pop_right is
 441   // specified then pop_left must also be specified.
 442   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 443 
 444   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 445   // tmp is a temporary register, if none is available use noreg
 446   void fremr(Register tmp);
 447 
 448   // only if +VerifyFPU
 449   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 450 #endif // !LP64
 451 
 452   // dst = c = a * b + c
 453   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 454   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 455 
 456   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 457   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 458   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 459   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 460 
 461 
 462   // same as fcmp2int, but using SSE2
 463   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 464   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 465 
 466   // branch to L if FPU flag C2 is set/not set
 467   // tmp is a temporary register, if none is available use noreg
 468   void jC2 (Register tmp, Label& L);
 469   void jnC2(Register tmp, Label& L);
 470 
 471   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 472   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 473   void load_float(Address src);
 474 
 475   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 476   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 477   void store_float(Address dst);
 478 
 479   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 480   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 481   void load_double(Address src);
 482 
 483   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 484   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 485   void store_double(Address dst);
 486 
 487 #ifndef _LP64
 488   // Pop ST (ffree & fincstp combined)
 489   void fpop();
 490 
 491   void empty_FPU_stack();
 492 #endif // !_LP64
 493 
 494   void push_IU_state();
 495   void pop_IU_state();
 496 
 497   void push_FPU_state();
 498   void pop_FPU_state();
 499 
 500   void push_CPU_state();
 501   void pop_CPU_state();
 502 
 503   // Round up to a power of two
 504   void round_to(Register reg, int modulus);
 505 
 506   // Callee saved registers handling
 507   void push_callee_saved_registers();
 508   void pop_callee_saved_registers();
 509 
 510   // allocation
 511   void eden_allocate(
 512     Register thread,                   // Current thread
 513     Register obj,                      // result: pointer to object after successful allocation
 514     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 515     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 516     Register t1,                       // temp register
 517     Label&   slow_case                 // continuation point if fast allocation fails
 518   );
 519   void tlab_allocate(
 520     Register thread,                   // Current thread
 521     Register obj,                      // result: pointer to object after successful allocation
 522     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 523     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 524     Register t1,                       // temp register
 525     Register t2,                       // temp register
 526     Label&   slow_case                 // continuation point if fast allocation fails
 527   );
 528   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 529 
 530   // interface method calling
 531   void lookup_interface_method(Register recv_klass,
 532                                Register intf_klass,
 533                                RegisterOrConstant itable_index,
 534                                Register method_result,
 535                                Register scan_temp,
 536                                Label& no_such_interface,
 537                                bool return_method = true);
 538 
 539   // virtual method calling
 540   void lookup_virtual_method(Register recv_klass,
 541                              RegisterOrConstant vtable_index,
 542                              Register method_result);
 543 
 544   // Test sub_klass against super_klass, with fast and slow paths.
 545 
 546   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 547   // One of the three labels can be NULL, meaning take the fall-through.
 548   // If super_check_offset is -1, the value is loaded up from super_klass.
 549   // No registers are killed, except temp_reg.
 550   void check_klass_subtype_fast_path(Register sub_klass,
 551                                      Register super_klass,
 552                                      Register temp_reg,
 553                                      Label* L_success,
 554                                      Label* L_failure,
 555                                      Label* L_slow_path,
 556                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 557 
 558   // The rest of the type check; must be wired to a corresponding fast path.
 559   // It does not repeat the fast path logic, so don't use it standalone.
 560   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 561   // Updates the sub's secondary super cache as necessary.
 562   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 563   void check_klass_subtype_slow_path(Register sub_klass,
 564                                      Register super_klass,
 565                                      Register temp_reg,
 566                                      Register temp2_reg,
 567                                      Label* L_success,
 568                                      Label* L_failure,
 569                                      bool set_cond_codes = false);
 570 
 571   // Simplified, combined version, good for typical uses.
 572   // Falls through on failure.
 573   void check_klass_subtype(Register sub_klass,
 574                            Register super_klass,
 575                            Register temp_reg,
 576                            Label& L_success);
 577 
 578   void clinit_barrier(Register klass,
 579                       Register thread,
 580                       Label* L_fast_path = NULL,
 581                       Label* L_slow_path = NULL);
 582 
 583   // method handles (JSR 292)
 584   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 585 
 586   //----
 587   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 588 
 589   // Debugging
 590 
 591   // only if +VerifyOops
 592   void _verify_oop(Register reg, const char* s, const char* file, int line);
 593   void _verify_oop_addr(Address addr, const char* s, const char* file, int line);
 594 
 595   // TODO: verify method and klass metadata (compare against vptr?)
