1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/symbolTable.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "gc/cms/cmsCollectorPolicy.hpp"
  32 #include "gc/cms/cmsGCStats.hpp"
  33 #include "gc/cms/cmsHeap.hpp"
  34 #include "gc/cms/cmsOopClosures.inline.hpp"
  35 #include "gc/cms/compactibleFreeListSpace.hpp"
  36 #include "gc/cms/concurrentMarkSweepGeneration.inline.hpp"
  37 #include "gc/cms/concurrentMarkSweepThread.hpp"
  38 #include "gc/cms/parNewGeneration.hpp"
  39 #include "gc/cms/promotionInfo.inline.hpp"
  40 #include "gc/cms/vmCMSOperations.hpp"
  41 #include "gc/serial/genMarkSweep.hpp"
  42 #include "gc/serial/tenuredGeneration.hpp"
  43 #include "gc/shared/adaptiveSizePolicy.hpp"
  44 #include "gc/shared/cardGeneration.inline.hpp"
  45 #include "gc/shared/cardTableRS.hpp"
  46 #include "gc/shared/collectedHeap.inline.hpp"
  47 #include "gc/shared/collectorCounters.hpp"
  48 #include "gc/shared/collectorPolicy.hpp"
  49 #include "gc/shared/gcLocker.hpp"
  50 #include "gc/shared/gcPolicyCounters.hpp"
  51 #include "gc/shared/gcTimer.hpp"
  52 #include "gc/shared/gcTrace.hpp"
  53 #include "gc/shared/gcTraceTime.inline.hpp"
  54 #include "gc/shared/genCollectedHeap.hpp"
  55 #include "gc/shared/genOopClosures.inline.hpp"
  56 #include "gc/shared/isGCActiveMark.hpp"
  57 #include "gc/shared/oopStorageParState.hpp"
  58 #include "gc/shared/referencePolicy.hpp"
  59 #include "gc/shared/referenceProcessorPhaseTimes.hpp"
  60 #include "gc/shared/space.inline.hpp"
  61 #include "gc/shared/strongRootsScope.hpp"
  62 #include "gc/shared/taskqueue.inline.hpp"
  63 #include "gc/shared/weakProcessor.hpp"
  64 #include "gc/shared/workerPolicy.hpp"
  65 #include "logging/log.hpp"
  66 #include "logging/logStream.hpp"
  67 #include "memory/allocation.hpp"
  68 #include "memory/binaryTreeDictionary.inline.hpp"
  69 #include "memory/iterator.inline.hpp"
  70 #include "memory/padded.hpp"
  71 #include "memory/resourceArea.hpp"
  72 #include "oops/access.inline.hpp"
  73 #include "oops/oop.inline.hpp"
  74 #include "prims/jvmtiExport.hpp"
  75 #include "runtime/atomic.hpp"
  76 #include "runtime/flags/flagSetting.hpp"
  77 #include "runtime/globals_extension.hpp"
  78 #include "runtime/handles.inline.hpp"
  79 #include "runtime/java.hpp"
  80 #include "runtime/orderAccess.hpp"
  81 #include "runtime/timer.hpp"
  82 #include "runtime/vmThread.hpp"
  83 #include "services/memoryService.hpp"
  84 #include "services/runtimeService.hpp"
  85 #include "utilities/align.hpp"
  86 #include "utilities/stack.inline.hpp"
  87 
  88 // statics
  89 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  90 bool CMSCollector::_full_gc_requested = false;
  91 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  92 
  93 //////////////////////////////////////////////////////////////////
  94 // In support of CMS/VM thread synchronization
  95 //////////////////////////////////////////////////////////////////
  96 // We split use of the CGC_lock into 2 "levels".
  97 // The low-level locking is of the usual CGC_lock monitor. We introduce
  98 // a higher level "token" (hereafter "CMS token") built on top of the
  99 // low level monitor (hereafter "CGC lock").
 100 // The token-passing protocol gives priority to the VM thread. The
 101 // CMS-lock doesn't provide any fairness guarantees, but clients
 102 // should ensure that it is only held for very short, bounded
 103 // durations.
 104 //
 105 // When either of the CMS thread or the VM thread is involved in
 106 // collection operations during which it does not want the other
 107 // thread to interfere, it obtains the CMS token.
 108 //
 109 // If either thread tries to get the token while the other has
 110 // it, that thread waits. However, if the VM thread and CMS thread
 111 // both want the token, then the VM thread gets priority while the
 112 // CMS thread waits. This ensures, for instance, that the "concurrent"
 113 // phases of the CMS thread's work do not block out the VM thread
 114 // for long periods of time as the CMS thread continues to hog
 115 // the token. (See bug 4616232).
 116 //
 117 // The baton-passing functions are, however, controlled by the
 118 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
 119 // and here the low-level CMS lock, not the high level token,
 120 // ensures mutual exclusion.
 121 //
 122 // Two important conditions that we have to satisfy:
 123 // 1. if a thread does a low-level wait on the CMS lock, then it
 124 //    relinquishes the CMS token if it were holding that token
 125 //    when it acquired the low-level CMS lock.
 126 // 2. any low-level notifications on the low-level lock
 127 //    should only be sent when a thread has relinquished the token.
 128 //
 129 // In the absence of either property, we'd have potential deadlock.
 130 //
 131 // We protect each of the CMS (concurrent and sequential) phases
 132 // with the CMS _token_, not the CMS _lock_.
 133 //
 134 // The only code protected by CMS lock is the token acquisition code
 135 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 136 // baton-passing code.
 137 //
 138 // Unfortunately, i couldn't come up with a good abstraction to factor and
 139 // hide the naked CGC_lock manipulation in the baton-passing code
 140 // further below. That's something we should try to do. Also, the proof
 141 // of correctness of this 2-level locking scheme is far from obvious,
 142 // and potentially quite slippery. We have an uneasy suspicion, for instance,
 143 // that there may be a theoretical possibility of delay/starvation in the
 144 // low-level lock/wait/notify scheme used for the baton-passing because of
 145 // potential interference with the priority scheme embodied in the
 146 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 147 // invocation further below and marked with "XXX 20011219YSR".
 148 // Indeed, as we note elsewhere, this may become yet more slippery
 149 // in the presence of multiple CMS and/or multiple VM threads. XXX
 150 
 151 class CMSTokenSync: public StackObj {
 152  private:
 153   bool _is_cms_thread;
 154  public:
 155   CMSTokenSync(bool is_cms_thread):
 156     _is_cms_thread(is_cms_thread) {
 157     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 158            "Incorrect argument to constructor");
 159     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 160   }
 161 
 162   ~CMSTokenSync() {
 163     assert(_is_cms_thread ?
 164              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 165              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 166           "Incorrect state");
 167     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 168   }
 169 };
 170 
 171 // Convenience class that does a CMSTokenSync, and then acquires
 172 // upto three locks.
 173 class CMSTokenSyncWithLocks: public CMSTokenSync {
 174  private:
 175   // Note: locks are acquired in textual declaration order
 176   // and released in the opposite order
 177   MutexLockerEx _locker1, _locker2, _locker3;
 178  public:
 179   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 180                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 181     CMSTokenSync(is_cms_thread),
 182     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 183     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 184     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 185   { }
 186 };
 187 
 188 
 189 //////////////////////////////////////////////////////////////////
 190 //  Concurrent Mark-Sweep Generation /////////////////////////////
 191 //////////////////////////////////////////////////////////////////
 192 
 193 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 194 
 195 // This struct contains per-thread things necessary to support parallel
 196 // young-gen collection.
 197 class CMSParGCThreadState: public CHeapObj<mtGC> {
 198  public:
 199   CompactibleFreeListSpaceLAB lab;
 200   PromotionInfo promo;
 201 
 202   // Constructor.
 203   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 204     promo.setSpace(cfls);
 205   }
 206 };
 207 
 208 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 209      ReservedSpace rs, size_t initial_byte_size, CardTableRS* ct) :
 210   CardGeneration(rs, initial_byte_size, ct),
 211   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 212   _did_compact(false)
 213 {
 214   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 215   HeapWord* end    = (HeapWord*) _virtual_space.high();
 216 
 217   _direct_allocated_words = 0;
 218   NOT_PRODUCT(
 219     _numObjectsPromoted = 0;
 220     _numWordsPromoted = 0;
 221     _numObjectsAllocated = 0;
 222     _numWordsAllocated = 0;
 223   )
 224 
 225   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end));
 226   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 227   _cmsSpace->_old_gen = this;
 228 
 229   _gc_stats = new CMSGCStats();
 230 
 231   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 232   // offsets match. The ability to tell free chunks from objects
 233   // depends on this property.
 234   debug_only(
 235     FreeChunk* junk = NULL;
 236     assert(UseCompressedClassPointers ||
 237            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 238            "Offset of FreeChunk::_prev within FreeChunk must match"
 239            "  that of OopDesc::_klass within OopDesc");
 240   )
 241 
 242   _par_gc_thread_states = NEW_C_HEAP_ARRAY(CMSParGCThreadState*, ParallelGCThreads, mtGC);
 243   for (uint i = 0; i < ParallelGCThreads; i++) {
 244     _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 245   }
 246 
 247   _incremental_collection_failed = false;
 248   // The "dilatation_factor" is the expansion that can occur on
 249   // account of the fact that the minimum object size in the CMS
 250   // generation may be larger than that in, say, a contiguous young
 251   //  generation.
 252   // Ideally, in the calculation below, we'd compute the dilatation
 253   // factor as: MinChunkSize/(promoting_gen's min object size)
 254   // Since we do not have such a general query interface for the
 255   // promoting generation, we'll instead just use the minimum
 256   // object size (which today is a header's worth of space);
 257   // note that all arithmetic is in units of HeapWords.
 258   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 259   assert(_dilatation_factor >= 1.0, "from previous assert");
 260 }
 261 
 262 
 263 // The field "_initiating_occupancy" represents the occupancy percentage
 264 // at which we trigger a new collection cycle.  Unless explicitly specified
 265 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 266 // is calculated by:
 267 //
 268 //   Let "f" be MinHeapFreeRatio in
 269 //
 270 //    _initiating_occupancy = 100-f +
 271 //                           f * (CMSTriggerRatio/100)
 272 //   where CMSTriggerRatio is the argument "tr" below.
 273 //
 274 // That is, if we assume the heap is at its desired maximum occupancy at the
 275 // end of a collection, we let CMSTriggerRatio of the (purported) free
 276 // space be allocated before initiating a new collection cycle.
 277 //
 278 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 279   assert(io <= 100 && tr <= 100, "Check the arguments");
 280   if (io >= 0) {
 281     _initiating_occupancy = (double)io / 100.0;
 282   } else {
 283     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 284                              (double)(tr * MinHeapFreeRatio) / 100.0)
 285                             / 100.0;
 286   }
 287 }
 288 
 289 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 290   assert(collector() != NULL, "no collector");
 291   collector()->ref_processor_init();
 292 }
 293 
 294 void CMSCollector::ref_processor_init() {
 295   if (_ref_processor == NULL) {
 296     // Allocate and initialize a reference processor
 297     _ref_processor =
 298       new ReferenceProcessor(&_span_based_discoverer,
 299                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 300                              ParallelGCThreads,                      // mt processing degree
 301                              _cmsGen->refs_discovery_is_mt(),        // mt discovery
 302                              MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 303                              _cmsGen->refs_discovery_is_atomic(),    // discovery is not atomic
 304                              &_is_alive_closure,                     // closure for liveness info
 305                              false);                                 // disable adjusting number of processing threads
 306     // Initialize the _ref_processor field of CMSGen
 307     _cmsGen->set_ref_processor(_ref_processor);
 308 
 309   }
 310 }
 311 
 312 AdaptiveSizePolicy* CMSCollector::size_policy() {
 313   return CMSHeap::heap()->size_policy();
 314 }
 315 
 316 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 317 
 318   const char* gen_name = "old";
 319   GenCollectorPolicy* gcp = CMSHeap::heap()->gen_policy();
 320   // Generation Counters - generation 1, 1 subspace
 321   _gen_counters = new GenerationCounters(gen_name, 1, 1,
 322       gcp->min_old_size(), gcp->max_old_size(), &_virtual_space);
 323 
 324   _space_counters = new GSpaceCounters(gen_name, 0,
 325                                        _virtual_space.reserved_size(),
 326                                        this, _gen_counters);
 327 }
 328 
 329 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 330   _cms_gen(cms_gen)
 331 {
 332   assert(alpha <= 100, "bad value");
 333   _saved_alpha = alpha;
 334 
 335   // Initialize the alphas to the bootstrap value of 100.
 336   _gc0_alpha = _cms_alpha = 100;
 337 
 338   _cms_begin_time.update();
 339   _cms_end_time.update();
 340 
 341   _gc0_duration = 0.0;
 342   _gc0_period = 0.0;
 343   _gc0_promoted = 0;
 344 
 345   _cms_duration = 0.0;
 346   _cms_period = 0.0;
 347   _cms_allocated = 0;
 348 
 349   _cms_used_at_gc0_begin = 0;
 350   _cms_used_at_gc0_end = 0;
 351   _allow_duty_cycle_reduction = false;
 352   _valid_bits = 0;
 353 }
 354 
 355 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 356   // TBD: CR 6909490
 357   return 1.0;
 358 }
 359 
 360 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 361 }
 362 
 363 // If promotion failure handling is on use
 364 // the padded average size of the promotion for each
 365 // young generation collection.
 366 double CMSStats::time_until_cms_gen_full() const {
 367   size_t cms_free = _cms_gen->cmsSpace()->free();
 368   CMSHeap* heap = CMSHeap::heap();
 369   size_t expected_promotion = MIN2(heap->young_gen()->capacity(),
 370                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 371   if (cms_free > expected_promotion) {
 372     // Start a cms collection if there isn't enough space to promote
 373     // for the next young collection.  Use the padded average as
 374     // a safety factor.
 375     cms_free -= expected_promotion;
 376 
 377     // Adjust by the safety factor.
 378     double cms_free_dbl = (double)cms_free;
 379     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor) / 100.0;
 380     // Apply a further correction factor which tries to adjust
 381     // for recent occurance of concurrent mode failures.
 382     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 383     cms_free_dbl = cms_free_dbl * cms_adjustment;
 384 
 385     log_trace(gc)("CMSStats::time_until_cms_gen_full: cms_free " SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 386                   cms_free, expected_promotion);
 387     log_trace(gc)("  cms_free_dbl %f cms_consumption_rate %f", cms_free_dbl, cms_consumption_rate() + 1.0);
 388     // Add 1 in case the consumption rate goes to zero.
 389     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 390   }
 391   return 0.0;
 392 }
 393 
 394 // Compare the duration of the cms collection to the
 395 // time remaining before the cms generation is empty.
 396 // Note that the time from the start of the cms collection
 397 // to the start of the cms sweep (less than the total
 398 // duration of the cms collection) can be used.  This
 399 // has been tried and some applications experienced
 400 // promotion failures early in execution.  This was
 401 // possibly because the averages were not accurate
 402 // enough at the beginning.
 403 double CMSStats::time_until_cms_start() const {
 404   // We add "gc0_period" to the "work" calculation
 405   // below because this query is done (mostly) at the
 406   // end of a scavenge, so we need to conservatively
 407   // account for that much possible delay
 408   // in the query so as to avoid concurrent mode failures
 409   // due to starting the collection just a wee bit too
 410   // late.
 411   double work = cms_duration() + gc0_period();
 412   double deadline = time_until_cms_gen_full();
 413   // If a concurrent mode failure occurred recently, we want to be
 414   // more conservative and halve our expected time_until_cms_gen_full()
 415   if (work > deadline) {
 416     log_develop_trace(gc)("CMSCollector: collect because of anticipated promotion before full %3.7f + %3.7f > %3.7f ",
 417                           cms_duration(), gc0_period(), time_until_cms_gen_full());
 418     return 0.0;
 419   }
 420   return work - deadline;
 421 }
 422 
 423 #ifndef PRODUCT
 424 void CMSStats::print_on(outputStream *st) const {
 425   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 426   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 427                gc0_duration(), gc0_period(), gc0_promoted());
 428   st->print(",cms_dur=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 429             cms_duration(), cms_period(), cms_allocated());
 430   st->print(",cms_since_beg=%g,cms_since_end=%g",
 431             cms_time_since_begin(), cms_time_since_end());
 432   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 433             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 434 
 435   if (valid()) {
 436     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 437               promotion_rate(), cms_allocation_rate());
 438     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 439               cms_consumption_rate(), time_until_cms_gen_full());
 440   }
 441   st->cr();
 442 }
 443 #endif // #ifndef PRODUCT
 444 
 445 CMSCollector::CollectorState CMSCollector::_collectorState =
 446                              CMSCollector::Idling;
 447 bool CMSCollector::_foregroundGCIsActive = false;
 448 bool CMSCollector::_foregroundGCShouldWait = false;
 449 
 450 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 451                            CardTableRS*                   ct,
 452                            ConcurrentMarkSweepPolicy*     cp):
 453   _overflow_list(NULL),
 454   _conc_workers(NULL),     // may be set later
 455   _completed_initialization(false),
 456   _collection_count_start(0),
 457   _should_unload_classes(CMSClassUnloadingEnabled),
 458   _concurrent_cycles_since_last_unload(0),
 459   _roots_scanning_options(GenCollectedHeap::SO_None),
 460   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 461   _verifying(false),
 462   _collector_policy(cp),
 463   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 464   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 465   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 466   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 467   _cms_start_registered(false),
 468   _cmsGen(cmsGen),
 469   // Adjust span to cover old (cms) gen
 470   _span(cmsGen->reserved()),
 471   _ct(ct),
 472   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 473   _modUnionTable((CardTable::card_shift - LogHeapWordSize),
 474                  -1 /* lock-free */, "No_lock" /* dummy */),
 475   _restart_addr(NULL),
 476   _ser_pmc_preclean_ovflw(0),
 477   _ser_pmc_remark_ovflw(0),
 478   _par_pmc_remark_ovflw(0),
 479   _ser_kac_preclean_ovflw(0),
 480   _ser_kac_ovflw(0),
 481   _par_kac_ovflw(0),
 482 #ifndef PRODUCT
 483   _num_par_pushes(0),
 484 #endif
 485   _span_based_discoverer(_span),
 486   _ref_processor(NULL),    // will be set later
 487   // Construct the is_alive_closure with _span & markBitMap
 488   _is_alive_closure(_span, &_markBitMap),
 489   _modUnionClosurePar(&_modUnionTable),
 490   _between_prologue_and_epilogue(false),
 491   _abort_preclean(false),
 492   _start_sampling(false),
 493   _stats(cmsGen),
 494   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true,
 495                              //verify that this lock should be acquired with safepoint check.
 496                              Monitor::_safepoint_check_sometimes)),
 497   _eden_chunk_array(NULL),     // may be set in ctor body
 498   _eden_chunk_index(0),        // -- ditto --
 499   _eden_chunk_capacity(0),     // -- ditto --
 500   _survivor_chunk_array(NULL), // -- ditto --
 501   _survivor_chunk_index(0),    // -- ditto --
 502   _survivor_chunk_capacity(0), // -- ditto --
 503   _survivor_plab_array(NULL)   // -- ditto --
 504 {
 505   // Now expand the span and allocate the collection support structures
 506   // (MUT, marking bit map etc.) to cover both generations subject to
 507   // collection.
 508 
 509   // For use by dirty card to oop closures.
 510   _cmsGen->cmsSpace()->set_collector(this);
 511 
 512   // Allocate MUT and marking bit map
 513   {
 514     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 515     if (!_markBitMap.allocate(_span)) {
 516       log_warning(gc)("Failed to allocate CMS Bit Map");
 517       return;
 518     }
 519     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 520   }
 521   {
 522     _modUnionTable.allocate(_span);
 523     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 524   }
 525 
 526   if (!_markStack.allocate(MarkStackSize)) {
 527     log_warning(gc)("Failed to allocate CMS Marking Stack");
 528     return;
 529   }
 530 
 531   // Support for multi-threaded concurrent phases
 532   if (CMSConcurrentMTEnabled) {
 533     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 534       // just for now
 535       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3) / 4);
 536     }
 537     if (ConcGCThreads > 1) {
 538       _conc_workers = new YieldingFlexibleWorkGang("CMS Thread",
 539                                  ConcGCThreads, true);
 540       if (_conc_workers == NULL) {
 541         log_warning(gc)("GC/CMS: _conc_workers allocation failure: forcing -CMSConcurrentMTEnabled");
 542         CMSConcurrentMTEnabled = false;
 543       } else {
 544         _conc_workers->initialize_workers();
 545       }
 546     } else {
 547       CMSConcurrentMTEnabled = false;
 548     }
 549   }
 550   if (!CMSConcurrentMTEnabled) {
 551     ConcGCThreads = 0;
 552   } else {
 553     // Turn off CMSCleanOnEnter optimization temporarily for
 554     // the MT case where it's not fixed yet; see 6178663.
 555     CMSCleanOnEnter = false;
 556   }
 557   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 558          "Inconsistency");
 559   log_debug(gc)("ConcGCThreads: %u", ConcGCThreads);
 560   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 561 
 562   // Parallel task queues; these are shared for the
 563   // concurrent and stop-world phases of CMS, but
 564   // are not shared with parallel scavenge (ParNew).
 565   {
 566     uint i;
 567     uint num_queues = MAX2(ParallelGCThreads, ConcGCThreads);
 568 
 569     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 570          || ParallelRefProcEnabled)
 571         && num_queues > 0) {
 572       _task_queues = new OopTaskQueueSet(num_queues);
 573       if (_task_queues == NULL) {
 574         log_warning(gc)("task_queues allocation failure.");
 575         return;
 576       }
 577       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 578       for (i = 0; i < num_queues; i++) {
 579         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 580         if (q == NULL) {
 581           log_warning(gc)("work_queue allocation failure.");
 582           return;
 583         }
 584         _task_queues->register_queue(i, q);
 585       }
 586       for (i = 0; i < num_queues; i++) {
 587         _task_queues->queue(i)->initialize();
 588       }
 589     }
 590   }
 591 
 592   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 593 
 594   // Clip CMSBootstrapOccupancy between 0 and 100.
 595   _bootstrap_occupancy = CMSBootstrapOccupancy / 100.0;
 596 
 597   // Now tell CMS generations the identity of their collector
 598   ConcurrentMarkSweepGeneration::set_collector(this);
 599 
 600   // Create & start a CMS thread for this CMS collector
 601   _cmsThread = ConcurrentMarkSweepThread::start(this);
 602   assert(cmsThread() != NULL, "CMS Thread should have been created");
 603   assert(cmsThread()->collector() == this,
 604          "CMS Thread should refer to this gen");
 605   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 606 
 607   // Support for parallelizing young gen rescan
 608   CMSHeap* heap = CMSHeap::heap();
 609   _young_gen = heap->young_gen();
 610   if (heap->supports_inline_contig_alloc()) {
 611     _top_addr = heap->top_addr();
 612     _end_addr = heap->end_addr();
 613     assert(_young_gen != NULL, "no _young_gen");
 614     _eden_chunk_index = 0;
 615     _eden_chunk_capacity = (_young_gen->max_capacity() + CMSSamplingGrain) / CMSSamplingGrain;
 616     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 617   }
 618 
 619   // Support for parallelizing survivor space rescan
 620   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 621     const size_t max_plab_samples =
 622       _young_gen->max_survivor_size() / (PLAB::min_size() * HeapWordSize);
 623 
 624     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 625     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 626     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 627     _survivor_chunk_capacity = max_plab_samples;
 628     for (uint i = 0; i < ParallelGCThreads; i++) {
 629       HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 630       ChunkArray* cur = ::new (&_survivor_plab_array[i]) ChunkArray(vec, max_plab_samples);
 631       assert(cur->end() == 0, "Should be 0");
 632       assert(cur->array() == vec, "Should be vec");
 633       assert(cur->capacity() == max_plab_samples, "Error");
 634     }
 635   }
 636 
 637   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 638   _gc_counters = new CollectorCounters("CMS", 1);
 639   _cgc_counters = new CollectorCounters("CMS stop-the-world phases", 2);
 640   _completed_initialization = true;
 641   _inter_sweep_timer.start();  // start of time
 642 }
 643 
 644 const char* ConcurrentMarkSweepGeneration::name() const {
 645   return "concurrent mark-sweep generation";
 646 }
 647 void ConcurrentMarkSweepGeneration::update_counters() {
 648   if (UsePerfData) {
 649     _space_counters->update_all();
 650     _gen_counters->update_all();
 651   }
 652 }
 653 
 654 // this is an optimized version of update_counters(). it takes the
 655 // used value as a parameter rather than computing it.
 656 //
 657 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 658   if (UsePerfData) {
 659     _space_counters->update_used(used);
 660     _space_counters->update_capacity();
 661     _gen_counters->update_all();
 662   }
 663 }
 664 
 665 void ConcurrentMarkSweepGeneration::print() const {
 666   Generation::print();
 667   cmsSpace()->print();
 668 }
 669 
 670 #ifndef PRODUCT
 671 void ConcurrentMarkSweepGeneration::print_statistics() {
 672   cmsSpace()->printFLCensus(0);
 673 }
 674 #endif
 675 
 676 size_t
 677 ConcurrentMarkSweepGeneration::contiguous_available() const {
 678   // dld proposes an improvement in precision here. If the committed
 679   // part of the space ends in a free block we should add that to
 680   // uncommitted size in the calculation below. Will make this
 681   // change later, staying with the approximation below for the
 682   // time being. -- ysr.
 683   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 684 }
 685 
 686 size_t
 687 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 688   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 689 }
 690 
 691 size_t ConcurrentMarkSweepGeneration::max_available() const {
 692   return free() + _virtual_space.uncommitted_size();
 693 }
 694 
 695 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 696   size_t available = max_available();
 697   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 698   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 699   log_trace(gc, promotion)("CMS: promo attempt is%s safe: available(" SIZE_FORMAT ") %s av_promo(" SIZE_FORMAT "), max_promo(" SIZE_FORMAT ")",
 700                            res? "":" not", available, res? ">=":"<", av_promo, max_promotion_in_bytes);
 701   return res;
 702 }
 703 
 704 // At a promotion failure dump information on block layout in heap
 705 // (cms old generation).
 706 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 707   Log(gc, promotion) log;
 708   if (log.is_trace()) {
 709     LogStream ls(log.trace());
 710     cmsSpace()->dump_at_safepoint_with_locks(collector(), &ls);
 711   }
 712 }
 713 
 714 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 715   // Clear the promotion information.  These pointers can be adjusted
 716   // along with all the other pointers into the heap but
 717   // compaction is expected to be a rare event with
 718   // a heap using cms so don't do it without seeing the need.
 719   for (uint i = 0; i < ParallelGCThreads; i++) {
 720     _par_gc_thread_states[i]->promo.reset();
 721   }
 722 }
 723 
 724 void ConcurrentMarkSweepGeneration::compute_new_size() {
 725   assert_locked_or_safepoint(Heap_lock);
 726 
 727   // If incremental collection failed, we just want to expand
 728   // to the limit.
 729   if (incremental_collection_failed()) {
 730     clear_incremental_collection_failed();
 731     grow_to_reserved();
 732     return;
 733   }
 734 
 735   // The heap has been compacted but not reset yet.
 736   // Any metric such as free() or used() will be incorrect.
 737 
 738   CardGeneration::compute_new_size();
 739 
 740   // Reset again after a possible resizing
 741   if (did_compact()) {
 742     cmsSpace()->reset_after_compaction();
 743   }
 744 }
 745 
 746 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 747   assert_locked_or_safepoint(Heap_lock);
 748 
 749   // If incremental collection failed, we just want to expand
 750   // to the limit.
 751   if (incremental_collection_failed()) {
 752     clear_incremental_collection_failed();
 753     grow_to_reserved();
 754     return;
 755   }
 756 
 757   double free_percentage = ((double) free()) / capacity();
 758   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 759   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 760 
 761   // compute expansion delta needed for reaching desired free percentage
 762   if (free_percentage < desired_free_percentage) {
 763     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 764     assert(desired_capacity >= capacity(), "invalid expansion size");
 765     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 766     Log(gc) log;
 767     if (log.is_trace()) {
 768       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 769       log.trace("From compute_new_size: ");
 770       log.trace("  Free fraction %f", free_percentage);
 771       log.trace("  Desired free fraction %f", desired_free_percentage);
 772       log.trace("  Maximum free fraction %f", maximum_free_percentage);
 773       log.trace("  Capacity " SIZE_FORMAT, capacity() / 1000);
 774       log.trace("  Desired capacity " SIZE_FORMAT, desired_capacity / 1000);
 775       CMSHeap* heap = CMSHeap::heap();
 776       size_t young_size = heap->young_gen()->capacity();
 777       log.trace("  Young gen size " SIZE_FORMAT, young_size / 1000);
 778       log.trace("  unsafe_max_alloc_nogc " SIZE_FORMAT, unsafe_max_alloc_nogc() / 1000);
 779       log.trace("  contiguous available " SIZE_FORMAT, contiguous_available() / 1000);
 780       log.trace("  Expand by " SIZE_FORMAT " (bytes)", expand_bytes);
 781     }
 782     // safe if expansion fails
 783     expand_for_gc_cause(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 784     log.trace("  Expanded free fraction %f", ((double) free()) / capacity());
 785   } else {
 786     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 787     assert(desired_capacity <= capacity(), "invalid expansion size");
 788     size_t shrink_bytes = capacity() - desired_capacity;
 789     // Don't shrink unless the delta is greater than the minimum shrink we want
 790     if (shrink_bytes >= MinHeapDeltaBytes) {
 791       shrink_free_list_by(shrink_bytes);
 792     }
 793   }
 794 }
 795 
 796 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
 797   return cmsSpace()->freelistLock();
 798 }
 799 
 800 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size, bool tlab) {
 801   CMSSynchronousYieldRequest yr;
 802   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
 803   return have_lock_and_allocate(size, tlab);
 804 }
 805 
 806 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
 807                                                                 bool   tlab /* ignored */) {
 808   assert_lock_strong(freelistLock());
 809   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
 810   HeapWord* res = cmsSpace()->allocate(adjustedSize);
 811   // Allocate the object live (grey) if the background collector has
 812   // started marking. This is necessary because the marker may
 813   // have passed this address and consequently this object will
 814   // not otherwise be greyed and would be incorrectly swept up.
 815   // Note that if this object contains references, the writing
 816   // of those references will dirty the card containing this object
 817   // allowing the object to be blackened (and its references scanned)
 818   // either during a preclean phase or at the final checkpoint.
 819   if (res != NULL) {
 820     // We may block here with an uninitialized object with
 821     // its mark-bit or P-bits not yet set. Such objects need
 822     // to be safely navigable by block_start().
 823     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
 824     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
 825     collector()->direct_allocated(res, adjustedSize);
 826     _direct_allocated_words += adjustedSize;
 827     // allocation counters
 828     NOT_PRODUCT(
 829       _numObjectsAllocated++;
 830       _numWordsAllocated += (int)adjustedSize;
 831     )
 832   }
 833   return res;
 834 }
 835 
 836 // In the case of direct allocation by mutators in a generation that
 837 // is being concurrently collected, the object must be allocated
 838 // live (grey) if the background collector has started marking.
 839 // This is necessary because the marker may
 840 // have passed this address and consequently this object will
 841 // not otherwise be greyed and would be incorrectly swept up.
 842 // Note that if this object contains references, the writing
 843 // of those references will dirty the card containing this object
 844 // allowing the object to be blackened (and its references scanned)
 845 // either during a preclean phase or at the final checkpoint.
 846 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
 847   assert(_markBitMap.covers(start, size), "Out of bounds");
 848   if (_collectorState >= Marking) {
 849     MutexLockerEx y(_markBitMap.lock(),
 850                     Mutex::_no_safepoint_check_flag);
 851     // [see comments preceding SweepClosure::do_blk() below for details]
 852     //
 853     // Can the P-bits be deleted now?  JJJ
 854     //
 855     // 1. need to mark the object as live so it isn't collected
 856     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
 857     // 3. need to mark the end of the object so marking, precleaning or sweeping
 858     //    can skip over uninitialized or unparsable objects. An allocated
 859     //    object is considered uninitialized for our purposes as long as
 860     //    its klass word is NULL.  All old gen objects are parsable
 861     //    as soon as they are initialized.)
 862     _markBitMap.mark(start);          // object is live
 863     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
 864     _markBitMap.mark(start + size - 1);
 865                                       // mark end of object
 866   }
 867   // check that oop looks uninitialized
 868   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
 869 }
 870 
 871 void CMSCollector::promoted(bool par, HeapWord* start,
 872                             bool is_obj_array, size_t obj_size) {
 873   assert(_markBitMap.covers(start), "Out of bounds");
 874   // See comment in direct_allocated() about when objects should
 875   // be allocated live.
 876   if (_collectorState >= Marking) {
 877     // we already hold the marking bit map lock, taken in
 878     // the prologue
 879     if (par) {
 880       _markBitMap.par_mark(start);
 881     } else {
 882       _markBitMap.mark(start);
 883     }
 884     // We don't need to mark the object as uninitialized (as
 885     // in direct_allocated above) because this is being done with the
 886     // world stopped and the object will be initialized by the
 887     // time the marking, precleaning or sweeping get to look at it.
 888     // But see the code for copying objects into the CMS generation,
 889     // where we need to ensure that concurrent readers of the
 890     // block offset table are able to safely navigate a block that
 891     // is in flux from being free to being allocated (and in
 892     // transition while being copied into) and subsequently
 893     // becoming a bona-fide object when the copy/promotion is complete.
 894     assert(SafepointSynchronize::is_at_safepoint(),
 895            "expect promotion only at safepoints");
 896 
 897     if (_collectorState < Sweeping) {
 898       // Mark the appropriate cards in the modUnionTable, so that
 899       // this object gets scanned before the sweep. If this is
 900       // not done, CMS generation references in the object might
 901       // not get marked.
 902       // For the case of arrays, which are otherwise precisely
 903       // marked, we need to dirty the entire array, not just its head.
 904       if (is_obj_array) {
 905         // The [par_]mark_range() method expects mr.end() below to
 906         // be aligned to the granularity of a bit's representation
 907         // in the heap. In the case of the MUT below, that's a
 908         // card size.
 909         MemRegion mr(start,
 910                      align_up(start + obj_size,
 911                               CardTable::card_size /* bytes */));
 912         if (par) {
 913           _modUnionTable.par_mark_range(mr);
 914         } else {
 915           _modUnionTable.mark_range(mr);
 916         }
 917       } else {  // not an obj array; we can just mark the head
 918         if (par) {
 919           _modUnionTable.par_mark(start);
 920         } else {
 921           _modUnionTable.mark(start);
 922         }
 923       }
 924     }
 925   }
 926 }
 927 
 928 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
 929   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 930   // allocate, copy and if necessary update promoinfo --
 931   // delegate to underlying space.
 932   assert_lock_strong(freelistLock());
 933 
 934 #ifndef PRODUCT
 935   if (CMSHeap::heap()->promotion_should_fail()) {
 936     return NULL;
 937   }
 938 #endif  // #ifndef PRODUCT
 939 
 940   oop res = _cmsSpace->promote(obj, obj_size);
 941   if (res == NULL) {
 942     // expand and retry
 943     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
 944     expand_for_gc_cause(s*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_promotion);
 945     // Since this is the old generation, we don't try to promote
 946     // into a more senior generation.
 947     res = _cmsSpace->promote(obj, obj_size);
 948   }
 949   if (res != NULL) {
 950     // See comment in allocate() about when objects should
 951     // be allocated live.
 952     assert(oopDesc::is_oop(obj), "Will dereference klass pointer below");
 953     collector()->promoted(false,           // Not parallel
 954                           (HeapWord*)res, obj->is_objArray(), obj_size);
 955     // promotion counters
 956     NOT_PRODUCT(
 957       _numObjectsPromoted++;
 958       _numWordsPromoted +=
 959         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
 960     )
 961   }
 962   return res;
 963 }
 964 
 965 
 966 // IMPORTANT: Notes on object size recognition in CMS.
 967 // ---------------------------------------------------
 968 // A block of storage in the CMS generation is always in
 969 // one of three states. A free block (FREE), an allocated
 970 // object (OBJECT) whose size() method reports the correct size,
 971 // and an intermediate state (TRANSIENT) in which its size cannot
 972 // be accurately determined.
