1 /*
   2  * Copyright (c) 2001, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_GC_SHARED_COLLECTEDHEAP_HPP
  26 #define SHARE_GC_SHARED_COLLECTEDHEAP_HPP
  27 
  28 #include "gc/shared/gcCause.hpp"
  29 #include "gc/shared/gcWhen.hpp"
  30 #include "gc/shared/verifyOption.hpp"
  31 #include "memory/allocation.hpp"
  32 #include "memory/universe.hpp"
  33 #include "runtime/handles.hpp"
  34 #include "runtime/perfData.hpp"
  35 #include "runtime/safepoint.hpp"
  36 #include "services/memoryUsage.hpp"
  37 #include "utilities/debug.hpp"
  38 #include "utilities/events.hpp"
  39 #include "utilities/formatBuffer.hpp"
  40 #include "utilities/growableArray.hpp"
  41 
  42 // A "CollectedHeap" is an implementation of a java heap for HotSpot.  This
  43 // is an abstract class: there may be many different kinds of heaps.  This
  44 // class defines the functions that a heap must implement, and contains
  45 // infrastructure common to all heaps.
  46 
  47 class AdaptiveSizePolicy;
  48 class BarrierSet;
  49 class GCHeapSummary;
  50 class GCTimer;
  51 class GCTracer;
  52 class GCMemoryManager;
  53 class MemoryPool;
  54 class MetaspaceSummary;
  55 class ReservedHeapSpace;
  56 class SoftRefPolicy;
  57 class Thread;
  58 class ThreadClosure;
  59 class VirtualSpaceSummary;
  60 class WorkGang;
  61 class nmethod;
  62 
  63 class GCMessage : public FormatBuffer<1024> {
  64  public:
  65   bool is_before;
  66 
  67  public:
  68   GCMessage() {}
  69 };
  70 
  71 class CollectedHeap;
  72 
  73 class GCHeapLog : public EventLogBase<GCMessage> {
  74  private:
  75   void log_heap(CollectedHeap* heap, bool before);
  76 
  77  public:
  78   GCHeapLog() : EventLogBase<GCMessage>("GC Heap History", "gc") {}
  79 
  80   void log_heap_before(CollectedHeap* heap) {
  81     log_heap(heap, true);
  82   }
  83   void log_heap_after(CollectedHeap* heap) {
  84     log_heap(heap, false);
  85   }
  86 };
  87 
  88 //
  89 // CollectedHeap
  90 //   GenCollectedHeap
  91 //     SerialHeap
  92 //   G1CollectedHeap
  93 //   ParallelScavengeHeap
  94 //   ShenandoahHeap
  95 //   ZCollectedHeap
  96 //
  97 class CollectedHeap : public CHeapObj<mtInternal> {
  98   friend class VMStructs;
  99   friend class JVMCIVMStructs;
 100   friend class IsGCActiveMark; // Block structured external access to _is_gc_active
 101   friend class MemAllocator;
 102 
 103  private:
 104   GCHeapLog* _gc_heap_log;
 105 
 106  protected:
 107   // Not used by all GCs
 108   MemRegion _reserved;
 109 
 110   bool _is_gc_active;
 111 
 112   // Used for filler objects (static, but initialized in ctor).
 113   static size_t _filler_array_max_size;
 114 
 115   // Last time the whole heap has been examined in support of RMI
 116   // MaxObjectInspectionAge.
 117   // This timestamp must be monotonically non-decreasing to avoid
 118   // time-warp warnings.
 119   jlong _last_whole_heap_examined_time_ns;
 120 
 121   unsigned int _total_collections;          // ... started
 122   unsigned int _total_full_collections;     // ... started
 123   NOT_PRODUCT(volatile size_t _promotion_failure_alot_count;)
 124   NOT_PRODUCT(volatile size_t _promotion_failure_alot_gc_number;)
 125 
 126   // Reason for current garbage collection.  Should be set to
 127   // a value reflecting no collection between collections.
 128   GCCause::Cause _gc_cause;
 129   GCCause::Cause _gc_lastcause;
 130   PerfStringVariable* _perf_gc_cause;
 131   PerfStringVariable* _perf_gc_lastcause;
 132 
 133   // Constructor
 134   CollectedHeap();
 135 
 136   // Create a new tlab. All TLAB allocations must go through this.
