1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCPhaseTimes.hpp"
  45 #include "gc/g1/g1HeapSizingPolicy.hpp"
  46 #include "gc/g1/g1HeapTransition.hpp"
  47 #include "gc/g1/g1HeapVerifier.hpp"
  48 #include "gc/g1/g1HotCardCache.hpp"
  49 #include "gc/g1/g1MemoryPool.hpp"
  50 #include "gc/g1/g1OopClosures.inline.hpp"
  51 #include "gc/g1/g1ParallelCleaning.hpp"
  52 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  53 #include "gc/g1/g1Policy.hpp"
  54 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  55 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  56 #include "gc/g1/g1RemSet.hpp"
  57 #include "gc/g1/g1RootClosures.hpp"
  58 #include "gc/g1/g1RootProcessor.hpp"
  59 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  60 #include "gc/g1/g1StringDedup.hpp"
  61 #include "gc/g1/g1ThreadLocalData.hpp"
  62 #include "gc/g1/g1Trace.hpp"
  63 #include "gc/g1/g1YCTypes.hpp"
  64 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  65 #include "gc/g1/g1VMOperations.hpp"
  66 #include "gc/g1/heapRegion.inline.hpp"
  67 #include "gc/g1/heapRegionRemSet.hpp"
  68 #include "gc/g1/heapRegionSet.inline.hpp"
  69 #include "gc/shared/gcBehaviours.hpp"
  70 #include "gc/shared/gcHeapSummary.hpp"
  71 #include "gc/shared/gcId.hpp"
  72 #include "gc/shared/gcLocker.hpp"
  73 #include "gc/shared/gcTimer.hpp"
  74 #include "gc/shared/gcTraceTime.inline.hpp"
  75 #include "gc/shared/generationSpec.hpp"
  76 #include "gc/shared/isGCActiveMark.hpp"
  77 #include "gc/shared/locationPrinter.inline.hpp"
  78 #include "gc/shared/oopStorageParState.hpp"
  79 #include "gc/shared/preservedMarks.inline.hpp"
  80 #include "gc/shared/suspendibleThreadSet.hpp"
  81 #include "gc/shared/referenceProcessor.inline.hpp"
  82 #include "gc/shared/taskTerminator.hpp"
  83 #include "gc/shared/taskqueue.inline.hpp"
  84 #include "gc/shared/weakProcessor.inline.hpp"
  85 #include "gc/shared/workerPolicy.hpp"
  86 #include "logging/log.hpp"
  87 #include "memory/allocation.hpp"
  88 #include "memory/iterator.hpp"
  89 #include "memory/heapInspection.hpp"
  90 #include "memory/resourceArea.hpp"
  91 #include "memory/universe.hpp"
  92 #include "oops/access.inline.hpp"
  93 #include "oops/compressedOops.inline.hpp"
  94 #include "oops/oop.inline.hpp"
  95 #include "runtime/atomic.hpp"
  96 #include "runtime/flags/flagSetting.hpp"
  97 #include "runtime/handles.inline.hpp"
  98 #include "runtime/init.hpp"
  99 #include "runtime/orderAccess.hpp"
 100 #include "runtime/threadSMR.hpp"
 101 #include "runtime/vmThread.hpp"
 102 #include "utilities/align.hpp"
 103 #include "utilities/bitMap.inline.hpp"
 104 #include "utilities/globalDefinitions.hpp"
 105 #include "utilities/stack.inline.hpp"
 106 
 107 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 108 
 109 // INVARIANTS/NOTES
 110 //
 111 // All allocation activity covered by the G1CollectedHeap interface is
 112 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 113 // and allocate_new_tlab, which are the "entry" points to the
 114 // allocation code from the rest of the JVM.  (Note that this does not
 115 // apply to TLAB allocation, which is not part of this interface: it
 116 // is done by clients of this interface.)
 117 
 118 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 119  private:
 120   size_t _num_dirtied;
 121   G1CollectedHeap* _g1h;
 122   G1CardTable* _g1_ct;
 123 
 124   HeapRegion* region_for_card(CardValue* card_ptr) const {
 125     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 126   }
 127 
 128   bool will_become_free(HeapRegion* hr) const {
 129     // A region will be freed by free_collection_set if the region is in the
 130     // collection set and has not had an evacuation failure.
 131     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 132   }
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 136     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 137 
 138   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 139     HeapRegion* hr = region_for_card(card_ptr);
 140 
 141     // Should only dirty cards in regions that won't be freed.
 142     if (!will_become_free(hr)) {
 143       *card_ptr = G1CardTable::dirty_card_val();
 144       _num_dirtied++;
 145     }
 146   }
 147 
 148   size_t num_dirtied()   const { return _num_dirtied; }
 149 };
 150 
 151 
 152 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 153   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 154 }
 155 
 156 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 157   // The from card cache is not the memory that is actually committed. So we cannot
 158   // take advantage of the zero_filled parameter.
 159   reset_from_card_cache(start_idx, num_regions);
 160 }
 161 
 162 Tickspan G1CollectedHeap::run_task(AbstractGangTask* task) {
 163   Ticks start = Ticks::now();
 164   workers()->run_task(task, workers()->active_workers());
 165   return Ticks::now() - start;
 166 }
 167 
 168 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 169                                              MemRegion mr) {
 170   return new HeapRegion(hrs_index, bot(), mr);
 171 }
 172 
 173 // Private methods.
 174 
 175 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 176                                         HeapRegionType type,
 177                                         bool do_expand,
 178                                         uint node_index) {
 179   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 180          "the only time we use this to allocate a humongous region is "
 181          "when we are allocating a single humongous region");
 182 
 183   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 184 
 185   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 186     // Currently, only attempts to allocate GC alloc regions set
 187     // do_expand to true. So, we should only reach here during a
 188     // safepoint. If this assumption changes we might have to
 189     // reconsider the use of _expand_heap_after_alloc_failure.
 190     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 191 
 192     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 193                               word_size * HeapWordSize);
 194 
 195     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 196            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 197            word_size * HeapWordSize);
 198     if (expand_single_region(node_index)) {
 199       // Given that expand_single_region() succeeded in expanding the heap, and we
 200       // always expand the heap by an amount aligned to the heap
 201       // region size, the free list should in theory not be empty.
 202       // In either case allocate_free_region() will check for NULL.
 203       res = _hrm->allocate_free_region(type, node_index);
 204     } else {
 205       _expand_heap_after_alloc_failure = false;
 206     }
 207   }
 208   return res;
 209 }
 210 
 211 HeapWord*
 212 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 213                                                            uint num_regions,
 214                                                            size_t word_size) {
 215   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 216   assert(is_humongous(word_size), "word_size should be humongous");
 217   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 218 
 219   // Index of last region in the series.
 220   uint last = first + num_regions - 1;
 221 
 222   // We need to initialize the region(s) we just discovered. This is
 223   // a bit tricky given that it can happen concurrently with
 224   // refinement threads refining cards on these regions and
 225   // potentially wanting to refine the BOT as they are scanning
 226   // those cards (this can happen shortly after a cleanup; see CR
 227   // 6991377). So we have to set up the region(s) carefully and in
 228   // a specific order.
 229 
 230   // The word size sum of all the regions we will allocate.
 231   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 232   assert(word_size <= word_size_sum, "sanity");
 233 
 234   // This will be the "starts humongous" region.
 235   HeapRegion* first_hr = region_at(first);
 236   // The header of the new object will be placed at the bottom of
 237   // the first region.
 238   HeapWord* new_obj = first_hr->bottom();
 239   // This will be the new top of the new object.
 240   HeapWord* obj_top = new_obj + word_size;
 241 
 242   // First, we need to zero the header of the space that we will be
 243   // allocating. When we update top further down, some refinement
 244   // threads might try to scan the region. By zeroing the header we
 245   // ensure that any thread that will try to scan the region will
 246   // come across the zero klass word and bail out.
 247   //
 248   // NOTE: It would not have been correct to have used
 249   // CollectedHeap::fill_with_object() and make the space look like
 250   // an int array. The thread that is doing the allocation will
 251   // later update the object header to a potentially different array
 252   // type and, for a very short period of time, the klass and length
 253   // fields will be inconsistent. This could cause a refinement
 254   // thread to calculate the object size incorrectly.
 255   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 256 
 257   // Next, pad out the unused tail of the last region with filler
 258   // objects, for improved usage accounting.
 259   // How many words we use for filler objects.
 260   size_t word_fill_size = word_size_sum - word_size;
 261 
 262   // How many words memory we "waste" which cannot hold a filler object.
 263   size_t words_not_fillable = 0;
 264 
 265   if (word_fill_size >= min_fill_size()) {
 266     fill_with_objects(obj_top, word_fill_size);
 267   } else if (word_fill_size > 0) {
 268     // We have space to fill, but we cannot fit an object there.
 269     words_not_fillable = word_fill_size;
 270     word_fill_size = 0;
 271   }
 272 
 273   // We will set up the first region as "starts humongous". This
 274   // will also update the BOT covering all the regions to reflect
 275   // that there is a single object that starts at the bottom of the
 276   // first region.
 277   first_hr->set_starts_humongous(obj_top, word_fill_size);
 278   _policy->remset_tracker()->update_at_allocate(first_hr);
 279   // Then, if there are any, we will set up the "continues
 280   // humongous" regions.
 281   HeapRegion* hr = NULL;
 282   for (uint i = first + 1; i <= last; ++i) {
 283     hr = region_at(i);
 284     hr->set_continues_humongous(first_hr);
 285     _policy->remset_tracker()->update_at_allocate(hr);
 286   }
 287 
 288   // Up to this point no concurrent thread would have been able to
 289   // do any scanning on any region in this series. All the top
 290   // fields still point to bottom, so the intersection between
 291   // [bottom,top] and [card_start,card_end] will be empty. Before we
 292   // update the top fields, we'll do a storestore to make sure that
 293   // no thread sees the update to top before the zeroing of the
 294   // object header and the BOT initialization.
 295   OrderAccess::storestore();
 296 
 297   // Now, we will update the top fields of the "continues humongous"
 298   // regions except the last one.
 299   for (uint i = first; i < last; ++i) {
 300     hr = region_at(i);
 301     hr->set_top(hr->end());
 302   }
 303 
 304   hr = region_at(last);
 305   // If we cannot fit a filler object, we must set top to the end
 306   // of the humongous object, otherwise we cannot iterate the heap
 307   // and the BOT will not be complete.
 308   hr->set_top(hr->end() - words_not_fillable);
 309 
 310   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 311          "obj_top should be in last region");
 312 
 313   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 314 
 315   assert(words_not_fillable == 0 ||
 316          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 317          "Miscalculation in humongous allocation");
 318 
 319   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 320 
 321   for (uint i = first; i <= last; ++i) {
 322     hr = region_at(i);
 323     _humongous_set.add(hr);
 324     _hr_printer.alloc(hr);
 325   }
 326 
 327   return new_obj;
 328 }
 329 
 330 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 331   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 332   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 333 }
 334 
 335 // If could fit into free regions w/o expansion, try.
 336 // Otherwise, if can expand, do so.
 337 // Otherwise, if using ex regions might help, try with ex given back.
 338 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 339   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 340 
 341   _verifier->verify_region_sets_optional();
 342 
 343   uint first = G1_NO_HRM_INDEX;
 344   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 345 
 346   if (obj_regions == 1) {
 347     // Only one region to allocate, try to use a fast path by directly allocating
 348     // from the free lists. Do not try to expand here, we will potentially do that
 349     // later.
 350     HeapRegion* hr = new_region(word_size, HeapRegionType::Humongous, false /* do_expand */);
 351     if (hr != NULL) {
 352       first = hr->hrm_index();
 353     }
 354   } else {
 355     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 356     // are lucky enough to find some.
 357     first = _hrm->find_contiguous_only_empty(obj_regions);
 358     if (first != G1_NO_HRM_INDEX) {
 359       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 360     }
 361   }
 362 
 363   if (first == G1_NO_HRM_INDEX) {
 364     // Policy: We could not find enough regions for the humongous object in the
 365     // free list. Look through the heap to find a mix of free and uncommitted regions.
 366     // If so, try expansion.
 367     first = _hrm->find_contiguous_empty_or_unavailable(obj_regions);
 368     if (first != G1_NO_HRM_INDEX) {
 369       // We found something. Make sure these regions are committed, i.e. expand
 370       // the heap. Alternatively we could do a defragmentation GC.
 371       log_debug(gc, ergo, heap)("Attempt heap expansion (humongous allocation request failed). Allocation request: " SIZE_FORMAT "B",
 372                                     word_size * HeapWordSize);
 373 
 374       _hrm->expand_at(first, obj_regions, workers());
 375       policy()->record_new_heap_size(num_regions());
 376 
 377 #ifdef ASSERT
 378       for (uint i = first; i < first + obj_regions; ++i) {
 379         HeapRegion* hr = region_at(i);
 380         assert(hr->is_free(), "sanity");
 381         assert(hr->is_empty(), "sanity");
 382         assert(is_on_master_free_list(hr), "sanity");
 383       }
 384 #endif
 385       _hrm->allocate_free_regions_starting_at(first, obj_regions);
 386     } else {
 387       // Policy: Potentially trigger a defragmentation GC.
 388     }
 389   }
 390 
 391   HeapWord* result = NULL;
 392   if (first != G1_NO_HRM_INDEX) {
 393     result = humongous_obj_allocate_initialize_regions(first, obj_regions, word_size);
 394     assert(result != NULL, "it should always return a valid result");
 395 
 396     // A successful humongous object allocation changes the used space
 397     // information of the old generation so we need to recalculate the
 398     // sizes and update the jstat counters here.
 399     g1mm()->update_sizes();
 400   }
 401 
 402   _verifier->verify_region_sets_optional();
 403 
 404   return result;
 405 }
 406 
 407 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 408                                              size_t requested_size,
 409                                              size_t* actual_size) {
 410   assert_heap_not_locked_and_not_at_safepoint();
 411   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 412 
 413   return attempt_allocation(min_size, requested_size, actual_size);
 414 }
 415 
 416 HeapWord*
 417 G1CollectedHeap::mem_allocate(size_t word_size,
 418                               bool*  gc_overhead_limit_was_exceeded) {
 419   assert_heap_not_locked_and_not_at_safepoint();
 420 
 421   if (is_humongous(word_size)) {
 422     return attempt_allocation_humongous(word_size);
 423   }
 424   size_t dummy = 0;
 425   return attempt_allocation(word_size, word_size, &dummy);
 426 }
 427 
 428 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 429   ResourceMark rm; // For retrieving the thread names in log messages.
 430 
 431   // Make sure you read the note in attempt_allocation_humongous().
 432 
 433   assert_heap_not_locked_and_not_at_safepoint();
 434   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 435          "be called for humongous allocation requests");
 436 
 437   // We should only get here after the first-level allocation attempt
 438   // (attempt_allocation()) failed to allocate.
 439 
 440   // We will loop until a) we manage to successfully perform the
 441   // allocation or b) we successfully schedule a collection which
 442   // fails to perform the allocation. b) is the only case when we'll
 443   // return NULL.
 444   HeapWord* result = NULL;
 445   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 446     bool should_try_gc;
 447     uint gc_count_before;
 448 
 449     {
 450       MutexLocker x(Heap_lock);
 451       result = _allocator->attempt_allocation_locked(word_size);
 452       if (result != NULL) {
 453         return result;
 454       }
 455 
 456       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 457       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 458       // waiting because the GCLocker is active to not wait too long.
 459       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 460         // No need for an ergo message here, can_expand_young_list() does this when
 461         // it returns true.
 462         result = _allocator->attempt_allocation_force(word_size);
 463         if (result != NULL) {
 464           return result;
 465         }
 466       }
 467       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 468       // the GCLocker initiated GC has been performed and then retry. This includes
 469       // the case when the GC Locker is not active but has not been performed.
 470       should_try_gc = !GCLocker::needs_gc();
 471       // Read the GC count while still holding the Heap_lock.
 472       gc_count_before = total_collections();
 473     }
 474 
 475     if (should_try_gc) {
 476       bool succeeded;
 477       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 478                                    GCCause::_g1_inc_collection_pause);
 479       if (result != NULL) {
 480         assert(succeeded, "only way to get back a non-NULL result");
 481         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 482                              Thread::current()->name(), p2i(result));
 483         return result;
 484       }
 485 
 486       if (succeeded) {
 487         // We successfully scheduled a collection which failed to allocate. No
 488         // point in trying to allocate further. We'll just return NULL.
 489         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 490                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 491         return NULL;
 492       }
 493       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 494                            Thread::current()->name(), word_size);
 495     } else {
 496       // Failed to schedule a collection.
 497       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 498         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 499                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 500         return NULL;
 501       }
 502       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 503       // The GCLocker is either active or the GCLocker initiated
 504       // GC has not yet been performed. Stall until it is and
 505       // then retry the allocation.
 506       GCLocker::stall_until_clear();
 507       gclocker_retry_count += 1;
 508     }
 509 
 510     // We can reach here if we were unsuccessful in scheduling a
 511     // collection (because another thread beat us to it) or if we were
 512     // stalled due to the GC locker. In either can we should retry the
 513     // allocation attempt in case another thread successfully
 514     // performed a collection and reclaimed enough space. We do the
 515     // first attempt (without holding the Heap_lock) here and the
 516     // follow-on attempt will be at the start of the next loop
 517     // iteration (after taking the Heap_lock).
 518     size_t dummy = 0;
 519     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 520     if (result != NULL) {
 521       return result;
 522     }
 523 
 524     // Give a warning if we seem to be looping forever.
 525     if ((QueuedAllocationWarningCount > 0) &&
 526         (try_count % QueuedAllocationWarningCount == 0)) {
 527       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 528                              Thread::current()->name(), try_count, word_size);
 529     }
 530   }
 531 
 532   ShouldNotReachHere();
 533   return NULL;
 534 }
 535 
 536 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 537   assert_at_safepoint_on_vm_thread();
 538   if (_archive_allocator == NULL) {
 539     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 540   }
 541 }
 542 
 543 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 544   // Allocations in archive regions cannot be of a size that would be considered
 545   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 546   // may be different at archive-restore time.
 547   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 548 }
 549 
 550 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 551   assert_at_safepoint_on_vm_thread();
 552   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 553   if (is_archive_alloc_too_large(word_size)) {
 554     return NULL;
 555   }
 556   return _archive_allocator->archive_mem_allocate(word_size);
 557 }
 558 
 559 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 560                                               size_t end_alignment_in_bytes) {
 561   assert_at_safepoint_on_vm_thread();
 562   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 563 
 564   // Call complete_archive to do the real work, filling in the MemRegion
 565   // array with the archive regions.
 566   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 567   delete _archive_allocator;
 568   _archive_allocator = NULL;
 569 }
 570 
 571 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 572   assert(ranges != NULL, "MemRegion array NULL");
 573   assert(count != 0, "No MemRegions provided");
 574   MemRegion reserved = _hrm->reserved();
 575   for (size_t i = 0; i < count; i++) {
 576     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 577       return false;
 578     }
 579   }
 580   return true;
 581 }
 582 
 583 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 584                                             size_t count,
 585                                             bool open) {
 586   assert(!is_init_completed(), "Expect to be called at JVM init time");
 587   assert(ranges != NULL, "MemRegion array NULL");
 588   assert(count != 0, "No MemRegions provided");
 589   MutexLocker x(Heap_lock);
 590 
 591   MemRegion reserved = _hrm->reserved();
 592   HeapWord* prev_last_addr = NULL;
 593   HeapRegion* prev_last_region = NULL;
 594 
 595   // Temporarily disable pretouching of heap pages. This interface is used
 596   // when mmap'ing archived heap data in, so pre-touching is wasted.
 597   FlagSetting fs(AlwaysPreTouch, false);
 598 
 599   // Enable archive object checking used by G1MarkSweep. We have to let it know
 600   // about each archive range, so that objects in those ranges aren't marked.