 973 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
 974 // -----------------------------------------------------
 975 // FREE:      klass_word & 1 == 1; mark_word holds block size
 976 //
 977 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
 978 //            obj->size() computes correct size
 979 //
 980 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 981 //
 982 // STATE IDENTIFICATION: (64 bit+COOPS)
 983 // ------------------------------------
 984 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
 985 //
 986 // OBJECT:    klass_word installed; klass_word != 0;
 987 //            obj->size() computes correct size
 988 //
 989 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
 990 //
 991 //
 992 // STATE TRANSITION DIAGRAM
 993 //
 994 //        mut / parnew                     mut  /  parnew
 995 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
 996 //  ^                                                                   |
 997 //  |------------------------ DEAD <------------------------------------|
 998 //         sweep                            mut
 999 //
1000 // While a block is in TRANSIENT state its size cannot be determined
1001 // so readers will either need to come back later or stall until
1002 // the size can be determined. Note that for the case of direct
1003 // allocation, P-bits, when available, may be used to determine the
1004 // size of an object that may not yet have been initialized.
1005 
1006 // Things to support parallel young-gen collection.
1007 oop
1008 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1009                                            oop old, markOop m,
1010                                            size_t word_sz) {
1011 #ifndef PRODUCT
1012   if (CMSHeap::heap()->promotion_should_fail()) {
1013     return NULL;
1014   }
1015 #endif  // #ifndef PRODUCT
1016 
1017   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1018   PromotionInfo* promoInfo = &ps->promo;
1019   // if we are tracking promotions, then first ensure space for
1020   // promotion (including spooling space for saving header if necessary).
1021   // then allocate and copy, then track promoted info if needed.
1022   // When tracking (see PromotionInfo::track()), the mark word may
1023   // be displaced and in this case restoration of the mark word
1024   // occurs in the (oop_since_save_marks_)iterate phase.
1025   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1026     // Out of space for allocating spooling buffers;
1027     // try expanding and allocating spooling buffers.
1028     if (!expand_and_ensure_spooling_space(promoInfo)) {
1029       return NULL;
1030     }
1031   }
1032   assert(!promoInfo->tracking() || promoInfo->has_spooling_space(), "Control point invariant");
1033   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1034   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1035   if (obj_ptr == NULL) {
1036      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1037      if (obj_ptr == NULL) {
1038        return NULL;
1039      }
1040   }
1041   oop obj = oop(obj_ptr);
1042   OrderAccess::storestore();
1043   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1044   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1045   // IMPORTANT: See note on object initialization for CMS above.
1046   // Otherwise, copy the object.  Here we must be careful to insert the
1047   // klass pointer last, since this marks the block as an allocated object.
1048   // Except with compressed oops it's the mark word.
1049   HeapWord* old_ptr = (HeapWord*)old;
1050   // Restore the mark word copied above.
1051   obj->set_mark_raw(m);
1052   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1053   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1054   OrderAccess::storestore();
1055 
1056   if (UseCompressedClassPointers) {
1057     // Copy gap missed by (aligned) header size calculation below
1058     obj->set_klass_gap(old->klass_gap());
1059   }
1060   if (word_sz > (size_t)oopDesc::header_size()) {
1061     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1062                                  obj_ptr + oopDesc::header_size(),
1063                                  word_sz - oopDesc::header_size());
1064   }
1065 
1066   // Now we can track the promoted object, if necessary.  We take care
1067   // to delay the transition from uninitialized to full object
1068   // (i.e., insertion of klass pointer) until after, so that it
1069   // atomically becomes a promoted object.
1070   if (promoInfo->tracking()) {
1071     promoInfo->track((PromotedObject*)obj, old->klass());
1072   }
1073   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1074   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1075   assert(oopDesc::is_oop(old), "Will use and dereference old klass ptr below");
1076 
1077   // Finally, install the klass pointer (this should be volatile).
1078   OrderAccess::storestore();
1079   obj->set_klass(old->klass());
1080   // We should now be able to calculate the right size for this object
1081   assert(oopDesc::is_oop(obj) && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1082 
1083   collector()->promoted(true,          // parallel
1084                         obj_ptr, old->is_objArray(), word_sz);
1085 
1086   NOT_PRODUCT(
1087     Atomic::inc(&_numObjectsPromoted);
1088     Atomic::add(alloc_sz, &_numWordsPromoted);
1089   )
1090 
1091   return obj;
1092 }
1093 
1094 void
1095 ConcurrentMarkSweepGeneration::
1096 par_promote_alloc_done(int thread_num) {
1097   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1098   ps->lab.retire(thread_num);
1099 }
1100 
1101 void
1102 ConcurrentMarkSweepGeneration::
1103 par_oop_since_save_marks_iterate_done(int thread_num) {
1104   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1105   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1106   ps->promo.promoted_oops_iterate(dummy_cl);
1107 
1108   // Because card-scanning has been completed, subsequent phases
1109   // (e.g., reference processing) will not need to recognize which
1110   // objects have been promoted during this GC. So, we can now disable
1111   // promotion tracking.
1112   ps->promo.stopTrackingPromotions();
1113 }
1114 
1115 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1116                                                    size_t size,
1117                                                    bool   tlab)
1118 {
1119   // We allow a STW collection only if a full
1120   // collection was requested.
1121   return full || should_allocate(size, tlab); // FIX ME !!!
1122   // This and promotion failure handling are connected at the
1123   // hip and should be fixed by untying them.
1124 }
1125 
1126 bool CMSCollector::shouldConcurrentCollect() {
1127   LogTarget(Trace, gc) log;
1128 
1129   if (_full_gc_requested) {
1130     log.print("CMSCollector: collect because of explicit  gc request (or GCLocker)");
1131     return true;
1132   }
1133 
1134   FreelistLocker x(this);
1135   // ------------------------------------------------------------------
1136   // Print out lots of information which affects the initiation of
1137   // a collection.
1138   if (log.is_enabled() && stats().valid()) {
1139     log.print("CMSCollector shouldConcurrentCollect: ");
1140 
1141     LogStream out(log);
1142     stats().print_on(&out);
1143 
1144     log.print("time_until_cms_gen_full %3.7f", stats().time_until_cms_gen_full());
1145     log.print("free=" SIZE_FORMAT, _cmsGen->free());
1146     log.print("contiguous_available=" SIZE_FORMAT, _cmsGen->contiguous_available());
1147     log.print("promotion_rate=%g", stats().promotion_rate());
1148     log.print("cms_allocation_rate=%g", stats().cms_allocation_rate());
1149     log.print("occupancy=%3.7f", _cmsGen->occupancy());
1150     log.print("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1151     log.print("cms_time_since_begin=%3.7f", stats().cms_time_since_begin());
1152     log.print("cms_time_since_end=%3.7f", stats().cms_time_since_end());
1153     log.print("metadata initialized %d", MetaspaceGC::should_concurrent_collect());
1154   }
1155   // ------------------------------------------------------------------
1156 
1157   // If the estimated time to complete a cms collection (cms_duration())
1158   // is less than the estimated time remaining until the cms generation
1159   // is full, start a collection.
1160   if (!UseCMSInitiatingOccupancyOnly) {
1161     if (stats().valid()) {
1162       if (stats().time_until_cms_start() == 0.0) {
1163         return true;
1164       }
1165     } else {
1166       // We want to conservatively collect somewhat early in order
1167       // to try and "bootstrap" our CMS/promotion statistics;
1168       // this branch will not fire after the first successful CMS
1169       // collection because the stats should then be valid.
1170       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1171         log.print(" CMSCollector: collect for bootstrapping statistics: occupancy = %f, boot occupancy = %f",
1172                   _cmsGen->occupancy(), _bootstrap_occupancy);
1173         return true;
1174       }
1175     }
1176   }
1177 
1178   // Otherwise, we start a collection cycle if
1179   // old gen want a collection cycle started. Each may use
1180   // an appropriate criterion for making this decision.
1181   // XXX We need to make sure that the gen expansion
1182   // criterion dovetails well with this. XXX NEED TO FIX THIS
1183   if (_cmsGen->should_concurrent_collect()) {
1184     log.print("CMS old gen initiated");
1185     return true;
1186   }
1187 
1188   // We start a collection if we believe an incremental collection may fail;
1189   // this is not likely to be productive in practice because it's probably too
1190   // late anyway.
1191   CMSHeap* heap = CMSHeap::heap();
1192   if (heap->incremental_collection_will_fail(true /* consult_young */)) {
1193     log.print("CMSCollector: collect because incremental collection will fail ");
1194     return true;
1195   }
1196 
1197   if (MetaspaceGC::should_concurrent_collect()) {
1198     log.print("CMSCollector: collect for metadata allocation ");
1199     return true;
1200   }
1201 
1202   // CMSTriggerInterval starts a CMS cycle if enough time has passed.
1203   if (CMSTriggerInterval >= 0) {
1204     if (CMSTriggerInterval == 0) {
1205       // Trigger always
1206       return true;
1207     }
1208 
1209     // Check the CMS time since begin (we do not check the stats validity
1210     // as we want to be able to trigger the first CMS cycle as well)
1211     if (stats().cms_time_since_begin() >= (CMSTriggerInterval / ((double) MILLIUNITS))) {
1212       if (stats().valid()) {
1213         log.print("CMSCollector: collect because of trigger interval (time since last begin %3.7f secs)",
1214                   stats().cms_time_since_begin());
1215       } else {
1216         log.print("CMSCollector: collect because of trigger interval (first collection)");
1217       }
1218       return true;
1219     }
1220   }
1221 
1222   return false;
1223 }
1224 
1225 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1226 
1227 // Clear _expansion_cause fields of constituent generations
1228 void CMSCollector::clear_expansion_cause() {
1229   _cmsGen->clear_expansion_cause();
1230 }
1231 
1232 // We should be conservative in starting a collection cycle.  To
1233 // start too eagerly runs the risk of collecting too often in the
1234 // extreme.  To collect too rarely falls back on full collections,
1235 // which works, even if not optimum in terms of concurrent work.
1236 // As a work around for too eagerly collecting, use the flag
1237 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1238 // giving the user an easily understandable way of controlling the
1239 // collections.
1240 // We want to start a new collection cycle if any of the following
1241 // conditions hold:
1242 // . our current occupancy exceeds the configured initiating occupancy
1243 //   for this generation, or
1244 // . we recently needed to expand this space and have not, since that
1245 //   expansion, done a collection of this generation, or
1246 // . the underlying space believes that it may be a good idea to initiate
1247 //   a concurrent collection (this may be based on criteria such as the
1248 //   following: the space uses linear allocation and linear allocation is
1249 //   going to fail, or there is believed to be excessive fragmentation in
1250 //   the generation, etc... or ...
1251 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1252 //   the case of the old generation; see CR 6543076):
1253 //   we may be approaching a point at which allocation requests may fail because
1254 //   we will be out of sufficient free space given allocation rate estimates.]
1255 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1256 
1257   assert_lock_strong(freelistLock());
1258   if (occupancy() > initiating_occupancy()) {
1259     log_trace(gc)(" %s: collect because of occupancy %f / %f  ",
1260                   short_name(), occupancy(), initiating_occupancy());
1261     return true;
1262   }
1263   if (UseCMSInitiatingOccupancyOnly) {
1264     return false;
1265   }
1266   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1267     log_trace(gc)(" %s: collect because expanded for allocation ", short_name());
1268     return true;
1269   }
1270   return false;
1271 }
1272 
1273 void ConcurrentMarkSweepGeneration::collect(bool   full,
1274                                             bool   clear_all_soft_refs,
1275                                             size_t size,
1276                                             bool   tlab)
1277 {
1278   collector()->collect(full, clear_all_soft_refs, size, tlab);
1279 }
1280 
1281 void CMSCollector::collect(bool   full,
1282                            bool   clear_all_soft_refs,
1283                            size_t size,
1284                            bool   tlab)
1285 {
1286   // The following "if" branch is present for defensive reasons.
1287   // In the current uses of this interface, it can be replaced with:
1288   // assert(!GCLocker.is_active(), "Can't be called otherwise");
1289   // But I am not placing that assert here to allow future
1290   // generality in invoking this interface.
1291   if (GCLocker::is_active()) {
1292     // A consistency test for GCLocker
1293     assert(GCLocker::needs_gc(), "Should have been set already");
1294     // Skip this foreground collection, instead
1295     // expanding the heap if necessary.
1296     // Need the free list locks for the call to free() in compute_new_size()
1297     compute_new_size();
1298     return;
1299   }
1300   acquire_control_and_collect(full, clear_all_soft_refs);
1301 }
1302 
1303 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1304   CMSHeap* heap = CMSHeap::heap();
1305   unsigned int gc_count = heap->total_full_collections();
1306   if (gc_count == full_gc_count) {
1307     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1308     _full_gc_requested = true;
1309     _full_gc_cause = cause;
1310     CGC_lock->notify();   // nudge CMS thread
1311   } else {
1312     assert(gc_count > full_gc_count, "Error: causal loop");
1313   }
1314 }
1315 
1316 bool CMSCollector::is_external_interruption() {
1317   GCCause::Cause cause = CMSHeap::heap()->gc_cause();
1318   return GCCause::is_user_requested_gc(cause) ||
1319          GCCause::is_serviceability_requested_gc(cause);
1320 }
1321 
1322 void CMSCollector::report_concurrent_mode_interruption() {
1323   if (is_external_interruption()) {
1324     log_debug(gc)("Concurrent mode interrupted");
1325   } else {
1326     log_debug(gc)("Concurrent mode failure");
1327     _gc_tracer_cm->report_concurrent_mode_failure();
1328   }
1329 }
1330 
1331 
1332 // The foreground and background collectors need to coordinate in order
1333 // to make sure that they do not mutually interfere with CMS collections.
1334 // When a background collection is active,
1335 // the foreground collector may need to take over (preempt) and
1336 // synchronously complete an ongoing collection. Depending on the
1337 // frequency of the background collections and the heap usage
1338 // of the application, this preemption can be seldom or frequent.
1339 // There are only certain
1340 // points in the background collection that the "collection-baton"
1341 // can be passed to the foreground collector.
1342 //
1343 // The foreground collector will wait for the baton before
1344 // starting any part of the collection.  The foreground collector
1345 // will only wait at one location.
1346 //
1347 // The background collector will yield the baton before starting a new
1348 // phase of the collection (e.g., before initial marking, marking from roots,
1349 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1350 // of the loop which switches the phases. The background collector does some
1351 // of the phases (initial mark, final re-mark) with the world stopped.
1352 // Because of locking involved in stopping the world,
1353 // the foreground collector should not block waiting for the background
1354 // collector when it is doing a stop-the-world phase.  The background
1355 // collector will yield the baton at an additional point just before
1356 // it enters a stop-the-world phase.  Once the world is stopped, the
1357 // background collector checks the phase of the collection.  If the
1358 // phase has not changed, it proceeds with the collection.  If the
1359 // phase has changed, it skips that phase of the collection.  See
1360 // the comments on the use of the Heap_lock in collect_in_background().
1361 //
1362 // Variable used in baton passing.
1363 //   _foregroundGCIsActive - Set to true by the foreground collector when
1364 //      it wants the baton.  The foreground clears it when it has finished
1365 //      the collection.
1366 //   _foregroundGCShouldWait - Set to true by the background collector
1367 //        when it is running.  The foreground collector waits while
1368 //      _foregroundGCShouldWait is true.
1369 //  CGC_lock - monitor used to protect access to the above variables
1370 //      and to notify the foreground and background collectors.
1371 //  _collectorState - current state of the CMS collection.
1372 //
1373 // The foreground collector
1374 //   acquires the CGC_lock
1375 //   sets _foregroundGCIsActive
1376 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1377 //     various locks acquired in preparation for the collection
1378 //     are released so as not to block the background collector
1379 //     that is in the midst of a collection
1380 //   proceeds with the collection
1381 //   clears _foregroundGCIsActive
1382 //   returns
1383 //
1384 // The background collector in a loop iterating on the phases of the
1385 //      collection
1386 //   acquires the CGC_lock
1387 //   sets _foregroundGCShouldWait
1388 //   if _foregroundGCIsActive is set
1389 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1390 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1391 //     and exits the loop.
1392 //   otherwise
1393 //     proceed with that phase of the collection
1394 //     if the phase is a stop-the-world phase,
1395 //       yield the baton once more just before enqueueing
1396 //       the stop-world CMS operation (executed by the VM thread).
1397 //   returns after all phases of the collection are done
1398 //
1399 
1400 void CMSCollector::acquire_control_and_collect(bool full,
1401         bool clear_all_soft_refs) {
1402   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1403   assert(!Thread::current()->is_ConcurrentGC_thread(),
1404          "shouldn't try to acquire control from self!");
1405 
1406   // Start the protocol for acquiring control of the
1407   // collection from the background collector (aka CMS thread).
1408   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1409          "VM thread should have CMS token");
1410   // Remember the possibly interrupted state of an ongoing
1411   // concurrent collection
1412   CollectorState first_state = _collectorState;
1413 
1414   // Signal to a possibly ongoing concurrent collection that
1415   // we want to do a foreground collection.
1416   _foregroundGCIsActive = true;
1417 
1418   // release locks and wait for a notify from the background collector
1419   // releasing the locks in only necessary for phases which
1420   // do yields to improve the granularity of the collection.
1421   assert_lock_strong(bitMapLock());
1422   // We need to lock the Free list lock for the space that we are
1423   // currently collecting.
1424   assert(haveFreelistLocks(), "Must be holding free list locks");
1425   bitMapLock()->unlock();
1426   releaseFreelistLocks();
1427   {
1428     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1429     if (_foregroundGCShouldWait) {
1430       // We are going to be waiting for action for the CMS thread;
1431       // it had better not be gone (for instance at shutdown)!
1432       assert(ConcurrentMarkSweepThread::cmst() != NULL && !ConcurrentMarkSweepThread::cmst()->has_terminated(),
1433              "CMS thread must be running");
1434       // Wait here until the background collector gives us the go-ahead
1435       ConcurrentMarkSweepThread::clear_CMS_flag(
1436         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1437       // Get a possibly blocked CMS thread going:
1438       //   Note that we set _foregroundGCIsActive true above,
1439       //   without protection of the CGC_lock.
1440       CGC_lock->notify();
1441       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1442              "Possible deadlock");
1443       while (_foregroundGCShouldWait) {
1444         // wait for notification
1445         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1446         // Possibility of delay/starvation here, since CMS token does
1447         // not know to give priority to VM thread? Actually, i think
1448         // there wouldn't be any delay/starvation, but the proof of
1449         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1450       }
1451       ConcurrentMarkSweepThread::set_CMS_flag(
1452         ConcurrentMarkSweepThread::CMS_vm_has_token);
1453     }
1454   }
1455   // The CMS_token is already held.  Get back the other locks.
1456   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1457          "VM thread should have CMS token");
1458   getFreelistLocks();
1459   bitMapLock()->lock_without_safepoint_check();
1460   log_debug(gc, state)("CMS foreground collector has asked for control " INTPTR_FORMAT " with first state %d",
1461                        p2i(Thread::current()), first_state);
1462   log_debug(gc, state)("    gets control with state %d", _collectorState);
1463 
1464   // Inform cms gen if this was due to partial collection failing.
1465   // The CMS gen may use this fact to determine its expansion policy.
1466   CMSHeap* heap = CMSHeap::heap();
1467   if (heap->incremental_collection_will_fail(false /* don't consult_young */)) {
1468     assert(!_cmsGen->incremental_collection_failed(),
1469            "Should have been noticed, reacted to and cleared");
1470     _cmsGen->set_incremental_collection_failed();
1471   }
1472 
1473   if (first_state > Idling) {
1474     report_concurrent_mode_interruption();
1475   }
1476 
1477   set_did_compact(true);
1478 
1479   // If the collection is being acquired from the background
1480   // collector, there may be references on the discovered
1481   // references lists.  Abandon those references, since some
1482   // of them may have become unreachable after concurrent
1483   // discovery; the STW compacting collector will redo discovery
1484   // more precisely, without being subject to floating garbage.
1485   // Leaving otherwise unreachable references in the discovered
1486   // lists would require special handling.
1487   ref_processor()->disable_discovery();
1488   ref_processor()->abandon_partial_discovery();
1489   ref_processor()->verify_no_references_recorded();
1490 
1491   if (first_state > Idling) {
1492     save_heap_summary();
1493   }
1494 
1495   do_compaction_work(clear_all_soft_refs);
1496 
1497   // Has the GC time limit been exceeded?
1498   size_t max_eden_size = _young_gen->max_eden_size();
1499   GCCause::Cause gc_cause = heap->gc_cause();
1500   size_policy()->check_gc_overhead_limit(_young_gen->used(),
1501                                          _young_gen->eden()->used(),
1502                                          _cmsGen->max_capacity(),
1503                                          max_eden_size,
1504                                          full,
1505                                          gc_cause,
1506                                          heap->soft_ref_policy());
1507 
1508   // Reset the expansion cause, now that we just completed
1509   // a collection cycle.
1510   clear_expansion_cause();
1511   _foregroundGCIsActive = false;
1512   return;
1513 }
1514 
1515 // Resize the tenured generation
1516 // after obtaining the free list locks for the
1517 // two generations.
1518 void CMSCollector::compute_new_size() {
1519   assert_locked_or_safepoint(Heap_lock);
1520   FreelistLocker z(this);
1521   MetaspaceGC::compute_new_size();
1522   _cmsGen->compute_new_size_free_list();
1523 }
1524 
1525 // A work method used by the foreground collector to do
1526 // a mark-sweep-compact.
1527 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
1528   CMSHeap* heap = CMSHeap::heap();
1529 
1530   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
1531   gc_timer->register_gc_start();
1532 
1533   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
1534   gc_tracer->report_gc_start(heap->gc_cause(), gc_timer->gc_start());
1535 
1536   heap->pre_full_gc_dump(gc_timer);
1537 
1538   GCTraceTime(Trace, gc, phases) t("CMS:MSC");
1539 
1540   // Temporarily widen the span of the weak reference processing to
1541   // the entire heap.
1542   MemRegion new_span(CMSHeap::heap()->reserved_region());
1543   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
1544   // Temporarily, clear the "is_alive_non_header" field of the
1545   // reference processor.
1546   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
1547   // Temporarily make reference _processing_ single threaded (non-MT).
1548   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
1549   // Temporarily make refs discovery atomic
1550   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
1551   // Temporarily make reference _discovery_ single threaded (non-MT)
1552   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
1553 
1554   ref_processor()->set_enqueuing_is_done(false);
1555   ref_processor()->enable_discovery();
1556   ref_processor()->setup_policy(clear_all_soft_refs);
1557   // If an asynchronous collection finishes, the _modUnionTable is
1558   // all clear.  If we are assuming the collection from an asynchronous
1559   // collection, clear the _modUnionTable.
1560   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
1561     "_modUnionTable should be clear if the baton was not passed");
1562   _modUnionTable.clear_all();
1563   assert(_collectorState != Idling || _ct->cld_rem_set()->mod_union_is_clear(),
1564     "mod union for klasses should be clear if the baton was passed");
1565   _ct->cld_rem_set()->clear_mod_union();
1566 
1567 
1568   // We must adjust the allocation statistics being maintained
1569   // in the free list space. We do so by reading and clearing
1570   // the sweep timer and updating the block flux rate estimates below.
1571   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
1572   if (_inter_sweep_timer.is_active()) {
1573     _inter_sweep_timer.stop();
1574     // Note that we do not use this sample to update the _inter_sweep_estimate.
1575     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
1576                                             _inter_sweep_estimate.padded_average(),
1577                                             _intra_sweep_estimate.padded_average());
1578   }
1579 
1580   GenMarkSweep::invoke_at_safepoint(ref_processor(), clear_all_soft_refs);
1581   #ifdef ASSERT
1582     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
1583     size_t free_size = cms_space->free();
1584     assert(free_size ==
1585            pointer_delta(cms_space->end(), cms_space->compaction_top())
1586            * HeapWordSize,
1587       "All the free space should be compacted into one chunk at top");
1588     assert(cms_space->dictionary()->total_chunk_size(
1589                                       debug_only(cms_space->freelistLock())) == 0 ||
1590            cms_space->totalSizeInIndexedFreeLists() == 0,
1591       "All the free space should be in a single chunk");
1592     size_t num = cms_space->totalCount();
1593     assert((free_size == 0 && num == 0) ||
1594            (free_size > 0  && (num == 1 || num == 2)),
1595          "There should be at most 2 free chunks after compaction");
1596   #endif // ASSERT
1597   _collectorState = Resetting;
1598   assert(_restart_addr == NULL,
1599          "Should have been NULL'd before baton was passed");
1600   reset_stw();
1601   _cmsGen->reset_after_compaction();
1602   _concurrent_cycles_since_last_unload = 0;
1603 
1604   // Clear any data recorded in the PLAB chunk arrays.
1605   if (_survivor_plab_array != NULL) {
1606     reset_survivor_plab_arrays();
1607   }
1608 
1609   // Adjust the per-size allocation stats for the next epoch.
1610   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
1611   // Restart the "inter sweep timer" for the next epoch.
1612   _inter_sweep_timer.reset();
1613   _inter_sweep_timer.start();
1614 
1615   // No longer a need to do a concurrent collection for Metaspace.
1616   MetaspaceGC::set_should_concurrent_collect(false);
1617 
1618   heap->post_full_gc_dump(gc_timer);
1619 
1620   gc_timer->register_gc_end();
1621 
1622   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1623 
1624   // For a mark-sweep-compact, compute_new_size() will be called
1625   // in the heap's do_collection() method.
1626 }
1627 
1628 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
1629   Log(gc, heap) log;
1630   if (!log.is_trace()) {
1631     return;
1632   }
1633 
1634   ContiguousSpace* eden_space = _young_gen->eden();
1635   ContiguousSpace* from_space = _young_gen->from();
1636   ContiguousSpace* to_space   = _young_gen->to();
1637   // Eden
1638   if (_eden_chunk_array != NULL) {
1639     log.trace("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1640               p2i(eden_space->bottom()), p2i(eden_space->top()),
1641               p2i(eden_space->end()), eden_space->capacity());
1642     log.trace("_eden_chunk_index=" SIZE_FORMAT ", _eden_chunk_capacity=" SIZE_FORMAT,
1643               _eden_chunk_index, _eden_chunk_capacity);
1644     for (size_t i = 0; i < _eden_chunk_index; i++) {
1645       log.trace("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_eden_chunk_array[i]));
1646     }
1647   }
1648   // Survivor
1649   if (_survivor_chunk_array != NULL) {
1650     log.trace("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
1651               p2i(from_space->bottom()), p2i(from_space->top()),
1652               p2i(from_space->end()), from_space->capacity());
1653     log.trace("_survivor_chunk_index=" SIZE_FORMAT ", _survivor_chunk_capacity=" SIZE_FORMAT,
1654               _survivor_chunk_index, _survivor_chunk_capacity);
1655     for (size_t i = 0; i < _survivor_chunk_index; i++) {
1656       log.trace("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT, i, p2i(_survivor_chunk_array[i]));
1657     }
1658   }
1659 }
1660 
1661 void CMSCollector::getFreelistLocks() const {
1662   // Get locks for all free lists in all generations that this
1663   // collector is responsible for
1664   _cmsGen->freelistLock()->lock_without_safepoint_check();
1665 }
1666 
1667 void CMSCollector::releaseFreelistLocks() const {
1668   // Release locks for all free lists in all generations that this
1669   // collector is responsible for
1670   _cmsGen->freelistLock()->unlock();
1671 }
1672 
1673 bool CMSCollector::haveFreelistLocks() const {
1674   // Check locks for all free lists in all generations that this
1675   // collector is responsible for
1676   assert_lock_strong(_cmsGen->freelistLock());
1677   PRODUCT_ONLY(ShouldNotReachHere());
1678   return true;
1679 }
1680 
1681 // A utility class that is used by the CMS collector to
1682 // temporarily "release" the foreground collector from its
1683 // usual obligation to wait for the background collector to
1684 // complete an ongoing phase before proceeding.
1685 class ReleaseForegroundGC: public StackObj {
1686  private:
1687   CMSCollector* _c;
1688  public:
1689   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
1690     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
1691     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1692     // allow a potentially blocked foreground collector to proceed
1693     _c->_foregroundGCShouldWait = false;
1694     if (_c->_foregroundGCIsActive) {
1695       CGC_lock->notify();
1696     }
1697     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1698            "Possible deadlock");
1699   }
1700 
1701   ~ReleaseForegroundGC() {
1702     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
1703     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1704     _c->_foregroundGCShouldWait = true;
1705   }
1706 };
1707 
1708 void CMSCollector::collect_in_background(GCCause::Cause cause) {
1709   assert(Thread::current()->is_ConcurrentGC_thread(),
1710     "A CMS asynchronous collection is only allowed on a CMS thread.");
1711 
1712   CMSHeap* heap = CMSHeap::heap();
1713   {
1714     bool safepoint_check = Mutex::_no_safepoint_check_flag;
1715     MutexLockerEx hl(Heap_lock, safepoint_check);
1716     FreelistLocker fll(this);
1717     MutexLockerEx x(CGC_lock, safepoint_check);
1718     if (_foregroundGCIsActive) {
1719       // The foreground collector is. Skip this
1720       // background collection.
1721       assert(!_foregroundGCShouldWait, "Should be clear");
1722       return;
1723     } else {
1724       assert(_collectorState == Idling, "Should be idling before start.");
1725       _collectorState = InitialMarking;
1726       register_gc_start(cause);
1727       // Reset the expansion cause, now that we are about to begin
1728       // a new cycle.
1729       clear_expansion_cause();
1730 
1731       // Clear the MetaspaceGC flag since a concurrent collection
1732       // is starting but also clear it after the collection.
1733       MetaspaceGC::set_should_concurrent_collect(false);
1734     }
1735     // Decide if we want to enable class unloading as part of the
1736     // ensuing concurrent GC cycle.
1737     update_should_unload_classes();
1738     _full_gc_requested = false;           // acks all outstanding full gc requests
1739     _full_gc_cause = GCCause::_no_gc;
1740     // Signal that we are about to start a collection
1741     heap->increment_total_full_collections();  // ... starting a collection cycle
1742     _collection_count_start = heap->total_full_collections();
1743   }
1744 
1745   size_t prev_used = _cmsGen->used();
1746 
1747   // The change of the collection state is normally done at this level;
1748   // the exceptions are phases that are executed while the world is
1749   // stopped.  For those phases the change of state is done while the
1750   // world is stopped.  For baton passing purposes this allows the
1751   // background collector to finish the phase and change state atomically.
1752   // The foreground collector cannot wait on a phase that is done
1753   // while the world is stopped because the foreground collector already
1754   // has the world stopped and would deadlock.
1755   while (_collectorState != Idling) {
1756     log_debug(gc, state)("Thread " INTPTR_FORMAT " in CMS state %d",
1757                          p2i(Thread::current()), _collectorState);
1758     // The foreground collector
1759     //   holds the Heap_lock throughout its collection.
1760     //   holds the CMS token (but not the lock)
1761     //     except while it is waiting for the background collector to yield.
1762     //
1763     // The foreground collector should be blocked (not for long)
1764     //   if the background collector is about to start a phase
1765     //   executed with world stopped.  If the background
1766     //   collector has already started such a phase, the
1767     //   foreground collector is blocked waiting for the
1768     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
1769     //   are executed in the VM thread.
1770     //
1771     // The locking order is
1772     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
1773     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
1774     //   CMS token  (claimed in
1775     //                stop_world_and_do() -->
1776     //                  safepoint_synchronize() -->
1777     //                    CMSThread::synchronize())
1778 
1779     {
1780       // Check if the FG collector wants us to yield.
1781       CMSTokenSync x(true); // is cms thread
1782       if (waitForForegroundGC()) {
1783         // We yielded to a foreground GC, nothing more to be
1784         // done this round.
1785         assert(_foregroundGCShouldWait == false, "We set it to false in "
1786                "waitForForegroundGC()");
1787         log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1788                              p2i(Thread::current()), _collectorState);
1789         return;
1790       } else {
1791         // The background collector can run but check to see if the
1792         // foreground collector has done a collection while the
1793         // background collector was waiting to get the CGC_lock
1794         // above.  If yes, break so that _foregroundGCShouldWait
1795         // is cleared before returning.
1796         if (_collectorState == Idling) {
1797           break;
1798         }
1799       }
1800     }
1801 
1802     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
1803       "should be waiting");
1804 
1805     switch (_collectorState) {
1806       case InitialMarking:
1807         {
1808           ReleaseForegroundGC x(this);
1809           stats().record_cms_begin();
1810           VM_CMS_Initial_Mark initial_mark_op(this);
1811           VMThread::execute(&initial_mark_op);
1812         }
1813         // The collector state may be any legal state at this point
1814         // since the background collector may have yielded to the
1815         // foreground collector.
1816         break;
1817       case Marking:
1818         // initial marking in checkpointRootsInitialWork has been completed
1819         if (markFromRoots()) { // we were successful
1820           assert(_collectorState == Precleaning, "Collector state should "
1821             "have changed");
1822         } else {
1823           assert(_foregroundGCIsActive, "Internal state inconsistency");
1824         }
1825         break;
1826       case Precleaning:
1827         // marking from roots in markFromRoots has been completed
1828         preclean();
1829         assert(_collectorState == AbortablePreclean ||
1830                _collectorState == FinalMarking,
1831                "Collector state should have changed");
1832         break;
1833       case AbortablePreclean:
1834         abortable_preclean();
1835         assert(_collectorState == FinalMarking, "Collector state should "
1836           "have changed");
1837         break;
1838       case FinalMarking:
1839         {
1840           ReleaseForegroundGC x(this);
1841 
1842           VM_CMS_Final_Remark final_remark_op(this);
1843           VMThread::execute(&final_remark_op);
1844         }
1845         assert(_foregroundGCShouldWait, "block post-condition");
1846         break;
1847       case Sweeping:
1848         // final marking in checkpointRootsFinal has been completed
1849         sweep();
1850         assert(_collectorState == Resizing, "Collector state change "
1851           "to Resizing must be done under the free_list_lock");
1852 
1853       case Resizing: {
1854         // Sweeping has been completed...
1855         // At this point the background collection has completed.
1856         // Don't move the call to compute_new_size() down
1857         // into code that might be executed if the background
1858         // collection was preempted.
1859         {
1860           ReleaseForegroundGC x(this);   // unblock FG collection
1861           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
1862           CMSTokenSync        z(true);   // not strictly needed.
1863           if (_collectorState == Resizing) {
1864             compute_new_size();
1865             save_heap_summary();
1866             _collectorState = Resetting;
1867           } else {
1868             assert(_collectorState == Idling, "The state should only change"
1869                    " because the foreground collector has finished the collection");
1870           }
1871         }
1872         break;
1873       }
1874       case Resetting:
1875         // CMS heap resizing has been completed
1876         reset_concurrent();
1877         assert(_collectorState == Idling, "Collector state should "
1878           "have changed");
1879 
1880         MetaspaceGC::set_should_concurrent_collect(false);
1881 
1882         stats().record_cms_end();
1883         // Don't move the concurrent_phases_end() and compute_new_size()
1884         // calls to here because a preempted background collection
1885         // has it's state set to "Resetting".
1886         break;
1887       case Idling:
1888       default:
1889         ShouldNotReachHere();
1890         break;
1891     }
1892     log_debug(gc, state)("  Thread " INTPTR_FORMAT " done - next CMS state %d",
1893                          p2i(Thread::current()), _collectorState);
1894     assert(_foregroundGCShouldWait, "block post-condition");
1895   }
1896 
1897   // Should this be in gc_epilogue?
1898   heap->counters()->update_counters();
1899 
1900   {
1901     // Clear _foregroundGCShouldWait and, in the event that the
1902     // foreground collector is waiting, notify it, before
1903     // returning.
