1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "gc/shared/verifyOption.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/heapInspection.hpp"
  33 #include "runtime/handles.hpp"
  34 #include "runtime/perfData.hpp"
  35 #include "runtime/safepoint.hpp"
  36 #include "services/memoryUsage.hpp"
  37 #include "utilities/debug.hpp"
  38 #include "utilities/events.hpp"
  39 #include "utilities/formatBuffer.hpp"
  40 #include "utilities/growableArray.hpp"
  41 
  42 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  43 // is an abstract class: there may be many different kinds of heaps.  This
  44 // class defines the functions that a heap must implement, and contains
  45 // infrastructure common to all heaps.
  46 
  47 class AbstractGangTask;
  48 class AdaptiveSizePolicy;
  49 class BarrierSet;
  50 class GCHeapSummary;
  51 class GCTimer;
  52 class GCTracer;
  53 class GCMemoryManager;
  54 class MemoryPool;
  55 class MetaspaceSummary;
  56 class ReservedHeapSpace;
  57 class SoftRefPolicy;
  58 class Thread;
  59 class ThreadClosure;
  60 class VirtualSpaceSummary;
  61 class WorkGang;
  62 class nmethod;
  63 
  64 class GCMessage : public FormatBuffer<1024> {
  65  public:
  66   bool is_before;
  67 
  68  public:
  69   GCMessage() {}
  70 };
  71 
  72 class CollectedHeap;
  73 
  74 class GCHeapLog : public EventLogBase<GCMessage> {
  75  private:
  76   void log_heap(CollectedHeap* heap, bool before);
  77 
  78  public:
  79   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {}
  80 
  81   void log_heap_before(CollectedHeap* heap) {
  82     log_heap(heap, true);
  83   }
  84   void log_heap_after(CollectedHeap* heap) {
  85     log_heap(heap, false);
  86   }
  87 };
  88 
  89 //
  90 // CollectedHeap
  91 //   GenCollectedHeap
  92 //     SerialHeap
  93 //   G1CollectedHeap
  94 //   ParallelScavengeHeap
  95 //   ShenandoahHeap
  96 //   ZCollectedHeap
  97 //
  98 class CollectedHeap : public CHeapObj<mtInternal> {
  99   friend class VMStructs;
 100   friend class JVMCIVMStructs;
 101   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 102   friend class MemAllocator;
 103 
 104  private:
 105   GCHeapLog* _gc_heap_log;
 106 
 107  protected:
 108   // Not used by all GCs
 109   MemRegion _reserved;
 110 
 111   bool _is_gc_active;
 112 
 113   // Used for filler objects (static, but initialized in ctor).
 114   static size_t _filler_array_max_size;
 115 
 116   unsigned int _total_collections;          // ... started
 117   unsigned int _total_full_collections;     // ... started
 118   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 119   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 120 
 121   // Reason for current garbage collection.  Should be set to
 122   // a value reflecting no collection between collections.
 123   GCCause::Cause _gc_cause;
 124   GCCause::Cause _gc_lastcause;
 125   PerfStringVariable* _perf_gc_cause;
 126   PerfStringVariable* _perf_gc_lastcause;
 127 
 128   // Constructor
 129   CollectedHeap();
 130 
 131   // Create a new tlab. All TLAB allocations must go through this.
 132   // To allow more flexible TLAB allocations min_size specifies
 133   // the minimum size needed, while requested_size is the requested
 134   // size based on ergonomics. The actually allocated size will be
 135   // returned in actual_size.
 136   virtual HeapWord* allocate_new_tlab(size_t min_size,
 137                                       size_t requested_size,
 138                                       size_t* actual_size);
 139 
 140   // Reinitialize tlabs before resuming mutators.
 141   virtual void resize_all_tlabs();
 142 
 143   // Raw memory allocation facilities
 144   // The obj and array allocate methods are covers for these methods.
 145   // mem_allocate() should never be
 146   // called to allocate TLABs, only individual objects.