 601   G1ArchiveAllocator::enable_archive_object_check();
 602 
 603   // For each specified MemRegion range, allocate the corresponding G1
 604   // regions and mark them as archive regions. We expect the ranges
 605   // in ascending starting address order, without overlap.
 606   for (size_t i = 0; i < count; i++) {
 607     MemRegion curr_range = ranges[i];
 608     HeapWord* start_address = curr_range.start();
 609     size_t word_size = curr_range.word_size();
 610     HeapWord* last_address = curr_range.last();
 611     size_t commits = 0;
 612 
 613     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 614               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 615               p2i(start_address), p2i(last_address));
 616     guarantee(start_address > prev_last_addr,
 617               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 618               p2i(start_address), p2i(prev_last_addr));
 619     prev_last_addr = last_address;
 620 
 621     // Check for ranges that start in the same G1 region in which the previous
 622     // range ended, and adjust the start address so we don't try to allocate
 623     // the same region again. If the current range is entirely within that
 624     // region, skip it, just adjusting the recorded top.
 625     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 626     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 627       start_address = start_region->end();
 628       if (start_address > last_address) {
 629         increase_used(word_size * HeapWordSize);
 630         start_region->set_top(last_address + 1);
 631         continue;
 632       }
 633       start_region->set_top(start_address);
 634       curr_range = MemRegion(start_address, last_address + 1);
 635       start_region = _hrm->addr_to_region(start_address);
 636     }
 637 
 638     // Perform the actual region allocation, exiting if it fails.
 639     // Then note how much new space we have allocated.
 640     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 641       return false;
 642     }
 643     increase_used(word_size * HeapWordSize);
 644     if (commits != 0) {
 645       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 646                                 HeapRegion::GrainWords * HeapWordSize * commits);
 647 
 648     }
 649 
 650     // Mark each G1 region touched by the range as archive, add it to
 651     // the old set, and set top.
 652     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 653     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 654     prev_last_region = last_region;
 655 
 656     while (curr_region != NULL) {
 657       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 658              "Region already in use (index %u)", curr_region->hrm_index());
 659       if (open) {
 660         curr_region->set_open_archive();
 661       } else {
 662         curr_region->set_closed_archive();
 663       }
 664       _hr_printer.alloc(curr_region);
 665       _archive_set.add(curr_region);
 666       HeapWord* top;
 667       HeapRegion* next_region;
 668       if (curr_region != last_region) {
 669         top = curr_region->end();
 670         next_region = _hrm->next_region_in_heap(curr_region);
 671       } else {
 672         top = last_address + 1;
 673         next_region = NULL;
 674       }
 675       curr_region->set_top(top);
 676       curr_region = next_region;
 677     }
 678 
 679     // Notify mark-sweep of the archive
 680     G1ArchiveAllocator::set_range_archive(curr_range, open);
 681   }
 682   return true;
 683 }
 684 
 685 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 686   assert(!is_init_completed(), "Expect to be called at JVM init time");
 687   assert(ranges != NULL, "MemRegion array NULL");
 688   assert(count != 0, "No MemRegions provided");
 689   MemRegion reserved = _hrm->reserved();
 690   HeapWord *prev_last_addr = NULL;
 691   HeapRegion* prev_last_region = NULL;
 692 
 693   // For each MemRegion, create filler objects, if needed, in the G1 regions
 694   // that contain the address range. The address range actually within the
 695   // MemRegion will not be modified. That is assumed to have been initialized
 696   // elsewhere, probably via an mmap of archived heap data.
 697   MutexLocker x(Heap_lock);
 698   for (size_t i = 0; i < count; i++) {
 699     HeapWord* start_address = ranges[i].start();
 700     HeapWord* last_address = ranges[i].last();
 701 
 702     assert(reserved.contains(start_address) && reserved.contains(last_address),
 703            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 704            p2i(start_address), p2i(last_address));
 705     assert(start_address > prev_last_addr,
 706            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 707            p2i(start_address), p2i(prev_last_addr));
 708 
 709     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 710     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 711     HeapWord* bottom_address = start_region->bottom();
 712 
 713     // Check for a range beginning in the same region in which the
 714     // previous one ended.
 715     if (start_region == prev_last_region) {
 716       bottom_address = prev_last_addr + 1;
 717     }
 718 
 719     // Verify that the regions were all marked as archive regions by
 720     // alloc_archive_regions.
 721     HeapRegion* curr_region = start_region;
 722     while (curr_region != NULL) {
 723       guarantee(curr_region->is_archive(),
 724                 "Expected archive region at index %u", curr_region->hrm_index());
 725       if (curr_region != last_region) {
 726         curr_region = _hrm->next_region_in_heap(curr_region);
 727       } else {
 728         curr_region = NULL;
 729       }
 730     }
 731 
 732     prev_last_addr = last_address;
 733     prev_last_region = last_region;
 734 
 735     // Fill the memory below the allocated range with dummy object(s),
 736     // if the region bottom does not match the range start, or if the previous
 737     // range ended within the same G1 region, and there is a gap.
 738     if (start_address != bottom_address) {
 739       size_t fill_size = pointer_delta(start_address, bottom_address);
 740       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 741       increase_used(fill_size * HeapWordSize);
 742     }
 743   }
 744 }
 745 
 746 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 747                                                      size_t desired_word_size,
 748                                                      size_t* actual_word_size) {
 749   assert_heap_not_locked_and_not_at_safepoint();
 750   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 751          "be called for humongous allocation requests");
 752 
 753   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 754 
 755   if (result == NULL) {
 756     *actual_word_size = desired_word_size;
 757     result = attempt_allocation_slow(desired_word_size);
 758   }
 759 
 760   assert_heap_not_locked();
 761   if (result != NULL) {
 762     assert(*actual_word_size != 0, "Actual size must have been set here");
 763     dirty_young_block(result, *actual_word_size);
 764   } else {
 765     *actual_word_size = 0;
 766   }
 767 
 768   return result;
 769 }
 770 
 771 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 772   assert(!is_init_completed(), "Expect to be called at JVM init time");
 773   assert(ranges != NULL, "MemRegion array NULL");
 774   assert(count != 0, "No MemRegions provided");
 775   MemRegion reserved = _hrm->reserved();
 776   HeapWord* prev_last_addr = NULL;
 777   HeapRegion* prev_last_region = NULL;
 778   size_t size_used = 0;
 779   size_t uncommitted_regions = 0;
 780 
 781   // For each Memregion, free the G1 regions that constitute it, and
 782   // notify mark-sweep that the range is no longer to be considered 'archive.'
 783   MutexLocker x(Heap_lock);
 784   for (size_t i = 0; i < count; i++) {
 785     HeapWord* start_address = ranges[i].start();
 786     HeapWord* last_address = ranges[i].last();
 787 
 788     assert(reserved.contains(start_address) && reserved.contains(last_address),
 789            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 790            p2i(start_address), p2i(last_address));
 791     assert(start_address > prev_last_addr,
 792            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 793            p2i(start_address), p2i(prev_last_addr));
 794     size_used += ranges[i].byte_size();
 795     prev_last_addr = last_address;
 796 
 797     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 798     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 799 
 800     // Check for ranges that start in the same G1 region in which the previous
 801     // range ended, and adjust the start address so we don't try to free
 802     // the same region again. If the current range is entirely within that
 803     // region, skip it.
 804     if (start_region == prev_last_region) {
 805       start_address = start_region->end();
 806       if (start_address > last_address) {
 807         continue;
 808       }
 809       start_region = _hrm->addr_to_region(start_address);
 810     }
 811     prev_last_region = last_region;
 812 
 813     // After verifying that each region was marked as an archive region by
 814     // alloc_archive_regions, set it free and empty and uncommit it.
 815     HeapRegion* curr_region = start_region;
 816     while (curr_region != NULL) {
 817       guarantee(curr_region->is_archive(),
 818                 "Expected archive region at index %u", curr_region->hrm_index());
 819       uint curr_index = curr_region->hrm_index();
 820       _archive_set.remove(curr_region);
 821       curr_region->set_free();
 822       curr_region->set_top(curr_region->bottom());
 823       if (curr_region != last_region) {
 824         curr_region = _hrm->next_region_in_heap(curr_region);
 825       } else {
 826         curr_region = NULL;
 827       }
 828       _hrm->shrink_at(curr_index, 1);
 829       uncommitted_regions++;
 830     }
 831 
 832     // Notify mark-sweep that this is no longer an archive range.
 833     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 834   }
 835 
 836   if (uncommitted_regions != 0) {
 837     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 838                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 839   }
 840   decrease_used(size_used);
 841 }
 842 
 843 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 844   assert(obj != NULL, "archived obj is NULL");
 845   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 846 
 847   // Loading an archived object makes it strongly reachable. If it is
 848   // loaded during concurrent marking, it must be enqueued to the SATB
 849   // queue, shading the previously white object gray.
 850   G1BarrierSet::enqueue(obj);
 851 
 852   return obj;
 853 }
 854 
 855 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 856   ResourceMark rm; // For retrieving the thread names in log messages.
 857 
 858   // The structure of this method has a lot of similarities to
 859   // attempt_allocation_slow(). The reason these two were not merged
 860   // into a single one is that such a method would require several "if
 861   // allocation is not humongous do this, otherwise do that"
 862   // conditional paths which would obscure its flow. In fact, an early
 863   // version of this code did use a unified method which was harder to
 864   // follow and, as a result, it had subtle bugs that were hard to
 865   // track down. So keeping these two methods separate allows each to
 866   // be more readable. It will be good to keep these two in sync as
 867   // much as possible.
 868 
 869   assert_heap_not_locked_and_not_at_safepoint();
 870   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 871          "should only be called for humongous allocations");
 872 
 873   // Humongous objects can exhaust the heap quickly, so we should check if we
 874   // need to start a marking cycle at each humongous object allocation. We do
 875   // the check before we do the actual allocation. The reason for doing it
 876   // before the allocation is that we avoid having to keep track of the newly
 877   // allocated memory while we do a GC.
 878   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 879                                            word_size)) {
 880     collect(GCCause::_g1_humongous_allocation);
 881   }
 882 
 883   // We will loop until a) we manage to successfully perform the
 884   // allocation or b) we successfully schedule a collection which
 885   // fails to perform the allocation. b) is the only case when we'll
 886   // return NULL.
 887   HeapWord* result = NULL;
 888   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 889     bool should_try_gc;
 890     uint gc_count_before;
 891 
 892 
 893     {
 894       MutexLocker x(Heap_lock);
 895 
 896       // Given that humongous objects are not allocated in young
 897       // regions, we'll first try to do the allocation without doing a
 898       // collection hoping that there's enough space in the heap.
 899       result = humongous_obj_allocate(word_size);
 900       if (result != NULL) {
 901         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 902         policy()->add_bytes_allocated_in_old_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 903         return result;
 904       }
 905 
 906       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 907       // the GCLocker initiated GC has been performed and then retry. This includes
 908       // the case when the GC Locker is not active but has not been performed.
 909       should_try_gc = !GCLocker::needs_gc();
 910       // Read the GC count while still holding the Heap_lock.
 911       gc_count_before = total_collections();
 912     }
 913 
 914     if (should_try_gc) {
 915       bool succeeded;
 916       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 917                                    GCCause::_g1_humongous_allocation);
 918       if (result != NULL) {
 919         assert(succeeded, "only way to get back a non-NULL result");
 920         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 921                              Thread::current()->name(), p2i(result));
 922         return result;
 923       }
 924 
 925       if (succeeded) {
 926         // We successfully scheduled a collection which failed to allocate. No
 927         // point in trying to allocate further. We'll just return NULL.
 928         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 929                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 930         return NULL;
 931       }
 932       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 933                            Thread::current()->name(), word_size);
 934     } else {
 935       // Failed to schedule a collection.
 936       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 937         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 938                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 939         return NULL;
 940       }
 941       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 942       // The GCLocker is either active or the GCLocker initiated
 943       // GC has not yet been performed. Stall until it is and
 944       // then retry the allocation.
 945       GCLocker::stall_until_clear();
 946       gclocker_retry_count += 1;
 947     }
 948 
 949 
 950     // We can reach here if we were unsuccessful in scheduling a
 951     // collection (because another thread beat us to it) or if we were
 952     // stalled due to the GC locker. In either can we should retry the
 953     // allocation attempt in case another thread successfully
 954     // performed a collection and reclaimed enough space.
 955     // Humongous object allocation always needs a lock, so we wait for the retry
 956     // in the next iteration of the loop, unlike for the regular iteration case.
 957     // Give a warning if we seem to be looping forever.
 958 
 959     if ((QueuedAllocationWarningCount > 0) &&
 960         (try_count % QueuedAllocationWarningCount == 0)) {
 961       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 962                              Thread::current()->name(), try_count, word_size);
 963     }
 964   }
 965 
 966   ShouldNotReachHere();
 967   return NULL;
 968 }
 969 
 970 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 971                                                            bool expect_null_mutator_alloc_region) {
 972   assert_at_safepoint_on_vm_thread();
 973   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 974          "the current alloc region was unexpectedly found to be non-NULL");
 975 
 976   if (!is_humongous(word_size)) {
 977     return _allocator->attempt_allocation_locked(word_size);
 978   } else {
 979     HeapWord* result = humongous_obj_allocate(word_size);
 980     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 981       collector_state()->set_initiate_conc_mark_if_possible(true);
 982     }
 983     return result;
 984   }
 985 
 986   ShouldNotReachHere();
 987 }
 988 
 989 class PostCompactionPrinterClosure: public HeapRegionClosure {
 990 private:
 991   G1HRPrinter* _hr_printer;
 992 public:
 993   bool do_heap_region(HeapRegion* hr) {
 994     assert(!hr->is_young(), "not expecting to find young regions");
 995     _hr_printer->post_compaction(hr);
 996     return false;
 997   }
 998 
 999   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1000     : _hr_printer(hr_printer) { }
1001 };
1002 
1003 void G1CollectedHeap::print_hrm_post_compaction() {
1004   if (_hr_printer.is_active()) {
1005     PostCompactionPrinterClosure cl(hr_printer());
1006     heap_region_iterate(&cl);
1007   }
1008 }
1009 
1010 void G1CollectedHeap::abort_concurrent_cycle() {
1011   // If we start the compaction before the CM threads finish
1012   // scanning the root regions we might trip them over as we'll
1013   // be moving objects / updating references. So let's wait until
1014   // they are done. By telling them to abort, they should complete
1015   // early.
1016   _cm->root_regions()->abort();
1017   _cm->root_regions()->wait_until_scan_finished();
1018 
1019   // Disable discovery and empty the discovered lists
1020   // for the CM ref processor.
1021   _ref_processor_cm->disable_discovery();
1022   _ref_processor_cm->abandon_partial_discovery();
1023   _ref_processor_cm->verify_no_references_recorded();
1024 
1025   // Abandon current iterations of concurrent marking and concurrent
1026   // refinement, if any are in progress.
1027   concurrent_mark()->concurrent_cycle_abort();
1028 }
1029 
1030 void G1CollectedHeap::prepare_heap_for_full_collection() {
1031   // Make sure we'll choose a new allocation region afterwards.
1032   _allocator->release_mutator_alloc_regions();
1033   _allocator->abandon_gc_alloc_regions();
1034 
1035   // We may have added regions to the current incremental collection
1036   // set between the last GC or pause and now. We need to clear the
1037   // incremental collection set and then start rebuilding it afresh
1038   // after this full GC.
1039   abandon_collection_set(collection_set());
1040 
1041   tear_down_region_sets(false /* free_list_only */);
1042 
1043   hrm()->prepare_for_full_collection_start();
1044 }
1045 
1046 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1047   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1048   assert_used_and_recalculate_used_equal(this);
1049   _verifier->verify_region_sets_optional();
1050   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1051   _verifier->check_bitmaps("Full GC Start");
1052 }
1053 
1054 void G1CollectedHeap::prepare_heap_for_mutators() {
1055   hrm()->prepare_for_full_collection_end();
1056 
1057   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1058   ClassLoaderDataGraph::purge();
1059   MetaspaceUtils::verify_metrics();
1060 
1061   // Prepare heap for normal collections.
1062   assert(num_free_regions() == 0, "we should not have added any free regions");
1063   rebuild_region_sets(false /* free_list_only */);
1064   abort_refinement();
1065   resize_heap_if_necessary();
1066 
1067   // Rebuild the strong code root lists for each region
1068   rebuild_strong_code_roots();
1069 
1070   // Purge code root memory
1071   purge_code_root_memory();
1072 
1073   // Start a new incremental collection set for the next pause
1074   start_new_collection_set();
1075 
1076   _allocator->init_mutator_alloc_regions();
1077 
1078   // Post collection state updates.
1079   MetaspaceGC::compute_new_size();
1080 }
1081 
1082 void G1CollectedHeap::abort_refinement() {
1083   if (_hot_card_cache->use_cache()) {
1084     _hot_card_cache->reset_hot_cache();
1085   }
1086 
1087   // Discard all remembered set updates.
1088   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1089   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1090          "DCQS should be empty");
1091 }
1092 
1093 void G1CollectedHeap::verify_after_full_collection() {
1094   _hrm->verify_optional();
1095   _verifier->verify_region_sets_optional();
1096   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1097   // Clear the previous marking bitmap, if needed for bitmap verification.
1098   // Note we cannot do this when we clear the next marking bitmap in
1099   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1100   // objects marked during a full GC against the previous bitmap.
1101   // But we need to clear it before calling check_bitmaps below since
1102   // the full GC has compacted objects and updated TAMS but not updated
1103   // the prev bitmap.
1104   if (G1VerifyBitmaps) {
1105     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1106     _cm->clear_prev_bitmap(workers());
1107   }
1108   // This call implicitly verifies that the next bitmap is clear after Full GC.
1109   _verifier->check_bitmaps("Full GC End");
1110 
1111   // At this point there should be no regions in the
1112   // entire heap tagged as young.
1113   assert(check_young_list_empty(), "young list should be empty at this point");
1114 
1115   // Note: since we've just done a full GC, concurrent
1116   // marking is no longer active. Therefore we need not
1117   // re-enable reference discovery for the CM ref processor.
1118   // That will be done at the start of the next marking cycle.
1119   // We also know that the STW processor should no longer
1120   // discover any new references.
1121   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1122   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1123   _ref_processor_stw->verify_no_references_recorded();
1124   _ref_processor_cm->verify_no_references_recorded();
1125 }
1126 
1127 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1128   // Post collection logging.
1129   // We should do this after we potentially resize the heap so
1130   // that all the COMMIT / UNCOMMIT events are generated before
1131   // the compaction events.
1132   print_hrm_post_compaction();
1133   heap_transition->print();
1134   print_heap_after_gc();
1135   print_heap_regions();
1136 }
1137 
1138 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1139                                          bool clear_all_soft_refs) {
1140   assert_at_safepoint_on_vm_thread();
1141 
1142   if (GCLocker::check_active_before_gc()) {
1143     // Full GC was not completed.
1144     return false;
1145   }
1146 
1147   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1148       soft_ref_policy()->should_clear_all_soft_refs();
1149 
1150   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1151   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1152 
1153   collector.prepare_collection();
1154   collector.collect();
1155   collector.complete_collection();
1156 
1157   // Full collection was successfully completed.
1158   return true;
1159 }
1160 
1161 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1162   // Currently, there is no facility in the do_full_collection(bool) API to notify
1163   // the caller that the collection did not succeed (e.g., because it was locked
1164   // out by the GC locker). So, right now, we'll ignore the return value.
1165   bool dummy = do_full_collection(true,                /* explicit_gc */
1166                                   clear_all_soft_refs);
1167 }
1168 
1169 void G1CollectedHeap::resize_heap_if_necessary() {
1170   assert_at_safepoint_on_vm_thread();
1171 
1172   // Capacity, free and used after the GC counted as full regions to
1173   // include the waste in the following calculations.
1174   const size_t capacity_after_gc = capacity();
1175   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1176 
1177   // This is enforced in arguments.cpp.
1178   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1179          "otherwise the code below doesn't make sense");
1180 
1181   // We don't have floating point command-line arguments
1182   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1183   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1184   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1185   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1186 
1187   // We have to be careful here as these two calculations can overflow
1188   // 32-bit size_t's.