 137   // To allow more flexible TLAB allocations min_size specifies
 138   // the minimum size needed, while requested_size is the requested
 139   // size based on ergonomics. The actually allocated size will be
 140   // returned in actual_size.
 141   virtual HeapWord* allocate_new_tlab(size_t min_size,
 142                                       size_t requested_size,
 143                                       size_t* actual_size);
 144 
 145   // Reinitialize tlabs before resuming mutators.
 146   virtual void resize_all_tlabs();
 147 
 148   // Raw memory allocation facilities
 149   // The obj and array allocate methods are covers for these methods.
 150   // mem_allocate() should never be
 151   // called to allocate TLABs, only individual objects.
 152   virtual HeapWord* mem_allocate(size_t size,
 153                                  bool* gc_overhead_limit_was_exceeded) = 0;
 154 
 155   // Filler object utilities.
 156   static inline size_t filler_array_hdr_size();
 157   static inline size_t filler_array_min_size();
 158 
 159   DEBUG_ONLY(static void fill_args_check(HeapWord* start, size_t words);)
 160   DEBUG_ONLY(static void zap_filler_array(HeapWord* start, size_t words, bool zap = true);)
 161 
 162   // Fill with a single array; caller must ensure filler_array_min_size() <=
 163   // words <= filler_array_max_size().
 164   static inline void fill_with_array(HeapWord* start, size_t words, bool zap = true);
 165 
 166   // Fill with a single object (either an int array or a java.lang.Object).
 167   static inline void fill_with_object_impl(HeapWord* start, size_t words, bool zap = true);
 168 
 169   virtual void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 170 
 171   // Verification functions
 172   virtual void check_for_non_bad_heap_word_value(HeapWord* addr, size_t size)
 173     PRODUCT_RETURN;
 174   debug_only(static void check_for_valid_allocation_state();)
 175 
 176  public:
 177   enum Name {
 178     None,
 179     Serial,
 180     Parallel,
 181     G1,
 182     Epsilon,
 183     Z,
 184     Shenandoah
 185   };
 186 
 187  protected:
 188   // Get a pointer to the derived heap object.  Used to implement
 189   // derived class heap() functions rather than being called directly.
 190   template<typename T>
 191   static T* named_heap(Name kind) {
 192     CollectedHeap* heap = Universe::heap();
 193     assert(heap != NULL, "Uninitialized heap");
 194     assert(kind == heap->kind(), "Heap kind %u should be %u",
 195            static_cast<uint>(heap->kind()), static_cast<uint>(kind));
 196     return static_cast<T*>(heap);
 197   }
 198 
 199  public:
 200 
 201   static inline size_t filler_array_max_size() {
 202     return _filler_array_max_size;
 203   }
 204 
 205   virtual Name kind() const = 0;
 206 
 207   virtual const char* name() const = 0;
 208 
 209   /**
 210    * Returns JNI error code JNI_ENOMEM if memory could not be allocated,
 211    * and JNI_OK on success.
 212    */
 213   virtual jint initialize() = 0;
 214 
 215   // In many heaps, there will be a need to perform some initialization activities
 216   // after the Universe is fully formed, but before general heap allocation is allowed.
 217   // This is the correct place to place such initialization methods.
 218   virtual void post_initialize();
 219 
 220   // Stop any onging concurrent work and prepare for exit.
 221   virtual void stop() {}
 222 
 223   // Stop and resume concurrent GC threads interfering with safepoint operations
 224   virtual void safepoint_synchronize_begin() {}
 225   virtual void safepoint_synchronize_end() {}
 226 
 227   void initialize_reserved_region(const ReservedHeapSpace& rs);
 228 
 229   virtual size_t capacity() const = 0;
 230   virtual size_t used() const = 0;
 231 
 232   // Returns unused capacity.
 233   virtual size_t unused() const;
 234 
 235   // Return "true" if the part of the heap that allocates Java
 236   // objects has reached the maximal committed limit that it can
 237   // reach, without a garbage collection.
 238   virtual bool is_maximal_no_gc() const = 0;
 239 
 240   // Support for java.lang.Runtime.maxMemory():  return the maximum amount of
 241   // memory that the vm could make available for storing 'normal' java objects.
 242   // This is based on the reserved address space, but should not include space
 243   // that the vm uses internally for bookkeeping or temporary storage
 244   // (e.g., in the case of the young gen, one of the survivor
 245   // spaces).
 246   virtual size_t max_capacity() const = 0;
 247 
 248   // Returns "TRUE" iff "p" points into the committed areas of the heap.