1904     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1905     _foregroundGCShouldWait = false;
1906     if (_foregroundGCIsActive) {
1907       CGC_lock->notify();
1908     }
1909     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1910            "Possible deadlock");
1911   }
1912   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " exiting collection CMS state %d",
1913                        p2i(Thread::current()), _collectorState);
1914   log_info(gc, heap)("Old: " SIZE_FORMAT "K->" SIZE_FORMAT "K("  SIZE_FORMAT "K)",
1915                      prev_used / K, _cmsGen->used()/K, _cmsGen->capacity() /K);
1916 }
1917 
1918 void CMSCollector::register_gc_start(GCCause::Cause cause) {
1919   _cms_start_registered = true;
1920   _gc_timer_cm->register_gc_start();
1921   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
1922 }
1923 
1924 void CMSCollector::register_gc_end() {
1925   if (_cms_start_registered) {
1926     report_heap_summary(GCWhen::AfterGC);
1927 
1928     _gc_timer_cm->register_gc_end();
1929     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
1930     _cms_start_registered = false;
1931   }
1932 }
1933 
1934 void CMSCollector::save_heap_summary() {
1935   CMSHeap* heap = CMSHeap::heap();
1936   _last_heap_summary = heap->create_heap_summary();
1937   _last_metaspace_summary = heap->create_metaspace_summary();
1938 }
1939 
1940 void CMSCollector::report_heap_summary(GCWhen::Type when) {
1941   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary);
1942   _gc_tracer_cm->report_metaspace_summary(when, _last_metaspace_summary);
1943 }
1944 
1945 bool CMSCollector::waitForForegroundGC() {
1946   bool res = false;
1947   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
1948          "CMS thread should have CMS token");
1949   // Block the foreground collector until the
1950   // background collectors decides whether to
1951   // yield.
1952   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1953   _foregroundGCShouldWait = true;
1954   if (_foregroundGCIsActive) {
1955     // The background collector yields to the
1956     // foreground collector and returns a value
1957     // indicating that it has yielded.  The foreground
1958     // collector can proceed.
1959     res = true;
1960     _foregroundGCShouldWait = false;
1961     ConcurrentMarkSweepThread::clear_CMS_flag(
1962       ConcurrentMarkSweepThread::CMS_cms_has_token);
1963     ConcurrentMarkSweepThread::set_CMS_flag(
1964       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1965     // Get a possibly blocked foreground thread going
1966     CGC_lock->notify();
1967     log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
1968                          p2i(Thread::current()), _collectorState);
1969     while (_foregroundGCIsActive) {
1970       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1971     }
1972     ConcurrentMarkSweepThread::set_CMS_flag(
1973       ConcurrentMarkSweepThread::CMS_cms_has_token);
1974     ConcurrentMarkSweepThread::clear_CMS_flag(
1975       ConcurrentMarkSweepThread::CMS_cms_wants_token);
1976   }
1977   log_debug(gc, state)("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
1978                        p2i(Thread::current()), _collectorState);
1979   return res;
1980 }
1981 
1982 // Because of the need to lock the free lists and other structures in
1983 // the collector, common to all the generations that the collector is
1984 // collecting, we need the gc_prologues of individual CMS generations
1985 // delegate to their collector. It may have been simpler had the
1986 // current infrastructure allowed one to call a prologue on a
1987 // collector. In the absence of that we have the generation's
1988 // prologue delegate to the collector, which delegates back
1989 // some "local" work to a worker method in the individual generations
1990 // that it's responsible for collecting, while itself doing any
1991 // work common to all generations it's responsible for. A similar
1992 // comment applies to the  gc_epilogue()'s.
1993 // The role of the variable _between_prologue_and_epilogue is to
1994 // enforce the invocation protocol.
1995 void CMSCollector::gc_prologue(bool full) {
1996   // Call gc_prologue_work() for the CMSGen
1997   // we are responsible for.
1998 
1999   // The following locking discipline assumes that we are only called
2000   // when the world is stopped.
2001   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2002 
2003   // The CMSCollector prologue must call the gc_prologues for the
2004   // "generations" that it's responsible
2005   // for.
2006 
2007   assert(   Thread::current()->is_VM_thread()
2008          || (   CMSScavengeBeforeRemark
2009              && Thread::current()->is_ConcurrentGC_thread()),
2010          "Incorrect thread type for prologue execution");
2011 
2012   if (_between_prologue_and_epilogue) {
2013     // We have already been invoked; this is a gc_prologue delegation
2014     // from yet another CMS generation that we are responsible for, just
2015     // ignore it since all relevant work has already been done.
2016     return;
2017   }
2018 
2019   // set a bit saying prologue has been called; cleared in epilogue
2020   _between_prologue_and_epilogue = true;
2021   // Claim locks for common data structures, then call gc_prologue_work()
2022   // for each CMSGen.
2023 
2024   getFreelistLocks();   // gets free list locks on constituent spaces
2025   bitMapLock()->lock_without_safepoint_check();
2026 
2027   // Should call gc_prologue_work() for all cms gens we are responsible for
2028   bool duringMarking =    _collectorState >= Marking
2029                          && _collectorState < Sweeping;
2030 
2031   // The young collections clear the modified oops state, which tells if
2032   // there are any modified oops in the class. The remark phase also needs
2033   // that information. Tell the young collection to save the union of all
2034   // modified klasses.
2035   if (duringMarking) {
2036     _ct->cld_rem_set()->set_accumulate_modified_oops(true);
2037   }
2038 
2039   bool registerClosure = duringMarking;
2040 
2041   _cmsGen->gc_prologue_work(full, registerClosure, &_modUnionClosurePar);
2042 
2043   if (!full) {
2044     stats().record_gc0_begin();
2045   }
2046 }
2047 
2048 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2049 
2050   _capacity_at_prologue = capacity();
2051   _used_at_prologue = used();
2052 
2053   // We enable promotion tracking so that card-scanning can recognize
2054   // which objects have been promoted during this GC and skip them.
2055   for (uint i = 0; i < ParallelGCThreads; i++) {
2056     _par_gc_thread_states[i]->promo.startTrackingPromotions();
2057   }
2058 
2059   // Delegate to CMScollector which knows how to coordinate between
2060   // this and any other CMS generations that it is responsible for
2061   // collecting.
2062   collector()->gc_prologue(full);
2063 }
2064 
2065 // This is a "private" interface for use by this generation's CMSCollector.
2066 // Not to be called directly by any other entity (for instance,
2067 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2068 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2069   bool registerClosure, ModUnionClosure* modUnionClosure) {
2070   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2071   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2072     "Should be NULL");
2073   if (registerClosure) {
2074     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2075   }
2076   cmsSpace()->gc_prologue();
2077   // Clear stat counters
2078   NOT_PRODUCT(
2079     assert(_numObjectsPromoted == 0, "check");
2080     assert(_numWordsPromoted   == 0, "check");
2081     log_develop_trace(gc, alloc)("Allocated " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes concurrently",
2082                                  _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2083     _numObjectsAllocated = 0;
2084     _numWordsAllocated   = 0;
2085   )
2086 }
2087 
2088 void CMSCollector::gc_epilogue(bool full) {
2089   // The following locking discipline assumes that we are only called
2090   // when the world is stopped.
2091   assert(SafepointSynchronize::is_at_safepoint(),
2092          "world is stopped assumption");
2093 
2094   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2095   // if linear allocation blocks need to be appropriately marked to allow the
2096   // the blocks to be parsable. We also check here whether we need to nudge the
2097   // CMS collector thread to start a new cycle (if it's not already active).
2098   assert(   Thread::current()->is_VM_thread()
2099          || (   CMSScavengeBeforeRemark
2100              && Thread::current()->is_ConcurrentGC_thread()),
2101          "Incorrect thread type for epilogue execution");
2102 
2103   if (!_between_prologue_and_epilogue) {
2104     // We have already been invoked; this is a gc_epilogue delegation
2105     // from yet another CMS generation that we are responsible for, just
2106     // ignore it since all relevant work has already been done.
2107     return;
2108   }
2109   assert(haveFreelistLocks(), "must have freelist locks");
2110   assert_lock_strong(bitMapLock());
2111 
2112   _ct->cld_rem_set()->set_accumulate_modified_oops(false);
2113 
2114   _cmsGen->gc_epilogue_work(full);
2115 
2116   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2117     // in case sampling was not already enabled, enable it
2118     _start_sampling = true;
2119   }
2120   // reset _eden_chunk_array so sampling starts afresh
2121   _eden_chunk_index = 0;
2122 
2123   size_t cms_used   = _cmsGen->cmsSpace()->used();
2124 
2125   // update performance counters - this uses a special version of
2126   // update_counters() that allows the utilization to be passed as a
2127   // parameter, avoiding multiple calls to used().
2128   //
2129   _cmsGen->update_counters(cms_used);
2130 
2131   bitMapLock()->unlock();
2132   releaseFreelistLocks();
2133 
2134   if (!CleanChunkPoolAsync) {
2135     Chunk::clean_chunk_pool();
2136   }
2137 
2138   set_did_compact(false);
2139   _between_prologue_and_epilogue = false;  // ready for next cycle
2140 }
2141 
2142 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2143   collector()->gc_epilogue(full);
2144 
2145   // When using ParNew, promotion tracking should have already been
2146   // disabled. However, the prologue (which enables promotion
2147   // tracking) and epilogue are called irrespective of the type of
2148   // GC. So they will also be called before and after Full GCs, during
2149   // which promotion tracking will not be explicitly disabled. So,
2150   // it's safer to also disable it here too (to be symmetric with
2151   // enabling it in the prologue).
2152   for (uint i = 0; i < ParallelGCThreads; i++) {
2153     _par_gc_thread_states[i]->promo.stopTrackingPromotions();
2154   }
2155 }
2156 
2157 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2158   assert(!incremental_collection_failed(), "Should have been cleared");
2159   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2160   cmsSpace()->gc_epilogue();
2161     // Print stat counters
2162   NOT_PRODUCT(
2163     assert(_numObjectsAllocated == 0, "check");
2164     assert(_numWordsAllocated == 0, "check");
2165     log_develop_trace(gc, promotion)("Promoted " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
2166                                      _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2167     _numObjectsPromoted = 0;
2168     _numWordsPromoted   = 0;
2169   )
2170 
2171   // Call down the chain in contiguous_available needs the freelistLock
2172   // so print this out before releasing the freeListLock.
2173   log_develop_trace(gc)(" Contiguous available " SIZE_FORMAT " bytes ", contiguous_available());
2174 }
2175 
2176 #ifndef PRODUCT
2177 bool CMSCollector::have_cms_token() {
2178   Thread* thr = Thread::current();
2179   if (thr->is_VM_thread()) {
2180     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2181   } else if (thr->is_ConcurrentGC_thread()) {
2182     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2183   } else if (thr->is_GC_task_thread()) {
2184     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2185            ParGCRareEvent_lock->owned_by_self();
2186   }
2187   return false;
2188 }
2189 
2190 // Check reachability of the given heap address in CMS generation,
2191 // treating all other generations as roots.
2192 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2193   // We could "guarantee" below, rather than assert, but I'll
2194   // leave these as "asserts" so that an adventurous debugger
2195   // could try this in the product build provided some subset of
2196   // the conditions were met, provided they were interested in the
2197   // results and knew that the computation below wouldn't interfere
2198   // with other concurrent computations mutating the structures
2199   // being read or written.
2200   assert(SafepointSynchronize::is_at_safepoint(),
2201          "Else mutations in object graph will make answer suspect");
2202   assert(have_cms_token(), "Should hold cms token");
2203   assert(haveFreelistLocks(), "must hold free list locks");
2204   assert_lock_strong(bitMapLock());
2205 
2206   // Clear the marking bit map array before starting, but, just
2207   // for kicks, first report if the given address is already marked
2208   tty->print_cr("Start: Address " PTR_FORMAT " is%s marked", p2i(addr),
2209                 _markBitMap.isMarked(addr) ? "" : " not");
2210 
2211   if (verify_after_remark()) {
2212     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2213     bool result = verification_mark_bm()->isMarked(addr);
2214     tty->print_cr("TransitiveMark: Address " PTR_FORMAT " %s marked", p2i(addr),
2215                   result ? "IS" : "is NOT");
2216     return result;
2217   } else {
2218     tty->print_cr("Could not compute result");
2219     return false;
2220   }
2221 }
2222 #endif
2223 
2224 void
2225 CMSCollector::print_on_error(outputStream* st) {
2226   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2227   if (collector != NULL) {
2228     CMSBitMap* bitmap = &collector->_markBitMap;
2229     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, p2i(bitmap));
2230     bitmap->print_on_error(st, " Bits: ");
2231 
2232     st->cr();
2233 
2234     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2235     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, p2i(mut_bitmap));
2236     mut_bitmap->print_on_error(st, " Bits: ");
2237   }
2238 }
2239 
2240 ////////////////////////////////////////////////////////
2241 // CMS Verification Support
2242 ////////////////////////////////////////////////////////
2243 // Following the remark phase, the following invariant
2244 // should hold -- each object in the CMS heap which is
2245 // marked in markBitMap() should be marked in the verification_mark_bm().
2246 
2247 class VerifyMarkedClosure: public BitMapClosure {
2248   CMSBitMap* _marks;
2249   bool       _failed;
2250 
2251  public:
2252   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2253 
2254   bool do_bit(size_t offset) {
2255     HeapWord* addr = _marks->offsetToHeapWord(offset);
2256     if (!_marks->isMarked(addr)) {
2257       Log(gc, verify) log;
2258       ResourceMark rm;
2259       LogStream ls(log.error());
2260       oop(addr)->print_on(&ls);
2261       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
2262       _failed = true;
2263     }
2264     return true;
2265   }
2266 
2267   bool failed() { return _failed; }
2268 };
2269 
2270 bool CMSCollector::verify_after_remark() {
2271   GCTraceTime(Info, gc, phases, verify) tm("Verifying CMS Marking.");
2272   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2273   static bool init = false;
2274 
2275   assert(SafepointSynchronize::is_at_safepoint(),
2276          "Else mutations in object graph will make answer suspect");
2277   assert(have_cms_token(),
2278          "Else there may be mutual interference in use of "
2279          " verification data structures");
2280   assert(_collectorState > Marking && _collectorState <= Sweeping,
2281          "Else marking info checked here may be obsolete");
2282   assert(haveFreelistLocks(), "must hold free list locks");
2283   assert_lock_strong(bitMapLock());
2284 
2285 
2286   // Allocate marking bit map if not already allocated
2287   if (!init) { // first time
2288     if (!verification_mark_bm()->allocate(_span)) {
2289       return false;
2290     }
2291     init = true;
2292   }
2293 
2294   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2295 
2296   // Turn off refs discovery -- so we will be tracing through refs.
2297   // This is as intended, because by this time
2298   // GC must already have cleared any refs that need to be cleared,
2299   // and traced those that need to be marked; moreover,
2300   // the marking done here is not going to interfere in any
2301   // way with the marking information used by GC.
2302   NoRefDiscovery no_discovery(ref_processor());
2303 
2304 #if COMPILER2_OR_JVMCI
2305   DerivedPointerTableDeactivate dpt_deact;
2306 #endif
2307 
2308   // Clear any marks from a previous round
2309   verification_mark_bm()->clear_all();
2310   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2311   verify_work_stacks_empty();
2312 
2313   CMSHeap* heap = CMSHeap::heap();
2314   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2315   // Update the saved marks which may affect the root scans.
2316   heap->save_marks();
2317 
2318   if (CMSRemarkVerifyVariant == 1) {
2319     // In this first variant of verification, we complete
2320     // all marking, then check if the new marks-vector is
2321     // a subset of the CMS marks-vector.
2322     verify_after_remark_work_1();
2323   } else {
2324     guarantee(CMSRemarkVerifyVariant == 2, "Range checking for CMSRemarkVerifyVariant should guarantee 1 or 2");
2325     // In this second variant of verification, we flag an error
2326     // (i.e. an object reachable in the new marks-vector not reachable
2327     // in the CMS marks-vector) immediately, also indicating the
2328     // identify of an object (A) that references the unmarked object (B) --
2329     // presumably, a mutation to A failed to be picked up by preclean/remark?
2330     verify_after_remark_work_2();
2331   }
2332 
2333   return true;
2334 }
2335 
2336 void CMSCollector::verify_after_remark_work_1() {
2337   ResourceMark rm;
2338   HandleMark  hm;
2339   CMSHeap* heap = CMSHeap::heap();
2340 
2341   // Get a clear set of claim bits for the roots processing to work with.
2342   ClassLoaderDataGraph::clear_claimed_marks();
2343 
2344   // Mark from roots one level into CMS
2345   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
2346   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2347 
2348   {
2349     StrongRootsScope srs(1);
2350 
2351     heap->cms_process_roots(&srs,
2352                            true,   // young gen as roots
2353                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2354                            should_unload_classes(),
2355                            &notOlder,
2356                            NULL);
2357   }
2358 
2359   // Now mark from the roots
2360   MarkFromRootsClosure markFromRootsClosure(this, _span,
2361     verification_mark_bm(), verification_mark_stack(),
2362     false /* don't yield */, true /* verifying */);
2363   assert(_restart_addr == NULL, "Expected pre-condition");
2364   verification_mark_bm()->iterate(&markFromRootsClosure);
2365   while (_restart_addr != NULL) {
2366     // Deal with stack overflow: by restarting at the indicated
2367     // address.
2368     HeapWord* ra = _restart_addr;
2369     markFromRootsClosure.reset(ra);
2370     _restart_addr = NULL;
2371     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2372   }
2373   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2374   verify_work_stacks_empty();
2375 
2376   // Marking completed -- now verify that each bit marked in
2377   // verification_mark_bm() is also marked in markBitMap(); flag all
2378   // errors by printing corresponding objects.
2379   VerifyMarkedClosure vcl(markBitMap());
2380   verification_mark_bm()->iterate(&vcl);
2381   if (vcl.failed()) {
2382     Log(gc, verify) log;
2383     log.error("Failed marking verification after remark");
2384     ResourceMark rm;
2385     LogStream ls(log.error());
2386     heap->print_on(&ls);
2387     fatal("CMS: failed marking verification after remark");
2388   }
2389 }
2390 
2391 class VerifyCLDOopsCLDClosure : public CLDClosure {
2392   class VerifyCLDOopsClosure : public OopClosure {
2393     CMSBitMap* _bitmap;
2394    public:
2395     VerifyCLDOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
2396     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
2397     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2398   } _oop_closure;
2399  public:
2400   VerifyCLDOopsCLDClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
2401   void do_cld(ClassLoaderData* cld) {
2402     cld->oops_do(&_oop_closure, ClassLoaderData::_claim_none, false);
2403   }
2404 };
2405 
2406 void CMSCollector::verify_after_remark_work_2() {
2407   ResourceMark rm;
2408   HandleMark  hm;
2409   CMSHeap* heap = CMSHeap::heap();
2410 
2411   // Get a clear set of claim bits for the roots processing to work with.
2412   ClassLoaderDataGraph::clear_claimed_marks();
2413 
2414   // Mark from roots one level into CMS
2415   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
2416                                      markBitMap());
2417   CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
2418 
2419   heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2420 
2421   {
2422     StrongRootsScope srs(1);
2423 
2424     heap->cms_process_roots(&srs,
2425                            true,   // young gen as roots
2426                            GenCollectedHeap::ScanningOption(roots_scanning_options()),
2427                            should_unload_classes(),
2428                            &notOlder,
2429                            &cld_closure);
2430   }
2431 
2432   // Now mark from the roots
2433   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
2434     verification_mark_bm(), markBitMap(), verification_mark_stack());
2435   assert(_restart_addr == NULL, "Expected pre-condition");
2436   verification_mark_bm()->iterate(&markFromRootsClosure);
2437   while (_restart_addr != NULL) {
2438     // Deal with stack overflow: by restarting at the indicated
2439     // address.
2440     HeapWord* ra = _restart_addr;
2441     markFromRootsClosure.reset(ra);
2442     _restart_addr = NULL;
2443     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
2444   }
2445   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
2446   verify_work_stacks_empty();
2447 
2448   VerifyCLDOopsCLDClosure verify_cld_oops(verification_mark_bm());
2449   ClassLoaderDataGraph::cld_do(&verify_cld_oops);
2450 
2451   // Marking completed -- now verify that each bit marked in
2452   // verification_mark_bm() is also marked in markBitMap(); flag all
2453   // errors by printing corresponding objects.
2454   VerifyMarkedClosure vcl(markBitMap());
2455   verification_mark_bm()->iterate(&vcl);
2456   assert(!vcl.failed(), "Else verification above should not have succeeded");
2457 }
2458 
2459 void ConcurrentMarkSweepGeneration::save_marks() {
2460   // delegate to CMS space
2461   cmsSpace()->save_marks();
2462 }
2463 
2464 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
2465   return cmsSpace()->no_allocs_since_save_marks();
2466 }
2467 
2468 void
2469 ConcurrentMarkSweepGeneration::oop_iterate(OopIterateClosure* cl) {
2470   if (freelistLock()->owned_by_self()) {
2471     Generation::oop_iterate(cl);
2472   } else {
2473     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2474     Generation::oop_iterate(cl);
2475   }
2476 }
2477 
2478 void
2479 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
2480   if (freelistLock()->owned_by_self()) {
2481     Generation::object_iterate(cl);
2482   } else {
2483     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2484     Generation::object_iterate(cl);
2485   }
2486 }
2487 
2488 void
2489 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
2490   if (freelistLock()->owned_by_self()) {
2491     Generation::safe_object_iterate(cl);
2492   } else {
2493     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2494     Generation::safe_object_iterate(cl);
2495   }
2496 }
2497 
2498 void
2499 ConcurrentMarkSweepGeneration::post_compact() {
2500 }
2501 
2502 void
2503 ConcurrentMarkSweepGeneration::prepare_for_verify() {
2504   // Fix the linear allocation blocks to look like free blocks.
2505 
2506   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2507   // are not called when the heap is verified during universe initialization and
2508   // at vm shutdown.
2509   if (freelistLock()->owned_by_self()) {
2510     cmsSpace()->prepare_for_verify();
2511   } else {
2512     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2513     cmsSpace()->prepare_for_verify();
2514   }
2515 }
2516 
2517 void
2518 ConcurrentMarkSweepGeneration::verify() {
2519   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
2520   // are not called when the heap is verified during universe initialization and
2521   // at vm shutdown.
2522   if (freelistLock()->owned_by_self()) {
2523     cmsSpace()->verify();
2524   } else {
2525     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
2526     cmsSpace()->verify();
2527   }
2528 }
2529 
2530 void CMSCollector::verify() {
2531   _cmsGen->verify();
2532 }
2533 
2534 #ifndef PRODUCT
2535 bool CMSCollector::overflow_list_is_empty() const {
2536   assert(_num_par_pushes >= 0, "Inconsistency");
2537   if (_overflow_list == NULL) {
2538     assert(_num_par_pushes == 0, "Inconsistency");
2539   }
2540   return _overflow_list == NULL;
2541 }
2542 
2543 // The methods verify_work_stacks_empty() and verify_overflow_empty()
2544 // merely consolidate assertion checks that appear to occur together frequently.
2545 void CMSCollector::verify_work_stacks_empty() const {
2546   assert(_markStack.isEmpty(), "Marking stack should be empty");
2547   assert(overflow_list_is_empty(), "Overflow list should be empty");
2548 }
2549 
2550 void CMSCollector::verify_overflow_empty() const {
2551   assert(overflow_list_is_empty(), "Overflow list should be empty");
2552   assert(no_preserved_marks(), "No preserved marks");
2553 }
2554 #endif // PRODUCT
2555 
2556 // Decide if we want to enable class unloading as part of the
2557 // ensuing concurrent GC cycle. We will collect and
2558 // unload classes if it's the case that:
2559 //  (a) class unloading is enabled at the command line, and
2560 //  (b) old gen is getting really full
2561 // NOTE: Provided there is no change in the state of the heap between
2562 // calls to this method, it should have idempotent results. Moreover,
2563 // its results should be monotonically increasing (i.e. going from 0 to 1,
2564 // but not 1 to 0) between successive calls between which the heap was
2565 // not collected. For the implementation below, it must thus rely on
2566 // the property that concurrent_cycles_since_last_unload()
2567 // will not decrease unless a collection cycle happened and that
2568 // _cmsGen->is_too_full() are
2569 // themselves also monotonic in that sense. See check_monotonicity()
2570 // below.
2571 void CMSCollector::update_should_unload_classes() {
2572   _should_unload_classes = false;
2573   if (CMSClassUnloadingEnabled) {
2574     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
2575                               CMSClassUnloadingMaxInterval)
2576                            || _cmsGen->is_too_full();
2577   }
2578 }
2579 
2580 bool ConcurrentMarkSweepGeneration::is_too_full() const {
2581   bool res = should_concurrent_collect();
2582   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
2583   return res;
2584 }
2585 
2586 void CMSCollector::setup_cms_unloading_and_verification_state() {
2587   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
2588                              || VerifyBeforeExit;
2589   const  int  rso           =   GenCollectedHeap::SO_AllCodeCache;
2590 
2591   // We set the proper root for this CMS cycle here.
2592   if (should_unload_classes()) {   // Should unload classes this cycle
2593     remove_root_scanning_option(rso);  // Shrink the root set appropriately
2594     set_verifying(should_verify);    // Set verification state for this cycle
2595     return;                            // Nothing else needs to be done at this time
2596   }
2597 
2598   // Not unloading classes this cycle
2599   assert(!should_unload_classes(), "Inconsistency!");
2600 
2601   // If we are not unloading classes then add SO_AllCodeCache to root
2602   // scanning options.
2603   add_root_scanning_option(rso);
2604 
2605   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
2606     set_verifying(true);
2607   } else if (verifying() && !should_verify) {
2608     // We were verifying, but some verification flags got disabled.
2609     set_verifying(false);
2610     // Exclude symbols, strings and code cache elements from root scanning to
2611     // reduce IM and RM pauses.
2612     remove_root_scanning_option(rso);
2613   }
2614 }
2615 
2616 
2617 #ifndef PRODUCT
2618 HeapWord* CMSCollector::block_start(const void* p) const {
2619   const HeapWord* addr = (HeapWord*)p;
2620   if (_span.contains(p)) {
2621     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
2622       return _cmsGen->cmsSpace()->block_start(p);
2623     }
2624   }
2625   return NULL;
2626 }
2627 #endif
2628 
2629 HeapWord*
2630 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
2631                                                    bool   tlab,
2632                                                    bool   parallel) {
2633   CMSSynchronousYieldRequest yr;
2634   assert(!tlab, "Can't deal with TLAB allocation");
2635   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
2636   expand_for_gc_cause(word_size*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_satisfy_allocation);
2637   if (GCExpandToAllocateDelayMillis > 0) {
2638     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2639   }
2640   return have_lock_and_allocate(word_size, tlab);
2641 }
2642 
2643 void ConcurrentMarkSweepGeneration::expand_for_gc_cause(
2644     size_t bytes,
2645     size_t expand_bytes,
2646     CMSExpansionCause::Cause cause)
2647 {
2648 
2649   bool success = expand(bytes, expand_bytes);
2650 
2651   // remember why we expanded; this information is used
2652   // by shouldConcurrentCollect() when making decisions on whether to start
2653   // a new CMS cycle.
2654   if (success) {
2655     set_expansion_cause(cause);
2656     log_trace(gc)("Expanded CMS gen for %s",  CMSExpansionCause::to_string(cause));
2657   }
2658 }
2659 
2660 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
2661   HeapWord* res = NULL;
2662   MutexLocker x(ParGCRareEvent_lock);
2663   while (true) {
2664     // Expansion by some other thread might make alloc OK now:
2665     res = ps->lab.alloc(word_sz);
2666     if (res != NULL) return res;
2667     // If there's not enough expansion space available, give up.
2668     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
2669       return NULL;
2670     }
2671     // Otherwise, we try expansion.
2672     expand_for_gc_cause(word_sz*HeapWordSize, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_lab);
2673     // Now go around the loop and try alloc again;
2674     // A competing par_promote might beat us to the expansion space,
2675     // so we may go around the loop again if promotion fails again.
2676     if (GCExpandToAllocateDelayMillis > 0) {
2677       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2678     }
2679   }
2680 }
2681 
2682 
2683 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
2684   PromotionInfo* promo) {
2685   MutexLocker x(ParGCRareEvent_lock);
2686   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
2687   while (true) {
2688     // Expansion by some other thread might make alloc OK now:
2689     if (promo->ensure_spooling_space()) {
2690       assert(promo->has_spooling_space(),
2691              "Post-condition of successful ensure_spooling_space()");
2692       return true;
2693     }
2694     // If there's not enough expansion space available, give up.
2695     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
2696       return false;
2697     }
2698     // Otherwise, we try expansion.
2699     expand_for_gc_cause(refill_size_bytes, MinHeapDeltaBytes, CMSExpansionCause::_allocate_par_spooling_space);
2700     // Now go around the loop and try alloc again;
2701     // A competing allocation might beat us to the expansion space,
2702     // so we may go around the loop again if allocation fails again.
2703     if (GCExpandToAllocateDelayMillis > 0) {
2704       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
2705     }
2706   }
2707 }
2708 
2709 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
2710   // Only shrink if a compaction was done so that all the free space
2711   // in the generation is in a contiguous block at the end.
2712   if (did_compact()) {
2713     CardGeneration::shrink(bytes);
2714   }
2715 }
2716 
2717 void ConcurrentMarkSweepGeneration::assert_correct_size_change_locking() {
2718   assert_locked_or_safepoint(Heap_lock);
2719 }
2720 
2721 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
2722   assert_locked_or_safepoint(Heap_lock);
2723   assert_lock_strong(freelistLock());
2724   log_trace(gc)("Shrinking of CMS not yet implemented");
2725   return;
2726 }
2727 
2728 
2729 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
2730 // phases.
2731 class CMSPhaseAccounting: public StackObj {
2732  public:
2733   CMSPhaseAccounting(CMSCollector *collector,
2734                      const char *title);
2735   ~CMSPhaseAccounting();
2736 
2737  private:
2738   CMSCollector *_collector;
2739   const char *_title;
2740   GCTraceConcTime(Info, gc) _trace_time;
2741 
2742  public:
2743   // Not MT-safe; so do not pass around these StackObj's
2744   // where they may be accessed by other threads.
2745   double wallclock_millis() {
2746     return TimeHelper::counter_to_millis(os::elapsed_counter() - _trace_time.start_time());
2747   }
2748 };
2749 
2750 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
2751                                        const char *title) :
2752   _collector(collector), _title(title), _trace_time(title) {
2753 
2754   _collector->resetYields();
2755   _collector->resetTimer();
2756   _collector->startTimer();
2757   _collector->gc_timer_cm()->register_gc_concurrent_start(title);
2758 }
2759 
2760 CMSPhaseAccounting::~CMSPhaseAccounting() {
2761   _collector->gc_timer_cm()->register_gc_concurrent_end();
2762   _collector->stopTimer();
2763   log_debug(gc)("Concurrent active time: %.3fms", TimeHelper::counter_to_seconds(_collector->timerTicks()));
2764   log_trace(gc)(" (CMS %s yielded %d times)", _title, _collector->yields());
2765 }
2766 
2767 // CMS work
2768 
2769 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
2770 class CMSParMarkTask : public AbstractGangTask {
2771  protected:
2772   CMSCollector*     _collector;
2773   uint              _n_workers;
2774   OopStorage::ParState<false, false> _par_state_string;
2775   CMSParMarkTask(const char* name, CMSCollector* collector, uint n_workers) :
2776       AbstractGangTask(name),
2777       _collector(collector),
2778       _n_workers(n_workers),
2779       _par_state_string(StringTable::weak_storage()) {}
2780   // Work method in support of parallel rescan ... of young gen spaces
2781   void do_young_space_rescan(OopsInGenClosure* cl,
2782                              ContiguousSpace* space,
2783                              HeapWord** chunk_array, size_t chunk_top);
2784   void work_on_young_gen_roots(OopsInGenClosure* cl);
2785 };
2786 
2787 // Parallel initial mark task
2788 class CMSParInitialMarkTask: public CMSParMarkTask {
2789   StrongRootsScope* _strong_roots_scope;
2790  public:
2791   CMSParInitialMarkTask(CMSCollector* collector, StrongRootsScope* strong_roots_scope, uint n_workers) :
2792       CMSParMarkTask("Scan roots and young gen for initial mark in parallel", collector, n_workers),
2793       _strong_roots_scope(strong_roots_scope) {}
2794   void work(uint worker_id);
2795 };
2796 
2797 // Checkpoint the roots into this generation from outside
2798 // this generation. [Note this initial checkpoint need only
2799 // be approximate -- we'll do a catch up phase subsequently.]
2800 void CMSCollector::checkpointRootsInitial() {
2801   assert(_collectorState == InitialMarking, "Wrong collector state");
2802   check_correct_thread_executing();
2803   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
2804 
2805   save_heap_summary();
2806   report_heap_summary(GCWhen::BeforeGC);
2807 
2808   ReferenceProcessor* rp = ref_processor();
2809   assert(_restart_addr == NULL, "Control point invariant");
2810   {
2811     // acquire locks for subsequent manipulations
2812     MutexLockerEx x(bitMapLock(),
2813                     Mutex::_no_safepoint_check_flag);
2814     checkpointRootsInitialWork();
2815     // enable ("weak") refs discovery
2816     rp->enable_discovery();
2817     _collectorState = Marking;
2818   }
2819 }
2820 
2821 void CMSCollector::checkpointRootsInitialWork() {
2822   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
2823   assert(_collectorState == InitialMarking, "just checking");
2824 
2825   // Already have locks.
2826   assert_lock_strong(bitMapLock());
2827   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
2828 
2829   // Setup the verification and class unloading state for this
2830   // CMS collection cycle.
2831   setup_cms_unloading_and_verification_state();
2832 
2833   GCTraceTime(Trace, gc, phases) ts("checkpointRootsInitialWork", _gc_timer_cm);
2834 
2835   // Reset all the PLAB chunk arrays if necessary.
2836   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
2837     reset_survivor_plab_arrays();
2838   }
2839 
2840   ResourceMark rm;
2841   HandleMark  hm;
2842 
2843   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
2844   CMSHeap* heap = CMSHeap::heap();
2845 
2846   verify_work_stacks_empty();
2847   verify_overflow_empty();
2848 
2849   heap->ensure_parsability(false);  // fill TLABs, but no need to retire them
2850   // Update the saved marks which may affect the root scans.
2851   heap->save_marks();
2852 
2853   // weak reference processing has not started yet.
2854   ref_processor()->set_enqueuing_is_done(false);
2855 
2856   // Need to remember all newly created CLDs,
2857   // so that we can guarantee that the remark finds them.
2858   ClassLoaderDataGraph::remember_new_clds(true);
2859 
2860   // Whenever a CLD is found, it will be claimed before proceeding to mark
2861   // the klasses. The claimed marks need to be cleared before marking starts.
2862   ClassLoaderDataGraph::clear_claimed_marks();
2863 
2864   print_eden_and_survivor_chunk_arrays();
2865 
2866   {
2867 #if COMPILER2_OR_JVMCI
2868     DerivedPointerTableDeactivate dpt_deact;
2869 #endif
2870     if (CMSParallelInitialMarkEnabled) {
2871       // The parallel version.
2872       WorkGang* workers = heap->workers();
2873       assert(workers != NULL, "Need parallel worker threads.");
2874       uint n_workers = workers->active_workers();
2875 
2876       StrongRootsScope srs(n_workers);
2877 
2878       CMSParInitialMarkTask tsk(this, &srs, n_workers);
2879       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
2880       // If the total workers is greater than 1, then multiple workers
2881       // may be used at some time and the initialization has been set
2882       // such that the single threaded path cannot be used.
2883       if (workers->total_workers() > 1) {
2884         workers->run_task(&tsk);
2885       } else {
2886         tsk.work(0);
2887       }
2888     } else {
2889       // The serial version.
2890       CLDToOopClosure cld_closure(&notOlder, ClassLoaderData::_claim_strong);
2891       heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
2892 
2893       StrongRootsScope srs(1);
2894 
2895       heap->cms_process_roots(&srs,
2896                              true,   // young gen as roots
2897                              GenCollectedHeap::ScanningOption(roots_scanning_options()),
2898                              should_unload_classes(),
2899                              &notOlder,
2900                              &cld_closure);
2901     }
2902   }
2903 
2904   // Clear mod-union table; it will be dirtied in the prologue of
2905   // CMS generation per each young generation collection.
2906 
2907   assert(_modUnionTable.isAllClear(),
2908        "Was cleared in most recent final checkpoint phase"
2909        " or no bits are set in the gc_prologue before the start of the next "
2910        "subsequent marking phase.");
2911 
2912   assert(_ct->cld_rem_set()->mod_union_is_clear(), "Must be");
2913 
2914   // Save the end of the used_region of the constituent generations
2915   // to be used to limit the extent of sweep in each generation.
2916   save_sweep_limits();
2917   verify_overflow_empty();
2918 }
2919 
2920 bool CMSCollector::markFromRoots() {
2921   // we might be tempted to assert that:
2922   // assert(!SafepointSynchronize::is_at_safepoint(),
2923   //        "inconsistent argument?");
2924   // However that wouldn't be right, because it's possible that
2925   // a safepoint is indeed in progress as a young generation
2926   // stop-the-world GC happens even as we mark in this generation.