 596   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 597   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 598 
 599 #define verify_oop(reg) _verify_oop(reg, "broken oop " #reg, __FILE__, __LINE__)
 600 #define verify_oop_msg(reg, msg) _verify_oop(reg, "broken oop " #reg ", " #msg, __FILE__, __LINE__)
 601 #define verify_oop_addr(addr) _verify_oop_addr(addr, "broken oop addr " #addr, __FILE__, __LINE__)
 602 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 603 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 604 
 605   // Verify or restore cpu control state after JNI call
 606   void restore_cpu_control_state_after_jni();
 607 
 608   // prints msg, dumps registers and stops execution
 609   void stop(const char* msg);
 610 
 611   // prints msg and continues
 612   void warn(const char* msg);
 613 
 614   // dumps registers and other state
 615   void print_state();
 616 
 617   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 618   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 619   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 620   static void print_state64(int64_t pc, int64_t regs[]);
 621 
 622   void os_breakpoint();
 623 
 624   void untested()                                { stop("untested"); }
 625 
 626   void unimplemented(const char* what = "");
 627 
 628   void should_not_reach_here()                   { stop("should not reach here"); }
 629 
 630   void print_CPU_state();
 631 
 632   // Stack overflow checking
 633   void bang_stack_with_offset(int offset) {
 634     // stack grows down, caller passes positive offset
 635     assert(offset > 0, "must bang with negative offset");
 636     movl(Address(rsp, (-offset)), rax);
 637   }
 638 
 639   // Writes to stack successive pages until offset reached to check for
 640   // stack overflow + shadow pages.  Also, clobbers tmp
 641   void bang_stack_size(Register size, Register tmp);
 642 
 643   // Check for reserved stack access in method being exited (for JIT)
 644   void reserved_stack_check();
 645 
 646   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 647                                                 Register tmp,
 648                                                 int offset);
 649 
 650   // If thread_reg is != noreg the code assumes the register passed contains
 651   // the thread (required on 64 bit).
 652   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 653 
 654   void verify_tlab();
 655 
 656   // Biased locking support
 657   // lock_reg and obj_reg must be loaded up with the appropriate values.
 658   // swap_reg must be rax, and is killed.
 659   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 660   // be killed; if not supplied, push/pop will be used internally to
 661   // allocate a temporary (inefficient, avoid if possible).
 662   // Optional slow case is for implementations (interpreter and C1) which branch to
 663   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 664   // Returns offset of first potentially-faulting instruction for null
 665   // check info (currently consumed only by C1). If
 666   // swap_reg_contains_mark is true then returns -1 as it is assumed
 667   // the calling code has already passed any potential faults.
 668   int biased_locking_enter(Register lock_reg, Register obj_reg,
 669                            Register swap_reg, Register tmp_reg,
 670                            Register tmp_reg2, bool swap_reg_contains_mark,
 671                            Label& done, Label* slow_case = NULL,
 672                            BiasedLockingCounters* counters = NULL);
 673   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 674 
 675   Condition negate_condition(Condition cond);
 676 
 677   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 678   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 679   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 680   // here in MacroAssembler. The major exception to this rule is call
 681 
 682   // Arithmetics
 683 
 684 
 685   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 686   void addptr(Address dst, Register src);
 687 
 688   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 689   void addptr(Register dst, int32_t src);
 690   void addptr(Register dst, Register src);
 691   void addptr(Register dst, RegisterOrConstant src) {
 692     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 693     else                   addptr(dst,       src.as_register());
 694   }
 695 
 696   void andptr(Register dst, int32_t src);
 697   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 698 
 699   void cmp8(AddressLiteral src1, int imm);
 700 
 701   // renamed to drag out the casting of address to int32_t/intptr_t
 702   void cmp32(Register src1, int32_t imm);
 703 
 704   void cmp32(AddressLiteral src1, int32_t imm);
 705   // compare reg - mem, or reg - &mem
 706   void cmp32(Register src1, AddressLiteral src2);
 707 
 708   void cmp32(Register src1, Address src2);
 709 
 710 #ifndef _LP64
 711   void cmpklass(Address dst, Metadata* obj);
 712   void cmpklass(Register dst, Metadata* obj);
 713   void cmpoop(Address dst, jobject obj);
 714   void cmpoop_raw(Address dst, jobject obj);
 715 #endif // _LP64
 716 
 717   void cmpoop(Register src1, Register src2);
 718   void cmpoop(Register src1, Address src2);
 719   void cmpoop(Register dst, jobject obj);
 720   void cmpoop_raw(Register dst, jobject obj);
 721 
 722   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 723   void cmpptr(Address src1, AddressLiteral src2);
 724 
 725   void cmpptr(Register src1, AddressLiteral src2);
 726 
 727   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 728   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 729   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 730 
 731   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 732   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 733 
 734   // cmp64 to avoild hiding cmpq
 735   void cmp64(Register src1, AddressLiteral src);
 736 
 737   void cmpxchgptr(Register reg, Address adr);
 738 
 739   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 740 
 741 
 742   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 743   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 744 
 745 
 746   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 747 
 748   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 749 
 750   void shlptr(Register dst, int32_t shift);
 751   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 752 
 753   void shrptr(Register dst, int32_t shift);
 754   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 755 
 756   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 757   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 758 
 759   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 760 
 761   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 762   void subptr(Register dst, int32_t src);
 763   // Force generation of a 4 byte immediate value even if it fits into 8bit
 764   void subptr_imm32(Register dst, int32_t src);
 765   void subptr(Register dst, Register src);
 766   void subptr(Register dst, RegisterOrConstant src) {
 767     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 768     else                   subptr(dst,       src.as_register());
 769   }
 770 
 771   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 772   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 773 
 774   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 775   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 776 
 777   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 778 
 779 
 780 
 781   // Helper functions for statistics gathering.