 147   virtual HeapWord* mem_allocate(size_t size,
 148                                  bool* gc_overhead_limit_was_exceeded) = 0;
 149 
 150   // Filler object utilities.
 151   static inline size_t filler_array_hdr_size();
 152   static inline size_t filler_array_min_size();
 153 
 154   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 155   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 156 
 157   // Fill with a single array; caller must ensure filler_array_min_size() <=
 158   // words <= filler_array_max_size().
 159   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 160 
 161   // Fill with a single object (either an int array or a java.lang.Object).
 162   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 163 
 164   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 165 
 166   // Verification functions
 167   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 168     PRODUCT_RETURN;
 169   debug_only(static void check_for_valid_allocation_state();)
 170 
 171  public:
 172   enum Name {
 173     None,
 174     Serial,
 175     Parallel,
 176     G1,
 177     Epsilon,
 178     Z,
 179     Shenandoah
 180   };
 181 
 182   static inline size_t filler_array_max_size() {
 183     return _filler_array_max_size;
 184   }
 185 
 186   virtual Name kind() const = 0;
 187 
 188   virtual const char* name() const = 0;
 189 
 190   /**
 191    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 192    * and JNI_OK on success.
 193    */
 194   virtual jint initialize() = 0;
 195 
 196   // In many heaps, there will be a need to perform some initialization activities
 197   // after the Universe is fully formed, but before general heap allocation is allowed.
 198   // This is the correct place to place such initialization methods.
 199   virtual void post_initialize();
 200 
 201   // Stop any onging concurrent work and prepare for exit.
 202   virtual void stop() {}
 203 
 204   // Stop and resume concurrent GC threads interfering with safepoint operations
 205   virtual void safepoint_synchronize_begin() {}
 206   virtual void safepoint_synchronize_end() {}
 207 
 208   void initialize_reserved_region(const ReservedHeapSpace& rs);
 209 
 210   virtual size_t capacity() const = 0;
 211   virtual size_t used() const = 0;
 212 
 213   // Returns unused capacity.
 214   virtual size_t unused() const;
 215 
 216   // Return "true" if the part of the heap that allocates Java
 217   // objects has reached the maximal committed limit that it can
 218   // reach, without a garbage collection.
 219   virtual bool is_maximal_no_gc() const = 0;
 220 
 221   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 222   // memory that the vm could make available for storing 'normal' java objects.
 223   // This is based on the reserved address space, but should not include space
 224   // that the vm uses internally for bookkeeping or temporary storage
 225   // (e.g., in the case of the young gen, one of the survivor
 226   // spaces).
 227   virtual size_t max_capacity() const = 0;
 228 
 229   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 230   // This method can be expensive so avoid using it in performance critical
 231   // code.
 232   virtual bool is_in(const void* p) const = 0;
 233 
 234   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 235 
 236   virtual uint32_t hash_oop(oop obj) const;
 237 
 238   void set_gc_cause(GCCause::Cause v) {
 239      if (UsePerfData) {
 240        _gc_lastcause = _gc_cause;
 241        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 242        _perf_gc_cause->set_value(GCCause::to_string(v));
 243      }
 244     _gc_cause = v;
 245   }
 246   GCCause::Cause gc_cause() { return _gc_cause; }
 247 
 248   oop obj_allocate(Klass* klass, int size, TRAPS);
 249   virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
 250   oop class_allocate(Klass* klass, int size, TRAPS);
 251 
 252   // Utilities for turning raw memory into filler objects.
 253   //
 254   // min_fill_size() is the smallest region that can be filled.
 255   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 256   // multiple objects.  fill_with_object() is for regions known to be smaller
 257   // than the largest array of integers; it uses a single object to fill the
 258   // region and has slightly less overhead.