2927   assert(_collectorState == Marking, "inconsistent state?");
2928   check_correct_thread_executing();
2929   verify_overflow_empty();
2930 
2931   // Weak ref discovery note: We may be discovering weak
2932   // refs in this generation concurrent (but interleaved) with
2933   // weak ref discovery by the young generation collector.
2934 
2935   CMSTokenSyncWithLocks ts(true, bitMapLock());
2936   GCTraceCPUTime tcpu;
2937   CMSPhaseAccounting pa(this, "Concurrent Mark");
2938   bool res = markFromRootsWork();
2939   if (res) {
2940     _collectorState = Precleaning;
2941   } else { // We failed and a foreground collection wants to take over
2942     assert(_foregroundGCIsActive, "internal state inconsistency");
2943     assert(_restart_addr == NULL,  "foreground will restart from scratch");
2944     log_debug(gc)("bailing out to foreground collection");
2945   }
2946   verify_overflow_empty();
2947   return res;
2948 }
2949 
2950 bool CMSCollector::markFromRootsWork() {
2951   // iterate over marked bits in bit map, doing a full scan and mark
2952   // from these roots using the following algorithm:
2953   // . if oop is to the right of the current scan pointer,
2954   //   mark corresponding bit (we'll process it later)
2955   // . else (oop is to left of current scan pointer)
2956   //   push oop on marking stack
2957   // . drain the marking stack
2958 
2959   // Note that when we do a marking step we need to hold the
2960   // bit map lock -- recall that direct allocation (by mutators)
2961   // and promotion (by the young generation collector) is also
2962   // marking the bit map. [the so-called allocate live policy.]
2963   // Because the implementation of bit map marking is not
2964   // robust wrt simultaneous marking of bits in the same word,
2965   // we need to make sure that there is no such interference
2966   // between concurrent such updates.
2967 
2968   // already have locks
2969   assert_lock_strong(bitMapLock());
2970 
2971   verify_work_stacks_empty();
2972   verify_overflow_empty();
2973   bool result = false;
2974   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
2975     result = do_marking_mt();
2976   } else {
2977     result = do_marking_st();
2978   }
2979   return result;
2980 }
2981 
2982 // Forward decl
2983 class CMSConcMarkingTask;
2984 
2985 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
2986   CMSCollector*       _collector;
2987   CMSConcMarkingTask* _task;
2988  public:
2989   virtual void yield();
2990 
2991   // "n_threads" is the number of threads to be terminated.
2992   // "queue_set" is a set of work queues of other threads.
2993   // "collector" is the CMS collector associated with this task terminator.
2994   // "yield" indicates whether we need the gang as a whole to yield.
2995   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
2996     ParallelTaskTerminator(n_threads, queue_set),
2997     _collector(collector) { }
2998 
2999   void set_task(CMSConcMarkingTask* task) {
3000     _task = task;
3001   }
3002 };
3003 
3004 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3005   CMSConcMarkingTask* _task;
3006  public:
3007   bool should_exit_termination();
3008   void set_task(CMSConcMarkingTask* task) {
3009     _task = task;
3010   }
3011 };
3012 
3013 // MT Concurrent Marking Task
3014 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3015   CMSCollector*             _collector;
3016   uint                      _n_workers;      // requested/desired # workers
3017   bool                      _result;
3018   CompactibleFreeListSpace* _cms_space;
3019   char                      _pad_front[64];   // padding to ...
3020   HeapWord* volatile        _global_finger;   // ... avoid sharing cache line
3021   char                      _pad_back[64];
3022   HeapWord*                 _restart_addr;
3023 
3024   //  Exposed here for yielding support
3025   Mutex* const _bit_map_lock;
3026 
3027   // The per thread work queues, available here for stealing
3028   OopTaskQueueSet*  _task_queues;
3029 
3030   // Termination (and yielding) support
3031   CMSConcMarkingTerminator _term;
3032   CMSConcMarkingTerminatorTerminator _term_term;
3033 
3034  public:
3035   CMSConcMarkingTask(CMSCollector* collector,
3036                  CompactibleFreeListSpace* cms_space,
3037                  YieldingFlexibleWorkGang* workers,
3038                  OopTaskQueueSet* task_queues):
3039     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3040     _collector(collector),
3041     _n_workers(0),
3042     _result(true),
3043     _cms_space(cms_space),
3044     _bit_map_lock(collector->bitMapLock()),
3045     _task_queues(task_queues),
3046     _term(_n_workers, task_queues, _collector)
3047   {
3048     _requested_size = _n_workers;
3049     _term.set_task(this);
3050     _term_term.set_task(this);
3051     _restart_addr = _global_finger = _cms_space->bottom();
3052   }
3053 
3054 
3055   OopTaskQueueSet* task_queues()  { return _task_queues; }
3056 
3057   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3058 
3059   HeapWord* volatile* global_finger_addr() { return &_global_finger; }
3060 
3061   CMSConcMarkingTerminator* terminator() { return &_term; }
3062 
3063   virtual void set_for_termination(uint active_workers) {
3064     terminator()->reset_for_reuse(active_workers);
3065   }
3066 
3067   void work(uint worker_id);
3068   bool should_yield() {
3069     return    ConcurrentMarkSweepThread::should_yield()
3070            && !_collector->foregroundGCIsActive();
3071   }
3072 
3073   virtual void coordinator_yield();  // stuff done by coordinator
3074   bool result() { return _result; }
3075 
3076   void reset(HeapWord* ra) {
3077     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3078     _restart_addr = _global_finger = ra;
3079     _term.reset_for_reuse();
3080   }
3081 
3082   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3083                                            OopTaskQueue* work_q);
3084 
3085  private:
3086   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3087   void do_work_steal(int i);
3088   void bump_global_finger(HeapWord* f);
3089 };
3090 
3091 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3092   assert(_task != NULL, "Error");
3093   return _task->yielding();
3094   // Note that we do not need the disjunct || _task->should_yield() above
3095   // because we want terminating threads to yield only if the task
3096   // is already in the midst of yielding, which happens only after at least one
3097   // thread has yielded.
3098 }
3099 
3100 void CMSConcMarkingTerminator::yield() {
3101   if (_task->should_yield()) {
3102     _task->yield();
3103   } else {
3104     ParallelTaskTerminator::yield();
3105   }
3106 }
3107 
3108 ////////////////////////////////////////////////////////////////
3109 // Concurrent Marking Algorithm Sketch
3110 ////////////////////////////////////////////////////////////////
3111 // Until all tasks exhausted (both spaces):
3112 // -- claim next available chunk
3113 // -- bump global finger via CAS
3114 // -- find first object that starts in this chunk
3115 //    and start scanning bitmap from that position
3116 // -- scan marked objects for oops
3117 // -- CAS-mark target, and if successful:
3118 //    . if target oop is above global finger (volatile read)
3119 //      nothing to do
3120 //    . if target oop is in chunk and above local finger
3121 //        then nothing to do
3122 //    . else push on work-queue
3123 // -- Deal with possible overflow issues:
3124 //    . local work-queue overflow causes stuff to be pushed on
3125 //      global (common) overflow queue
3126 //    . always first empty local work queue
3127 //    . then get a batch of oops from global work queue if any
3128 //    . then do work stealing
3129 // -- When all tasks claimed (both spaces)
3130 //    and local work queue empty,
3131 //    then in a loop do:
3132 //    . check global overflow stack; steal a batch of oops and trace
3133 //    . try to steal from other threads oif GOS is empty
3134 //    . if neither is available, offer termination
3135 // -- Terminate and return result
3136 //
3137 void CMSConcMarkingTask::work(uint worker_id) {
3138   elapsedTimer _timer;
3139   ResourceMark rm;
3140   HandleMark hm;
3141 
3142   DEBUG_ONLY(_collector->verify_overflow_empty();)
3143 
3144   // Before we begin work, our work queue should be empty
3145   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
3146   // Scan the bitmap covering _cms_space, tracing through grey objects.
3147   _timer.start();
3148   do_scan_and_mark(worker_id, _cms_space);
3149   _timer.stop();
3150   log_trace(gc, task)("Finished cms space scanning in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3151 
3152   // ... do work stealing
3153   _timer.reset();
3154   _timer.start();
3155   do_work_steal(worker_id);
3156   _timer.stop();
3157   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
3158   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
3159   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
3160   // Note that under the current task protocol, the
3161   // following assertion is true even of the spaces
3162   // expanded since the completion of the concurrent
3163   // marking. XXX This will likely change under a strict
3164   // ABORT semantics.
3165   // After perm removal the comparison was changed to
3166   // greater than or equal to from strictly greater than.
3167   // Before perm removal the highest address sweep would
3168   // have been at the end of perm gen but now is at the
3169   // end of the tenured gen.
3170   assert(_global_finger >=  _cms_space->end(),
3171          "All tasks have been completed");
3172   DEBUG_ONLY(_collector->verify_overflow_empty();)
3173 }
3174 
3175 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
3176   HeapWord* read = _global_finger;
3177   HeapWord* cur  = read;
3178   while (f > read) {
3179     cur = read;
3180     read = Atomic::cmpxchg(f, &_global_finger, cur);
3181     if (cur == read) {
3182       // our cas succeeded
3183       assert(_global_finger >= f, "protocol consistency");
3184       break;
3185     }
3186   }
3187 }
3188 
3189 // This is really inefficient, and should be redone by
3190 // using (not yet available) block-read and -write interfaces to the
3191 // stack and the work_queue. XXX FIX ME !!!
3192 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3193                                                       OopTaskQueue* work_q) {
3194   // Fast lock-free check
3195   if (ovflw_stk->length() == 0) {
3196     return false;
3197   }
3198   assert(work_q->size() == 0, "Shouldn't steal");
3199   MutexLockerEx ml(ovflw_stk->par_lock(),
3200                    Mutex::_no_safepoint_check_flag);
3201   // Grab up to 1/4 the size of the work queue
3202   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
3203                     (size_t)ParGCDesiredObjsFromOverflowList);
3204   num = MIN2(num, ovflw_stk->length());
3205   for (int i = (int) num; i > 0; i--) {
3206     oop cur = ovflw_stk->pop();
3207     assert(cur != NULL, "Counted wrong?");
3208     work_q->push(cur);
3209   }
3210   return num > 0;
3211 }
3212 
3213 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
3214   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
3215   int n_tasks = pst->n_tasks();
3216   // We allow that there may be no tasks to do here because
3217   // we are restarting after a stack overflow.
3218   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
3219   uint nth_task = 0;
3220 
3221   HeapWord* aligned_start = sp->bottom();
3222   if (sp->used_region().contains(_restart_addr)) {
3223     // Align down to a card boundary for the start of 0th task
3224     // for this space.
3225     aligned_start = align_down(_restart_addr, CardTable::card_size);
3226   }
3227 
3228   size_t chunk_size = sp->marking_task_size();
3229   while (pst->try_claim_task(/* reference */ nth_task)) {
3230     // Having claimed the nth task in this space,
3231     // compute the chunk that it corresponds to:
3232     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
3233                                aligned_start + (nth_task+1)*chunk_size);
3234     // Try and bump the global finger via a CAS;
3235     // note that we need to do the global finger bump
3236     // _before_ taking the intersection below, because
3237     // the task corresponding to that region will be
3238     // deemed done even if the used_region() expands
3239     // because of allocation -- as it almost certainly will
3240     // during start-up while the threads yield in the
3241     // closure below.
3242     HeapWord* finger = span.end();
3243     bump_global_finger(finger);   // atomically
3244     // There are null tasks here corresponding to chunks
3245     // beyond the "top" address of the space.
3246     span = span.intersection(sp->used_region());
3247     if (!span.is_empty()) {  // Non-null task
3248       HeapWord* prev_obj;
3249       assert(!span.contains(_restart_addr) || nth_task == 0,
3250              "Inconsistency");
3251       if (nth_task == 0) {
3252         // For the 0th task, we'll not need to compute a block_start.
3253         if (span.contains(_restart_addr)) {
3254           // In the case of a restart because of stack overflow,
3255           // we might additionally skip a chunk prefix.
3256           prev_obj = _restart_addr;
3257         } else {
3258           prev_obj = span.start();
3259         }
3260       } else {
3261         // We want to skip the first object because
3262         // the protocol is to scan any object in its entirety
3263         // that _starts_ in this span; a fortiori, any
3264         // object starting in an earlier span is scanned
3265         // as part of an earlier claimed task.
3266         // Below we use the "careful" version of block_start
3267         // so we do not try to navigate uninitialized objects.
3268         prev_obj = sp->block_start_careful(span.start());
3269         // Below we use a variant of block_size that uses the
3270         // Printezis bits to avoid waiting for allocated
3271         // objects to become initialized/parsable.
3272         while (prev_obj < span.start()) {
3273           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
3274           if (sz > 0) {
3275             prev_obj += sz;
3276           } else {
3277             // In this case we may end up doing a bit of redundant
3278             // scanning, but that appears unavoidable, short of
3279             // locking the free list locks; see bug 6324141.
3280             break;
3281           }
3282         }
3283       }
3284       if (prev_obj < span.end()) {
3285         MemRegion my_span = MemRegion(prev_obj, span.end());
3286         // Do the marking work within a non-empty span --
3287         // the last argument to the constructor indicates whether the
3288         // iteration should be incremental with periodic yields.
3289         ParMarkFromRootsClosure cl(this, _collector, my_span,
3290                                    &_collector->_markBitMap,
3291                                    work_queue(i),
3292                                    &_collector->_markStack);
3293         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
3294       } // else nothing to do for this task
3295     }   // else nothing to do for this task
3296   }
3297   // We'd be tempted to assert here that since there are no
3298   // more tasks left to claim in this space, the global_finger
3299   // must exceed space->top() and a fortiori space->end(). However,
3300   // that would not quite be correct because the bumping of
3301   // global_finger occurs strictly after the claiming of a task,
3302   // so by the time we reach here the global finger may not yet
3303   // have been bumped up by the thread that claimed the last
3304   // task.
3305   pst->all_tasks_completed();
3306 }
3307 
3308 class ParConcMarkingClosure: public MetadataVisitingOopIterateClosure {
3309  private:
3310   CMSCollector* _collector;
3311   CMSConcMarkingTask* _task;
3312   MemRegion     _span;
3313   CMSBitMap*    _bit_map;
3314   CMSMarkStack* _overflow_stack;
3315   OopTaskQueue* _work_queue;
3316  protected:
3317   DO_OOP_WORK_DEFN
3318  public:
3319   ParConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
3320                         CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
3321     MetadataVisitingOopIterateClosure(collector->ref_processor()),
3322     _collector(collector),
3323     _task(task),
3324     _span(collector->_span),
3325     _bit_map(bit_map),
3326     _overflow_stack(overflow_stack),
3327     _work_queue(work_queue)
3328   { }
3329   virtual void do_oop(oop* p);
3330   virtual void do_oop(narrowOop* p);
3331 
3332   void trim_queue(size_t max);
3333   void handle_stack_overflow(HeapWord* lost);
3334   void do_yield_check() {
3335     if (_task->should_yield()) {
3336       _task->yield();
3337     }
3338   }
3339 };
3340 
3341 DO_OOP_WORK_IMPL(ParConcMarkingClosure)
3342 
3343 // Grey object scanning during work stealing phase --
3344 // the salient assumption here is that any references
3345 // that are in these stolen objects being scanned must
3346 // already have been initialized (else they would not have
3347 // been published), so we do not need to check for
3348 // uninitialized objects before pushing here.
3349 void ParConcMarkingClosure::do_oop(oop obj) {
3350   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
3351   HeapWord* addr = (HeapWord*)obj;
3352   // Check if oop points into the CMS generation
3353   // and is not marked
3354   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
3355     // a white object ...
3356     // If we manage to "claim" the object, by being the
3357     // first thread to mark it, then we push it on our
3358     // marking stack
3359     if (_bit_map->par_mark(addr)) {     // ... now grey
3360       // push on work queue (grey set)
3361       bool simulate_overflow = false;
3362       NOT_PRODUCT(
3363         if (CMSMarkStackOverflowALot &&
3364             _collector->simulate_overflow()) {
3365           // simulate a stack overflow
3366           simulate_overflow = true;
3367         }
3368       )
3369       if (simulate_overflow ||
3370           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
3371         // stack overflow
3372         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
3373         // We cannot assert that the overflow stack is full because
3374         // it may have been emptied since.
3375         assert(simulate_overflow ||
3376                _work_queue->size() == _work_queue->max_elems(),
3377               "Else push should have succeeded");
3378         handle_stack_overflow(addr);
3379       }
3380     } // Else, some other thread got there first
3381     do_yield_check();
3382   }
3383 }
3384 
3385 void ParConcMarkingClosure::trim_queue(size_t max) {
3386   while (_work_queue->size() > max) {
3387     oop new_oop;
3388     if (_work_queue->pop_local(new_oop)) {
3389       assert(oopDesc::is_oop(new_oop), "Should be an oop");
3390       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
3391       assert(_span.contains((HeapWord*)new_oop), "Not in span");
3392       new_oop->oop_iterate(this);  // do_oop() above
3393       do_yield_check();
3394     }
3395   }
3396 }
3397 
3398 // Upon stack overflow, we discard (part of) the stack,
3399 // remembering the least address amongst those discarded
3400 // in CMSCollector's _restart_address.
3401 void ParConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
3402   // We need to do this under a mutex to prevent other
3403   // workers from interfering with the work done below.
3404   MutexLockerEx ml(_overflow_stack->par_lock(),
3405                    Mutex::_no_safepoint_check_flag);
3406   // Remember the least grey address discarded
3407   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
3408   _collector->lower_restart_addr(ra);
3409   _overflow_stack->reset();  // discard stack contents
3410   _overflow_stack->expand(); // expand the stack if possible
3411 }
3412 
3413 
3414 void CMSConcMarkingTask::do_work_steal(int i) {
3415   OopTaskQueue* work_q = work_queue(i);
3416   oop obj_to_scan;
3417   CMSBitMap* bm = &(_collector->_markBitMap);
3418   CMSMarkStack* ovflw = &(_collector->_markStack);
3419   ParConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
3420   while (true) {
3421     cl.trim_queue(0);
3422     assert(work_q->size() == 0, "Should have been emptied above");
3423     if (get_work_from_overflow_stack(ovflw, work_q)) {
3424       // Can't assert below because the work obtained from the
3425       // overflow stack may already have been stolen from us.
3426       // assert(work_q->size() > 0, "Work from overflow stack");
3427       continue;
3428     } else if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
3429       assert(oopDesc::is_oop(obj_to_scan), "Should be an oop");
3430       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
3431       obj_to_scan->oop_iterate(&cl);
3432     } else if (terminator()->offer_termination(&_term_term)) {
3433       assert(work_q->size() == 0, "Impossible!");
3434       break;
3435     } else if (yielding() || should_yield()) {
3436       yield();
3437     }
3438   }
3439 }
3440 
3441 // This is run by the CMS (coordinator) thread.
3442 void CMSConcMarkingTask::coordinator_yield() {
3443   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3444          "CMS thread should hold CMS token");
3445   // First give up the locks, then yield, then re-lock
3446   // We should probably use a constructor/destructor idiom to
3447   // do this unlock/lock or modify the MutexUnlocker class to
3448   // serve our purpose. XXX
3449   assert_lock_strong(_bit_map_lock);
3450   _bit_map_lock->unlock();
3451   ConcurrentMarkSweepThread::desynchronize(true);
3452   _collector->stopTimer();
3453   _collector->incrementYields();
3454 
3455   // It is possible for whichever thread initiated the yield request
3456   // not to get a chance to wake up and take the bitmap lock between
3457   // this thread releasing it and reacquiring it. So, while the
3458   // should_yield() flag is on, let's sleep for a bit to give the
3459   // other thread a chance to wake up. The limit imposed on the number
3460   // of iterations is defensive, to avoid any unforseen circumstances
3461   // putting us into an infinite loop. Since it's always been this
3462   // (coordinator_yield()) method that was observed to cause the
3463   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
3464   // which is by default non-zero. For the other seven methods that
3465   // also perform the yield operation, as are using a different
3466   // parameter (CMSYieldSleepCount) which is by default zero. This way we
3467   // can enable the sleeping for those methods too, if necessary.
3468   // See 6442774.
3469   //
3470   // We really need to reconsider the synchronization between the GC
3471   // thread and the yield-requesting threads in the future and we
3472   // should really use wait/notify, which is the recommended
3473   // way of doing this type of interaction. Additionally, we should
3474   // consolidate the eight methods that do the yield operation and they
3475   // are almost identical into one for better maintainability and
3476   // readability. See 6445193.
3477   //
3478   // Tony 2006.06.29
3479   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
3480                    ConcurrentMarkSweepThread::should_yield() &&
3481                    !CMSCollector::foregroundGCIsActive(); ++i) {
3482     os::sleep(Thread::current(), 1, false);
3483   }
3484 
3485   ConcurrentMarkSweepThread::synchronize(true);
3486   _bit_map_lock->lock_without_safepoint_check();
3487   _collector->startTimer();
3488 }
3489 
3490 bool CMSCollector::do_marking_mt() {
3491   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
3492   uint num_workers = WorkerPolicy::calc_active_conc_workers(conc_workers()->total_workers(),
3493                                                             conc_workers()->active_workers(),
3494                                                             Threads::number_of_non_daemon_threads());
3495   num_workers = conc_workers()->update_active_workers(num_workers);
3496   log_info(gc,task)("Using %u workers of %u for marking", num_workers, conc_workers()->total_workers());
3497 
3498   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
3499 
3500   CMSConcMarkingTask tsk(this,
3501                          cms_space,
3502                          conc_workers(),
3503                          task_queues());
3504 
3505   // Since the actual number of workers we get may be different
3506   // from the number we requested above, do we need to do anything different
3507   // below? In particular, may be we need to subclass the SequantialSubTasksDone
3508   // class?? XXX
3509   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
3510 
3511   // Refs discovery is already non-atomic.
3512   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
3513   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
3514   conc_workers()->start_task(&tsk);
3515   while (tsk.yielded()) {
3516     tsk.coordinator_yield();
3517     conc_workers()->continue_task(&tsk);
3518   }
3519   // If the task was aborted, _restart_addr will be non-NULL
3520   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
3521   while (_restart_addr != NULL) {
3522     // XXX For now we do not make use of ABORTED state and have not
3523     // yet implemented the right abort semantics (even in the original
3524     // single-threaded CMS case). That needs some more investigation
3525     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
3526     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
3527     // If _restart_addr is non-NULL, a marking stack overflow
3528     // occurred; we need to do a fresh marking iteration from the
3529     // indicated restart address.
3530     if (_foregroundGCIsActive) {
3531       // We may be running into repeated stack overflows, having
3532       // reached the limit of the stack size, while making very
3533       // slow forward progress. It may be best to bail out and
3534       // let the foreground collector do its job.
3535       // Clear _restart_addr, so that foreground GC
3536       // works from scratch. This avoids the headache of
3537       // a "rescan" which would otherwise be needed because
3538       // of the dirty mod union table & card table.
3539       _restart_addr = NULL;
3540       return false;
3541     }
3542     // Adjust the task to restart from _restart_addr
3543     tsk.reset(_restart_addr);
3544     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
3545                   _restart_addr);
3546     _restart_addr = NULL;
3547     // Get the workers going again
3548     conc_workers()->start_task(&tsk);
3549     while (tsk.yielded()) {
3550       tsk.coordinator_yield();
3551       conc_workers()->continue_task(&tsk);
3552     }
3553   }
3554   assert(tsk.completed(), "Inconsistency");
3555   assert(tsk.result() == true, "Inconsistency");
3556   return true;
3557 }
3558 
3559 bool CMSCollector::do_marking_st() {
3560   ResourceMark rm;
3561   HandleMark   hm;
3562 
3563   // Temporarily make refs discovery single threaded (non-MT)
3564   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
3565   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
3566     &_markStack, CMSYield);
3567   // the last argument to iterate indicates whether the iteration
3568   // should be incremental with periodic yields.
3569   _markBitMap.iterate(&markFromRootsClosure);
3570   // If _restart_addr is non-NULL, a marking stack overflow
3571   // occurred; we need to do a fresh iteration from the
3572   // indicated restart address.
3573   while (_restart_addr != NULL) {
3574     if (_foregroundGCIsActive) {
3575       // We may be running into repeated stack overflows, having
3576       // reached the limit of the stack size, while making very
3577       // slow forward progress. It may be best to bail out and
3578       // let the foreground collector do its job.
3579       // Clear _restart_addr, so that foreground GC
3580       // works from scratch. This avoids the headache of
3581       // a "rescan" which would otherwise be needed because
3582       // of the dirty mod union table & card table.
3583       _restart_addr = NULL;
3584       return false;  // indicating failure to complete marking
3585     }
3586     // Deal with stack overflow:
3587     // we restart marking from _restart_addr
3588     HeapWord* ra = _restart_addr;
3589     markFromRootsClosure.reset(ra);
3590     _restart_addr = NULL;
3591     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
3592   }
3593   return true;
3594 }
3595 
3596 void CMSCollector::preclean() {
3597   check_correct_thread_executing();
3598   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
3599   verify_work_stacks_empty();
3600   verify_overflow_empty();
3601   _abort_preclean = false;
3602   if (CMSPrecleaningEnabled) {
3603     if (!CMSEdenChunksRecordAlways) {
3604       _eden_chunk_index = 0;
3605     }
3606     size_t used = get_eden_used();
3607     size_t capacity = get_eden_capacity();
3608     // Don't start sampling unless we will get sufficiently
3609     // many samples.
3610     if (used < (((capacity / CMSScheduleRemarkSamplingRatio) / 100)
3611                 * CMSScheduleRemarkEdenPenetration)) {
3612       _start_sampling = true;
3613     } else {
3614       _start_sampling = false;
3615     }
3616     GCTraceCPUTime tcpu;
3617     CMSPhaseAccounting pa(this, "Concurrent Preclean");
3618     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
3619   }
3620   CMSTokenSync x(true); // is cms thread
3621   if (CMSPrecleaningEnabled) {
3622     sample_eden();
3623     _collectorState = AbortablePreclean;
3624   } else {
3625     _collectorState = FinalMarking;
3626   }
3627   verify_work_stacks_empty();
3628   verify_overflow_empty();
3629 }
3630 
3631 // Try and schedule the remark such that young gen
3632 // occupancy is CMSScheduleRemarkEdenPenetration %.
3633 void CMSCollector::abortable_preclean() {
3634   check_correct_thread_executing();
3635   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
3636   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
3637 
3638   // If Eden's current occupancy is below this threshold,
3639   // immediately schedule the remark; else preclean
3640   // past the next scavenge in an effort to
3641   // schedule the pause as described above. By choosing
3642   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
3643   // we will never do an actual abortable preclean cycle.
3644   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
3645     GCTraceCPUTime tcpu;
3646     CMSPhaseAccounting pa(this, "Concurrent Abortable Preclean");
3647     // We need more smarts in the abortable preclean
3648     // loop below to deal with cases where allocation
3649     // in young gen is very very slow, and our precleaning
3650     // is running a losing race against a horde of
3651     // mutators intent on flooding us with CMS updates
3652     // (dirty cards).
3653     // One, admittedly dumb, strategy is to give up
3654     // after a certain number of abortable precleaning loops
3655     // or after a certain maximum time. We want to make
3656     // this smarter in the next iteration.
3657     // XXX FIX ME!!! YSR
3658     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
3659     while (!(should_abort_preclean() ||
3660              ConcurrentMarkSweepThread::cmst()->should_terminate())) {
3661       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
3662       cumworkdone += workdone;
3663       loops++;
3664       // Voluntarily terminate abortable preclean phase if we have
3665       // been at it for too long.
3666       if ((CMSMaxAbortablePrecleanLoops != 0) &&
3667           loops >= CMSMaxAbortablePrecleanLoops) {
3668         log_debug(gc)(" CMS: abort preclean due to loops ");
3669         break;
3670       }
3671       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
3672         log_debug(gc)(" CMS: abort preclean due to time ");
3673         break;
3674       }
3675       // If we are doing little work each iteration, we should
3676       // take a short break.
3677       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
3678         // Sleep for some time, waiting for work to accumulate
3679         stopTimer();
3680         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
3681         startTimer();
3682         waited++;
3683       }
3684     }
3685     log_trace(gc)(" [" SIZE_FORMAT " iterations, " SIZE_FORMAT " waits, " SIZE_FORMAT " cards)] ",
3686                                loops, waited, cumworkdone);
3687   }
3688   CMSTokenSync x(true); // is cms thread
3689   if (_collectorState != Idling) {
3690     assert(_collectorState == AbortablePreclean,
3691            "Spontaneous state transition?");
3692     _collectorState = FinalMarking;
3693   } // Else, a foreground collection completed this CMS cycle.
3694   return;
3695 }
3696 
3697 // Respond to an Eden sampling opportunity
3698 void CMSCollector::sample_eden() {
3699   // Make sure a young gc cannot sneak in between our
3700   // reading and recording of a sample.
3701   assert(Thread::current()->is_ConcurrentGC_thread(),
3702          "Only the cms thread may collect Eden samples");
3703   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
3704          "Should collect samples while holding CMS token");
3705   if (!_start_sampling) {
3706     return;
3707   }
3708   // When CMSEdenChunksRecordAlways is true, the eden chunk array
3709   // is populated by the young generation.
3710   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
3711     if (_eden_chunk_index < _eden_chunk_capacity) {
3712       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
3713       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
3714              "Unexpected state of Eden");
3715       // We'd like to check that what we just sampled is an oop-start address;
3716       // however, we cannot do that here since the object may not yet have been
3717       // initialized. So we'll instead do the check when we _use_ this sample
3718       // later.
3719       if (_eden_chunk_index == 0 ||
3720           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
3721                          _eden_chunk_array[_eden_chunk_index-1])
3722            >= CMSSamplingGrain)) {
3723         _eden_chunk_index++;  // commit sample
3724       }
3725     }
3726   }
3727   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
3728     size_t used = get_eden_used();
3729     size_t capacity = get_eden_capacity();
3730     assert(used <= capacity, "Unexpected state of Eden");
3731     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
3732       _abort_preclean = true;
3733     }
3734   }
3735 }
3736 
3737 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
3738   assert(_collectorState == Precleaning ||
3739          _collectorState == AbortablePreclean, "incorrect state");
3740   ResourceMark rm;
3741   HandleMark   hm;
3742 
3743   // Precleaning is currently not MT but the reference processor
3744   // may be set for MT.  Disable it temporarily here.
3745   ReferenceProcessor* rp = ref_processor();
3746   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
3747 
3748   // Do one pass of scrubbing the discovered reference lists
3749   // to remove any reference objects with strongly-reachable
3750   // referents.
3751   if (clean_refs) {
3752     CMSPrecleanRefsYieldClosure yield_cl(this);
3753     assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
3754     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
3755                                    &_markStack, true /* preclean */);
3756     CMSDrainMarkingStackClosure complete_trace(this,
3757                                    _span, &_markBitMap, &_markStack,
3758                                    &keep_alive, true /* preclean */);
3759 
3760     // We don't want this step to interfere with a young
3761     // collection because we don't want to take CPU
3762     // or memory bandwidth away from the young GC threads
3763     // (which may be as many as there are CPUs).
3764     // Note that we don't need to protect ourselves from
3765     // interference with mutators because they can't
3766     // manipulate the discovered reference lists nor affect
3767     // the computed reachability of the referents, the
3768     // only properties manipulated by the precleaning
3769     // of these reference lists.
3770     stopTimer();
3771     CMSTokenSyncWithLocks x(true /* is cms thread */,
3772                             bitMapLock());
3773     startTimer();
3774     sample_eden();
3775 
3776     // The following will yield to allow foreground
3777     // collection to proceed promptly. XXX YSR:
3778     // The code in this method may need further
3779     // tweaking for better performance and some restructuring
3780     // for cleaner interfaces.
3781     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
3782     rp->preclean_discovered_references(
3783           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
3784           gc_timer);
3785   }
3786 
3787   if (clean_survivor) {  // preclean the active survivor space(s)
3788     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
3789                              &_markBitMap, &_modUnionTable,
3790                              &_markStack, true /* precleaning phase */);
3791     stopTimer();
3792     CMSTokenSyncWithLocks ts(true /* is cms thread */,
3793                              bitMapLock());
3794     startTimer();
3795     unsigned int before_count =
3796       CMSHeap::heap()->total_collections();
3797     SurvivorSpacePrecleanClosure
3798       sss_cl(this, _span, &_markBitMap, &_markStack,
3799              &pam_cl, before_count, CMSYield);
3800     _young_gen->from()->object_iterate_careful(&sss_cl);
3801     _young_gen->to()->object_iterate_careful(&sss_cl);
3802   }
3803   MarkRefsIntoAndScanClosure
3804     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
3805              &_markStack, this, CMSYield,
3806              true /* precleaning phase */);
3807   // CAUTION: The following closure has persistent state that may need to
3808   // be reset upon a decrease in the sequence of addresses it
3809   // processes.
3810   ScanMarkedObjectsAgainCarefullyClosure
3811     smoac_cl(this, _span,
3812       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
3813 
3814   // Preclean dirty cards in ModUnionTable and CardTable using
3815   // appropriate convergence criterion;
3816   // repeat CMSPrecleanIter times unless we find that
3817   // we are losing.
3818   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
3819   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
3820          "Bad convergence multiplier");
3821   assert(CMSPrecleanThreshold >= 100,
3822          "Unreasonably low CMSPrecleanThreshold");
3823 
3824   size_t numIter, cumNumCards, lastNumCards, curNumCards;
3825   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
3826        numIter < CMSPrecleanIter;
3827        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
3828     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
3829     log_trace(gc)(" (modUnionTable: " SIZE_FORMAT " cards)", curNumCards);
3830     // Either there are very few dirty cards, so re-mark
3831     // pause will be small anyway, or our pre-cleaning isn't
3832     // that much faster than the rate at which cards are being
3833     // dirtied, so we might as well stop and re-mark since
3834     // precleaning won't improve our re-mark time by much.
3835     if (curNumCards <= CMSPrecleanThreshold ||
3836         (numIter > 0 &&
3837          (curNumCards * CMSPrecleanDenominator >
3838          lastNumCards * CMSPrecleanNumerator))) {
3839       numIter++;
3840       cumNumCards += curNumCards;
3841       break;
3842     }
3843   }
3844 
3845   preclean_cld(&mrias_cl, _cmsGen->freelistLock());
3846 
3847   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
3848   cumNumCards += curNumCards;
3849   log_trace(gc)(" (cardTable: " SIZE_FORMAT " cards, re-scanned " SIZE_FORMAT " cards, " SIZE_FORMAT " iterations)",
3850                              curNumCards, cumNumCards, numIter);
3851   return cumNumCards;   // as a measure of useful work done
3852 }
3853 
3854 // PRECLEANING NOTES:
3855 // Precleaning involves:
3856 // . reading the bits of the modUnionTable and clearing the set bits.
3857 // . For the cards corresponding to the set bits, we scan the
3858 //   objects on those cards. This means we need the free_list_lock
3859 //   so that we can safely iterate over the CMS space when scanning
3860 //   for oops.
3861 // . When we scan the objects, we'll be both reading and setting
3862 //   marks in the marking bit map, so we'll need the marking bit map.
3863 // . For protecting _collector_state transitions, we take the CGC_lock.
3864 //   Note that any races in the reading of of card table entries by the
3865 //   CMS thread on the one hand and the clearing of those entries by the
3866 //   VM thread or the setting of those entries by the mutator threads on the
3867 //   other are quite benign. However, for efficiency it makes sense to keep
3868 //   the VM thread from racing with the CMS thread while the latter is
3869 //   dirty card info to the modUnionTable. We therefore also use the
3870 //   CGC_lock to protect the reading of the card table and the mod union
3871 //   table by the CM thread.
3872 // . We run concurrently with mutator updates, so scanning
3873 //   needs to be done carefully  -- we should not try to scan
3874 //   potentially uninitialized objects.
3875 //
3876 // Locking strategy: While holding the CGC_lock, we scan over and
3877 // reset a maximal dirty range of the mod union / card tables, then lock
3878 // the free_list_lock and bitmap lock to do a full marking, then
3879 // release these locks; and repeat the cycle. This allows for a
3880 // certain amount of fairness in the sharing of these locks between
3881 // the CMS collector on the one hand, and the VM thread and the
3882 // mutators on the other.