 782   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 783   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 784   // Unconditional atomic increment.
 785   void atomic_incl(Address counter_addr);
 786   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 787 #ifdef _LP64
 788   void atomic_incq(Address counter_addr);
 789   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 790 #endif
 791   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 792   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 793 
 794   void lea(Register dst, AddressLiteral adr);
 795   void lea(Address dst, AddressLiteral adr);
 796   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 797 
 798   void leal32(Register dst, Address src) { leal(dst, src); }
 799 
 800   // Import other testl() methods from the parent class or else
 801   // they will be hidden by the following overriding declaration.
 802   using Assembler::testl;
 803   void testl(Register dst, AddressLiteral src);
 804 
 805   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 806   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 807   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 808   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 809 
 810   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 811   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 812   void testptr(Register src1, Register src2);
 813 
 814   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 815   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 816 
 817   // Calls
 818 
 819   void call(Label& L, relocInfo::relocType rtype);
 820   void call(Register entry);
 821 
 822   // NOTE: this call transfers to the effective address of entry NOT
 823   // the address contained by entry. This is because this is more natural
 824   // for jumps/calls.
 825   void call(AddressLiteral entry);
 826 
 827   // Emit the CompiledIC call idiom
 828   void ic_call(address entry, jint method_index = 0);
 829 
 830   // Jumps
 831 
 832   // NOTE: these jumps tranfer to the effective address of dst NOT
 833   // the address contained by dst. This is because this is more natural
 834   // for jumps/calls.
 835   void jump(AddressLiteral dst);
 836   void jump_cc(Condition cc, AddressLiteral dst);
 837 
 838   // 32bit can do a case table jump in one instruction but we no longer allow the base
 839   // to be installed in the Address class. This jump will tranfers to the address
 840   // contained in the location described by entry (not the address of entry)
 841   void jump(ArrayAddress entry);
 842 
 843   // Floating
 844 
 845   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 846   void andpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 847   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 848 
 849   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 850   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 851   void andps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
 852 
 853   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 854   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 855   void comiss(XMMRegister dst, AddressLiteral src);
 856 
 857   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 858   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 859   void comisd(XMMRegister dst, AddressLiteral src);
 860 
 861 #ifndef _LP64
 862   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 863   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 864 
 865   void fldcw(Address src) { Assembler::fldcw(src); }
 866   void fldcw(AddressLiteral src);
 867 
 868   void fld_s(int index)   { Assembler::fld_s(index); }
 869   void fld_s(Address src) { Assembler::fld_s(src); }
 870   void fld_s(AddressLiteral src);
 871 
 872   void fld_d(Address src) { Assembler::fld_d(src); }
 873   void fld_d(AddressLiteral src);
 874 
 875   void fld_x(Address src) { Assembler::fld_x(src); }
 876   void fld_x(AddressLiteral src);
 877 
 878   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 879   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 880 #endif // _LP64
 881 
 882   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 883   void ldmxcsr(AddressLiteral src);
 884 
 885 #ifdef _LP64
 886  private:
 887   void sha256_AVX2_one_round_compute(
 888     Register  reg_old_h,
 889     Register  reg_a,
 890     Register  reg_b,
 891     Register  reg_c,
 892     Register  reg_d,
 893     Register  reg_e,
 894     Register  reg_f,
 895     Register  reg_g,
 896     Register  reg_h,
 897     int iter);
 898   void sha256_AVX2_four_rounds_compute_first(int start);
 899   void sha256_AVX2_four_rounds_compute_last(int start);
 900   void sha256_AVX2_one_round_and_sched(
 901         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 902         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 903         XMMRegister xmm_2,     /* ymm6 */
 904         XMMRegister xmm_3,     /* ymm7 */
 905         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 906         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 907         Register    reg_c,      /* edi */
 908         Register    reg_d,      /* esi */
 909         Register    reg_e,      /* r8d */
 910         Register    reg_f,      /* r9d */
 911         Register    reg_g,      /* r10d */
 912         Register    reg_h,      /* r11d */
 913         int iter);
 914 
 915   void addm(int disp, Register r1, Register r2);
 916   void gfmul(XMMRegister tmp0, XMMRegister t);
 917   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 918                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 919   void generateHtbl_one_block(Register htbl);
 920   void generateHtbl_eight_blocks(Register htbl);
 921  public:
 922   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 923                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 924                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 925                    bool multi_block, XMMRegister shuf_mask);
 926   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 927 #endif
 928 
 929 #ifdef _LP64
 930  private:
 931   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 932                                      Register e, Register f, Register g, Register h, int iteration);
 933 
 934   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 935                                           Register a, Register b, Register c, Register d, Register e, Register f,
 936                                           Register g, Register h, int iteration);
 937 
 938   void addmq(int disp, Register r1, Register r2);
 939  public:
 940   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 941                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 942                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 943                    XMMRegister shuf_mask);