 259   static size_t min_fill_size() {
 260     return size_t(align_object_size(oopDesc::header_size()));
 261   }
 262 
 263   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 264 
 265   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 266   static void fill_with_object(MemRegion region, bool zap = true) {
 267     fill_with_object(region.start(), region.word_size(), zap);
 268   }
 269   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 270     fill_with_object(start, pointer_delta(end, start), zap);
 271   }
 272 
 273   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
 274   virtual size_t min_dummy_object_size() const;
 275   size_t tlab_alloc_reserve() const;
 276 
 277   // Return the address "addr" aligned by "alignment_in_bytes" if such
 278   // an address is below "end".  Return NULL otherwise.
 279   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 280                                                    HeapWord* end,
 281                                                    unsigned short alignment_in_bytes);
 282 
 283   // Some heaps may offer a contiguous region for shared non-blocking
 284   // allocation, via inlined code (by exporting the address of the top and
 285   // end fields defining the extent of the contiguous allocation region.)
 286 
 287   // This function returns "true" iff the heap supports this kind of
 288   // allocation.  (Default is "no".)
 289   virtual bool supports_inline_contig_alloc() const {
 290     return false;
 291   }
 292   // These functions return the addresses of the fields that define the
 293   // boundaries of the contiguous allocation area.  (These fields should be
 294   // physically near to one another.)
 295   virtual HeapWord* volatile* top_addr() const {
 296     guarantee(false, "inline contiguous allocation not supported");
 297     return NULL;
 298   }
 299   virtual HeapWord** end_addr() const {
 300     guarantee(false, "inline contiguous allocation not supported");
 301     return NULL;
 302   }
 303 
 304   // Some heaps may be in an unparseable state at certain times between
 305   // collections. This may be necessary for efficient implementation of
 306   // certain allocation-related activities. Calling this function before
 307   // attempting to parse a heap ensures that the heap is in a parsable
 308   // state (provided other concurrent activity does not introduce
 309   // unparsability). It is normally expected, therefore, that this
 310   // method is invoked with the world stopped.
 311   // NOTE: if you override this method, make sure you call
 312   // super::ensure_parsability so that the non-generational
 313   // part of the work gets done. See implementation of
 314   // CollectedHeap::ensure_parsability and, for instance,
 315   // that of GenCollectedHeap::ensure_parsability().
 316   // The argument "retire_tlabs" controls whether existing TLABs
 317   // are merely filled or also retired, thus preventing further
 318   // allocation from them and necessitating allocation of new TLABs.
 319   virtual void ensure_parsability(bool retire_tlabs);
 320 
 321   // Section on thread-local allocation buffers (TLABs)
 322   // If the heap supports thread-local allocation buffers, it should override
 323   // the following methods:
 324   // Returns "true" iff the heap supports thread-local allocation buffers.
 325   // The default is "no".
 326   virtual bool supports_tlab_allocation() const = 0;
 327 
 328   // The amount of space available for thread-local allocation buffers.
 329   virtual size_t tlab_capacity(Thread *thr) const = 0;
 330 
 331   // The amount of used space for thread-local allocation buffers for the given thread.
 332   virtual size_t tlab_used(Thread *thr) const = 0;
 333 
 334   virtual size_t max_tlab_size() const;
 335 
 336   // An estimate of the maximum allocation that could be performed
 337   // for thread-local allocation buffers without triggering any
 338   // collection or expansion activity.
 339   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 340     guarantee(false, "thread-local allocation buffers not supported");
 341     return 0;
 342   }
 343 
 344   // Perform a collection of the heap; intended for use in implementing
 345   // "System.gc".  This probably implies as full a collection as the
 346   // "CollectedHeap" supports.
 347   virtual void collect(GCCause::Cause cause) = 0;
 348 
 349   // Perform a full collection
 350   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 351 
 352   // This interface assumes that it's being called by the
 353   // vm thread. It collects the heap assuming that the
 354   // heap lock is already held and that we are executing in
 355   // the context of the vm thread.