 249   // This method can be expensive so avoid using it in performance critical
 250   // code.
 251   virtual bool is_in(const void* p) const = 0;
 252 
 253   DEBUG_ONLY(bool is_in_or_null(const void* p) const { return p == NULL || is_in(p); })
 254 
 255   virtual uint32_t hash_oop(oop obj) const;
 256 
 257   void set_gc_cause(GCCause::Cause v) {
 258      if (UsePerfData) {
 259        _gc_lastcause = _gc_cause;
 260        _perf_gc_lastcause->set_value(GCCause::to_string(_gc_lastcause));
 261        _perf_gc_cause->set_value(GCCause::to_string(v));
 262      }
 263     _gc_cause = v;
 264   }
 265   GCCause::Cause gc_cause() { return _gc_cause; }
 266 
 267   oop obj_allocate(Klass* klass, int size, TRAPS);
 268   virtual oop array_allocate(Klass* klass, int size, int length, bool do_zero, TRAPS);
 269   oop class_allocate(Klass* klass, int size, TRAPS);
 270 
 271   // Utilities for turning raw memory into filler objects.
 272   //
 273   // min_fill_size() is the smallest region that can be filled.
 274   // fill_with_objects() can fill arbitrary-sized regions of the heap using
 275   // multiple objects.  fill_with_object() is for regions known to be smaller
 276   // than the largest array of integers; it uses a single object to fill the
 277   // region and has slightly less overhead.
 278   static size_t min_fill_size() {
 279     return size_t(align_object_size(oopDesc::header_size()));
 280   }
 281 
 282   static void fill_with_objects(HeapWord* start, size_t words, bool zap = true);
 283 
 284   static void fill_with_object(HeapWord* start, size_t words, bool zap = true);
 285   static void fill_with_object(MemRegion region, bool zap = true) {
 286     fill_with_object(region.start(), region.word_size(), zap);
 287   }
 288   static void fill_with_object(HeapWord* start, HeapWord* end, bool zap = true) {
 289     fill_with_object(start, pointer_delta(end, start), zap);
 290   }
 291 
 292   virtual void fill_with_dummy_object(HeapWord* start, HeapWord* end, bool zap);
 293   virtual size_t min_dummy_object_size() const;
 294   size_t tlab_alloc_reserve() const;
 295 
 296   // Return the address "addr" aligned by "alignment_in_bytes" if such
 297   // an address is below "end".  Return NULL otherwise.
 298   inline static HeapWord* align_allocation_or_fail(HeapWord* addr,
 299                                                    HeapWord* end,
 300                                                    unsigned short alignment_in_bytes);
 301 
 302   // Some heaps may offer a contiguous region for shared non-blocking
 303   // allocation, via inlined code (by exporting the address of the top and
 304   // end fields defining the extent of the contiguous allocation region.)
 305 
 306   // This function returns "true" iff the heap supports this kind of
 307   // allocation.  (Default is "no".)
 308   virtual bool supports_inline_contig_alloc() const {
 309     return false;
 310   }
 311   // These functions return the addresses of the fields that define the
 312   // boundaries of the contiguous allocation area.  (These fields should be
 313   // physically near to one another.)
 314   virtual HeapWord* volatile* top_addr() const {
 315     guarantee(false, "inline contiguous allocation not supported");
 316     return NULL;
 317   }
 318   virtual HeapWord** end_addr() const {
 319     guarantee(false, "inline contiguous allocation not supported");
 320     return NULL;
 321   }
 322 
 323   // Some heaps may be in an unparseable state at certain times between
 324   // collections. This may be necessary for efficient implementation of
 325   // certain allocation-related activities. Calling this function before
 326   // attempting to parse a heap ensures that the heap is in a parsable
 327   // state (provided other concurrent activity does not introduce
 328   // unparsability). It is normally expected, therefore, that this
 329   // method is invoked with the world stopped.
 330   // NOTE: if you override this method, make sure you call
 331   // super::ensure_parsability so that the non-generational
 332   // part of the work gets done. See implementation of
 333   // CollectedHeap::ensure_parsability and, for instance,
 334   // that of GenCollectedHeap::ensure_parsability().
 335   // The argument "retire_tlabs" controls whether existing TLABs
 336   // are merely filled or also retired, thus preventing further
 337   // allocation from them and necessitating allocation of new TLABs.