 944 private:
 945   void roundEnc(XMMRegister key, int rnum);
 946   void lastroundEnc(XMMRegister key, int rnum);
 947   void roundDec(XMMRegister key, int rnum);
 948   void lastroundDec(XMMRegister key, int rnum);
 949   void ev_load_key(XMMRegister xmmdst, Register key, int offset, XMMRegister xmm_shuf_mask);
 950 
 951 public:
 952   void aesecb_encrypt(Register source_addr, Register dest_addr, Register key, Register len);
 953   void aesecb_decrypt(Register source_addr, Register dest_addr, Register key, Register len);
 954   void aesctr_encrypt(Register src_addr, Register dest_addr, Register key, Register counter,
 955                       Register len_reg, Register used, Register used_addr, Register saved_encCounter_start);
 956 
 957 #endif
 958 
 959   void fast_md5(Register buf, Address state, Address ofs, Address limit,
 960                 bool multi_block);
 961 
 962   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 963                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 964                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 965                  bool multi_block);
 966 
 967 #ifdef _LP64
 968   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 969                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 970                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 971                    bool multi_block, XMMRegister shuf_mask);
 972 #else
 973   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 974                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 975                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 976                    bool multi_block);
 977 #endif
 978 
 979   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 980                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 981                 Register rax, Register rcx, Register rdx, Register tmp);
 982 
 983 #ifdef _LP64
 984   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 985                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 986                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
 987 
 988   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 989                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 990                   Register rax, Register rcx, Register rdx, Register r11);
 991 
 992   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
 993                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
 994                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
 995 
 996   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 997                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 998                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
 999                 Register tmp3, Register tmp4);
1000 
1001   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1002                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1003                 Register rax, Register rcx, Register rdx, Register tmp1,
1004                 Register tmp2, Register tmp3, Register tmp4);
1005   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1006                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1007                 Register rax, Register rcx, Register rdx, Register tmp1,
1008                 Register tmp2, Register tmp3, Register tmp4);
1009 #else
1010   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1011                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1012                 Register rax, Register rcx, Register rdx, Register tmp1);
1013 
1014   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1015                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1016                 Register rax, Register rcx, Register rdx, Register tmp);
1017 
1018   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1019                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1020                 Register rdx, Register tmp);
1021 
1022   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1023                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1024                 Register rax, Register rbx, Register rdx);
1025 
1026   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rcx, Register rdx, Register tmp);
1029 
1030   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1031                         Register edx, Register ebx, Register esi, Register edi,
1032                         Register ebp, Register esp);
1033 
1034   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1035                          Register esi, Register edi, Register ebp, Register esp);
1036 
1037   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1038                         Register edx, Register ebx, Register esi, Register edi,
1039                         Register ebp, Register esp);
1040 
1041   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rcx, Register rdx, Register tmp);
1044 #endif
1045 
1046 private:
1047 
1048   // these are private because users should be doing movflt/movdbl
1049 
1050   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1051   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1052   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1053   void movss(XMMRegister dst, AddressLiteral src);
1054 
1055   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1056   void movlpd(XMMRegister dst, AddressLiteral src);
1057 
1058 public:
1059 
1060   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1061   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1062   void addsd(XMMRegister dst, AddressLiteral src);
1063 
1064   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1065   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1066   void addss(XMMRegister dst, AddressLiteral src);
1067 
1068   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1069   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1070   void addpd(XMMRegister dst, AddressLiteral src);
1071 
1072   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1073   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1074   void divsd(XMMRegister dst, AddressLiteral src);
1075 
1076   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1077   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1078   void divss(XMMRegister dst, AddressLiteral src);
1079 
1080   // Move Unaligned Double Quadword
1081   void movdqu(Address     dst, XMMRegister src);
1082   void movdqu(XMMRegister dst, Address src);
1083   void movdqu(XMMRegister dst, XMMRegister src);
1084   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1085   // AVX Unaligned forms
1086   void vmovdqu(Address     dst, XMMRegister src);
1087   void vmovdqu(XMMRegister dst, Address src);