 356   virtual void collect_as_vm_thread(GCCause::Cause cause);
 357 
 358   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 359                                                        size_t size,
 360                                                        Metaspace::MetadataType mdtype);
 361 
 362   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 363   // that it should answer "false" for the concurrent part of a concurrent
 364   // collector -- dld).
 365   bool is_gc_active() const { return _is_gc_active; }
 366 
 367   // Total number of GC collections (started)
 368   unsigned int total_collections() const { return _total_collections; }
 369   unsigned int total_full_collections() const { return _total_full_collections;}
 370 
 371   // Increment total number of GC collections (started)
 372   void increment_total_collections(bool full = false) {
 373     _total_collections++;
 374     if (full) {
 375       increment_total_full_collections();
 376     }
 377   }
 378 
 379   void increment_total_full_collections() { _total_full_collections++; }
 380 
 381   // Return the SoftRefPolicy for the heap;
 382   virtual SoftRefPolicy* soft_ref_policy() = 0;
 383 
 384   virtual MemoryUsage memory_usage();
 385   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 386   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 387 
 388   // Iterate over all objects, calling "cl.do_object" on each.
 389   virtual void object_iterate(ObjectClosure* cl) = 0;
 390 
 391   // Run parallel heap inspection, return false as not supported by heap.
 392   virtual bool run_par_heap_inspect_task(KlassInfoTable* cit,
 393                                          BoolObjectClosure* filter,
 394                                          size_t* missed_count,
 395                                          size_t thread_num) {
 396     return false;
 397   }
 398 
 399   // Parallel iterate over all objects, reture false if heap not support.
 400   virtual bool object_iterate_try_parallel(AbstractGangTask *task, size_t thread_num) {
 401     return false;
 402   }
 403 
 404   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
 405   virtual void keep_alive(oop obj) {}
 406 
 407   // Returns the longest time (in ms) that has elapsed since the last
 408   // time that any part of the heap was examined by a garbage collection.
 409   virtual jlong millis_since_last_gc() = 0;
 410 
 411   // Perform any cleanup actions necessary before allowing a verification.
 412   virtual void prepare_for_verify() = 0;
 413 
 414   // Generate any dumps preceding or following a full gc
 415  private:
 416   void full_gc_dump(GCTimer* timer, bool before);
 417 
 418   virtual void initialize_serviceability() = 0;
 419 
 420  public:
 421   void pre_full_gc_dump(GCTimer* timer);
 422   void post_full_gc_dump(GCTimer* timer);
 423 
 424   virtual VirtualSpaceSummary create_heap_space_summary();
 425   GCHeapSummary create_heap_summary();
 426 
 427   MetaspaceSummary create_metaspace_summary();
 428 
 429   // Print heap information on the given outputStream.
 430   virtual void print_on(outputStream* st) const = 0;
 431   // The default behavior is to call print_on() on tty.
 432   virtual void print() const;
 433 
 434   // Print more detailed heap information on the given
 435   // outputStream. The default behavior is to call print_on(). It is
 436   // up to each subclass to override it and add any additional output
 437   // it needs.
 438   virtual void print_extended_on(outputStream* st) const {
 439     print_on(st);
 440   }
 441 
 442   virtual void print_on_error(outputStream* st) const;
 443 
 444   // Used to print information about locations in the hs_err file.
 445   virtual bool print_location(outputStream* st, void* addr) const = 0;
 446 
 447   // Print all GC threads (other than the VM thread)
 448   // used by this heap.
 449   virtual void print_gc_threads_on(outputStream* st) const = 0;
 450   // The default behavior is to call print_gc_threads_on() on tty.
 451   void print_gc_threads() {
 452     print_gc_threads_on(tty);
 453   }
 454   // Iterator for all GC threads (other than VM thread)
 455   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 456 
 457   // Print any relevant tracing info that flags imply.
 458   // Default implementation does nothing.
 459   virtual void print_tracing_info() const = 0;
 460 
 461   void print_heap_before_gc();
 462   void print_heap_after_gc();
 463 
 464   // Registering and unregistering an nmethod (compiled code) with the heap.