3883 
3884 // NOTE: preclean_mod_union_table() and preclean_card_table()
3885 // further below are largely identical; if you need to modify
3886 // one of these methods, please check the other method too.
3887 
3888 size_t CMSCollector::preclean_mod_union_table(
3889   ConcurrentMarkSweepGeneration* old_gen,
3890   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3891   verify_work_stacks_empty();
3892   verify_overflow_empty();
3893 
3894   // strategy: starting with the first card, accumulate contiguous
3895   // ranges of dirty cards; clear these cards, then scan the region
3896   // covered by these cards.
3897 
3898   // Since all of the MUT is committed ahead, we can just use
3899   // that, in case the generations expand while we are precleaning.
3900   // It might also be fine to just use the committed part of the
3901   // generation, but we might potentially miss cards when the
3902   // generation is rapidly expanding while we are in the midst
3903   // of precleaning.
3904   HeapWord* startAddr = old_gen->reserved().start();
3905   HeapWord* endAddr   = old_gen->reserved().end();
3906 
3907   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
3908 
3909   size_t numDirtyCards, cumNumDirtyCards;
3910   HeapWord *nextAddr, *lastAddr;
3911   for (cumNumDirtyCards = numDirtyCards = 0,
3912        nextAddr = lastAddr = startAddr;
3913        nextAddr < endAddr;
3914        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
3915 
3916     ResourceMark rm;
3917     HandleMark   hm;
3918 
3919     MemRegion dirtyRegion;
3920     {
3921       stopTimer();
3922       // Potential yield point
3923       CMSTokenSync ts(true);
3924       startTimer();
3925       sample_eden();
3926       // Get dirty region starting at nextOffset (inclusive),
3927       // simultaneously clearing it.
3928       dirtyRegion =
3929         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
3930       assert(dirtyRegion.start() >= nextAddr,
3931              "returned region inconsistent?");
3932     }
3933     // Remember where the next search should begin.
3934     // The returned region (if non-empty) is a right open interval,
3935     // so lastOffset is obtained from the right end of that
3936     // interval.
3937     lastAddr = dirtyRegion.end();
3938     // Should do something more transparent and less hacky XXX
3939     numDirtyCards =
3940       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
3941 
3942     // We'll scan the cards in the dirty region (with periodic
3943     // yields for foreground GC as needed).
3944     if (!dirtyRegion.is_empty()) {
3945       assert(numDirtyCards > 0, "consistency check");
3946       HeapWord* stop_point = NULL;
3947       stopTimer();
3948       // Potential yield point
3949       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(),
3950                                bitMapLock());
3951       startTimer();
3952       {
3953         verify_work_stacks_empty();
3954         verify_overflow_empty();
3955         sample_eden();
3956         stop_point =
3957           old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
3958       }
3959       if (stop_point != NULL) {
3960         // The careful iteration stopped early either because it found an
3961         // uninitialized object, or because we were in the midst of an
3962         // "abortable preclean", which should now be aborted. Redirty
3963         // the bits corresponding to the partially-scanned or unscanned
3964         // cards. We'll either restart at the next block boundary or
3965         // abort the preclean.
3966         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
3967                "Should only be AbortablePreclean.");
3968         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
3969         if (should_abort_preclean()) {
3970           break; // out of preclean loop
3971         } else {
3972           // Compute the next address at which preclean should pick up;
3973           // might need bitMapLock in order to read P-bits.
3974           lastAddr = next_card_start_after_block(stop_point);
3975         }
3976       }
3977     } else {
3978       assert(lastAddr == endAddr, "consistency check");
3979       assert(numDirtyCards == 0, "consistency check");
3980       break;
3981     }
3982   }
3983   verify_work_stacks_empty();
3984   verify_overflow_empty();
3985   return cumNumDirtyCards;
3986 }
3987 
3988 // NOTE: preclean_mod_union_table() above and preclean_card_table()
3989 // below are largely identical; if you need to modify
3990 // one of these methods, please check the other method too.
3991 
3992 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* old_gen,
3993   ScanMarkedObjectsAgainCarefullyClosure* cl) {
3994   // strategy: it's similar to precleamModUnionTable above, in that
3995   // we accumulate contiguous ranges of dirty cards, mark these cards
3996   // precleaned, then scan the region covered by these cards.
3997   HeapWord* endAddr   = (HeapWord*)(old_gen->_virtual_space.high());
3998   HeapWord* startAddr = (HeapWord*)(old_gen->_virtual_space.low());
3999 
4000   cl->setFreelistLock(old_gen->freelistLock());   // needed for yielding
4001 
4002   size_t numDirtyCards, cumNumDirtyCards;
4003   HeapWord *lastAddr, *nextAddr;
4004 
4005   for (cumNumDirtyCards = numDirtyCards = 0,
4006        nextAddr = lastAddr = startAddr;
4007        nextAddr < endAddr;
4008        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4009 
4010     ResourceMark rm;
4011     HandleMark   hm;
4012 
4013     MemRegion dirtyRegion;
4014     {
4015       // See comments in "Precleaning notes" above on why we
4016       // do this locking. XXX Could the locking overheads be
4017       // too high when dirty cards are sparse? [I don't think so.]
4018       stopTimer();
4019       CMSTokenSync x(true); // is cms thread
4020       startTimer();
4021       sample_eden();
4022       // Get and clear dirty region from card table
4023       dirtyRegion = _ct->dirty_card_range_after_reset(MemRegion(nextAddr, endAddr),
4024                                                       true,
4025                                                       CardTable::precleaned_card_val());
4026 
4027       assert(dirtyRegion.start() >= nextAddr,
4028              "returned region inconsistent?");
4029     }
4030     lastAddr = dirtyRegion.end();
4031     numDirtyCards =
4032       dirtyRegion.word_size()/CardTable::card_size_in_words;
4033 
4034     if (!dirtyRegion.is_empty()) {
4035       stopTimer();
4036       CMSTokenSyncWithLocks ts(true, old_gen->freelistLock(), bitMapLock());
4037       startTimer();
4038       sample_eden();
4039       verify_work_stacks_empty();
4040       verify_overflow_empty();
4041       HeapWord* stop_point =
4042         old_gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4043       if (stop_point != NULL) {
4044         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4045                "Should only be AbortablePreclean.");
4046         _ct->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4047         if (should_abort_preclean()) {
4048           break; // out of preclean loop
4049         } else {
4050           // Compute the next address at which preclean should pick up.
4051           lastAddr = next_card_start_after_block(stop_point);
4052         }
4053       }
4054     } else {
4055       break;
4056     }
4057   }
4058   verify_work_stacks_empty();
4059   verify_overflow_empty();
4060   return cumNumDirtyCards;
4061 }
4062 
4063 class PrecleanCLDClosure : public CLDClosure {
4064   MetadataVisitingOopsInGenClosure* _cm_closure;
4065  public:
4066   PrecleanCLDClosure(MetadataVisitingOopsInGenClosure* oop_closure) : _cm_closure(oop_closure) {}
4067   void do_cld(ClassLoaderData* cld) {
4068     if (cld->has_accumulated_modified_oops()) {
4069       cld->clear_accumulated_modified_oops();
4070 
4071       _cm_closure->do_cld(cld);
4072     }
4073   }
4074 };
4075 
4076 // The freelist lock is needed to prevent asserts, is it really needed?
4077 void CMSCollector::preclean_cld(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4078   // Needed to walk CLDG
4079   MutexLocker ml(ClassLoaderDataGraph_lock);
4080 
4081   cl->set_freelistLock(freelistLock);
4082 
4083   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
4084 
4085   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
4086   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
4087   PrecleanCLDClosure preclean_closure(cl);
4088   ClassLoaderDataGraph::cld_do(&preclean_closure);
4089 
4090   verify_work_stacks_empty();
4091   verify_overflow_empty();
4092 }
4093 
4094 void CMSCollector::checkpointRootsFinal() {
4095   assert(_collectorState == FinalMarking, "incorrect state transition?");
4096   check_correct_thread_executing();
4097   // world is stopped at this checkpoint
4098   assert(SafepointSynchronize::is_at_safepoint(),
4099          "world should be stopped");
4100   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
4101 
4102   verify_work_stacks_empty();
4103   verify_overflow_empty();
4104 
4105   log_debug(gc)("YG occupancy: " SIZE_FORMAT " K (" SIZE_FORMAT " K)",
4106                 _young_gen->used() / K, _young_gen->capacity() / K);
4107   {
4108     if (CMSScavengeBeforeRemark) {
4109       CMSHeap* heap = CMSHeap::heap();
4110       // Temporarily set flag to false, GCH->do_collection will
4111       // expect it to be false and set to true
4112       FlagSetting fl(heap->_is_gc_active, false);
4113 
4114       heap->do_collection(true,                      // full (i.e. force, see below)
4115                           false,                     // !clear_all_soft_refs
4116                           0,                         // size
4117                           false,                     // is_tlab
4118                           GenCollectedHeap::YoungGen // type
4119         );
4120     }
4121     FreelistLocker x(this);
4122     MutexLockerEx y(bitMapLock(),
4123                     Mutex::_no_safepoint_check_flag);
4124     checkpointRootsFinalWork();
4125   }
4126   verify_work_stacks_empty();
4127   verify_overflow_empty();
4128 }
4129 
4130 void CMSCollector::checkpointRootsFinalWork() {
4131   GCTraceTime(Trace, gc, phases) tm("checkpointRootsFinalWork", _gc_timer_cm);
4132 
4133   assert(haveFreelistLocks(), "must have free list locks");
4134   assert_lock_strong(bitMapLock());
4135 
4136   ResourceMark rm;
4137   HandleMark   hm;
4138 
4139   CMSHeap* heap = CMSHeap::heap();
4140 
4141   if (should_unload_classes()) {
4142     CodeCache::gc_prologue();
4143   }
4144   assert(haveFreelistLocks(), "must have free list locks");
4145   assert_lock_strong(bitMapLock());
4146 
4147   // We might assume that we need not fill TLAB's when
4148   // CMSScavengeBeforeRemark is set, because we may have just done
4149   // a scavenge which would have filled all TLAB's -- and besides
4150   // Eden would be empty. This however may not always be the case --
4151   // for instance although we asked for a scavenge, it may not have
4152   // happened because of a JNI critical section. We probably need
4153   // a policy for deciding whether we can in that case wait until
4154   // the critical section releases and then do the remark following
4155   // the scavenge, and skip it here. In the absence of that policy,
4156   // or of an indication of whether the scavenge did indeed occur,
4157   // we cannot rely on TLAB's having been filled and must do
4158   // so here just in case a scavenge did not happen.
4159   heap->ensure_parsability(false);  // fill TLAB's, but no need to retire them
4160   // Update the saved marks which may affect the root scans.
4161   heap->save_marks();
4162 
4163   print_eden_and_survivor_chunk_arrays();
4164 
4165   {
4166 #if COMPILER2_OR_JVMCI
4167     DerivedPointerTableDeactivate dpt_deact;
4168 #endif
4169 
4170     // Note on the role of the mod union table:
4171     // Since the marker in "markFromRoots" marks concurrently with
4172     // mutators, it is possible for some reachable objects not to have been
4173     // scanned. For instance, an only reference to an object A was
4174     // placed in object B after the marker scanned B. Unless B is rescanned,
4175     // A would be collected. Such updates to references in marked objects
4176     // are detected via the mod union table which is the set of all cards
4177     // dirtied since the first checkpoint in this GC cycle and prior to
4178     // the most recent young generation GC, minus those cleaned up by the
4179     // concurrent precleaning.
4180     if (CMSParallelRemarkEnabled) {
4181       GCTraceTime(Debug, gc, phases) t("Rescan (parallel)", _gc_timer_cm);
4182       do_remark_parallel();
4183     } else {
4184       GCTraceTime(Debug, gc, phases) t("Rescan (non-parallel)", _gc_timer_cm);
4185       do_remark_non_parallel();
4186     }
4187   }
4188   verify_work_stacks_empty();
4189   verify_overflow_empty();
4190 
4191   {
4192     GCTraceTime(Trace, gc, phases) ts("refProcessingWork", _gc_timer_cm);
4193     refProcessingWork();
4194   }
4195   verify_work_stacks_empty();
4196   verify_overflow_empty();
4197 
4198   if (should_unload_classes()) {
4199     CodeCache::gc_epilogue();
4200   }
4201   JvmtiExport::gc_epilogue();
4202 
4203   // If we encountered any (marking stack / work queue) overflow
4204   // events during the current CMS cycle, take appropriate
4205   // remedial measures, where possible, so as to try and avoid
4206   // recurrence of that condition.
4207   assert(_markStack.isEmpty(), "No grey objects");
4208   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
4209                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
4210   if (ser_ovflw > 0) {
4211     log_trace(gc)("Marking stack overflow (benign) (pmc_pc=" SIZE_FORMAT ", pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ", kac_preclean=" SIZE_FORMAT ")",
4212                          _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw, _ser_kac_ovflw, _ser_kac_preclean_ovflw);
4213     _markStack.expand();
4214     _ser_pmc_remark_ovflw = 0;
4215     _ser_pmc_preclean_ovflw = 0;
4216     _ser_kac_preclean_ovflw = 0;
4217     _ser_kac_ovflw = 0;
4218   }
4219   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
4220      log_trace(gc)("Work queue overflow (benign) (pmc_rm=" SIZE_FORMAT ", kac=" SIZE_FORMAT ")",
4221                           _par_pmc_remark_ovflw, _par_kac_ovflw);
4222      _par_pmc_remark_ovflw = 0;
4223     _par_kac_ovflw = 0;
4224   }
4225    if (_markStack._hit_limit > 0) {
4226      log_trace(gc)(" (benign) Hit max stack size limit (" SIZE_FORMAT ")",
4227                           _markStack._hit_limit);
4228    }
4229    if (_markStack._failed_double > 0) {
4230      log_trace(gc)(" (benign) Failed stack doubling (" SIZE_FORMAT "), current capacity " SIZE_FORMAT,
4231                           _markStack._failed_double, _markStack.capacity());
4232    }
4233   _markStack._hit_limit = 0;
4234   _markStack._failed_double = 0;
4235 
4236   if ((VerifyAfterGC || VerifyDuringGC) &&
4237       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4238     verify_after_remark();
4239   }
4240 
4241   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
4242 
4243   // Change under the freelistLocks.
4244   _collectorState = Sweeping;
4245   // Call isAllClear() under bitMapLock
4246   assert(_modUnionTable.isAllClear(),
4247       "Should be clear by end of the final marking");
4248   assert(_ct->cld_rem_set()->mod_union_is_clear(),
4249       "Should be clear by end of the final marking");
4250 }
4251 
4252 void CMSParInitialMarkTask::work(uint worker_id) {
4253   elapsedTimer _timer;
4254   ResourceMark rm;
4255   HandleMark   hm;
4256 
4257   // ---------- scan from roots --------------
4258   _timer.start();
4259   CMSHeap* heap = CMSHeap::heap();
4260   ParMarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
4261 
4262   // ---------- young gen roots --------------
4263   {
4264     work_on_young_gen_roots(&par_mri_cl);
4265     _timer.stop();
4266     log_trace(gc, task)("Finished young gen initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4267   }
4268 
4269   // ---------- remaining roots --------------
4270   _timer.reset();
4271   _timer.start();
4272 
4273   CLDToOopClosure cld_closure(&par_mri_cl, ClassLoaderData::_claim_strong);
4274 
4275   heap->cms_process_roots(_strong_roots_scope,
4276                           false,     // yg was scanned above
4277                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4278                           _collector->should_unload_classes(),
4279                           &par_mri_cl,
4280                           &cld_closure,
4281                           &_par_state_string);
4282 
4283   assert(_collector->should_unload_classes()
4284          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4285          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4286   _timer.stop();
4287   log_trace(gc, task)("Finished remaining root initial mark scan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4288 }
4289 
4290 // Parallel remark task
4291 class CMSParRemarkTask: public CMSParMarkTask {
4292   CompactibleFreeListSpace* _cms_space;
4293 
4294   // The per-thread work queues, available here for stealing.
4295   OopTaskQueueSet*       _task_queues;
4296   ParallelTaskTerminator _term;
4297   StrongRootsScope*      _strong_roots_scope;
4298 
4299  public:
4300   // A value of 0 passed to n_workers will cause the number of
4301   // workers to be taken from the active workers in the work gang.
4302   CMSParRemarkTask(CMSCollector* collector,
4303                    CompactibleFreeListSpace* cms_space,
4304                    uint n_workers, WorkGang* workers,
4305                    OopTaskQueueSet* task_queues,
4306                    StrongRootsScope* strong_roots_scope):
4307     CMSParMarkTask("Rescan roots and grey objects in parallel",
4308                    collector, n_workers),
4309     _cms_space(cms_space),
4310     _task_queues(task_queues),
4311     _term(n_workers, task_queues),
4312     _strong_roots_scope(strong_roots_scope) { }
4313 
4314   OopTaskQueueSet* task_queues() { return _task_queues; }
4315 
4316   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
4317 
4318   ParallelTaskTerminator* terminator() { return &_term; }
4319   uint n_workers() { return _n_workers; }
4320 
4321   void work(uint worker_id);
4322 
4323  private:
4324   // ... of  dirty cards in old space
4325   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
4326                                   ParMarkRefsIntoAndScanClosure* cl);
4327 
4328   // ... work stealing for the above
4329   void do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl);
4330 };
4331 
4332 class RemarkCLDClosure : public CLDClosure {
4333   CLDToOopClosure _cm_closure;
4334  public:
4335   RemarkCLDClosure(OopClosure* oop_closure) : _cm_closure(oop_closure, ClassLoaderData::_claim_strong) {}
4336   void do_cld(ClassLoaderData* cld) {
4337     // Check if we have modified any oops in the CLD during the concurrent marking.
4338     if (cld->has_accumulated_modified_oops()) {
4339       cld->clear_accumulated_modified_oops();
4340 
4341       // We could have transfered the current modified marks to the accumulated marks,
4342       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
4343     } else if (cld->has_modified_oops()) {
4344       // Don't clear anything, this info is needed by the next young collection.
4345     } else {
4346       // No modified oops in the ClassLoaderData.
4347       return;
4348     }
4349 
4350     // The klass has modified fields, need to scan the klass.
4351     _cm_closure.do_cld(cld);
4352   }
4353 };
4354 
4355 void CMSParMarkTask::work_on_young_gen_roots(OopsInGenClosure* cl) {
4356   ParNewGeneration* young_gen = _collector->_young_gen;
4357   ContiguousSpace* eden_space = young_gen->eden();
4358   ContiguousSpace* from_space = young_gen->from();
4359   ContiguousSpace* to_space   = young_gen->to();
4360 
4361   HeapWord** eca = _collector->_eden_chunk_array;
4362   size_t     ect = _collector->_eden_chunk_index;
4363   HeapWord** sca = _collector->_survivor_chunk_array;
4364   size_t     sct = _collector->_survivor_chunk_index;
4365 
4366   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
4367   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
4368 
4369   do_young_space_rescan(cl, to_space, NULL, 0);
4370   do_young_space_rescan(cl, from_space, sca, sct);
4371   do_young_space_rescan(cl, eden_space, eca, ect);
4372 }
4373 
4374 // work_queue(i) is passed to the closure
4375 // ParMarkRefsIntoAndScanClosure.  The "i" parameter
4376 // also is passed to do_dirty_card_rescan_tasks() and to
4377 // do_work_steal() to select the i-th task_queue.
4378 
4379 void CMSParRemarkTask::work(uint worker_id) {
4380   elapsedTimer _timer;
4381   ResourceMark rm;
4382   HandleMark   hm;
4383 
4384   // ---------- rescan from roots --------------
4385   _timer.start();
4386   CMSHeap* heap = CMSHeap::heap();
4387   ParMarkRefsIntoAndScanClosure par_mrias_cl(_collector,
4388     _collector->_span, _collector->ref_processor(),
4389     &(_collector->_markBitMap),
4390     work_queue(worker_id));
4391 
4392   // Rescan young gen roots first since these are likely
4393   // coarsely partitioned and may, on that account, constitute
4394   // the critical path; thus, it's best to start off that
4395   // work first.
4396   // ---------- young gen roots --------------
4397   {
4398     work_on_young_gen_roots(&par_mrias_cl);
4399     _timer.stop();
4400     log_trace(gc, task)("Finished young gen rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4401   }
4402 
4403   // ---------- remaining roots --------------
4404   _timer.reset();
4405   _timer.start();
4406   heap->cms_process_roots(_strong_roots_scope,
4407                           false,     // yg was scanned above
4408                           GenCollectedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
4409                           _collector->should_unload_classes(),
4410                           &par_mrias_cl,
4411                           NULL,     // The dirty klasses will be handled below
4412                           &_par_state_string);
4413 
4414   assert(_collector->should_unload_classes()
4415          || (_collector->CMSCollector::roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4416          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4417   _timer.stop();
4418   log_trace(gc, task)("Finished remaining root rescan work in %dth thread: %3.3f sec",  worker_id, _timer.seconds());
4419 
4420   // ---------- unhandled CLD scanning ----------
4421   if (worker_id == 0) { // Single threaded at the moment.
4422     _timer.reset();
4423     _timer.start();
4424 
4425     // Scan all new class loader data objects and new dependencies that were
4426     // introduced during concurrent marking.
4427     ResourceMark rm;
4428     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4429     for (int i = 0; i < array->length(); i++) {
4430       Devirtualizer::do_cld(&par_mrias_cl, array->at(i));
4431     }
4432 
4433     // We don't need to keep track of new CLDs anymore.
4434     ClassLoaderDataGraph::remember_new_clds(false);
4435 
4436     _timer.stop();
4437     log_trace(gc, task)("Finished unhandled CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4438   }
4439 
4440   // We might have added oops to ClassLoaderData::_handles during the
4441   // concurrent marking phase. These oops do not always point to newly allocated objects
4442   // that are guaranteed to be kept alive.  Hence,
4443   // we do have to revisit the _handles block during the remark phase.
4444 
4445   // ---------- dirty CLD scanning ----------
4446   if (worker_id == 0) { // Single threaded at the moment.
4447     _timer.reset();
4448     _timer.start();
4449 
4450     // Scan all classes that was dirtied during the concurrent marking phase.
4451     RemarkCLDClosure remark_closure(&par_mrias_cl);
4452     ClassLoaderDataGraph::cld_do(&remark_closure);
4453 
4454     _timer.stop();
4455     log_trace(gc, task)("Finished dirty CLD scanning work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4456   }
4457 
4458 
4459   // ---------- rescan dirty cards ------------
4460   _timer.reset();
4461   _timer.start();
4462 
4463   // Do the rescan tasks for each of the two spaces
4464   // (cms_space) in turn.
4465   // "worker_id" is passed to select the task_queue for "worker_id"
4466   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
4467   _timer.stop();
4468   log_trace(gc, task)("Finished dirty card rescan work in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4469 
4470   // ---------- steal work from other threads ...
4471   // ---------- ... and drain overflow list.
4472   _timer.reset();
4473   _timer.start();
4474   do_work_steal(worker_id, &par_mrias_cl);
4475   _timer.stop();
4476   log_trace(gc, task)("Finished work stealing in %dth thread: %3.3f sec", worker_id, _timer.seconds());
4477 }
4478 
4479 void
4480 CMSParMarkTask::do_young_space_rescan(
4481   OopsInGenClosure* cl, ContiguousSpace* space,
4482   HeapWord** chunk_array, size_t chunk_top) {
4483   // Until all tasks completed:
4484   // . claim an unclaimed task
4485   // . compute region boundaries corresponding to task claimed
4486   //   using chunk_array
4487   // . par_oop_iterate(cl) over that region
4488 
4489   ResourceMark rm;
4490   HandleMark   hm;
4491 
4492   SequentialSubTasksDone* pst = space->par_seq_tasks();
4493 
4494   uint nth_task = 0;
4495   uint n_tasks  = pst->n_tasks();
4496 
4497   if (n_tasks > 0) {
4498     assert(pst->valid(), "Uninitialized use?");
4499     HeapWord *start, *end;
4500     while (pst->try_claim_task(/* reference */ nth_task)) {
4501       // We claimed task # nth_task; compute its boundaries.
4502       if (chunk_top == 0) {  // no samples were taken
4503         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 eden task");
4504         start = space->bottom();
4505         end   = space->top();
4506       } else if (nth_task == 0) {
4507         start = space->bottom();
4508         end   = chunk_array[nth_task];
4509       } else if (nth_task < (uint)chunk_top) {
4510         assert(nth_task >= 1, "Control point invariant");
4511         start = chunk_array[nth_task - 1];
4512         end   = chunk_array[nth_task];
4513       } else {
4514         assert(nth_task == (uint)chunk_top, "Control point invariant");
4515         start = chunk_array[chunk_top - 1];
4516         end   = space->top();
4517       }
4518       MemRegion mr(start, end);
4519       // Verify that mr is in space
4520       assert(mr.is_empty() || space->used_region().contains(mr),
4521              "Should be in space");
4522       // Verify that "start" is an object boundary
4523       assert(mr.is_empty() || oopDesc::is_oop(oop(mr.start())),
4524              "Should be an oop");
4525       space->par_oop_iterate(mr, cl);
4526     }
4527     pst->all_tasks_completed();
4528   }
4529 }
4530 
4531 void
4532 CMSParRemarkTask::do_dirty_card_rescan_tasks(
4533   CompactibleFreeListSpace* sp, int i,
4534   ParMarkRefsIntoAndScanClosure* cl) {
4535   // Until all tasks completed:
4536   // . claim an unclaimed task
4537   // . compute region boundaries corresponding to task claimed
4538   // . transfer dirty bits ct->mut for that region
4539   // . apply rescanclosure to dirty mut bits for that region
4540 
4541   ResourceMark rm;
4542   HandleMark   hm;
4543 
4544   OopTaskQueue* work_q = work_queue(i);
4545   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
4546   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
4547   // CAUTION: This closure has state that persists across calls to
4548   // the work method dirty_range_iterate_clear() in that it has
4549   // embedded in it a (subtype of) UpwardsObjectClosure. The
4550   // use of that state in the embedded UpwardsObjectClosure instance
4551   // assumes that the cards are always iterated (even if in parallel
4552   // by several threads) in monotonically increasing order per each
4553   // thread. This is true of the implementation below which picks
4554   // card ranges (chunks) in monotonically increasing order globally
4555   // and, a-fortiori, in monotonically increasing order per thread
4556   // (the latter order being a subsequence of the former).
4557   // If the work code below is ever reorganized into a more chaotic
4558   // work-partitioning form than the current "sequential tasks"
4559   // paradigm, the use of that persistent state will have to be
4560   // revisited and modified appropriately. See also related
4561   // bug 4756801 work on which should examine this code to make
4562   // sure that the changes there do not run counter to the
4563   // assumptions made here and necessary for correctness and
4564   // efficiency. Note also that this code might yield inefficient
4565   // behavior in the case of very large objects that span one or
4566   // more work chunks. Such objects would potentially be scanned
4567   // several times redundantly. Work on 4756801 should try and
4568   // address that performance anomaly if at all possible. XXX
4569   MemRegion  full_span  = _collector->_span;
4570   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
4571   MarkFromDirtyCardsClosure
4572     greyRescanClosure(_collector, full_span, // entire span of interest
4573                       sp, bm, work_q, cl);
4574 
4575   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4576   assert(pst->valid(), "Uninitialized use?");
4577   uint nth_task = 0;
4578   const int alignment = CardTable::card_size * BitsPerWord;
4579   MemRegion span = sp->used_region();
4580   HeapWord* start_addr = span.start();
4581   HeapWord* end_addr = align_up(span.end(), alignment);
4582   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
4583   assert(is_aligned(start_addr, alignment), "Check alignment");
4584   assert(is_aligned(chunk_size, alignment), "Check alignment");
4585 
4586   while (pst->try_claim_task(/* reference */ nth_task)) {
4587     // Having claimed the nth_task, compute corresponding mem-region,
4588     // which is a-fortiori aligned correctly (i.e. at a MUT boundary).
4589     // The alignment restriction ensures that we do not need any
4590     // synchronization with other gang-workers while setting or
4591     // clearing bits in thus chunk of the MUT.
4592     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
4593                                     start_addr + (nth_task+1)*chunk_size);
4594     // The last chunk's end might be way beyond end of the
4595     // used region. In that case pull back appropriately.
4596     if (this_span.end() > end_addr) {
4597       this_span.set_end(end_addr);
4598       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
4599     }
4600     // Iterate over the dirty cards covering this chunk, marking them
4601     // precleaned, and setting the corresponding bits in the mod union
4602     // table. Since we have been careful to partition at Card and MUT-word
4603     // boundaries no synchronization is needed between parallel threads.
4604     _collector->_ct->dirty_card_iterate(this_span,
4605                                                  &modUnionClosure);
4606 
4607     // Having transferred these marks into the modUnionTable,
4608     // rescan the marked objects on the dirty cards in the modUnionTable.
4609     // Even if this is at a synchronous collection, the initial marking
4610     // may have been done during an asynchronous collection so there
4611     // may be dirty bits in the mod-union table.
4612     _collector->_modUnionTable.dirty_range_iterate_clear(
4613                   this_span, &greyRescanClosure);
4614     _collector->_modUnionTable.verifyNoOneBitsInRange(
4615                                  this_span.start(),
4616                                  this_span.end());
4617   }
4618   pst->all_tasks_completed();  // declare that i am done
4619 }
4620 
4621 // . see if we can share work_queues with ParNew? XXX
4622 void
4623 CMSParRemarkTask::do_work_steal(int i, ParMarkRefsIntoAndScanClosure* cl) {
4624   OopTaskQueue* work_q = work_queue(i);
4625   NOT_PRODUCT(int num_steals = 0;)
4626   oop obj_to_scan;
4627   CMSBitMap* bm = &(_collector->_markBitMap);
4628 
4629   while (true) {
4630     // Completely finish any left over work from (an) earlier round(s)
4631     cl->trim_queue(0);
4632     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4633                                          (size_t)ParGCDesiredObjsFromOverflowList);
4634     // Now check if there's any work in the overflow list
4635     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
4636     // only affects the number of attempts made to get work from the
4637     // overflow list and does not affect the number of workers.  Just
4638     // pass ParallelGCThreads so this behavior is unchanged.
4639     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
4640                                                 work_q,
4641                                                 ParallelGCThreads)) {
4642       // found something in global overflow list;
4643       // not yet ready to go stealing work from others.
4644       // We'd like to assert(work_q->size() != 0, ...)
4645       // because we just took work from the overflow list,
4646       // but of course we can't since all of that could have
4647       // been already stolen from us.
4648       // "He giveth and He taketh away."
4649       continue;
4650     }
4651     // Verify that we have no work before we resort to stealing
4652     assert(work_q->size() == 0, "Have work, shouldn't steal");
4653     // Try to steal from other queues that have work
4654     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
4655       NOT_PRODUCT(num_steals++;)
4656       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
4657       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
4658       // Do scanning work
4659       obj_to_scan->oop_iterate(cl);
4660       // Loop around, finish this work, and try to steal some more
4661     } else if (terminator()->offer_termination()) {
4662         break;  // nirvana from the infinite cycle
4663     }
4664   }
4665   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
4666   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
4667          "Else our work is not yet done");
4668 }
4669 
4670 // Record object boundaries in _eden_chunk_array by sampling the eden
4671 // top in the slow-path eden object allocation code path and record
4672 // the boundaries, if CMSEdenChunksRecordAlways is true. If
4673 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
4674 // sampling in sample_eden() that activates during the part of the
4675 // preclean phase.
4676 void CMSCollector::sample_eden_chunk() {
4677   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
4678     if (_eden_chunk_lock->try_lock()) {
4679       // Record a sample. This is the critical section. The contents
4680       // of the _eden_chunk_array have to be non-decreasing in the
4681       // address order.
4682       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
4683       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4684              "Unexpected state of Eden");
4685       if (_eden_chunk_index == 0 ||
4686           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
4687            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4688                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
4689         _eden_chunk_index++;  // commit sample
4690       }
4691       _eden_chunk_lock->unlock();
4692     }
4693   }
4694 }
4695 
4696 // Return a thread-local PLAB recording array, as appropriate.
4697 void* CMSCollector::get_data_recorder(int thr_num) {
4698   if (_survivor_plab_array != NULL &&
4699       (CMSPLABRecordAlways ||
4700        (_collectorState > Marking && _collectorState < FinalMarking))) {
4701     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
4702     ChunkArray* ca = &_survivor_plab_array[thr_num];
4703     ca->reset();   // clear it so that fresh data is recorded
4704     return (void*) ca;
4705   } else {
4706     return NULL;
4707   }
4708 }
4709 
4710 // Reset all the thread-local PLAB recording arrays
4711 void CMSCollector::reset_survivor_plab_arrays() {
4712   for (uint i = 0; i < ParallelGCThreads; i++) {
4713     _survivor_plab_array[i].reset();
4714   }
4715 }
4716 
4717 // Merge the per-thread plab arrays into the global survivor chunk
4718 // array which will provide the partitioning of the survivor space
4719 // for CMS initial scan and rescan.
4720 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
4721                                               int no_of_gc_threads) {
4722   assert(_survivor_plab_array  != NULL, "Error");
4723   assert(_survivor_chunk_array != NULL, "Error");
4724   assert(_collectorState == FinalMarking ||
4725          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
4726   for (int j = 0; j < no_of_gc_threads; j++) {
4727     _cursor[j] = 0;
4728   }
4729   HeapWord* top = surv->top();
4730   size_t i;
4731   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
4732     HeapWord* min_val = top;          // Higher than any PLAB address
4733     uint      min_tid = 0;            // position of min_val this round
4734     for (int j = 0; j < no_of_gc_threads; j++) {
4735       ChunkArray* cur_sca = &_survivor_plab_array[j];
4736       if (_cursor[j] == cur_sca->end()) {
4737         continue;
4738       }
4739       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
4740       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
4741       assert(surv->used_region().contains(cur_val), "Out of bounds value");
4742       if (cur_val < min_val) {
4743         min_tid = j;
4744         min_val = cur_val;
4745       } else {
4746         assert(cur_val < top, "All recorded addresses should be less");
4747       }
4748     }
4749     // At this point min_val and min_tid are respectively
4750     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
4751     // and the thread (j) that witnesses that address.
4752     // We record this address in the _survivor_chunk_array[i]
4753     // and increment _cursor[min_tid] prior to the next round i.
4754     if (min_val == top) {
4755       break;
4756     }
4757     _survivor_chunk_array[i] = min_val;
4758     _cursor[min_tid]++;
4759   }
4760   // We are all done; record the size of the _survivor_chunk_array
4761   _survivor_chunk_index = i; // exclusive: [0, i)
4762   log_trace(gc, survivor)(" (Survivor:" SIZE_FORMAT "chunks) ", i);
4763   // Verify that we used up all the recorded entries
4764   #ifdef ASSERT
4765     size_t total = 0;
4766     for (int j = 0; j < no_of_gc_threads; j++) {
4767       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
4768       total += _cursor[j];
4769     }
4770     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
4771     // Check that the merged array is in sorted order
4772     if (total > 0) {
4773       for (size_t i = 0; i < total - 1; i++) {
4774         log_develop_trace(gc, survivor)(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
4775                                      i, p2i(_survivor_chunk_array[i]));
4776         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
4777                "Not sorted");
4778       }
4779     }
4780   #endif // ASSERT
4781 }
4782 
4783 // Set up the space's par_seq_tasks structure for work claiming
4784 // for parallel initial scan and rescan of young gen.
4785 // See ParRescanTask where this is currently used.
4786 void
4787 CMSCollector::
4788 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
4789   assert(n_threads > 0, "Unexpected n_threads argument");
4790 
4791   // Eden space
4792   if (!_young_gen->eden()->is_empty()) {
4793     SequentialSubTasksDone* pst = _young_gen->eden()->par_seq_tasks();
4794     assert(!pst->valid(), "Clobbering existing data?");
4795     // Each valid entry in [0, _eden_chunk_index) represents a task.
4796     size_t n_tasks = _eden_chunk_index + 1;
4797     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
4798     // Sets the condition for completion of the subtask (how many threads
4799     // need to finish in order to be done).