1189   double used_after_gc_d = (double) used_after_gc;
1190   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1191   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1192 
1193   // Let's make sure that they are both under the max heap size, which
1194   // by default will make them fit into a size_t.
1195   double desired_capacity_upper_bound = (double) MaxHeapSize;
1196   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1197                                     desired_capacity_upper_bound);
1198   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1199                                     desired_capacity_upper_bound);
1200 
1201   // We can now safely turn them into size_t's.
1202   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1203   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1204 
1205   // This assert only makes sense here, before we adjust them
1206   // with respect to the min and max heap size.
1207   assert(minimum_desired_capacity <= maximum_desired_capacity,
1208          "minimum_desired_capacity = " SIZE_FORMAT ", "
1209          "maximum_desired_capacity = " SIZE_FORMAT,
1210          minimum_desired_capacity, maximum_desired_capacity);
1211 
1212   // Should not be greater than the heap max size. No need to adjust
1213   // it with respect to the heap min size as it's a lower bound (i.e.,
1214   // we'll try to make the capacity larger than it, not smaller).
1215   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1216   // Should not be less than the heap min size. No need to adjust it
1217   // with respect to the heap max size as it's an upper bound (i.e.,
1218   // we'll try to make the capacity smaller than it, not greater).
1219   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1220 
1221   if (capacity_after_gc < minimum_desired_capacity) {
1222     // Don't expand unless it's significant
1223     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1224 
1225     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1226                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1227                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1228                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1229 
1230     expand(expand_bytes, _workers);
1231 
1232     // No expansion, now see if we want to shrink
1233   } else if (capacity_after_gc > maximum_desired_capacity) {
1234     // Capacity too large, compute shrinking size
1235     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1236 
1237     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1238                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1239                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1240                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1241 
1242     shrink(shrink_bytes);
1243   }
1244 }
1245 
1246 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1247                                                             bool do_gc,
1248                                                             bool clear_all_soft_refs,
1249                                                             bool expect_null_mutator_alloc_region,
1250                                                             bool* gc_succeeded) {
1251   *gc_succeeded = true;
1252   // Let's attempt the allocation first.
1253   HeapWord* result =
1254     attempt_allocation_at_safepoint(word_size,
1255                                     expect_null_mutator_alloc_region);
1256   if (result != NULL) {
1257     return result;
1258   }
1259 
1260   // In a G1 heap, we're supposed to keep allocation from failing by
1261   // incremental pauses.  Therefore, at least for now, we'll favor
1262   // expansion over collection.  (This might change in the future if we can
1263   // do something smarter than full collection to satisfy a failed alloc.)
1264   result = expand_and_allocate(word_size);
1265   if (result != NULL) {
1266     return result;
1267   }
1268 
1269   if (do_gc) {
1270     // Expansion didn't work, we'll try to do a Full GC.
1271     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1272                                        clear_all_soft_refs);
1273   }
1274 
1275   return NULL;
1276 }
1277 
1278 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1279                                                      bool* succeeded) {
1280   assert_at_safepoint_on_vm_thread();
1281 
1282   // Attempts to allocate followed by Full GC.
1283   HeapWord* result =
1284     satisfy_failed_allocation_helper(word_size,
1285                                      true,  /* do_gc */
1286                                      false, /* clear_all_soft_refs */
1287                                      false, /* expect_null_mutator_alloc_region */
1288                                      succeeded);
1289 
1290   if (result != NULL || !*succeeded) {
1291     return result;
1292   }
1293 
1294   // Attempts to allocate followed by Full GC that will collect all soft references.
1295   result = satisfy_failed_allocation_helper(word_size,
1296                                             true, /* do_gc */
1297                                             true, /* clear_all_soft_refs */
1298                                             true, /* expect_null_mutator_alloc_region */
1299                                             succeeded);
1300 
1301   if (result != NULL || !*succeeded) {
1302     return result;
1303   }
1304 
1305   // Attempts to allocate, no GC
1306   result = satisfy_failed_allocation_helper(word_size,
1307                                             false, /* do_gc */
1308                                             false, /* clear_all_soft_refs */
1309                                             true,  /* expect_null_mutator_alloc_region */
1310                                             succeeded);
1311 
1312   if (result != NULL) {
1313     return result;
1314   }
1315 
1316   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1317          "Flag should have been handled and cleared prior to this point");
1318 
1319   // What else?  We might try synchronous finalization later.  If the total
1320   // space available is large enough for the allocation, then a more
1321   // complete compaction phase than we've tried so far might be
1322   // appropriate.
1323   return NULL;
1324 }
1325 
1326 // Attempting to expand the heap sufficiently
1327 // to support an allocation of the given "word_size".  If
1328 // successful, perform the allocation and return the address of the
1329 // allocated block, or else "NULL".
1330 
1331 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1332   assert_at_safepoint_on_vm_thread();
1333 
1334   _verifier->verify_region_sets_optional();
1335 
1336   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1337   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1338                             word_size * HeapWordSize);
1339 
1340 
1341   if (expand(expand_bytes, _workers)) {
1342     _hrm->verify_optional();
1343     _verifier->verify_region_sets_optional();
1344     return attempt_allocation_at_safepoint(word_size,
1345                                            false /* expect_null_mutator_alloc_region */);
1346   }
1347   return NULL;
1348 }
1349 
1350 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1351   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1352   aligned_expand_bytes = align_up(aligned_expand_bytes,
1353                                        HeapRegion::GrainBytes);
1354 
1355   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1356                             expand_bytes, aligned_expand_bytes);
1357 
1358   if (is_maximal_no_gc()) {
1359     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1360     return false;
1361   }
1362 
1363   double expand_heap_start_time_sec = os::elapsedTime();
1364   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1365   assert(regions_to_expand > 0, "Must expand by at least one region");
1366 
1367   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1368   if (expand_time_ms != NULL) {
1369     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1370   }
1371 
1372   if (expanded_by > 0) {
1373     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1374     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1375     policy()->record_new_heap_size(num_regions());
1376   } else {
1377     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1378 
1379     // The expansion of the virtual storage space was unsuccessful.
1380     // Let's see if it was because we ran out of swap.
1381     if (G1ExitOnExpansionFailure &&
1382         _hrm->available() >= regions_to_expand) {
1383       // We had head room...
1384       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1385     }
1386   }
1387   return regions_to_expand > 0;
1388 }
1389 
1390 bool G1CollectedHeap::expand_single_region(uint node_index) {
1391   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1392 
1393   if (expanded_by == 0) {
1394     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1395     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1396     return false;
1397   }
1398 
1399   policy()->record_new_heap_size(num_regions());
1400   return true;
1401 }
1402 
1403 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1404   size_t aligned_shrink_bytes =
1405     ReservedSpace::page_align_size_down(shrink_bytes);
1406   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1407                                          HeapRegion::GrainBytes);
1408   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1409 
1410   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1411   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1412 
1413   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1414                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1415   if (num_regions_removed > 0) {
1416     policy()->record_new_heap_size(num_regions());
1417   } else {
1418     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1419   }
1420 }
1421 
1422 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1423   _verifier->verify_region_sets_optional();
1424 
1425   // We should only reach here at the end of a Full GC or during Remark which
1426   // means we should not not be holding to any GC alloc regions. The method
1427   // below will make sure of that and do any remaining clean up.
1428   _allocator->abandon_gc_alloc_regions();
1429 
1430   // Instead of tearing down / rebuilding the free lists here, we
1431   // could instead use the remove_all_pending() method on free_list to
1432   // remove only the ones that we need to remove.
1433   tear_down_region_sets(true /* free_list_only */);
1434   shrink_helper(shrink_bytes);
1435   rebuild_region_sets(true /* free_list_only */);
1436 
1437   _hrm->verify_optional();
1438   _verifier->verify_region_sets_optional();
1439 }
1440 
1441 class OldRegionSetChecker : public HeapRegionSetChecker {
1442 public:
1443   void check_mt_safety() {
1444     // Master Old Set MT safety protocol:
1445     // (a) If we're at a safepoint, operations on the master old set
1446     // should be invoked:
1447     // - by the VM thread (which will serialize them), or
1448     // - by the GC workers while holding the FreeList_lock, if we're
1449     //   at a safepoint for an evacuation pause (this lock is taken
1450     //   anyway when an GC alloc region is retired so that a new one
1451     //   is allocated from the free list), or
1452     // - by the GC workers while holding the OldSets_lock, if we're at a
1453     //   safepoint for a cleanup pause.
1454     // (b) If we're not at a safepoint, operations on the master old set
1455     // should be invoked while holding the Heap_lock.
1456 
1457     if (SafepointSynchronize::is_at_safepoint()) {
1458       guarantee(Thread::current()->is_VM_thread() ||
1459                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1460                 "master old set MT safety protocol at a safepoint");
1461     } else {
1462       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1463     }
1464   }
1465   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1466   const char* get_description() { return "Old Regions"; }
1467 };
1468 
1469 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1470 public:
1471   void check_mt_safety() {
1472     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1473               "May only change archive regions during initialization or safepoint.");
1474   }
1475   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1476   const char* get_description() { return "Archive Regions"; }
1477 };
1478 
1479 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1480 public:
1481   void check_mt_safety() {
1482     // Humongous Set MT safety protocol:
1483     // (a) If we're at a safepoint, operations on the master humongous
1484     // set should be invoked by either the VM thread (which will
1485     // serialize them) or by the GC workers while holding the
1486     // OldSets_lock.
1487     // (b) If we're not at a safepoint, operations on the master
1488     // humongous set should be invoked while holding the Heap_lock.
1489 
1490     if (SafepointSynchronize::is_at_safepoint()) {
1491       guarantee(Thread::current()->is_VM_thread() ||
1492                 OldSets_lock->owned_by_self(),
1493                 "master humongous set MT safety protocol at a safepoint");
1494     } else {
1495       guarantee(Heap_lock->owned_by_self(),
1496                 "master humongous set MT safety protocol outside a safepoint");
1497     }
1498   }
1499   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1500   const char* get_description() { return "Humongous Regions"; }
1501 };
1502 
1503 G1CollectedHeap::G1CollectedHeap() :
1504   CollectedHeap(),
1505   _young_gen_sampling_thread(NULL),
1506   _workers(NULL),
1507   _card_table(NULL),
1508   _soft_ref_policy(),
1509   _old_set("Old Region Set", new OldRegionSetChecker()),
1510   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1511   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1512   _bot(NULL),
1513   _listener(),
1514   _numa(G1NUMA::create()),
1515   _hrm(NULL),
1516   _allocator(NULL),
1517   _verifier(NULL),
1518   _summary_bytes_used(0),
1519   _bytes_used_during_gc(0),
1520   _archive_allocator(NULL),
1521   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1522   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1523   _expand_heap_after_alloc_failure(true),
1524   _g1mm(NULL),
1525   _humongous_reclaim_candidates(),
1526   _has_humongous_reclaim_candidates(false),
1527   _hr_printer(),
1528   _collector_state(),
1529   _old_marking_cycles_started(0),
1530   _old_marking_cycles_completed(0),
1531   _eden(),
1532   _survivor(),
1533   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1534   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1535   _policy(G1Policy::create_policy(_gc_timer_stw)),
1536   _heap_sizing_policy(NULL),
1537   _collection_set(this, _policy),
1538   _hot_card_cache(NULL),
1539   _rem_set(NULL),
1540   _cm(NULL),
1541   _cm_thread(NULL),
1542   _cr(NULL),
1543   _task_queues(NULL),
1544   _evacuation_failed(false),
1545   _evacuation_failed_info_array(NULL),
1546   _preserved_marks_set(true /* in_c_heap */),
1547 #ifndef PRODUCT
1548   _evacuation_failure_alot_for_current_gc(false),
1549   _evacuation_failure_alot_gc_number(0),
1550   _evacuation_failure_alot_count(0),
1551 #endif
1552   _ref_processor_stw(NULL),
1553   _is_alive_closure_stw(this),
1554   _is_subject_to_discovery_stw(this),
1555   _ref_processor_cm(NULL),
1556   _is_alive_closure_cm(this),
1557   _is_subject_to_discovery_cm(this),
1558   _region_attr() {
1559 
1560   _verifier = new G1HeapVerifier(this);
1561 
1562   _allocator = new G1Allocator(this);
1563 
1564   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1565 
1566   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1567 
1568   // Override the default _filler_array_max_size so that no humongous filler
1569   // objects are created.
1570   _filler_array_max_size = _humongous_object_threshold_in_words;
1571 
1572   uint n_queues = ParallelGCThreads;
1573   _task_queues = new RefToScanQueueSet(n_queues);
1574 
1575   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1576 
1577   for (uint i = 0; i < n_queues; i++) {
1578     RefToScanQueue* q = new RefToScanQueue();
1579     q->initialize();
1580     _task_queues->register_queue(i, q);
1581     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1582   }
1583 
1584   // Initialize the G1EvacuationFailureALot counters and flags.
1585   NOT_PRODUCT(reset_evacuation_should_fail();)
1586   _gc_tracer_stw->initialize();
1587 
1588   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1589 }
1590 
1591 static size_t actual_reserved_page_size(ReservedSpace rs) {
1592   size_t page_size = os::vm_page_size();
1593   if (UseLargePages) {
1594     // There are two ways to manage large page memory.
1595     // 1. OS supports committing large page memory.
1596     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1597     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1598     //    we reserved memory without large page.
1599     if (os::can_commit_large_page_memory() || rs.special()) {
1600       // An alignment at ReservedSpace comes from preferred page size or
1601       // heap alignment, and if the alignment came from heap alignment, it could be
1602       // larger than large pages size. So need to cap with the large page size.
1603       page_size = MIN2(rs.alignment(), os::large_page_size());
1604     }
1605   }
1606 
1607   return page_size;
1608 }
1609 
1610 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1611                                                                  size_t size,
1612                                                                  size_t translation_factor) {
1613   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1614   // Allocate a new reserved space, preferring to use large pages.
1615   ReservedSpace rs(size, preferred_page_size);
1616   size_t page_size = actual_reserved_page_size(rs);
1617   G1RegionToSpaceMapper* result  =
1618     G1RegionToSpaceMapper::create_mapper(rs,
1619                                          size,
1620                                          page_size,
1621                                          HeapRegion::GrainBytes,
1622                                          translation_factor,
1623                                          mtGC);
1624 
1625   os::trace_page_sizes_for_requested_size(description,
1626                                           size,
1627                                           preferred_page_size,
1628                                           page_size,
1629                                           rs.base(),
1630                                           rs.size());
1631 
1632   return result;
1633 }
1634 
1635 jint G1CollectedHeap::initialize_concurrent_refinement() {
1636   jint ecode = JNI_OK;
1637   _cr = G1ConcurrentRefine::create(&ecode);
1638   return ecode;
1639 }
1640 
1641 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1642   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1643   if (_young_gen_sampling_thread->osthread() == NULL) {
1644     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1645     return JNI_ENOMEM;
1646   }
1647   return JNI_OK;
1648 }
1649 
1650 jint G1CollectedHeap::initialize() {
1651 
1652   // Necessary to satisfy locking discipline assertions.
1653 
1654   MutexLocker x(Heap_lock);
1655 
1656   // While there are no constraints in the GC code that HeapWordSize
1657   // be any particular value, there are multiple other areas in the
1658   // system which believe this to be true (e.g. oop->object_size in some
1659   // cases incorrectly returns the size in wordSize units rather than
1660   // HeapWordSize).
1661   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1662 
1663   size_t init_byte_size = InitialHeapSize;
1664   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1665 
1666   // Ensure that the sizes are properly aligned.
1667   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1668   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1669   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1670 
1671   // Reserve the maximum.
1672 
1673   // When compressed oops are enabled, the preferred heap base
1674   // is calculated by subtracting the requested size from the
1675   // 32Gb boundary and using the result as the base address for
1676   // heap reservation. If the requested size is not aligned to
1677   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1678   // into the ReservedHeapSpace constructor) then the actual
1679   // base of the reserved heap may end up differing from the
1680   // address that was requested (i.e. the preferred heap base).
1681   // If this happens then we could end up using a non-optimal
1682   // compressed oops mode.
1683 
1684   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1685                                                      HeapAlignment);
1686 
1687   initialize_reserved_region(heap_rs);
1688 
1689   // Create the barrier set for the entire reserved region.
1690   G1CardTable* ct = new G1CardTable(heap_rs.region());
1691   ct->initialize();
1692   G1BarrierSet* bs = new G1BarrierSet(ct);
1693   bs->initialize();
1694   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1695   BarrierSet::set_barrier_set(bs);
1696   _card_table = ct;
1697 
1698   {
1699     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1700     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1701     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1702   }
1703 
1704   // Create the hot card cache.
1705   _hot_card_cache = new G1HotCardCache(this);
1706 
1707   // Carve out the G1 part of the heap.
1708   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1709   size_t page_size = actual_reserved_page_size(heap_rs);
1710   G1RegionToSpaceMapper* heap_storage =
1711     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1712                                               g1_rs.size(),
1713                                               page_size,
1714                                               HeapRegion::GrainBytes,
1715                                               1,
1716                                               mtJavaHeap);
1717   if(heap_storage == NULL) {
1718     vm_shutdown_during_initialization("Could not initialize G1 heap");
1719     return JNI_ERR;
1720   }
1721 
1722   os::trace_page_sizes("Heap",
1723                        MinHeapSize,
1724                        reserved_byte_size,
1725                        page_size,
1726                        heap_rs.base(),
1727                        heap_rs.size());
1728   heap_storage->set_mapping_changed_listener(&_listener);
1729 
1730   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1731   G1RegionToSpaceMapper* bot_storage =
1732     create_aux_memory_mapper("Block Offset Table",
1733                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1734                              G1BlockOffsetTable::heap_map_factor());
1735 
1736   G1RegionToSpaceMapper* cardtable_storage =
1737     create_aux_memory_mapper("Card Table",
1738                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1739                              G1CardTable::heap_map_factor());
1740 
1741   G1RegionToSpaceMapper* card_counts_storage =
1742     create_aux_memory_mapper("Card Counts Table",
1743                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1744                              G1CardCounts::heap_map_factor());
1745 
1746   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1747   G1RegionToSpaceMapper* prev_bitmap_storage =
1748     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1749   G1RegionToSpaceMapper* next_bitmap_storage =
1750     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1751 
1752   _hrm = HeapRegionManager::create_manager(this);
1753 
1754   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1755   _card_table->initialize(cardtable_storage);
1756 
1757   // Do later initialization work for concurrent refinement.
1758   _hot_card_cache->initialize(card_counts_storage);
1759 
1760   // 6843694 - ensure that the maximum region index can fit
1761   // in the remembered set structures.
1762   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1763   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1764 
1765   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1766   // start within the first card.
1767   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1768   // Also create a G1 rem set.
1769   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1770   _rem_set->initialize(max_reserved_capacity(), max_regions());
1771 
1772   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1773   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1774   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1775             "too many cards per region");
1776 
1777   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1778 
1779   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1780 
1781   {
1782     HeapWord* start = _hrm->reserved().start();
1783     HeapWord* end = _hrm->reserved().end();
1784     size_t granularity = HeapRegion::GrainBytes;
1785 
1786     _region_attr.initialize(start, end, granularity);
1787     _humongous_reclaim_candidates.initialize(start, end, granularity);
1788   }
1789 
1790   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1791                           true /* are_GC_task_threads */,
1792                           false /* are_ConcurrentGC_threads */);
1793   if (_workers == NULL) {
1794     return JNI_ENOMEM;
1795   }
1796   _workers->initialize_workers();
1797 
1798   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1799 
1800   // Create the G1ConcurrentMark data structure and thread.
1801   // (Must do this late, so that "max_regions" is defined.)
1802   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1803   if (!_cm->completed_initialization()) {
1804     vm_shutdown_during_initialization("Could not initialize G1ConcurrentMark");
1805     return JNI_ENOMEM;
1806   }
1807   _cm_thread = _cm->cm_thread();
1808 
1809   // Now expand into the initial heap size.