 338   virtual void ensure_parsability(bool retire_tlabs);
 339 
 340   // Section on thread-local allocation buffers (TLABs)
 341   // If the heap supports thread-local allocation buffers, it should override
 342   // the following methods:
 343   // Returns "true" iff the heap supports thread-local allocation buffers.
 344   // The default is "no".
 345   virtual bool supports_tlab_allocation() const = 0;
 346 
 347   // The amount of space available for thread-local allocation buffers.
 348   virtual size_t tlab_capacity(Thread *thr) const = 0;
 349 
 350   // The amount of used space for thread-local allocation buffers for the given thread.
 351   virtual size_t tlab_used(Thread *thr) const = 0;
 352 
 353   virtual size_t max_tlab_size() const;
 354 
 355   // An estimate of the maximum allocation that could be performed
 356   // for thread-local allocation buffers without triggering any
 357   // collection or expansion activity.
 358   virtual size_t unsafe_max_tlab_alloc(Thread *thr) const {
 359     guarantee(false, "thread-local allocation buffers not supported");
 360     return 0;
 361   }
 362 
 363   // Perform a collection of the heap; intended for use in implementing
 364   // "System.gc".  This probably implies as full a collection as the
 365   // "CollectedHeap" supports.
 366   virtual void collect(GCCause::Cause cause) = 0;
 367 
 368   // Perform a full collection
 369   virtual void do_full_collection(bool clear_all_soft_refs) = 0;
 370 
 371   // This interface assumes that it's being called by the
 372   // vm thread. It collects the heap assuming that the
 373   // heap lock is already held and that we are executing in
 374   // the context of the vm thread.
 375   virtual void collect_as_vm_thread(GCCause::Cause cause);
 376 
 377   virtual MetaWord* satisfy_failed_metadata_allocation(ClassLoaderData* loader_data,
 378                                                        size_t size,
 379                                                        Metaspace::MetadataType mdtype);
 380 
 381   // Returns "true" iff there is a stop-world GC in progress.  (I assume
 382   // that it should answer "false" for the concurrent part of a concurrent
 383   // collector -- dld).
 384   bool is_gc_active() const { return _is_gc_active; }
 385 
 386   // Total number of GC collections (started)
 387   unsigned int total_collections() const { return _total_collections; }
 388   unsigned int total_full_collections() const { return _total_full_collections;}
 389 
 390   // Increment total number of GC collections (started)
 391   void increment_total_collections(bool full = false) {
 392     _total_collections++;
 393     if (full) {
 394       increment_total_full_collections();
 395     }
 396   }
 397 
 398   void increment_total_full_collections() { _total_full_collections++; }
 399 
 400   // Return the SoftRefPolicy for the heap;
 401   virtual SoftRefPolicy* soft_ref_policy() = 0;
 402 
 403   virtual MemoryUsage memory_usage();
 404   virtual GrowableArray<GCMemoryManager*> memory_managers() = 0;
 405   virtual GrowableArray<MemoryPool*> memory_pools() = 0;
 406 
 407   // Iterate over all objects, calling "cl.do_object" on each.
 408   virtual void object_iterate(ObjectClosure* cl) = 0;
 409 
 410   // Keep alive an object that was loaded with AS_NO_KEEPALIVE.
 411   virtual void keep_alive(oop obj) {}
 412 
 413   // Perform any cleanup actions necessary before allowing a verification.
 414   virtual void prepare_for_verify() = 0;
 415 
 416   // Returns the longest time (in ms) that has elapsed since the last
 417   // time that the whole heap has been examined by a garbage collection.
 418   jlong millis_since_last_whole_heap_examined();
 419   // GC should call this when the next whole heap analysis has completed to
 420   // satisfy above requirement.
 421   void record_whole_heap_examined_timestamp();
 422 
 423  private:
 424   // Generate any dumps preceding or following a full gc
 425   void full_gc_dump(GCTimer* timer, bool before);
 426 
 427   virtual void initialize_serviceability() = 0;
 428 
 429  public:
 430   void pre_full_gc_dump(GCTimer* timer);
 431   void post_full_gc_dump(GCTimer* timer);
 432 
 433   virtual VirtualSpaceSummary create_heap_space_summary();
 434   GCHeapSummary create_heap_summary();
 435 
 436   MetaspaceSummary create_metaspace_summary();
 437 
 438   // Print heap information on the given outputStream.