 465   virtual void register_nmethod(nmethod* nm) = 0;
 466   virtual void unregister_nmethod(nmethod* nm) = 0;
 467   // Callback for when nmethod is about to be deleted.
 468   virtual void flush_nmethod(nmethod* nm) = 0;
 469   virtual void verify_nmethod(nmethod* nm) = 0;
 470 
 471   void trace_heap_before_gc(const GCTracer* gc_tracer);
 472   void trace_heap_after_gc(const GCTracer* gc_tracer);
 473 
 474   // Heap verification
 475   virtual void verify(VerifyOption option) = 0;
 476 
 477   // Return true if concurrent phase control (via
 478   // request_concurrent_phase_control) is supported by this collector.
 479   // The default implementation returns false.
 480   virtual bool supports_concurrent_phase_control() const;
 481 
 482   // Request the collector enter the indicated concurrent phase, and
 483   // wait until it does so.  Supports WhiteBox testing.  Only one
 484   // request may be active at a time.  Phases are designated by name;
 485   // the set of names and their meaning is GC-specific.  Once the
 486   // requested phase has been reached, the collector will attempt to
 487   // avoid transitioning to a new phase until a new request is made.
 488   // [Note: A collector might not be able to remain in a given phase.
 489   // For example, a full collection might cancel an in-progress
 490   // concurrent collection.]
 491   //
 492   // Returns true when the phase is reached.  Returns false for an
 493   // unknown phase.  The default implementation returns false.
 494   virtual bool request_concurrent_phase(const char* phase);
 495 
 496   // Provides a thread pool to SafepointSynchronize to use
 497   // for parallel safepoint cleanup.
 498   // GCs that use a GC worker thread pool may want to share
 499   // it for use during safepoint cleanup. This is only possible
 500   // if the GC can pause and resume concurrent work (e.g. G1
 501   // concurrent marking) for an intermittent non-GC safepoint.
 502   // If this method returns NULL, SafepointSynchronize will
 503   // perform cleanup tasks serially in the VMThread.
 504   virtual WorkGang* get_safepoint_workers() { return NULL; }
 505 
 506   // Support for object pinning. This is used by JNI Get*Critical()
 507   // and Release*Critical() family of functions. If supported, the GC
 508   // must guarantee that pinned objects never move.
 509   virtual bool supports_object_pinning() const;
 510   virtual oop pin_object(JavaThread* thread, oop obj);
 511   virtual void unpin_object(JavaThread* thread, oop obj);
 512 
 513   // Deduplicate the string, iff the GC supports string deduplication.
 514   virtual void deduplicate_string(oop str);
 515 
 516   virtual bool is_oop(oop object) const;
 517 
 518   virtual size_t obj_size(oop obj) const;
 519 
 520   // Non product verification and debugging.
 521 #ifndef PRODUCT
 522   // Support for PromotionFailureALot.  Return true if it's time to cause a
 523   // promotion failure.  The no-argument version uses
 524   // this->_promotion_failure_alot_count as the counter.
 525   bool promotion_should_fail(volatile size_t* count);
 526   bool promotion_should_fail();
 527 
 528   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 529   // GC in which promotion failure occurred.
 530   void reset_promotion_should_fail(volatile size_t* count);
 531   void reset_promotion_should_fail();
 532 #endif  // #ifndef PRODUCT
 533 };
 534 
 535 // Class to set and reset the GC cause for a CollectedHeap.
 536 
 537 class GCCauseSetter : StackObj {
 538   CollectedHeap* _heap;
 539   GCCause::Cause _previous_cause;
 540  public:
 541   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 542     _heap = heap;
 543     _previous_cause = _heap->gc_cause();
 544     _heap->set_gc_cause(cause);
 545   }
 546 
 547   ~GCCauseSetter() {
 548     _heap->set_gc_cause(_previous_cause);
 549   }
 550 };
 551 
 552 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP