1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/metadataOnStackMark.hpp"
  28 #include "classfile/stringTable.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "gc/g1/g1Allocator.inline.hpp"
  32 #include "gc/g1/g1Arguments.hpp"
  33 #include "gc/g1/g1BarrierSet.hpp"
  34 #include "gc/g1/g1CardTableEntryClosure.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectionSet.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ConcurrentRefine.hpp"
  39 #include "gc/g1/g1ConcurrentRefineThread.hpp"
  40 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  41 #include "gc/g1/g1DirtyCardQueue.hpp"
  42 #include "gc/g1/g1EvacStats.inline.hpp"
  43 #include "gc/g1/g1FullCollector.hpp"
  44 #include "gc/g1/g1GCParPhaseTimesTracker.hpp"
  45 #include "gc/g1/g1GCPhaseTimes.hpp"
  46 #include "gc/g1/g1HeapSizingPolicy.hpp"
  47 #include "gc/g1/g1HeapTransition.hpp"
  48 #include "gc/g1/g1HeapVerifier.hpp"
  49 #include "gc/g1/g1HotCardCache.hpp"
  50 #include "gc/g1/g1InitLogger.hpp"
  51 #include "gc/g1/g1MemoryPool.hpp"
  52 #include "gc/g1/g1OopClosures.inline.hpp"
  53 #include "gc/g1/g1ParallelCleaning.hpp"
  54 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  55 #include "gc/g1/g1Policy.hpp"
  56 #include "gc/g1/g1RedirtyCardsQueue.hpp"
  57 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  58 #include "gc/g1/g1RemSet.hpp"
  59 #include "gc/g1/g1RootClosures.hpp"
  60 #include "gc/g1/g1RootProcessor.hpp"
  61 #include "gc/g1/g1SATBMarkQueueSet.hpp"
  62 #include "gc/g1/g1StringDedup.hpp"
  63 #include "gc/g1/g1ThreadLocalData.hpp"
  64 #include "gc/g1/g1Trace.hpp"
  65 #include "gc/g1/g1YCTypes.hpp"
  66 #include "gc/g1/g1YoungRemSetSamplingThread.hpp"
  67 #include "gc/g1/g1VMOperations.hpp"
  68 #include "gc/g1/heapRegion.inline.hpp"
  69 #include "gc/g1/heapRegionRemSet.hpp"
  70 #include "gc/g1/heapRegionSet.inline.hpp"
  71 #include "gc/shared/concurrentGCBreakpoints.hpp"
  72 #include "gc/shared/gcBehaviours.hpp"
  73 #include "gc/shared/gcHeapSummary.hpp"
  74 #include "gc/shared/gcId.hpp"
  75 #include "gc/shared/gcLocker.hpp"
  76 #include "gc/shared/gcTimer.hpp"
  77 #include "gc/shared/gcTraceTime.inline.hpp"
  78 #include "gc/shared/generationSpec.hpp"
  79 #include "gc/shared/isGCActiveMark.hpp"
  80 #include "gc/shared/locationPrinter.inline.hpp"
  81 #include "gc/shared/oopStorageParState.hpp"
  82 #include "gc/shared/preservedMarks.inline.hpp"
  83 #include "gc/shared/suspendibleThreadSet.hpp"
  84 #include "gc/shared/referenceProcessor.inline.hpp"
  85 #include "gc/shared/taskTerminator.hpp"
  86 #include "gc/shared/taskqueue.inline.hpp"
  87 #include "gc/shared/weakProcessor.inline.hpp"
  88 #include "gc/shared/workerPolicy.hpp"
  89 #include "logging/log.hpp"
  90 #include "memory/allocation.hpp"
  91 #include "memory/iterator.hpp"
  92 #include "memory/heapInspection.hpp"
  93 #include "memory/resourceArea.hpp"
  94 #include "memory/universe.hpp"
  95 #include "oops/access.inline.hpp"
  96 #include "oops/compressedOops.inline.hpp"
  97 #include "oops/oop.inline.hpp"
  98 #include "runtime/atomic.hpp"
  99 #include "runtime/flags/flagSetting.hpp"
 100 #include "runtime/handles.inline.hpp"
 101 #include "runtime/init.hpp"
 102 #include "runtime/orderAccess.hpp"
 103 #include "runtime/threadSMR.hpp"
 104 #include "runtime/vmThread.hpp"
 105 #include "utilities/align.hpp"
 106 #include "utilities/bitMap.inline.hpp"
 107 #include "utilities/globalDefinitions.hpp"
 108 #include "utilities/stack.inline.hpp"
 109 
 110 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
 111 
 112 // INVARIANTS/NOTES
 113 //
 114 // All allocation activity covered by the G1CollectedHeap interface is
 115 // serialized by acquiring the HeapLock.  This happens in mem_allocate
 116 // and allocate_new_tlab, which are the "entry" points to the
 117 // allocation code from the rest of the JVM.  (Note that this does not
 118 // apply to TLAB allocation, which is not part of this interface: it
 119 // is done by clients of this interface.)
 120 
 121 class RedirtyLoggedCardTableEntryClosure : public G1CardTableEntryClosure {
 122  private:
 123   size_t _num_dirtied;
 124   G1CollectedHeap* _g1h;
 125   G1CardTable* _g1_ct;
 126 
 127   HeapRegion* region_for_card(CardValue* card_ptr) const {
 128     return _g1h->heap_region_containing(_g1_ct->addr_for(card_ptr));
 129   }
 130 
 131   bool will_become_free(HeapRegion* hr) const {
 132     // A region will be freed by free_collection_set if the region is in the
 133     // collection set and has not had an evacuation failure.
 134     return _g1h->is_in_cset(hr) && !hr->evacuation_failed();
 135   }
 136 
 137  public:
 138   RedirtyLoggedCardTableEntryClosure(G1CollectedHeap* g1h) : G1CardTableEntryClosure(),
 139     _num_dirtied(0), _g1h(g1h), _g1_ct(g1h->card_table()) { }
 140 
 141   void do_card_ptr(CardValue* card_ptr, uint worker_id) {
 142     HeapRegion* hr = region_for_card(card_ptr);
 143 
 144     // Should only dirty cards in regions that won't be freed.
 145     if (!will_become_free(hr)) {
 146       *card_ptr = G1CardTable::dirty_card_val();
 147       _num_dirtied++;
 148     }
 149   }
 150 
 151   size_t num_dirtied()   const { return _num_dirtied; }
 152 };
 153 
 154 
 155 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 156   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 157 }
 158 
 159 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 160   // The from card cache is not the memory that is actually committed. So we cannot
 161   // take advantage of the zero_filled parameter.
 162   reset_from_card_cache(start_idx, num_regions);
 163 }
 164 
 165 void G1CollectedHeap::run_task(AbstractGangTask* task) {
 166   workers()->run_task(task, workers()->active_workers());
 167 }
 168 
 169 Tickspan G1CollectedHeap::run_task_timed(AbstractGangTask* task) {
 170   Ticks start = Ticks::now();
 171   run_task(task);
 172   return Ticks::now() - start;
 173 }
 174 
 175 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
 176                                              MemRegion mr) {
 177   return new HeapRegion(hrs_index, bot(), mr);
 178 }
 179 
 180 // Private methods.
 181 
 182 HeapRegion* G1CollectedHeap::new_region(size_t word_size,
 183                                         HeapRegionType type,
 184                                         bool do_expand,
 185                                         uint node_index) {
 186   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 187          "the only time we use this to allocate a humongous region is "
 188          "when we are allocating a single humongous region");
 189 
 190   HeapRegion* res = _hrm->allocate_free_region(type, node_index);
 191 
 192   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 193     // Currently, only attempts to allocate GC alloc regions set
 194     // do_expand to true. So, we should only reach here during a
 195     // safepoint. If this assumption changes we might have to
 196     // reconsider the use of _expand_heap_after_alloc_failure.
 197     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 198 
 199     log_debug(gc, ergo, heap)("Attempt heap expansion (region allocation request failed). Allocation request: " SIZE_FORMAT "B",
 200                               word_size * HeapWordSize);
 201 
 202     assert(word_size * HeapWordSize < HeapRegion::GrainBytes,
 203            "This kind of expansion should never be more than one region. Size: " SIZE_FORMAT,
 204            word_size * HeapWordSize);
 205     if (expand_single_region(node_index)) {
 206       // Given that expand_single_region() succeeded in expanding the heap, and we
 207       // always expand the heap by an amount aligned to the heap
 208       // region size, the free list should in theory not be empty.
 209       // In either case allocate_free_region() will check for NULL.
 210       res = _hrm->allocate_free_region(type, node_index);
 211     } else {
 212       _expand_heap_after_alloc_failure = false;
 213     }
 214   }
 215   return res;
 216 }
 217 
 218 HeapWord*
 219 G1CollectedHeap::humongous_obj_allocate_initialize_regions(HeapRegion* first_hr,
 220                                                            uint num_regions,
 221                                                            size_t word_size) {
 222   assert(first_hr != NULL, "pre-condition");
 223   assert(is_humongous(word_size), "word_size should be humongous");
 224   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 225 
 226   // Index of last region in the series.
 227   uint first = first_hr->hrm_index();
 228   uint last = first + num_regions - 1;
 229 
 230   // We need to initialize the region(s) we just discovered. This is
 231   // a bit tricky given that it can happen concurrently with
 232   // refinement threads refining cards on these regions and
 233   // potentially wanting to refine the BOT as they are scanning
 234   // those cards (this can happen shortly after a cleanup; see CR
 235   // 6991377). So we have to set up the region(s) carefully and in
 236   // a specific order.
 237 
 238   // The word size sum of all the regions we will allocate.
 239   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 240   assert(word_size <= word_size_sum, "sanity");
 241 
 242   // The passed in hr will be the "starts humongous" region. The header
 243   // of the new object will be placed at the bottom of this region.
 244   HeapWord* new_obj = first_hr->bottom();
 245   // This will be the new top of the new object.
 246   HeapWord* obj_top = new_obj + word_size;
 247 
 248   // First, we need to zero the header of the space that we will be
 249   // allocating. When we update top further down, some refinement
 250   // threads might try to scan the region. By zeroing the header we
 251   // ensure that any thread that will try to scan the region will
 252   // come across the zero klass word and bail out.
 253   //
 254   // NOTE: It would not have been correct to have used
 255   // CollectedHeap::fill_with_object() and make the space look like
 256   // an int array. The thread that is doing the allocation will
 257   // later update the object header to a potentially different array
 258   // type and, for a very short period of time, the klass and length
 259   // fields will be inconsistent. This could cause a refinement
 260   // thread to calculate the object size incorrectly.
 261   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 262 
 263   // Next, pad out the unused tail of the last region with filler
 264   // objects, for improved usage accounting.
 265   // How many words we use for filler objects.
 266   size_t word_fill_size = word_size_sum - word_size;
 267 
 268   // How many words memory we "waste" which cannot hold a filler object.
 269   size_t words_not_fillable = 0;
 270 
 271   if (word_fill_size >= min_fill_size()) {
 272     fill_with_objects(obj_top, word_fill_size);
 273   } else if (word_fill_size > 0) {
 274     // We have space to fill, but we cannot fit an object there.
 275     words_not_fillable = word_fill_size;
 276     word_fill_size = 0;
 277   }
 278 
 279   // We will set up the first region as "starts humongous". This
 280   // will also update the BOT covering all the regions to reflect
 281   // that there is a single object that starts at the bottom of the
 282   // first region.
 283   first_hr->set_starts_humongous(obj_top, word_fill_size);
 284   _policy->remset_tracker()->update_at_allocate(first_hr);
 285   // Then, if there are any, we will set up the "continues
 286   // humongous" regions.
 287   HeapRegion* hr = NULL;
 288   for (uint i = first + 1; i <= last; ++i) {
 289     hr = region_at(i);
 290     hr->set_continues_humongous(first_hr);
 291     _policy->remset_tracker()->update_at_allocate(hr);
 292   }
 293 
 294   // Up to this point no concurrent thread would have been able to
 295   // do any scanning on any region in this series. All the top
 296   // fields still point to bottom, so the intersection between
 297   // [bottom,top] and [card_start,card_end] will be empty. Before we
 298   // update the top fields, we'll do a storestore to make sure that
 299   // no thread sees the update to top before the zeroing of the
 300   // object header and the BOT initialization.
 301   OrderAccess::storestore();
 302 
 303   // Now, we will update the top fields of the "continues humongous"
 304   // regions except the last one.
 305   for (uint i = first; i < last; ++i) {
 306     hr = region_at(i);
 307     hr->set_top(hr->end());
 308   }
 309 
 310   hr = region_at(last);
 311   // If we cannot fit a filler object, we must set top to the end
 312   // of the humongous object, otherwise we cannot iterate the heap
 313   // and the BOT will not be complete.
 314   hr->set_top(hr->end() - words_not_fillable);
 315 
 316   assert(hr->bottom() < obj_top && obj_top <= hr->end(),
 317          "obj_top should be in last region");
 318 
 319   _verifier->check_bitmaps("Humongous Region Allocation", first_hr);
 320 
 321   assert(words_not_fillable == 0 ||
 322          first_hr->bottom() + word_size_sum - words_not_fillable == hr->top(),
 323          "Miscalculation in humongous allocation");
 324 
 325   increase_used((word_size_sum - words_not_fillable) * HeapWordSize);
 326 
 327   for (uint i = first; i <= last; ++i) {
 328     hr = region_at(i);
 329     _humongous_set.add(hr);
 330     _hr_printer.alloc(hr);
 331   }
 332 
 333   return new_obj;
 334 }
 335 
 336 size_t G1CollectedHeap::humongous_obj_size_in_regions(size_t word_size) {
 337   assert(is_humongous(word_size), "Object of size " SIZE_FORMAT " must be humongous here", word_size);
 338   return align_up(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords;
 339 }
 340 
 341 // If could fit into free regions w/o expansion, try.
 342 // Otherwise, if can expand, do so.
 343 // Otherwise, if using ex regions might help, try with ex given back.
 344 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 345   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 346 
 347   _verifier->verify_region_sets_optional();
 348 
 349   uint obj_regions = (uint) humongous_obj_size_in_regions(word_size);
 350 
 351   // Policy: First try to allocate a humongous object in the free list.
 352   HeapRegion* humongous_start = _hrm->allocate_humongous(obj_regions);
 353   if (humongous_start == NULL) {
 354     // Policy: We could not find enough regions for the humongous object in the
 355     // free list. Look through the heap to find a mix of free and uncommitted regions.
 356     // If so, expand the heap and allocate the humongous object.
 357     humongous_start = _hrm->expand_and_allocate_humongous(obj_regions);
 358     if (humongous_start != NULL) {
 359       // We managed to find a region by expanding the heap.
 360       log_debug(gc, ergo, heap)("Heap expansion (humongous allocation request). Allocation request: " SIZE_FORMAT "B",
 361                                 word_size * HeapWordSize);
 362       policy()->record_new_heap_size(num_regions());
 363     } else {
 364       // Policy: Potentially trigger a defragmentation GC.
 365     }
 366   }
 367 
 368   HeapWord* result = NULL;
 369   if (humongous_start != NULL) {
 370     result = humongous_obj_allocate_initialize_regions(humongous_start, obj_regions, word_size);
 371     assert(result != NULL, "it should always return a valid result");
 372 
 373     // A successful humongous object allocation changes the used space
 374     // information of the old generation so we need to recalculate the
 375     // sizes and update the jstat counters here.
 376     g1mm()->update_sizes();
 377   }
 378 
 379   _verifier->verify_region_sets_optional();
 380 
 381   return result;
 382 }
 383 
 384 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t min_size,
 385                                              size_t requested_size,
 386                                              size_t* actual_size) {
 387   assert_heap_not_locked_and_not_at_safepoint();
 388   assert(!is_humongous(requested_size), "we do not allow humongous TLABs");
 389 
 390   return attempt_allocation(min_size, requested_size, actual_size);
 391 }
 392 
 393 HeapWord*
 394 G1CollectedHeap::mem_allocate(size_t word_size,
 395                               bool*  gc_overhead_limit_was_exceeded) {
 396   assert_heap_not_locked_and_not_at_safepoint();
 397 
 398   if (is_humongous(word_size)) {
 399     return attempt_allocation_humongous(word_size);
 400   }
 401   size_t dummy = 0;
 402   return attempt_allocation(word_size, word_size, &dummy);
 403 }
 404 
 405 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size) {
 406   ResourceMark rm; // For retrieving the thread names in log messages.
 407 
 408   // Make sure you read the note in attempt_allocation_humongous().
 409 
 410   assert_heap_not_locked_and_not_at_safepoint();
 411   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 412          "be called for humongous allocation requests");
 413 
 414   // We should only get here after the first-level allocation attempt
 415   // (attempt_allocation()) failed to allocate.
 416 
 417   // We will loop until a) we manage to successfully perform the
 418   // allocation or b) we successfully schedule a collection which
 419   // fails to perform the allocation. b) is the only case when we'll
 420   // return NULL.
 421   HeapWord* result = NULL;
 422   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 423     bool should_try_gc;
 424     uint gc_count_before;
 425 
 426     {
 427       MutexLocker x(Heap_lock);
 428       result = _allocator->attempt_allocation_locked(word_size);
 429       if (result != NULL) {
 430         return result;
 431       }
 432 
 433       // If the GCLocker is active and we are bound for a GC, try expanding young gen.
 434       // This is different to when only GCLocker::needs_gc() is set: try to avoid
 435       // waiting because the GCLocker is active to not wait too long.
 436       if (GCLocker::is_active_and_needs_gc() && policy()->can_expand_young_list()) {
 437         // No need for an ergo message here, can_expand_young_list() does this when
 438         // it returns true.
 439         result = _allocator->attempt_allocation_force(word_size);
 440         if (result != NULL) {
 441           return result;
 442         }
 443       }
 444       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 445       // the GCLocker initiated GC has been performed and then retry. This includes
 446       // the case when the GC Locker is not active but has not been performed.
 447       should_try_gc = !GCLocker::needs_gc();
 448       // Read the GC count while still holding the Heap_lock.
 449       gc_count_before = total_collections();
 450     }
 451 
 452     if (should_try_gc) {
 453       bool succeeded;
 454       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 455                                    GCCause::_g1_inc_collection_pause);
 456       if (result != NULL) {
 457         assert(succeeded, "only way to get back a non-NULL result");
 458         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 459                              Thread::current()->name(), p2i(result));
 460         return result;
 461       }
 462 
 463       if (succeeded) {
 464         // We successfully scheduled a collection which failed to allocate. No
 465         // point in trying to allocate further. We'll just return NULL.
 466         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 467                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 468         return NULL;
 469       }
 470       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT " words",
 471                            Thread::current()->name(), word_size);
 472     } else {
 473       // Failed to schedule a collection.
 474       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 475         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 476                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 477         return NULL;
 478       }
 479       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 480       // The GCLocker is either active or the GCLocker initiated
 481       // GC has not yet been performed. Stall until it is and
 482       // then retry the allocation.
 483       GCLocker::stall_until_clear();
 484       gclocker_retry_count += 1;
 485     }
 486 
 487     // We can reach here if we were unsuccessful in scheduling a
 488     // collection (because another thread beat us to it) or if we were
 489     // stalled due to the GC locker. In either can we should retry the
 490     // allocation attempt in case another thread successfully
 491     // performed a collection and reclaimed enough space. We do the
 492     // first attempt (without holding the Heap_lock) here and the
 493     // follow-on attempt will be at the start of the next loop
 494     // iteration (after taking the Heap_lock).
 495     size_t dummy = 0;
 496     result = _allocator->attempt_allocation(word_size, word_size, &dummy);
 497     if (result != NULL) {
 498       return result;
 499     }
 500 
 501     // Give a warning if we seem to be looping forever.
 502     if ((QueuedAllocationWarningCount > 0) &&
 503         (try_count % QueuedAllocationWarningCount == 0)) {
 504       log_warning(gc, alloc)("%s:  Retried allocation %u times for " SIZE_FORMAT " words",
 505                              Thread::current()->name(), try_count, word_size);
 506     }
 507   }
 508 
 509   ShouldNotReachHere();
 510   return NULL;
 511 }
 512 
 513 void G1CollectedHeap::begin_archive_alloc_range(bool open) {
 514   assert_at_safepoint_on_vm_thread();
 515   if (_archive_allocator == NULL) {
 516     _archive_allocator = G1ArchiveAllocator::create_allocator(this, open);
 517   }
 518 }
 519 
 520 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 521   // Allocations in archive regions cannot be of a size that would be considered
 522   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 523   // may be different at archive-restore time.
 524   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 525 }
 526 
 527 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 528   assert_at_safepoint_on_vm_thread();
 529   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 530   if (is_archive_alloc_too_large(word_size)) {
 531     return NULL;
 532   }
 533   return _archive_allocator->archive_mem_allocate(word_size);
 534 }
 535 
 536 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 537                                               size_t end_alignment_in_bytes) {
 538   assert_at_safepoint_on_vm_thread();
 539   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 540 
 541   // Call complete_archive to do the real work, filling in the MemRegion
 542   // array with the archive regions.
 543   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 544   delete _archive_allocator;
 545   _archive_allocator = NULL;
 546 }
 547 
 548 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 549   assert(ranges != NULL, "MemRegion array NULL");
 550   assert(count != 0, "No MemRegions provided");
 551   MemRegion reserved = _hrm->reserved();
 552   for (size_t i = 0; i < count; i++) {
 553     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 554       return false;
 555     }
 556   }
 557   return true;
 558 }
 559 
 560 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges,
 561                                             size_t count,
 562                                             bool open) {
 563   assert(!is_init_completed(), "Expect to be called at JVM init time");
 564   assert(ranges != NULL, "MemRegion array NULL");
 565   assert(count != 0, "No MemRegions provided");
 566   MutexLocker x(Heap_lock);
 567 
 568   MemRegion reserved = _hrm->reserved();
 569   HeapWord* prev_last_addr = NULL;
 570   HeapRegion* prev_last_region = NULL;
 571 
 572   // Temporarily disable pretouching of heap pages. This interface is used
 573   // when mmap'ing archived heap data in, so pre-touching is wasted.
 574   FlagSetting fs(AlwaysPreTouch, false);
 575 
 576   // Enable archive object checking used by G1MarkSweep. We have to let it know
 577   // about each archive range, so that objects in those ranges aren't marked.
 578   G1ArchiveAllocator::enable_archive_object_check();
 579 
 580   // For each specified MemRegion range, allocate the corresponding G1
 581   // regions and mark them as archive regions. We expect the ranges
 582   // in ascending starting address order, without overlap.
 583   for (size_t i = 0; i < count; i++) {
 584     MemRegion curr_range = ranges[i];
 585     HeapWord* start_address = curr_range.start();
 586     size_t word_size = curr_range.word_size();
 587     HeapWord* last_address = curr_range.last();
 588     size_t commits = 0;
 589 
 590     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 591               "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 592               p2i(start_address), p2i(last_address));
 593     guarantee(start_address > prev_last_addr,
 594               "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 595               p2i(start_address), p2i(prev_last_addr));
 596     prev_last_addr = last_address;
 597 
 598     // Check for ranges that start in the same G1 region in which the previous
 599     // range ended, and adjust the start address so we don't try to allocate
 600     // the same region again. If the current range is entirely within that
 601     // region, skip it, just adjusting the recorded top.
 602     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 603     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 604       start_address = start_region->end();
 605       if (start_address > last_address) {
 606         increase_used(word_size * HeapWordSize);
 607         start_region->set_top(last_address + 1);
 608         continue;
 609       }
 610       start_region->set_top(start_address);
 611       curr_range = MemRegion(start_address, last_address + 1);
 612       start_region = _hrm->addr_to_region(start_address);
 613     }
 614 
 615     // Perform the actual region allocation, exiting if it fails.
 616     // Then note how much new space we have allocated.
 617     if (!_hrm->allocate_containing_regions(curr_range, &commits, workers())) {
 618       return false;
 619     }
 620     increase_used(word_size * HeapWordSize);
 621     if (commits != 0) {
 622       log_debug(gc, ergo, heap)("Attempt heap expansion (allocate archive regions). Total size: " SIZE_FORMAT "B",
 623                                 HeapRegion::GrainWords * HeapWordSize * commits);
 624 
 625     }
 626 
 627     // Mark each G1 region touched by the range as archive, add it to
 628     // the old set, and set top.