1088   void vmovdqu(XMMRegister dst, XMMRegister src);
1089   void vmovdqu(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1090   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1091   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1092   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1093   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1094 
1095   // Move Aligned Double Quadword
1096   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1097   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1098   void movdqa(XMMRegister dst, AddressLiteral src);
1099 
1100   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1101   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1102   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1103   void movsd(XMMRegister dst, AddressLiteral src);
1104 
1105   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1106   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1107   void mulpd(XMMRegister dst, AddressLiteral src);
1108 
1109   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1110   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1111   void mulsd(XMMRegister dst, AddressLiteral src);
1112 
1113   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1114   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1115   void mulss(XMMRegister dst, AddressLiteral src);
1116 
1117   // Carry-Less Multiplication Quadword
1118   void pclmulldq(XMMRegister dst, XMMRegister src) {
1119     // 0x00 - multiply lower 64 bits [0:63]
1120     Assembler::pclmulqdq(dst, src, 0x00);
1121   }
1122   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1123     // 0x11 - multiply upper 64 bits [64:127]
1124     Assembler::pclmulqdq(dst, src, 0x11);
1125   }
1126 
1127   void pcmpeqb(XMMRegister dst, XMMRegister src);
1128   void pcmpeqw(XMMRegister dst, XMMRegister src);
1129 
1130   void pcmpestri(XMMRegister dst, Address src, int imm8);
1131   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1132 
1133   void pmovzxbw(XMMRegister dst, XMMRegister src);
1134   void pmovzxbw(XMMRegister dst, Address src);
1135 
1136   void pmovmskb(Register dst, XMMRegister src);
1137 
1138   void ptest(XMMRegister dst, XMMRegister src);
1139 
1140   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1141   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1142   void sqrtsd(XMMRegister dst, AddressLiteral src);
1143 
1144   void roundsd(XMMRegister dst, XMMRegister src, int32_t rmode)    { Assembler::roundsd(dst, src, rmode); }
1145   void roundsd(XMMRegister dst, Address src, int32_t rmode)        { Assembler::roundsd(dst, src, rmode); }
1146   void roundsd(XMMRegister dst, AddressLiteral src, int32_t rmode, Register scratch_reg);
1147 
1148   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1149   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1150   void sqrtss(XMMRegister dst, AddressLiteral src);
1151 
1152   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1153   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1154   void subsd(XMMRegister dst, AddressLiteral src);
1155 
1156   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1157   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1158   void subss(XMMRegister dst, AddressLiteral src);
1159 
1160   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1161   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1162   void ucomiss(XMMRegister dst, AddressLiteral src);
1163 
1164   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1165   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1166   void ucomisd(XMMRegister dst, AddressLiteral src);
1167 
1168   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1169   void xorpd(XMMRegister dst, XMMRegister src);
1170   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1171   void xorpd(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1172 
1173   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1174   void xorps(XMMRegister dst, XMMRegister src);
1175   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1176   void xorps(XMMRegister dst, AddressLiteral src, Register scratch_reg = rscratch1);
1177 
1178   // Shuffle Bytes
1179   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1180   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1181   void pshufb(XMMRegister dst, AddressLiteral src);
1182   // AVX 3-operands instructions
1183 
1184   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1185   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1186   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1187 
1188   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1189   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1190   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1191 
1192   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1193   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1194 
1195   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1196   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1197 
1198   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1199   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1200 
1201   void vpaddd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1202   void vpaddd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpaddd(dst, nds, src, vector_len); }
1203   void vpaddd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register rscratch);
1204 
1205   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1206   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1207   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1208 
1209   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1210   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1211 
1212   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1213 
1214   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1215 
1216   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1217   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1218 
1219   void vpmovmskb(Register dst, XMMRegister src);
1220 
1221   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1222   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1223 
1224   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1225   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1226 
1227   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1228   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1229 
1230   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1231   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1232 
1233   void evpsraq(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1234   void evpsraq(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1235 
1236   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1237   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1238 