1810   if (!expand(init_byte_size, _workers)) {
1811     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1812     return JNI_ENOMEM;
1813   }
1814 
1815   // Perform any initialization actions delegated to the policy.
1816   policy()->init(this, &_collection_set);
1817 
1818   jint ecode = initialize_concurrent_refinement();
1819   if (ecode != JNI_OK) {
1820     return ecode;
1821   }
1822 
1823   ecode = initialize_young_gen_sampling_thread();
1824   if (ecode != JNI_OK) {
1825     return ecode;
1826   }
1827 
1828   {
1829     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1830     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1831     dcqs.set_max_cards(concurrent_refine()->red_zone());
1832   }
1833 
1834   // Here we allocate the dummy HeapRegion that is required by the
1835   // G1AllocRegion class.
1836   HeapRegion* dummy_region = _hrm->get_dummy_region();
1837 
1838   // We'll re-use the same region whether the alloc region will
1839   // require BOT updates or not and, if it doesn't, then a non-young
1840   // region will complain that it cannot support allocations without
1841   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1842   dummy_region->set_eden();
1843   // Make sure it's full.
1844   dummy_region->set_top(dummy_region->end());
1845   G1AllocRegion::setup(this, dummy_region);
1846 
1847   _allocator->init_mutator_alloc_regions();
1848 
1849   // Do create of the monitoring and management support so that
1850   // values in the heap have been properly initialized.
1851   _g1mm = new G1MonitoringSupport(this);
1852 
1853   G1StringDedup::initialize();
1854 
1855   _preserved_marks_set.init(ParallelGCThreads);
1856 
1857   _collection_set.initialize(max_regions());
1858 
1859   return JNI_OK;
1860 }
1861 
1862 void G1CollectedHeap::stop() {
1863   // Stop all concurrent threads. We do this to make sure these threads
1864   // do not continue to execute and access resources (e.g. logging)
1865   // that are destroyed during shutdown.
1866   _cr->stop();
1867   _young_gen_sampling_thread->stop();
1868   _cm_thread->stop();
1869   if (G1StringDedup::is_enabled()) {
1870     G1StringDedup::stop();
1871   }
1872 }
1873 
1874 void G1CollectedHeap::safepoint_synchronize_begin() {
1875   SuspendibleThreadSet::synchronize();
1876 }
1877 
1878 void G1CollectedHeap::safepoint_synchronize_end() {
1879   SuspendibleThreadSet::desynchronize();
1880 }
1881 
1882 void G1CollectedHeap::post_initialize() {
1883   CollectedHeap::post_initialize();
1884   ref_processing_init();
1885 }
1886 
1887 void G1CollectedHeap::ref_processing_init() {
1888   // Reference processing in G1 currently works as follows:
1889   //
1890   // * There are two reference processor instances. One is
1891   //   used to record and process discovered references
1892   //   during concurrent marking; the other is used to
1893   //   record and process references during STW pauses
1894   //   (both full and incremental).
1895   // * Both ref processors need to 'span' the entire heap as
1896   //   the regions in the collection set may be dotted around.
1897   //
1898   // * For the concurrent marking ref processor:
1899   //   * Reference discovery is enabled at initial marking.
1900   //   * Reference discovery is disabled and the discovered
1901   //     references processed etc during remarking.
1902   //   * Reference discovery is MT (see below).
1903   //   * Reference discovery requires a barrier (see below).
1904   //   * Reference processing may or may not be MT
1905   //     (depending on the value of ParallelRefProcEnabled
1906   //     and ParallelGCThreads).
1907   //   * A full GC disables reference discovery by the CM
1908   //     ref processor and abandons any entries on it's
1909   //     discovered lists.
1910   //
1911   // * For the STW processor:
1912   //   * Non MT discovery is enabled at the start of a full GC.
1913   //   * Processing and enqueueing during a full GC is non-MT.
1914   //   * During a full GC, references are processed after marking.
1915   //
1916   //   * Discovery (may or may not be MT) is enabled at the start
1917   //     of an incremental evacuation pause.
1918   //   * References are processed near the end of a STW evacuation pause.
1919   //   * For both types of GC:
1920   //     * Discovery is atomic - i.e. not concurrent.
1921   //     * Reference discovery will not need a barrier.
1922 
1923   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1924 
1925   // Concurrent Mark ref processor
1926   _ref_processor_cm =
1927     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1928                            mt_processing,                                  // mt processing
1929                            ParallelGCThreads,                              // degree of mt processing
1930                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1931                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1932                            false,                                          // Reference discovery is not atomic
1933                            &_is_alive_closure_cm,                          // is alive closure
1934                            true);                                          // allow changes to number of processing threads
1935 
1936   // STW ref processor
1937   _ref_processor_stw =
1938     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1939                            mt_processing,                        // mt processing
1940                            ParallelGCThreads,                    // degree of mt processing
1941                            (ParallelGCThreads > 1),              // mt discovery
1942                            ParallelGCThreads,                    // degree of mt discovery
1943                            true,                                 // Reference discovery is atomic
1944                            &_is_alive_closure_stw,               // is alive closure
1945                            true);                                // allow changes to number of processing threads
1946 }
1947 
1948 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1949   return &_soft_ref_policy;
1950 }
1951 
1952 size_t G1CollectedHeap::capacity() const {
1953   return _hrm->length() * HeapRegion::GrainBytes;
1954 }
1955 
1956 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1957   return _hrm->total_free_bytes();
1958 }
1959 
1960 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1961   _hot_card_cache->drain(cl, worker_id);
1962 }
1963 
1964 // Computes the sum of the storage used by the various regions.
1965 size_t G1CollectedHeap::used() const {
1966   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1967   if (_archive_allocator != NULL) {
1968     result += _archive_allocator->used();
1969   }
1970   return result;
1971 }
1972 
1973 size_t G1CollectedHeap::used_unlocked() const {
1974   return _summary_bytes_used;
1975 }
1976 
1977 class SumUsedClosure: public HeapRegionClosure {
1978   size_t _used;
1979 public:
1980   SumUsedClosure() : _used(0) {}
1981   bool do_heap_region(HeapRegion* r) {
1982     _used += r->used();
1983     return false;
1984   }
1985   size_t result() { return _used; }
1986 };
1987 
1988 size_t G1CollectedHeap::recalculate_used() const {
1989   SumUsedClosure blk;
1990   heap_region_iterate(&blk);
1991   return blk.result();
1992 }
1993 
1994 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1995   switch (cause) {
1996     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1997     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1998     case GCCause::_wb_conc_mark:                        return true;
1999     default :                                           return false;
2000   }
2001 }
2002 
2003 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2004   switch (cause) {
2005     case GCCause::_g1_humongous_allocation: return true;
2006     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
2007     default:                                return is_user_requested_concurrent_full_gc(cause);
2008   }
2009 }
2010 
2011 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
2012   if (policy()->force_upgrade_to_full()) {
2013     return true;
2014   } else if (should_do_concurrent_full_gc(_gc_cause)) {
2015     return false;
2016   } else if (has_regions_left_for_allocation()) {
2017     return false;
2018   } else {
2019     return true;
2020   }
2021 }
2022 
2023 #ifndef PRODUCT
2024 void G1CollectedHeap::allocate_dummy_regions() {
2025   // Let's fill up most of the region
2026   size_t word_size = HeapRegion::GrainWords - 1024;
2027   // And as a result the region we'll allocate will be humongous.
2028   guarantee(is_humongous(word_size), "sanity");
2029 
2030   // _filler_array_max_size is set to humongous object threshold
2031   // but temporarily change it to use CollectedHeap::fill_with_object().
2032   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2033 
2034   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2035     // Let's use the existing mechanism for the allocation
2036     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2037     if (dummy_obj != NULL) {
2038       MemRegion mr(dummy_obj, word_size);
2039       CollectedHeap::fill_with_object(mr);
2040     } else {
2041       // If we can't allocate once, we probably cannot allocate
2042       // again. Let's get out of the loop.
2043       break;
2044     }
2045   }
2046 }
2047 #endif // !PRODUCT
2048 
2049 void G1CollectedHeap::increment_old_marking_cycles_started() {
2050   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2051          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2052          "Wrong marking cycle count (started: %d, completed: %d)",
2053          _old_marking_cycles_started, _old_marking_cycles_completed);
2054 
2055   _old_marking_cycles_started++;
2056 }
2057 
2058 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2059   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2060 
2061   // We assume that if concurrent == true, then the caller is a
2062   // concurrent thread that was joined the Suspendible Thread
2063   // Set. If there's ever a cheap way to check this, we should add an
2064   // assert here.
2065 
2066   // Given that this method is called at the end of a Full GC or of a
2067   // concurrent cycle, and those can be nested (i.e., a Full GC can
2068   // interrupt a concurrent cycle), the number of full collections
2069   // completed should be either one (in the case where there was no
2070   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2071   // behind the number of full collections started.
2072 
2073   // This is the case for the inner caller, i.e. a Full GC.
2074   assert(concurrent ||
2075          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2076          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2077          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2078          "is inconsistent with _old_marking_cycles_completed = %u",
2079          _old_marking_cycles_started, _old_marking_cycles_completed);
2080 
2081   // This is the case for the outer caller, i.e. the concurrent cycle.
2082   assert(!concurrent ||
2083          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2084          "for outer caller (concurrent cycle): "
2085          "_old_marking_cycles_started = %u "
2086          "is inconsistent with _old_marking_cycles_completed = %u",
2087          _old_marking_cycles_started, _old_marking_cycles_completed);
2088 
2089   _old_marking_cycles_completed += 1;
2090 
2091   // We need to clear the "in_progress" flag in the CM thread before
2092   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2093   // is set) so that if a waiter requests another System.gc() it doesn't
2094   // incorrectly see that a marking cycle is still in progress.
2095   if (concurrent) {
2096     _cm_thread->set_idle();
2097   }
2098 
2099   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2100   // for a full GC to finish that their wait is over.
2101   ml.notify_all();
2102 }
2103 
2104 void G1CollectedHeap::collect(GCCause::Cause cause) {
2105   try_collect(cause);
2106 }
2107 
2108 // Return true if (x < y) with allowance for wraparound.
2109 static bool gc_counter_less_than(uint x, uint y) {
2110   return (x - y) > (UINT_MAX/2);
2111 }
2112 
2113 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2114 // Macro so msg printing is format-checked.
2115 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2116   do {                                                                  \
2117     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2118     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2119       ResourceMark rm; /* For thread name. */                           \
2120       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2121       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2122                                        Thread::current()->name(),       \
2123                                        GCCause::to_string(cause));      \
2124       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2125     }                                                                   \
2126   } while (0)
2127 
2128 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2129   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2130 
2131 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2132                                                uint gc_counter,
2133                                                uint old_marking_started_before) {
2134   assert_heap_not_locked();
2135   assert(should_do_concurrent_full_gc(cause),
2136          "Non-concurrent cause %s", GCCause::to_string(cause));
2137 
2138   for (uint i = 1; true; ++i) {
2139     // Try to schedule an initial-mark evacuation pause that will
2140     // start a concurrent cycle.
2141     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2142     VM_G1TryInitiateConcMark op(gc_counter,
2143                                 cause,
2144                                 policy()->max_pause_time_ms());
2145     VMThread::execute(&op);
2146 
2147     // Request is trivially finished.
2148     if (cause == GCCause::_g1_periodic_collection) {
2149       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2150       return op.gc_succeeded();
2151     }
2152 
2153     // If VMOp skipped initiating concurrent marking cycle because
2154     // we're terminating, then we're done.
2155     if (op.terminating()) {
2156       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2157       return false;
2158     }
2159 
2160     // Lock to get consistent set of values.
2161     uint old_marking_started_after;
2162     uint old_marking_completed_after;
2163     {
2164       MutexLocker ml(Heap_lock);
2165       // Update gc_counter for retrying VMOp if needed. Captured here to be
2166       // consistent with the values we use below for termination tests.  If
2167       // a retry is needed after a possible wait, and another collection
2168       // occurs in the meantime, it will cause our retry to be skipped and
2169       // we'll recheck for termination with updated conditions from that
2170       // more recent collection.  That's what we want, rather than having
2171       // our retry possibly perform an unnecessary collection.
2172       gc_counter = total_collections();
2173       old_marking_started_after = _old_marking_cycles_started;
2174       old_marking_completed_after = _old_marking_cycles_completed;
2175     }
2176 
2177     if (!GCCause::is_user_requested_gc(cause)) {
2178       // For an "automatic" (not user-requested) collection, we just need to
2179       // ensure that progress is made.
2180       //
2181       // Request is finished if any of
2182       // (1) the VMOp successfully performed a GC,
2183       // (2) a concurrent cycle was already in progress,
2184       // (3) a new cycle was started (by this thread or some other), or
2185       // (4) a Full GC was performed.
2186       // Cases (3) and (4) are detected together by a change to
2187       // _old_marking_cycles_started.
2188       //
2189       // Note that (1) does not imply (3).  If we're still in the mixed
2190       // phase of an earlier concurrent collection, the request to make the
2191       // collection an initial-mark won't be honored.  If we don't check for
2192       // both conditions we'll spin doing back-to-back collections.
2193       if (op.gc_succeeded() ||
2194           op.cycle_already_in_progress() ||
2195           (old_marking_started_before != old_marking_started_after)) {
2196         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2197         return true;
2198       }
2199     } else {                    // User-requested GC.
2200       // For a user-requested collection, we want to ensure that a complete
2201       // full collection has been performed before returning, but without
2202       // waiting for more than needed.
2203 
2204       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2205       // new cycle was started.  That's good, because it's not clear what we
2206       // should do otherwise.  Trying again just does back to back GCs.
2207       // Can't wait for someone else to start a cycle.  And returning fails
2208       // to meet the goal of ensuring a full collection was performed.
2209       assert(!op.gc_succeeded() ||
2210              (old_marking_started_before != old_marking_started_after),
2211              "invariant: succeeded %s, started before %u, started after %u",
2212              BOOL_TO_STR(op.gc_succeeded()),
2213              old_marking_started_before, old_marking_started_after);
2214 
2215       // Request is finished if a full collection (concurrent or stw)
2216       // was started after this request and has completed, e.g.
2217       // started_before < completed_after.
2218       if (gc_counter_less_than(old_marking_started_before,
2219                                old_marking_completed_after)) {
2220         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2221         return true;
2222       }
2223 
2224       if (old_marking_started_after != old_marking_completed_after) {
2225         // If there is an in-progress cycle (possibly started by us), then
2226         // wait for that cycle to complete, e.g.
2227         // while completed_now < started_after.
2228         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2229         MonitorLocker ml(G1OldGCCount_lock);
2230         while (gc_counter_less_than(_old_marking_cycles_completed,
2231                                     old_marking_started_after)) {
2232           ml.wait();
2233         }
2234         // Request is finished if the collection we just waited for was
2235         // started after this request.
2236         if (old_marking_started_before != old_marking_started_after) {
2237           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2238           return true;
2239         }
2240       }
2241 
2242       // If VMOp was successful then it started a new cycle that the above
2243       // wait &etc should have recognized as finishing this request.  This
2244       // differs from a non-user-request, where gc_succeeded does not imply
2245       // a new cycle was started.
2246       assert(!op.gc_succeeded(), "invariant");
2247 
2248       // If VMOp failed because a cycle was already in progress, it is now
2249       // complete.  But it didn't finish this user-requested GC, so try
2250       // again.
2251       if (op.cycle_already_in_progress()) {
2252         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2253         continue;
2254       }
2255     }
2256 
2257     // Collection failed and should be retried.
2258     assert(op.transient_failure(), "invariant");
2259 
2260     // If GCLocker is active, wait until clear before retrying.
2261     if (GCLocker::is_active_and_needs_gc()) {
2262       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2263       GCLocker::stall_until_clear();
2264     }
2265 
2266     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2267   }
2268 }
2269 
2270 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2271   assert_heap_not_locked();
2272 
2273   // Lock to get consistent set of values.
2274   uint gc_count_before;
2275   uint full_gc_count_before;
2276   uint old_marking_started_before;
2277   {
2278     MutexLocker ml(Heap_lock);
2279     gc_count_before = total_collections();
2280     full_gc_count_before = total_full_collections();
2281     old_marking_started_before = _old_marking_cycles_started;
2282   }
2283 
2284   if (should_do_concurrent_full_gc(cause)) {
2285     return try_collect_concurrently(cause,
2286                                     gc_count_before,
2287                                     old_marking_started_before);
2288   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2289     // Indicate failure to be consistent with VMOp failure due to
2290     // another collection slipping in after our gc_count but before
2291     // our request is processed.
2292     return false;
2293   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2294              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2295 
2296     // Schedule a standard evacuation pause. We're setting word_size
2297     // to 0 which means that we are not requesting a post-GC allocation.
2298     VM_G1CollectForAllocation op(0,     /* word_size */
2299                                  gc_count_before,
2300                                  cause,
2301                                  policy()->max_pause_time_ms());
2302     VMThread::execute(&op);
2303     return op.gc_succeeded();
2304   } else {
2305     // Schedule a Full GC.
2306     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2307     VMThread::execute(&op);
2308     return op.gc_succeeded();
2309   }
2310 }
2311 
2312 bool G1CollectedHeap::is_in(const void* p) const {
2313   if (_hrm->reserved().contains(p)) {
2314     // Given that we know that p is in the reserved space,
2315     // heap_region_containing() should successfully
2316     // return the containing region.
2317     HeapRegion* hr = heap_region_containing(p);
2318     return hr->is_in(p);
2319   } else {
2320     return false;
2321   }
2322 }
2323 
2324 #ifdef ASSERT
2325 bool G1CollectedHeap::is_in_exact(const void* p) const {
2326   bool contains = reserved_region().contains(p);
2327   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2328   if (contains && available) {
2329     return true;
2330   } else {
2331     return false;
2332   }
2333 }
2334 #endif
2335 
2336 // Iteration functions.
2337 
2338 // Iterates an ObjectClosure over all objects within a HeapRegion.
2339 
2340 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2341   ObjectClosure* _cl;
2342 public:
2343   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2344   bool do_heap_region(HeapRegion* r) {
2345     if (!r->is_continues_humongous()) {
2346       r->object_iterate(_cl);
2347     }
2348     return false;
2349   }
2350 };
2351 
2352 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2353   IterateObjectClosureRegionClosure blk(cl);
2354   heap_region_iterate(&blk);
2355 }
2356 
2357 void G1CollectedHeap::keep_alive(oop obj) {
2358   G1BarrierSet::enqueue(obj);
2359 }
2360 
2361 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2362   _hrm->iterate(cl);
2363 }
2364 
2365 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2366                                                                  HeapRegionClaimer *hrclaimer,
2367                                                                  uint worker_id) const {
2368   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2369 }
2370 
2371 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2372                                                          HeapRegionClaimer *hrclaimer) const {
2373   _hrm->par_iterate(cl, hrclaimer, 0);
2374 }
2375 
2376 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2377   _collection_set.iterate(cl);
2378 }
2379 
2380 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2381   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2382 }
2383 
2384 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2385   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2386 }
2387 
2388 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2389   HeapRegion* hr = heap_region_containing(addr);
2390   return hr->block_start(addr);
2391 }
2392 
2393 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2394   HeapRegion* hr = heap_region_containing(addr);
2395   return hr->block_is_obj(addr);
2396 }
2397 
2398 bool G1CollectedHeap::supports_tlab_allocation() const {
2399   return true;
2400 }
2401 
2402 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2403   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2404 }
2405 
2406 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2407   return _eden.length() * HeapRegion::GrainBytes;
2408 }
2409 
2410 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2411 // must be equal to the humongous object limit.
2412 size_t G1CollectedHeap::max_tlab_size() const {
2413   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2414 }
2415 
2416 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2417   return _allocator->unsafe_max_tlab_alloc();
2418 }
2419 
2420 size_t G1CollectedHeap::max_capacity() const {
2421   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2422 }
2423 
2424 size_t G1CollectedHeap::max_reserved_capacity() const {
2425   return _hrm->max_length() * HeapRegion::GrainBytes;
2426 }
2427 
2428 jlong G1CollectedHeap::millis_since_last_gc() {
2429   // See the notes in GenCollectedHeap::millis_since_last_gc()
2430   // for more information about the implementation.
2431   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2432                   _policy->collection_pause_end_millis();
2433   if (ret_val < 0) {
2434     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2435       ". returning zero instead.", ret_val);
2436     return 0;
2437   }
2438   return ret_val;
2439 }
2440 
2441 void G1CollectedHeap::deduplicate_string(oop str) {
2442   assert(java_lang_String::is_instance(str), "invariant");
2443 
2444   if (G1StringDedup::is_enabled()) {
2445     G1StringDedup::deduplicate(str);
2446   }
2447 }
2448 
2449 void G1CollectedHeap::prepare_for_verify() {
2450   _verifier->prepare_for_verify();
2451 }
2452 
2453 void G1CollectedHeap::verify(VerifyOption vo) {
2454   _verifier->verify(vo);
2455 }
2456 
2457 bool G1CollectedHeap::supports_concurrent_phase_control() const {
2458   return true;
2459 }
2460 
2461 bool G1CollectedHeap::request_concurrent_phase(const char* phase) {
2462   return _cm_thread->request_concurrent_phase(phase);
2463 }
2464 
2465 bool G1CollectedHeap::is_heterogeneous_heap() const {
2466   return G1Arguments::is_heterogeneous_heap();
2467 }
2468 
2469 class PrintRegionClosure: public HeapRegionClosure {
2470   outputStream* _st;
2471 public:
2472   PrintRegionClosure(outputStream* st) : _st(st) {}
2473   bool do_heap_region(HeapRegion* r) {
2474     r->print_on(_st);
2475     return false;
2476   }
2477 };
2478 
2479 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2480                                        const HeapRegion* hr,
2481                                        const VerifyOption vo) const {
2482   switch (vo) {
2483   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2484   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2485   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2486   default:                            ShouldNotReachHere();
2487   }
2488   return false; // keep some compilers happy
2489 }
2490 
2491 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2492                                        const VerifyOption vo) const {
2493   switch (vo) {
2494   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2495   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2496   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2497   default:                            ShouldNotReachHere();
2498   }
2499   return false; // keep some compilers happy
2500 }
2501 
2502 void G1CollectedHeap::print_heap_regions() const {
2503   LogTarget(Trace, gc, heap, region) lt;
2504   if (lt.is_enabled()) {
2505     LogStream ls(lt);
2506     print_regions_on(&ls);
2507   }
2508 }
2509 
2510 void G1CollectedHeap::print_on(outputStream* st) const {
2511   st->print(" %-20s", "garbage-first heap");
2512   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2513             capacity()/K, used_unlocked()/K);
2514   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2515             p2i(_hrm->reserved().start()),
2516             p2i(_hrm->reserved().end()));
2517   st->cr();
2518   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2519   uint young_regions = young_regions_count();
2520   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2521             (size_t) young_regions * HeapRegion::GrainBytes / K);
2522   uint survivor_regions = survivor_regions_count();
2523   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2524             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2525   st->cr();
2526   if (_numa->is_enabled()) {
2527     uint num_nodes = _numa->num_active_nodes();
2528     st->print("  remaining free region(s) on each NUMA node: ");
2529     const int* node_ids = _numa->node_ids();
2530     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2531       st->print("%d=%u ", node_ids[node_index], _hrm->num_free_regions(node_index));
2532     }
2533     st->cr();
2534   }
2535   MetaspaceUtils::print_on(st);
2536 }
2537 
2538 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2539   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2540                "HS=humongous(starts), HC=humongous(continues), "
2541                "CS=collection set, F=free, "
2542                "OA=open archive, CA=closed archive, "
2543                "TAMS=top-at-mark-start (previous, next)");
2544   PrintRegionClosure blk(st);
2545   heap_region_iterate(&blk);
2546 }
2547 
2548 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2549   print_on(st);
2550 
2551   // Print the per-region information.
2552   print_regions_on(st);
2553 }
2554 
2555 void G1CollectedHeap::print_on_error(outputStream* st) const {
2556   this->CollectedHeap::print_on_error(st);
2557 
2558   if (_cm != NULL) {
2559     st->cr();
2560     _cm->print_on_error(st);
2561   }
2562 }
2563 
2564 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
2565   workers()->print_worker_threads_on(st);
2566   _cm_thread->print_on(st);
2567   st->cr();
2568   _cm->print_worker_threads_on(st);
2569   _cr->print_threads_on(st);
2570   _young_gen_sampling_thread->print_on(st);
2571   if (G1StringDedup::is_enabled()) {
2572     G1StringDedup::print_worker_threads_on(st);
2573   }
2574 }
2575 
2576 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2577   workers()->threads_do(tc);
2578   tc->do_thread(_cm_thread);
2579   _cm->threads_do(tc);
2580   _cr->threads_do(tc);
2581   tc->do_thread(_young_gen_sampling_thread);
2582   if (G1StringDedup::is_enabled()) {
2583     G1StringDedup::threads_do(tc);
2584   }
2585 }
2586 
2587 void G1CollectedHeap::print_tracing_info() const {
2588   rem_set()->print_summary_info();
2589   concurrent_mark()->print_summary_info();
2590 }
2591 
2592 #ifndef PRODUCT
2593 // Helpful for debugging RSet issues.
2594 
2595 class PrintRSetsClosure : public HeapRegionClosure {
2596 private:
2597   const char* _msg;
2598   size_t _occupied_sum;
2599 
2600 public:
2601   bool do_heap_region(HeapRegion* r) {
2602     HeapRegionRemSet* hrrs = r->rem_set();
2603     size_t occupied = hrrs->occupied();
2604     _occupied_sum += occupied;
2605 
2606     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2607     if (occupied == 0) {
2608       tty->print_cr("  RSet is empty");
2609     } else {
2610       hrrs->print();
2611     }
2612     tty->print_cr("----------");
2613     return false;
2614   }
2615 
2616   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2617     tty->cr();
2618     tty->print_cr("========================================");
2619     tty->print_cr("%s", msg);
2620     tty->cr();
2621   }
2622 
2623   ~PrintRSetsClosure() {
2624     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2625     tty->print_cr("========================================");
2626     tty->cr();
2627   }
2628 };
2629 
2630 void G1CollectedHeap::print_cset_rsets() {
2631   PrintRSetsClosure cl("Printing CSet RSets");
2632   collection_set_iterate_all(&cl);
2633 }
2634 
2635 void G1CollectedHeap::print_all_rsets() {
2636   PrintRSetsClosure cl("Printing All RSets");;
2637   heap_region_iterate(&cl);
2638 }
2639 #endif // PRODUCT
2640 
2641 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2642   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2643 }
2644 
2645 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2646 
2647   size_t eden_used_bytes = _eden.used_bytes();
2648   size_t survivor_used_bytes = _survivor.used_bytes();
2649   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2650 
2651   size_t eden_capacity_bytes =
2652     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2653 
2654   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2655   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2656                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2657 }
2658 
2659 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2660   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2661                        stats->unused(), stats->used(), stats->region_end_waste(),
2662                        stats->regions_filled(), stats->direct_allocated(),
2663                        stats->failure_used(), stats->failure_waste());
2664 }
2665 
2666 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2667   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2668   gc_tracer->report_gc_heap_summary(when, heap_summary);
2669 
2670   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2671   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2672 }
2673 
2674 G1CollectedHeap* G1CollectedHeap::heap() {
2675   CollectedHeap* heap = Universe::heap();
2676   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
2677   assert(heap->kind() == CollectedHeap::G1, "Invalid name");
2678   return (G1CollectedHeap*)heap;
2679 }
2680 
2681 void G1CollectedHeap::gc_prologue(bool full) {
2682   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2683 
2684   // This summary needs to be printed before incrementing total collections.
2685   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2686 
2687   // Update common counters.
2688   increment_total_collections(full /* full gc */);
2689   if (full || collector_state()->in_initial_mark_gc()) {
2690     increment_old_marking_cycles_started();
2691   }
2692 
2693   // Fill TLAB's and such
2694   double start = os::elapsedTime();
2695   ensure_parsability(true);
2696   phase_times()->record_prepare_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2697 }
2698 
2699 void G1CollectedHeap::gc_epilogue(bool full) {
2700   // Update common counters.
2701   if (full) {
2702     // Update the number of full collections that have been completed.
2703     increment_old_marking_cycles_completed(false /* concurrent */);
2704   }
2705 
2706   // We are at the end of the GC. Total collections has already been increased.
2707   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2708 
2709   // FIXME: what is this about?
2710   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2711   // is set.
2712 #if COMPILER2_OR_JVMCI
2713   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2714 #endif
2715 
2716   double start = os::elapsedTime();
2717   resize_all_tlabs();
2718   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2719 
2720   MemoryService::track_memory_usage();
2721   // We have just completed a GC. Update the soft reference
2722   // policy with the new heap occupancy
2723   Universe::update_heap_info_at_gc();
2724 
2725   // Print NUMA statistics.
2726   _numa->print_statistics();
2727 }
2728 
2729 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2730   LogTarget(Trace, gc, heap, verify) lt;
2731 
2732   if (lt.is_enabled()) {
2733     LogStream ls(lt);
2734     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2735     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2736     heap_region_iterate(&cl);
2737   }
2738 }
2739 
2740 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2741                                                uint gc_count_before,
2742                                                bool* succeeded,
2743                                                GCCause::Cause gc_cause) {
2744   assert_heap_not_locked_and_not_at_safepoint();
2745   VM_G1CollectForAllocation op(word_size,
2746                                gc_count_before,
2747                                gc_cause,
2748                                policy()->max_pause_time_ms());
2749   VMThread::execute(&op);
2750 
2751   HeapWord* result = op.result();
2752   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2753   assert(result == NULL || ret_succeeded,
2754          "the result should be NULL if the VM did not succeed");
2755   *succeeded = ret_succeeded;
2756 
2757   assert_heap_not_locked();
2758   return result;
2759 }
2760 
2761 void G1CollectedHeap::do_concurrent_mark() {
2762   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2763   if (!_cm_thread->in_progress()) {
2764     _cm_thread->set_started();
2765     CGC_lock->notify();
2766   }
2767 }
2768 
2769 size_t G1CollectedHeap::pending_card_num() {
2770   struct CountCardsClosure : public ThreadClosure {
2771     size_t _cards;
2772     CountCardsClosure() : _cards(0) {}
2773     virtual void do_thread(Thread* t) {
2774       _cards += G1ThreadLocalData::dirty_card_queue(t).size();
2775     }
2776   } count_from_threads;
2777   Threads::threads_do(&count_from_threads);
2778 
2779   G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
2780   return dcqs.num_cards() + count_from_threads._cards;
2781 }
2782 
2783 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2784   // We don't nominate objects with many remembered set entries, on
2785   // the assumption that such objects are likely still live.
2786   HeapRegionRemSet* rem_set = r->rem_set();
2787 
2788   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2789          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2790          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2791 }
2792 
2793 #ifndef PRODUCT
2794 void G1CollectedHeap::verify_region_attr_remset_update() {
2795   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2796   public:
2797     virtual bool do_heap_region(HeapRegion* r) {
2798       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2799       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2800       assert(r->rem_set()->is_tracked() == needs_remset_update,
2801              "Region %u remset tracking status (%s) different to region attribute (%s)",
2802              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2803       return false;
2804     }
2805   } cl;
2806   heap_region_iterate(&cl);
2807 }
2808 #endif
2809 
2810 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2811   public:
2812     bool do_heap_region(HeapRegion* hr) {
2813       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2814         hr->verify_rem_set();
2815       }
2816       return false;
2817     }
2818 };
2819 
2820 uint G1CollectedHeap::num_task_queues() const {
2821   return _task_queues->size();
2822 }
2823 
2824 #if TASKQUEUE_STATS
2825 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2826   st->print_raw_cr("GC Task Stats");
2827   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2828   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2829 }
2830 
2831 void G1CollectedHeap::print_taskqueue_stats() const {
2832   if (!log_is_enabled(Trace, gc, task, stats)) {
2833     return;
2834   }
2835   Log(gc, task, stats) log;
2836   ResourceMark rm;
2837   LogStream ls(log.trace());
2838   outputStream* st = &ls;
2839 
2840   print_taskqueue_stats_hdr(st);
2841 
2842   TaskQueueStats totals;
2843   const uint n = num_task_queues();
2844   for (uint i = 0; i < n; ++i) {
2845     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2846     totals += task_queue(i)->stats;
2847   }
2848   st->print_raw("tot "); totals.print(st); st->cr();
2849 
2850   DEBUG_ONLY(totals.verify());
2851 }
2852 
2853 void G1CollectedHeap::reset_taskqueue_stats() {
2854   const uint n = num_task_queues();
2855   for (uint i = 0; i < n; ++i) {
2856     task_queue(i)->stats.reset();
2857   }
2858 }
2859 #endif // TASKQUEUE_STATS
2860 
2861 void G1CollectedHeap::wait_for_root_region_scanning() {
2862   double scan_wait_start = os::elapsedTime();
2863   // We have to wait until the CM threads finish scanning the
2864   // root regions as it's the only way to ensure that all the
2865   // objects on them have been correctly scanned before we start
2866   // moving them during the GC.
2867   bool waited = _cm->root_regions()->wait_until_scan_finished();
2868   double wait_time_ms = 0.0;
2869   if (waited) {
2870     double scan_wait_end = os::elapsedTime();
2871     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2872   }
2873   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2874 }
2875 
2876 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2877 private:
2878   G1HRPrinter* _hr_printer;
2879 public:
2880   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2881 
2882   virtual bool do_heap_region(HeapRegion* r) {
2883     _hr_printer->cset(r);
2884     return false;
2885   }
2886 };
2887 
2888 void G1CollectedHeap::start_new_collection_set() {
2889   double start = os::elapsedTime();
2890 
2891   collection_set()->start_incremental_building();
2892 
2893   clear_region_attr();
2894 
2895   guarantee(_eden.length() == 0, "eden should have been cleared");
2896   policy()->transfer_survivors_to_cset(survivor());
2897 
2898   // We redo the verification but now wrt to the new CSet which
2899   // has just got initialized after the previous CSet was freed.
2900   _cm->verify_no_collection_set_oops();
2901 
2902   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2903 }
2904 
2905 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2906 
2907   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2908   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2909                                             collection_set()->optional_region_length());
2910 
2911   _cm->verify_no_collection_set_oops();
2912 
2913   if (_hr_printer.is_active()) {
2914     G1PrintCollectionSetClosure cl(&_hr_printer);
2915     _collection_set.iterate(&cl);
2916     _collection_set.iterate_optional(&cl);
2917   }
2918 }
2919 
2920 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2921   if (collector_state()->in_initial_mark_gc()) {
2922     return G1HeapVerifier::G1VerifyConcurrentStart;
2923   } else if (collector_state()->in_young_only_phase()) {
2924     return G1HeapVerifier::G1VerifyYoungNormal;
2925   } else {
2926     return G1HeapVerifier::G1VerifyMixed;
2927   }
2928 }
2929 
2930 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2931   if (VerifyRememberedSets) {
2932     log_info(gc, verify)("[Verifying RemSets before GC]");
2933     VerifyRegionRemSetClosure v_cl;
2934     heap_region_iterate(&v_cl);
2935   }
2936   _verifier->verify_before_gc(type);
2937   _verifier->check_bitmaps("GC Start");
2938   verify_numa_regions("GC Start");
2939 }
2940 
2941 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2942   if (VerifyRememberedSets) {
2943     log_info(gc, verify)("[Verifying RemSets after GC]");
2944     VerifyRegionRemSetClosure v_cl;
2945     heap_region_iterate(&v_cl);
2946   }
2947   _verifier->verify_after_gc(type);
2948   _verifier->check_bitmaps("GC End");
2949   verify_numa_regions("GC End");
2950 }
2951 
2952 void G1CollectedHeap::expand_heap_after_young_collection(){
2953   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2954   if (expand_bytes > 0) {
2955     // No need for an ergo logging here,
2956     // expansion_amount() does this when it returns a value > 0.
2957     double expand_ms;
2958     if (!expand(expand_bytes, _workers, &expand_ms)) {
2959       // We failed to expand the heap. Cannot do anything about it.
2960     }
2961     phase_times()->record_expand_heap_time(expand_ms);
2962   }
2963 }
2964 
2965 const char* G1CollectedHeap::young_gc_name() const {
2966   if (collector_state()->in_initial_mark_gc()) {
2967     return "Pause Young (Concurrent Start)";
2968   } else if (collector_state()->in_young_only_phase()) {
2969     if (collector_state()->in_young_gc_before_mixed()) {
2970       return "Pause Young (Prepare Mixed)";
2971     } else {
2972       return "Pause Young (Normal)";
2973     }
2974   } else {
2975     return "Pause Young (Mixed)";
2976   }
2977 }
2978 
2979 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2980   assert_at_safepoint_on_vm_thread();
2981   guarantee(!is_gc_active(), "collection is not reentrant");
2982 
2983   if (GCLocker::check_active_before_gc()) {
2984     return false;
2985   }
2986 
2987   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2988   if (should_upgrade_to_full_gc(gc_cause())) {
2989     log_info(gc, ergo)("Attempting maximally compacting collection");
2990     bool result = do_full_collection(false /* explicit gc */,
2991                                      true /* clear_all_soft_refs */);
2992     // do_full_collection only fails if blocked by GC locker, but
2993     // we've already checked for that above.
2994     assert(result, "invariant");
2995   }
2996   return true;
2997 }
2998 
2999 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
3000   GCIdMark gc_id_mark;
3001 
3002   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3003   ResourceMark rm;
3004 
3005   policy()->note_gc_start();
3006 
3007   _gc_timer_stw->register_gc_start();
3008   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3009 
3010   wait_for_root_region_scanning();
3011 
3012   print_heap_before_gc();
3013   print_heap_regions();
3014   trace_heap_before_gc(_gc_tracer_stw);
3015 
3016   _verifier->verify_region_sets_optional();
3017   _verifier->verify_dirty_young_regions();
3018 
3019   // We should not be doing initial mark unless the conc mark thread is running
3020   if (!_cm_thread->should_terminate()) {
3021     // This call will decide whether this pause is an initial-mark
3022     // pause. If it is, in_initial_mark_gc() will return true
3023     // for the duration of this pause.
3024     policy()->decide_on_conc_mark_initiation();
3025   }
3026 
3027   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3028   assert(!collector_state()->in_initial_mark_gc() ||
3029          collector_state()->in_young_only_phase(), "sanity");
3030   // We also do not allow mixed GCs during marking.
3031   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3032 
3033   // Record whether this pause is an initial mark. When the current
3034   // thread has completed its logging output and it's safe to signal
3035   // the CM thread, the flag's value in the policy has been reset.
3036   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3037   if (should_start_conc_mark) {
3038     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3039   }
3040 
3041   // Inner scope for scope based logging, timers, and stats collection
3042   {
3043     G1EvacuationInfo evacuation_info;
3044 
3045     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3046 
3047     GCTraceCPUTime tcpu;
3048 
3049     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3050 
3051     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3052                                                             workers()->active_workers(),
3053                                                             Threads::number_of_non_daemon_threads());
3054     active_workers = workers()->update_active_workers(active_workers);
3055     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3056 
3057     G1MonitoringScope ms(g1mm(),
3058                          false /* full_gc */,
3059                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3060 
3061     G1HeapTransition heap_transition(this);
3062 
3063     {
3064       IsGCActiveMark x;
3065 
3066       gc_prologue(false);
3067 
3068       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3069       verify_before_young_collection(verify_type);
3070 
3071       {
3072         // The elapsed time induced by the start time below deliberately elides
3073         // the possible verification above.
3074         double sample_start_time_sec = os::elapsedTime();
3075 
3076         // Please see comment in g1CollectedHeap.hpp and
3077         // G1CollectedHeap::ref_processing_init() to see how
3078         // reference processing currently works in G1.
3079         _ref_processor_stw->enable_discovery();
3080 
3081         // We want to temporarily turn off discovery by the
3082         // CM ref processor, if necessary, and turn it back on
3083         // on again later if we do. Using a scoped
3084         // NoRefDiscovery object will do this.
3085         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3086 
3087         policy()->record_collection_pause_start(sample_start_time_sec);
3088 
3089         // Forget the current allocation region (we might even choose it to be part
3090         // of the collection set!).
3091         _allocator->release_mutator_alloc_regions();
3092 
3093         calculate_collection_set(evacuation_info, target_pause_time_ms);
3094 
3095         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3096         G1ParScanThreadStateSet per_thread_states(this,
3097                                                   &rdcqs,
3098                                                   workers()->active_workers(),
3099                                                   collection_set()->young_region_length(),
3100                                                   collection_set()->optional_region_length());
3101         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3102 
3103         // Actually do the work...
3104         evacuate_initial_collection_set(&per_thread_states);
3105 
3106         if (_collection_set.optional_region_length() != 0) {
3107           evacuate_optional_collection_set(&per_thread_states);
3108         }
3109         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3110 
3111         start_new_collection_set();
3112 
3113         _survivor_evac_stats.adjust_desired_plab_sz();
3114         _old_evac_stats.adjust_desired_plab_sz();
3115 
3116         if (should_start_conc_mark) {
3117           // We have to do this before we notify the CM threads that
3118           // they can start working to make sure that all the
3119           // appropriate initialization is done on the CM object.
3120           concurrent_mark()->post_initial_mark();
3121           // Note that we don't actually trigger the CM thread at
3122           // this point. We do that later when we're sure that
3123           // the current thread has completed its logging output.
3124         }
3125 
3126         allocate_dummy_regions();
3127 
3128         _allocator->init_mutator_alloc_regions();
3129 
3130         expand_heap_after_young_collection();
3131 
3132         double sample_end_time_sec = os::elapsedTime();
3133         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3134         policy()->record_collection_pause_end(pause_time_ms);
3135       }
3136 
3137       verify_after_young_collection(verify_type);
3138 
3139       gc_epilogue(false);
3140     }
3141 
3142     // Print the remainder of the GC log output.
3143     if (evacuation_failed()) {
3144       log_info(gc)("To-space exhausted");
3145     }
3146 
3147     policy()->print_phases();
3148     heap_transition.print();
3149 
3150     _hrm->verify_optional();
3151     _verifier->verify_region_sets_optional();
3152 
3153     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3154     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3155 
3156     print_heap_after_gc();
3157     print_heap_regions();
3158     trace_heap_after_gc(_gc_tracer_stw);
3159 
3160     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3161     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3162     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3163     // before any GC notifications are raised.
3164     g1mm()->update_sizes();
3165 
3166     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3167     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3168     _gc_timer_stw->register_gc_end();
3169     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3170   }
3171   // It should now be safe to tell the concurrent mark thread to start
3172   // without its logging output interfering with the logging output
3173   // that came from the pause.
3174 
3175   if (should_start_conc_mark) {
3176     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3177     // thread(s) could be running concurrently with us. Make sure that anything
3178     // after this point does not assume that we are the only GC thread running.
3179     // Note: of course, the actual marking work will not start until the safepoint
3180     // itself is released in SuspendibleThreadSet::desynchronize().
3181     do_concurrent_mark();
3182   }
3183 }
3184 
3185 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3186   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3187   workers()->run_task(&rsfp_task);
3188 }
3189 
3190 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3191   double remove_self_forwards_start = os::elapsedTime();
3192 
3193   remove_self_forwarding_pointers(rdcqs);
3194   _preserved_marks_set.restore(workers());
3195 
3196   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3197 }
3198 
3199 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3200   if (!_evacuation_failed) {
3201     _evacuation_failed = true;
3202   }
3203 
3204   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3205   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3206 }
3207 
3208 bool G1ParEvacuateFollowersClosure::offer_termination() {
3209   EventGCPhaseParallel event;
3210   G1ParScanThreadState* const pss = par_scan_state();
3211   start_term_time();
3212   const bool res = terminator()->offer_termination();
3213   end_term_time();
3214   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3215   return res;
3216 }
3217 
3218 void G1ParEvacuateFollowersClosure::do_void() {
3219   EventGCPhaseParallel event;
3220   G1ParScanThreadState* const pss = par_scan_state();
3221   pss->trim_queue();
3222   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3223   do {
3224     EventGCPhaseParallel event;
3225     pss->steal_and_trim_queue(queues());
3226     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3227   } while (!offer_termination());
3228 }
3229 
3230 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3231                                         bool class_unloading_occurred) {
3232   uint num_workers = workers()->active_workers();
3233   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3234   workers()->run_task(&unlink_task);
3235 }
3236 
3237 // Clean string dedup data structures.
3238 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3239 // record the durations of the phases. Hence the almost-copy.
3240 class G1StringDedupCleaningTask : public AbstractGangTask {
3241   BoolObjectClosure* _is_alive;
3242   OopClosure* _keep_alive;
3243   G1GCPhaseTimes* _phase_times;
3244 
3245 public:
3246   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3247                             OopClosure* keep_alive,
3248                             G1GCPhaseTimes* phase_times) :
3249     AbstractGangTask("Partial Cleaning Task"),
3250     _is_alive(is_alive),
3251     _keep_alive(keep_alive),
3252     _phase_times(phase_times)
3253   {
3254     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3255     StringDedup::gc_prologue(true);
3256   }
3257 
3258   ~G1StringDedupCleaningTask() {
3259     StringDedup::gc_epilogue();
3260   }
3261 
3262   void work(uint worker_id) {
3263     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3264     {
3265       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3266       StringDedupQueue::unlink_or_oops_do(&cl);
3267     }
3268     {
3269       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3270       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3271     }
3272   }
3273 };
3274 
3275 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3276                                             OopClosure* keep_alive,
3277                                             G1GCPhaseTimes* phase_times) {
3278   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3279   workers()->run_task(&cl);
3280 }
3281 
3282 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3283  private:
3284   G1RedirtyCardsQueueSet* _qset;
3285   G1CollectedHeap* _g1h;
3286   BufferNode* volatile _nodes;
3287 
3288   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3289     size_t buffer_size = _qset->buffer_size();
3290     BufferNode* next = Atomic::load(&_nodes);
3291     while (next != NULL) {
3292       BufferNode* node = next;
3293       next = Atomic::cmpxchg(&_nodes, node, node->next());
3294       if (next == node) {
3295         cl->apply_to_buffer(node, buffer_size, worker_id);
3296         next = node->next();
3297       }
3298     }
3299   }
3300 
3301  public:
3302   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3303     AbstractGangTask("Redirty Cards"),
3304     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3305 
3306   virtual void work(uint worker_id) {
3307     G1GCPhaseTimes* p = _g1h->phase_times();
3308     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3309 
3310     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3311     par_apply(&cl, worker_id);
3312 
3313     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3314   }
3315 };
3316 
3317 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3318   double redirty_logged_cards_start = os::elapsedTime();
3319 
3320   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3321   workers()->run_task(&redirty_task);
3322 
3323   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3324   dcq.merge_bufferlists(rdcqs);
3325 
3326   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3327 }
3328 
3329 // Weak Reference Processing support
3330 
3331 bool G1STWIsAliveClosure::do_object_b(oop p) {
3332   // An object is reachable if it is outside the collection set,
3333   // or is inside and copied.
3334   return !_g1h->is_in_cset(p) || p->is_forwarded();
3335 }
3336 
3337 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3338   assert(obj != NULL, "must not be NULL");
3339   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3340   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3341   // may falsely indicate that this is not the case here: however the collection set only
3342   // contains old regions when concurrent mark is not running.
3343   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3344 }
3345 
3346 // Non Copying Keep Alive closure
3347 class G1KeepAliveClosure: public OopClosure {
3348   G1CollectedHeap*_g1h;
3349 public:
3350   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3351   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3352   void do_oop(oop* p) {
3353     oop obj = *p;
3354     assert(obj != NULL, "the caller should have filtered out NULL values");
3355 
3356     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3357     if (!region_attr.is_in_cset_or_humongous()) {
3358       return;
3359     }
3360     if (region_attr.is_in_cset()) {
3361       assert( obj->is_forwarded(), "invariant" );
3362       *p = obj->forwardee();
3363     } else {
3364       assert(!obj->is_forwarded(), "invariant" );
3365       assert(region_attr.is_humongous(),
3366              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3367      _g1h->set_humongous_is_live(obj);
3368     }
3369   }
3370 };
3371 
3372 // Copying Keep Alive closure - can be called from both
3373 // serial and parallel code as long as different worker
3374 // threads utilize different G1ParScanThreadState instances
3375 // and different queues.
3376 
3377 class G1CopyingKeepAliveClosure: public OopClosure {
3378   G1CollectedHeap*         _g1h;
3379   G1ParScanThreadState*    _par_scan_state;
3380 
3381 public:
3382   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3383                             G1ParScanThreadState* pss):
3384     _g1h(g1h),
3385     _par_scan_state(pss)
3386   {}
3387 
3388   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3389   virtual void do_oop(      oop* p) { do_oop_work(p); }
3390 
3391   template <class T> void do_oop_work(T* p) {
3392     oop obj = RawAccess<>::oop_load(p);
3393 
3394     if (_g1h->is_in_cset_or_humongous(obj)) {
3395       // If the referent object has been forwarded (either copied
3396       // to a new location or to itself in the event of an
3397       // evacuation failure) then we need to update the reference
3398       // field and, if both reference and referent are in the G1
3399       // heap, update the RSet for the referent.
3400       //
3401       // If the referent has not been forwarded then we have to keep
3402       // it alive by policy. Therefore we have copy the referent.
3403       //
3404       // When the queue is drained (after each phase of reference processing)
3405       // the object and it's followers will be copied, the reference field set
3406       // to point to the new location, and the RSet updated.
3407       _par_scan_state->push_on_queue(p);
3408     }
3409   }
3410 };
3411 
3412 // Serial drain queue closure. Called as the 'complete_gc'
3413 // closure for each discovered list in some of the
3414 // reference processing phases.
3415 
3416 class G1STWDrainQueueClosure: public VoidClosure {
3417 protected:
3418   G1CollectedHeap* _g1h;
3419   G1ParScanThreadState* _par_scan_state;
3420 
3421   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3422 
3423 public:
3424   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3425     _g1h(g1h),
3426     _par_scan_state(pss)
3427   { }
3428 
3429   void do_void() {
3430     G1ParScanThreadState* const pss = par_scan_state();
3431     pss->trim_queue();
3432   }
3433 };
3434 
3435 // Parallel Reference Processing closures
3436 
3437 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3438 // processing during G1 evacuation pauses.
3439 
3440 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3441 private:
3442   G1CollectedHeap*          _g1h;
3443   G1ParScanThreadStateSet*  _pss;
3444   RefToScanQueueSet*        _queues;
3445   WorkGang*                 _workers;
3446 
3447 public:
3448   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3449                            G1ParScanThreadStateSet* per_thread_states,
3450                            WorkGang* workers,
3451                            RefToScanQueueSet *task_queues) :
3452     _g1h(g1h),
3453     _pss(per_thread_states),
3454     _queues(task_queues),
3455     _workers(workers)
3456   {
3457     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3458   }
3459 
3460   // Executes the given task using concurrent marking worker threads.
3461   virtual void execute(ProcessTask& task, uint ergo_workers);
3462 };
3463 
3464 // Gang task for possibly parallel reference processing
3465 
3466 class G1STWRefProcTaskProxy: public AbstractGangTask {
3467   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3468   ProcessTask&     _proc_task;
3469   G1CollectedHeap* _g1h;
3470   G1ParScanThreadStateSet* _pss;
3471   RefToScanQueueSet* _task_queues;
3472   TaskTerminator* _terminator;
3473 
3474 public:
3475   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3476                         G1CollectedHeap* g1h,
3477                         G1ParScanThreadStateSet* per_thread_states,
3478                         RefToScanQueueSet *task_queues,
3479                         TaskTerminator* terminator) :
3480     AbstractGangTask("Process reference objects in parallel"),
3481     _proc_task(proc_task),
3482     _g1h(g1h),
3483     _pss(per_thread_states),
3484     _task_queues(task_queues),
3485     _terminator(terminator)
3486   {}
3487 
3488   virtual void work(uint worker_id) {
3489     // The reference processing task executed by a single worker.
3490     ResourceMark rm;
3491     HandleMark   hm;
3492 
3493     G1STWIsAliveClosure is_alive(_g1h);
3494 
3495     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3496     pss->set_ref_discoverer(NULL);
3497 
3498     // Keep alive closure.
3499     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3500 
3501     // Complete GC closure
3502     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3503 
3504     // Call the reference processing task's work routine.
3505     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3506 
3507     // Note we cannot assert that the refs array is empty here as not all
3508     // of the processing tasks (specifically phase2 - pp2_work) execute
3509     // the complete_gc closure (which ordinarily would drain the queue) so
3510     // the queue may not be empty.
3511   }
3512 };
3513 
3514 // Driver routine for parallel reference processing.
3515 // Creates an instance of the ref processing gang
3516 // task and has the worker threads execute it.
3517 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3518   assert(_workers != NULL, "Need parallel worker threads.");
3519 
3520   assert(_workers->active_workers() >= ergo_workers,
3521          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3522          ergo_workers, _workers->active_workers());
3523   TaskTerminator terminator(ergo_workers, _queues);
3524   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3525 
3526   _workers->run_task(&proc_task_proxy, ergo_workers);
3527 }
3528 
3529 // End of weak reference support closures
3530 
3531 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3532   double ref_proc_start = os::elapsedTime();
3533 
3534   ReferenceProcessor* rp = _ref_processor_stw;
3535   assert(rp->discovery_enabled(), "should have been enabled");
3536 
3537   // Closure to test whether a referent is alive.
3538   G1STWIsAliveClosure is_alive(this);
3539 
3540   // Even when parallel reference processing is enabled, the processing
3541   // of JNI refs is serial and performed serially by the current thread
3542   // rather than by a worker. The following PSS will be used for processing
3543   // JNI refs.
3544 
3545   // Use only a single queue for this PSS.
3546   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3547   pss->set_ref_discoverer(NULL);
3548   assert(pss->queue_is_empty(), "pre-condition");
3549 
3550   // Keep alive closure.
3551   G1CopyingKeepAliveClosure keep_alive(this, pss);
3552 
3553   // Serial Complete GC closure
3554   G1STWDrainQueueClosure drain_queue(this, pss);
3555 
3556   // Setup the soft refs policy...
3557   rp->setup_policy(false);
3558 
3559   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3560 
3561   ReferenceProcessorStats stats;
3562   if (!rp->processing_is_mt()) {
3563     // Serial reference processing...
3564     stats = rp->process_discovered_references(&is_alive,
3565                                               &keep_alive,
3566                                               &drain_queue,
3567                                               NULL,
3568                                               pt);
3569   } else {
3570     uint no_of_gc_workers = workers()->active_workers();
3571 
3572     // Parallel reference processing
3573     assert(no_of_gc_workers <= rp->max_num_queues(),
3574            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3575            no_of_gc_workers,  rp->max_num_queues());
3576 
3577     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3578     stats = rp->process_discovered_references(&is_alive,
3579                                               &keep_alive,
3580                                               &drain_queue,
3581                                               &par_task_executor,
3582                                               pt);
3583   }
3584 
3585   _gc_tracer_stw->report_gc_reference_stats(stats);
3586 
3587   // We have completed copying any necessary live referent objects.
3588   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3589 
3590   make_pending_list_reachable();
3591 
3592   assert(!rp->discovery_enabled(), "Postcondition");
3593   rp->verify_no_references_recorded();
3594 
3595   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3596   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3597 }
3598 
3599 void G1CollectedHeap::make_pending_list_reachable() {
3600   if (collector_state()->in_initial_mark_gc()) {
3601     oop pll_head = Universe::reference_pending_list();
3602     if (pll_head != NULL) {
3603       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3604       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3605     }
3606   }
3607 }
3608 
3609 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3610   Ticks start = Ticks::now();
3611   per_thread_states->flush();
3612   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3613 }
3614 
3615 class G1PrepareEvacuationTask : public AbstractGangTask {
3616   class G1PrepareRegionsClosure : public HeapRegionClosure {
3617     G1CollectedHeap* _g1h;
3618     G1PrepareEvacuationTask* _parent_task;
3619     size_t _worker_humongous_total;
3620     size_t _worker_humongous_candidates;
3621 
3622     bool humongous_region_is_candidate(HeapRegion* region) const {
3623       assert(region->is_starts_humongous(), "Must start a humongous object");
3624 
3625       oop obj = oop(region->bottom());
3626 
3627       // Dead objects cannot be eager reclaim candidates. Due to class
3628       // unloading it is unsafe to query their classes so we return early.
3629       if (_g1h->is_obj_dead(obj, region)) {
3630         return false;
3631       }
3632 
3633       // If we do not have a complete remembered set for the region, then we can
3634       // not be sure that we have all references to it.
3635       if (!region->rem_set()->is_complete()) {
3636         return false;
3637       }
3638       // Candidate selection must satisfy the following constraints
3639       // while concurrent marking is in progress:
3640       //
3641       // * In order to maintain SATB invariants, an object must not be
3642       // reclaimed if it was allocated before the start of marking and
3643       // has not had its references scanned.  Such an object must have
3644       // its references (including type metadata) scanned to ensure no
3645       // live objects are missed by the marking process.  Objects
3646       // allocated after the start of concurrent marking don't need to
3647       // be scanned.
3648       //
3649       // * An object must not be reclaimed if it is on the concurrent
3650       // mark stack.  Objects allocated after the start of concurrent
3651       // marking are never pushed on the mark stack.
3652       //
3653       // Nominating only objects allocated after the start of concurrent
3654       // marking is sufficient to meet both constraints.  This may miss
3655       // some objects that satisfy the constraints, but the marking data
3656       // structures don't support efficiently performing the needed
3657       // additional tests or scrubbing of the mark stack.
3658       //
3659       // However, we presently only nominate is_typeArray() objects.
3660       // A humongous object containing references induces remembered
3661       // set entries on other regions.  In order to reclaim such an
3662       // object, those remembered sets would need to be cleaned up.
3663       //
3664       // We also treat is_typeArray() objects specially, allowing them
3665       // to be reclaimed even if allocated before the start of
3666       // concurrent mark.  For this we rely on mark stack insertion to
3667       // exclude is_typeArray() objects, preventing reclaiming an object
3668       // that is in the mark stack.  We also rely on the metadata for
3669       // such objects to be built-in and so ensured to be kept live.
3670       // Frequent allocation and drop of large binary blobs is an
3671       // important use case for eager reclaim, and this special handling
3672       // may reduce needed headroom.
3673 
3674       return obj->is_typeArray() &&
3675              _g1h->is_potential_eager_reclaim_candidate(region);
3676     }
3677 
3678   public:
3679     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3680       _g1h(g1h),
3681       _parent_task(parent_task),
3682       _worker_humongous_total(0),
3683       _worker_humongous_candidates(0) { }
3684 
3685     ~G1PrepareRegionsClosure() {
3686       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3687       _parent_task->add_humongous_total(_worker_humongous_total);
3688     }
3689 
3690     virtual bool do_heap_region(HeapRegion* hr) {
3691       // First prepare the region for scanning
3692       _g1h->rem_set()->prepare_region_for_scan(hr);
3693 
3694       // Now check if region is a humongous candidate
3695       if (!hr->is_starts_humongous()) {
3696         _g1h->register_region_with_region_attr(hr);
3697         return false;
3698       }
3699 
3700       uint index = hr->hrm_index();
3701       if (humongous_region_is_candidate(hr)) {
3702         _g1h->set_humongous_reclaim_candidate(index, true);
3703         _g1h->register_humongous_region_with_region_attr(index);
3704         _worker_humongous_candidates++;
3705         // We will later handle the remembered sets of these regions.
3706       } else {
3707         _g1h->set_humongous_reclaim_candidate(index, false);
3708         _g1h->register_region_with_region_attr(hr);
3709       }
3710       _worker_humongous_total++;
3711 
3712       return false;
3713     }
3714   };
3715 
3716   G1CollectedHeap* _g1h;
3717   HeapRegionClaimer _claimer;
3718   volatile size_t _humongous_total;
3719   volatile size_t _humongous_candidates;
3720 public:
3721   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3722     AbstractGangTask("Prepare Evacuation"),
3723     _g1h(g1h),
3724     _claimer(_g1h->workers()->active_workers()),
3725     _humongous_total(0),
3726     _humongous_candidates(0) { }
3727 
3728   ~G1PrepareEvacuationTask() {
3729     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3730   }
3731 
3732   void work(uint worker_id) {
3733     G1PrepareRegionsClosure cl(_g1h, this);
3734     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3735   }
3736 
3737   void add_humongous_candidates(size_t candidates) {
3738     Atomic::add(&_humongous_candidates, candidates);
3739   }
3740 
3741   void add_humongous_total(size_t total) {
3742     Atomic::add(&_humongous_total, total);
3743   }
3744 
3745   size_t humongous_candidates() {
3746     return _humongous_candidates;
3747   }
3748 
3749   size_t humongous_total() {
3750     return _humongous_total;
3751   }
3752 };
3753 
3754 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3755   _bytes_used_during_gc = 0;
3756 
3757   _expand_heap_after_alloc_failure = true;
3758   _evacuation_failed = false;
3759 
3760   // Disable the hot card cache.
3761   _hot_card_cache->reset_hot_cache_claimed_index();
3762   _hot_card_cache->set_use_cache(false);
3763 
3764   // Initialize the GC alloc regions.
3765   _allocator->init_gc_alloc_regions(evacuation_info);
3766 
3767   {
3768     Ticks start = Ticks::now();
3769     rem_set()->prepare_for_scan_heap_roots();
3770     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3771   }
3772 
3773   {
3774     G1PrepareEvacuationTask g1_prep_task(this);
3775     Tickspan task_time = run_task(&g1_prep_task);
3776 
3777     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3778                                            g1_prep_task.humongous_total(),
3779                                            g1_prep_task.humongous_candidates());
3780   }
3781 
3782   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3783   _preserved_marks_set.assert_empty();
3784 
3785 #if COMPILER2_OR_JVMCI
3786   DerivedPointerTable::clear();
3787 #endif
3788 
3789   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3790   if (collector_state()->in_initial_mark_gc()) {
3791     concurrent_mark()->pre_initial_mark();
3792 
3793     double start_clear_claimed_marks = os::elapsedTime();
3794 
3795     ClassLoaderDataGraph::clear_claimed_marks();
3796 
3797     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3798     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3799   }
3800 
3801   // Should G1EvacuationFailureALot be in effect for this GC?
3802   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3803 }
3804 
3805 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3806 protected:
3807   G1CollectedHeap* _g1h;
3808   G1ParScanThreadStateSet* _per_thread_states;
3809   RefToScanQueueSet* _task_queues;
3810   TaskTerminator _terminator;
3811   uint _num_workers;
3812 
3813   void evacuate_live_objects(G1ParScanThreadState* pss,
3814                              uint worker_id,
3815                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3816                              G1GCPhaseTimes::GCParPhases termination_phase) {
3817     G1GCPhaseTimes* p = _g1h->phase_times();
3818 
3819     Ticks start = Ticks::now();
3820     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3821     cl.do_void();
3822 
3823     assert(pss->queue_is_empty(), "should be empty");
3824 
3825     Tickspan evac_time = (Ticks::now() - start);
3826     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3827 
3828     if (termination_phase == G1GCPhaseTimes::Termination) {
3829       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3830       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3831     } else {
3832       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3833       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3834     }
3835     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3836   }
3837 
3838   virtual void start_work(uint worker_id) { }
3839 
3840   virtual void end_work(uint worker_id) { }
3841 
3842   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3843 
3844   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3845 
3846 public:
3847   G1EvacuateRegionsBaseTask(const char* name, G1ParScanThreadStateSet* per_thread_states, RefToScanQueueSet* task_queues, uint num_workers) :
3848     AbstractGangTask(name),
3849     _g1h(G1CollectedHeap::heap()),
3850     _per_thread_states(per_thread_states),
3851     _task_queues(task_queues),
3852     _terminator(num_workers, _task_queues),
3853     _num_workers(num_workers)
3854   { }
3855 
3856   void work(uint worker_id) {
3857     start_work(worker_id);
3858 
3859     {
3860       ResourceMark rm;
3861       HandleMark   hm;
3862 
3863       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3864       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3865 
3866       scan_roots(pss, worker_id);
3867       evacuate_live_objects(pss, worker_id);
3868     }
3869 
3870     end_work(worker_id);
3871   }
3872 };
3873 
3874 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3875   G1RootProcessor* _root_processor;
3876 
3877   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3878     _root_processor->evacuate_roots(pss, worker_id);
3879     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3880     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3881   }
3882 
3883   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3884     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3885   }
3886 
3887   void start_work(uint worker_id) {
3888     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3889   }
3890 
3891   void end_work(uint worker_id) {
3892     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3893   }
3894 
3895 public:
3896   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3897                         G1ParScanThreadStateSet* per_thread_states,
3898                         RefToScanQueueSet* task_queues,
3899                         G1RootProcessor* root_processor,
3900                         uint num_workers) :
3901     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3902     _root_processor(root_processor)
3903   { }
3904 };
3905 
3906 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3907   G1GCPhaseTimes* p = phase_times();
3908 
3909   {
3910     Ticks start = Ticks::now();
3911     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3912     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3913   }
3914 
3915   Tickspan task_time;
3916   const uint num_workers = workers()->active_workers();
3917 
3918   Ticks start_processing = Ticks::now();
3919   {
3920     G1RootProcessor root_processor(this, num_workers);
3921     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3922     task_time = run_task(&g1_par_task);
3923     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3924     // To extract its code root fixup time we measure total time of this scope and
3925     // subtract from the time the WorkGang task took.
3926   }
3927   Tickspan total_processing = Ticks::now() - start_processing;
3928 
3929   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3930   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3931 }
3932 
3933 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3934 
3935   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3936     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3937     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3938   }
3939 
3940   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3941     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3942   }
3943 
3944 public:
3945   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3946                                 RefToScanQueueSet* queues,
3947                                 uint num_workers) :
3948     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3949   }
3950 };
3951 
3952 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3953   class G1MarkScope : public MarkScope { };
3954 
3955   Tickspan task_time;
3956 
3957   Ticks start_processing = Ticks::now();
3958   {
3959     G1MarkScope code_mark_scope;
3960     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3961     task_time = run_task(&task);
3962     // See comment in evacuate_collection_set() for the reason of the scope.
3963   }
3964   Tickspan total_processing = Ticks::now() - start_processing;
3965 
3966   G1GCPhaseTimes* p = phase_times();
3967   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3968 }
3969 
3970 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3971   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3972 
3973   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3974 
3975     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3976     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3977 
3978     if (time_left_ms < 0 ||
3979         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3980       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3981                                 _collection_set.optional_region_length(), time_left_ms);
3982       break;
3983     }
3984 
3985     {
3986       Ticks start = Ticks::now();
3987       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3988       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3989     }
3990 
3991     {
3992       Ticks start = Ticks::now();
3993       evacuate_next_optional_regions(per_thread_states);
3994       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3995     }
3996   }
3997 
3998   _collection_set.abandon_optional_collection_set(per_thread_states);
3999 }
4000 
4001 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4002                                                    G1RedirtyCardsQueueSet* rdcqs,
4003                                                    G1ParScanThreadStateSet* per_thread_states) {
4004   G1GCPhaseTimes* p = phase_times();
4005 
4006   rem_set()->cleanup_after_scan_heap_roots();
4007 
4008   // Process any discovered reference objects - we have
4009   // to do this _before_ we retire the GC alloc regions
4010   // as we may have to copy some 'reachable' referent
4011   // objects (and their reachable sub-graphs) that were
4012   // not copied during the pause.
4013   process_discovered_references(per_thread_states);
4014 
4015   G1STWIsAliveClosure is_alive(this);
4016   G1KeepAliveClosure keep_alive(this);
4017 
4018   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4019 
4020   if (G1StringDedup::is_enabled()) {
4021     double string_dedup_time_ms = os::elapsedTime();
4022 
4023     string_dedup_cleaning(&is_alive, &keep_alive, p);
4024 
4025     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4026     p->record_string_deduplication_time(string_cleanup_time_ms);
4027   }
4028 
4029   _allocator->release_gc_alloc_regions(evacuation_info);
4030 
4031   if (evacuation_failed()) {
4032     restore_after_evac_failure(rdcqs);
4033 
4034     // Reset the G1EvacuationFailureALot counters and flags
4035     NOT_PRODUCT(reset_evacuation_should_fail();)
4036 
4037     double recalculate_used_start = os::elapsedTime();
4038     set_used(recalculate_used());
4039     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4040 
4041     if (_archive_allocator != NULL) {
4042       _archive_allocator->clear_used();
4043     }
4044     for (uint i = 0; i < ParallelGCThreads; i++) {
4045       if (_evacuation_failed_info_array[i].has_failed()) {
4046         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4047       }
4048     }
4049   } else {
4050     // The "used" of the the collection set have already been subtracted
4051     // when they were freed.  Add in the bytes used.
4052     increase_used(_bytes_used_during_gc);
4053   }
4054 
4055   _preserved_marks_set.assert_empty();
4056 
4057   merge_per_thread_state_info(per_thread_states);
4058 
4059   // Reset and re-enable the hot card cache.
4060   // Note the counts for the cards in the regions in the
4061   // collection set are reset when the collection set is freed.
4062   _hot_card_cache->reset_hot_cache();
4063   _hot_card_cache->set_use_cache(true);
4064 
4065   purge_code_root_memory();
4066 
4067   redirty_logged_cards(rdcqs);
4068 
4069   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4070 
4071   eagerly_reclaim_humongous_regions();
4072 
4073   record_obj_copy_mem_stats();
4074 
4075   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4076   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4077 
4078 #if COMPILER2_OR_JVMCI
4079   double start = os::elapsedTime();
4080   DerivedPointerTable::update_pointers();
4081   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4082 #endif
4083   policy()->print_age_table();
4084 }
4085 
4086 void G1CollectedHeap::record_obj_copy_mem_stats() {
4087   policy()->add_bytes_allocated_in_old_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4088 
4089   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4090                                                create_g1_evac_summary(&_old_evac_stats));
4091 }
4092 
4093 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4094   assert(!hr->is_free(), "the region should not be free");
4095   assert(!hr->is_empty(), "the region should not be empty");
4096   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4097 
4098   if (G1VerifyBitmaps) {
4099     MemRegion mr(hr->bottom(), hr->end());
4100     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4101   }
4102 
4103   // Clear the card counts for this region.
4104   // Note: we only need to do this if the region is not young
4105   // (since we don't refine cards in young regions).
4106   if (!hr->is_young()) {
4107     _hot_card_cache->reset_card_counts(hr);
4108   }
4109 
4110   // Reset region metadata to allow reuse.
4111   hr->hr_clear(true /* clear_space */);
4112   _policy->remset_tracker()->update_at_free(hr);
4113 
4114   if (free_list != NULL) {
4115     free_list->add_ordered(hr);
4116   }
4117 }
4118 
4119 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4120                                             FreeRegionList* free_list) {
4121   assert(hr->is_humongous(), "this is only for humongous regions");
4122   assert(free_list != NULL, "pre-condition");
4123   hr->clear_humongous();
4124   free_region(hr, free_list);
4125 }
4126 
4127 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4128                                            const uint humongous_regions_removed) {
4129   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4130     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4131     _old_set.bulk_remove(old_regions_removed);
4132     _humongous_set.bulk_remove(humongous_regions_removed);
4133   }
4134 
4135 }
4136 
4137 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4138   assert(list != NULL, "list can't be null");
4139   if (!list->is_empty()) {
4140     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4141     _hrm->insert_list_into_free_list(list);
4142   }
4143 }
4144 
4145 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4146   decrease_used(bytes);
4147 }
4148 
4149 class G1FreeCollectionSetTask : public AbstractGangTask {
4150   // Helper class to keep statistics for the collection set freeing
4151   class FreeCSetStats {
4152     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4153     size_t _after_used_bytes;    // Usage in regions failing evacuation
4154     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4155     size_t _failure_used_words;  // Live size in failed regions
4156     size_t _failure_waste_words; // Wasted size in failed regions
4157     size_t _rs_length;           // Remembered set size
4158     uint _regions_freed;         // Number of regions freed
4159   public:
4160     FreeCSetStats() :
4161         _before_used_bytes(0),
4162         _after_used_bytes(0),
4163         _bytes_allocated_in_old_since_last_gc(0),
4164         _failure_used_words(0),
4165         _failure_waste_words(0),
4166         _rs_length(0),
4167         _regions_freed(0) { }
4168 
4169     void merge_stats(FreeCSetStats* other) {
4170       assert(other != NULL, "invariant");
4171       _before_used_bytes += other->_before_used_bytes;
4172       _after_used_bytes += other->_after_used_bytes;
4173       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4174       _failure_used_words += other->_failure_used_words;
4175       _failure_waste_words += other->_failure_waste_words;
4176       _rs_length += other->_rs_length;
4177       _regions_freed += other->_regions_freed;
4178     }
4179 
4180     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4181       evacuation_info->set_regions_freed(_regions_freed);
4182       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4183 
4184       g1h->decrement_summary_bytes(_before_used_bytes);
4185       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4186 
4187       G1Policy *policy = g1h->policy();
4188       policy->add_bytes_allocated_in_old_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4189       policy->record_rs_length(_rs_length);
4190       policy->cset_regions_freed();
4191     }
4192 
4193     void account_failed_region(HeapRegion* r) {
4194       size_t used_words = r->marked_bytes() / HeapWordSize;
4195       _failure_used_words += used_words;
4196       _failure_waste_words += HeapRegion::GrainWords - used_words;
4197       _after_used_bytes += r->used();
4198 
4199       // When moving a young gen region to old gen, we "allocate" that whole
4200       // region there. This is in addition to any already evacuated objects.
4201       // Notify the policy about that. Old gen regions do not cause an
4202       // additional allocation: both the objects still in the region and the
4203       // ones already moved are accounted for elsewhere.
4204       if (r->is_young()) {
4205         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4206       }
4207     }
4208 
4209     void account_evacuated_region(HeapRegion* r) {
4210       _before_used_bytes += r->used();
4211       _regions_freed += 1;
4212     }
4213 
4214     void account_rs_length(HeapRegion* r) {
4215       _rs_length += r->rem_set()->occupied();
4216     }
4217   };
4218 
4219   // Closure applied to all regions in the collection set.
4220   class FreeCSetClosure : public HeapRegionClosure {
4221     // Helper to send JFR events for regions.
4222     class JFREventForRegion {
4223       EventGCPhaseParallel _event;
4224     public:
4225       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4226         _event.set_gcId(GCId::current());
4227         _event.set_gcWorkerId(worker_id);
4228         if (region->is_young()) {
4229           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4230         } else {
4231           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4232         }
4233       }
4234 
4235       ~JFREventForRegion() {
4236         _event.commit();
4237       }
4238     };
4239 
4240     // Helper to do timing for region work.
4241     class TimerForRegion {
4242       Tickspan& _time;
4243       Ticks     _start_time;
4244     public:
4245       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4246       ~TimerForRegion() {
4247         _time += Ticks::now() - _start_time;
4248       }
4249     };
4250 
4251     // FreeCSetClosure members
4252     G1CollectedHeap* _g1h;
4253     const size_t*    _surviving_young_words;
4254     uint             _worker_id;
4255     Tickspan         _young_time;
4256     Tickspan         _non_young_time;
4257     FreeCSetStats*   _stats;
4258 
4259     void assert_in_cset(HeapRegion* r) {
4260       assert(r->young_index_in_cset() != 0 &&
4261              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4262              "Young index %u is wrong for region %u of type %s with %u young regions",
4263              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4264     }
4265 
4266     void handle_evacuated_region(HeapRegion* r) {
4267       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4268       stats()->account_evacuated_region(r);
4269 
4270       // Free the region and and its remembered set.
4271       _g1h->free_region(r, NULL);
4272     }
4273 
4274     void handle_failed_region(HeapRegion* r) {
4275       // Do some allocation statistics accounting. Regions that failed evacuation
4276       // are always made old, so there is no need to update anything in the young
4277       // gen statistics, but we need to update old gen statistics.
4278       stats()->account_failed_region(r);
4279 
4280       // Update the region state due to the failed evacuation.
4281       r->handle_evacuation_failure();
4282 
4283       // Add region to old set, need to hold lock.
4284       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4285       _g1h->old_set_add(r);
4286     }
4287 
4288     Tickspan& timer_for_region(HeapRegion* r) {
4289       return r->is_young() ? _young_time : _non_young_time;
4290     }
4291 
4292     FreeCSetStats* stats() {
4293       return _stats;
4294     }
4295   public:
4296     FreeCSetClosure(const size_t* surviving_young_words,
4297                     uint worker_id,
4298                     FreeCSetStats* stats) :
4299         HeapRegionClosure(),
4300         _g1h(G1CollectedHeap::heap()),
4301         _surviving_young_words(surviving_young_words),
4302         _worker_id(worker_id),
4303         _young_time(),
4304         _non_young_time(),
4305         _stats(stats) { }
4306 
4307     virtual bool do_heap_region(HeapRegion* r) {
4308       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4309       JFREventForRegion event(r, _worker_id);
4310       TimerForRegion timer(timer_for_region(r));
4311 
4312       _g1h->clear_region_attr(r);
4313       stats()->account_rs_length(r);
4314 
4315       if (r->is_young()) {
4316         assert_in_cset(r);
4317         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4318       }
4319 
4320       if (r->evacuation_failed()) {
4321         handle_failed_region(r);
4322       } else {
4323         handle_evacuated_region(r);
4324       }
4325       assert(!_g1h->is_on_master_free_list(r), "sanity");
4326 
4327       return false;
4328     }
4329 
4330     void report_timing(Tickspan parallel_time) {
4331       G1GCPhaseTimes* pt = _g1h->phase_times();
4332       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4333       if (_young_time.value() > 0) {
4334         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4335       }
4336       if (_non_young_time.value() > 0) {
4337         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4338       }
4339     }
4340   };
4341 
4342   // G1FreeCollectionSetTask members
4343   G1CollectedHeap*  _g1h;
4344   G1EvacuationInfo* _evacuation_info;
4345   FreeCSetStats*    _worker_stats;
4346   HeapRegionClaimer _claimer;
4347   const size_t*     _surviving_young_words;
4348   uint              _active_workers;
4349 
4350   FreeCSetStats* worker_stats(uint worker) {
4351     return &_worker_stats[worker];
4352   }
4353 
4354   void report_statistics() {
4355     // Merge the accounting
4356     FreeCSetStats total_stats;
4357     for (uint worker = 0; worker < _active_workers; worker++) {
4358       total_stats.merge_stats(worker_stats(worker));
4359     }
4360     total_stats.report(_g1h, _evacuation_info);
4361   }
4362 
4363 public:
4364   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4365       AbstractGangTask("G1 Free Collection Set"),
4366       _g1h(G1CollectedHeap::heap()),
4367       _evacuation_info(evacuation_info),
4368       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4369       _claimer(active_workers),
4370       _surviving_young_words(surviving_young_words),
4371       _active_workers(active_workers) {
4372     for (uint worker = 0; worker < active_workers; worker++) {
4373       ::new (&_worker_stats[worker]) FreeCSetStats();
4374     }
4375   }
4376 
4377   ~G1FreeCollectionSetTask() {
4378     Ticks serial_time = Ticks::now();
4379     report_statistics();
4380     for (uint worker = 0; worker < _active_workers; worker++) {
4381       _worker_stats[worker].~FreeCSetStats();
4382     }
4383     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4384     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4385   }
4386 
4387   virtual void work(uint worker_id) {
4388     EventGCPhaseParallel event;
4389     Ticks start = Ticks::now();
4390     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4391     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4392 
4393     // Report the total parallel time along with some more detailed metrics.
4394     cl.report_timing(Ticks::now() - start);
4395     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4396   }
4397 };
4398 
4399 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4400   _eden.clear();
4401 
4402   // The free collections set is split up in two tasks, the first
4403   // frees the collection set and records what regions are free,
4404   // and the second one rebuilds the free list. This proved to be
4405   // more efficient than adding a sorted list to another.
4406 
4407   Ticks free_cset_start_time = Ticks::now();
4408   {
4409     uint const num_cs_regions = _collection_set.region_length();
4410     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4411     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4412 
4413     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4414                         cl.name(), num_workers, num_cs_regions, num_regions());
4415     workers()->run_task(&cl, num_workers);
4416   }
4417 
4418   Ticks free_cset_end_time = Ticks::now();
4419   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4420 
4421   // Now rebuild the free region list.
4422   hrm()->rebuild_free_list(workers());
4423   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4424 
4425   collection_set->clear();
4426 }
4427 
4428 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4429  private:
4430   FreeRegionList* _free_region_list;
4431   HeapRegionSet* _proxy_set;
4432   uint _humongous_objects_reclaimed;
4433   uint _humongous_regions_reclaimed;
4434   size_t _freed_bytes;
4435  public:
4436 
4437   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4438     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4439   }
4440 
4441   virtual bool do_heap_region(HeapRegion* r) {
4442     if (!r->is_starts_humongous()) {
4443       return false;
4444     }
4445 
4446     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4447 
4448     oop obj = (oop)r->bottom();
4449     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4450 
4451     // The following checks whether the humongous object is live are sufficient.
4452     // The main additional check (in addition to having a reference from the roots
4453     // or the young gen) is whether the humongous object has a remembered set entry.
4454     //
4455     // A humongous object cannot be live if there is no remembered set for it
4456     // because:
4457     // - there can be no references from within humongous starts regions referencing
4458     // the object because we never allocate other objects into them.
4459     // (I.e. there are no intra-region references that may be missed by the
4460     // remembered set)
4461     // - as soon there is a remembered set entry to the humongous starts region
4462     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4463     // until the end of a concurrent mark.
4464     //
4465     // It is not required to check whether the object has been found dead by marking
4466     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4467     // all objects allocated during that time are considered live.
4468     // SATB marking is even more conservative than the remembered set.
4469     // So if at this point in the collection there is no remembered set entry,
4470     // nobody has a reference to it.
4471     // At the start of collection we flush all refinement logs, and remembered sets
4472     // are completely up-to-date wrt to references to the humongous object.
4473     //
4474     // Other implementation considerations:
4475     // - never consider object arrays at this time because they would pose
4476     // considerable effort for cleaning up the the remembered sets. This is
4477     // required because stale remembered sets might reference locations that
4478     // are currently allocated into.
4479     uint region_idx = r->hrm_index();
4480     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4481         !r->rem_set()->is_empty()) {
4482       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4483                                region_idx,
4484                                (size_t)obj->size() * HeapWordSize,
4485                                p2i(r->bottom()),
4486                                r->rem_set()->occupied(),
4487                                r->rem_set()->strong_code_roots_list_length(),
4488                                next_bitmap->is_marked(r->bottom()),
4489                                g1h->is_humongous_reclaim_candidate(region_idx),
4490                                obj->is_typeArray()
4491                               );
4492       return false;
4493     }
4494 
4495     guarantee(obj->is_typeArray(),
4496               "Only eagerly reclaiming type arrays is supported, but the object "
4497               PTR_FORMAT " is not.", p2i(r->bottom()));
4498 
4499     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4500                              region_idx,
4501                              (size_t)obj->size() * HeapWordSize,
4502                              p2i(r->bottom()),
4503                              r->rem_set()->occupied(),
4504                              r->rem_set()->strong_code_roots_list_length(),
4505                              next_bitmap->is_marked(r->bottom()),
4506                              g1h->is_humongous_reclaim_candidate(region_idx),
4507                              obj->is_typeArray()
4508                             );
4509 
4510     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4511     cm->humongous_object_eagerly_reclaimed(r);
4512     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4513            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4514            region_idx,
4515            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4516            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4517     _humongous_objects_reclaimed++;
4518     do {
4519       HeapRegion* next = g1h->next_region_in_humongous(r);
4520       _freed_bytes += r->used();
4521       r->set_containing_set(NULL);
4522       _humongous_regions_reclaimed++;
4523       g1h->free_humongous_region(r, _free_region_list);
4524       r = next;
4525     } while (r != NULL);
4526 
4527     return false;
4528   }
4529 
4530   uint humongous_objects_reclaimed() {
4531     return _humongous_objects_reclaimed;
4532   }
4533 
4534   uint humongous_regions_reclaimed() {
4535     return _humongous_regions_reclaimed;
4536   }
4537 
4538   size_t bytes_freed() const {
4539     return _freed_bytes;
4540   }
4541 };
4542 
4543 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4544   assert_at_safepoint_on_vm_thread();
4545 
4546   if (!G1EagerReclaimHumongousObjects ||
4547       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4548     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4549     return;
4550   }
4551 
4552   double start_time = os::elapsedTime();
4553 
4554   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4555 
4556   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4557   heap_region_iterate(&cl);
4558 
4559   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4560 
4561   G1HRPrinter* hrp = hr_printer();
4562   if (hrp->is_active()) {
4563     FreeRegionListIterator iter(&local_cleanup_list);
4564     while (iter.more_available()) {
4565       HeapRegion* hr = iter.get_next();
4566       hrp->cleanup(hr);
4567     }
4568   }
4569 
4570   prepend_to_freelist(&local_cleanup_list);
4571   decrement_summary_bytes(cl.bytes_freed());
4572 
4573   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4574                                                        cl.humongous_objects_reclaimed());
4575 }
4576 
4577 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4578 public:
4579   virtual bool do_heap_region(HeapRegion* r) {
4580     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4581     G1CollectedHeap::heap()->clear_region_attr(r);
4582     r->clear_young_index_in_cset();
4583     return false;
4584   }
4585 };
4586 
4587 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4588   G1AbandonCollectionSetClosure cl;
4589   collection_set_iterate_all(&cl);
4590 
4591   collection_set->clear();
4592   collection_set->stop_incremental_building();
4593 }
4594 
4595 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4596   return _allocator->is_retained_old_region(hr);
4597 }
4598 
4599 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4600   _eden.add(hr);
4601   _policy->set_region_eden(hr);
4602 }
4603 
4604 #ifdef ASSERT
4605 
4606 class NoYoungRegionsClosure: public HeapRegionClosure {
4607 private:
4608   bool _success;
4609 public:
4610   NoYoungRegionsClosure() : _success(true) { }
4611   bool do_heap_region(HeapRegion* r) {
4612     if (r->is_young()) {
4613       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4614                             p2i(r->bottom()), p2i(r->end()));
4615       _success = false;
4616     }
4617     return false;
4618   }
4619   bool success() { return _success; }
4620 };
4621 
4622 bool G1CollectedHeap::check_young_list_empty() {
4623   bool ret = (young_regions_count() == 0);
4624 
4625   NoYoungRegionsClosure closure;
4626   heap_region_iterate(&closure);
4627   ret = ret && closure.success();
4628 
4629   return ret;
4630 }
4631 
4632 #endif // ASSERT
4633 
4634 class TearDownRegionSetsClosure : public HeapRegionClosure {
4635   HeapRegionSet *_old_set;
4636 
4637 public:
4638   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4639 
4640   bool do_heap_region(HeapRegion* r) {
4641     if (r->is_old()) {
4642       _old_set->remove(r);
4643     } else if(r->is_young()) {
4644       r->uninstall_surv_rate_group();
4645     } else {
4646       // We ignore free regions, we'll empty the free list afterwards.
4647       // We ignore humongous and archive regions, we're not tearing down these
4648       // sets.
4649       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4650              "it cannot be another type");
4651     }
4652     return false;
4653   }
4654 
4655   ~TearDownRegionSetsClosure() {
4656     assert(_old_set->is_empty(), "post-condition");
4657   }
4658 };
4659 
4660 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4661   assert_at_safepoint_on_vm_thread();
4662 
4663   if (!free_list_only) {
4664     TearDownRegionSetsClosure cl(&_old_set);
4665     heap_region_iterate(&cl);
4666 
4667     // Note that emptying the _young_list is postponed and instead done as
4668     // the first step when rebuilding the regions sets again. The reason for
4669     // this is that during a full GC string deduplication needs to know if
4670     // a collected region was young or old when the full GC was initiated.
4671   }
4672   _hrm->remove_all_free_regions();
4673 }
4674 
4675 void G1CollectedHeap::increase_used(size_t bytes) {
4676   _summary_bytes_used += bytes;
4677 }
4678 
4679 void G1CollectedHeap::decrease_used(size_t bytes) {
4680   assert(_summary_bytes_used >= bytes,
4681          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4682          _summary_bytes_used, bytes);
4683   _summary_bytes_used -= bytes;
4684 }
4685 
4686 void G1CollectedHeap::set_used(size_t bytes) {
4687   _summary_bytes_used = bytes;
4688 }
4689 
4690 class RebuildRegionSetsClosure : public HeapRegionClosure {
4691 private:
4692   bool _free_list_only;
4693 
4694   HeapRegionSet* _old_set;
4695   HeapRegionManager* _hrm;
4696 
4697   size_t _total_used;
4698 
4699 public:
4700   RebuildRegionSetsClosure(bool free_list_only,
4701                            HeapRegionSet* old_set,
4702                            HeapRegionManager* hrm) :
4703     _free_list_only(free_list_only),
4704     _old_set(old_set), _hrm(hrm), _total_used(0) {
4705     assert(_hrm->num_free_regions() == 0, "pre-condition");
4706     if (!free_list_only) {
4707       assert(_old_set->is_empty(), "pre-condition");
4708     }
4709   }
4710 
4711   bool do_heap_region(HeapRegion* r) {
4712     if (r->is_empty()) {
4713       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4714       // Add free regions to the free list
4715       r->set_free();
4716       _hrm->insert_into_free_list(r);
4717     } else if (!_free_list_only) {
4718       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4719 
4720       if (r->is_archive() || r->is_humongous()) {
4721         // We ignore archive and humongous regions. We left these sets unchanged.
4722       } else {
4723         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4724         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4725         r->move_to_old();
4726         _old_set->add(r);
4727       }
4728       _total_used += r->used();
4729     }
4730 
4731     return false;
4732   }
4733 
4734   size_t total_used() {
4735     return _total_used;
4736   }
4737 };
4738 
4739 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4740   assert_at_safepoint_on_vm_thread();
4741 
4742   if (!free_list_only) {
4743     _eden.clear();
4744     _survivor.clear();
4745   }
4746 
4747   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4748   heap_region_iterate(&cl);
4749 
4750   if (!free_list_only) {
4751     set_used(cl.total_used());
4752     if (_archive_allocator != NULL) {
4753       _archive_allocator->clear_used();
4754     }
4755   }
4756   assert_used_and_recalculate_used_equal(this);
4757 }
4758 
4759 // Methods for the mutator alloc region
4760 
4761 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4762                                                       bool force,
4763                                                       uint node_index) {
4764   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4765   bool should_allocate = policy()->should_allocate_mutator_region();
4766   if (force || should_allocate) {
4767     HeapRegion* new_alloc_region = new_region(word_size,
4768                                               HeapRegionType::Eden,
4769                                               false /* do_expand */,
4770                                               node_index);
4771     if (new_alloc_region != NULL) {
4772       set_region_short_lived_locked(new_alloc_region);
4773       _hr_printer.alloc(new_alloc_region, !should_allocate);
4774       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4775       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4776       return new_alloc_region;
4777     }
4778   }
4779   return NULL;
4780 }
4781 
4782 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4783                                                   size_t allocated_bytes) {
4784   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4785   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4786 
4787   collection_set()->add_eden_region(alloc_region);
4788   increase_used(allocated_bytes);
4789   _eden.add_used_bytes(allocated_bytes);
4790   _hr_printer.retire(alloc_region);
4791 
4792   // We update the eden sizes here, when the region is retired,
4793   // instead of when it's allocated, since this is the point that its
4794   // used space has been recorded in _summary_bytes_used.
4795   g1mm()->update_eden_size();
4796 }
4797 
4798 // Methods for the GC alloc regions
4799 
4800 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4801   if (dest.is_old()) {
4802     return true;
4803   } else {
4804     return survivor_regions_count() < policy()->max_survivor_regions();
4805   }
4806 }
4807 
4808 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4809   assert(FreeList_lock->owned_by_self(), "pre-condition");
4810 
4811   if (!has_more_regions(dest)) {
4812     return NULL;
4813   }
4814 
4815   HeapRegionType type;
4816   if (dest.is_young()) {
4817     type = HeapRegionType::Survivor;
4818   } else {
4819     type = HeapRegionType::Old;
4820   }
4821 
4822   HeapRegion* new_alloc_region = new_region(word_size,
4823                                             type,
4824                                             true /* do_expand */,
4825                                             node_index);
4826 
4827   if (new_alloc_region != NULL) {
4828     if (type.is_survivor()) {
4829       new_alloc_region->set_survivor();
4830       _survivor.add(new_alloc_region);
4831       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4832     } else {
4833       new_alloc_region->set_old();
4834       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4835     }
4836     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4837     register_region_with_region_attr(new_alloc_region);
4838     _hr_printer.alloc(new_alloc_region);
4839     return new_alloc_region;
4840   }
4841   return NULL;
4842 }
4843 
4844 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4845                                              size_t allocated_bytes,
4846                                              G1HeapRegionAttr dest) {
4847   _bytes_used_during_gc += allocated_bytes;
4848   if (dest.is_old()) {
4849     old_set_add(alloc_region);
4850   } else {
4851     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4852     _survivor.add_used_bytes(allocated_bytes);
4853   }
4854 
4855   bool const during_im = collector_state()->in_initial_mark_gc();
4856   if (during_im && allocated_bytes > 0) {
4857     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4858   }
4859   _hr_printer.retire(alloc_region);
4860 }
4861 
4862 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4863   bool expanded = false;
4864   uint index = _hrm->find_highest_free(&expanded);
4865 
4866   if (index != G1_NO_HRM_INDEX) {
4867     if (expanded) {
4868       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4869                                 HeapRegion::GrainWords * HeapWordSize);
4870     }
4871     _hrm->allocate_free_regions_starting_at(index, 1);
4872     return region_at(index);
4873   }
4874   return NULL;
4875 }
4876 
4877 // Optimized nmethod scanning
4878 
4879 class RegisterNMethodOopClosure: public OopClosure {
4880   G1CollectedHeap* _g1h;
4881   nmethod* _nm;
4882 
4883   template <class T> void do_oop_work(T* p) {
4884     T heap_oop = RawAccess<>::oop_load(p);
4885     if (!CompressedOops::is_null(heap_oop)) {
4886       oop obj = CompressedOops::decode_not_null(heap_oop);
4887       HeapRegion* hr = _g1h->heap_region_containing(obj);
4888       assert(!hr->is_continues_humongous(),
4889              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4890              " starting at " HR_FORMAT,
4891              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4892 
4893       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4894       hr->add_strong_code_root_locked(_nm);
4895     }
4896   }
4897 
4898 public:
4899   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4900     _g1h(g1h), _nm(nm) {}
4901 
4902   void do_oop(oop* p)       { do_oop_work(p); }
4903   void do_oop(narrowOop* p) { do_oop_work(p); }
4904 };
4905 
4906 class UnregisterNMethodOopClosure: public OopClosure {
4907   G1CollectedHeap* _g1h;
4908   nmethod* _nm;
4909 
4910   template <class T> void do_oop_work(T* p) {
4911     T heap_oop = RawAccess<>::oop_load(p);
4912     if (!CompressedOops::is_null(heap_oop)) {
4913       oop obj = CompressedOops::decode_not_null(heap_oop);
4914       HeapRegion* hr = _g1h->heap_region_containing(obj);
4915       assert(!hr->is_continues_humongous(),
4916              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4917              " starting at " HR_FORMAT,
4918              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4919 
4920       hr->remove_strong_code_root(_nm);
4921     }
4922   }
4923 
4924 public:
4925   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4926     _g1h(g1h), _nm(nm) {}
4927 
4928   void do_oop(oop* p)       { do_oop_work(p); }
4929   void do_oop(narrowOop* p) { do_oop_work(p); }
4930 };
4931 
4932 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4933   guarantee(nm != NULL, "sanity");
4934   RegisterNMethodOopClosure reg_cl(this, nm);
4935   nm->oops_do(&reg_cl);
4936 }
4937 
4938 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4939   guarantee(nm != NULL, "sanity");
4940   UnregisterNMethodOopClosure reg_cl(this, nm);
4941   nm->oops_do(&reg_cl, true);
4942 }
4943 
4944 void G1CollectedHeap::purge_code_root_memory() {
4945   double purge_start = os::elapsedTime();
4946   G1CodeRootSet::purge();
4947   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4948   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4949 }
4950 
4951 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4952   G1CollectedHeap* _g1h;
4953 
4954 public:
4955   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4956     _g1h(g1h) {}
4957 
4958   void do_code_blob(CodeBlob* cb) {
4959     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4960     if (nm == NULL) {
4961       return;
4962     }
4963 
4964     _g1h->register_nmethod(nm);
4965   }
4966 };
4967 
4968 void G1CollectedHeap::rebuild_strong_code_roots() {
4969   RebuildStrongCodeRootClosure blob_cl(this);
4970   CodeCache::blobs_do(&blob_cl);
4971 }
4972 
4973 void G1CollectedHeap::initialize_serviceability() {
4974   _g1mm->initialize_serviceability();
4975 }
4976 
4977 MemoryUsage G1CollectedHeap::memory_usage() {
4978   return _g1mm->memory_usage();
4979 }
4980 
4981 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4982   return _g1mm->memory_managers();
4983 }
4984 
4985 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4986   return _g1mm->memory_pools();
4987 }
4988 
4989 class G1ParHeapInspectTask: public ParHeapInspectTask {
4990  private:
4991   HeapRegionClaimer _claimer;
4992  public:
4993   G1ParHeapInspectTask(G1CollectedHeap* heap, KlassInfoTable* shared_cit,
4994                      BoolObjectClosure* filter, size_t* shared_missed_count,
4995                      size_t thread_num) :
4996       ParHeapInspectTask(heap, shared_cit, filter, shared_missed_count, thread_num),
4997       _claimer(thread_num == 0 ? heap->workers()->active_workers() : thread_num) { }
4998   void do_object_iterate_parallel(ObjectClosure* cl, uint worker_id) {
4999     ((G1CollectedHeap*)getHeap())->object_iterate_parallel(cl, worker_id, &_claimer);
5000   }
5001 };
5002 
5003 bool G1CollectedHeap::run_par_heap_inspect_task(KlassInfoTable* cit,
5004                                                    BoolObjectClosure* filter,
5005                                                    size_t* missed_count, size_t thread_num) {
5006   G1ParHeapInspectTask task(this, cit, filter, missed_count, thread_num);
5007   return object_iterate_try_parallel(&task, thread_num) && task.is_success();
5008 }
5009 
5010 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) {
5011   IterateObjectClosureRegionClosure blk(cl);
5012   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
5013 }
5014 
5015 bool G1CollectedHeap::object_iterate_try_parallel(AbstractGangTask* task, size_t par_thread_num) {
5016   if (task == NULL) {
5017     return false;
5018   }
5019   par_thread_num = MIN2((uint)par_thread_num, workers()->total_workers());
5020   workers()->run_task(task, par_thread_num);
5021   return true;
5022 }
5023 
5024