 629     HeapRegion* curr_region = _hrm->addr_to_region(start_address);
 630     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 631     prev_last_region = last_region;
 632 
 633     while (curr_region != NULL) {
 634       assert(curr_region->is_empty() && !curr_region->is_pinned(),
 635              "Region already in use (index %u)", curr_region->hrm_index());
 636       if (open) {
 637         curr_region->set_open_archive();
 638       } else {
 639         curr_region->set_closed_archive();
 640       }
 641       _hr_printer.alloc(curr_region);
 642       _archive_set.add(curr_region);
 643       HeapWord* top;
 644       HeapRegion* next_region;
 645       if (curr_region != last_region) {
 646         top = curr_region->end();
 647         next_region = _hrm->next_region_in_heap(curr_region);
 648       } else {
 649         top = last_address + 1;
 650         next_region = NULL;
 651       }
 652       curr_region->set_top(top);
 653       curr_region = next_region;
 654     }
 655 
 656     // Notify mark-sweep of the archive
 657     G1ArchiveAllocator::set_range_archive(curr_range, open);
 658   }
 659   return true;
 660 }
 661 
 662 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
 663   assert(!is_init_completed(), "Expect to be called at JVM init time");
 664   assert(ranges != NULL, "MemRegion array NULL");
 665   assert(count != 0, "No MemRegions provided");
 666   MemRegion reserved = _hrm->reserved();
 667   HeapWord *prev_last_addr = NULL;
 668   HeapRegion* prev_last_region = NULL;
 669 
 670   // For each MemRegion, create filler objects, if needed, in the G1 regions
 671   // that contain the address range. The address range actually within the
 672   // MemRegion will not be modified. That is assumed to have been initialized
 673   // elsewhere, probably via an mmap of archived heap data.
 674   MutexLocker x(Heap_lock);
 675   for (size_t i = 0; i < count; i++) {
 676     HeapWord* start_address = ranges[i].start();
 677     HeapWord* last_address = ranges[i].last();
 678 
 679     assert(reserved.contains(start_address) && reserved.contains(last_address),
 680            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 681            p2i(start_address), p2i(last_address));
 682     assert(start_address > prev_last_addr,
 683            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 684            p2i(start_address), p2i(prev_last_addr));
 685 
 686     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 687     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 688     HeapWord* bottom_address = start_region->bottom();
 689 
 690     // Check for a range beginning in the same region in which the
 691     // previous one ended.
 692     if (start_region == prev_last_region) {
 693       bottom_address = prev_last_addr + 1;
 694     }
 695 
 696     // Verify that the regions were all marked as archive regions by
 697     // alloc_archive_regions.
 698     HeapRegion* curr_region = start_region;
 699     while (curr_region != NULL) {
 700       guarantee(curr_region->is_archive(),
 701                 "Expected archive region at index %u", curr_region->hrm_index());
 702       if (curr_region != last_region) {
 703         curr_region = _hrm->next_region_in_heap(curr_region);
 704       } else {
 705         curr_region = NULL;
 706       }
 707     }
 708 
 709     prev_last_addr = last_address;
 710     prev_last_region = last_region;
 711 
 712     // Fill the memory below the allocated range with dummy object(s),
 713     // if the region bottom does not match the range start, or if the previous
 714     // range ended within the same G1 region, and there is a gap.
 715     if (start_address != bottom_address) {
 716       size_t fill_size = pointer_delta(start_address, bottom_address);
 717       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
 718       increase_used(fill_size * HeapWordSize);
 719     }
 720   }
 721 }
 722 
 723 inline HeapWord* G1CollectedHeap::attempt_allocation(size_t min_word_size,
 724                                                      size_t desired_word_size,
 725                                                      size_t* actual_word_size) {
 726   assert_heap_not_locked_and_not_at_safepoint();
 727   assert(!is_humongous(desired_word_size), "attempt_allocation() should not "
 728          "be called for humongous allocation requests");
 729 
 730   HeapWord* result = _allocator->attempt_allocation(min_word_size, desired_word_size, actual_word_size);
 731 
 732   if (result == NULL) {
 733     *actual_word_size = desired_word_size;
 734     result = attempt_allocation_slow(desired_word_size);
 735   }
 736 
 737   assert_heap_not_locked();
 738   if (result != NULL) {
 739     assert(*actual_word_size != 0, "Actual size must have been set here");
 740     dirty_young_block(result, *actual_word_size);
 741   } else {
 742     *actual_word_size = 0;
 743   }
 744 
 745   return result;
 746 }
 747 
 748 void G1CollectedHeap::dealloc_archive_regions(MemRegion* ranges, size_t count) {
 749   assert(!is_init_completed(), "Expect to be called at JVM init time");
 750   assert(ranges != NULL, "MemRegion array NULL");
 751   assert(count != 0, "No MemRegions provided");
 752   MemRegion reserved = _hrm->reserved();
 753   HeapWord* prev_last_addr = NULL;
 754   HeapRegion* prev_last_region = NULL;
 755   size_t size_used = 0;
 756   size_t uncommitted_regions = 0;
 757 
 758   // For each Memregion, free the G1 regions that constitute it, and
 759   // notify mark-sweep that the range is no longer to be considered 'archive.'
 760   MutexLocker x(Heap_lock);
 761   for (size_t i = 0; i < count; i++) {
 762     HeapWord* start_address = ranges[i].start();
 763     HeapWord* last_address = ranges[i].last();
 764 
 765     assert(reserved.contains(start_address) && reserved.contains(last_address),
 766            "MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 767            p2i(start_address), p2i(last_address));
 768     assert(start_address > prev_last_addr,
 769            "Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 770            p2i(start_address), p2i(prev_last_addr));
 771     size_used += ranges[i].byte_size();
 772     prev_last_addr = last_address;
 773 
 774     HeapRegion* start_region = _hrm->addr_to_region(start_address);
 775     HeapRegion* last_region = _hrm->addr_to_region(last_address);
 776 
 777     // Check for ranges that start in the same G1 region in which the previous
 778     // range ended, and adjust the start address so we don't try to free
 779     // the same region again. If the current range is entirely within that
 780     // region, skip it.
 781     if (start_region == prev_last_region) {
 782       start_address = start_region->end();
 783       if (start_address > last_address) {
 784         continue;
 785       }
 786       start_region = _hrm->addr_to_region(start_address);
 787     }
 788     prev_last_region = last_region;
 789 
 790     // After verifying that each region was marked as an archive region by
 791     // alloc_archive_regions, set it free and empty and uncommit it.
 792     HeapRegion* curr_region = start_region;
 793     while (curr_region != NULL) {
 794       guarantee(curr_region->is_archive(),
 795                 "Expected archive region at index %u", curr_region->hrm_index());
 796       uint curr_index = curr_region->hrm_index();
 797       _archive_set.remove(curr_region);
 798       curr_region->set_free();
 799       curr_region->set_top(curr_region->bottom());
 800       if (curr_region != last_region) {
 801         curr_region = _hrm->next_region_in_heap(curr_region);
 802       } else {
 803         curr_region = NULL;
 804       }
 805       _hrm->shrink_at(curr_index, 1);
 806       uncommitted_regions++;
 807     }
 808 
 809     // Notify mark-sweep that this is no longer an archive range.
 810     G1ArchiveAllocator::clear_range_archive(ranges[i]);
 811   }
 812 
 813   if (uncommitted_regions != 0) {
 814     log_debug(gc, ergo, heap)("Attempt heap shrinking (uncommitted archive regions). Total size: " SIZE_FORMAT "B",
 815                               HeapRegion::GrainWords * HeapWordSize * uncommitted_regions);
 816   }
 817   decrease_used(size_used);
 818 }
 819 
 820 oop G1CollectedHeap::materialize_archived_object(oop obj) {
 821   assert(obj != NULL, "archived obj is NULL");
 822   assert(G1ArchiveAllocator::is_archived_object(obj), "must be archived object");
 823 
 824   // Loading an archived object makes it strongly reachable. If it is
 825   // loaded during concurrent marking, it must be enqueued to the SATB
 826   // queue, shading the previously white object gray.
 827   G1BarrierSet::enqueue(obj);
 828 
 829   return obj;
 830 }
 831 
 832 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size) {
 833   ResourceMark rm; // For retrieving the thread names in log messages.
 834 
 835   // The structure of this method has a lot of similarities to
 836   // attempt_allocation_slow(). The reason these two were not merged
 837   // into a single one is that such a method would require several "if
 838   // allocation is not humongous do this, otherwise do that"
 839   // conditional paths which would obscure its flow. In fact, an early
 840   // version of this code did use a unified method which was harder to
 841   // follow and, as a result, it had subtle bugs that were hard to
 842   // track down. So keeping these two methods separate allows each to
 843   // be more readable. It will be good to keep these two in sync as
 844   // much as possible.
 845 
 846   assert_heap_not_locked_and_not_at_safepoint();
 847   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 848          "should only be called for humongous allocations");
 849 
 850   // Humongous objects can exhaust the heap quickly, so we should check if we
 851   // need to start a marking cycle at each humongous object allocation. We do
 852   // the check before we do the actual allocation. The reason for doing it
 853   // before the allocation is that we avoid having to keep track of the newly
 854   // allocated memory while we do a GC.
 855   if (policy()->need_to_start_conc_mark("concurrent humongous allocation",
 856                                            word_size)) {
 857     collect(GCCause::_g1_humongous_allocation);
 858   }
 859 
 860   // We will loop until a) we manage to successfully perform the
 861   // allocation or b) we successfully schedule a collection which
 862   // fails to perform the allocation. b) is the only case when we'll
 863   // return NULL.
 864   HeapWord* result = NULL;
 865   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 866     bool should_try_gc;
 867     uint gc_count_before;
 868 
 869 
 870     {
 871       MutexLocker x(Heap_lock);
 872 
 873       // Given that humongous objects are not allocated in young
 874       // regions, we'll first try to do the allocation without doing a
 875       // collection hoping that there's enough space in the heap.
 876       result = humongous_obj_allocate(word_size);
 877       if (result != NULL) {
 878         size_t size_in_regions = humongous_obj_size_in_regions(word_size);
 879         policy()->old_gen_alloc_tracker()->
 880           add_allocated_bytes_since_last_gc(size_in_regions * HeapRegion::GrainBytes);
 881         return result;
 882       }
 883 
 884       // Only try a GC if the GCLocker does not signal the need for a GC. Wait until
 885       // the GCLocker initiated GC has been performed and then retry. This includes
 886       // the case when the GC Locker is not active but has not been performed.
 887       should_try_gc = !GCLocker::needs_gc();
 888       // Read the GC count while still holding the Heap_lock.
 889       gc_count_before = total_collections();
 890     }
 891 
 892     if (should_try_gc) {
 893       bool succeeded;
 894       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 895                                    GCCause::_g1_humongous_allocation);
 896       if (result != NULL) {
 897         assert(succeeded, "only way to get back a non-NULL result");
 898         log_trace(gc, alloc)("%s: Successfully scheduled collection returning " PTR_FORMAT,
 899                              Thread::current()->name(), p2i(result));
 900         return result;
 901       }
 902 
 903       if (succeeded) {
 904         // We successfully scheduled a collection which failed to allocate. No
 905         // point in trying to allocate further. We'll just return NULL.
 906         log_trace(gc, alloc)("%s: Successfully scheduled collection failing to allocate "
 907                              SIZE_FORMAT " words", Thread::current()->name(), word_size);
 908         return NULL;
 909       }
 910       log_trace(gc, alloc)("%s: Unsuccessfully scheduled collection allocating " SIZE_FORMAT "",
 911                            Thread::current()->name(), word_size);
 912     } else {
 913       // Failed to schedule a collection.
 914       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 915         log_warning(gc, alloc)("%s: Retried waiting for GCLocker too often allocating "
 916                                SIZE_FORMAT " words", Thread::current()->name(), word_size);
 917         return NULL;
 918       }
 919       log_trace(gc, alloc)("%s: Stall until clear", Thread::current()->name());
 920       // The GCLocker is either active or the GCLocker initiated
 921       // GC has not yet been performed. Stall until it is and
 922       // then retry the allocation.
 923       GCLocker::stall_until_clear();
 924       gclocker_retry_count += 1;
 925     }
 926 
 927 
 928     // We can reach here if we were unsuccessful in scheduling a
 929     // collection (because another thread beat us to it) or if we were
 930     // stalled due to the GC locker. In either can we should retry the
 931     // allocation attempt in case another thread successfully
 932     // performed a collection and reclaimed enough space.
 933     // Humongous object allocation always needs a lock, so we wait for the retry
 934     // in the next iteration of the loop, unlike for the regular iteration case.
 935     // Give a warning if we seem to be looping forever.
 936 
 937     if ((QueuedAllocationWarningCount > 0) &&
 938         (try_count % QueuedAllocationWarningCount == 0)) {
 939       log_warning(gc, alloc)("%s: Retried allocation %u times for " SIZE_FORMAT " words",
 940                              Thread::current()->name(), try_count, word_size);
 941     }
 942   }
 943 
 944   ShouldNotReachHere();
 945   return NULL;
 946 }
 947 
 948 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
 949                                                            bool expect_null_mutator_alloc_region) {
 950   assert_at_safepoint_on_vm_thread();
 951   assert(!_allocator->has_mutator_alloc_region() || !expect_null_mutator_alloc_region,
 952          "the current alloc region was unexpectedly found to be non-NULL");
 953 
 954   if (!is_humongous(word_size)) {
 955     return _allocator->attempt_allocation_locked(word_size);
 956   } else {
 957     HeapWord* result = humongous_obj_allocate(word_size);
 958     if (result != NULL && policy()->need_to_start_conc_mark("STW humongous allocation")) {
 959       collector_state()->set_initiate_conc_mark_if_possible(true);
 960     }
 961     return result;
 962   }
 963 
 964   ShouldNotReachHere();
 965 }
 966 
 967 class PostCompactionPrinterClosure: public HeapRegionClosure {
 968 private:
 969   G1HRPrinter* _hr_printer;
 970 public:
 971   bool do_heap_region(HeapRegion* hr) {
 972     assert(!hr->is_young(), "not expecting to find young regions");
 973     _hr_printer->post_compaction(hr);
 974     return false;
 975   }
 976 
 977   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
 978     : _hr_printer(hr_printer) { }
 979 };
 980 
 981 void G1CollectedHeap::print_hrm_post_compaction() {
 982   if (_hr_printer.is_active()) {
 983     PostCompactionPrinterClosure cl(hr_printer());
 984     heap_region_iterate(&cl);
 985   }
 986 }
 987 
 988 void G1CollectedHeap::abort_concurrent_cycle() {
 989   // If we start the compaction before the CM threads finish
 990   // scanning the root regions we might trip them over as we'll
 991   // be moving objects / updating references. So let's wait until
 992   // they are done. By telling them to abort, they should complete
 993   // early.
 994   _cm->root_regions()->abort();
 995   _cm->root_regions()->wait_until_scan_finished();
 996 
 997   // Disable discovery and empty the discovered lists
 998   // for the CM ref processor.
 999   _ref_processor_cm->disable_discovery();
1000   _ref_processor_cm->abandon_partial_discovery();
1001   _ref_processor_cm->verify_no_references_recorded();
1002 
1003   // Abandon current iterations of concurrent marking and concurrent
1004   // refinement, if any are in progress.
1005   concurrent_mark()->concurrent_cycle_abort();
1006 }
1007 
1008 void G1CollectedHeap::prepare_heap_for_full_collection() {
1009   // Make sure we'll choose a new allocation region afterwards.
1010   _allocator->release_mutator_alloc_regions();
1011   _allocator->abandon_gc_alloc_regions();
1012 
1013   // We may have added regions to the current incremental collection
1014   // set between the last GC or pause and now. We need to clear the
1015   // incremental collection set and then start rebuilding it afresh
1016   // after this full GC.
1017   abandon_collection_set(collection_set());
1018 
1019   tear_down_region_sets(false /* free_list_only */);
1020 
1021   hrm()->prepare_for_full_collection_start();
1022 }
1023 
1024 void G1CollectedHeap::verify_before_full_collection(bool explicit_gc) {
1025   assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1026   assert_used_and_recalculate_used_equal(this);
1027   _verifier->verify_region_sets_optional();
1028   _verifier->verify_before_gc(G1HeapVerifier::G1VerifyFull);
1029   _verifier->check_bitmaps("Full GC Start");
1030 }
1031 
1032 void G1CollectedHeap::prepare_heap_for_mutators() {
1033   hrm()->prepare_for_full_collection_end();
1034 
1035   // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1036   ClassLoaderDataGraph::purge();
1037   MetaspaceUtils::verify_metrics();
1038 
1039   // Prepare heap for normal collections.
1040   assert(num_free_regions() == 0, "we should not have added any free regions");
1041   rebuild_region_sets(false /* free_list_only */);
1042   abort_refinement();
1043   resize_heap_if_necessary();
1044 
1045   // Rebuild the strong code root lists for each region
1046   rebuild_strong_code_roots();
1047 
1048   // Purge code root memory
1049   purge_code_root_memory();
1050 
1051   // Start a new incremental collection set for the next pause
1052   start_new_collection_set();
1053 
1054   _allocator->init_mutator_alloc_regions();
1055 
1056   // Post collection state updates.
1057   MetaspaceGC::compute_new_size();
1058 }
1059 
1060 void G1CollectedHeap::abort_refinement() {
1061   if (_hot_card_cache->use_cache()) {
1062     _hot_card_cache->reset_hot_cache();
1063   }
1064 
1065   // Discard all remembered set updates and reset refinement statistics.
1066   G1BarrierSet::dirty_card_queue_set().abandon_logs();
1067   assert(G1BarrierSet::dirty_card_queue_set().num_cards() == 0,
1068          "DCQS should be empty");
1069   concurrent_refine()->get_and_reset_refinement_stats();
1070 }
1071 
1072 void G1CollectedHeap::verify_after_full_collection() {
1073   _hrm->verify_optional();
1074   _verifier->verify_region_sets_optional();
1075   _verifier->verify_after_gc(G1HeapVerifier::G1VerifyFull);
1076   // Clear the previous marking bitmap, if needed for bitmap verification.
1077   // Note we cannot do this when we clear the next marking bitmap in
1078   // G1ConcurrentMark::abort() above since VerifyDuringGC verifies the
1079   // objects marked during a full GC against the previous bitmap.
1080   // But we need to clear it before calling check_bitmaps below since
1081   // the full GC has compacted objects and updated TAMS but not updated
1082   // the prev bitmap.
1083   if (G1VerifyBitmaps) {
1084     GCTraceTime(Debug, gc) tm("Clear Prev Bitmap for Verification");
1085     _cm->clear_prev_bitmap(workers());
1086   }
1087   // This call implicitly verifies that the next bitmap is clear after Full GC.
1088   _verifier->check_bitmaps("Full GC End");
1089 
1090   // At this point there should be no regions in the
1091   // entire heap tagged as young.
1092   assert(check_young_list_empty(), "young list should be empty at this point");
1093 
1094   // Note: since we've just done a full GC, concurrent
1095   // marking is no longer active. Therefore we need not
1096   // re-enable reference discovery for the CM ref processor.
1097   // That will be done at the start of the next marking cycle.
1098   // We also know that the STW processor should no longer
1099   // discover any new references.
1100   assert(!_ref_processor_stw->discovery_enabled(), "Postcondition");
1101   assert(!_ref_processor_cm->discovery_enabled(), "Postcondition");
1102   _ref_processor_stw->verify_no_references_recorded();
1103   _ref_processor_cm->verify_no_references_recorded();
1104 }
1105 
1106 void G1CollectedHeap::print_heap_after_full_collection(G1HeapTransition* heap_transition) {
1107   // Post collection logging.
1108   // We should do this after we potentially resize the heap so
1109   // that all the COMMIT / UNCOMMIT events are generated before
1110   // the compaction events.
1111   print_hrm_post_compaction();
1112   heap_transition->print();
1113   print_heap_after_gc();
1114   print_heap_regions();
1115 }
1116 
1117 bool G1CollectedHeap::do_full_collection(bool explicit_gc,
1118                                          bool clear_all_soft_refs) {
1119   assert_at_safepoint_on_vm_thread();
1120 
1121   if (GCLocker::check_active_before_gc()) {
1122     // Full GC was not completed.
1123     return false;
1124   }
1125 
1126   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1127       soft_ref_policy()->should_clear_all_soft_refs();
1128 
1129   G1FullCollector collector(this, explicit_gc, do_clear_all_soft_refs);
1130   GCTraceTime(Info, gc) tm("Pause Full", NULL, gc_cause(), true);
1131 
1132   collector.prepare_collection();
1133   collector.collect();
1134   collector.complete_collection();
1135 
1136   // Full collection was successfully completed.
1137   return true;
1138 }
1139 
1140 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1141   // Currently, there is no facility in the do_full_collection(bool) API to notify
1142   // the caller that the collection did not succeed (e.g., because it was locked
1143   // out by the GC locker). So, right now, we'll ignore the return value.
1144   bool dummy = do_full_collection(true,                /* explicit_gc */
1145                                   clear_all_soft_refs);
1146 }
1147 
1148 void G1CollectedHeap::resize_heap_if_necessary() {
1149   assert_at_safepoint_on_vm_thread();
1150 
1151   // Capacity, free and used after the GC counted as full regions to
1152   // include the waste in the following calculations.
1153   const size_t capacity_after_gc = capacity();
1154   const size_t used_after_gc = capacity_after_gc - unused_committed_regions_in_bytes();
1155 
1156   // This is enforced in arguments.cpp.
1157   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1158          "otherwise the code below doesn't make sense");
1159 
1160   // We don't have floating point command-line arguments
1161   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1162   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1163   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1164   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1165 
1166   // We have to be careful here as these two calculations can overflow
1167   // 32-bit size_t's.
1168   double used_after_gc_d = (double) used_after_gc;
1169   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1170   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1171 
1172   // Let's make sure that they are both under the max heap size, which
1173   // by default will make them fit into a size_t.
1174   double desired_capacity_upper_bound = (double) MaxHeapSize;
1175   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1176                                     desired_capacity_upper_bound);
1177   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1178                                     desired_capacity_upper_bound);
1179 
1180   // We can now safely turn them into size_t's.
1181   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1182   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1183 
1184   // This assert only makes sense here, before we adjust them
1185   // with respect to the min and max heap size.
1186   assert(minimum_desired_capacity <= maximum_desired_capacity,
1187          "minimum_desired_capacity = " SIZE_FORMAT ", "
1188          "maximum_desired_capacity = " SIZE_FORMAT,
1189          minimum_desired_capacity, maximum_desired_capacity);
1190 
1191   // Should not be greater than the heap max size. No need to adjust
1192   // it with respect to the heap min size as it's a lower bound (i.e.,
1193   // we'll try to make the capacity larger than it, not smaller).
1194   minimum_desired_capacity = MIN2(minimum_desired_capacity, MaxHeapSize);
1195   // Should not be less than the heap min size. No need to adjust it
1196   // with respect to the heap max size as it's an upper bound (i.e.,
1197   // we'll try to make the capacity smaller than it, not greater).
1198   maximum_desired_capacity =  MAX2(maximum_desired_capacity, MinHeapSize);
1199 
1200   if (capacity_after_gc < minimum_desired_capacity) {
1201     // Don't expand unless it's significant
1202     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1203 
1204     log_debug(gc, ergo, heap)("Attempt heap expansion (capacity lower than min desired capacity). "
1205                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1206                               "min_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1207                               capacity_after_gc, used_after_gc, used(), minimum_desired_capacity, MinHeapFreeRatio);
1208 
1209     expand(expand_bytes, _workers);
1210 
1211     // No expansion, now see if we want to shrink
1212   } else if (capacity_after_gc > maximum_desired_capacity) {
1213     // Capacity too large, compute shrinking size
1214     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1215 
1216     log_debug(gc, ergo, heap)("Attempt heap shrinking (capacity higher than max desired capacity). "
1217                               "Capacity: " SIZE_FORMAT "B occupancy: " SIZE_FORMAT "B live: " SIZE_FORMAT "B "
1218                               "maximum_desired_capacity: " SIZE_FORMAT "B (" UINTX_FORMAT " %%)",
1219                               capacity_after_gc, used_after_gc, used(), maximum_desired_capacity, MaxHeapFreeRatio);
1220 
1221     shrink(shrink_bytes);
1222   }
1223 }
1224 
1225 HeapWord* G1CollectedHeap::satisfy_failed_allocation_helper(size_t word_size,
1226                                                             bool do_gc,
1227                                                             bool clear_all_soft_refs,
1228                                                             bool expect_null_mutator_alloc_region,
1229                                                             bool* gc_succeeded) {
1230   *gc_succeeded = true;
1231   // Let's attempt the allocation first.
1232   HeapWord* result =
1233     attempt_allocation_at_safepoint(word_size,
1234                                     expect_null_mutator_alloc_region);
1235   if (result != NULL) {
1236     return result;
1237   }
1238 
1239   // In a G1 heap, we're supposed to keep allocation from failing by
1240   // incremental pauses.  Therefore, at least for now, we'll favor
1241   // expansion over collection.  (This might change in the future if we can
1242   // do something smarter than full collection to satisfy a failed alloc.)
1243   result = expand_and_allocate(word_size);
1244   if (result != NULL) {
1245     return result;
1246   }
1247 
1248   if (do_gc) {
1249     // Expansion didn't work, we'll try to do a Full GC.