1239   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1240   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1241 
1242   void vptest(XMMRegister dst, XMMRegister src);
1243 
1244   void punpcklbw(XMMRegister dst, XMMRegister src);
1245   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1246 
1247   void pshufd(XMMRegister dst, Address src, int mode);
1248   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1249 
1250   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1251   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1252 
1253   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1254   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1255   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1256 
1257   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1258   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1259   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1260 
1261   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1262   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1263   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1264 
1265   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1266   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1267   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1268 
1269   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1270   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1271   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1272 
1273   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1274   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1275   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1276 
1277   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1278   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1279   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1280 
1281   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1282   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1283   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1284 
1285   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1286   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1287 
1288   // AVX Vector instructions
1289 
1290   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1291   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1292   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1293 
1294   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1295   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1296   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1297 
1298   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1299     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1300       Assembler::vpxor(dst, nds, src, vector_len);
1301     else
1302       Assembler::vxorpd(dst, nds, src, vector_len);
1303   }
1304   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1305     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1306       Assembler::vpxor(dst, nds, src, vector_len);
1307     else
1308       Assembler::vxorpd(dst, nds, src, vector_len);
1309   }
1310   void vpxor(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len, Register scratch_reg = rscratch1);
1311 
1312   // Simple version for AVX2 256bit vectors
1313   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1314   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1315 
1316   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1317     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1318       Assembler::vinserti32x4(dst, dst, src, imm8);
1319     } else if (UseAVX > 1) {
1320       // vinserti128 is available only in AVX2
1321       Assembler::vinserti128(dst, nds, src, imm8);
1322     } else {
1323       Assembler::vinsertf128(dst, nds, src, imm8);
1324     }
1325   }
1326 
1327   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1328     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1329       Assembler::vinserti32x4(dst, dst, src, imm8);
1330     } else if (UseAVX > 1) {
1331       // vinserti128 is available only in AVX2
1332       Assembler::vinserti128(dst, nds, src, imm8);
1333     } else {
1334       Assembler::vinsertf128(dst, nds, src, imm8);
1335     }
1336   }
1337 
1338   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1339     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1340       Assembler::vextracti32x4(dst, src, imm8);
1341     } else if (UseAVX > 1) {
1342       // vextracti128 is available only in AVX2
1343       Assembler::vextracti128(dst, src, imm8);
1344     } else {
1345       Assembler::vextractf128(dst, src, imm8);
1346     }
1347   }
1348 
1349   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1350     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1351       Assembler::vextracti32x4(dst, src, imm8);
1352     } else if (UseAVX > 1) {
1353       // vextracti128 is available only in AVX2
1354       Assembler::vextracti128(dst, src, imm8);
1355     } else {
1356       Assembler::vextractf128(dst, src, imm8);
1357     }
1358   }
1359 
1360   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1361   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1362     vinserti128(dst, dst, src, 1);
1363   }
1364   void vinserti128_high(XMMRegister dst, Address src) {
1365     vinserti128(dst, dst, src, 1);
1366   }
1367   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1368     vextracti128(dst, src, 1);
1369   }
1370   void vextracti128_high(Address dst, XMMRegister src) {
1371     vextracti128(dst, src, 1);
1372   }
1373 
1374   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1375     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1376       Assembler::vinsertf32x4(dst, dst, src, 1);
1377     } else {
1378       Assembler::vinsertf128(dst, dst, src, 1);
1379     }
1380   }
1381 
1382   void vinsertf128_high(XMMRegister dst, Address src) {
1383     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1384       Assembler::vinsertf32x4(dst, dst, src, 1);
1385     } else {
1386       Assembler::vinsertf128(dst, dst, src, 1);
1387     }
1388   }
1389 
1390   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1391     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1392       Assembler::vextractf32x4(dst, src, 1);
1393     } else {
1394       Assembler::vextractf128(dst, src, 1);
1395     }
1396   }
1397 
1398   void vextractf128_high(Address dst, XMMRegister src) {
1399     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1400       Assembler::vextractf32x4(dst, src, 1);
1401     } else {
1402       Assembler::vextractf128(dst, src, 1);
1403     }
1404   }
1405 
1406   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1407   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1408     Assembler::vinserti64x4(dst, dst, src, 1);
1409   }
1410   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1411     Assembler::vinsertf64x4(dst, dst, src, 1);
1412   }
1413   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1414     Assembler::vextracti64x4(dst, src, 1);
1415   }
1416   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1417     Assembler::vextractf64x4(dst, src, 1);
1418   }
1419   void vextractf64x4_high(Address dst, XMMRegister src) {
1420     Assembler::vextractf64x4(dst, src, 1);
1421   }
1422   void vinsertf64x4_high(XMMRegister dst, Address src) {
1423     Assembler::vinsertf64x4(dst, dst, src, 1);
1424   }
1425 
1426   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1427   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1428     vinserti128(dst, dst, src, 0);
1429   }
1430   void vinserti128_low(XMMRegister dst, Address src) {
1431     vinserti128(dst, dst, src, 0);
1432   }
1433   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1434     vextracti128(dst, src, 0);
1435   }
1436   void vextracti128_low(Address dst, XMMRegister src) {
1437     vextracti128(dst, src, 0);
1438   }
1439 
1440   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1441     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1442       Assembler::vinsertf32x4(dst, dst, src, 0);
1443     } else {
1444       Assembler::vinsertf128(dst, dst, src, 0);
1445     }
1446   }
1447 
1448   void vinsertf128_low(XMMRegister dst, Address src) {
1449     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1450       Assembler::vinsertf32x4(dst, dst, src, 0);
1451     } else {
1452       Assembler::vinsertf128(dst, dst, src, 0);
1453     }
1454   }
1455 
1456   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1457     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1458       Assembler::vextractf32x4(dst, src, 0);
1459     } else {
1460       Assembler::vextractf128(dst, src, 0);
1461     }
1462   }
1463 
1464   void vextractf128_low(Address dst, XMMRegister src) {
1465     if (UseAVX > 2 && VM_Version::supports_avx512novl()) {
1466       Assembler::vextractf32x4(dst, src, 0);
1467     } else {
1468       Assembler::vextractf128(dst, src, 0);
1469     }
1470   }
1471 
1472   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1473   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1474     Assembler::vinserti64x4(dst, dst, src, 0);
1475   }
1476   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1477     Assembler::vinsertf64x4(dst, dst, src, 0);
1478   }
1479   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1480     Assembler::vextracti64x4(dst, src, 0);
1481   }
1482   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1483     Assembler::vextractf64x4(dst, src, 0);
1484   }
1485   void vextractf64x4_low(Address dst, XMMRegister src) {
1486     Assembler::vextractf64x4(dst, src, 0);
1487   }
1488   void vinsertf64x4_low(XMMRegister dst, Address src) {
1489     Assembler::vinsertf64x4(dst, dst, src, 0);
1490   }
1491 
1492   // Carry-Less Multiplication Quadword
1493   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1494     // 0x00 - multiply lower 64 bits [0:63]
1495     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1496   }
1497   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1498     // 0x11 - multiply upper 64 bits [64:127]
1499     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1500   }
1501   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1502     // 0x10 - multiply nds[0:63] and src[64:127]
1503     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1504   }
1505   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1506     //0x01 - multiply nds[64:127] and src[0:63]
1507     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1508   }
1509 
1510   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1511     // 0x00 - multiply lower 64 bits [0:63]
1512     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1513   }
1514   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1515     // 0x11 - multiply upper 64 bits [64:127]
1516     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1517   }
1518 
1519   // Data
1520 
1521   void cmov32( Condition cc, Register dst, Address  src);
1522   void cmov32( Condition cc, Register dst, Register src);
1523 
1524   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1525 
1526   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1527   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1528 
1529   void movoop(Register dst, jobject obj);
1530   void movoop(Address dst, jobject obj);
1531 
1532   void mov_metadata(Register dst, Metadata* obj);
1533   void mov_metadata(Address dst, Metadata* obj);
1534 
1535   void movptr(ArrayAddress dst, Register src);
1536   // can this do an lea?
1537   void movptr(Register dst, ArrayAddress src);
1538 
1539   void movptr(Register dst, Address src);
1540 
1541 #ifdef _LP64
1542   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1543 #else
1544   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1545 #endif
1546 
1547   void movptr(Register dst, intptr_t src);
1548   void movptr(Register dst, Register src);
1549   void movptr(Address dst, intptr_t src);
1550 
1551   void movptr(Address dst, Register src);
1552 
1553   void movptr(Register dst, RegisterOrConstant src) {
1554     if (src.is_constant()) movptr(dst, src.as_constant());
1555     else                   movptr(dst, src.as_register());
1556   }
1557 
1558 #ifdef _LP64
1559   // Generally the next two are only used for moving NULL
1560   // Although there are situations in initializing the mark word where
1561   // they could be used. They are dangerous.
1562 
1563   // They only exist on LP64 so that int32_t and intptr_t are not the same
1564   // and we have ambiguous declarations.
1565 
1566   void movptr(Address dst, int32_t imm32);
1567   void movptr(Register dst, int32_t imm32);
1568 #endif // _LP64
1569 
1570   // to avoid hiding movl
1571   void mov32(AddressLiteral dst, Register src);
1572   void mov32(Register dst, AddressLiteral src);
1573 
1574   // to avoid hiding movb
1575   void movbyte(ArrayAddress dst, int src);
1576 
1577   // Import other mov() methods from the parent class or else
1578   // they will be hidden by the following overriding declaration.
1579   using Assembler::movdl;
1580   using Assembler::movq;
1581   void movdl(XMMRegister dst, AddressLiteral src);
1582   void movq(XMMRegister dst, AddressLiteral src);
1583 
1584   // Can push value or effective address
1585   void pushptr(AddressLiteral src);
1586 
1587   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1588   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1589 
1590   void pushoop(jobject obj);
1591   void pushklass(Metadata* obj);
1592 
1593   // sign extend as need a l to ptr sized element
1594   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1595   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1596 
1597 
1598  public:
1599   // C2 compiled method's prolog code.
1600   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b, bool is_stub);
1601 
1602   // clear memory of size 'cnt' qwords, starting at 'base';
1603   // if 'is_large' is set, do not try to produce short loop
1604   void clear_mem(Register base, Register cnt, Register rtmp, XMMRegister xtmp, bool is_large);
1605 
1606   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1607   void xmm_clear_mem(Register base, Register cnt, XMMRegister xtmp);
1608 
1609   // Fill primitive arrays
1610   void generate_fill(BasicType t, bool aligned,
1611                      Register to, Register value, Register count,
1612                      Register rtmp, XMMRegister xtmp);
1613 
1614   void encode_iso_array(Register src, Register dst, Register len,
1615                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1616                         XMMRegister tmp4, Register tmp5, Register result);
1617 
1618 #ifdef _LP64
1619   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1620   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1621                              Register y, Register y_idx, Register z,
1622                              Register carry, Register product,
1623                              Register idx, Register kdx);
1624   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1625                               Register yz_idx, Register idx,
1626                               Register carry, Register product, int offset);
1627   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1628                                     Register carry, Register carry2,
1629                                     Register idx, Register jdx,
1630                                     Register yz_idx1, Register yz_idx2,
1631                                     Register tmp, Register tmp3, Register tmp4);
1632   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1633                                Register yz_idx, Register idx, Register jdx,
1634                                Register carry, Register product,
1635                                Register carry2);
1636   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1637                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1638   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1639                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1640   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1641                             Register tmp2);
1642   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1643                        Register rdxReg, Register raxReg);
1644   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1645   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1646                        Register tmp3, Register tmp4);
1647   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1648                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1649 
1650   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1651                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1652                Register raxReg);
1653   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1654                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1655                Register raxReg);
1656   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1657                            Register result, Register tmp1, Register tmp2,
1658                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1659 #endif
1660 
1661   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1662   void update_byte_crc32(Register crc, Register val, Register table);
1663   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1664 
1665 
1666 #ifdef _LP64
1667   void kernel_crc32_avx512(Register crc, Register buf, Register len, Register table, Register tmp1, Register tmp2);
1668   void kernel_crc32_avx512_256B(Register crc, Register buf, Register len, Register key, Register pos,
1669                                 Register tmp1, Register tmp2, Label& L_barrett, Label& L_16B_reduction_loop,
1670                                 Label& L_get_last_two_xmms, Label& L_128_done, Label& L_cleanup);
1671 #endif // _LP64
1672 
1673   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1674   // Note on a naming convention:
1675   // Prefix w = register only used on a Westmere+ architecture
1676   // Prefix n = register only used on a Nehalem architecture
1677 #ifdef _LP64
1678   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1679                        Register tmp1, Register tmp2, Register tmp3);
1680 #else
1681   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1682                        Register tmp1, Register tmp2, Register tmp3,
1683                        XMMRegister xtmp1, XMMRegister xtmp2);
1684 #endif
1685   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1686                         Register in_out,
1687                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1688                         XMMRegister w_xtmp2,
1689                         Register tmp1,
1690                         Register n_tmp2, Register n_tmp3);
1691   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1692                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1693                        Register tmp1, Register tmp2,
1694                        Register n_tmp3);
1695   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1696                          Register in_out1, Register in_out2, Register in_out3,
1697                          Register tmp1, Register tmp2, Register tmp3,
1698                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1699                          Register tmp4, Register tmp5,
1700                          Register n_tmp6);
1701   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1702                             Register tmp1, Register tmp2, Register tmp3,
1703                             Register tmp4, Register tmp5, Register tmp6,
1704                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1705                             bool is_pclmulqdq_supported);
1706   // Fold 128-bit data chunk
1707   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1708   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1709 #ifdef _LP64
1710   // Fold 512-bit data chunk
1711   void fold512bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, Register pos, int offset);
1712 #endif // _LP64
1713   // Fold 8-bit data
1714   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1715   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1716 
1717   // Compress char[] array to byte[].
1718   void char_array_compress(Register src, Register dst, Register len,
1719                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1720                            XMMRegister tmp4, Register tmp5, Register result);
1721 
1722   // Inflate byte[] array to char[].
1723   void byte_array_inflate(Register src, Register dst, Register len,
1724                           XMMRegister tmp1, Register tmp2);
1725 
1726 #ifdef _LP64
1727   void convert_f2i(Register dst, XMMRegister src);
1728   void convert_d2i(Register dst, XMMRegister src);
1729   void convert_f2l(Register dst, XMMRegister src);
1730   void convert_d2l(Register dst, XMMRegister src);
1731 
1732   void cache_wb(Address line);
1733   void cache_wbsync(bool is_pre);
1734 #endif // _LP64
1735 
1736   void vallones(XMMRegister dst, int vector_len);
1737 };
1738 
1739 /**
1740  * class SkipIfEqual:
1741  *
1742  * Instantiating this class will result in assembly code being output that will
1743  * jump around any code emitted between the creation of the instance and it's
1744  * automatic destruction at the end of a scope block, depending on the value of
1745  * the flag passed to the constructor, which will be checked at run-time.
1746  */
1747 class SkipIfEqual {
1748  private:
1749   MacroAssembler* _masm;
1750   Label _label;
1751 
1752  public:
1753    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1754    ~SkipIfEqual();
1755 };
1756 
1757 #endif // CPU_X86_MACROASSEMBLER_X86_HPP