 439   virtual void print_on(outputStream* st) const = 0;
 440   // The default behavior is to call print_on() on tty.
 441   virtual void print() const;
 442 
 443   // Print more detailed heap information on the given
 444   // outputStream. The default behavior is to call print_on(). It is
 445   // up to each subclass to override it and add any additional output
 446   // it needs.
 447   virtual void print_extended_on(outputStream* st) const {
 448     print_on(st);
 449   }
 450 
 451   virtual void print_on_error(outputStream* st) const;
 452 
 453   // Used to print information about locations in the hs_err file.
 454   virtual bool print_location(outputStream* st, void* addr) const = 0;
 455 
 456   // Iterator for all GC threads (other than VM thread)
 457   virtual void gc_threads_do(ThreadClosure* tc) const = 0;
 458 
 459   // Print any relevant tracing info that flags imply.
 460   // Default implementation does nothing.
 461   virtual void print_tracing_info() const = 0;
 462 
 463   void print_heap_before_gc();
 464   void print_heap_after_gc();
 465 
 466   // Registering and unregistering an nmethod (compiled code) with the heap.
 467   virtual void register_nmethod(nmethod* nm) = 0;
 468   virtual void unregister_nmethod(nmethod* nm) = 0;
 469   // Callback for when nmethod is about to be deleted.
 470   virtual void flush_nmethod(nmethod* nm) = 0;
 471   virtual void verify_nmethod(nmethod* nm) = 0;
 472 
 473   void trace_heap_before_gc(const GCTracer* gc_tracer);
 474   void trace_heap_after_gc(const GCTracer* gc_tracer);
 475 
 476   // Heap verification
 477   virtual void verify(VerifyOption option) = 0;
 478 
 479   // Return true if concurrent gc control via WhiteBox is supported by
 480   // this collector.  The default implementation returns false.
 481   virtual bool supports_concurrent_gc_breakpoints() const;
 482 
 483   // Provides a thread pool to SafepointSynchronize to use
 484   // for parallel safepoint cleanup.
 485   // GCs that use a GC worker thread pool may want to share
 486   // it for use during safepoint cleanup. This is only possible
 487   // if the GC can pause and resume concurrent work (e.g. G1
 488   // concurrent marking) for an intermittent non-GC safepoint.
 489   // If this method returns NULL, SafepointSynchronize will
 490   // perform cleanup tasks serially in the VMThread.
 491   virtual WorkGang* get_safepoint_workers() { return NULL; }
 492 
 493   // Support for object pinning. This is used by JNI Get*Critical()
 494   // and Release*Critical() family of functions. If supported, the GC
 495   // must guarantee that pinned objects never move.
 496   virtual bool supports_object_pinning() const;
 497   virtual oop pin_object(JavaThread* thread, oop obj);
 498   virtual void unpin_object(JavaThread* thread, oop obj);
 499 
 500   // Deduplicate the string, iff the GC supports string deduplication.
 501   virtual void deduplicate_string(oop str);
 502 
 503   virtual bool is_oop(oop object) const;
 504 
 505   // Non product verification and debugging.
 506 #ifndef PRODUCT
 507   // Support for PromotionFailureALot.  Return true if it's time to cause a
 508   // promotion failure.  The no-argument version uses
 509   // this->_promotion_failure_alot_count as the counter.
 510   bool promotion_should_fail(volatile size_t* count);
 511   bool promotion_should_fail();
 512 
 513   // Reset the PromotionFailureALot counters.  Should be called at the end of a
 514   // GC in which promotion failure occurred.
 515   void reset_promotion_should_fail(volatile size_t* count);
 516   void reset_promotion_should_fail();
 517 #endif  // #ifndef PRODUCT
 518 };
 519 
 520 // Class to set and reset the GC cause for a CollectedHeap.
 521 
 522 class GCCauseSetter : StackObj {
 523   CollectedHeap* _heap;
 524   GCCause::Cause _previous_cause;
 525  public:
 526   GCCauseSetter(CollectedHeap* heap, GCCause::Cause cause) {
 527     _heap = heap;
 528     _previous_cause = _heap->gc_cause();
 529     _heap->set_gc_cause(cause);
 530   }
 531 
 532   ~GCCauseSetter() {
 533     _heap->set_gc_cause(_previous_cause);
 534   }
 535 };
 536 
 537 #endif // SHARE_GC_SHARED_COLLECTEDHEAP_HPP