1250     *gc_succeeded = do_full_collection(false, /* explicit_gc */
1251                                        clear_all_soft_refs);
1252   }
1253 
1254   return NULL;
1255 }
1256 
1257 HeapWord* G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1258                                                      bool* succeeded) {
1259   assert_at_safepoint_on_vm_thread();
1260 
1261   // Attempts to allocate followed by Full GC.
1262   HeapWord* result =
1263     satisfy_failed_allocation_helper(word_size,
1264                                      true,  /* do_gc */
1265                                      false, /* clear_all_soft_refs */
1266                                      false, /* expect_null_mutator_alloc_region */
1267                                      succeeded);
1268 
1269   if (result != NULL || !*succeeded) {
1270     return result;
1271   }
1272 
1273   // Attempts to allocate followed by Full GC that will collect all soft references.
1274   result = satisfy_failed_allocation_helper(word_size,
1275                                             true, /* do_gc */
1276                                             true, /* clear_all_soft_refs */
1277                                             true, /* expect_null_mutator_alloc_region */
1278                                             succeeded);
1279 
1280   if (result != NULL || !*succeeded) {
1281     return result;
1282   }
1283 
1284   // Attempts to allocate, no GC
1285   result = satisfy_failed_allocation_helper(word_size,
1286                                             false, /* do_gc */
1287                                             false, /* clear_all_soft_refs */
1288                                             true,  /* expect_null_mutator_alloc_region */
1289                                             succeeded);
1290 
1291   if (result != NULL) {
1292     return result;
1293   }
1294 
1295   assert(!soft_ref_policy()->should_clear_all_soft_refs(),
1296          "Flag should have been handled and cleared prior to this point");
1297 
1298   // What else?  We might try synchronous finalization later.  If the total
1299   // space available is large enough for the allocation, then a more
1300   // complete compaction phase than we've tried so far might be
1301   // appropriate.
1302   return NULL;
1303 }
1304 
1305 // Attempting to expand the heap sufficiently
1306 // to support an allocation of the given "word_size".  If
1307 // successful, perform the allocation and return the address of the
1308 // allocated block, or else "NULL".
1309 
1310 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1311   assert_at_safepoint_on_vm_thread();
1312 
1313   _verifier->verify_region_sets_optional();
1314 
1315   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1316   log_debug(gc, ergo, heap)("Attempt heap expansion (allocation request failed). Allocation request: " SIZE_FORMAT "B",
1317                             word_size * HeapWordSize);
1318 
1319 
1320   if (expand(expand_bytes, _workers)) {
1321     _hrm->verify_optional();
1322     _verifier->verify_region_sets_optional();
1323     return attempt_allocation_at_safepoint(word_size,
1324                                            false /* expect_null_mutator_alloc_region */);
1325   }
1326   return NULL;
1327 }
1328 
1329 bool G1CollectedHeap::expand(size_t expand_bytes, WorkGang* pretouch_workers, double* expand_time_ms) {
1330   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1331   aligned_expand_bytes = align_up(aligned_expand_bytes,
1332                                        HeapRegion::GrainBytes);
1333 
1334   log_debug(gc, ergo, heap)("Expand the heap. requested expansion amount: " SIZE_FORMAT "B expansion amount: " SIZE_FORMAT "B",
1335                             expand_bytes, aligned_expand_bytes);
1336 
1337   if (is_maximal_no_gc()) {
1338     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1339     return false;
1340   }
1341 
1342   double expand_heap_start_time_sec = os::elapsedTime();
1343   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1344   assert(regions_to_expand > 0, "Must expand by at least one region");
1345 
1346   uint expanded_by = _hrm->expand_by(regions_to_expand, pretouch_workers);
1347   if (expand_time_ms != NULL) {
1348     *expand_time_ms = (os::elapsedTime() - expand_heap_start_time_sec) * MILLIUNITS;
1349   }
1350 
1351   if (expanded_by > 0) {
1352     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1353     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1354     policy()->record_new_heap_size(num_regions());
1355   } else {
1356     log_debug(gc, ergo, heap)("Did not expand the heap (heap expansion operation failed)");
1357 
1358     // The expansion of the virtual storage space was unsuccessful.
1359     // Let's see if it was because we ran out of swap.
1360     if (G1ExitOnExpansionFailure &&
1361         _hrm->available() >= regions_to_expand) {
1362       // We had head room...
1363       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1364     }
1365   }
1366   return regions_to_expand > 0;
1367 }
1368 
1369 bool G1CollectedHeap::expand_single_region(uint node_index) {
1370   uint expanded_by = _hrm->expand_on_preferred_node(node_index);
1371 
1372   if (expanded_by == 0) {
1373     assert(is_maximal_no_gc(), "Should be no regions left, available: %u", _hrm->available());
1374     log_debug(gc, ergo, heap)("Did not expand the heap (heap already fully expanded)");
1375     return false;
1376   }
1377 
1378   policy()->record_new_heap_size(num_regions());
1379   return true;
1380 }
1381 
1382 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1383   size_t aligned_shrink_bytes =
1384     ReservedSpace::page_align_size_down(shrink_bytes);
1385   aligned_shrink_bytes = align_down(aligned_shrink_bytes,
1386                                          HeapRegion::GrainBytes);
1387   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1388 
1389   uint num_regions_removed = _hrm->shrink_by(num_regions_to_remove);
1390   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1391 
1392   log_debug(gc, ergo, heap)("Shrink the heap. requested shrinking amount: " SIZE_FORMAT "B aligned shrinking amount: " SIZE_FORMAT "B attempted shrinking amount: " SIZE_FORMAT "B",
1393                             shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1394   if (num_regions_removed > 0) {
1395     policy()->record_new_heap_size(num_regions());
1396   } else {
1397     log_debug(gc, ergo, heap)("Did not expand the heap (heap shrinking operation failed)");
1398   }
1399 }
1400 
1401 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1402   _verifier->verify_region_sets_optional();
1403 
1404   // We should only reach here at the end of a Full GC or during Remark which
1405   // means we should not not be holding to any GC alloc regions. The method
1406   // below will make sure of that and do any remaining clean up.
1407   _allocator->abandon_gc_alloc_regions();
1408 
1409   // Instead of tearing down / rebuilding the free lists here, we
1410   // could instead use the remove_all_pending() method on free_list to
1411   // remove only the ones that we need to remove.
1412   tear_down_region_sets(true /* free_list_only */);
1413   shrink_helper(shrink_bytes);
1414   rebuild_region_sets(true /* free_list_only */);
1415 
1416   _hrm->verify_optional();
1417   _verifier->verify_region_sets_optional();
1418 }
1419 
1420 class OldRegionSetChecker : public HeapRegionSetChecker {
1421 public:
1422   void check_mt_safety() {
1423     // Master Old Set MT safety protocol:
1424     // (a) If we're at a safepoint, operations on the master old set
1425     // should be invoked:
1426     // - by the VM thread (which will serialize them), or
1427     // - by the GC workers while holding the FreeList_lock, if we're
1428     //   at a safepoint for an evacuation pause (this lock is taken
1429     //   anyway when an GC alloc region is retired so that a new one
1430     //   is allocated from the free list), or
1431     // - by the GC workers while holding the OldSets_lock, if we're at a
1432     //   safepoint for a cleanup pause.
1433     // (b) If we're not at a safepoint, operations on the master old set
1434     // should be invoked while holding the Heap_lock.
1435 
1436     if (SafepointSynchronize::is_at_safepoint()) {
1437       guarantee(Thread::current()->is_VM_thread() ||
1438                 FreeList_lock->owned_by_self() || OldSets_lock->owned_by_self(),
1439                 "master old set MT safety protocol at a safepoint");
1440     } else {
1441       guarantee(Heap_lock->owned_by_self(), "master old set MT safety protocol outside a safepoint");
1442     }
1443   }
1444   bool is_correct_type(HeapRegion* hr) { return hr->is_old(); }
1445   const char* get_description() { return "Old Regions"; }
1446 };
1447 
1448 class ArchiveRegionSetChecker : public HeapRegionSetChecker {
1449 public:
1450   void check_mt_safety() {
1451     guarantee(!Universe::is_fully_initialized() || SafepointSynchronize::is_at_safepoint(),
1452               "May only change archive regions during initialization or safepoint.");
1453   }
1454   bool is_correct_type(HeapRegion* hr) { return hr->is_archive(); }
1455   const char* get_description() { return "Archive Regions"; }
1456 };
1457 
1458 class HumongousRegionSetChecker : public HeapRegionSetChecker {
1459 public:
1460   void check_mt_safety() {
1461     // Humongous Set MT safety protocol:
1462     // (a) If we're at a safepoint, operations on the master humongous
1463     // set should be invoked by either the VM thread (which will
1464     // serialize them) or by the GC workers while holding the
1465     // OldSets_lock.
1466     // (b) If we're not at a safepoint, operations on the master
1467     // humongous set should be invoked while holding the Heap_lock.
1468 
1469     if (SafepointSynchronize::is_at_safepoint()) {
1470       guarantee(Thread::current()->is_VM_thread() ||
1471                 OldSets_lock->owned_by_self(),
1472                 "master humongous set MT safety protocol at a safepoint");
1473     } else {
1474       guarantee(Heap_lock->owned_by_self(),
1475                 "master humongous set MT safety protocol outside a safepoint");
1476     }
1477   }
1478   bool is_correct_type(HeapRegion* hr) { return hr->is_humongous(); }
1479   const char* get_description() { return "Humongous Regions"; }
1480 };
1481 
1482 G1CollectedHeap::G1CollectedHeap() :
1483   CollectedHeap(),
1484   _young_gen_sampling_thread(NULL),
1485   _workers(NULL),
1486   _card_table(NULL),
1487   _soft_ref_policy(),
1488   _old_set("Old Region Set", new OldRegionSetChecker()),
1489   _archive_set("Archive Region Set", new ArchiveRegionSetChecker()),
1490   _humongous_set("Humongous Region Set", new HumongousRegionSetChecker()),
1491   _bot(NULL),
1492   _listener(),
1493   _numa(G1NUMA::create()),
1494   _hrm(NULL),
1495   _allocator(NULL),
1496   _verifier(NULL),
1497   _summary_bytes_used(0),
1498   _bytes_used_during_gc(0),
1499   _archive_allocator(NULL),
1500   _survivor_evac_stats("Young", YoungPLABSize, PLABWeight),
1501   _old_evac_stats("Old", OldPLABSize, PLABWeight),
1502   _expand_heap_after_alloc_failure(true),
1503   _g1mm(NULL),
1504   _humongous_reclaim_candidates(),
1505   _has_humongous_reclaim_candidates(false),
1506   _hr_printer(),
1507   _collector_state(),
1508   _old_marking_cycles_started(0),
1509   _old_marking_cycles_completed(0),
1510   _eden(),
1511   _survivor(),
1512   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1513   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1514   _policy(G1Policy::create_policy(_gc_timer_stw)),
1515   _heap_sizing_policy(NULL),
1516   _collection_set(this, _policy),
1517   _hot_card_cache(NULL),
1518   _rem_set(NULL),
1519   _cm(NULL),
1520   _cm_thread(NULL),
1521   _cr(NULL),
1522   _task_queues(NULL),
1523   _evacuation_failed(false),
1524   _evacuation_failed_info_array(NULL),
1525   _preserved_marks_set(true /* in_c_heap */),
1526 #ifndef PRODUCT
1527   _evacuation_failure_alot_for_current_gc(false),
1528   _evacuation_failure_alot_gc_number(0),
1529   _evacuation_failure_alot_count(0),
1530 #endif
1531   _ref_processor_stw(NULL),
1532   _is_alive_closure_stw(this),
1533   _is_subject_to_discovery_stw(this),
1534   _ref_processor_cm(NULL),
1535   _is_alive_closure_cm(this),
1536   _is_subject_to_discovery_cm(this),
1537   _region_attr() {
1538 
1539   _verifier = new G1HeapVerifier(this);
1540 
1541   _allocator = new G1Allocator(this);
1542 
1543   _heap_sizing_policy = G1HeapSizingPolicy::create(this, _policy->analytics());
1544 
1545   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1546 
1547   // Override the default _filler_array_max_size so that no humongous filler
1548   // objects are created.
1549   _filler_array_max_size = _humongous_object_threshold_in_words;
1550 
1551   uint n_queues = ParallelGCThreads;
1552   _task_queues = new G1ScannerTasksQueueSet(n_queues);
1553 
1554   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1555 
1556   for (uint i = 0; i < n_queues; i++) {
1557     G1ScannerTasksQueue* q = new G1ScannerTasksQueue();
1558     q->initialize();
1559     _task_queues->register_queue(i, q);
1560     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1561   }
1562 
1563   // Initialize the G1EvacuationFailureALot counters and flags.
1564   NOT_PRODUCT(reset_evacuation_should_fail();)
1565   _gc_tracer_stw->initialize();
1566 
1567   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1568 }
1569 
1570 static size_t actual_reserved_page_size(ReservedSpace rs) {
1571   size_t page_size = os::vm_page_size();
1572   if (UseLargePages) {
1573     // There are two ways to manage large page memory.
1574     // 1. OS supports committing large page memory.
1575     // 2. OS doesn't support committing large page memory so ReservedSpace manages it.
1576     //    And ReservedSpace calls it 'special'. If we failed to set 'special',
1577     //    we reserved memory without large page.
1578     if (os::can_commit_large_page_memory() || rs.special()) {
1579       // An alignment at ReservedSpace comes from preferred page size or
1580       // heap alignment, and if the alignment came from heap alignment, it could be
1581       // larger than large pages size. So need to cap with the large page size.
1582       page_size = MIN2(rs.alignment(), os::large_page_size());
1583     }
1584   }
1585 
1586   return page_size;
1587 }
1588 
1589 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1590                                                                  size_t size,
1591                                                                  size_t translation_factor) {
1592   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1593   // Allocate a new reserved space, preferring to use large pages.
1594   ReservedSpace rs(size, preferred_page_size);
1595   size_t page_size = actual_reserved_page_size(rs);
1596   G1RegionToSpaceMapper* result  =
1597     G1RegionToSpaceMapper::create_mapper(rs,
1598                                          size,
1599                                          page_size,
1600                                          HeapRegion::GrainBytes,
1601                                          translation_factor,
1602                                          mtGC);
1603 
1604   os::trace_page_sizes_for_requested_size(description,
1605                                           size,
1606                                           preferred_page_size,
1607                                           page_size,
1608                                           rs.base(),
1609                                           rs.size());
1610 
1611   return result;
1612 }
1613 
1614 jint G1CollectedHeap::initialize_concurrent_refinement() {
1615   jint ecode = JNI_OK;
1616   _cr = G1ConcurrentRefine::create(&ecode);
1617   return ecode;
1618 }
1619 
1620 jint G1CollectedHeap::initialize_young_gen_sampling_thread() {
1621   _young_gen_sampling_thread = new G1YoungRemSetSamplingThread();
1622   if (_young_gen_sampling_thread->osthread() == NULL) {
1623     vm_shutdown_during_initialization("Could not create G1YoungRemSetSamplingThread");
1624     return JNI_ENOMEM;
1625   }
1626   return JNI_OK;
1627 }
1628 
1629 jint G1CollectedHeap::initialize() {
1630 
1631   // Necessary to satisfy locking discipline assertions.
1632 
1633   MutexLocker x(Heap_lock);
1634 
1635   // While there are no constraints in the GC code that HeapWordSize
1636   // be any particular value, there are multiple other areas in the
1637   // system which believe this to be true (e.g. oop->object_size in some
1638   // cases incorrectly returns the size in wordSize units rather than
1639   // HeapWordSize).
1640   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1641 
1642   size_t init_byte_size = InitialHeapSize;
1643   size_t reserved_byte_size = G1Arguments::heap_reserved_size_bytes();
1644 
1645   // Ensure that the sizes are properly aligned.
1646   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1647   Universe::check_alignment(reserved_byte_size, HeapRegion::GrainBytes, "g1 heap");
1648   Universe::check_alignment(reserved_byte_size, HeapAlignment, "g1 heap");
1649 
1650   // Reserve the maximum.
1651 
1652   // When compressed oops are enabled, the preferred heap base
1653   // is calculated by subtracting the requested size from the
1654   // 32Gb boundary and using the result as the base address for
1655   // heap reservation. If the requested size is not aligned to
1656   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1657   // into the ReservedHeapSpace constructor) then the actual
1658   // base of the reserved heap may end up differing from the
1659   // address that was requested (i.e. the preferred heap base).
1660   // If this happens then we could end up using a non-optimal
1661   // compressed oops mode.
1662 
1663   ReservedHeapSpace heap_rs = Universe::reserve_heap(reserved_byte_size,
1664                                                      HeapAlignment);
1665 
1666   initialize_reserved_region(heap_rs);
1667 
1668   // Create the barrier set for the entire reserved region.
1669   G1CardTable* ct = new G1CardTable(heap_rs.region());
1670   ct->initialize();
1671   G1BarrierSet* bs = new G1BarrierSet(ct);
1672   bs->initialize();
1673   assert(bs->is_a(BarrierSet::G1BarrierSet), "sanity");
1674   BarrierSet::set_barrier_set(bs);
1675   _card_table = ct;
1676 
1677   {
1678     G1SATBMarkQueueSet& satbqs = bs->satb_mark_queue_set();
1679     satbqs.set_process_completed_buffers_threshold(G1SATBProcessCompletedThreshold);
1680     satbqs.set_buffer_enqueue_threshold_percentage(G1SATBBufferEnqueueingThresholdPercent);
1681   }
1682 
1683   // Create the hot card cache.
1684   _hot_card_cache = new G1HotCardCache(this);
1685 
1686   // Carve out the G1 part of the heap.
1687   ReservedSpace g1_rs = heap_rs.first_part(reserved_byte_size);
1688   size_t page_size = actual_reserved_page_size(heap_rs);
1689   G1RegionToSpaceMapper* heap_storage =
1690     G1RegionToSpaceMapper::create_heap_mapper(g1_rs,
1691                                               g1_rs.size(),
1692                                               page_size,
1693                                               HeapRegion::GrainBytes,
1694                                               1,
1695                                               mtJavaHeap);
1696   if(heap_storage == NULL) {
1697     vm_shutdown_during_initialization("Could not initialize G1 heap");
1698     return JNI_ERR;
1699   }
1700 
1701   os::trace_page_sizes("Heap",
1702                        MinHeapSize,
1703                        reserved_byte_size,
1704                        page_size,
1705                        heap_rs.base(),
1706                        heap_rs.size());
1707   heap_storage->set_mapping_changed_listener(&_listener);
1708 
1709   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
1710   G1RegionToSpaceMapper* bot_storage =
1711     create_aux_memory_mapper("Block Offset Table",
1712                              G1BlockOffsetTable::compute_size(g1_rs.size() / HeapWordSize),
1713                              G1BlockOffsetTable::heap_map_factor());
1714 
1715   G1RegionToSpaceMapper* cardtable_storage =
1716     create_aux_memory_mapper("Card Table",
1717                              G1CardTable::compute_size(g1_rs.size() / HeapWordSize),
1718                              G1CardTable::heap_map_factor());
1719 
1720   G1RegionToSpaceMapper* card_counts_storage =
1721     create_aux_memory_mapper("Card Counts Table",
1722                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
1723                              G1CardCounts::heap_map_factor());
1724 
1725   size_t bitmap_size = G1CMBitMap::compute_size(g1_rs.size());
1726   G1RegionToSpaceMapper* prev_bitmap_storage =
1727     create_aux_memory_mapper("Prev Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1728   G1RegionToSpaceMapper* next_bitmap_storage =
1729     create_aux_memory_mapper("Next Bitmap", bitmap_size, G1CMBitMap::heap_map_factor());
1730 
1731   _hrm = HeapRegionManager::create_manager(this);
1732 
1733   _hrm->initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1734   _card_table->initialize(cardtable_storage);
1735 
1736   // Do later initialization work for concurrent refinement.
1737   _hot_card_cache->initialize(card_counts_storage);
1738 
1739   // 6843694 - ensure that the maximum region index can fit
1740   // in the remembered set structures.
1741   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1742   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1743 
1744   // The G1FromCardCache reserves card with value 0 as "invalid", so the heap must not
1745   // start within the first card.
1746   guarantee(g1_rs.base() >= (char*)G1CardTable::card_size, "Java heap must not start within the first card.");
1747   // Also create a G1 rem set.
1748   _rem_set = new G1RemSet(this, _card_table, _hot_card_cache);
1749   _rem_set->initialize(max_reserved_capacity(), max_regions());
1750 
1751   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1752   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1753   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1754             "too many cards per region");
1755 
1756   FreeRegionList::set_unrealistically_long_length(max_expandable_regions() + 1);
1757 
1758   _bot = new G1BlockOffsetTable(reserved_region(), bot_storage);
1759 
1760   {
1761     HeapWord* start = _hrm->reserved().start();
1762     HeapWord* end = _hrm->reserved().end();
1763     size_t granularity = HeapRegion::GrainBytes;
1764 
1765     _region_attr.initialize(start, end, granularity);
1766     _humongous_reclaim_candidates.initialize(start, end, granularity);
1767   }
1768 
1769   _workers = new WorkGang("GC Thread", ParallelGCThreads,
1770                           true /* are_GC_task_threads */,
1771                           false /* are_ConcurrentGC_threads */);
1772   if (_workers == NULL) {
1773     return JNI_ENOMEM;
1774   }
1775   _workers->initialize_workers();
1776 
1777   _numa->set_region_info(HeapRegion::GrainBytes, page_size);
1778 
1779   // Create the G1ConcurrentMark data structure and thread.
1780   // (Must do this late, so that "max_regions" is defined.)
1781   _cm = new G1ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1782   _cm_thread = _cm->cm_thread();
1783 
1784   // Now expand into the initial heap size.
1785   if (!expand(init_byte_size, _workers)) {
1786     vm_shutdown_during_initialization("Failed to allocate initial heap.");
1787     return JNI_ENOMEM;
1788   }
1789 
1790   // Perform any initialization actions delegated to the policy.
1791   policy()->init(this, &_collection_set);
1792 
1793   jint ecode = initialize_concurrent_refinement();
1794   if (ecode != JNI_OK) {
1795     return ecode;
1796   }
1797 
1798   ecode = initialize_young_gen_sampling_thread();
1799   if (ecode != JNI_OK) {
1800     return ecode;
1801   }
1802 
1803   {
1804     G1DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
1805     dcqs.set_process_cards_threshold(concurrent_refine()->yellow_zone());
1806     dcqs.set_max_cards(concurrent_refine()->red_zone());
1807   }
1808 
1809   // Here we allocate the dummy HeapRegion that is required by the
1810   // G1AllocRegion class.
1811   HeapRegion* dummy_region = _hrm->get_dummy_region();
1812 
1813   // We'll re-use the same region whether the alloc region will
1814   // require BOT updates or not and, if it doesn't, then a non-young
1815   // region will complain that it cannot support allocations without
1816   // BOT updates. So we'll tag the dummy region as eden to avoid that.
1817   dummy_region->set_eden();
1818   // Make sure it's full.
1819   dummy_region->set_top(dummy_region->end());
1820   G1AllocRegion::setup(this, dummy_region);
1821 
1822   _allocator->init_mutator_alloc_regions();
1823 
1824   // Do create of the monitoring and management support so that
1825   // values in the heap have been properly initialized.
1826   _g1mm = new G1MonitoringSupport(this);
1827 
1828   G1StringDedup::initialize();
1829 
1830   _preserved_marks_set.init(ParallelGCThreads);
1831 
1832   _collection_set.initialize(max_regions());
1833 
1834   G1InitLogger::print();
1835 
1836   return JNI_OK;
1837 }
1838 
1839 void G1CollectedHeap::stop() {
1840   // Stop all concurrent threads. We do this to make sure these threads
1841   // do not continue to execute and access resources (e.g. logging)
1842   // that are destroyed during shutdown.
1843   _cr->stop();
1844   _young_gen_sampling_thread->stop();
1845   _cm_thread->stop();
1846   if (G1StringDedup::is_enabled()) {
1847     G1StringDedup::stop();
1848   }
1849 }
1850 
1851 void G1CollectedHeap::safepoint_synchronize_begin() {
1852   SuspendibleThreadSet::synchronize();
1853 }
1854 
1855 void G1CollectedHeap::safepoint_synchronize_end() {
1856   SuspendibleThreadSet::desynchronize();
1857 }
1858 
1859 void G1CollectedHeap::post_initialize() {
1860   CollectedHeap::post_initialize();
1861   ref_processing_init();
1862 }
1863 
1864 void G1CollectedHeap::ref_processing_init() {
1865   // Reference processing in G1 currently works as follows:
1866   //
1867   // * There are two reference processor instances. One is
1868   //   used to record and process discovered references
1869   //   during concurrent marking; the other is used to
1870   //   record and process references during STW pauses
1871   //   (both full and incremental).
1872   // * Both ref processors need to 'span' the entire heap as
1873   //   the regions in the collection set may be dotted around.
1874   //
1875   // * For the concurrent marking ref processor:
1876   //   * Reference discovery is enabled at initial marking.
1877   //   * Reference discovery is disabled and the discovered
1878   //     references processed etc during remarking.
1879   //   * Reference discovery is MT (see below).
1880   //   * Reference discovery requires a barrier (see below).
1881   //   * Reference processing may or may not be MT
1882   //     (depending on the value of ParallelRefProcEnabled
1883   //     and ParallelGCThreads).
1884   //   * A full GC disables reference discovery by the CM
1885   //     ref processor and abandons any entries on it's
1886   //     discovered lists.
1887   //
1888   // * For the STW processor:
1889   //   * Non MT discovery is enabled at the start of a full GC.
1890   //   * Processing and enqueueing during a full GC is non-MT.
1891   //   * During a full GC, references are processed after marking.
1892   //
1893   //   * Discovery (may or may not be MT) is enabled at the start
1894   //     of an incremental evacuation pause.
1895   //   * References are processed near the end of a STW evacuation pause.
1896   //   * For both types of GC:
1897   //     * Discovery is atomic - i.e. not concurrent.
1898   //     * Reference discovery will not need a barrier.
1899 
1900   bool mt_processing = ParallelRefProcEnabled && (ParallelGCThreads > 1);
1901 
1902   // Concurrent Mark ref processor
1903   _ref_processor_cm =
1904     new ReferenceProcessor(&_is_subject_to_discovery_cm,
1905                            mt_processing,                                  // mt processing
1906                            ParallelGCThreads,                              // degree of mt processing
1907                            (ParallelGCThreads > 1) || (ConcGCThreads > 1), // mt discovery
1908                            MAX2(ParallelGCThreads, ConcGCThreads),         // degree of mt discovery
1909                            false,                                          // Reference discovery is not atomic
1910                            &_is_alive_closure_cm,                          // is alive closure
1911                            true);                                          // allow changes to number of processing threads
1912 
1913   // STW ref processor
1914   _ref_processor_stw =
1915     new ReferenceProcessor(&_is_subject_to_discovery_stw,
1916                            mt_processing,                        // mt processing
1917                            ParallelGCThreads,                    // degree of mt processing
1918                            (ParallelGCThreads > 1),              // mt discovery
1919                            ParallelGCThreads,                    // degree of mt discovery
1920                            true,                                 // Reference discovery is atomic
1921                            &_is_alive_closure_stw,               // is alive closure
1922                            true);                                // allow changes to number of processing threads
1923 }
1924 
1925 SoftRefPolicy* G1CollectedHeap::soft_ref_policy() {
1926   return &_soft_ref_policy;
1927 }
1928 
1929 size_t G1CollectedHeap::capacity() const {
1930   return _hrm->length() * HeapRegion::GrainBytes;
1931 }
1932 
1933 size_t G1CollectedHeap::unused_committed_regions_in_bytes() const {
1934   return _hrm->total_free_bytes();
1935 }
1936 
1937 void G1CollectedHeap::iterate_hcc_closure(G1CardTableEntryClosure* cl, uint worker_id) {
1938   _hot_card_cache->drain(cl, worker_id);
1939 }
1940 
1941 // Computes the sum of the storage used by the various regions.
1942 size_t G1CollectedHeap::used() const {
1943   size_t result = _summary_bytes_used + _allocator->used_in_alloc_regions();
1944   if (_archive_allocator != NULL) {
1945     result += _archive_allocator->used();
1946   }
1947   return result;
1948 }
1949 
1950 size_t G1CollectedHeap::used_unlocked() const {
1951   return _summary_bytes_used;
1952 }
1953 
1954 class SumUsedClosure: public HeapRegionClosure {
1955   size_t _used;
1956 public:
1957   SumUsedClosure() : _used(0) {}
1958   bool do_heap_region(HeapRegion* r) {
1959     _used += r->used();
1960     return false;
1961   }
1962   size_t result() { return _used; }
1963 };
1964 
1965 size_t G1CollectedHeap::recalculate_used() const {
1966   SumUsedClosure blk;
1967   heap_region_iterate(&blk);
1968   return blk.result();
1969 }
1970 
1971 bool  G1CollectedHeap::is_user_requested_concurrent_full_gc(GCCause::Cause cause) {
1972   switch (cause) {
1973     case GCCause::_java_lang_system_gc:                 return ExplicitGCInvokesConcurrent;
1974     case GCCause::_dcmd_gc_run:                         return ExplicitGCInvokesConcurrent;
1975     case GCCause::_wb_conc_mark:                        return true;
1976     default :                                           return false;
1977   }
1978 }
1979 
1980 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
1981   switch (cause) {
1982     case GCCause::_g1_humongous_allocation: return true;
1983     case GCCause::_g1_periodic_collection:  return G1PeriodicGCInvokesConcurrent;
1984     case GCCause::_wb_breakpoint:           return true;
1985     default:                                return is_user_requested_concurrent_full_gc(cause);
1986   }
1987 }
1988 
1989 bool G1CollectedHeap::should_upgrade_to_full_gc(GCCause::Cause cause) {
1990   if (policy()->force_upgrade_to_full()) {
1991     return true;
1992   } else if (should_do_concurrent_full_gc(_gc_cause)) {
1993     return false;
1994   } else if (has_regions_left_for_allocation()) {
1995     return false;
1996   } else {
1997     return true;
1998   }
1999 }
2000 
2001 #ifndef PRODUCT
2002 void G1CollectedHeap::allocate_dummy_regions() {
2003   // Let's fill up most of the region
2004   size_t word_size = HeapRegion::GrainWords - 1024;
2005   // And as a result the region we'll allocate will be humongous.
2006   guarantee(is_humongous(word_size), "sanity");
2007 
2008   // _filler_array_max_size is set to humongous object threshold
2009   // but temporarily change it to use CollectedHeap::fill_with_object().
2010   SizeTFlagSetting fs(_filler_array_max_size, word_size);
2011 
2012   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2013     // Let's use the existing mechanism for the allocation
2014     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2015     if (dummy_obj != NULL) {
2016       MemRegion mr(dummy_obj, word_size);
2017       CollectedHeap::fill_with_object(mr);
2018     } else {
2019       // If we can't allocate once, we probably cannot allocate
2020       // again. Let's get out of the loop.
2021       break;
2022     }
2023   }
2024 }
2025 #endif // !PRODUCT
2026 
2027 void G1CollectedHeap::increment_old_marking_cycles_started() {
2028   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2029          _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2030          "Wrong marking cycle count (started: %d, completed: %d)",
2031          _old_marking_cycles_started, _old_marking_cycles_completed);
2032 
2033   _old_marking_cycles_started++;
2034 }
2035 
2036 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2037   MonitorLocker ml(G1OldGCCount_lock, Mutex::_no_safepoint_check_flag);
2038 
2039   // We assume that if concurrent == true, then the caller is a
2040   // concurrent thread that was joined the Suspendible Thread
2041   // Set. If there's ever a cheap way to check this, we should add an
2042   // assert here.
2043 
2044   // Given that this method is called at the end of a Full GC or of a
2045   // concurrent cycle, and those can be nested (i.e., a Full GC can
2046   // interrupt a concurrent cycle), the number of full collections
2047   // completed should be either one (in the case where there was no
2048   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2049   // behind the number of full collections started.
2050 
2051   // This is the case for the inner caller, i.e. a Full GC.
2052   assert(concurrent ||
2053          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2054          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2055          "for inner caller (Full GC): _old_marking_cycles_started = %u "
2056          "is inconsistent with _old_marking_cycles_completed = %u",
2057          _old_marking_cycles_started, _old_marking_cycles_completed);
2058 
2059   // This is the case for the outer caller, i.e. the concurrent cycle.
2060   assert(!concurrent ||
2061          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2062          "for outer caller (concurrent cycle): "
2063          "_old_marking_cycles_started = %u "
2064          "is inconsistent with _old_marking_cycles_completed = %u",
2065          _old_marking_cycles_started, _old_marking_cycles_completed);
2066 
2067   _old_marking_cycles_completed += 1;
2068 
2069   // We need to clear the "in_progress" flag in the CM thread before
2070   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2071   // is set) so that if a waiter requests another System.gc() it doesn't
2072   // incorrectly see that a marking cycle is still in progress.
2073   if (concurrent) {
2074     _cm_thread->set_idle();
2075   }
2076 
2077   // Notify threads waiting in System.gc() (with ExplicitGCInvokesConcurrent)
2078   // for a full GC to finish that their wait is over.
2079   ml.notify_all();
2080 }
2081 
2082 void G1CollectedHeap::collect(GCCause::Cause cause) {
2083   try_collect(cause);
2084 }
2085 
2086 // Return true if (x < y) with allowance for wraparound.
2087 static bool gc_counter_less_than(uint x, uint y) {
2088   return (x - y) > (UINT_MAX/2);
2089 }
2090 
2091 // LOG_COLLECT_CONCURRENTLY(cause, msg, args...)
2092 // Macro so msg printing is format-checked.
2093 #define LOG_COLLECT_CONCURRENTLY(cause, ...)                            \
2094   do {                                                                  \
2095     LogTarget(Trace, gc) LOG_COLLECT_CONCURRENTLY_lt;                   \
2096     if (LOG_COLLECT_CONCURRENTLY_lt.is_enabled()) {                     \
2097       ResourceMark rm; /* For thread name. */                           \
2098       LogStream LOG_COLLECT_CONCURRENTLY_s(&LOG_COLLECT_CONCURRENTLY_lt); \
2099       LOG_COLLECT_CONCURRENTLY_s.print("%s: Try Collect Concurrently (%s): ", \
2100                                        Thread::current()->name(),       \
2101                                        GCCause::to_string(cause));      \
2102       LOG_COLLECT_CONCURRENTLY_s.print(__VA_ARGS__);                    \
2103     }                                                                   \
2104   } while (0)
2105 
2106 #define LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, result) \
2107   LOG_COLLECT_CONCURRENTLY(cause, "complete %s", BOOL_TO_STR(result))
2108 
2109 bool G1CollectedHeap::try_collect_concurrently(GCCause::Cause cause,
2110                                                uint gc_counter,
2111                                                uint old_marking_started_before) {
2112   assert_heap_not_locked();
2113   assert(should_do_concurrent_full_gc(cause),
2114          "Non-concurrent cause %s", GCCause::to_string(cause));
2115 
2116   for (uint i = 1; true; ++i) {
2117     // Try to schedule an initial-mark evacuation pause that will
2118     // start a concurrent cycle.
2119     LOG_COLLECT_CONCURRENTLY(cause, "attempt %u", i);
2120     VM_G1TryInitiateConcMark op(gc_counter,
2121                                 cause,
2122                                 policy()->max_pause_time_ms());
2123     VMThread::execute(&op);
2124 
2125     // Request is trivially finished.
2126     if (cause == GCCause::_g1_periodic_collection) {
2127       LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, op.gc_succeeded());
2128       return op.gc_succeeded();
2129     }
2130 
2131     // If VMOp skipped initiating concurrent marking cycle because
2132     // we're terminating, then we're done.
2133     if (op.terminating()) {
2134       LOG_COLLECT_CONCURRENTLY(cause, "skipped: terminating");
2135       return false;
2136     }
2137 
2138     // Lock to get consistent set of values.
2139     uint old_marking_started_after;
2140     uint old_marking_completed_after;
2141     {
2142       MutexLocker ml(Heap_lock);
2143       // Update gc_counter for retrying VMOp if needed. Captured here to be
2144       // consistent with the values we use below for termination tests.  If
2145       // a retry is needed after a possible wait, and another collection
2146       // occurs in the meantime, it will cause our retry to be skipped and
2147       // we'll recheck for termination with updated conditions from that
2148       // more recent collection.  That's what we want, rather than having
2149       // our retry possibly perform an unnecessary collection.
2150       gc_counter = total_collections();
2151       old_marking_started_after = _old_marking_cycles_started;
2152       old_marking_completed_after = _old_marking_cycles_completed;
2153     }
2154 
2155     if (cause == GCCause::_wb_breakpoint) {
2156       if (op.gc_succeeded()) {
2157         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2158         return true;
2159       }
2160       // When _wb_breakpoint there can't be another cycle or deferred.
2161       assert(!op.cycle_already_in_progress(), "invariant");
2162       assert(!op.whitebox_attached(), "invariant");
2163       // Concurrent cycle attempt might have been cancelled by some other
2164       // collection, so retry.  Unlike other cases below, we want to retry
2165       // even if cancelled by a STW full collection, because we really want
2166       // to start a concurrent cycle.
2167       if (old_marking_started_before != old_marking_started_after) {
2168         LOG_COLLECT_CONCURRENTLY(cause, "ignoring STW full GC");
2169         old_marking_started_before = old_marking_started_after;
2170       }
2171     } else if (!GCCause::is_user_requested_gc(cause)) {
2172       // For an "automatic" (not user-requested) collection, we just need to
2173       // ensure that progress is made.
2174       //
2175       // Request is finished if any of
2176       // (1) the VMOp successfully performed a GC,
2177       // (2) a concurrent cycle was already in progress,
2178       // (3) whitebox is controlling concurrent cycles,
2179       // (4) a new cycle was started (by this thread or some other), or
2180       // (5) a Full GC was performed.
2181       // Cases (4) and (5) are detected together by a change to
2182       // _old_marking_cycles_started.
2183       //
2184       // Note that (1) does not imply (4).  If we're still in the mixed
2185       // phase of an earlier concurrent collection, the request to make the
2186       // collection an initial-mark won't be honored.  If we don't check for
2187       // both conditions we'll spin doing back-to-back collections.
2188       if (op.gc_succeeded() ||
2189           op.cycle_already_in_progress() ||
2190           op.whitebox_attached() ||
2191           (old_marking_started_before != old_marking_started_after)) {
2192         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2193         return true;
2194       }
2195     } else {                    // User-requested GC.
2196       // For a user-requested collection, we want to ensure that a complete
2197       // full collection has been performed before returning, but without
2198       // waiting for more than needed.
2199 
2200       // For user-requested GCs (unlike non-UR), a successful VMOp implies a
2201       // new cycle was started.  That's good, because it's not clear what we
2202       // should do otherwise.  Trying again just does back to back GCs.
2203       // Can't wait for someone else to start a cycle.  And returning fails
2204       // to meet the goal of ensuring a full collection was performed.
2205       assert(!op.gc_succeeded() ||
2206              (old_marking_started_before != old_marking_started_after),
2207              "invariant: succeeded %s, started before %u, started after %u",
2208              BOOL_TO_STR(op.gc_succeeded()),
2209              old_marking_started_before, old_marking_started_after);
2210 
2211       // Request is finished if a full collection (concurrent or stw)
2212       // was started after this request and has completed, e.g.
2213       // started_before < completed_after.
2214       if (gc_counter_less_than(old_marking_started_before,
2215                                old_marking_completed_after)) {
2216         LOG_COLLECT_CONCURRENTLY_COMPLETE(cause, true);
2217         return true;
2218       }
2219 
2220       if (old_marking_started_after != old_marking_completed_after) {
2221         // If there is an in-progress cycle (possibly started by us), then
2222         // wait for that cycle to complete, e.g.
2223         // while completed_now < started_after.
2224         LOG_COLLECT_CONCURRENTLY(cause, "wait");
2225         MonitorLocker ml(G1OldGCCount_lock);
2226         while (gc_counter_less_than(_old_marking_cycles_completed,
2227                                     old_marking_started_after)) {
2228           ml.wait();
2229         }
2230         // Request is finished if the collection we just waited for was
2231         // started after this request.
2232         if (old_marking_started_before != old_marking_started_after) {
2233           LOG_COLLECT_CONCURRENTLY(cause, "complete after wait");
2234           return true;
2235         }
2236       }
2237 
2238       // If VMOp was successful then it started a new cycle that the above
2239       // wait &etc should have recognized as finishing this request.  This
2240       // differs from a non-user-request, where gc_succeeded does not imply
2241       // a new cycle was started.
2242       assert(!op.gc_succeeded(), "invariant");
2243 
2244       if (op.cycle_already_in_progress()) {
2245         // If VMOp failed because a cycle was already in progress, it
2246         // is now complete.  But it didn't finish this user-requested
2247         // GC, so try again.
2248         LOG_COLLECT_CONCURRENTLY(cause, "retry after in-progress");
2249         continue;
2250       } else if (op.whitebox_attached()) {
2251         // If WhiteBox wants control, wait for notification of a state
2252         // change in the controller, then try again.  Don't wait for
2253         // release of control, since collections may complete while in
2254         // control.  Note: This won't recognize a STW full collection
2255         // while waiting; we can't wait on multiple monitors.
2256         LOG_COLLECT_CONCURRENTLY(cause, "whitebox control stall");
2257         MonitorLocker ml(ConcurrentGCBreakpoints::monitor());
2258         if (ConcurrentGCBreakpoints::is_controlled()) {
2259           ml.wait();
2260         }
2261         continue;
2262       }
2263     }
2264 
2265     // Collection failed and should be retried.
2266     assert(op.transient_failure(), "invariant");
2267 
2268     if (GCLocker::is_active_and_needs_gc()) {
2269       // If GCLocker is active, wait until clear before retrying.
2270       LOG_COLLECT_CONCURRENTLY(cause, "gc-locker stall");
2271       GCLocker::stall_until_clear();
2272     }
2273 
2274     LOG_COLLECT_CONCURRENTLY(cause, "retry");
2275   }
2276 }
2277 
2278 bool G1CollectedHeap::try_collect(GCCause::Cause cause) {
2279   assert_heap_not_locked();
2280 
2281   // Lock to get consistent set of values.
2282   uint gc_count_before;
2283   uint full_gc_count_before;
2284   uint old_marking_started_before;
2285   {
2286     MutexLocker ml(Heap_lock);
2287     gc_count_before = total_collections();
2288     full_gc_count_before = total_full_collections();
2289     old_marking_started_before = _old_marking_cycles_started;
2290   }
2291 
2292   if (should_do_concurrent_full_gc(cause)) {
2293     return try_collect_concurrently(cause,
2294                                     gc_count_before,
2295                                     old_marking_started_before);
2296   } else if (GCLocker::should_discard(cause, gc_count_before)) {
2297     // Indicate failure to be consistent with VMOp failure due to
2298     // another collection slipping in after our gc_count but before
2299     // our request is processed.
2300     return false;
2301   } else if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2302              DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2303 
2304     // Schedule a standard evacuation pause. We're setting word_size
2305     // to 0 which means that we are not requesting a post-GC allocation.
2306     VM_G1CollectForAllocation op(0,     /* word_size */
2307                                  gc_count_before,
2308                                  cause,
2309                                  policy()->max_pause_time_ms());
2310     VMThread::execute(&op);
2311     return op.gc_succeeded();
2312   } else {
2313     // Schedule a Full GC.
2314     VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2315     VMThread::execute(&op);
2316     return op.gc_succeeded();
2317   }
2318 }
2319 
2320 bool G1CollectedHeap::is_in(const void* p) const {
2321   if (_hrm->reserved().contains(p)) {
2322     // Given that we know that p is in the reserved space,
2323     // heap_region_containing() should successfully
2324     // return the containing region.
2325     HeapRegion* hr = heap_region_containing(p);
2326     return hr->is_in(p);
2327   } else {
2328     return false;
2329   }
2330 }
2331 
2332 #ifdef ASSERT
2333 bool G1CollectedHeap::is_in_exact(const void* p) const {
2334   bool contains = reserved_region().contains(p);
2335   bool available = _hrm->is_available(addr_to_region((HeapWord*)p));
2336   if (contains && available) {
2337     return true;
2338   } else {
2339     return false;
2340   }
2341 }
2342 #endif
2343 
2344 // Iteration functions.
2345 
2346 // Iterates an ObjectClosure over all objects within a HeapRegion.
2347 
2348 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2349   ObjectClosure* _cl;
2350 public:
2351   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2352   bool do_heap_region(HeapRegion* r) {
2353     if (!r->is_continues_humongous()) {
2354       r->object_iterate(_cl);
2355     }
2356     return false;
2357   }
2358 };
2359 
2360 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2361   IterateObjectClosureRegionClosure blk(cl);
2362   heap_region_iterate(&blk);
2363 }
2364 
2365 void G1CollectedHeap::keep_alive(oop obj) {
2366   G1BarrierSet::enqueue(obj);
2367 }
2368 
2369 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2370   _hrm->iterate(cl);
2371 }
2372 
2373 void G1CollectedHeap::heap_region_par_iterate_from_worker_offset(HeapRegionClosure* cl,
2374                                                                  HeapRegionClaimer *hrclaimer,
2375                                                                  uint worker_id) const {
2376   _hrm->par_iterate(cl, hrclaimer, hrclaimer->offset_for_worker(worker_id));
2377 }
2378 
2379 void G1CollectedHeap::heap_region_par_iterate_from_start(HeapRegionClosure* cl,
2380                                                          HeapRegionClaimer *hrclaimer) const {
2381   _hrm->par_iterate(cl, hrclaimer, 0);
2382 }
2383 
2384 void G1CollectedHeap::collection_set_iterate_all(HeapRegionClosure* cl) {
2385   _collection_set.iterate(cl);
2386 }
2387 
2388 void G1CollectedHeap::collection_set_par_iterate_all(HeapRegionClosure* cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2389   _collection_set.par_iterate(cl, hr_claimer, worker_id, workers()->active_workers());
2390 }
2391 
2392 void G1CollectedHeap::collection_set_iterate_increment_from(HeapRegionClosure *cl, HeapRegionClaimer* hr_claimer, uint worker_id) {
2393   _collection_set.iterate_incremental_part_from(cl, hr_claimer, worker_id, workers()->active_workers());
2394 }
2395 
2396 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2397   HeapRegion* hr = heap_region_containing(addr);
2398   return hr->block_start(addr);
2399 }
2400 
2401 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2402   HeapRegion* hr = heap_region_containing(addr);
2403   return hr->block_is_obj(addr);
2404 }
2405 
2406 bool G1CollectedHeap::supports_tlab_allocation() const {
2407   return true;
2408 }
2409 
2410 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2411   return (_policy->young_list_target_length() - _survivor.length()) * HeapRegion::GrainBytes;
2412 }
2413 
2414 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2415   return _eden.length() * HeapRegion::GrainBytes;
2416 }
2417 
2418 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2419 // must be equal to the humongous object limit.
2420 size_t G1CollectedHeap::max_tlab_size() const {
2421   return align_down(_humongous_object_threshold_in_words, MinObjAlignment);
2422 }
2423 
2424 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2425   return _allocator->unsafe_max_tlab_alloc();
2426 }
2427 
2428 size_t G1CollectedHeap::max_capacity() const {
2429   return _hrm->max_expandable_length() * HeapRegion::GrainBytes;
2430 }
2431 
2432 size_t G1CollectedHeap::max_reserved_capacity() const {
2433   return _hrm->max_length() * HeapRegion::GrainBytes;
2434 }
2435 
2436 jlong G1CollectedHeap::millis_since_last_gc() {
2437   // See the notes in GenCollectedHeap::millis_since_last_gc()
2438   // for more information about the implementation.
2439   jlong ret_val = (os::javaTimeNanos() / NANOSECS_PER_MILLISEC) -
2440                   _policy->collection_pause_end_millis();
2441   if (ret_val < 0) {
2442     log_warning(gc)("millis_since_last_gc() would return : " JLONG_FORMAT
2443       ". returning zero instead.", ret_val);
2444     return 0;
2445   }
2446   return ret_val;
2447 }
2448 
2449 void G1CollectedHeap::deduplicate_string(oop str) {
2450   assert(java_lang_String::is_instance(str), "invariant");
2451 
2452   if (G1StringDedup::is_enabled()) {
2453     G1StringDedup::deduplicate(str);
2454   }
2455 }
2456 
2457 void G1CollectedHeap::prepare_for_verify() {
2458   _verifier->prepare_for_verify();
2459 }
2460 
2461 void G1CollectedHeap::verify(VerifyOption vo) {
2462   _verifier->verify(vo);
2463 }
2464 
2465 bool G1CollectedHeap::supports_concurrent_gc_breakpoints() const {
2466   return true;
2467 }
2468 
2469 bool G1CollectedHeap::is_heterogeneous_heap() const {
2470   return G1Arguments::is_heterogeneous_heap();
2471 }
2472 
2473 class PrintRegionClosure: public HeapRegionClosure {
2474   outputStream* _st;
2475 public:
2476   PrintRegionClosure(outputStream* st) : _st(st) {}
2477   bool do_heap_region(HeapRegion* r) {
2478     r->print_on(_st);
2479     return false;
2480   }
2481 };
2482 
2483 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2484                                        const HeapRegion* hr,
2485                                        const VerifyOption vo) const {
2486   switch (vo) {
2487   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
2488   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
2489   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj, hr);
2490   default:                            ShouldNotReachHere();
2491   }
2492   return false; // keep some compilers happy
2493 }
2494 
2495 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
2496                                        const VerifyOption vo) const {
2497   switch (vo) {
2498   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
2499   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
2500   case VerifyOption_G1UseFullMarking: return is_obj_dead_full(obj);
2501   default:                            ShouldNotReachHere();
2502   }
2503   return false; // keep some compilers happy
2504 }
2505 
2506 void G1CollectedHeap::print_heap_regions() const {
2507   LogTarget(Trace, gc, heap, region) lt;
2508   if (lt.is_enabled()) {
2509     LogStream ls(lt);
2510     print_regions_on(&ls);
2511   }
2512 }
2513 
2514 void G1CollectedHeap::print_on(outputStream* st) const {
2515   st->print(" %-20s", "garbage-first heap");
2516   if (_hrm != NULL) {
2517     st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
2518               capacity()/K, used_unlocked()/K);
2519     st->print(" [" PTR_FORMAT ", " PTR_FORMAT ")",
2520               p2i(_hrm->reserved().start()),
2521               p2i(_hrm->reserved().end()));
2522   }
2523   st->cr();
2524   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
2525   uint young_regions = young_regions_count();
2526   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
2527             (size_t) young_regions * HeapRegion::GrainBytes / K);
2528   uint survivor_regions = survivor_regions_count();
2529   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
2530             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
2531   st->cr();
2532   if (_numa->is_enabled()) {
2533     uint num_nodes = _numa->num_active_nodes();
2534     st->print("  remaining free region(s) on each NUMA node: ");
2535     const int* node_ids = _numa->node_ids();
2536     for (uint node_index = 0; node_index < num_nodes; node_index++) {
2537       uint num_free_regions = (_hrm != NULL ? _hrm->num_free_regions(node_index) : 0);
2538       st->print("%d=%u ", node_ids[node_index], num_free_regions);
2539     }
2540     st->cr();
2541   }
2542   MetaspaceUtils::print_on(st);
2543 }
2544 
2545 void G1CollectedHeap::print_regions_on(outputStream* st) const {
2546   if (_hrm == NULL) {
2547     return;
2548   }
2549 
2550   st->print_cr("Heap Regions: E=young(eden), S=young(survivor), O=old, "
2551                "HS=humongous(starts), HC=humongous(continues), "
2552                "CS=collection set, F=free, "
2553                "OA=open archive, CA=closed archive, "
2554                "TAMS=top-at-mark-start (previous, next)");
2555   PrintRegionClosure blk(st);
2556   heap_region_iterate(&blk);
2557 }
2558 
2559 void G1CollectedHeap::print_extended_on(outputStream* st) const {
2560   print_on(st);
2561 
2562   // Print the per-region information.
2563   if (_hrm != NULL) {
2564     st->cr();
2565     print_regions_on(st);
2566   }
2567 }
2568 
2569 void G1CollectedHeap::print_on_error(outputStream* st) const {
2570   this->CollectedHeap::print_on_error(st);
2571 
2572   if (_cm != NULL) {
2573     st->cr();
2574     _cm->print_on_error(st);
2575   }
2576 }
2577 
2578 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
2579   workers()->threads_do(tc);
2580   tc->do_thread(_cm_thread);
2581   _cm->threads_do(tc);
2582   _cr->threads_do(tc);
2583   tc->do_thread(_young_gen_sampling_thread);
2584   if (G1StringDedup::is_enabled()) {
2585     G1StringDedup::threads_do(tc);
2586   }
2587 }
2588 
2589 void G1CollectedHeap::print_tracing_info() const {
2590   rem_set()->print_summary_info();
2591   concurrent_mark()->print_summary_info();
2592 }
2593 
2594 #ifndef PRODUCT
2595 // Helpful for debugging RSet issues.
2596 
2597 class PrintRSetsClosure : public HeapRegionClosure {
2598 private:
2599   const char* _msg;
2600   size_t _occupied_sum;
2601 
2602 public:
2603   bool do_heap_region(HeapRegion* r) {
2604     HeapRegionRemSet* hrrs = r->rem_set();
2605     size_t occupied = hrrs->occupied();
2606     _occupied_sum += occupied;
2607 
2608     tty->print_cr("Printing RSet for region " HR_FORMAT, HR_FORMAT_PARAMS(r));
2609     if (occupied == 0) {
2610       tty->print_cr("  RSet is empty");
2611     } else {
2612       hrrs->print();
2613     }
2614     tty->print_cr("----------");
2615     return false;
2616   }
2617 
2618   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
2619     tty->cr();
2620     tty->print_cr("========================================");
2621     tty->print_cr("%s", msg);
2622     tty->cr();
2623   }
2624 
2625   ~PrintRSetsClosure() {
2626     tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
2627     tty->print_cr("========================================");
2628     tty->cr();
2629   }
2630 };
2631 
2632 void G1CollectedHeap::print_cset_rsets() {
2633   PrintRSetsClosure cl("Printing CSet RSets");
2634   collection_set_iterate_all(&cl);
2635 }
2636 
2637 void G1CollectedHeap::print_all_rsets() {
2638   PrintRSetsClosure cl("Printing All RSets");;
2639   heap_region_iterate(&cl);
2640 }
2641 #endif // PRODUCT
2642 
2643 bool G1CollectedHeap::print_location(outputStream* st, void* addr) const {
2644   return BlockLocationPrinter<G1CollectedHeap>::print_location(st, addr);
2645 }
2646 
2647 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
2648 
2649   size_t eden_used_bytes = _eden.used_bytes();
2650   size_t survivor_used_bytes = _survivor.used_bytes();
2651   size_t heap_used = Heap_lock->owned_by_self() ? used() : used_unlocked();
2652 
2653   size_t eden_capacity_bytes =
2654     (policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
2655 
2656   VirtualSpaceSummary heap_summary = create_heap_space_summary();
2657   return G1HeapSummary(heap_summary, heap_used, eden_used_bytes,
2658                        eden_capacity_bytes, survivor_used_bytes, num_regions());
2659 }
2660 
2661 G1EvacSummary G1CollectedHeap::create_g1_evac_summary(G1EvacStats* stats) {
2662   return G1EvacSummary(stats->allocated(), stats->wasted(), stats->undo_wasted(),
2663                        stats->unused(), stats->used(), stats->region_end_waste(),
2664                        stats->regions_filled(), stats->direct_allocated(),
2665                        stats->failure_used(), stats->failure_waste());
2666 }
2667 
2668 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
2669   const G1HeapSummary& heap_summary = create_g1_heap_summary();
2670   gc_tracer->report_gc_heap_summary(when, heap_summary);
2671 
2672   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
2673   gc_tracer->report_metaspace_summary(when, metaspace_summary);
2674 }
2675 
2676 void G1CollectedHeap::gc_prologue(bool full) {
2677   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
2678 
2679   // This summary needs to be printed before incrementing total collections.
2680   rem_set()->print_periodic_summary_info("Before GC RS summary", total_collections());
2681 
2682   // Update common counters.
2683   increment_total_collections(full /* full gc */);
2684   if (full || collector_state()->in_initial_mark_gc()) {
2685     increment_old_marking_cycles_started();
2686   }
2687 
2688   // Fill TLAB's and such
2689   {
2690     Ticks start = Ticks::now();
2691     ensure_parsability(true);
2692     Tickspan dt = Ticks::now() - start;
2693     phase_times()->record_prepare_tlab_time_ms(dt.seconds() * MILLIUNITS);
2694   }
2695 
2696   if (!full) {
2697     // Flush dirty card queues to qset, so later phases don't need to account
2698     // for partially filled per-thread queues and such.  Not needed for full
2699     // collections, which ignore those logs.
2700     Ticks start = Ticks::now();
2701     G1BarrierSet::dirty_card_queue_set().concatenate_logs();
2702     Tickspan dt = Ticks::now() - start;
2703     phase_times()->record_concatenate_dirty_card_logs_time_ms(dt.seconds() * MILLIUNITS);
2704   }
2705 }
2706 
2707 void G1CollectedHeap::gc_epilogue(bool full) {
2708   // Update common counters.
2709   if (full) {
2710     // Update the number of full collections that have been completed.
2711     increment_old_marking_cycles_completed(false /* concurrent */);
2712   }
2713 
2714   // We are at the end of the GC. Total collections has already been increased.
2715   rem_set()->print_periodic_summary_info("After GC RS summary", total_collections() - 1);
2716 
2717   // FIXME: what is this about?
2718   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
2719   // is set.
2720 #if COMPILER2_OR_JVMCI
2721   assert(DerivedPointerTable::is_empty(), "derived pointer present");
2722 #endif
2723 
2724   double start = os::elapsedTime();
2725   resize_all_tlabs();
2726   phase_times()->record_resize_tlab_time_ms((os::elapsedTime() - start) * 1000.0);
2727 
2728   MemoryService::track_memory_usage();
2729   // We have just completed a GC. Update the soft reference
2730   // policy with the new heap occupancy
2731   Universe::update_heap_info_at_gc();
2732 
2733   // Print NUMA statistics.
2734   _numa->print_statistics();
2735 }
2736 
2737 void G1CollectedHeap::verify_numa_regions(const char* desc) {
2738   LogTarget(Trace, gc, heap, verify) lt;
2739 
2740   if (lt.is_enabled()) {
2741     LogStream ls(lt);
2742     // Iterate all heap regions to print matching between preferred numa id and actual numa id.
2743     G1NodeIndexCheckClosure cl(desc, _numa, &ls);
2744     heap_region_iterate(&cl);
2745   }
2746 }
2747 
2748 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
2749                                                uint gc_count_before,
2750                                                bool* succeeded,
2751                                                GCCause::Cause gc_cause) {
2752   assert_heap_not_locked_and_not_at_safepoint();
2753   VM_G1CollectForAllocation op(word_size,
2754                                gc_count_before,
2755                                gc_cause,
2756                                policy()->max_pause_time_ms());
2757   VMThread::execute(&op);
2758 
2759   HeapWord* result = op.result();
2760   bool ret_succeeded = op.prologue_succeeded() && op.gc_succeeded();
2761   assert(result == NULL || ret_succeeded,
2762          "the result should be NULL if the VM did not succeed");
2763   *succeeded = ret_succeeded;
2764 
2765   assert_heap_not_locked();
2766   return result;
2767 }
2768 
2769 void G1CollectedHeap::do_concurrent_mark() {
2770   MutexLocker x(CGC_lock, Mutex::_no_safepoint_check_flag);
2771   if (!_cm_thread->in_progress()) {
2772     _cm_thread->set_started();
2773     CGC_lock->notify();
2774   }
2775 }
2776 
2777 bool G1CollectedHeap::is_potential_eager_reclaim_candidate(HeapRegion* r) const {
2778   // We don't nominate objects with many remembered set entries, on
2779   // the assumption that such objects are likely still live.
2780   HeapRegionRemSet* rem_set = r->rem_set();
2781 
2782   return G1EagerReclaimHumongousObjectsWithStaleRefs ?
2783          rem_set->occupancy_less_or_equal_than(G1RSetSparseRegionEntries) :
2784          G1EagerReclaimHumongousObjects && rem_set->is_empty();
2785 }
2786 
2787 #ifndef PRODUCT
2788 void G1CollectedHeap::verify_region_attr_remset_update() {
2789   class VerifyRegionAttrRemSet : public HeapRegionClosure {
2790   public:
2791     virtual bool do_heap_region(HeapRegion* r) {
2792       G1CollectedHeap* g1h = G1CollectedHeap::heap();
2793       bool const needs_remset_update = g1h->region_attr(r->bottom()).needs_remset_update();
2794       assert(r->rem_set()->is_tracked() == needs_remset_update,
2795              "Region %u remset tracking status (%s) different to region attribute (%s)",
2796              r->hrm_index(), BOOL_TO_STR(r->rem_set()->is_tracked()), BOOL_TO_STR(needs_remset_update));
2797       return false;
2798     }
2799   } cl;
2800   heap_region_iterate(&cl);
2801 }
2802 #endif
2803 
2804 class VerifyRegionRemSetClosure : public HeapRegionClosure {
2805   public:
2806     bool do_heap_region(HeapRegion* hr) {
2807       if (!hr->is_archive() && !hr->is_continues_humongous()) {
2808         hr->verify_rem_set();
2809       }
2810       return false;
2811     }
2812 };
2813 
2814 uint G1CollectedHeap::num_task_queues() const {
2815   return _task_queues->size();
2816 }
2817 
2818 #if TASKQUEUE_STATS
2819 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
2820   st->print_raw_cr("GC Task Stats");
2821   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
2822   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
2823 }
2824 
2825 void G1CollectedHeap::print_taskqueue_stats() const {
2826   if (!log_is_enabled(Trace, gc, task, stats)) {
2827     return;
2828   }
2829   Log(gc, task, stats) log;
2830   ResourceMark rm;
2831   LogStream ls(log.trace());
2832   outputStream* st = &ls;
2833 
2834   print_taskqueue_stats_hdr(st);
2835 
2836   TaskQueueStats totals;
2837   const uint n = num_task_queues();
2838   for (uint i = 0; i < n; ++i) {
2839     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
2840     totals += task_queue(i)->stats;
2841   }
2842   st->print_raw("tot "); totals.print(st); st->cr();
2843 
2844   DEBUG_ONLY(totals.verify());
2845 }
2846 
2847 void G1CollectedHeap::reset_taskqueue_stats() {
2848   const uint n = num_task_queues();
2849   for (uint i = 0; i < n; ++i) {
2850     task_queue(i)->stats.reset();
2851   }
2852 }
2853 #endif // TASKQUEUE_STATS
2854 
2855 void G1CollectedHeap::wait_for_root_region_scanning() {
2856   double scan_wait_start = os::elapsedTime();
2857   // We have to wait until the CM threads finish scanning the
2858   // root regions as it's the only way to ensure that all the
2859   // objects on them have been correctly scanned before we start
2860   // moving them during the GC.
2861   bool waited = _cm->root_regions()->wait_until_scan_finished();
2862   double wait_time_ms = 0.0;
2863   if (waited) {
2864     double scan_wait_end = os::elapsedTime();
2865     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
2866   }
2867   phase_times()->record_root_region_scan_wait_time(wait_time_ms);
2868 }
2869 
2870 class G1PrintCollectionSetClosure : public HeapRegionClosure {
2871 private:
2872   G1HRPrinter* _hr_printer;
2873 public:
2874   G1PrintCollectionSetClosure(G1HRPrinter* hr_printer) : HeapRegionClosure(), _hr_printer(hr_printer) { }
2875 
2876   virtual bool do_heap_region(HeapRegion* r) {
2877     _hr_printer->cset(r);
2878     return false;
2879   }
2880 };
2881 
2882 void G1CollectedHeap::start_new_collection_set() {
2883   double start = os::elapsedTime();
2884 
2885   collection_set()->start_incremental_building();
2886 
2887   clear_region_attr();
2888 
2889   guarantee(_eden.length() == 0, "eden should have been cleared");
2890   policy()->transfer_survivors_to_cset(survivor());
2891 
2892   // We redo the verification but now wrt to the new CSet which
2893   // has just got initialized after the previous CSet was freed.
2894   _cm->verify_no_collection_set_oops();
2895 
2896   phase_times()->record_start_new_cset_time_ms((os::elapsedTime() - start) * 1000.0);
2897 }
2898 
2899 void G1CollectedHeap::calculate_collection_set(G1EvacuationInfo& evacuation_info, double target_pause_time_ms) {
2900 
2901   _collection_set.finalize_initial_collection_set(target_pause_time_ms, &_survivor);
2902   evacuation_info.set_collectionset_regions(collection_set()->region_length() +
2903                                             collection_set()->optional_region_length());
2904 
2905   _cm->verify_no_collection_set_oops();
2906 
2907   if (_hr_printer.is_active()) {
2908     G1PrintCollectionSetClosure cl(&_hr_printer);
2909     _collection_set.iterate(&cl);
2910     _collection_set.iterate_optional(&cl);
2911   }
2912 }
2913 
2914 G1HeapVerifier::G1VerifyType G1CollectedHeap::young_collection_verify_type() const {
2915   if (collector_state()->in_initial_mark_gc()) {
2916     return G1HeapVerifier::G1VerifyConcurrentStart;
2917   } else if (collector_state()->in_young_only_phase()) {
2918     return G1HeapVerifier::G1VerifyYoungNormal;
2919   } else {
2920     return G1HeapVerifier::G1VerifyMixed;
2921   }
2922 }
2923 
2924 void G1CollectedHeap::verify_before_young_collection(G1HeapVerifier::G1VerifyType type) {
2925   if (VerifyRememberedSets) {
2926     log_info(gc, verify)("[Verifying RemSets before GC]");
2927     VerifyRegionRemSetClosure v_cl;
2928     heap_region_iterate(&v_cl);
2929   }
2930   _verifier->verify_before_gc(type);
2931   _verifier->check_bitmaps("GC Start");
2932   verify_numa_regions("GC Start");
2933 }
2934 
2935 void G1CollectedHeap::verify_after_young_collection(G1HeapVerifier::G1VerifyType type) {
2936   if (VerifyRememberedSets) {
2937     log_info(gc, verify)("[Verifying RemSets after GC]");
2938     VerifyRegionRemSetClosure v_cl;
2939     heap_region_iterate(&v_cl);
2940   }
2941   _verifier->verify_after_gc(type);
2942   _verifier->check_bitmaps("GC End");
2943   verify_numa_regions("GC End");
2944 }
2945 
2946 void G1CollectedHeap::expand_heap_after_young_collection(){
2947   size_t expand_bytes = _heap_sizing_policy->expansion_amount();
2948   if (expand_bytes > 0) {
2949     // No need for an ergo logging here,
2950     // expansion_amount() does this when it returns a value > 0.
2951     double expand_ms;
2952     if (!expand(expand_bytes, _workers, &expand_ms)) {
2953       // We failed to expand the heap. Cannot do anything about it.
2954     }
2955     phase_times()->record_expand_heap_time(expand_ms);
2956   }
2957 }
2958 
2959 const char* G1CollectedHeap::young_gc_name() const {
2960   if (collector_state()->in_initial_mark_gc()) {
2961     return "Pause Young (Concurrent Start)";
2962   } else if (collector_state()->in_young_only_phase()) {
2963     if (collector_state()->in_young_gc_before_mixed()) {
2964       return "Pause Young (Prepare Mixed)";
2965     } else {
2966       return "Pause Young (Normal)";
2967     }
2968   } else {
2969     return "Pause Young (Mixed)";
2970   }
2971 }
2972 
2973 bool G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
2974   assert_at_safepoint_on_vm_thread();
2975   guarantee(!is_gc_active(), "collection is not reentrant");
2976 
2977   if (GCLocker::check_active_before_gc()) {
2978     return false;
2979   }
2980 
2981   do_collection_pause_at_safepoint_helper(target_pause_time_ms);
2982   if (should_upgrade_to_full_gc(gc_cause())) {
2983     log_info(gc, ergo)("Attempting maximally compacting collection");
2984     bool result = do_full_collection(false /* explicit gc */,
2985                                      true /* clear_all_soft_refs */);
2986     // do_full_collection only fails if blocked by GC locker, but
2987     // we've already checked for that above.
2988     assert(result, "invariant");
2989   }
2990   return true;
2991 }
2992 
2993 void G1CollectedHeap::do_collection_pause_at_safepoint_helper(double target_pause_time_ms) {
2994   GCIdMark gc_id_mark;
2995 
2996   SvcGCMarker sgcm(SvcGCMarker::MINOR);
2997   ResourceMark rm;
2998 
2999   policy()->note_gc_start();
3000 
3001   _gc_timer_stw->register_gc_start();
3002   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3003 
3004   wait_for_root_region_scanning();
3005 
3006   print_heap_before_gc();
3007   print_heap_regions();
3008   trace_heap_before_gc(_gc_tracer_stw);
3009 
3010   _verifier->verify_region_sets_optional();
3011   _verifier->verify_dirty_young_regions();
3012 
3013   // We should not be doing initial mark unless the conc mark thread is running
3014   if (!_cm_thread->should_terminate()) {
3015     // This call will decide whether this pause is an initial-mark
3016     // pause. If it is, in_initial_mark_gc() will return true
3017     // for the duration of this pause.
3018     policy()->decide_on_conc_mark_initiation();
3019   }
3020 
3021   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3022   assert(!collector_state()->in_initial_mark_gc() ||
3023          collector_state()->in_young_only_phase(), "sanity");
3024   // We also do not allow mixed GCs during marking.
3025   assert(!collector_state()->mark_or_rebuild_in_progress() || collector_state()->in_young_only_phase(), "sanity");
3026 
3027   // Record whether this pause is an initial mark. When the current
3028   // thread has completed its logging output and it's safe to signal
3029   // the CM thread, the flag's value in the policy has been reset.
3030   bool should_start_conc_mark = collector_state()->in_initial_mark_gc();
3031   if (should_start_conc_mark) {
3032     _cm->gc_tracer_cm()->set_gc_cause(gc_cause());
3033   }
3034 
3035   // Inner scope for scope based logging, timers, and stats collection
3036   {
3037     G1EvacuationInfo evacuation_info;
3038 
3039     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3040 
3041     GCTraceCPUTime tcpu;
3042 
3043     GCTraceTime(Info, gc) tm(young_gc_name(), NULL, gc_cause(), true);
3044 
3045     uint active_workers = WorkerPolicy::calc_active_workers(workers()->total_workers(),
3046                                                             workers()->active_workers(),
3047                                                             Threads::number_of_non_daemon_threads());
3048     active_workers = workers()->update_active_workers(active_workers);
3049     log_info(gc,task)("Using %u workers of %u for evacuation", active_workers, workers()->total_workers());
3050 
3051     G1MonitoringScope ms(g1mm(),
3052                          false /* full_gc */,
3053                          collector_state()->yc_type() == Mixed /* all_memory_pools_affected */);
3054 
3055     G1HeapTransition heap_transition(this);
3056 
3057     {
3058       IsGCActiveMark x;
3059 
3060       gc_prologue(false);
3061 
3062       G1HeapVerifier::G1VerifyType verify_type = young_collection_verify_type();
3063       verify_before_young_collection(verify_type);
3064 
3065       {
3066         // The elapsed time induced by the start time below deliberately elides
3067         // the possible verification above.
3068         double sample_start_time_sec = os::elapsedTime();
3069 
3070         // Please see comment in g1CollectedHeap.hpp and
3071         // G1CollectedHeap::ref_processing_init() to see how
3072         // reference processing currently works in G1.
3073         _ref_processor_stw->enable_discovery();
3074 
3075         // We want to temporarily turn off discovery by the
3076         // CM ref processor, if necessary, and turn it back on
3077         // on again later if we do. Using a scoped
3078         // NoRefDiscovery object will do this.
3079         NoRefDiscovery no_cm_discovery(_ref_processor_cm);
3080 
3081         policy()->record_collection_pause_start(sample_start_time_sec);
3082 
3083         // Forget the current allocation region (we might even choose it to be part
3084         // of the collection set!).
3085         _allocator->release_mutator_alloc_regions();
3086 
3087         calculate_collection_set(evacuation_info, target_pause_time_ms);
3088 
3089         G1RedirtyCardsQueueSet rdcqs(G1BarrierSet::dirty_card_queue_set().allocator());
3090         G1ParScanThreadStateSet per_thread_states(this,
3091                                                   &rdcqs,
3092                                                   workers()->active_workers(),
3093                                                   collection_set()->young_region_length(),
3094                                                   collection_set()->optional_region_length());
3095         pre_evacuate_collection_set(evacuation_info, &per_thread_states);
3096 
3097         // Actually do the work...
3098         evacuate_initial_collection_set(&per_thread_states);
3099 
3100         if (_collection_set.optional_region_length() != 0) {
3101           evacuate_optional_collection_set(&per_thread_states);
3102         }
3103         post_evacuate_collection_set(evacuation_info, &rdcqs, &per_thread_states);
3104 
3105         start_new_collection_set();
3106 
3107         _survivor_evac_stats.adjust_desired_plab_sz();
3108         _old_evac_stats.adjust_desired_plab_sz();
3109 
3110         if (should_start_conc_mark) {
3111           // We have to do this before we notify the CM threads that
3112           // they can start working to make sure that all the
3113           // appropriate initialization is done on the CM object.
3114           concurrent_mark()->post_initial_mark();
3115           // Note that we don't actually trigger the CM thread at
3116           // this point. We do that later when we're sure that
3117           // the current thread has completed its logging output.
3118         }
3119 
3120         allocate_dummy_regions();
3121 
3122         _allocator->init_mutator_alloc_regions();
3123 
3124         expand_heap_after_young_collection();
3125 
3126         double sample_end_time_sec = os::elapsedTime();
3127         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
3128         policy()->record_collection_pause_end(pause_time_ms);
3129       }
3130 
3131       verify_after_young_collection(verify_type);
3132 
3133       gc_epilogue(false);
3134     }
3135 
3136     // Print the remainder of the GC log output.
3137     if (evacuation_failed()) {
3138       log_info(gc)("To-space exhausted");
3139     }
3140 
3141     policy()->print_phases();
3142     heap_transition.print();
3143 
3144     _hrm->verify_optional();
3145     _verifier->verify_region_sets_optional();
3146 
3147     TASKQUEUE_STATS_ONLY(print_taskqueue_stats());
3148     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
3149 
3150     print_heap_after_gc();
3151     print_heap_regions();
3152     trace_heap_after_gc(_gc_tracer_stw);
3153 
3154     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
3155     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
3156     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
3157     // before any GC notifications are raised.
3158     g1mm()->update_sizes();
3159 
3160     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
3161     _gc_tracer_stw->report_tenuring_threshold(_policy->tenuring_threshold());
3162     _gc_timer_stw->register_gc_end();
3163     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
3164   }
3165   // It should now be safe to tell the concurrent mark thread to start
3166   // without its logging output interfering with the logging output
3167   // that came from the pause.
3168 
3169   if (should_start_conc_mark) {
3170     // CAUTION: after the doConcurrentMark() call below, the concurrent marking
3171     // thread(s) could be running concurrently with us. Make sure that anything
3172     // after this point does not assume that we are the only GC thread running.
3173     // Note: of course, the actual marking work will not start until the safepoint
3174     // itself is released in SuspendibleThreadSet::desynchronize().
3175     do_concurrent_mark();
3176     ConcurrentGCBreakpoints::notify_idle_to_active();
3177   }
3178 }
3179 
3180 void G1CollectedHeap::remove_self_forwarding_pointers(G1RedirtyCardsQueueSet* rdcqs) {
3181   G1ParRemoveSelfForwardPtrsTask rsfp_task(rdcqs);
3182   workers()->run_task(&rsfp_task);
3183 }
3184 
3185 void G1CollectedHeap::restore_after_evac_failure(G1RedirtyCardsQueueSet* rdcqs) {
3186   double remove_self_forwards_start = os::elapsedTime();
3187 
3188   remove_self_forwarding_pointers(rdcqs);
3189   _preserved_marks_set.restore(workers());
3190 
3191   phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
3192 }
3193 
3194 void G1CollectedHeap::preserve_mark_during_evac_failure(uint worker_id, oop obj, markWord m) {
3195   if (!_evacuation_failed) {
3196     _evacuation_failed = true;
3197   }
3198 
3199   _evacuation_failed_info_array[worker_id].register_copy_failure(obj->size());
3200   _preserved_marks_set.get(worker_id)->push_if_necessary(obj, m);
3201 }
3202 
3203 bool G1ParEvacuateFollowersClosure::offer_termination() {
3204   EventGCPhaseParallel event;
3205   G1ParScanThreadState* const pss = par_scan_state();
3206   start_term_time();
3207   const bool res = terminator()->offer_termination();
3208   end_term_time();
3209   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(G1GCPhaseTimes::Termination));
3210   return res;
3211 }
3212 
3213 void G1ParEvacuateFollowersClosure::do_void() {
3214   EventGCPhaseParallel event;
3215   G1ParScanThreadState* const pss = par_scan_state();
3216   pss->trim_queue();
3217   event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3218   do {
3219     EventGCPhaseParallel event;
3220     pss->steal_and_trim_queue(queues());
3221     event.commit(GCId::current(), pss->worker_id(), G1GCPhaseTimes::phase_name(_phase));
3222   } while (!offer_termination());
3223 }
3224 
3225 void G1CollectedHeap::complete_cleaning(BoolObjectClosure* is_alive,
3226                                         bool class_unloading_occurred) {
3227   uint num_workers = workers()->active_workers();
3228   G1ParallelCleaningTask unlink_task(is_alive, num_workers, class_unloading_occurred, false);
3229   workers()->run_task(&unlink_task);
3230 }
3231 
3232 // Clean string dedup data structures.
3233 // Ideally we would prefer to use a StringDedupCleaningTask here, but we want to
3234 // record the durations of the phases. Hence the almost-copy.
3235 class G1StringDedupCleaningTask : public AbstractGangTask {
3236   BoolObjectClosure* _is_alive;
3237   OopClosure* _keep_alive;
3238   G1GCPhaseTimes* _phase_times;
3239 
3240 public:
3241   G1StringDedupCleaningTask(BoolObjectClosure* is_alive,
3242                             OopClosure* keep_alive,
3243                             G1GCPhaseTimes* phase_times) :
3244     AbstractGangTask("Partial Cleaning Task"),
3245     _is_alive(is_alive),
3246     _keep_alive(keep_alive),
3247     _phase_times(phase_times)
3248   {
3249     assert(G1StringDedup::is_enabled(), "String deduplication disabled.");
3250     StringDedup::gc_prologue(true);
3251   }
3252 
3253   ~G1StringDedupCleaningTask() {
3254     StringDedup::gc_epilogue();
3255   }
3256 
3257   void work(uint worker_id) {
3258     StringDedupUnlinkOrOopsDoClosure cl(_is_alive, _keep_alive);
3259     {
3260       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupQueueFixup, worker_id);
3261       StringDedupQueue::unlink_or_oops_do(&cl);
3262     }
3263     {
3264       G1GCParPhaseTimesTracker x(_phase_times, G1GCPhaseTimes::StringDedupTableFixup, worker_id);
3265       StringDedupTable::unlink_or_oops_do(&cl, worker_id);
3266     }
3267   }
3268 };
3269 
3270 void G1CollectedHeap::string_dedup_cleaning(BoolObjectClosure* is_alive,
3271                                             OopClosure* keep_alive,
3272                                             G1GCPhaseTimes* phase_times) {
3273   G1StringDedupCleaningTask cl(is_alive, keep_alive, phase_times);
3274   workers()->run_task(&cl);
3275 }
3276 
3277 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
3278  private:
3279   G1RedirtyCardsQueueSet* _qset;
3280   G1CollectedHeap* _g1h;
3281   BufferNode* volatile _nodes;
3282 
3283   void par_apply(RedirtyLoggedCardTableEntryClosure* cl, uint worker_id) {
3284     size_t buffer_size = _qset->buffer_size();
3285     BufferNode* next = Atomic::load(&_nodes);
3286     while (next != NULL) {
3287       BufferNode* node = next;
3288       next = Atomic::cmpxchg(&_nodes, node, node->next());
3289       if (next == node) {
3290         cl->apply_to_buffer(node, buffer_size, worker_id);
3291         next = node->next();
3292       }
3293     }
3294   }
3295 
3296  public:
3297   G1RedirtyLoggedCardsTask(G1RedirtyCardsQueueSet* qset, G1CollectedHeap* g1h) :
3298     AbstractGangTask("Redirty Cards"),
3299     _qset(qset), _g1h(g1h), _nodes(qset->all_completed_buffers()) { }
3300 
3301   virtual void work(uint worker_id) {
3302     G1GCPhaseTimes* p = _g1h->phase_times();
3303     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::RedirtyCards, worker_id);
3304 
3305     RedirtyLoggedCardTableEntryClosure cl(_g1h);
3306     par_apply(&cl, worker_id);
3307 
3308     p->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_dirtied());
3309   }
3310 };
3311 
3312 void G1CollectedHeap::redirty_logged_cards(G1RedirtyCardsQueueSet* rdcqs) {
3313   double redirty_logged_cards_start = os::elapsedTime();
3314 
3315   G1RedirtyLoggedCardsTask redirty_task(rdcqs, this);
3316   workers()->run_task(&redirty_task);
3317 
3318   G1DirtyCardQueueSet& dcq = G1BarrierSet::dirty_card_queue_set();
3319   dcq.merge_bufferlists(rdcqs);
3320 
3321   phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
3322 }
3323 
3324 // Weak Reference Processing support
3325 
3326 bool G1STWIsAliveClosure::do_object_b(oop p) {
3327   // An object is reachable if it is outside the collection set,
3328   // or is inside and copied.
3329   return !_g1h->is_in_cset(p) || p->is_forwarded();
3330 }
3331 
3332 bool G1STWSubjectToDiscoveryClosure::do_object_b(oop obj) {
3333   assert(obj != NULL, "must not be NULL");
3334   assert(_g1h->is_in_reserved(obj), "Trying to discover obj " PTR_FORMAT " not in heap", p2i(obj));
3335   // The areas the CM and STW ref processor manage must be disjoint. The is_in_cset() below
3336   // may falsely indicate that this is not the case here: however the collection set only
3337   // contains old regions when concurrent mark is not running.
3338   return _g1h->is_in_cset(obj) || _g1h->heap_region_containing(obj)->is_survivor();
3339 }
3340 
3341 // Non Copying Keep Alive closure
3342 class G1KeepAliveClosure: public OopClosure {
3343   G1CollectedHeap*_g1h;
3344 public:
3345   G1KeepAliveClosure(G1CollectedHeap* g1h) :_g1h(g1h) {}
3346   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
3347   void do_oop(oop* p) {
3348     oop obj = *p;
3349     assert(obj != NULL, "the caller should have filtered out NULL values");
3350 
3351     const G1HeapRegionAttr region_attr =_g1h->region_attr(obj);
3352     if (!region_attr.is_in_cset_or_humongous()) {
3353       return;
3354     }
3355     if (region_attr.is_in_cset()) {
3356       assert( obj->is_forwarded(), "invariant" );
3357       *p = obj->forwardee();
3358     } else {
3359       assert(!obj->is_forwarded(), "invariant" );
3360       assert(region_attr.is_humongous(),
3361              "Only allowed G1HeapRegionAttr state is IsHumongous, but is %d", region_attr.type());
3362      _g1h->set_humongous_is_live(obj);
3363     }
3364   }
3365 };
3366 
3367 // Copying Keep Alive closure - can be called from both
3368 // serial and parallel code as long as different worker
3369 // threads utilize different G1ParScanThreadState instances
3370 // and different queues.
3371 
3372 class G1CopyingKeepAliveClosure: public OopClosure {
3373   G1CollectedHeap*         _g1h;
3374   G1ParScanThreadState*    _par_scan_state;
3375 
3376 public:
3377   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
3378                             G1ParScanThreadState* pss):
3379     _g1h(g1h),
3380     _par_scan_state(pss)
3381   {}
3382 
3383   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
3384   virtual void do_oop(      oop* p) { do_oop_work(p); }
3385 
3386   template <class T> void do_oop_work(T* p) {
3387     oop obj = RawAccess<>::oop_load(p);
3388 
3389     if (_g1h->is_in_cset_or_humongous(obj)) {
3390       // If the referent object has been forwarded (either copied
3391       // to a new location or to itself in the event of an
3392       // evacuation failure) then we need to update the reference
3393       // field and, if both reference and referent are in the G1
3394       // heap, update the RSet for the referent.
3395       //
3396       // If the referent has not been forwarded then we have to keep
3397       // it alive by policy. Therefore we have copy the referent.
3398       //
3399       // When the queue is drained (after each phase of reference processing)
3400       // the object and it's followers will be copied, the reference field set
3401       // to point to the new location, and the RSet updated.
3402       _par_scan_state->push_on_queue(ScannerTask(p));
3403     }
3404   }
3405 };
3406 
3407 // Serial drain queue closure. Called as the 'complete_gc'
3408 // closure for each discovered list in some of the
3409 // reference processing phases.
3410 
3411 class G1STWDrainQueueClosure: public VoidClosure {
3412 protected:
3413   G1CollectedHeap* _g1h;
3414   G1ParScanThreadState* _par_scan_state;
3415 
3416   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
3417 
3418 public:
3419   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
3420     _g1h(g1h),
3421     _par_scan_state(pss)
3422   { }
3423 
3424   void do_void() {
3425     G1ParScanThreadState* const pss = par_scan_state();
3426     pss->trim_queue();
3427   }
3428 };
3429 
3430 // Parallel Reference Processing closures
3431 
3432 // Implementation of AbstractRefProcTaskExecutor for parallel reference
3433 // processing during G1 evacuation pauses.
3434 
3435 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
3436 private:
3437   G1CollectedHeap*          _g1h;
3438   G1ParScanThreadStateSet*  _pss;
3439   G1ScannerTasksQueueSet*   _queues;
3440   WorkGang*                 _workers;
3441 
3442 public:
3443   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
3444                            G1ParScanThreadStateSet* per_thread_states,
3445                            WorkGang* workers,
3446                            G1ScannerTasksQueueSet *task_queues) :
3447     _g1h(g1h),
3448     _pss(per_thread_states),
3449     _queues(task_queues),
3450     _workers(workers)
3451   {
3452     g1h->ref_processor_stw()->set_active_mt_degree(workers->active_workers());
3453   }
3454 
3455   // Executes the given task using concurrent marking worker threads.
3456   virtual void execute(ProcessTask& task, uint ergo_workers);
3457 };
3458 
3459 // Gang task for possibly parallel reference processing
3460 
3461 class G1STWRefProcTaskProxy: public AbstractGangTask {
3462   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
3463   ProcessTask&     _proc_task;
3464   G1CollectedHeap* _g1h;
3465   G1ParScanThreadStateSet* _pss;
3466   G1ScannerTasksQueueSet* _task_queues;
3467   TaskTerminator* _terminator;
3468 
3469 public:
3470   G1STWRefProcTaskProxy(ProcessTask& proc_task,
3471                         G1CollectedHeap* g1h,
3472                         G1ParScanThreadStateSet* per_thread_states,
3473                         G1ScannerTasksQueueSet *task_queues,
3474                         TaskTerminator* terminator) :
3475     AbstractGangTask("Process reference objects in parallel"),
3476     _proc_task(proc_task),
3477     _g1h(g1h),
3478     _pss(per_thread_states),
3479     _task_queues(task_queues),
3480     _terminator(terminator)
3481   {}
3482 
3483   virtual void work(uint worker_id) {
3484     // The reference processing task executed by a single worker.
3485     ResourceMark rm;
3486     HandleMark   hm;
3487 
3488     G1STWIsAliveClosure is_alive(_g1h);
3489 
3490     G1ParScanThreadState* pss = _pss->state_for_worker(worker_id);
3491     pss->set_ref_discoverer(NULL);
3492 
3493     // Keep alive closure.
3494     G1CopyingKeepAliveClosure keep_alive(_g1h, pss);
3495 
3496     // Complete GC closure
3497     G1ParEvacuateFollowersClosure drain_queue(_g1h, pss, _task_queues, _terminator, G1GCPhaseTimes::ObjCopy);
3498 
3499     // Call the reference processing task's work routine.
3500     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
3501 
3502     // Note we cannot assert that the refs array is empty here as not all
3503     // of the processing tasks (specifically phase2 - pp2_work) execute
3504     // the complete_gc closure (which ordinarily would drain the queue) so
3505     // the queue may not be empty.
3506   }
3507 };
3508 
3509 // Driver routine for parallel reference processing.
3510 // Creates an instance of the ref processing gang
3511 // task and has the worker threads execute it.
3512 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
3513   assert(_workers != NULL, "Need parallel worker threads.");
3514 
3515   assert(_workers->active_workers() >= ergo_workers,
3516          "Ergonomically chosen workers (%u) should be less than or equal to active workers (%u)",
3517          ergo_workers, _workers->active_workers());
3518   TaskTerminator terminator(ergo_workers, _queues);
3519   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _pss, _queues, &terminator);
3520 
3521   _workers->run_task(&proc_task_proxy, ergo_workers);
3522 }
3523 
3524 // End of weak reference support closures
3525 
3526 void G1CollectedHeap::process_discovered_references(G1ParScanThreadStateSet* per_thread_states) {
3527   double ref_proc_start = os::elapsedTime();
3528 
3529   ReferenceProcessor* rp = _ref_processor_stw;
3530   assert(rp->discovery_enabled(), "should have been enabled");
3531 
3532   // Closure to test whether a referent is alive.
3533   G1STWIsAliveClosure is_alive(this);
3534 
3535   // Even when parallel reference processing is enabled, the processing
3536   // of JNI refs is serial and performed serially by the current thread
3537   // rather than by a worker. The following PSS will be used for processing
3538   // JNI refs.
3539 
3540   // Use only a single queue for this PSS.
3541   G1ParScanThreadState*          pss = per_thread_states->state_for_worker(0);
3542   pss->set_ref_discoverer(NULL);
3543   assert(pss->queue_is_empty(), "pre-condition");
3544 
3545   // Keep alive closure.
3546   G1CopyingKeepAliveClosure keep_alive(this, pss);
3547 
3548   // Serial Complete GC closure
3549   G1STWDrainQueueClosure drain_queue(this, pss);
3550 
3551   // Setup the soft refs policy...
3552   rp->setup_policy(false);
3553 
3554   ReferenceProcessorPhaseTimes* pt = phase_times()->ref_phase_times();
3555 
3556   ReferenceProcessorStats stats;
3557   if (!rp->processing_is_mt()) {
3558     // Serial reference processing...
3559     stats = rp->process_discovered_references(&is_alive,
3560                                               &keep_alive,
3561                                               &drain_queue,
3562                                               NULL,
3563                                               pt);
3564   } else {
3565     uint no_of_gc_workers = workers()->active_workers();
3566 
3567     // Parallel reference processing
3568     assert(no_of_gc_workers <= rp->max_num_queues(),
3569            "Mismatch between the number of GC workers %u and the maximum number of Reference process queues %u",
3570            no_of_gc_workers,  rp->max_num_queues());
3571 
3572     G1STWRefProcTaskExecutor par_task_executor(this, per_thread_states, workers(), _task_queues);
3573     stats = rp->process_discovered_references(&is_alive,
3574                                               &keep_alive,
3575                                               &drain_queue,
3576                                               &par_task_executor,
3577                                               pt);
3578   }
3579 
3580   _gc_tracer_stw->report_gc_reference_stats(stats);
3581 
3582   // We have completed copying any necessary live referent objects.
3583   assert(pss->queue_is_empty(), "both queue and overflow should be empty");
3584 
3585   make_pending_list_reachable();
3586 
3587   assert(!rp->discovery_enabled(), "Postcondition");
3588   rp->verify_no_references_recorded();
3589 
3590   double ref_proc_time = os::elapsedTime() - ref_proc_start;
3591   phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
3592 }
3593 
3594 void G1CollectedHeap::make_pending_list_reachable() {
3595   if (collector_state()->in_initial_mark_gc()) {
3596     oop pll_head = Universe::reference_pending_list();
3597     if (pll_head != NULL) {
3598       // Any valid worker id is fine here as we are in the VM thread and single-threaded.
3599       _cm->mark_in_next_bitmap(0 /* worker_id */, pll_head);
3600     }
3601   }
3602 }
3603 
3604 void G1CollectedHeap::merge_per_thread_state_info(G1ParScanThreadStateSet* per_thread_states) {
3605   Ticks start = Ticks::now();
3606   per_thread_states->flush();
3607   phase_times()->record_or_add_time_secs(G1GCPhaseTimes::MergePSS, 0 /* worker_id */, (Ticks::now() - start).seconds());
3608 }
3609 
3610 class G1PrepareEvacuationTask : public AbstractGangTask {
3611   class G1PrepareRegionsClosure : public HeapRegionClosure {
3612     G1CollectedHeap* _g1h;
3613     G1PrepareEvacuationTask* _parent_task;
3614     size_t _worker_humongous_total;
3615     size_t _worker_humongous_candidates;
3616 
3617     bool humongous_region_is_candidate(HeapRegion* region) const {
3618       assert(region->is_starts_humongous(), "Must start a humongous object");
3619 
3620       oop obj = oop(region->bottom());
3621 
3622       // Dead objects cannot be eager reclaim candidates. Due to class
3623       // unloading it is unsafe to query their classes so we return early.
3624       if (_g1h->is_obj_dead(obj, region)) {
3625         return false;
3626       }
3627 
3628       // If we do not have a complete remembered set for the region, then we can
3629       // not be sure that we have all references to it.
3630       if (!region->rem_set()->is_complete()) {
3631         return false;
3632       }
3633       // Candidate selection must satisfy the following constraints
3634       // while concurrent marking is in progress:
3635       //
3636       // * In order to maintain SATB invariants, an object must not be
3637       // reclaimed if it was allocated before the start of marking and
3638       // has not had its references scanned.  Such an object must have
3639       // its references (including type metadata) scanned to ensure no
3640       // live objects are missed by the marking process.  Objects
3641       // allocated after the start of concurrent marking don't need to
3642       // be scanned.
3643       //
3644       // * An object must not be reclaimed if it is on the concurrent
3645       // mark stack.  Objects allocated after the start of concurrent
3646       // marking are never pushed on the mark stack.
3647       //
3648       // Nominating only objects allocated after the start of concurrent
3649       // marking is sufficient to meet both constraints.  This may miss
3650       // some objects that satisfy the constraints, but the marking data
3651       // structures don't support efficiently performing the needed
3652       // additional tests or scrubbing of the mark stack.
3653       //
3654       // However, we presently only nominate is_typeArray() objects.
3655       // A humongous object containing references induces remembered
3656       // set entries on other regions.  In order to reclaim such an
3657       // object, those remembered sets would need to be cleaned up.
3658       //
3659       // We also treat is_typeArray() objects specially, allowing them
3660       // to be reclaimed even if allocated before the start of
3661       // concurrent mark.  For this we rely on mark stack insertion to
3662       // exclude is_typeArray() objects, preventing reclaiming an object
3663       // that is in the mark stack.  We also rely on the metadata for
3664       // such objects to be built-in and so ensured to be kept live.
3665       // Frequent allocation and drop of large binary blobs is an
3666       // important use case for eager reclaim, and this special handling
3667       // may reduce needed headroom.
3668 
3669       return obj->is_typeArray() &&
3670              _g1h->is_potential_eager_reclaim_candidate(region);
3671     }
3672 
3673   public:
3674     G1PrepareRegionsClosure(G1CollectedHeap* g1h, G1PrepareEvacuationTask* parent_task) :
3675       _g1h(g1h),
3676       _parent_task(parent_task),
3677       _worker_humongous_total(0),
3678       _worker_humongous_candidates(0) { }
3679 
3680     ~G1PrepareRegionsClosure() {
3681       _parent_task->add_humongous_candidates(_worker_humongous_candidates);
3682       _parent_task->add_humongous_total(_worker_humongous_total);
3683     }
3684 
3685     virtual bool do_heap_region(HeapRegion* hr) {
3686       // First prepare the region for scanning
3687       _g1h->rem_set()->prepare_region_for_scan(hr);
3688 
3689       // Now check if region is a humongous candidate
3690       if (!hr->is_starts_humongous()) {
3691         _g1h->register_region_with_region_attr(hr);
3692         return false;
3693       }
3694 
3695       uint index = hr->hrm_index();
3696       if (humongous_region_is_candidate(hr)) {
3697         _g1h->set_humongous_reclaim_candidate(index, true);
3698         _g1h->register_humongous_region_with_region_attr(index);
3699         _worker_humongous_candidates++;
3700         // We will later handle the remembered sets of these regions.
3701       } else {
3702         _g1h->set_humongous_reclaim_candidate(index, false);
3703         _g1h->register_region_with_region_attr(hr);
3704       }
3705       _worker_humongous_total++;
3706 
3707       return false;
3708     }
3709   };
3710 
3711   G1CollectedHeap* _g1h;
3712   HeapRegionClaimer _claimer;
3713   volatile size_t _humongous_total;
3714   volatile size_t _humongous_candidates;
3715 public:
3716   G1PrepareEvacuationTask(G1CollectedHeap* g1h) :
3717     AbstractGangTask("Prepare Evacuation"),
3718     _g1h(g1h),
3719     _claimer(_g1h->workers()->active_workers()),
3720     _humongous_total(0),
3721     _humongous_candidates(0) { }
3722 
3723   ~G1PrepareEvacuationTask() {
3724     _g1h->set_has_humongous_reclaim_candidate(_humongous_candidates > 0);
3725   }
3726 
3727   void work(uint worker_id) {
3728     G1PrepareRegionsClosure cl(_g1h, this);
3729     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_claimer, worker_id);
3730   }
3731 
3732   void add_humongous_candidates(size_t candidates) {
3733     Atomic::add(&_humongous_candidates, candidates);
3734   }
3735 
3736   void add_humongous_total(size_t total) {
3737     Atomic::add(&_humongous_total, total);
3738   }
3739 
3740   size_t humongous_candidates() {
3741     return _humongous_candidates;
3742   }
3743 
3744   size_t humongous_total() {
3745     return _humongous_total;
3746   }
3747 };
3748 
3749 void G1CollectedHeap::pre_evacuate_collection_set(G1EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states) {
3750   _bytes_used_during_gc = 0;
3751 
3752   _expand_heap_after_alloc_failure = true;
3753   _evacuation_failed = false;
3754 
3755   // Disable the hot card cache.
3756   _hot_card_cache->reset_hot_cache_claimed_index();
3757   _hot_card_cache->set_use_cache(false);
3758 
3759   // Initialize the GC alloc regions.
3760   _allocator->init_gc_alloc_regions(evacuation_info);
3761 
3762   {
3763     Ticks start = Ticks::now();
3764     rem_set()->prepare_for_scan_heap_roots();
3765     phase_times()->record_prepare_heap_roots_time_ms((Ticks::now() - start).seconds() * 1000.0);
3766   }
3767 
3768   {
3769     G1PrepareEvacuationTask g1_prep_task(this);
3770     Tickspan task_time = run_task_timed(&g1_prep_task);
3771 
3772     phase_times()->record_register_regions(task_time.seconds() * 1000.0,
3773                                            g1_prep_task.humongous_total(),
3774                                            g1_prep_task.humongous_candidates());
3775   }
3776 
3777   assert(_verifier->check_region_attr_table(), "Inconsistency in the region attributes table.");
3778   _preserved_marks_set.assert_empty();
3779 
3780 #if COMPILER2_OR_JVMCI
3781   DerivedPointerTable::clear();
3782 #endif
3783 
3784   // InitialMark needs claim bits to keep track of the marked-through CLDs.
3785   if (collector_state()->in_initial_mark_gc()) {
3786     concurrent_mark()->pre_initial_mark();
3787 
3788     double start_clear_claimed_marks = os::elapsedTime();
3789 
3790     ClassLoaderDataGraph::clear_claimed_marks();
3791 
3792     double recorded_clear_claimed_marks_time_ms = (os::elapsedTime() - start_clear_claimed_marks) * 1000.0;
3793     phase_times()->record_clear_claimed_marks_time_ms(recorded_clear_claimed_marks_time_ms);
3794   }
3795 
3796   // Should G1EvacuationFailureALot be in effect for this GC?
3797   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
3798 }
3799 
3800 class G1EvacuateRegionsBaseTask : public AbstractGangTask {
3801 protected:
3802   G1CollectedHeap* _g1h;
3803   G1ParScanThreadStateSet* _per_thread_states;
3804   G1ScannerTasksQueueSet* _task_queues;
3805   TaskTerminator _terminator;
3806   uint _num_workers;
3807 
3808   void evacuate_live_objects(G1ParScanThreadState* pss,
3809                              uint worker_id,
3810                              G1GCPhaseTimes::GCParPhases objcopy_phase,
3811                              G1GCPhaseTimes::GCParPhases termination_phase) {
3812     G1GCPhaseTimes* p = _g1h->phase_times();
3813 
3814     Ticks start = Ticks::now();
3815     G1ParEvacuateFollowersClosure cl(_g1h, pss, _task_queues, &_terminator, objcopy_phase);
3816     cl.do_void();
3817 
3818     assert(pss->queue_is_empty(), "should be empty");
3819 
3820     Tickspan evac_time = (Ticks::now() - start);
3821     p->record_or_add_time_secs(objcopy_phase, worker_id, evac_time.seconds() - cl.term_time());
3822 
3823     if (termination_phase == G1GCPhaseTimes::Termination) {
3824       p->record_time_secs(termination_phase, worker_id, cl.term_time());
3825       p->record_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3826     } else {
3827       p->record_or_add_time_secs(termination_phase, worker_id, cl.term_time());
3828       p->record_or_add_thread_work_item(termination_phase, worker_id, cl.term_attempts());
3829     }
3830     assert(pss->trim_ticks().seconds() == 0.0, "Unexpected partial trimming during evacuation");
3831   }
3832 
3833   virtual void start_work(uint worker_id) { }
3834 
3835   virtual void end_work(uint worker_id) { }
3836 
3837   virtual void scan_roots(G1ParScanThreadState* pss, uint worker_id) = 0;
3838 
3839   virtual void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) = 0;
3840 
3841 public:
3842   G1EvacuateRegionsBaseTask(const char* name,
3843                             G1ParScanThreadStateSet* per_thread_states,
3844                             G1ScannerTasksQueueSet* task_queues,
3845                             uint num_workers) :
3846     AbstractGangTask(name),
3847     _g1h(G1CollectedHeap::heap()),
3848     _per_thread_states(per_thread_states),
3849     _task_queues(task_queues),
3850     _terminator(num_workers, _task_queues),
3851     _num_workers(num_workers)
3852   { }
3853 
3854   void work(uint worker_id) {
3855     start_work(worker_id);
3856 
3857     {
3858       ResourceMark rm;
3859       HandleMark   hm;
3860 
3861       G1ParScanThreadState* pss = _per_thread_states->state_for_worker(worker_id);
3862       pss->set_ref_discoverer(_g1h->ref_processor_stw());
3863 
3864       scan_roots(pss, worker_id);
3865       evacuate_live_objects(pss, worker_id);
3866     }
3867 
3868     end_work(worker_id);
3869   }
3870 };
3871 
3872 class G1EvacuateRegionsTask : public G1EvacuateRegionsBaseTask {
3873   G1RootProcessor* _root_processor;
3874 
3875   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3876     _root_processor->evacuate_roots(pss, worker_id);
3877     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::ObjCopy);
3878     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::ScanHR, G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy);
3879   }
3880 
3881   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3882     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::ObjCopy, G1GCPhaseTimes::Termination);
3883   }
3884 
3885   void start_work(uint worker_id) {
3886     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, Ticks::now().seconds());
3887   }
3888 
3889   void end_work(uint worker_id) {
3890     _g1h->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, Ticks::now().seconds());
3891   }
3892 
3893 public:
3894   G1EvacuateRegionsTask(G1CollectedHeap* g1h,
3895                         G1ParScanThreadStateSet* per_thread_states,
3896                         G1ScannerTasksQueueSet* task_queues,
3897                         G1RootProcessor* root_processor,
3898                         uint num_workers) :
3899     G1EvacuateRegionsBaseTask("G1 Evacuate Regions", per_thread_states, task_queues, num_workers),
3900     _root_processor(root_processor)
3901   { }
3902 };
3903 
3904 void G1CollectedHeap::evacuate_initial_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3905   G1GCPhaseTimes* p = phase_times();
3906 
3907   {
3908     Ticks start = Ticks::now();
3909     rem_set()->merge_heap_roots(true /* initial_evacuation */);
3910     p->record_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3911   }
3912 
3913   Tickspan task_time;
3914   const uint num_workers = workers()->active_workers();
3915 
3916   Ticks start_processing = Ticks::now();
3917   {
3918     G1RootProcessor root_processor(this, num_workers);
3919     G1EvacuateRegionsTask g1_par_task(this, per_thread_states, _task_queues, &root_processor, num_workers);
3920     task_time = run_task_timed(&g1_par_task);
3921     // Closing the inner scope will execute the destructor for the G1RootProcessor object.
3922     // To extract its code root fixup time we measure total time of this scope and
3923     // subtract from the time the WorkGang task took.
3924   }
3925   Tickspan total_processing = Ticks::now() - start_processing;
3926 
3927   p->record_initial_evac_time(task_time.seconds() * 1000.0);
3928   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3929 }
3930 
3931 class G1EvacuateOptionalRegionsTask : public G1EvacuateRegionsBaseTask {
3932 
3933   void scan_roots(G1ParScanThreadState* pss, uint worker_id) {
3934     _g1h->rem_set()->scan_heap_roots(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptObjCopy);
3935     _g1h->rem_set()->scan_collection_set_regions(pss, worker_id, G1GCPhaseTimes::OptScanHR, G1GCPhaseTimes::OptCodeRoots, G1GCPhaseTimes::OptObjCopy);
3936   }
3937 
3938   void evacuate_live_objects(G1ParScanThreadState* pss, uint worker_id) {
3939     G1EvacuateRegionsBaseTask::evacuate_live_objects(pss, worker_id, G1GCPhaseTimes::OptObjCopy, G1GCPhaseTimes::OptTermination);
3940   }
3941 
3942 public:
3943   G1EvacuateOptionalRegionsTask(G1ParScanThreadStateSet* per_thread_states,
3944                                 G1ScannerTasksQueueSet* queues,
3945                                 uint num_workers) :
3946     G1EvacuateRegionsBaseTask("G1 Evacuate Optional Regions", per_thread_states, queues, num_workers) {
3947   }
3948 };
3949 
3950 void G1CollectedHeap::evacuate_next_optional_regions(G1ParScanThreadStateSet* per_thread_states) {
3951   class G1MarkScope : public MarkScope { };
3952 
3953   Tickspan task_time;
3954 
3955   Ticks start_processing = Ticks::now();
3956   {
3957     G1MarkScope code_mark_scope;
3958     G1EvacuateOptionalRegionsTask task(per_thread_states, _task_queues, workers()->active_workers());
3959     task_time = run_task_timed(&task);
3960     // See comment in evacuate_collection_set() for the reason of the scope.
3961   }
3962   Tickspan total_processing = Ticks::now() - start_processing;
3963 
3964   G1GCPhaseTimes* p = phase_times();
3965   p->record_or_add_code_root_fixup_time((total_processing - task_time).seconds() * 1000.0);
3966 }
3967 
3968 void G1CollectedHeap::evacuate_optional_collection_set(G1ParScanThreadStateSet* per_thread_states) {
3969   const double gc_start_time_ms = phase_times()->cur_collection_start_sec() * 1000.0;
3970 
3971   while (!evacuation_failed() && _collection_set.optional_region_length() > 0) {
3972 
3973     double time_used_ms = os::elapsedTime() * 1000.0 - gc_start_time_ms;
3974     double time_left_ms = MaxGCPauseMillis - time_used_ms;
3975 
3976     if (time_left_ms < 0 ||
3977         !_collection_set.finalize_optional_for_evacuation(time_left_ms * policy()->optional_evacuation_fraction())) {
3978       log_trace(gc, ergo, cset)("Skipping evacuation of %u optional regions, no more regions can be evacuated in %.3fms",
3979                                 _collection_set.optional_region_length(), time_left_ms);
3980       break;
3981     }
3982 
3983     {
3984       Ticks start = Ticks::now();
3985       rem_set()->merge_heap_roots(false /* initial_evacuation */);
3986       phase_times()->record_or_add_optional_merge_heap_roots_time((Ticks::now() - start).seconds() * 1000.0);
3987     }
3988 
3989     {
3990       Ticks start = Ticks::now();
3991       evacuate_next_optional_regions(per_thread_states);
3992       phase_times()->record_or_add_optional_evac_time((Ticks::now() - start).seconds() * 1000.0);
3993     }
3994   }
3995 
3996   _collection_set.abandon_optional_collection_set(per_thread_states);
3997 }
3998 
3999 void G1CollectedHeap::post_evacuate_collection_set(G1EvacuationInfo& evacuation_info,
4000                                                    G1RedirtyCardsQueueSet* rdcqs,
4001                                                    G1ParScanThreadStateSet* per_thread_states) {
4002   G1GCPhaseTimes* p = phase_times();
4003 
4004   rem_set()->cleanup_after_scan_heap_roots();
4005 
4006   // Process any discovered reference objects - we have
4007   // to do this _before_ we retire the GC alloc regions
4008   // as we may have to copy some 'reachable' referent
4009   // objects (and their reachable sub-graphs) that were
4010   // not copied during the pause.
4011   process_discovered_references(per_thread_states);
4012 
4013   G1STWIsAliveClosure is_alive(this);
4014   G1KeepAliveClosure keep_alive(this);
4015 
4016   WeakProcessor::weak_oops_do(workers(), &is_alive, &keep_alive, p->weak_phase_times());
4017 
4018   if (G1StringDedup::is_enabled()) {
4019     double string_dedup_time_ms = os::elapsedTime();
4020 
4021     string_dedup_cleaning(&is_alive, &keep_alive, p);
4022 
4023     double string_cleanup_time_ms = (os::elapsedTime() - string_dedup_time_ms) * 1000.0;
4024     p->record_string_deduplication_time(string_cleanup_time_ms);
4025   }
4026 
4027   _allocator->release_gc_alloc_regions(evacuation_info);
4028 
4029   if (evacuation_failed()) {
4030     restore_after_evac_failure(rdcqs);
4031 
4032     // Reset the G1EvacuationFailureALot counters and flags
4033     NOT_PRODUCT(reset_evacuation_should_fail();)
4034 
4035     double recalculate_used_start = os::elapsedTime();
4036     set_used(recalculate_used());
4037     p->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
4038 
4039     if (_archive_allocator != NULL) {
4040       _archive_allocator->clear_used();
4041     }
4042     for (uint i = 0; i < ParallelGCThreads; i++) {
4043       if (_evacuation_failed_info_array[i].has_failed()) {
4044         _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4045       }
4046     }
4047   } else {
4048     // The "used" of the the collection set have already been subtracted
4049     // when they were freed.  Add in the bytes used.
4050     increase_used(_bytes_used_during_gc);
4051   }
4052 
4053   _preserved_marks_set.assert_empty();
4054 
4055   merge_per_thread_state_info(per_thread_states);
4056 
4057   // Reset and re-enable the hot card cache.
4058   // Note the counts for the cards in the regions in the
4059   // collection set are reset when the collection set is freed.
4060   _hot_card_cache->reset_hot_cache();
4061   _hot_card_cache->set_use_cache(true);
4062 
4063   purge_code_root_memory();
4064 
4065   redirty_logged_cards(rdcqs);
4066 
4067   free_collection_set(&_collection_set, evacuation_info, per_thread_states->surviving_young_words());
4068 
4069   eagerly_reclaim_humongous_regions();
4070 
4071   record_obj_copy_mem_stats();
4072 
4073   evacuation_info.set_collectionset_used_before(collection_set()->bytes_used_before());
4074   evacuation_info.set_bytes_used(_bytes_used_during_gc);
4075 
4076 #if COMPILER2_OR_JVMCI
4077   double start = os::elapsedTime();
4078   DerivedPointerTable::update_pointers();
4079   phase_times()->record_derived_pointer_table_update_time((os::elapsedTime() - start) * 1000.0);
4080 #endif
4081   policy()->print_age_table();
4082 }
4083 
4084 void G1CollectedHeap::record_obj_copy_mem_stats() {
4085   policy()->old_gen_alloc_tracker()->
4086     add_allocated_bytes_since_last_gc(_old_evac_stats.allocated() * HeapWordSize);
4087 
4088   _gc_tracer_stw->report_evacuation_statistics(create_g1_evac_summary(&_survivor_evac_stats),
4089                                                create_g1_evac_summary(&_old_evac_stats));
4090 }
4091 
4092 void G1CollectedHeap::free_region(HeapRegion* hr, FreeRegionList* free_list) {
4093   assert(!hr->is_free(), "the region should not be free");
4094   assert(!hr->is_empty(), "the region should not be empty");
4095   assert(_hrm->is_available(hr->hrm_index()), "region should be committed");
4096 
4097   if (G1VerifyBitmaps) {
4098     MemRegion mr(hr->bottom(), hr->end());
4099     concurrent_mark()->clear_range_in_prev_bitmap(mr);
4100   }
4101 
4102   // Clear the card counts for this region.
4103   // Note: we only need to do this if the region is not young
4104   // (since we don't refine cards in young regions).
4105   if (!hr->is_young()) {
4106     _hot_card_cache->reset_card_counts(hr);
4107   }
4108 
4109   // Reset region metadata to allow reuse.
4110   hr->hr_clear(true /* clear_space */);
4111   _policy->remset_tracker()->update_at_free(hr);
4112 
4113   if (free_list != NULL) {
4114     free_list->add_ordered(hr);
4115   }
4116 }
4117 
4118 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
4119                                             FreeRegionList* free_list) {
4120   assert(hr->is_humongous(), "this is only for humongous regions");
4121   assert(free_list != NULL, "pre-condition");
4122   hr->clear_humongous();
4123   free_region(hr, free_list);
4124 }
4125 
4126 void G1CollectedHeap::remove_from_old_sets(const uint old_regions_removed,
4127                                            const uint humongous_regions_removed) {
4128   if (old_regions_removed > 0 || humongous_regions_removed > 0) {
4129     MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4130     _old_set.bulk_remove(old_regions_removed);
4131     _humongous_set.bulk_remove(humongous_regions_removed);
4132   }
4133 
4134 }
4135 
4136 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
4137   assert(list != NULL, "list can't be null");
4138   if (!list->is_empty()) {
4139     MutexLocker x(FreeList_lock, Mutex::_no_safepoint_check_flag);
4140     _hrm->insert_list_into_free_list(list);
4141   }
4142 }
4143 
4144 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
4145   decrease_used(bytes);
4146 }
4147 
4148 class G1FreeCollectionSetTask : public AbstractGangTask {
4149   // Helper class to keep statistics for the collection set freeing
4150   class FreeCSetStats {
4151     size_t _before_used_bytes;   // Usage in regions successfully evacutate
4152     size_t _after_used_bytes;    // Usage in regions failing evacuation
4153     size_t _bytes_allocated_in_old_since_last_gc; // Size of young regions turned into old
4154     size_t _failure_used_words;  // Live size in failed regions
4155     size_t _failure_waste_words; // Wasted size in failed regions
4156     size_t _rs_length;           // Remembered set size
4157     uint _regions_freed;         // Number of regions freed
4158   public:
4159     FreeCSetStats() :
4160         _before_used_bytes(0),
4161         _after_used_bytes(0),
4162         _bytes_allocated_in_old_since_last_gc(0),
4163         _failure_used_words(0),
4164         _failure_waste_words(0),
4165         _rs_length(0),
4166         _regions_freed(0) { }
4167 
4168     void merge_stats(FreeCSetStats* other) {
4169       assert(other != NULL, "invariant");
4170       _before_used_bytes += other->_before_used_bytes;
4171       _after_used_bytes += other->_after_used_bytes;
4172       _bytes_allocated_in_old_since_last_gc += other->_bytes_allocated_in_old_since_last_gc;
4173       _failure_used_words += other->_failure_used_words;
4174       _failure_waste_words += other->_failure_waste_words;
4175       _rs_length += other->_rs_length;
4176       _regions_freed += other->_regions_freed;
4177     }
4178 
4179     void report(G1CollectedHeap* g1h, G1EvacuationInfo* evacuation_info) {
4180       evacuation_info->set_regions_freed(_regions_freed);
4181       evacuation_info->increment_collectionset_used_after(_after_used_bytes);
4182 
4183       g1h->decrement_summary_bytes(_before_used_bytes);
4184       g1h->alloc_buffer_stats(G1HeapRegionAttr::Old)->add_failure_used_and_waste(_failure_used_words, _failure_waste_words);
4185 
4186       G1Policy *policy = g1h->policy();
4187       policy->old_gen_alloc_tracker()->add_allocated_bytes_since_last_gc(_bytes_allocated_in_old_since_last_gc);
4188       policy->record_rs_length(_rs_length);
4189       policy->cset_regions_freed();
4190     }
4191 
4192     void account_failed_region(HeapRegion* r) {
4193       size_t used_words = r->marked_bytes() / HeapWordSize;
4194       _failure_used_words += used_words;
4195       _failure_waste_words += HeapRegion::GrainWords - used_words;
4196       _after_used_bytes += r->used();
4197 
4198       // When moving a young gen region to old gen, we "allocate" that whole
4199       // region there. This is in addition to any already evacuated objects.
4200       // Notify the policy about that. Old gen regions do not cause an
4201       // additional allocation: both the objects still in the region and the
4202       // ones already moved are accounted for elsewhere.
4203       if (r->is_young()) {
4204         _bytes_allocated_in_old_since_last_gc += HeapRegion::GrainBytes;
4205       }
4206     }
4207 
4208     void account_evacuated_region(HeapRegion* r) {
4209       _before_used_bytes += r->used();
4210       _regions_freed += 1;
4211     }
4212 
4213     void account_rs_length(HeapRegion* r) {
4214       _rs_length += r->rem_set()->occupied();
4215     }
4216   };
4217 
4218   // Closure applied to all regions in the collection set.
4219   class FreeCSetClosure : public HeapRegionClosure {
4220     // Helper to send JFR events for regions.
4221     class JFREventForRegion {
4222       EventGCPhaseParallel _event;
4223     public:
4224       JFREventForRegion(HeapRegion* region, uint worker_id) : _event() {
4225         _event.set_gcId(GCId::current());
4226         _event.set_gcWorkerId(worker_id);
4227         if (region->is_young()) {
4228           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::YoungFreeCSet));
4229         } else {
4230           _event.set_name(G1GCPhaseTimes::phase_name(G1GCPhaseTimes::NonYoungFreeCSet));
4231         }
4232       }
4233 
4234       ~JFREventForRegion() {
4235         _event.commit();
4236       }
4237     };
4238 
4239     // Helper to do timing for region work.
4240     class TimerForRegion {
4241       Tickspan& _time;
4242       Ticks     _start_time;
4243     public:
4244       TimerForRegion(Tickspan& time) : _time(time), _start_time(Ticks::now()) { }
4245       ~TimerForRegion() {
4246         _time += Ticks::now() - _start_time;
4247       }
4248     };
4249 
4250     // FreeCSetClosure members
4251     G1CollectedHeap* _g1h;
4252     const size_t*    _surviving_young_words;
4253     uint             _worker_id;
4254     Tickspan         _young_time;
4255     Tickspan         _non_young_time;
4256     FreeCSetStats*   _stats;
4257 
4258     void assert_in_cset(HeapRegion* r) {
4259       assert(r->young_index_in_cset() != 0 &&
4260              (uint)r->young_index_in_cset() <= _g1h->collection_set()->young_region_length(),
4261              "Young index %u is wrong for region %u of type %s with %u young regions",
4262              r->young_index_in_cset(), r->hrm_index(), r->get_type_str(), _g1h->collection_set()->young_region_length());
4263     }
4264 
4265     void handle_evacuated_region(HeapRegion* r) {
4266       assert(!r->is_empty(), "Region %u is an empty region in the collection set.", r->hrm_index());
4267       stats()->account_evacuated_region(r);
4268 
4269       // Free the region and and its remembered set.
4270       _g1h->free_region(r, NULL);
4271     }
4272 
4273     void handle_failed_region(HeapRegion* r) {
4274       // Do some allocation statistics accounting. Regions that failed evacuation
4275       // are always made old, so there is no need to update anything in the young
4276       // gen statistics, but we need to update old gen statistics.
4277       stats()->account_failed_region(r);
4278 
4279       // Update the region state due to the failed evacuation.
4280       r->handle_evacuation_failure();
4281 
4282       // Add region to old set, need to hold lock.
4283       MutexLocker x(OldSets_lock, Mutex::_no_safepoint_check_flag);
4284       _g1h->old_set_add(r);
4285     }
4286 
4287     Tickspan& timer_for_region(HeapRegion* r) {
4288       return r->is_young() ? _young_time : _non_young_time;
4289     }
4290 
4291     FreeCSetStats* stats() {
4292       return _stats;
4293     }
4294   public:
4295     FreeCSetClosure(const size_t* surviving_young_words,
4296                     uint worker_id,
4297                     FreeCSetStats* stats) :
4298         HeapRegionClosure(),
4299         _g1h(G1CollectedHeap::heap()),
4300         _surviving_young_words(surviving_young_words),
4301         _worker_id(worker_id),
4302         _young_time(),
4303         _non_young_time(),
4304         _stats(stats) { }
4305 
4306     virtual bool do_heap_region(HeapRegion* r) {
4307       assert(r->in_collection_set(), "Invariant: %u missing from CSet", r->hrm_index());
4308       JFREventForRegion event(r, _worker_id);
4309       TimerForRegion timer(timer_for_region(r));
4310 
4311       _g1h->clear_region_attr(r);
4312       stats()->account_rs_length(r);
4313 
4314       if (r->is_young()) {
4315         assert_in_cset(r);
4316         r->record_surv_words_in_group(_surviving_young_words[r->young_index_in_cset()]);
4317       }
4318 
4319       if (r->evacuation_failed()) {
4320         handle_failed_region(r);
4321       } else {
4322         handle_evacuated_region(r);
4323       }
4324       assert(!_g1h->is_on_master_free_list(r), "sanity");
4325 
4326       return false;
4327     }
4328 
4329     void report_timing(Tickspan parallel_time) {
4330       G1GCPhaseTimes* pt = _g1h->phase_times();
4331       pt->record_time_secs(G1GCPhaseTimes::ParFreeCSet, _worker_id, parallel_time.seconds());
4332       if (_young_time.value() > 0) {
4333         pt->record_time_secs(G1GCPhaseTimes::YoungFreeCSet, _worker_id, _young_time.seconds());
4334       }
4335       if (_non_young_time.value() > 0) {
4336         pt->record_time_secs(G1GCPhaseTimes::NonYoungFreeCSet, _worker_id, _non_young_time.seconds());
4337       }
4338     }
4339   };
4340 
4341   // G1FreeCollectionSetTask members
4342   G1CollectedHeap*  _g1h;
4343   G1EvacuationInfo* _evacuation_info;
4344   FreeCSetStats*    _worker_stats;
4345   HeapRegionClaimer _claimer;
4346   const size_t*     _surviving_young_words;
4347   uint              _active_workers;
4348 
4349   FreeCSetStats* worker_stats(uint worker) {
4350     return &_worker_stats[worker];
4351   }
4352 
4353   void report_statistics() {
4354     // Merge the accounting
4355     FreeCSetStats total_stats;
4356     for (uint worker = 0; worker < _active_workers; worker++) {
4357       total_stats.merge_stats(worker_stats(worker));
4358     }
4359     total_stats.report(_g1h, _evacuation_info);
4360   }
4361 
4362 public:
4363   G1FreeCollectionSetTask(G1EvacuationInfo* evacuation_info, const size_t* surviving_young_words, uint active_workers) :
4364       AbstractGangTask("G1 Free Collection Set"),
4365       _g1h(G1CollectedHeap::heap()),
4366       _evacuation_info(evacuation_info),
4367       _worker_stats(NEW_C_HEAP_ARRAY(FreeCSetStats, active_workers, mtGC)),
4368       _claimer(active_workers),
4369       _surviving_young_words(surviving_young_words),
4370       _active_workers(active_workers) {
4371     for (uint worker = 0; worker < active_workers; worker++) {
4372       ::new (&_worker_stats[worker]) FreeCSetStats();
4373     }
4374   }
4375 
4376   ~G1FreeCollectionSetTask() {
4377     Ticks serial_time = Ticks::now();
4378     report_statistics();
4379     for (uint worker = 0; worker < _active_workers; worker++) {
4380       _worker_stats[worker].~FreeCSetStats();
4381     }
4382     FREE_C_HEAP_ARRAY(FreeCSetStats, _worker_stats);
4383     _g1h->phase_times()->record_serial_free_cset_time_ms((Ticks::now() - serial_time).seconds() * 1000.0);
4384   }
4385 
4386   virtual void work(uint worker_id) {
4387     EventGCPhaseParallel event;
4388     Ticks start = Ticks::now();
4389     FreeCSetClosure cl(_surviving_young_words, worker_id, worker_stats(worker_id));
4390     _g1h->collection_set_par_iterate_all(&cl, &_claimer, worker_id);
4391 
4392     // Report the total parallel time along with some more detailed metrics.
4393     cl.report_timing(Ticks::now() - start);
4394     event.commit(GCId::current(), worker_id, G1GCPhaseTimes::phase_name(G1GCPhaseTimes::ParFreeCSet));
4395   }
4396 };
4397 
4398 void G1CollectedHeap::free_collection_set(G1CollectionSet* collection_set, G1EvacuationInfo& evacuation_info, const size_t* surviving_young_words) {
4399   _eden.clear();
4400 
4401   // The free collections set is split up in two tasks, the first
4402   // frees the collection set and records what regions are free,
4403   // and the second one rebuilds the free list. This proved to be
4404   // more efficient than adding a sorted list to another.
4405 
4406   Ticks free_cset_start_time = Ticks::now();
4407   {
4408     uint const num_cs_regions = _collection_set.region_length();
4409     uint const num_workers = clamp(num_cs_regions, 1u, workers()->active_workers());
4410     G1FreeCollectionSetTask cl(&evacuation_info, surviving_young_words, num_workers);
4411 
4412     log_debug(gc, ergo)("Running %s using %u workers for collection set length %u (%u)",
4413                         cl.name(), num_workers, num_cs_regions, num_regions());
4414     workers()->run_task(&cl, num_workers);
4415   }
4416 
4417   Ticks free_cset_end_time = Ticks::now();
4418   phase_times()->record_total_free_cset_time_ms((free_cset_end_time - free_cset_start_time).seconds() * 1000.0);
4419 
4420   // Now rebuild the free region list.
4421   hrm()->rebuild_free_list(workers());
4422   phase_times()->record_total_rebuild_freelist_time_ms((Ticks::now() - free_cset_end_time).seconds() * 1000.0);
4423 
4424   collection_set->clear();
4425 }
4426 
4427 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
4428  private:
4429   FreeRegionList* _free_region_list;
4430   HeapRegionSet* _proxy_set;
4431   uint _humongous_objects_reclaimed;
4432   uint _humongous_regions_reclaimed;
4433   size_t _freed_bytes;
4434  public:
4435 
4436   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
4437     _free_region_list(free_region_list), _proxy_set(NULL), _humongous_objects_reclaimed(0), _humongous_regions_reclaimed(0), _freed_bytes(0) {
4438   }
4439 
4440   virtual bool do_heap_region(HeapRegion* r) {
4441     if (!r->is_starts_humongous()) {
4442       return false;
4443     }
4444 
4445     G1CollectedHeap* g1h = G1CollectedHeap::heap();
4446 
4447     oop obj = (oop)r->bottom();
4448     G1CMBitMap* next_bitmap = g1h->concurrent_mark()->next_mark_bitmap();
4449 
4450     // The following checks whether the humongous object is live are sufficient.
4451     // The main additional check (in addition to having a reference from the roots
4452     // or the young gen) is whether the humongous object has a remembered set entry.
4453     //
4454     // A humongous object cannot be live if there is no remembered set for it
4455     // because:
4456     // - there can be no references from within humongous starts regions referencing
4457     // the object because we never allocate other objects into them.
4458     // (I.e. there are no intra-region references that may be missed by the
4459     // remembered set)
4460     // - as soon there is a remembered set entry to the humongous starts region
4461     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
4462     // until the end of a concurrent mark.
4463     //
4464     // It is not required to check whether the object has been found dead by marking
4465     // or not, in fact it would prevent reclamation within a concurrent cycle, as
4466     // all objects allocated during that time are considered live.
4467     // SATB marking is even more conservative than the remembered set.
4468     // So if at this point in the collection there is no remembered set entry,
4469     // nobody has a reference to it.
4470     // At the start of collection we flush all refinement logs, and remembered sets
4471     // are completely up-to-date wrt to references to the humongous object.
4472     //
4473     // Other implementation considerations:
4474     // - never consider object arrays at this time because they would pose
4475     // considerable effort for cleaning up the the remembered sets. This is
4476     // required because stale remembered sets might reference locations that
4477     // are currently allocated into.
4478     uint region_idx = r->hrm_index();
4479     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
4480         !r->rem_set()->is_empty()) {
4481       log_debug(gc, humongous)("Live humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT "  with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4482                                region_idx,
4483                                (size_t)obj->size() * HeapWordSize,
4484                                p2i(r->bottom()),
4485                                r->rem_set()->occupied(),
4486                                r->rem_set()->strong_code_roots_list_length(),
4487                                next_bitmap->is_marked(r->bottom()),
4488                                g1h->is_humongous_reclaim_candidate(region_idx),
4489                                obj->is_typeArray()
4490                               );
4491       return false;
4492     }
4493 
4494     guarantee(obj->is_typeArray(),
4495               "Only eagerly reclaiming type arrays is supported, but the object "
4496               PTR_FORMAT " is not.", p2i(r->bottom()));
4497 
4498     log_debug(gc, humongous)("Dead humongous region %u object size " SIZE_FORMAT " start " PTR_FORMAT " with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
4499                              region_idx,
4500                              (size_t)obj->size() * HeapWordSize,
4501                              p2i(r->bottom()),
4502                              r->rem_set()->occupied(),
4503                              r->rem_set()->strong_code_roots_list_length(),
4504                              next_bitmap->is_marked(r->bottom()),
4505                              g1h->is_humongous_reclaim_candidate(region_idx),
4506                              obj->is_typeArray()
4507                             );
4508 
4509     G1ConcurrentMark* const cm = g1h->concurrent_mark();
4510     cm->humongous_object_eagerly_reclaimed(r);
4511     assert(!cm->is_marked_in_prev_bitmap(obj) && !cm->is_marked_in_next_bitmap(obj),
4512            "Eagerly reclaimed humongous region %u should not be marked at all but is in prev %s next %s",
4513            region_idx,
4514            BOOL_TO_STR(cm->is_marked_in_prev_bitmap(obj)),
4515            BOOL_TO_STR(cm->is_marked_in_next_bitmap(obj)));
4516     _humongous_objects_reclaimed++;
4517     do {
4518       HeapRegion* next = g1h->next_region_in_humongous(r);
4519       _freed_bytes += r->used();
4520       r->set_containing_set(NULL);
4521       _humongous_regions_reclaimed++;
4522       g1h->free_humongous_region(r, _free_region_list);
4523       r = next;
4524     } while (r != NULL);
4525 
4526     return false;
4527   }
4528 
4529   uint humongous_objects_reclaimed() {
4530     return _humongous_objects_reclaimed;
4531   }
4532 
4533   uint humongous_regions_reclaimed() {
4534     return _humongous_regions_reclaimed;
4535   }
4536 
4537   size_t bytes_freed() const {
4538     return _freed_bytes;
4539   }
4540 };
4541 
4542 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
4543   assert_at_safepoint_on_vm_thread();
4544 
4545   if (!G1EagerReclaimHumongousObjects ||
4546       (!_has_humongous_reclaim_candidates && !log_is_enabled(Debug, gc, humongous))) {
4547     phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
4548     return;
4549   }
4550 
4551   double start_time = os::elapsedTime();
4552 
4553   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
4554 
4555   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
4556   heap_region_iterate(&cl);
4557 
4558   remove_from_old_sets(0, cl.humongous_regions_reclaimed());
4559 
4560   G1HRPrinter* hrp = hr_printer();
4561   if (hrp->is_active()) {
4562     FreeRegionListIterator iter(&local_cleanup_list);
4563     while (iter.more_available()) {
4564       HeapRegion* hr = iter.get_next();
4565       hrp->cleanup(hr);
4566     }
4567   }
4568 
4569   prepend_to_freelist(&local_cleanup_list);
4570   decrement_summary_bytes(cl.bytes_freed());
4571 
4572   phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
4573                                                        cl.humongous_objects_reclaimed());
4574 }
4575 
4576 class G1AbandonCollectionSetClosure : public HeapRegionClosure {
4577 public:
4578   virtual bool do_heap_region(HeapRegion* r) {
4579     assert(r->in_collection_set(), "Region %u must have been in collection set", r->hrm_index());
4580     G1CollectedHeap::heap()->clear_region_attr(r);
4581     r->clear_young_index_in_cset();
4582     return false;
4583   }
4584 };
4585 
4586 void G1CollectedHeap::abandon_collection_set(G1CollectionSet* collection_set) {
4587   G1AbandonCollectionSetClosure cl;
4588   collection_set_iterate_all(&cl);
4589 
4590   collection_set->clear();
4591   collection_set->stop_incremental_building();
4592 }
4593 
4594 bool G1CollectedHeap::is_old_gc_alloc_region(HeapRegion* hr) {
4595   return _allocator->is_retained_old_region(hr);
4596 }
4597 
4598 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
4599   _eden.add(hr);
4600   _policy->set_region_eden(hr);
4601 }
4602 
4603 #ifdef ASSERT
4604 
4605 class NoYoungRegionsClosure: public HeapRegionClosure {
4606 private:
4607   bool _success;
4608 public:
4609   NoYoungRegionsClosure() : _success(true) { }
4610   bool do_heap_region(HeapRegion* r) {
4611     if (r->is_young()) {
4612       log_error(gc, verify)("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
4613                             p2i(r->bottom()), p2i(r->end()));
4614       _success = false;
4615     }
4616     return false;
4617   }
4618   bool success() { return _success; }
4619 };
4620 
4621 bool G1CollectedHeap::check_young_list_empty() {
4622   bool ret = (young_regions_count() == 0);
4623 
4624   NoYoungRegionsClosure closure;
4625   heap_region_iterate(&closure);
4626   ret = ret && closure.success();
4627 
4628   return ret;
4629 }
4630 
4631 #endif // ASSERT
4632 
4633 class TearDownRegionSetsClosure : public HeapRegionClosure {
4634   HeapRegionSet *_old_set;
4635 
4636 public:
4637   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
4638 
4639   bool do_heap_region(HeapRegion* r) {
4640     if (r->is_old()) {
4641       _old_set->remove(r);
4642     } else if(r->is_young()) {
4643       r->uninstall_surv_rate_group();
4644     } else {
4645       // We ignore free regions, we'll empty the free list afterwards.
4646       // We ignore humongous and archive regions, we're not tearing down these
4647       // sets.
4648       assert(r->is_archive() || r->is_free() || r->is_humongous(),
4649              "it cannot be another type");
4650     }
4651     return false;
4652   }
4653 
4654   ~TearDownRegionSetsClosure() {
4655     assert(_old_set->is_empty(), "post-condition");
4656   }
4657 };
4658 
4659 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
4660   assert_at_safepoint_on_vm_thread();
4661 
4662   if (!free_list_only) {
4663     TearDownRegionSetsClosure cl(&_old_set);
4664     heap_region_iterate(&cl);
4665 
4666     // Note that emptying the _young_list is postponed and instead done as
4667     // the first step when rebuilding the regions sets again. The reason for
4668     // this is that during a full GC string deduplication needs to know if
4669     // a collected region was young or old when the full GC was initiated.
4670   }
4671   _hrm->remove_all_free_regions();
4672 }
4673 
4674 void G1CollectedHeap::increase_used(size_t bytes) {
4675   _summary_bytes_used += bytes;
4676 }
4677 
4678 void G1CollectedHeap::decrease_used(size_t bytes) {
4679   assert(_summary_bytes_used >= bytes,
4680          "invariant: _summary_bytes_used: " SIZE_FORMAT " should be >= bytes: " SIZE_FORMAT,
4681          _summary_bytes_used, bytes);
4682   _summary_bytes_used -= bytes;
4683 }
4684 
4685 void G1CollectedHeap::set_used(size_t bytes) {
4686   _summary_bytes_used = bytes;
4687 }
4688 
4689 class RebuildRegionSetsClosure : public HeapRegionClosure {
4690 private:
4691   bool _free_list_only;
4692 
4693   HeapRegionSet* _old_set;
4694   HeapRegionManager* _hrm;
4695 
4696   size_t _total_used;
4697 
4698 public:
4699   RebuildRegionSetsClosure(bool free_list_only,
4700                            HeapRegionSet* old_set,
4701                            HeapRegionManager* hrm) :
4702     _free_list_only(free_list_only),
4703     _old_set(old_set), _hrm(hrm), _total_used(0) {
4704     assert(_hrm->num_free_regions() == 0, "pre-condition");
4705     if (!free_list_only) {
4706       assert(_old_set->is_empty(), "pre-condition");
4707     }
4708   }
4709 
4710   bool do_heap_region(HeapRegion* r) {
4711     if (r->is_empty()) {
4712       assert(r->rem_set()->is_empty(), "Empty regions should have empty remembered sets.");
4713       // Add free regions to the free list
4714       r->set_free();
4715       _hrm->insert_into_free_list(r);
4716     } else if (!_free_list_only) {
4717       assert(r->rem_set()->is_empty(), "At this point remembered sets must have been cleared.");
4718 
4719       if (r->is_archive() || r->is_humongous()) {
4720         // We ignore archive and humongous regions. We left these sets unchanged.
4721       } else {
4722         assert(r->is_young() || r->is_free() || r->is_old(), "invariant");
4723         // We now move all (non-humongous, non-old, non-archive) regions to old gen, and register them as such.
4724         r->move_to_old();
4725         _old_set->add(r);
4726       }
4727       _total_used += r->used();
4728     }
4729 
4730     return false;
4731   }
4732 
4733   size_t total_used() {
4734     return _total_used;
4735   }
4736 };
4737 
4738 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
4739   assert_at_safepoint_on_vm_thread();
4740 
4741   if (!free_list_only) {
4742     _eden.clear();
4743     _survivor.clear();
4744   }
4745 
4746   RebuildRegionSetsClosure cl(free_list_only, &_old_set, _hrm);
4747   heap_region_iterate(&cl);
4748 
4749   if (!free_list_only) {
4750     set_used(cl.total_used());
4751     if (_archive_allocator != NULL) {
4752       _archive_allocator->clear_used();
4753     }
4754   }
4755   assert_used_and_recalculate_used_equal(this);
4756 }
4757 
4758 // Methods for the mutator alloc region
4759 
4760 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
4761                                                       bool force,
4762                                                       uint node_index) {
4763   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4764   bool should_allocate = policy()->should_allocate_mutator_region();
4765   if (force || should_allocate) {
4766     HeapRegion* new_alloc_region = new_region(word_size,
4767                                               HeapRegionType::Eden,
4768                                               false /* do_expand */,
4769                                               node_index);
4770     if (new_alloc_region != NULL) {
4771       set_region_short_lived_locked(new_alloc_region);
4772       _hr_printer.alloc(new_alloc_region, !should_allocate);
4773       _verifier->check_bitmaps("Mutator Region Allocation", new_alloc_region);
4774       _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4775       return new_alloc_region;
4776     }
4777   }
4778   return NULL;
4779 }
4780 
4781 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
4782                                                   size_t allocated_bytes) {
4783   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
4784   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
4785 
4786   collection_set()->add_eden_region(alloc_region);
4787   increase_used(allocated_bytes);
4788   _eden.add_used_bytes(allocated_bytes);
4789   _hr_printer.retire(alloc_region);
4790 
4791   // We update the eden sizes here, when the region is retired,
4792   // instead of when it's allocated, since this is the point that its
4793   // used space has been recorded in _summary_bytes_used.
4794   g1mm()->update_eden_size();
4795 }
4796 
4797 // Methods for the GC alloc regions
4798 
4799 bool G1CollectedHeap::has_more_regions(G1HeapRegionAttr dest) {
4800   if (dest.is_old()) {
4801     return true;
4802   } else {
4803     return survivor_regions_count() < policy()->max_survivor_regions();
4804   }
4805 }
4806 
4807 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size, G1HeapRegionAttr dest, uint node_index) {
4808   assert(FreeList_lock->owned_by_self(), "pre-condition");
4809 
4810   if (!has_more_regions(dest)) {
4811     return NULL;
4812   }
4813 
4814   HeapRegionType type;
4815   if (dest.is_young()) {
4816     type = HeapRegionType::Survivor;
4817   } else {
4818     type = HeapRegionType::Old;
4819   }
4820 
4821   HeapRegion* new_alloc_region = new_region(word_size,
4822                                             type,
4823                                             true /* do_expand */,
4824                                             node_index);
4825 
4826   if (new_alloc_region != NULL) {
4827     if (type.is_survivor()) {
4828       new_alloc_region->set_survivor();
4829       _survivor.add(new_alloc_region);
4830       _verifier->check_bitmaps("Survivor Region Allocation", new_alloc_region);
4831     } else {
4832       new_alloc_region->set_old();
4833       _verifier->check_bitmaps("Old Region Allocation", new_alloc_region);
4834     }
4835     _policy->remset_tracker()->update_at_allocate(new_alloc_region);
4836     register_region_with_region_attr(new_alloc_region);
4837     _hr_printer.alloc(new_alloc_region);
4838     return new_alloc_region;
4839   }
4840   return NULL;
4841 }
4842 
4843 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
4844                                              size_t allocated_bytes,
4845                                              G1HeapRegionAttr dest) {
4846   _bytes_used_during_gc += allocated_bytes;
4847   if (dest.is_old()) {
4848     old_set_add(alloc_region);
4849   } else {
4850     assert(dest.is_young(), "Retiring alloc region should be young (%d)", dest.type());
4851     _survivor.add_used_bytes(allocated_bytes);
4852   }
4853 
4854   bool const during_im = collector_state()->in_initial_mark_gc();
4855   if (during_im && allocated_bytes > 0) {
4856     _cm->root_regions()->add(alloc_region->next_top_at_mark_start(), alloc_region->top());
4857   }
4858   _hr_printer.retire(alloc_region);
4859 }
4860 
4861 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
4862   bool expanded = false;
4863   uint index = _hrm->find_highest_free(&expanded);
4864 
4865   if (index != G1_NO_HRM_INDEX) {
4866     if (expanded) {
4867       log_debug(gc, ergo, heap)("Attempt heap expansion (requested address range outside heap bounds). region size: " SIZE_FORMAT "B",
4868                                 HeapRegion::GrainWords * HeapWordSize);
4869     }
4870     return _hrm->allocate_free_regions_starting_at(index, 1);
4871   }
4872   return NULL;
4873 }
4874 
4875 // Optimized nmethod scanning
4876 
4877 class RegisterNMethodOopClosure: public OopClosure {
4878   G1CollectedHeap* _g1h;
4879   nmethod* _nm;
4880 
4881   template <class T> void do_oop_work(T* p) {
4882     T heap_oop = RawAccess<>::oop_load(p);
4883     if (!CompressedOops::is_null(heap_oop)) {
4884       oop obj = CompressedOops::decode_not_null(heap_oop);
4885       HeapRegion* hr = _g1h->heap_region_containing(obj);
4886       assert(!hr->is_continues_humongous(),
4887              "trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4888              " starting at " HR_FORMAT,
4889              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4890 
4891       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
4892       hr->add_strong_code_root_locked(_nm);
4893     }
4894   }
4895 
4896 public:
4897   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4898     _g1h(g1h), _nm(nm) {}
4899 
4900   void do_oop(oop* p)       { do_oop_work(p); }
4901   void do_oop(narrowOop* p) { do_oop_work(p); }
4902 };
4903 
4904 class UnregisterNMethodOopClosure: public OopClosure {
4905   G1CollectedHeap* _g1h;
4906   nmethod* _nm;
4907 
4908   template <class T> void do_oop_work(T* p) {
4909     T heap_oop = RawAccess<>::oop_load(p);
4910     if (!CompressedOops::is_null(heap_oop)) {
4911       oop obj = CompressedOops::decode_not_null(heap_oop);
4912       HeapRegion* hr = _g1h->heap_region_containing(obj);
4913       assert(!hr->is_continues_humongous(),
4914              "trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
4915              " starting at " HR_FORMAT,
4916              p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()));
4917 
4918       hr->remove_strong_code_root(_nm);
4919     }
4920   }
4921 
4922 public:
4923   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
4924     _g1h(g1h), _nm(nm) {}
4925 
4926   void do_oop(oop* p)       { do_oop_work(p); }
4927   void do_oop(narrowOop* p) { do_oop_work(p); }
4928 };
4929 
4930 void G1CollectedHeap::register_nmethod(nmethod* nm) {
4931   guarantee(nm != NULL, "sanity");
4932   RegisterNMethodOopClosure reg_cl(this, nm);
4933   nm->oops_do(&reg_cl);
4934 }
4935 
4936 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
4937   guarantee(nm != NULL, "sanity");
4938   UnregisterNMethodOopClosure reg_cl(this, nm);
4939   nm->oops_do(&reg_cl, true);
4940 }
4941 
4942 void G1CollectedHeap::purge_code_root_memory() {
4943   double purge_start = os::elapsedTime();
4944   G1CodeRootSet::purge();
4945   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
4946   phase_times()->record_strong_code_root_purge_time(purge_time_ms);
4947 }
4948 
4949 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
4950   G1CollectedHeap* _g1h;
4951 
4952 public:
4953   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
4954     _g1h(g1h) {}
4955 
4956   void do_code_blob(CodeBlob* cb) {
4957     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
4958     if (nm == NULL) {
4959       return;
4960     }
4961 
4962     _g1h->register_nmethod(nm);
4963   }
4964 };
4965 
4966 void G1CollectedHeap::rebuild_strong_code_roots() {
4967   RebuildStrongCodeRootClosure blob_cl(this);
4968   CodeCache::blobs_do(&blob_cl);
4969 }
4970 
4971 void G1CollectedHeap::initialize_serviceability() {
4972   _g1mm->initialize_serviceability();
4973 }
4974 
4975 MemoryUsage G1CollectedHeap::memory_usage() {
4976   return _g1mm->memory_usage();
4977 }
4978 
4979 GrowableArray<GCMemoryManager*> G1CollectedHeap::memory_managers() {
4980   return _g1mm->memory_managers();
4981 }
4982 
4983 GrowableArray<MemoryPool*> G1CollectedHeap::memory_pools() {
4984   return _g1mm->memory_pools();
4985 }
4986 
4987 class G1ParallelObjectIterator : public ParallelObjectIterator {
4988 private:
4989   G1CollectedHeap*  _heap;
4990   HeapRegionClaimer _claimer;
4991 
4992 public:
4993   G1ParallelObjectIterator(uint thread_num) :
4994       _heap(G1CollectedHeap::heap()),
4995       _claimer(thread_num == 0 ? G1CollectedHeap::heap()->workers()->active_workers() : thread_num) {}
4996 
4997   virtual void object_iterate(ObjectClosure* cl, uint worker_id) {
4998     _heap->object_iterate_parallel(cl, worker_id, &_claimer);
4999   }
5000 };
5001 
5002 ParallelObjectIterator* G1CollectedHeap::parallel_object_iterator(uint thread_num) {
5003   return new G1ParallelObjectIterator(thread_num);
5004 }
5005 
5006 void G1CollectedHeap::object_iterate_parallel(ObjectClosure* cl, uint worker_id, HeapRegionClaimer* claimer) {
5007   IterateObjectClosureRegionClosure blk(cl);
5008   heap_region_par_iterate_from_worker_offset(&blk, claimer, worker_id);
5009 }