4800     pst->set_n_threads(n_threads);
4801     pst->set_n_tasks((int)n_tasks);
4802   }
4803 
4804   // Merge the survivor plab arrays into _survivor_chunk_array
4805   if (_survivor_plab_array != NULL) {
4806     merge_survivor_plab_arrays(_young_gen->from(), n_threads);
4807   } else {
4808     assert(_survivor_chunk_index == 0, "Error");
4809   }
4810 
4811   // To space
4812   {
4813     SequentialSubTasksDone* pst = _young_gen->to()->par_seq_tasks();
4814     assert(!pst->valid(), "Clobbering existing data?");
4815     // Sets the condition for completion of the subtask (how many threads
4816     // need to finish in order to be done).
4817     pst->set_n_threads(n_threads);
4818     pst->set_n_tasks(1);
4819     assert(pst->valid(), "Error");
4820   }
4821 
4822   // From space
4823   {
4824     SequentialSubTasksDone* pst = _young_gen->from()->par_seq_tasks();
4825     assert(!pst->valid(), "Clobbering existing data?");
4826     size_t n_tasks = _survivor_chunk_index + 1;
4827     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
4828     // Sets the condition for completion of the subtask (how many threads
4829     // need to finish in order to be done).
4830     pst->set_n_threads(n_threads);
4831     pst->set_n_tasks((int)n_tasks);
4832     assert(pst->valid(), "Error");
4833   }
4834 }
4835 
4836 // Parallel version of remark
4837 void CMSCollector::do_remark_parallel() {
4838   CMSHeap* heap = CMSHeap::heap();
4839   WorkGang* workers = heap->workers();
4840   assert(workers != NULL, "Need parallel worker threads.");
4841   // Choose to use the number of GC workers most recently set
4842   // into "active_workers".
4843   uint n_workers = workers->active_workers();
4844 
4845   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4846 
4847   StrongRootsScope srs(n_workers);
4848 
4849   CMSParRemarkTask tsk(this, cms_space, n_workers, workers, task_queues(), &srs);
4850 
4851   // We won't be iterating over the cards in the card table updating
4852   // the younger_gen cards, so we shouldn't call the following else
4853   // the verification code as well as subsequent younger_refs_iterate
4854   // code would get confused. XXX
4855   // heap->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
4856 
4857   // The young gen rescan work will not be done as part of
4858   // process_roots (which currently doesn't know how to
4859   // parallelize such a scan), but rather will be broken up into
4860   // a set of parallel tasks (via the sampling that the [abortable]
4861   // preclean phase did of eden, plus the [two] tasks of
4862   // scanning the [two] survivor spaces. Further fine-grain
4863   // parallelization of the scanning of the survivor spaces
4864   // themselves, and of precleaning of the young gen itself
4865   // is deferred to the future.
4866   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
4867 
4868   // The dirty card rescan work is broken up into a "sequence"
4869   // of parallel tasks (per constituent space) that are dynamically
4870   // claimed by the parallel threads.
4871   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
4872 
4873   // It turns out that even when we're using 1 thread, doing the work in a
4874   // separate thread causes wide variance in run times.  We can't help this
4875   // in the multi-threaded case, but we special-case n=1 here to get
4876   // repeatable measurements of the 1-thread overhead of the parallel code.
4877   if (n_workers > 1) {
4878     // Make refs discovery MT-safe, if it isn't already: it may not
4879     // necessarily be so, since it's possible that we are doing
4880     // ST marking.
4881     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
4882     workers->run_task(&tsk);
4883   } else {
4884     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4885     tsk.work(0);
4886   }
4887 
4888   // restore, single-threaded for now, any preserved marks
4889   // as a result of work_q overflow
4890   restore_preserved_marks_if_any();
4891 }
4892 
4893 // Non-parallel version of remark
4894 void CMSCollector::do_remark_non_parallel() {
4895   ResourceMark rm;
4896   HandleMark   hm;
4897   CMSHeap* heap = CMSHeap::heap();
4898   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
4899 
4900   MarkRefsIntoAndScanClosure
4901     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
4902              &_markStack, this,
4903              false /* should_yield */, false /* not precleaning */);
4904   MarkFromDirtyCardsClosure
4905     markFromDirtyCardsClosure(this, _span,
4906                               NULL,  // space is set further below
4907                               &_markBitMap, &_markStack, &mrias_cl);
4908   {
4909     GCTraceTime(Trace, gc, phases) t("Grey Object Rescan", _gc_timer_cm);
4910     // Iterate over the dirty cards, setting the corresponding bits in the
4911     // mod union table.
4912     {
4913       ModUnionClosure modUnionClosure(&_modUnionTable);
4914       _ct->dirty_card_iterate(_cmsGen->used_region(),
4915                               &modUnionClosure);
4916     }
4917     // Having transferred these marks into the modUnionTable, we just need
4918     // to rescan the marked objects on the dirty cards in the modUnionTable.
4919     // The initial marking may have been done during an asynchronous
4920     // collection so there may be dirty bits in the mod-union table.
4921     const int alignment = CardTable::card_size * BitsPerWord;
4922     {
4923       // ... First handle dirty cards in CMS gen
4924       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
4925       MemRegion ur = _cmsGen->used_region();
4926       HeapWord* lb = ur.start();
4927       HeapWord* ub = align_up(ur.end(), alignment);
4928       MemRegion cms_span(lb, ub);
4929       _modUnionTable.dirty_range_iterate_clear(cms_span,
4930                                                &markFromDirtyCardsClosure);
4931       verify_work_stacks_empty();
4932       log_trace(gc)(" (re-scanned " SIZE_FORMAT " dirty cards in cms gen) ", markFromDirtyCardsClosure.num_dirty_cards());
4933     }
4934   }
4935   if (VerifyDuringGC &&
4936       CMSHeap::heap()->total_collections() >= VerifyGCStartAt) {
4937     HandleMark hm;  // Discard invalid handles created during verification
4938     Universe::verify();
4939   }
4940   {
4941     GCTraceTime(Trace, gc, phases) t("Root Rescan", _gc_timer_cm);
4942 
4943     verify_work_stacks_empty();
4944 
4945     heap->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
4946     StrongRootsScope srs(1);
4947 
4948     heap->cms_process_roots(&srs,
4949                             true,  // young gen as roots
4950                             GenCollectedHeap::ScanningOption(roots_scanning_options()),
4951                             should_unload_classes(),
4952                             &mrias_cl,
4953                             NULL); // The dirty klasses will be handled below
4954 
4955     assert(should_unload_classes()
4956            || (roots_scanning_options() & GenCollectedHeap::SO_AllCodeCache),
4957            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
4958   }
4959 
4960   {
4961     GCTraceTime(Trace, gc, phases) t("Visit Unhandled CLDs", _gc_timer_cm);
4962 
4963     verify_work_stacks_empty();
4964 
4965     // Scan all class loader data objects that might have been introduced
4966     // during concurrent marking.
4967     ResourceMark rm;
4968     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
4969     for (int i = 0; i < array->length(); i++) {
4970       Devirtualizer::do_cld(&mrias_cl, array->at(i));
4971     }
4972 
4973     // We don't need to keep track of new CLDs anymore.
4974     ClassLoaderDataGraph::remember_new_clds(false);
4975 
4976     verify_work_stacks_empty();
4977   }
4978 
4979   // We might have added oops to ClassLoaderData::_handles during the
4980   // concurrent marking phase. These oops do not point to newly allocated objects
4981   // that are guaranteed to be kept alive.  Hence,
4982   // we do have to revisit the _handles block during the remark phase.
4983   {
4984     GCTraceTime(Trace, gc, phases) t("Dirty CLD Scan", _gc_timer_cm);
4985 
4986     verify_work_stacks_empty();
4987 
4988     RemarkCLDClosure remark_closure(&mrias_cl);
4989     ClassLoaderDataGraph::cld_do(&remark_closure);
4990 
4991     verify_work_stacks_empty();
4992   }
4993 
4994   verify_work_stacks_empty();
4995   // Restore evacuated mark words, if any, used for overflow list links
4996   restore_preserved_marks_if_any();
4997 
4998   verify_overflow_empty();
4999 }
5000 
5001 ////////////////////////////////////////////////////////
5002 // Parallel Reference Processing Task Proxy Class
5003 ////////////////////////////////////////////////////////
5004 class AbstractGangTaskWOopQueues : public AbstractGangTask {
5005   OopTaskQueueSet*       _queues;
5006   ParallelTaskTerminator _terminator;
5007  public:
5008   AbstractGangTaskWOopQueues(const char* name, OopTaskQueueSet* queues, uint n_threads) :
5009     AbstractGangTask(name), _queues(queues), _terminator(n_threads, _queues) {}
5010   ParallelTaskTerminator* terminator() { return &_terminator; }
5011   OopTaskQueueSet* queues() { return _queues; }
5012 };
5013 
5014 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
5015   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5016   CMSCollector*          _collector;
5017   CMSBitMap*             _mark_bit_map;
5018   const MemRegion        _span;
5019   ProcessTask&           _task;
5020 
5021 public:
5022   CMSRefProcTaskProxy(ProcessTask&     task,
5023                       CMSCollector*    collector,
5024                       const MemRegion& span,
5025                       CMSBitMap*       mark_bit_map,
5026                       AbstractWorkGang* workers,
5027                       OopTaskQueueSet* task_queues):
5028     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
5029       task_queues,
5030       workers->active_workers()),
5031     _collector(collector),
5032     _mark_bit_map(mark_bit_map),
5033     _span(span),
5034     _task(task)
5035   {
5036     assert(_collector->_span.equals(_span) && !_span.is_empty(),
5037            "Inconsistency in _span");
5038   }
5039 
5040   OopTaskQueueSet* task_queues() { return queues(); }
5041 
5042   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5043 
5044   void do_work_steal(int i,
5045                      CMSParDrainMarkingStackClosure* drain,
5046                      CMSParKeepAliveClosure* keep_alive);
5047 
5048   virtual void work(uint worker_id);
5049 };
5050 
5051 void CMSRefProcTaskProxy::work(uint worker_id) {
5052   ResourceMark rm;
5053   HandleMark hm;
5054   assert(_collector->_span.equals(_span), "Inconsistency in _span");
5055   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
5056                                         _mark_bit_map,
5057                                         work_queue(worker_id));
5058   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
5059                                                  _mark_bit_map,
5060                                                  work_queue(worker_id));
5061   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
5062   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
5063   if (_task.marks_oops_alive()) {
5064     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive);
5065   }
5066   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
5067   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
5068 }
5069 
5070 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
5071   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
5072    _span(span),
5073    _work_queue(work_queue),
5074    _bit_map(bit_map),
5075    _mark_and_push(collector, span, bit_map, work_queue),
5076    _low_water_mark(MIN2((work_queue->max_elems()/4),
5077                         ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads)))
5078 { }
5079 
5080 // . see if we can share work_queues with ParNew? XXX
5081 void CMSRefProcTaskProxy::do_work_steal(int i,
5082   CMSParDrainMarkingStackClosure* drain,
5083   CMSParKeepAliveClosure* keep_alive) {
5084   OopTaskQueue* work_q = work_queue(i);
5085   NOT_PRODUCT(int num_steals = 0;)
5086   oop obj_to_scan;
5087 
5088   while (true) {
5089     // Completely finish any left over work from (an) earlier round(s)
5090     drain->trim_queue(0);
5091     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5092                                          (size_t)ParGCDesiredObjsFromOverflowList);
5093     // Now check if there's any work in the overflow list
5094     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5095     // only affects the number of attempts made to get work from the
5096     // overflow list and does not affect the number of workers.  Just
5097     // pass ParallelGCThreads so this behavior is unchanged.
5098     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5099                                                 work_q,
5100                                                 ParallelGCThreads)) {
5101       // Found something in global overflow list;
5102       // not yet ready to go stealing work from others.
5103       // We'd like to assert(work_q->size() != 0, ...)
5104       // because we just took work from the overflow list,
5105       // but of course we can't, since all of that might have
5106       // been already stolen from us.
5107       continue;
5108     }
5109     // Verify that we have no work before we resort to stealing
5110     assert(work_q->size() == 0, "Have work, shouldn't steal");
5111     // Try to steal from other queues that have work
5112     if (task_queues()->steal(i, /* reference */ obj_to_scan)) {
5113       NOT_PRODUCT(num_steals++;)
5114       assert(oopDesc::is_oop(obj_to_scan), "Oops, not an oop!");
5115       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5116       // Do scanning work
5117       obj_to_scan->oop_iterate(keep_alive);
5118       // Loop around, finish this work, and try to steal some more
5119     } else if (terminator()->offer_termination()) {
5120       break;  // nirvana from the infinite cycle
5121     }
5122   }
5123   log_develop_trace(gc, task)("\t(%d: stole %d oops)", i, num_steals);
5124 }
5125 
5126 void CMSRefProcTaskExecutor::execute(ProcessTask& task, uint ergo_workers) {
5127   CMSHeap* heap = CMSHeap::heap();
5128   WorkGang* workers = heap->workers();
5129   assert(workers != NULL, "Need parallel worker threads.");
5130   assert(workers->active_workers() == ergo_workers,
5131          "Ergonomically chosen workers (%u) must be equal to active workers (%u)",
5132          ergo_workers, workers->active_workers());
5133   CMSRefProcTaskProxy rp_task(task, &_collector,
5134                               _collector.ref_processor_span(),
5135                               _collector.markBitMap(),
5136                               workers, _collector.task_queues());
5137   workers->run_task(&rp_task, workers->active_workers());
5138 }
5139 
5140 void CMSCollector::refProcessingWork() {
5141   ResourceMark rm;
5142   HandleMark   hm;
5143 
5144   ReferenceProcessor* rp = ref_processor();
5145   assert(_span_based_discoverer.span().equals(_span), "Spans should be equal");
5146   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
5147   // Process weak references.
5148   rp->setup_policy(false);
5149   verify_work_stacks_empty();
5150 
5151   ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
5152   {
5153     GCTraceTime(Debug, gc, phases) t("Reference Processing", _gc_timer_cm);
5154 
5155     // Setup keep_alive and complete closures.
5156     CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
5157                                             &_markStack, false /* !preclean */);
5158     CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
5159                                   _span, &_markBitMap, &_markStack,
5160                                   &cmsKeepAliveClosure, false /* !preclean */);
5161 
5162     ReferenceProcessorStats stats;
5163     if (rp->processing_is_mt()) {
5164       // Set the degree of MT here.  If the discovery is done MT, there
5165       // may have been a different number of threads doing the discovery
5166       // and a different number of discovered lists may have Ref objects.
5167       // That is OK as long as the Reference lists are balanced (see
5168       // balance_all_queues() and balance_queues()).
5169       CMSHeap* heap = CMSHeap::heap();
5170       uint active_workers = ParallelGCThreads;
5171       WorkGang* workers = heap->workers();
5172       if (workers != NULL) {
5173         active_workers = workers->active_workers();
5174         // The expectation is that active_workers will have already
5175         // been set to a reasonable value.  If it has not been set,
5176         // investigate.
5177         assert(active_workers > 0, "Should have been set during scavenge");
5178       }
5179       rp->set_active_mt_degree(active_workers);
5180       CMSRefProcTaskExecutor task_executor(*this);
5181       stats = rp->process_discovered_references(&_is_alive_closure,
5182                                         &cmsKeepAliveClosure,
5183                                         &cmsDrainMarkingStackClosure,
5184                                         &task_executor,
5185                                         &pt);
5186     } else {
5187       stats = rp->process_discovered_references(&_is_alive_closure,
5188                                         &cmsKeepAliveClosure,
5189                                         &cmsDrainMarkingStackClosure,
5190                                         NULL,
5191                                         &pt);
5192     }
5193     _gc_tracer_cm->report_gc_reference_stats(stats);
5194     pt.print_all_references();
5195   }
5196 
5197   // This is the point where the entire marking should have completed.
5198   verify_work_stacks_empty();
5199 
5200   {
5201     GCTraceTime(Debug, gc, phases) t("Weak Processing", _gc_timer_cm);
5202     WeakProcessor::weak_oops_do(&_is_alive_closure, &do_nothing_cl);
5203   }
5204 
5205   if (should_unload_classes()) {
5206     {
5207       GCTraceTime(Debug, gc, phases) t("Class Unloading", _gc_timer_cm);
5208 
5209       // Unload classes and purge the SystemDictionary.
5210       bool purged_class = SystemDictionary::do_unloading(_gc_timer_cm);
5211 
5212       // Unload nmethods.
5213       CodeCache::do_unloading(&_is_alive_closure, purged_class);
5214 
5215       // Prune dead klasses from subklass/sibling/implementor lists.
5216       Klass::clean_weak_klass_links(purged_class);
5217     }
5218 
5219     {
5220       GCTraceTime(Debug, gc, phases) t("Scrub Symbol Table", _gc_timer_cm);
5221       // Clean up unreferenced symbols in symbol table.
5222       SymbolTable::unlink();
5223     }
5224 
5225     {
5226       GCTraceTime(Debug, gc, phases) t("Scrub String Table", _gc_timer_cm);
5227       // Delete entries for dead interned strings.
5228       StringTable::unlink(&_is_alive_closure);
5229     }
5230   }
5231 
5232   // Restore any preserved marks as a result of mark stack or
5233   // work queue overflow
5234   restore_preserved_marks_if_any();  // done single-threaded for now
5235 
5236   rp->set_enqueuing_is_done(true);
5237   rp->verify_no_references_recorded();
5238 }
5239 
5240 #ifndef PRODUCT
5241 void CMSCollector::check_correct_thread_executing() {
5242   Thread* t = Thread::current();
5243   // Only the VM thread or the CMS thread should be here.
5244   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
5245          "Unexpected thread type");
5246   // If this is the vm thread, the foreground process
5247   // should not be waiting.  Note that _foregroundGCIsActive is
5248   // true while the foreground collector is waiting.
5249   if (_foregroundGCShouldWait) {
5250     // We cannot be the VM thread
5251     assert(t->is_ConcurrentGC_thread(),
5252            "Should be CMS thread");
5253   } else {
5254     // We can be the CMS thread only if we are in a stop-world
5255     // phase of CMS collection.
5256     if (t->is_ConcurrentGC_thread()) {
5257       assert(_collectorState == InitialMarking ||
5258              _collectorState == FinalMarking,
5259              "Should be a stop-world phase");
5260       // The CMS thread should be holding the CMS_token.
5261       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5262              "Potential interference with concurrently "
5263              "executing VM thread");
5264     }
5265   }
5266 }
5267 #endif
5268 
5269 void CMSCollector::sweep() {
5270   assert(_collectorState == Sweeping, "just checking");
5271   check_correct_thread_executing();
5272   verify_work_stacks_empty();
5273   verify_overflow_empty();
5274   increment_sweep_count();
5275   TraceCMSMemoryManagerStats tms(_collectorState, CMSHeap::heap()->gc_cause());
5276 
5277   _inter_sweep_timer.stop();
5278   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
5279 
5280   assert(!_intra_sweep_timer.is_active(), "Should not be active");
5281   _intra_sweep_timer.reset();
5282   _intra_sweep_timer.start();
5283   {
5284     GCTraceCPUTime tcpu;
5285     CMSPhaseAccounting pa(this, "Concurrent Sweep");
5286     // First sweep the old gen
5287     {
5288       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
5289                                bitMapLock());
5290       sweepWork(_cmsGen);
5291     }
5292 
5293     // Update Universe::_heap_*_at_gc figures.
5294     // We need all the free list locks to make the abstract state
5295     // transition from Sweeping to Resetting. See detailed note
5296     // further below.
5297     {
5298       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
5299       // Update heap occupancy information which is used as
5300       // input to soft ref clearing policy at the next gc.
5301       Universe::update_heap_info_at_gc();
5302       _collectorState = Resizing;
5303     }
5304   }
5305   verify_work_stacks_empty();
5306   verify_overflow_empty();
5307 
5308   if (should_unload_classes()) {
5309     // Delay purge to the beginning of the next safepoint.  Metaspace::contains
5310     // requires that the virtual spaces are stable and not deleted.
5311     ClassLoaderDataGraph::set_should_purge(true);
5312   }
5313 
5314   _intra_sweep_timer.stop();
5315   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
5316 
5317   _inter_sweep_timer.reset();
5318   _inter_sweep_timer.start();
5319 
5320   // We need to use a monotonically non-decreasing time in ms
5321   // or we will see time-warp warnings and os::javaTimeMillis()
5322   // does not guarantee monotonicity.
5323   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
5324   update_time_of_last_gc(now);
5325 
5326   // NOTE on abstract state transitions:
5327   // Mutators allocate-live and/or mark the mod-union table dirty
5328   // based on the state of the collection.  The former is done in
5329   // the interval [Marking, Sweeping] and the latter in the interval
5330   // [Marking, Sweeping).  Thus the transitions into the Marking state
5331   // and out of the Sweeping state must be synchronously visible
5332   // globally to the mutators.
5333   // The transition into the Marking state happens with the world
5334   // stopped so the mutators will globally see it.  Sweeping is
5335   // done asynchronously by the background collector so the transition
5336   // from the Sweeping state to the Resizing state must be done
5337   // under the freelistLock (as is the check for whether to
5338   // allocate-live and whether to dirty the mod-union table).
5339   assert(_collectorState == Resizing, "Change of collector state to"
5340     " Resizing must be done under the freelistLocks (plural)");
5341 
5342   // Now that sweeping has been completed, we clear
5343   // the incremental_collection_failed flag,
5344   // thus inviting a younger gen collection to promote into
5345   // this generation. If such a promotion may still fail,
5346   // the flag will be set again when a young collection is
5347   // attempted.
5348   CMSHeap* heap = CMSHeap::heap();
5349   heap->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
5350   heap->update_full_collections_completed(_collection_count_start);
5351 }
5352 
5353 // FIX ME!!! Looks like this belongs in CFLSpace, with
5354 // CMSGen merely delegating to it.
5355 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
5356   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
5357   HeapWord*  minAddr        = _cmsSpace->bottom();
5358   HeapWord*  largestAddr    =
5359     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
5360   if (largestAddr == NULL) {
5361     // The dictionary appears to be empty.  In this case
5362     // try to coalesce at the end of the heap.
5363     largestAddr = _cmsSpace->end();
5364   }
5365   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
5366   size_t nearLargestOffset =
5367     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
5368   log_debug(gc, freelist)("CMS: Large Block: " PTR_FORMAT "; Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
5369                           p2i(largestAddr), p2i(_cmsSpace->nearLargestChunk()), p2i(minAddr + nearLargestOffset));
5370   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
5371 }
5372 
5373 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
5374   return addr >= _cmsSpace->nearLargestChunk();
5375 }
5376 
5377 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
5378   return _cmsSpace->find_chunk_at_end();
5379 }
5380 
5381 void ConcurrentMarkSweepGeneration::update_gc_stats(Generation* current_generation,
5382                                                     bool full) {
5383   // If the young generation has been collected, gather any statistics
5384   // that are of interest at this point.
5385   bool current_is_young = CMSHeap::heap()->is_young_gen(current_generation);
5386   if (!full && current_is_young) {
5387     // Gather statistics on the young generation collection.
5388     collector()->stats().record_gc0_end(used());
5389   }
5390 }
5391 
5392 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* old_gen) {
5393   // We iterate over the space(s) underlying this generation,
5394   // checking the mark bit map to see if the bits corresponding
5395   // to specific blocks are marked or not. Blocks that are
5396   // marked are live and are not swept up. All remaining blocks
5397   // are swept up, with coalescing on-the-fly as we sweep up
5398   // contiguous free and/or garbage blocks:
5399   // We need to ensure that the sweeper synchronizes with allocators
5400   // and stop-the-world collectors. In particular, the following
5401   // locks are used:
5402   // . CMS token: if this is held, a stop the world collection cannot occur
5403   // . freelistLock: if this is held no allocation can occur from this
5404   //                 generation by another thread
5405   // . bitMapLock: if this is held, no other thread can access or update
5406   //
5407 
5408   // Note that we need to hold the freelistLock if we use
5409   // block iterate below; else the iterator might go awry if
5410   // a mutator (or promotion) causes block contents to change
5411   // (for instance if the allocator divvies up a block).
5412   // If we hold the free list lock, for all practical purposes
5413   // young generation GC's can't occur (they'll usually need to
5414   // promote), so we might as well prevent all young generation
5415   // GC's while we do a sweeping step. For the same reason, we might
5416   // as well take the bit map lock for the entire duration
5417 
5418   // check that we hold the requisite locks
5419   assert(have_cms_token(), "Should hold cms token");
5420   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(), "Should possess CMS token to sweep");
5421   assert_lock_strong(old_gen->freelistLock());
5422   assert_lock_strong(bitMapLock());
5423 
5424   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
5425   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
5426   old_gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
5427                                           _inter_sweep_estimate.padded_average(),
5428                                           _intra_sweep_estimate.padded_average());
5429   old_gen->setNearLargestChunk();
5430 
5431   {
5432     SweepClosure sweepClosure(this, old_gen, &_markBitMap, CMSYield);
5433     old_gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
5434     // We need to free-up/coalesce garbage/blocks from a
5435     // co-terminal free run. This is done in the SweepClosure
5436     // destructor; so, do not remove this scope, else the
5437     // end-of-sweep-census below will be off by a little bit.
5438   }
5439   old_gen->cmsSpace()->sweep_completed();
5440   old_gen->cmsSpace()->endSweepFLCensus(sweep_count());
5441   if (should_unload_classes()) {                // unloaded classes this cycle,
5442     _concurrent_cycles_since_last_unload = 0;   // ... reset count
5443   } else {                                      // did not unload classes,
5444     _concurrent_cycles_since_last_unload++;     // ... increment count
5445   }
5446 }
5447 
5448 // Reset CMS data structures (for now just the marking bit map)
5449 // preparatory for the next cycle.
5450 void CMSCollector::reset_concurrent() {
5451   CMSTokenSyncWithLocks ts(true, bitMapLock());
5452 
5453   // If the state is not "Resetting", the foreground  thread
5454   // has done a collection and the resetting.
5455   if (_collectorState != Resetting) {
5456     assert(_collectorState == Idling, "The state should only change"
5457       " because the foreground collector has finished the collection");
5458     return;
5459   }
5460 
5461   {
5462     // Clear the mark bitmap (no grey objects to start with)
5463     // for the next cycle.
5464     GCTraceCPUTime tcpu;
5465     CMSPhaseAccounting cmspa(this, "Concurrent Reset");
5466 
5467     HeapWord* curAddr = _markBitMap.startWord();
5468     while (curAddr < _markBitMap.endWord()) {
5469       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
5470       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
5471       _markBitMap.clear_large_range(chunk);
5472       if (ConcurrentMarkSweepThread::should_yield() &&
5473           !foregroundGCIsActive() &&
5474           CMSYield) {
5475         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5476                "CMS thread should hold CMS token");
5477         assert_lock_strong(bitMapLock());
5478         bitMapLock()->unlock();
5479         ConcurrentMarkSweepThread::desynchronize(true);
5480         stopTimer();
5481         incrementYields();
5482 
5483         // See the comment in coordinator_yield()
5484         for (unsigned i = 0; i < CMSYieldSleepCount &&
5485                          ConcurrentMarkSweepThread::should_yield() &&
5486                          !CMSCollector::foregroundGCIsActive(); ++i) {
5487           os::sleep(Thread::current(), 1, false);
5488         }
5489 
5490         ConcurrentMarkSweepThread::synchronize(true);
5491         bitMapLock()->lock_without_safepoint_check();
5492         startTimer();
5493       }
5494       curAddr = chunk.end();
5495     }
5496     // A successful mostly concurrent collection has been done.
5497     // Because only the full (i.e., concurrent mode failure) collections
5498     // are being measured for gc overhead limits, clean the "near" flag
5499     // and count.
5500     size_policy()->reset_gc_overhead_limit_count();
5501     _collectorState = Idling;
5502   }
5503 
5504   register_gc_end();
5505 }
5506 
5507 // Same as above but for STW paths
5508 void CMSCollector::reset_stw() {
5509   // already have the lock
5510   assert(_collectorState == Resetting, "just checking");
5511   assert_lock_strong(bitMapLock());
5512   GCIdMark gc_id_mark(_cmsThread->gc_id());
5513   _markBitMap.clear_all();
5514   _collectorState = Idling;
5515   register_gc_end();
5516 }
5517 
5518 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
5519   GCTraceCPUTime tcpu;
5520   TraceCollectorStats tcs_cgc(cgc_counters());
5521 
5522   switch (op) {
5523     case CMS_op_checkpointRootsInitial: {
5524       GCTraceTime(Info, gc) t("Pause Initial Mark", NULL, GCCause::_no_gc, true);
5525       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5526       checkpointRootsInitial();
5527       break;
5528     }
5529     case CMS_op_checkpointRootsFinal: {
5530       GCTraceTime(Info, gc) t("Pause Remark", NULL, GCCause::_no_gc, true);
5531       SvcGCMarker sgcm(SvcGCMarker::CONCURRENT);
5532       checkpointRootsFinal();
5533       break;
5534     }
5535     default:
5536       fatal("No such CMS_op");
5537   }
5538 }
5539 
5540 #ifndef PRODUCT
5541 size_t const CMSCollector::skip_header_HeapWords() {
5542   return FreeChunk::header_size();
5543 }
5544 
5545 // Try and collect here conditions that should hold when
5546 // CMS thread is exiting. The idea is that the foreground GC
5547 // thread should not be blocked if it wants to terminate
5548 // the CMS thread and yet continue to run the VM for a while
5549 // after that.
5550 void CMSCollector::verify_ok_to_terminate() const {
5551   assert(Thread::current()->is_ConcurrentGC_thread(),
5552          "should be called by CMS thread");
5553   assert(!_foregroundGCShouldWait, "should be false");
5554   // We could check here that all the various low-level locks
5555   // are not held by the CMS thread, but that is overkill; see
5556   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
5557   // is checked.
5558 }
5559 #endif
5560 
5561 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
5562    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
5563           "missing Printezis mark?");
5564   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5565   size_t size = pointer_delta(nextOneAddr + 1, addr);
5566   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5567          "alignment problem");
5568   assert(size >= 3, "Necessary for Printezis marks to work");
5569   return size;
5570 }
5571 
5572 // A variant of the above (block_size_using_printezis_bits()) except
5573 // that we return 0 if the P-bits are not yet set.
5574 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
5575   if (_markBitMap.isMarked(addr + 1)) {
5576     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
5577     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
5578     size_t size = pointer_delta(nextOneAddr + 1, addr);
5579     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
5580            "alignment problem");
5581     assert(size >= 3, "Necessary for Printezis marks to work");
5582     return size;
5583   }
5584   return 0;
5585 }
5586 
5587 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
5588   size_t sz = 0;
5589   oop p = (oop)addr;
5590   if (p->klass_or_null_acquire() != NULL) {
5591     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
5592   } else {
5593     sz = block_size_using_printezis_bits(addr);
5594   }
5595   assert(sz > 0, "size must be nonzero");
5596   HeapWord* next_block = addr + sz;
5597   HeapWord* next_card  = align_up(next_block, CardTable::card_size);
5598   assert(align_down((uintptr_t)addr,      CardTable::card_size) <
5599          align_down((uintptr_t)next_card, CardTable::card_size),
5600          "must be different cards");
5601   return next_card;
5602 }
5603 
5604 
5605 // CMS Bit Map Wrapper /////////////////////////////////////////
5606 
5607 // Construct a CMS bit map infrastructure, but don't create the
5608 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
5609 // further below.
5610 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
5611   _shifter(shifter),
5612   _bm(),
5613   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true,
5614                                     Monitor::_safepoint_check_sometimes) : NULL)
5615 {
5616   _bmStartWord = 0;
5617   _bmWordSize  = 0;
5618 }
5619 
5620 bool CMSBitMap::allocate(MemRegion mr) {
5621   _bmStartWord = mr.start();
5622   _bmWordSize  = mr.word_size();
5623   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
5624                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
5625   if (!brs.is_reserved()) {
5626     log_warning(gc)("CMS bit map allocation failure");
5627     return false;
5628   }
5629   // For now we'll just commit all of the bit map up front.
5630   // Later on we'll try to be more parsimonious with swap.
5631   if (!_virtual_space.initialize(brs, brs.size())) {
5632     log_warning(gc)("CMS bit map backing store failure");
5633     return false;
5634   }
5635   assert(_virtual_space.committed_size() == brs.size(),
5636          "didn't reserve backing store for all of CMS bit map?");
5637   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
5638          _bmWordSize, "inconsistency in bit map sizing");
5639   _bm = BitMapView((BitMap::bm_word_t*)_virtual_space.low(), _bmWordSize >> _shifter);
5640 
5641   // bm.clear(); // can we rely on getting zero'd memory? verify below
5642   assert(isAllClear(),
5643          "Expected zero'd memory from ReservedSpace constructor");
5644   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
5645          "consistency check");
5646   return true;
5647 }
5648 
5649 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
5650   HeapWord *next_addr, *end_addr, *last_addr;
5651   assert_locked();
5652   assert(covers(mr), "out-of-range error");
5653   // XXX assert that start and end are appropriately aligned
5654   for (next_addr = mr.start(), end_addr = mr.end();
5655        next_addr < end_addr; next_addr = last_addr) {
5656     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
5657     last_addr = dirty_region.end();
5658     if (!dirty_region.is_empty()) {
5659       cl->do_MemRegion(dirty_region);
5660     } else {
5661       assert(last_addr == end_addr, "program logic");
5662       return;
5663     }
5664   }
5665 }
5666 
5667 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
5668   _bm.print_on_error(st, prefix);
5669 }
5670 
5671 #ifndef PRODUCT
5672 void CMSBitMap::assert_locked() const {
5673   CMSLockVerifier::assert_locked(lock());
5674 }
5675 
5676 bool CMSBitMap::covers(MemRegion mr) const {
5677   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
5678   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
5679          "size inconsistency");
5680   return (mr.start() >= _bmStartWord) &&
5681          (mr.end()   <= endWord());
5682 }
5683 
5684 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
5685     return (start >= _bmStartWord && (start + size) <= endWord());
5686 }
5687 
5688 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
5689   // verify that there are no 1 bits in the interval [left, right)
5690   FalseBitMapClosure falseBitMapClosure;
5691   iterate(&falseBitMapClosure, left, right);
5692 }
5693 
5694 void CMSBitMap::region_invariant(MemRegion mr)
5695 {
5696   assert_locked();
5697   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
5698   assert(!mr.is_empty(), "unexpected empty region");
5699   assert(covers(mr), "mr should be covered by bit map");
5700   // convert address range into offset range
5701   size_t start_ofs = heapWordToOffset(mr.start());
5702   // Make sure that end() is appropriately aligned
5703   assert(mr.end() == align_up(mr.end(), (1 << (_shifter+LogHeapWordSize))),
5704          "Misaligned mr.end()");
5705   size_t end_ofs   = heapWordToOffset(mr.end());
5706   assert(end_ofs > start_ofs, "Should mark at least one bit");
5707 }
5708 
5709 #endif
5710 
5711 bool CMSMarkStack::allocate(size_t size) {
5712   // allocate a stack of the requisite depth
5713   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5714                    size * sizeof(oop)));
5715   if (!rs.is_reserved()) {
5716     log_warning(gc)("CMSMarkStack allocation failure");
5717     return false;
5718   }
5719   if (!_virtual_space.initialize(rs, rs.size())) {
5720     log_warning(gc)("CMSMarkStack backing store failure");
5721     return false;
5722   }
5723   assert(_virtual_space.committed_size() == rs.size(),
5724          "didn't reserve backing store for all of CMS stack?");
5725   _base = (oop*)(_virtual_space.low());
5726   _index = 0;
5727   _capacity = size;
5728   NOT_PRODUCT(_max_depth = 0);
5729   return true;
5730 }
5731 
5732 // XXX FIX ME !!! In the MT case we come in here holding a
5733 // leaf lock. For printing we need to take a further lock
5734 // which has lower rank. We need to recalibrate the two
5735 // lock-ranks involved in order to be able to print the
5736 // messages below. (Or defer the printing to the caller.
5737 // For now we take the expedient path of just disabling the
5738 // messages for the problematic case.)
5739 void CMSMarkStack::expand() {
5740   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
5741   if (_capacity == MarkStackSizeMax) {
5742     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled) {
5743       // We print a warning message only once per CMS cycle.
5744       log_debug(gc)(" (benign) Hit CMSMarkStack max size limit");
5745     }
5746     return;
5747   }
5748   // Double capacity if possible
5749   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
5750   // Do not give up existing stack until we have managed to
5751   // get the double capacity that we desired.
5752   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
5753                    new_capacity * sizeof(oop)));
5754   if (rs.is_reserved()) {
5755     // Release the backing store associated with old stack
5756     _virtual_space.release();
5757     // Reinitialize virtual space for new stack
5758     if (!_virtual_space.initialize(rs, rs.size())) {
5759       fatal("Not enough swap for expanded marking stack");
5760     }
5761     _base = (oop*)(_virtual_space.low());
5762     _index = 0;
5763     _capacity = new_capacity;
5764   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled) {
5765     // Failed to double capacity, continue;
5766     // we print a detail message only once per CMS cycle.
5767     log_debug(gc)(" (benign) Failed to expand marking stack from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
5768                         _capacity / K, new_capacity / K);
5769   }
5770 }
5771 
5772 
5773 // Closures
5774 // XXX: there seems to be a lot of code  duplication here;
5775 // should refactor and consolidate common code.
5776 
5777 // This closure is used to mark refs into the CMS generation in
5778 // the CMS bit map. Called at the first checkpoint. This closure
5779 // assumes that we do not need to re-mark dirty cards; if the CMS
5780 // generation on which this is used is not an oldest
5781 // generation then this will lose younger_gen cards!
5782 
5783 MarkRefsIntoClosure::MarkRefsIntoClosure(
5784   MemRegion span, CMSBitMap* bitMap):
5785     _span(span),
5786     _bitMap(bitMap)
5787 {
5788   assert(ref_discoverer() == NULL, "deliberately left NULL");
5789   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5790 }
5791 
5792 void MarkRefsIntoClosure::do_oop(oop obj) {
5793   // if p points into _span, then mark corresponding bit in _markBitMap
5794   assert(oopDesc::is_oop(obj), "expected an oop");
5795   HeapWord* addr = (HeapWord*)obj;
5796   if (_span.contains(addr)) {
5797     // this should be made more efficient
5798     _bitMap->mark(addr);
5799   }
5800 }
5801 
5802 ParMarkRefsIntoClosure::ParMarkRefsIntoClosure(
5803   MemRegion span, CMSBitMap* bitMap):
5804     _span(span),
5805     _bitMap(bitMap)
5806 {
5807   assert(ref_discoverer() == NULL, "deliberately left NULL");
5808   assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
5809 }
5810 
5811 void ParMarkRefsIntoClosure::do_oop(oop obj) {
5812   // if p points into _span, then mark corresponding bit in _markBitMap
5813   assert(oopDesc::is_oop(obj), "expected an oop");
5814   HeapWord* addr = (HeapWord*)obj;
5815   if (_span.contains(addr)) {
5816     // this should be made more efficient
5817     _bitMap->par_mark(addr);
5818   }
5819 }
5820 
5821 // A variant of the above, used for CMS marking verification.
5822 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
5823   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
5824     _span(span),
5825     _verification_bm(verification_bm),
5826     _cms_bm(cms_bm)
5827 {
5828   assert(ref_discoverer() == NULL, "deliberately left NULL");
5829   assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
5830 }
5831 
5832 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
5833   // if p points into _span, then mark corresponding bit in _markBitMap
5834   assert(oopDesc::is_oop(obj), "expected an oop");
5835   HeapWord* addr = (HeapWord*)obj;
5836   if (_span.contains(addr)) {
5837     _verification_bm->mark(addr);
5838     if (!_cms_bm->isMarked(addr)) {
5839       Log(gc, verify) log;
5840       ResourceMark rm;
5841       LogStream ls(log.error());
5842       oop(addr)->print_on(&ls);
5843       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
5844       fatal("... aborting");
5845     }
5846   }
5847 }
5848 
5849 //////////////////////////////////////////////////
5850 // MarkRefsIntoAndScanClosure
5851 //////////////////////////////////////////////////
5852 
5853 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
5854                                                        ReferenceDiscoverer* rd,
5855                                                        CMSBitMap* bit_map,
5856                                                        CMSBitMap* mod_union_table,
5857                                                        CMSMarkStack*  mark_stack,
5858                                                        CMSCollector* collector,
5859                                                        bool should_yield,
5860                                                        bool concurrent_precleaning):
5861   _span(span),
5862   _bit_map(bit_map),
5863   _mark_stack(mark_stack),
5864   _pushAndMarkClosure(collector, span, rd, bit_map, mod_union_table,
5865                       mark_stack, concurrent_precleaning),
5866   _collector(collector),
5867   _freelistLock(NULL),
5868   _yield(should_yield),
5869   _concurrent_precleaning(concurrent_precleaning)
5870 {
5871   // FIXME: Should initialize in base class constructor.
5872   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5873   set_ref_discoverer_internal(rd);
5874 }
5875 
5876 // This closure is used to mark refs into the CMS generation at the
5877 // second (final) checkpoint, and to scan and transitively follow
5878 // the unmarked oops. It is also used during the concurrent precleaning
5879 // phase while scanning objects on dirty cards in the CMS generation.
5880 // The marks are made in the marking bit map and the marking stack is
5881 // used for keeping the (newly) grey objects during the scan.
5882 // The parallel version (Par_...) appears further below.
5883 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
5884   if (obj != NULL) {
5885     assert(oopDesc::is_oop(obj), "expected an oop");
5886     HeapWord* addr = (HeapWord*)obj;
5887     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
5888     assert(_collector->overflow_list_is_empty(),
5889            "overflow list should be empty");
5890     if (_span.contains(addr) &&
5891         !_bit_map->isMarked(addr)) {
5892       // mark bit map (object is now grey)
5893       _bit_map->mark(addr);
5894       // push on marking stack (stack should be empty), and drain the
5895       // stack by applying this closure to the oops in the oops popped
5896       // from the stack (i.e. blacken the grey objects)
5897       bool res = _mark_stack->push(obj);
5898       assert(res, "Should have space to push on empty stack");
5899       do {
5900         oop new_oop = _mark_stack->pop();
5901         assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
5902         assert(_bit_map->isMarked((HeapWord*)new_oop),
5903                "only grey objects on this stack");
5904         // iterate over the oops in this oop, marking and pushing
5905         // the ones in CMS heap (i.e. in _span).
5906         new_oop->oop_iterate(&_pushAndMarkClosure);
5907         // check if it's time to yield
5908         do_yield_check();
5909       } while (!_mark_stack->isEmpty() ||
5910                (!_concurrent_precleaning && take_from_overflow_list()));
5911         // if marking stack is empty, and we are not doing this
5912         // during precleaning, then check the overflow list
5913     }
5914     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
5915     assert(_collector->overflow_list_is_empty(),
5916            "overflow list was drained above");
5917 
5918     assert(_collector->no_preserved_marks(),
5919            "All preserved marks should have been restored above");
5920   }
5921 }
5922 
5923 void MarkRefsIntoAndScanClosure::do_yield_work() {
5924   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
5925          "CMS thread should hold CMS token");
5926   assert_lock_strong(_freelistLock);
5927   assert_lock_strong(_bit_map->lock());
5928   // relinquish the free_list_lock and bitMaplock()
5929   _bit_map->lock()->unlock();
5930   _freelistLock->unlock();
5931   ConcurrentMarkSweepThread::desynchronize(true);
5932   _collector->stopTimer();
5933   _collector->incrementYields();
5934 
5935   // See the comment in coordinator_yield()
5936   for (unsigned i = 0;
5937        i < CMSYieldSleepCount &&
5938        ConcurrentMarkSweepThread::should_yield() &&
5939        !CMSCollector::foregroundGCIsActive();
5940        ++i) {
5941     os::sleep(Thread::current(), 1, false);
5942   }
5943 
5944   ConcurrentMarkSweepThread::synchronize(true);
5945   _freelistLock->lock_without_safepoint_check();
5946   _bit_map->lock()->lock_without_safepoint_check();
5947   _collector->startTimer();
5948 }
5949 
5950 ///////////////////////////////////////////////////////////
5951 // ParMarkRefsIntoAndScanClosure: a parallel version of
5952 //                                MarkRefsIntoAndScanClosure
5953 ///////////////////////////////////////////////////////////
5954 ParMarkRefsIntoAndScanClosure::ParMarkRefsIntoAndScanClosure(
5955   CMSCollector* collector, MemRegion span, ReferenceDiscoverer* rd,
5956   CMSBitMap* bit_map, OopTaskQueue* work_queue):
5957   _span(span),
5958   _bit_map(bit_map),
5959   _work_queue(work_queue),
5960   _low_water_mark(MIN2((work_queue->max_elems()/4),
5961                        ((uint)CMSWorkQueueDrainThreshold * ParallelGCThreads))),
5962   _parPushAndMarkClosure(collector, span, rd, bit_map, work_queue)
5963 {
5964   // FIXME: Should initialize in base class constructor.
5965   assert(rd != NULL, "ref_discoverer shouldn't be NULL");
5966   set_ref_discoverer_internal(rd);
5967 }
5968 
5969 // This closure is used to mark refs into the CMS generation at the
5970 // second (final) checkpoint, and to scan and transitively follow
5971 // the unmarked oops. The marks are made in the marking bit map and
5972 // the work_queue is used for keeping the (newly) grey objects during
5973 // the scan phase whence they are also available for stealing by parallel
5974 // threads. Since the marking bit map is shared, updates are
5975 // synchronized (via CAS).
5976 void ParMarkRefsIntoAndScanClosure::do_oop(oop obj) {
5977   if (obj != NULL) {
5978     // Ignore mark word because this could be an already marked oop
5979     // that may be chained at the end of the overflow list.
5980     assert(oopDesc::is_oop(obj, true), "expected an oop");
5981     HeapWord* addr = (HeapWord*)obj;
5982     if (_span.contains(addr) &&
5983         !_bit_map->isMarked(addr)) {
5984       // mark bit map (object will become grey):
5985       // It is possible for several threads to be
5986       // trying to "claim" this object concurrently;
5987       // the unique thread that succeeds in marking the
5988       // object first will do the subsequent push on
5989       // to the work queue (or overflow list).
5990       if (_bit_map->par_mark(addr)) {
5991         // push on work_queue (which may not be empty), and trim the
5992         // queue to an appropriate length by applying this closure to
5993         // the oops in the oops popped from the stack (i.e. blacken the
5994         // grey objects)
5995         bool res = _work_queue->push(obj);
5996         assert(res, "Low water mark should be less than capacity?");
5997         trim_queue(_low_water_mark);
5998       } // Else, another thread claimed the object
5999     }
6000   }
6001 }
6002 
6003 // This closure is used to rescan the marked objects on the dirty cards
6004 // in the mod union table and the card table proper.
6005 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
6006   oop p, MemRegion mr) {
6007 
6008   size_t size = 0;
6009   HeapWord* addr = (HeapWord*)p;
6010   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6011   assert(_span.contains(addr), "we are scanning the CMS generation");
6012   // check if it's time to yield
6013   if (do_yield_check()) {
6014     // We yielded for some foreground stop-world work,
6015     // and we have been asked to abort this ongoing preclean cycle.
6016     return 0;
6017   }
6018   if (_bitMap->isMarked(addr)) {
6019     // it's marked; is it potentially uninitialized?
6020     if (p->klass_or_null_acquire() != NULL) {
6021         // an initialized object; ignore mark word in verification below
6022         // since we are running concurrent with mutators
6023         assert(oopDesc::is_oop(p, true), "should be an oop");
6024         if (p->is_objArray()) {
6025           // objArrays are precisely marked; restrict scanning
6026           // to dirty cards only.
6027           size = CompactibleFreeListSpace::adjustObjectSize(
6028                    p->oop_iterate_size(_scanningClosure, mr));
6029         } else {
6030           // A non-array may have been imprecisely marked; we need
6031           // to scan object in its entirety.
6032           size = CompactibleFreeListSpace::adjustObjectSize(
6033                    p->oop_iterate_size(_scanningClosure));
6034         }
6035       #ifdef ASSERT
6036         size_t direct_size =
6037           CompactibleFreeListSpace::adjustObjectSize(p->size());
6038         assert(size == direct_size, "Inconsistency in size");
6039         assert(size >= 3, "Necessary for Printezis marks to work");
6040         HeapWord* start_pbit = addr + 1;
6041         HeapWord* end_pbit = addr + size - 1;
6042         assert(_bitMap->isMarked(start_pbit) == _bitMap->isMarked(end_pbit),
6043                "inconsistent Printezis mark");
6044         // Verify inner mark bits (between Printezis bits) are clear,
6045         // but don't repeat if there are multiple dirty regions for
6046         // the same object, to avoid potential O(N^2) performance.
6047         if (addr != _last_scanned_object) {
6048           _bitMap->verifyNoOneBitsInRange(start_pbit + 1, end_pbit);
6049           _last_scanned_object = addr;
6050         }
6051       #endif // ASSERT
6052     } else {
6053       // An uninitialized object.
6054       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
6055       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
6056       size = pointer_delta(nextOneAddr + 1, addr);
6057       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6058              "alignment problem");
6059       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
6060       // will dirty the card when the klass pointer is installed in the
6061       // object (signaling the completion of initialization).
6062     }
6063   } else {
6064     // Either a not yet marked object or an uninitialized object
6065     if (p->klass_or_null_acquire() == NULL) {
6066       // An uninitialized object, skip to the next card, since
6067       // we may not be able to read its P-bits yet.
6068       assert(size == 0, "Initial value");
6069     } else {
6070       // An object not (yet) reached by marking: we merely need to
6071       // compute its size so as to go look at the next block.
6072       assert(oopDesc::is_oop(p, true), "should be an oop");
6073       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
6074     }
6075   }
6076   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6077   return size;
6078 }
6079 
6080 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
6081   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6082          "CMS thread should hold CMS token");
6083   assert_lock_strong(_freelistLock);
6084   assert_lock_strong(_bitMap->lock());
6085   // relinquish the free_list_lock and bitMaplock()
6086   _bitMap->lock()->unlock();
6087   _freelistLock->unlock();
6088   ConcurrentMarkSweepThread::desynchronize(true);
6089   _collector->stopTimer();
6090   _collector->incrementYields();
6091 
6092   // See the comment in coordinator_yield()
6093   for (unsigned i = 0; i < CMSYieldSleepCount &&
6094                    ConcurrentMarkSweepThread::should_yield() &&
6095                    !CMSCollector::foregroundGCIsActive(); ++i) {
6096     os::sleep(Thread::current(), 1, false);
6097   }
6098 
6099   ConcurrentMarkSweepThread::synchronize(true);
6100   _freelistLock->lock_without_safepoint_check();
6101   _bitMap->lock()->lock_without_safepoint_check();
6102   _collector->startTimer();
6103 }
6104 
6105 
6106 //////////////////////////////////////////////////////////////////
6107 // SurvivorSpacePrecleanClosure
6108 //////////////////////////////////////////////////////////////////
6109 // This (single-threaded) closure is used to preclean the oops in
6110 // the survivor spaces.
6111 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
6112 
6113   HeapWord* addr = (HeapWord*)p;
6114   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
6115   assert(!_span.contains(addr), "we are scanning the survivor spaces");
6116   assert(p->klass_or_null() != NULL, "object should be initialized");
6117   // an initialized object; ignore mark word in verification below
6118   // since we are running concurrent with mutators
6119   assert(oopDesc::is_oop(p, true), "should be an oop");
6120   // Note that we do not yield while we iterate over
6121   // the interior oops of p, pushing the relevant ones
6122   // on our marking stack.
6123   size_t size = p->oop_iterate_size(_scanning_closure);
6124   do_yield_check();
6125   // Observe that below, we do not abandon the preclean
6126   // phase as soon as we should; rather we empty the
6127   // marking stack before returning. This is to satisfy
6128   // some existing assertions. In general, it may be a
6129   // good idea to abort immediately and complete the marking
6130   // from the grey objects at a later time.
6131   while (!_mark_stack->isEmpty()) {
6132     oop new_oop = _mark_stack->pop();
6133     assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
6134     assert(_bit_map->isMarked((HeapWord*)new_oop),
6135            "only grey objects on this stack");
6136     // iterate over the oops in this oop, marking and pushing
6137     // the ones in CMS heap (i.e. in _span).
6138     new_oop->oop_iterate(_scanning_closure);
6139     // check if it's time to yield
6140     do_yield_check();
6141   }
6142   unsigned int after_count =
6143     CMSHeap::heap()->total_collections();
6144   bool abort = (_before_count != after_count) ||
6145                _collector->should_abort_preclean();
6146   return abort ? 0 : size;
6147 }
6148 
6149 void SurvivorSpacePrecleanClosure::do_yield_work() {
6150   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6151          "CMS thread should hold CMS token");
6152   assert_lock_strong(_bit_map->lock());
6153   // Relinquish the bit map lock
6154   _bit_map->lock()->unlock();
6155   ConcurrentMarkSweepThread::desynchronize(true);
6156   _collector->stopTimer();
6157   _collector->incrementYields();
6158 
6159   // See the comment in coordinator_yield()
6160   for (unsigned i = 0; i < CMSYieldSleepCount &&
6161                        ConcurrentMarkSweepThread::should_yield() &&
6162                        !CMSCollector::foregroundGCIsActive(); ++i) {
6163     os::sleep(Thread::current(), 1, false);
6164   }
6165 
6166   ConcurrentMarkSweepThread::synchronize(true);
6167   _bit_map->lock()->lock_without_safepoint_check();
6168   _collector->startTimer();
6169 }
6170 
6171 // This closure is used to rescan the marked objects on the dirty cards
6172 // in the mod union table and the card table proper. In the parallel
6173 // case, although the bitMap is shared, we do a single read so the
6174 // isMarked() query is "safe".
6175 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
6176   // Ignore mark word because we are running concurrent with mutators
6177   assert(oopDesc::is_oop_or_null(p, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(p));
6178   HeapWord* addr = (HeapWord*)p;
6179   assert(_span.contains(addr), "we are scanning the CMS generation");
6180   bool is_obj_array = false;
6181   #ifdef ASSERT
6182     if (!_parallel) {
6183       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
6184       assert(_collector->overflow_list_is_empty(),
6185              "overflow list should be empty");
6186 
6187     }
6188   #endif // ASSERT
6189   if (_bit_map->isMarked(addr)) {
6190     // Obj arrays are precisely marked, non-arrays are not;
6191     // so we scan objArrays precisely and non-arrays in their
6192     // entirety.
6193     if (p->is_objArray()) {
6194       is_obj_array = true;
6195       if (_parallel) {
6196         p->oop_iterate(_par_scan_closure, mr);
6197       } else {
6198         p->oop_iterate(_scan_closure, mr);
6199       }
6200     } else {
6201       if (_parallel) {
6202         p->oop_iterate(_par_scan_closure);
6203       } else {
6204         p->oop_iterate(_scan_closure);
6205       }
6206     }
6207   }
6208   #ifdef ASSERT
6209     if (!_parallel) {
6210       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
6211       assert(_collector->overflow_list_is_empty(),
6212              "overflow list should be empty");
6213 
6214     }
6215   #endif // ASSERT
6216   return is_obj_array;
6217 }
6218 
6219 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
6220                         MemRegion span,
6221                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
6222                         bool should_yield, bool verifying):
6223   _collector(collector),
6224   _span(span),
6225   _bitMap(bitMap),
6226   _mut(&collector->_modUnionTable),
6227   _markStack(markStack),
6228   _yield(should_yield),
6229   _skipBits(0)
6230 {
6231   assert(_markStack->isEmpty(), "stack should be empty");
6232   _finger = _bitMap->startWord();
6233   _threshold = _finger;
6234   assert(_collector->_restart_addr == NULL, "Sanity check");
6235   assert(_span.contains(_finger), "Out of bounds _finger?");
6236   DEBUG_ONLY(_verifying = verifying;)
6237 }
6238 
6239 void MarkFromRootsClosure::reset(HeapWord* addr) {
6240   assert(_markStack->isEmpty(), "would cause duplicates on stack");
6241   assert(_span.contains(addr), "Out of bounds _finger?");
6242   _finger = addr;
6243   _threshold = align_up(_finger, CardTable::card_size);
6244 }
6245 
6246 // Should revisit to see if this should be restructured for
6247 // greater efficiency.
6248 bool MarkFromRootsClosure::do_bit(size_t offset) {
6249   if (_skipBits > 0) {
6250     _skipBits--;
6251     return true;
6252   }
6253   // convert offset into a HeapWord*
6254   HeapWord* addr = _bitMap->startWord() + offset;
6255   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
6256          "address out of range");
6257   assert(_bitMap->isMarked(addr), "tautology");
6258   if (_bitMap->isMarked(addr+1)) {
6259     // this is an allocated but not yet initialized object
6260     assert(_skipBits == 0, "tautology");
6261     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
6262     oop p = oop(addr);
6263     if (p->klass_or_null_acquire() == NULL) {
6264       DEBUG_ONLY(if (!_verifying) {)
6265         // We re-dirty the cards on which this object lies and increase
6266         // the _threshold so that we'll come back to scan this object
6267         // during the preclean or remark phase. (CMSCleanOnEnter)
6268         if (CMSCleanOnEnter) {
6269           size_t sz = _collector->block_size_using_printezis_bits(addr);
6270           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6271           MemRegion redirty_range = MemRegion(addr, end_card_addr);
6272           assert(!redirty_range.is_empty(), "Arithmetical tautology");
6273           // Bump _threshold to end_card_addr; note that
6274           // _threshold cannot possibly exceed end_card_addr, anyhow.
6275           // This prevents future clearing of the card as the scan proceeds
6276           // to the right.
6277           assert(_threshold <= end_card_addr,
6278                  "Because we are just scanning into this object");
6279           if (_threshold < end_card_addr) {
6280             _threshold = end_card_addr;
6281           }
6282           if (p->klass_or_null_acquire() != NULL) {
6283             // Redirty the range of cards...
6284             _mut->mark_range(redirty_range);
6285           } // ...else the setting of klass will dirty the card anyway.
6286         }
6287       DEBUG_ONLY(})
6288       return true;
6289     }
6290   }
6291   scanOopsInOop(addr);
6292   return true;
6293 }
6294 
6295 // We take a break if we've been at this for a while,
6296 // so as to avoid monopolizing the locks involved.
6297 void MarkFromRootsClosure::do_yield_work() {
6298   // First give up the locks, then yield, then re-lock
6299   // We should probably use a constructor/destructor idiom to
6300   // do this unlock/lock or modify the MutexUnlocker class to
6301   // serve our purpose. XXX
6302   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6303          "CMS thread should hold CMS token");
6304   assert_lock_strong(_bitMap->lock());
6305   _bitMap->lock()->unlock();
6306   ConcurrentMarkSweepThread::desynchronize(true);
6307   _collector->stopTimer();
6308   _collector->incrementYields();
6309 
6310   // See the comment in coordinator_yield()
6311   for (unsigned i = 0; i < CMSYieldSleepCount &&
6312                        ConcurrentMarkSweepThread::should_yield() &&
6313                        !CMSCollector::foregroundGCIsActive(); ++i) {
6314     os::sleep(Thread::current(), 1, false);
6315   }
6316 
6317   ConcurrentMarkSweepThread::synchronize(true);
6318   _bitMap->lock()->lock_without_safepoint_check();
6319   _collector->startTimer();
6320 }
6321 
6322 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
6323   assert(_bitMap->isMarked(ptr), "expected bit to be set");
6324   assert(_markStack->isEmpty(),
6325          "should drain stack to limit stack usage");
6326   // convert ptr to an oop preparatory to scanning
6327   oop obj = oop(ptr);
6328   // Ignore mark word in verification below, since we
6329   // may be running concurrent with mutators.
6330   assert(oopDesc::is_oop(obj, true), "should be an oop");
6331   assert(_finger <= ptr, "_finger runneth ahead");
6332   // advance the finger to right end of this object
6333   _finger = ptr + obj->size();
6334   assert(_finger > ptr, "we just incremented it above");
6335   // On large heaps, it may take us some time to get through
6336   // the marking phase. During
6337   // this time it's possible that a lot of mutations have
6338   // accumulated in the card table and the mod union table --
6339   // these mutation records are redundant until we have
6340   // actually traced into the corresponding card.
6341   // Here, we check whether advancing the finger would make
6342   // us cross into a new card, and if so clear corresponding
6343   // cards in the MUT (preclean them in the card-table in the
6344   // future).
6345 
6346   DEBUG_ONLY(if (!_verifying) {)
6347     // The clean-on-enter optimization is disabled by default,
6348     // until we fix 6178663.
6349     if (CMSCleanOnEnter && (_finger > _threshold)) {
6350       // [_threshold, _finger) represents the interval
6351       // of cards to be cleared  in MUT (or precleaned in card table).
6352       // The set of cards to be cleared is all those that overlap
6353       // with the interval [_threshold, _finger); note that
6354       // _threshold is always kept card-aligned but _finger isn't
6355       // always card-aligned.
6356       HeapWord* old_threshold = _threshold;
6357       assert(is_aligned(old_threshold, CardTable::card_size),
6358              "_threshold should always be card-aligned");
6359       _threshold = align_up(_finger, CardTable::card_size);
6360       MemRegion mr(old_threshold, _threshold);
6361       assert(!mr.is_empty(), "Control point invariant");
6362       assert(_span.contains(mr), "Should clear within span");
6363       _mut->clear_range(mr);
6364     }
6365   DEBUG_ONLY(})
6366   // Note: the finger doesn't advance while we drain
6367   // the stack below.
6368   PushOrMarkClosure pushOrMarkClosure(_collector,
6369                                       _span, _bitMap, _markStack,
6370                                       _finger, this);
6371   bool res = _markStack->push(obj);
6372   assert(res, "Empty non-zero size stack should have space for single push");
6373   while (!_markStack->isEmpty()) {
6374     oop new_oop = _markStack->pop();
6375     // Skip verifying header mark word below because we are
6376     // running concurrent with mutators.
6377     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6378     // now scan this oop's oops
6379     new_oop->oop_iterate(&pushOrMarkClosure);
6380     do_yield_check();
6381   }
6382   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
6383 }
6384 
6385 ParMarkFromRootsClosure::ParMarkFromRootsClosure(CMSConcMarkingTask* task,
6386                        CMSCollector* collector, MemRegion span,
6387                        CMSBitMap* bit_map,
6388                        OopTaskQueue* work_queue,
6389                        CMSMarkStack*  overflow_stack):
6390   _collector(collector),
6391   _whole_span(collector->_span),
6392   _span(span),
6393   _bit_map(bit_map),
6394   _mut(&collector->_modUnionTable),
6395   _work_queue(work_queue),
6396   _overflow_stack(overflow_stack),
6397   _skip_bits(0),
6398   _task(task)
6399 {
6400   assert(_work_queue->size() == 0, "work_queue should be empty");
6401   _finger = span.start();
6402   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
6403   assert(_span.contains(_finger), "Out of bounds _finger?");
6404 }
6405 
6406 // Should revisit to see if this should be restructured for
6407 // greater efficiency.
6408 bool ParMarkFromRootsClosure::do_bit(size_t offset) {
6409   if (_skip_bits > 0) {
6410     _skip_bits--;
6411     return true;
6412   }
6413   // convert offset into a HeapWord*
6414   HeapWord* addr = _bit_map->startWord() + offset;
6415   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
6416          "address out of range");
6417   assert(_bit_map->isMarked(addr), "tautology");
6418   if (_bit_map->isMarked(addr+1)) {
6419     // this is an allocated object that might not yet be initialized
6420     assert(_skip_bits == 0, "tautology");
6421     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
6422     oop p = oop(addr);
6423     if (p->klass_or_null_acquire() == NULL) {
6424       // in the case of Clean-on-Enter optimization, redirty card
6425       // and avoid clearing card by increasing  the threshold.
6426       return true;
6427     }
6428   }
6429   scan_oops_in_oop(addr);
6430   return true;
6431 }
6432 
6433 void ParMarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
6434   assert(_bit_map->isMarked(ptr), "expected bit to be set");
6435   // Should we assert that our work queue is empty or
6436   // below some drain limit?
6437   assert(_work_queue->size() == 0,
6438          "should drain stack to limit stack usage");
6439   // convert ptr to an oop preparatory to scanning
6440   oop obj = oop(ptr);
6441   // Ignore mark word in verification below, since we
6442   // may be running concurrent with mutators.
6443   assert(oopDesc::is_oop(obj, true), "should be an oop");
6444   assert(_finger <= ptr, "_finger runneth ahead");
6445   // advance the finger to right end of this object
6446   _finger = ptr + obj->size();
6447   assert(_finger > ptr, "we just incremented it above");
6448   // On large heaps, it may take us some time to get through
6449   // the marking phase. During
6450   // this time it's possible that a lot of mutations have
6451   // accumulated in the card table and the mod union table --
6452   // these mutation records are redundant until we have
6453   // actually traced into the corresponding card.
6454   // Here, we check whether advancing the finger would make
6455   // us cross into a new card, and if so clear corresponding
6456   // cards in the MUT (preclean them in the card-table in the
6457   // future).
6458 
6459   // The clean-on-enter optimization is disabled by default,
6460   // until we fix 6178663.
6461   if (CMSCleanOnEnter && (_finger > _threshold)) {
6462     // [_threshold, _finger) represents the interval
6463     // of cards to be cleared  in MUT (or precleaned in card table).
6464     // The set of cards to be cleared is all those that overlap
6465     // with the interval [_threshold, _finger); note that
6466     // _threshold is always kept card-aligned but _finger isn't
6467     // always card-aligned.
6468     HeapWord* old_threshold = _threshold;
6469     assert(is_aligned(old_threshold, CardTable::card_size),
6470            "_threshold should always be card-aligned");
6471     _threshold = align_up(_finger, CardTable::card_size);
6472     MemRegion mr(old_threshold, _threshold);
6473     assert(!mr.is_empty(), "Control point invariant");
6474     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
6475     _mut->clear_range(mr);
6476   }
6477 
6478   // Note: the local finger doesn't advance while we drain
6479   // the stack below, but the global finger sure can and will.
6480   HeapWord* volatile* gfa = _task->global_finger_addr();
6481   ParPushOrMarkClosure pushOrMarkClosure(_collector,
6482                                          _span, _bit_map,
6483                                          _work_queue,
6484                                          _overflow_stack,
6485                                          _finger,
6486                                          gfa, this);
6487   bool res = _work_queue->push(obj);   // overflow could occur here
6488   assert(res, "Will hold once we use workqueues");
6489   while (true) {
6490     oop new_oop;
6491     if (!_work_queue->pop_local(new_oop)) {
6492       // We emptied our work_queue; check if there's stuff that can
6493       // be gotten from the overflow stack.
6494       if (CMSConcMarkingTask::get_work_from_overflow_stack(
6495             _overflow_stack, _work_queue)) {
6496         do_yield_check();
6497         continue;
6498       } else {  // done
6499         break;
6500       }
6501     }
6502     // Skip verifying header mark word below because we are
6503     // running concurrent with mutators.
6504     assert(oopDesc::is_oop(new_oop, true), "Oops! expected to pop an oop");
6505     // now scan this oop's oops
6506     new_oop->oop_iterate(&pushOrMarkClosure);
6507     do_yield_check();
6508   }
6509   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
6510 }
6511 
6512 // Yield in response to a request from VM Thread or
6513 // from mutators.
6514 void ParMarkFromRootsClosure::do_yield_work() {
6515   assert(_task != NULL, "sanity");
6516   _task->yield();
6517 }
6518 
6519 // A variant of the above used for verifying CMS marking work.
6520 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
6521                         MemRegion span,
6522                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6523                         CMSMarkStack*  mark_stack):
6524   _collector(collector),
6525   _span(span),
6526   _verification_bm(verification_bm),
6527   _cms_bm(cms_bm),
6528   _mark_stack(mark_stack),
6529   _pam_verify_closure(collector, span, verification_bm, cms_bm,
6530                       mark_stack)
6531 {
6532   assert(_mark_stack->isEmpty(), "stack should be empty");
6533   _finger = _verification_bm->startWord();
6534   assert(_collector->_restart_addr == NULL, "Sanity check");
6535   assert(_span.contains(_finger), "Out of bounds _finger?");
6536 }
6537 
6538 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
6539   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
6540   assert(_span.contains(addr), "Out of bounds _finger?");
6541   _finger = addr;
6542 }
6543 
6544 // Should revisit to see if this should be restructured for
6545 // greater efficiency.
6546 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
6547   // convert offset into a HeapWord*
6548   HeapWord* addr = _verification_bm->startWord() + offset;
6549   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
6550          "address out of range");
6551   assert(_verification_bm->isMarked(addr), "tautology");
6552   assert(_cms_bm->isMarked(addr), "tautology");
6553 
6554   assert(_mark_stack->isEmpty(),
6555          "should drain stack to limit stack usage");
6556   // convert addr to an oop preparatory to scanning
6557   oop obj = oop(addr);
6558   assert(oopDesc::is_oop(obj), "should be an oop");
6559   assert(_finger <= addr, "_finger runneth ahead");
6560   // advance the finger to right end of this object
6561   _finger = addr + obj->size();
6562   assert(_finger > addr, "we just incremented it above");
6563   // Note: the finger doesn't advance while we drain
6564   // the stack below.
6565   bool res = _mark_stack->push(obj);
6566   assert(res, "Empty non-zero size stack should have space for single push");
6567   while (!_mark_stack->isEmpty()) {
6568     oop new_oop = _mark_stack->pop();
6569     assert(oopDesc::is_oop(new_oop), "Oops! expected to pop an oop");
6570     // now scan this oop's oops
6571     new_oop->oop_iterate(&_pam_verify_closure);
6572   }
6573   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
6574   return true;
6575 }
6576 
6577 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
6578   CMSCollector* collector, MemRegion span,
6579   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
6580   CMSMarkStack*  mark_stack):
6581   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6582   _collector(collector),
6583   _span(span),
6584   _verification_bm(verification_bm),
6585   _cms_bm(cms_bm),
6586   _mark_stack(mark_stack)
6587 { }
6588 
6589 template <class T> void PushAndMarkVerifyClosure::do_oop_work(T *p) {
6590   oop obj = RawAccess<>::oop_load(p);
6591   do_oop(obj);
6592 }
6593 
6594 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
6595 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
6596 
6597 // Upon stack overflow, we discard (part of) the stack,
6598 // remembering the least address amongst those discarded
6599 // in CMSCollector's _restart_address.
6600 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
6601   // Remember the least grey address discarded
6602   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
6603   _collector->lower_restart_addr(ra);
6604   _mark_stack->reset();  // discard stack contents
6605   _mark_stack->expand(); // expand the stack if possible
6606 }
6607 
6608 void PushAndMarkVerifyClosure::do_oop(oop obj) {
6609   assert(oopDesc::is_oop_or_null(obj), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6610   HeapWord* addr = (HeapWord*)obj;
6611   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
6612     // Oop lies in _span and isn't yet grey or black
6613     _verification_bm->mark(addr);            // now grey
6614     if (!_cms_bm->isMarked(addr)) {
6615       Log(gc, verify) log;
6616       ResourceMark rm;
6617       LogStream ls(log.error());
6618       oop(addr)->print_on(&ls);
6619       log.error(" (" INTPTR_FORMAT " should have been marked)", p2i(addr));
6620       fatal("... aborting");
6621     }
6622 
6623     if (!_mark_stack->push(obj)) { // stack overflow
6624       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _mark_stack->capacity());
6625       assert(_mark_stack->isFull(), "Else push should have succeeded");
6626       handle_stack_overflow(addr);
6627     }
6628     // anything including and to the right of _finger
6629     // will be scanned as we iterate over the remainder of the
6630     // bit map
6631   }
6632 }
6633 
6634 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
6635                      MemRegion span,
6636                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
6637                      HeapWord* finger, MarkFromRootsClosure* parent) :
6638   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6639   _collector(collector),
6640   _span(span),
6641   _bitMap(bitMap),
6642   _markStack(markStack),
6643   _finger(finger),
6644   _parent(parent)
6645 { }
6646 
6647 ParPushOrMarkClosure::ParPushOrMarkClosure(CMSCollector* collector,
6648                                            MemRegion span,
6649                                            CMSBitMap* bit_map,
6650                                            OopTaskQueue* work_queue,
6651                                            CMSMarkStack*  overflow_stack,
6652                                            HeapWord* finger,
6653                                            HeapWord* volatile* global_finger_addr,
6654                                            ParMarkFromRootsClosure* parent) :
6655   MetadataVisitingOopIterateClosure(collector->ref_processor()),
6656   _collector(collector),
6657   _whole_span(collector->_span),
6658   _span(span),
6659   _bit_map(bit_map),
6660   _work_queue(work_queue),
6661   _overflow_stack(overflow_stack),
6662   _finger(finger),
6663   _global_finger_addr(global_finger_addr),
6664   _parent(parent)
6665 { }
6666 
6667 // Assumes thread-safe access by callers, who are
6668 // responsible for mutual exclusion.
6669 void CMSCollector::lower_restart_addr(HeapWord* low) {
6670   assert(_span.contains(low), "Out of bounds addr");
6671   if (_restart_addr == NULL) {
6672     _restart_addr = low;
6673   } else {
6674     _restart_addr = MIN2(_restart_addr, low);
6675   }
6676 }
6677 
6678 // Upon stack overflow, we discard (part of) the stack,
6679 // remembering the least address amongst those discarded
6680 // in CMSCollector's _restart_address.
6681 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6682   // Remember the least grey address discarded
6683   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
6684   _collector->lower_restart_addr(ra);
6685   _markStack->reset();  // discard stack contents
6686   _markStack->expand(); // expand the stack if possible
6687 }
6688 
6689 // Upon stack overflow, we discard (part of) the stack,
6690 // remembering the least address amongst those discarded
6691 // in CMSCollector's _restart_address.
6692 void ParPushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
6693   // We need to do this under a mutex to prevent other
6694   // workers from interfering with the work done below.
6695   MutexLockerEx ml(_overflow_stack->par_lock(),
6696                    Mutex::_no_safepoint_check_flag);
6697   // Remember the least grey address discarded
6698   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
6699   _collector->lower_restart_addr(ra);
6700   _overflow_stack->reset();  // discard stack contents
6701   _overflow_stack->expand(); // expand the stack if possible
6702 }
6703 
6704 void PushOrMarkClosure::do_oop(oop obj) {
6705   // Ignore mark word because we are running concurrent with mutators.
6706   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6707   HeapWord* addr = (HeapWord*)obj;
6708   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
6709     // Oop lies in _span and isn't yet grey or black
6710     _bitMap->mark(addr);            // now grey
6711     if (addr < _finger) {
6712       // the bit map iteration has already either passed, or
6713       // sampled, this bit in the bit map; we'll need to
6714       // use the marking stack to scan this oop's oops.
6715       bool simulate_overflow = false;
6716       NOT_PRODUCT(
6717         if (CMSMarkStackOverflowALot &&
6718             _collector->simulate_overflow()) {
6719           // simulate a stack overflow
6720           simulate_overflow = true;
6721         }
6722       )
6723       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
6724         log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _markStack->capacity());
6725         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
6726         handle_stack_overflow(addr);
6727       }
6728     }
6729     // anything including and to the right of _finger
6730     // will be scanned as we iterate over the remainder of the
6731     // bit map
6732     do_yield_check();
6733   }
6734 }
6735 
6736 void ParPushOrMarkClosure::do_oop(oop obj) {
6737   // Ignore mark word because we are running concurrent with mutators.
6738   assert(oopDesc::is_oop_or_null(obj, true), "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6739   HeapWord* addr = (HeapWord*)obj;
6740   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
6741     // Oop lies in _span and isn't yet grey or black
6742     // We read the global_finger (volatile read) strictly after marking oop
6743     bool res = _bit_map->par_mark(addr);    // now grey
6744     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
6745     // Should we push this marked oop on our stack?
6746     // -- if someone else marked it, nothing to do
6747     // -- if target oop is above global finger nothing to do
6748     // -- if target oop is in chunk and above local finger
6749     //      then nothing to do
6750     // -- else push on work queue
6751     if (   !res       // someone else marked it, they will deal with it
6752         || (addr >= *gfa)  // will be scanned in a later task
6753         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
6754       return;
6755     }
6756     // the bit map iteration has already either passed, or
6757     // sampled, this bit in the bit map; we'll need to
6758     // use the marking stack to scan this oop's oops.
6759     bool simulate_overflow = false;
6760     NOT_PRODUCT(
6761       if (CMSMarkStackOverflowALot &&
6762           _collector->simulate_overflow()) {
6763         // simulate a stack overflow
6764         simulate_overflow = true;
6765       }
6766     )
6767     if (simulate_overflow ||
6768         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
6769       // stack overflow
6770       log_trace(gc)("CMS marking stack overflow (benign) at " SIZE_FORMAT, _overflow_stack->capacity());
6771       // We cannot assert that the overflow stack is full because
6772       // it may have been emptied since.
6773       assert(simulate_overflow ||
6774              _work_queue->size() == _work_queue->max_elems(),
6775             "Else push should have succeeded");
6776       handle_stack_overflow(addr);
6777     }
6778     do_yield_check();
6779   }
6780 }
6781 
6782 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
6783                                        MemRegion span,
6784                                        ReferenceDiscoverer* rd,
6785                                        CMSBitMap* bit_map,
6786                                        CMSBitMap* mod_union_table,
6787                                        CMSMarkStack*  mark_stack,
6788                                        bool           concurrent_precleaning):
6789   MetadataVisitingOopIterateClosure(rd),
6790   _collector(collector),
6791   _span(span),
6792   _bit_map(bit_map),
6793   _mod_union_table(mod_union_table),
6794   _mark_stack(mark_stack),
6795   _concurrent_precleaning(concurrent_precleaning)
6796 {
6797   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6798 }
6799 
6800 // Grey object rescan during pre-cleaning and second checkpoint phases --
6801 // the non-parallel version (the parallel version appears further below.)
6802 void PushAndMarkClosure::do_oop(oop obj) {
6803   // Ignore mark word verification. If during concurrent precleaning,
6804   // the object monitor may be locked. If during the checkpoint
6805   // phases, the object may already have been reached by a  different
6806   // path and may be at the end of the global overflow list (so
6807   // the mark word may be NULL).
6808   assert(oopDesc::is_oop_or_null(obj, true /* ignore mark word */),
6809          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6810   HeapWord* addr = (HeapWord*)obj;
6811   // Check if oop points into the CMS generation
6812   // and is not marked
6813   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6814     // a white object ...
6815     _bit_map->mark(addr);         // ... now grey
6816     // push on the marking stack (grey set)
6817     bool simulate_overflow = false;
6818     NOT_PRODUCT(
6819       if (CMSMarkStackOverflowALot &&
6820           _collector->simulate_overflow()) {
6821         // simulate a stack overflow
6822         simulate_overflow = true;
6823       }
6824     )
6825     if (simulate_overflow || !_mark_stack->push(obj)) {
6826       if (_concurrent_precleaning) {
6827          // During precleaning we can just dirty the appropriate card(s)
6828          // in the mod union table, thus ensuring that the object remains
6829          // in the grey set  and continue. In the case of object arrays
6830          // we need to dirty all of the cards that the object spans,
6831          // since the rescan of object arrays will be limited to the
6832          // dirty cards.
6833          // Note that no one can be interfering with us in this action
6834          // of dirtying the mod union table, so no locking or atomics
6835          // are required.
6836          if (obj->is_objArray()) {
6837            size_t sz = obj->size();
6838            HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
6839            MemRegion redirty_range = MemRegion(addr, end_card_addr);
6840            assert(!redirty_range.is_empty(), "Arithmetical tautology");
6841            _mod_union_table->mark_range(redirty_range);
6842          } else {
6843            _mod_union_table->mark(addr);
6844          }
6845          _collector->_ser_pmc_preclean_ovflw++;
6846       } else {
6847          // During the remark phase, we need to remember this oop
6848          // in the overflow list.
6849          _collector->push_on_overflow_list(obj);
6850          _collector->_ser_pmc_remark_ovflw++;
6851       }
6852     }
6853   }
6854 }
6855 
6856 ParPushAndMarkClosure::ParPushAndMarkClosure(CMSCollector* collector,
6857                                              MemRegion span,
6858                                              ReferenceDiscoverer* rd,
6859                                              CMSBitMap* bit_map,
6860                                              OopTaskQueue* work_queue):
6861   MetadataVisitingOopIterateClosure(rd),
6862   _collector(collector),
6863   _span(span),
6864   _bit_map(bit_map),
6865   _work_queue(work_queue)
6866 {
6867   assert(ref_discoverer() != NULL, "ref_discoverer shouldn't be NULL");
6868 }
6869 
6870 // Grey object rescan during second checkpoint phase --
6871 // the parallel version.
6872 void ParPushAndMarkClosure::do_oop(oop obj) {
6873   // In the assert below, we ignore the mark word because
6874   // this oop may point to an already visited object that is
6875   // on the overflow stack (in which case the mark word has
6876   // been hijacked for chaining into the overflow stack --
6877   // if this is the last object in the overflow stack then
6878   // its mark word will be NULL). Because this object may
6879   // have been subsequently popped off the global overflow
6880   // stack, and the mark word possibly restored to the prototypical
6881   // value, by the time we get to examined this failing assert in
6882   // the debugger, is_oop_or_null(false) may subsequently start
6883   // to hold.
6884   assert(oopDesc::is_oop_or_null(obj, true),
6885          "Expected an oop or NULL at " PTR_FORMAT, p2i(obj));
6886   HeapWord* addr = (HeapWord*)obj;
6887   // Check if oop points into the CMS generation
6888   // and is not marked
6889   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
6890     // a white object ...
6891     // If we manage to "claim" the object, by being the
6892     // first thread to mark it, then we push it on our
6893     // marking stack
6894     if (_bit_map->par_mark(addr)) {     // ... now grey
6895       // push on work queue (grey set)
6896       bool simulate_overflow = false;
6897       NOT_PRODUCT(
6898         if (CMSMarkStackOverflowALot &&
6899             _collector->par_simulate_overflow()) {
6900           // simulate a stack overflow
6901           simulate_overflow = true;
6902         }
6903       )
6904       if (simulate_overflow || !_work_queue->push(obj)) {
6905         _collector->par_push_on_overflow_list(obj);
6906         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
6907       }
6908     } // Else, some other thread got there first
6909   }
6910 }
6911 
6912 void CMSPrecleanRefsYieldClosure::do_yield_work() {
6913   Mutex* bml = _collector->bitMapLock();
6914   assert_lock_strong(bml);
6915   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6916          "CMS thread should hold CMS token");
6917 
6918   bml->unlock();
6919   ConcurrentMarkSweepThread::desynchronize(true);
6920 
6921   _collector->stopTimer();
6922   _collector->incrementYields();
6923 
6924   // See the comment in coordinator_yield()
6925   for (unsigned i = 0; i < CMSYieldSleepCount &&
6926                        ConcurrentMarkSweepThread::should_yield() &&
6927                        !CMSCollector::foregroundGCIsActive(); ++i) {
6928     os::sleep(Thread::current(), 1, false);
6929   }
6930 
6931   ConcurrentMarkSweepThread::synchronize(true);
6932   bml->lock();
6933 
6934   _collector->startTimer();
6935 }
6936 
6937 bool CMSPrecleanRefsYieldClosure::should_return() {
6938   if (ConcurrentMarkSweepThread::should_yield()) {
6939     do_yield_work();
6940   }
6941   return _collector->foregroundGCIsActive();
6942 }
6943 
6944 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
6945   assert(((size_t)mr.start())%CardTable::card_size_in_words == 0,
6946          "mr should be aligned to start at a card boundary");
6947   // We'd like to assert:
6948   // assert(mr.word_size()%CardTable::card_size_in_words == 0,
6949   //        "mr should be a range of cards");
6950   // However, that would be too strong in one case -- the last
6951   // partition ends at _unallocated_block which, in general, can be
6952   // an arbitrary boundary, not necessarily card aligned.
6953   _num_dirty_cards += mr.word_size()/CardTable::card_size_in_words;
6954   _space->object_iterate_mem(mr, &_scan_cl);
6955 }
6956 
6957 SweepClosure::SweepClosure(CMSCollector* collector,
6958                            ConcurrentMarkSweepGeneration* g,
6959                            CMSBitMap* bitMap, bool should_yield) :
6960   _collector(collector),
6961   _g(g),
6962   _sp(g->cmsSpace()),
6963   _limit(_sp->sweep_limit()),
6964   _freelistLock(_sp->freelistLock()),
6965   _bitMap(bitMap),
6966   _inFreeRange(false),           // No free range at beginning of sweep
6967   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
6968   _lastFreeRangeCoalesced(false),
6969   _yield(should_yield),
6970   _freeFinger(g->used_region().start())
6971 {
6972   NOT_PRODUCT(
6973     _numObjectsFreed = 0;
6974     _numWordsFreed   = 0;
6975     _numObjectsLive = 0;
6976     _numWordsLive = 0;
6977     _numObjectsAlreadyFree = 0;
6978     _numWordsAlreadyFree = 0;
6979     _last_fc = NULL;
6980 
6981     _sp->initializeIndexedFreeListArrayReturnedBytes();
6982     _sp->dictionary()->initialize_dict_returned_bytes();
6983   )
6984   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
6985          "sweep _limit out of bounds");
6986   log_develop_trace(gc, sweep)("====================");
6987   log_develop_trace(gc, sweep)("Starting new sweep with limit " PTR_FORMAT, p2i(_limit));
6988 }
6989 
6990 void SweepClosure::print_on(outputStream* st) const {
6991   st->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
6992                p2i(_sp->bottom()), p2i(_sp->end()));
6993   st->print_cr("_limit = " PTR_FORMAT, p2i(_limit));
6994   st->print_cr("_freeFinger = " PTR_FORMAT, p2i(_freeFinger));
6995   NOT_PRODUCT(st->print_cr("_last_fc = " PTR_FORMAT, p2i(_last_fc));)
6996   st->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
6997                _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
6998 }
6999 
7000 #ifndef PRODUCT
7001 // Assertion checking only:  no useful work in product mode --
7002 // however, if any of the flags below become product flags,
7003 // you may need to review this code to see if it needs to be
7004 // enabled in product mode.
7005 SweepClosure::~SweepClosure() {
7006   assert_lock_strong(_freelistLock);
7007   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7008          "sweep _limit out of bounds");
7009   if (inFreeRange()) {
7010     Log(gc, sweep) log;
7011     log.error("inFreeRange() should have been reset; dumping state of SweepClosure");
7012     ResourceMark rm;
7013     LogStream ls(log.error());
7014     print_on(&ls);
7015     ShouldNotReachHere();
7016   }
7017 
7018   if (log_is_enabled(Debug, gc, sweep)) {
7019     log_debug(gc, sweep)("Collected " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7020                          _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
7021     log_debug(gc, sweep)("Live " SIZE_FORMAT " objects,  " SIZE_FORMAT " bytes  Already free " SIZE_FORMAT " objects, " SIZE_FORMAT " bytes",
7022                          _numObjectsLive, _numWordsLive*sizeof(HeapWord), _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
7023     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree) * sizeof(HeapWord);
7024     log_debug(gc, sweep)("Total sweep: " SIZE_FORMAT " bytes", totalBytes);
7025   }
7026 
7027   if (log_is_enabled(Trace, gc, sweep) && CMSVerifyReturnedBytes) {
7028     size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
7029     size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
7030     size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
7031     log_trace(gc, sweep)("Returned " SIZE_FORMAT " bytes   Indexed List Returned " SIZE_FORMAT " bytes        Dictionary Returned " SIZE_FORMAT " bytes",
7032                          returned_bytes, indexListReturnedBytes, dict_returned_bytes);
7033   }
7034   log_develop_trace(gc, sweep)("end of sweep with _limit = " PTR_FORMAT, p2i(_limit));
7035   log_develop_trace(gc, sweep)("================");
7036 }
7037 #endif  // PRODUCT
7038 
7039 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
7040     bool freeRangeInFreeLists) {
7041   log_develop_trace(gc, sweep)("---- Start free range at " PTR_FORMAT " with free block (%d)",
7042                                p2i(freeFinger), freeRangeInFreeLists);
7043   assert(!inFreeRange(), "Trampling existing free range");
7044   set_inFreeRange(true);
7045   set_lastFreeRangeCoalesced(false);
7046 
7047   set_freeFinger(freeFinger);
7048   set_freeRangeInFreeLists(freeRangeInFreeLists);
7049   if (CMSTestInFreeList) {
7050     if (freeRangeInFreeLists) {
7051       FreeChunk* fc = (FreeChunk*) freeFinger;
7052       assert(fc->is_free(), "A chunk on the free list should be free.");
7053       assert(fc->size() > 0, "Free range should have a size");
7054       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
7055     }
7056   }
7057 }
7058 
7059 // Note that the sweeper runs concurrently with mutators. Thus,
7060 // it is possible for direct allocation in this generation to happen
7061 // in the middle of the sweep. Note that the sweeper also coalesces
7062 // contiguous free blocks. Thus, unless the sweeper and the allocator
7063 // synchronize appropriately freshly allocated blocks may get swept up.
7064 // This is accomplished by the sweeper locking the free lists while
7065 // it is sweeping. Thus blocks that are determined to be free are
7066 // indeed free. There is however one additional complication:
7067 // blocks that have been allocated since the final checkpoint and
7068 // mark, will not have been marked and so would be treated as
7069 // unreachable and swept up. To prevent this, the allocator marks
7070 // the bit map when allocating during the sweep phase. This leads,
7071 // however, to a further complication -- objects may have been allocated
7072 // but not yet initialized -- in the sense that the header isn't yet
7073 // installed. The sweeper can not then determine the size of the block
7074 // in order to skip over it. To deal with this case, we use a technique
7075 // (due to Printezis) to encode such uninitialized block sizes in the
7076 // bit map. Since the bit map uses a bit per every HeapWord, but the
7077 // CMS generation has a minimum object size of 3 HeapWords, it follows
7078 // that "normal marks" won't be adjacent in the bit map (there will
7079 // always be at least two 0 bits between successive 1 bits). We make use
7080 // of these "unused" bits to represent uninitialized blocks -- the bit
7081 // corresponding to the start of the uninitialized object and the next
7082 // bit are both set. Finally, a 1 bit marks the end of the object that
7083 // started with the two consecutive 1 bits to indicate its potentially
7084 // uninitialized state.
7085 
7086 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
7087   FreeChunk* fc = (FreeChunk*)addr;
7088   size_t res;
7089 
7090   // Check if we are done sweeping. Below we check "addr >= _limit" rather
7091   // than "addr == _limit" because although _limit was a block boundary when
7092   // we started the sweep, it may no longer be one because heap expansion
7093   // may have caused us to coalesce the block ending at the address _limit
7094   // with a newly expanded chunk (this happens when _limit was set to the
7095   // previous _end of the space), so we may have stepped past _limit:
7096   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
7097   if (addr >= _limit) { // we have swept up to or past the limit: finish up
7098     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
7099            "sweep _limit out of bounds");
7100     assert(addr < _sp->end(), "addr out of bounds");
7101     // Flush any free range we might be holding as a single
7102     // coalesced chunk to the appropriate free list.
7103     if (inFreeRange()) {
7104       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
7105              "freeFinger() " PTR_FORMAT " is out of bounds", p2i(freeFinger()));
7106       flush_cur_free_chunk(freeFinger(),
7107                            pointer_delta(addr, freeFinger()));
7108       log_develop_trace(gc, sweep)("Sweep: last chunk: put_free_blk " PTR_FORMAT " (" SIZE_FORMAT ") [coalesced:%d]",
7109                                    p2i(freeFinger()), pointer_delta(addr, freeFinger()),
7110                                    lastFreeRangeCoalesced() ? 1 : 0);
7111     }
7112 
7113     // help the iterator loop finish
7114     return pointer_delta(_sp->end(), addr);
7115   }
7116 
7117   assert(addr < _limit, "sweep invariant");
7118   // check if we should yield
7119   do_yield_check(addr);
7120   if (fc->is_free()) {
7121     // Chunk that is already free
7122     res = fc->size();
7123     do_already_free_chunk(fc);
7124     debug_only(_sp->verifyFreeLists());
7125     // If we flush the chunk at hand in lookahead_and_flush()
7126     // and it's coalesced with a preceding chunk, then the
7127     // process of "mangling" the payload of the coalesced block
7128     // will cause erasure of the size information from the
7129     // (erstwhile) header of all the coalesced blocks but the
7130     // first, so the first disjunct in the assert will not hold
7131     // in that specific case (in which case the second disjunct
7132     // will hold).
7133     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
7134            "Otherwise the size info doesn't change at this step");
7135     NOT_PRODUCT(
7136       _numObjectsAlreadyFree++;
7137       _numWordsAlreadyFree += res;
7138     )
7139     NOT_PRODUCT(_last_fc = fc;)
7140   } else if (!_bitMap->isMarked(addr)) {
7141     // Chunk is fresh garbage
7142     res = do_garbage_chunk(fc);
7143     debug_only(_sp->verifyFreeLists());
7144     NOT_PRODUCT(
7145       _numObjectsFreed++;
7146       _numWordsFreed += res;
7147     )
7148   } else {
7149     // Chunk that is alive.
7150     res = do_live_chunk(fc);
7151     debug_only(_sp->verifyFreeLists());
7152     NOT_PRODUCT(
7153         _numObjectsLive++;
7154         _numWordsLive += res;
7155     )
7156   }
7157   return res;
7158 }
7159 
7160 // For the smart allocation, record following
7161 //  split deaths - a free chunk is removed from its free list because
7162 //      it is being split into two or more chunks.
7163 //  split birth - a free chunk is being added to its free list because
7164 //      a larger free chunk has been split and resulted in this free chunk.
7165 //  coal death - a free chunk is being removed from its free list because
7166 //      it is being coalesced into a large free chunk.
7167 //  coal birth - a free chunk is being added to its free list because
7168 //      it was created when two or more free chunks where coalesced into
7169 //      this free chunk.
7170 //
7171 // These statistics are used to determine the desired number of free
7172 // chunks of a given size.  The desired number is chosen to be relative
7173 // to the end of a CMS sweep.  The desired number at the end of a sweep
7174 // is the
7175 //      count-at-end-of-previous-sweep (an amount that was enough)
7176 //              - count-at-beginning-of-current-sweep  (the excess)
7177 //              + split-births  (gains in this size during interval)
7178 //              - split-deaths  (demands on this size during interval)
7179 // where the interval is from the end of one sweep to the end of the
7180 // next.
7181 //
7182 // When sweeping the sweeper maintains an accumulated chunk which is
7183 // the chunk that is made up of chunks that have been coalesced.  That
7184 // will be termed the left-hand chunk.  A new chunk of garbage that
7185 // is being considered for coalescing will be referred to as the
7186 // right-hand chunk.
7187 //
7188 // When making a decision on whether to coalesce a right-hand chunk with
7189 // the current left-hand chunk, the current count vs. the desired count
7190 // of the left-hand chunk is considered.  Also if the right-hand chunk
7191 // is near the large chunk at the end of the heap (see
7192 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
7193 // left-hand chunk is coalesced.
7194 //
7195 // When making a decision about whether to split a chunk, the desired count
7196 // vs. the current count of the candidate to be split is also considered.
7197 // If the candidate is underpopulated (currently fewer chunks than desired)
7198 // a chunk of an overpopulated (currently more chunks than desired) size may
7199 // be chosen.  The "hint" associated with a free list, if non-null, points
7200 // to a free list which may be overpopulated.
7201 //
7202 
7203 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
7204   const size_t size = fc->size();
7205   // Chunks that cannot be coalesced are not in the
7206   // free lists.
7207   if (CMSTestInFreeList && !fc->cantCoalesce()) {
7208     assert(_sp->verify_chunk_in_free_list(fc),
7209            "free chunk should be in free lists");
7210   }
7211   // a chunk that is already free, should not have been
7212   // marked in the bit map
7213   HeapWord* const addr = (HeapWord*) fc;
7214   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
7215   // Verify that the bit map has no bits marked between
7216   // addr and purported end of this block.
7217   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7218 
7219   // Some chunks cannot be coalesced under any circumstances.
7220   // See the definition of cantCoalesce().
7221   if (!fc->cantCoalesce()) {
7222     // This chunk can potentially be coalesced.
7223     // All the work is done in
7224     do_post_free_or_garbage_chunk(fc, size);
7225     // Note that if the chunk is not coalescable (the else arm
7226     // below), we unconditionally flush, without needing to do
7227     // a "lookahead," as we do below.
7228     if (inFreeRange()) lookahead_and_flush(fc, size);
7229   } else {
7230     // Code path common to both original and adaptive free lists.
7231 
7232     // cant coalesce with previous block; this should be treated
7233     // as the end of a free run if any
7234     if (inFreeRange()) {
7235       // we kicked some butt; time to pick up the garbage
7236       assert(freeFinger() < addr, "freeFinger points too high");
7237       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7238     }
7239     // else, nothing to do, just continue
7240   }
7241 }
7242 
7243 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
7244   // This is a chunk of garbage.  It is not in any free list.
7245   // Add it to a free list or let it possibly be coalesced into
7246   // a larger chunk.
7247   HeapWord* const addr = (HeapWord*) fc;
7248   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7249 
7250   // Verify that the bit map has no bits marked between
7251   // addr and purported end of just dead object.
7252   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
7253   do_post_free_or_garbage_chunk(fc, size);
7254 
7255   assert(_limit >= addr + size,
7256          "A freshly garbage chunk can't possibly straddle over _limit");
7257   if (inFreeRange()) lookahead_and_flush(fc, size);
7258   return size;
7259 }
7260 
7261 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
7262   HeapWord* addr = (HeapWord*) fc;
7263   // The sweeper has just found a live object. Return any accumulated
7264   // left hand chunk to the free lists.
7265   if (inFreeRange()) {
7266     assert(freeFinger() < addr, "freeFinger points too high");
7267     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7268   }
7269 
7270   // This object is live: we'd normally expect this to be
7271   // an oop, and like to assert the following:
7272   // assert(oopDesc::is_oop(oop(addr)), "live block should be an oop");
7273   // However, as we commented above, this may be an object whose
7274   // header hasn't yet been initialized.
7275   size_t size;
7276   assert(_bitMap->isMarked(addr), "Tautology for this control point");
7277   if (_bitMap->isMarked(addr + 1)) {
7278     // Determine the size from the bit map, rather than trying to
7279     // compute it from the object header.
7280     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7281     size = pointer_delta(nextOneAddr + 1, addr);
7282     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7283            "alignment problem");
7284 
7285 #ifdef ASSERT
7286       if (oop(addr)->klass_or_null_acquire() != NULL) {
7287         // Ignore mark word because we are running concurrent with mutators
7288         assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7289         assert(size ==
7290                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
7291                "P-mark and computed size do not agree");
7292       }
7293 #endif
7294 
7295   } else {
7296     // This should be an initialized object that's alive.
7297     assert(oop(addr)->klass_or_null_acquire() != NULL,
7298            "Should be an initialized object");
7299     // Ignore mark word because we are running concurrent with mutators
7300     assert(oopDesc::is_oop(oop(addr), true), "live block should be an oop");
7301     // Verify that the bit map has no bits marked between
7302     // addr and purported end of this block.
7303     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
7304     assert(size >= 3, "Necessary for Printezis marks to work");
7305     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
7306     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
7307   }
7308   return size;
7309 }
7310 
7311 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
7312                                                  size_t chunkSize) {
7313   // do_post_free_or_garbage_chunk() should only be called in the case
7314   // of the adaptive free list allocator.
7315   const bool fcInFreeLists = fc->is_free();
7316   assert((HeapWord*)fc <= _limit, "sweep invariant");
7317   if (CMSTestInFreeList && fcInFreeLists) {
7318     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
7319   }
7320 
7321   log_develop_trace(gc, sweep)("  -- pick up another chunk at " PTR_FORMAT " (" SIZE_FORMAT ")", p2i(fc), chunkSize);
7322 
7323   HeapWord* const fc_addr = (HeapWord*) fc;
7324 
7325   bool coalesce = false;
7326   const size_t left  = pointer_delta(fc_addr, freeFinger());
7327   const size_t right = chunkSize;
7328   switch (FLSCoalescePolicy) {
7329     // numeric value forms a coalition aggressiveness metric
7330     case 0:  { // never coalesce
7331       coalesce = false;
7332       break;
7333     }
7334     case 1: { // coalesce if left & right chunks on overpopulated lists
7335       coalesce = _sp->coalOverPopulated(left) &&
7336                  _sp->coalOverPopulated(right);
7337       break;
7338     }
7339     case 2: { // coalesce if left chunk on overpopulated list (default)
7340       coalesce = _sp->coalOverPopulated(left);
7341       break;
7342     }
7343     case 3: { // coalesce if left OR right chunk on overpopulated list
7344       coalesce = _sp->coalOverPopulated(left) ||
7345                  _sp->coalOverPopulated(right);
7346       break;
7347     }
7348     case 4: { // always coalesce
7349       coalesce = true;
7350       break;
7351     }
7352     default:
7353      ShouldNotReachHere();
7354   }
7355 
7356   // Should the current free range be coalesced?
7357   // If the chunk is in a free range and either we decided to coalesce above
7358   // or the chunk is near the large block at the end of the heap
7359   // (isNearLargestChunk() returns true), then coalesce this chunk.
7360   const bool doCoalesce = inFreeRange()
7361                           && (coalesce || _g->isNearLargestChunk(fc_addr));
7362   if (doCoalesce) {
7363     // Coalesce the current free range on the left with the new
7364     // chunk on the right.  If either is on a free list,
7365     // it must be removed from the list and stashed in the closure.
7366     if (freeRangeInFreeLists()) {
7367       FreeChunk* const ffc = (FreeChunk*)freeFinger();
7368       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
7369              "Size of free range is inconsistent with chunk size.");
7370       if (CMSTestInFreeList) {
7371         assert(_sp->verify_chunk_in_free_list(ffc),
7372                "Chunk is not in free lists");
7373       }
7374       _sp->coalDeath(ffc->size());
7375       _sp->removeFreeChunkFromFreeLists(ffc);
7376       set_freeRangeInFreeLists(false);
7377     }
7378     if (fcInFreeLists) {
7379       _sp->coalDeath(chunkSize);
7380       assert(fc->size() == chunkSize,
7381         "The chunk has the wrong size or is not in the free lists");
7382       _sp->removeFreeChunkFromFreeLists(fc);
7383     }
7384     set_lastFreeRangeCoalesced(true);
7385     print_free_block_coalesced(fc);
7386   } else {  // not in a free range and/or should not coalesce
7387     // Return the current free range and start a new one.
7388     if (inFreeRange()) {
7389       // In a free range but cannot coalesce with the right hand chunk.
7390       // Put the current free range into the free lists.
7391       flush_cur_free_chunk(freeFinger(),
7392                            pointer_delta(fc_addr, freeFinger()));
7393     }
7394     // Set up for new free range.  Pass along whether the right hand
7395     // chunk is in the free lists.
7396     initialize_free_range((HeapWord*)fc, fcInFreeLists);
7397   }
7398 }
7399 
7400 // Lookahead flush:
7401 // If we are tracking a free range, and this is the last chunk that
7402 // we'll look at because its end crosses past _limit, we'll preemptively
7403 // flush it along with any free range we may be holding on to. Note that
7404 // this can be the case only for an already free or freshly garbage
7405 // chunk. If this block is an object, it can never straddle
7406 // over _limit. The "straddling" occurs when _limit is set at
7407 // the previous end of the space when this cycle started, and
7408 // a subsequent heap expansion caused the previously co-terminal
7409 // free block to be coalesced with the newly expanded portion,
7410 // thus rendering _limit a non-block-boundary making it dangerous
7411 // for the sweeper to step over and examine.
7412 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
7413   assert(inFreeRange(), "Should only be called if currently in a free range.");
7414   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
7415   assert(_sp->used_region().contains(eob - 1),
7416          "eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
7417          " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
7418          " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
7419          p2i(eob), p2i(eob-1), p2i(_limit), p2i(_sp->bottom()), p2i(_sp->end()), p2i(fc), chunk_size);
7420   if (eob >= _limit) {
7421     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
7422     log_develop_trace(gc, sweep)("_limit " PTR_FORMAT " reached or crossed by block "
7423                                  "[" PTR_FORMAT "," PTR_FORMAT ") in space "
7424                                  "[" PTR_FORMAT "," PTR_FORMAT ")",
7425                                  p2i(_limit), p2i(fc), p2i(eob), p2i(_sp->bottom()), p2i(_sp->end()));
7426     // Return the storage we are tracking back into the free lists.
7427     log_develop_trace(gc, sweep)("Flushing ... ");
7428     assert(freeFinger() < eob, "Error");
7429     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
7430   }
7431 }
7432 
7433 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
7434   assert(inFreeRange(), "Should only be called if currently in a free range.");
7435   assert(size > 0,
7436     "A zero sized chunk cannot be added to the free lists.");
7437   if (!freeRangeInFreeLists()) {
7438     if (CMSTestInFreeList) {
7439       FreeChunk* fc = (FreeChunk*) chunk;
7440       fc->set_size(size);
7441       assert(!_sp->verify_chunk_in_free_list(fc),
7442              "chunk should not be in free lists yet");
7443     }
7444     log_develop_trace(gc, sweep)(" -- add free block " PTR_FORMAT " (" SIZE_FORMAT ") to free lists", p2i(chunk), size);
7445     // A new free range is going to be starting.  The current
7446     // free range has not been added to the free lists yet or
7447     // was removed so add it back.
7448     // If the current free range was coalesced, then the death
7449     // of the free range was recorded.  Record a birth now.
7450     if (lastFreeRangeCoalesced()) {
7451       _sp->coalBirth(size);
7452     }
7453     _sp->addChunkAndRepairOffsetTable(chunk, size,
7454             lastFreeRangeCoalesced());
7455   } else {
7456     log_develop_trace(gc, sweep)("Already in free list: nothing to flush");
7457   }
7458   set_inFreeRange(false);
7459   set_freeRangeInFreeLists(false);
7460 }
7461 
7462 // We take a break if we've been at this for a while,
7463 // so as to avoid monopolizing the locks involved.
7464 void SweepClosure::do_yield_work(HeapWord* addr) {
7465   // Return current free chunk being used for coalescing (if any)
7466   // to the appropriate freelist.  After yielding, the next
7467   // free block encountered will start a coalescing range of
7468   // free blocks.  If the next free block is adjacent to the
7469   // chunk just flushed, they will need to wait for the next
7470   // sweep to be coalesced.
7471   if (inFreeRange()) {
7472     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
7473   }
7474 
7475   // First give up the locks, then yield, then re-lock.
7476   // We should probably use a constructor/destructor idiom to
7477   // do this unlock/lock or modify the MutexUnlocker class to
7478   // serve our purpose. XXX
7479   assert_lock_strong(_bitMap->lock());
7480   assert_lock_strong(_freelistLock);
7481   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7482          "CMS thread should hold CMS token");
7483   _bitMap->lock()->unlock();
7484   _freelistLock->unlock();
7485   ConcurrentMarkSweepThread::desynchronize(true);
7486   _collector->stopTimer();
7487   _collector->incrementYields();
7488 
7489   // See the comment in coordinator_yield()
7490   for (unsigned i = 0; i < CMSYieldSleepCount &&
7491                        ConcurrentMarkSweepThread::should_yield() &&
7492                        !CMSCollector::foregroundGCIsActive(); ++i) {
7493     os::sleep(Thread::current(), 1, false);
7494   }
7495 
7496   ConcurrentMarkSweepThread::synchronize(true);
7497   _freelistLock->lock();
7498   _bitMap->lock()->lock_without_safepoint_check();
7499   _collector->startTimer();
7500 }
7501 
7502 #ifndef PRODUCT
7503 // This is actually very useful in a product build if it can
7504 // be called from the debugger.  Compile it into the product
7505 // as needed.
7506 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
7507   return debug_cms_space->verify_chunk_in_free_list(fc);
7508 }
7509 #endif
7510 
7511 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
7512   log_develop_trace(gc, sweep)("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
7513                                p2i(fc), fc->size());
7514 }
7515 
7516 // CMSIsAliveClosure
7517 bool CMSIsAliveClosure::do_object_b(oop obj) {
7518   HeapWord* addr = (HeapWord*)obj;
7519   return addr != NULL &&
7520          (!_span.contains(addr) || _bit_map->isMarked(addr));
7521 }
7522 
7523 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
7524                       MemRegion span,
7525                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
7526                       bool cpc):
7527   _collector(collector),
7528   _span(span),
7529   _mark_stack(mark_stack),
7530   _bit_map(bit_map),
7531   _concurrent_precleaning(cpc) {
7532   assert(!_span.is_empty(), "Empty span could spell trouble");
7533 }
7534 
7535 
7536 // CMSKeepAliveClosure: the serial version
7537 void CMSKeepAliveClosure::do_oop(oop obj) {
7538   HeapWord* addr = (HeapWord*)obj;
7539   if (_span.contains(addr) &&
7540       !_bit_map->isMarked(addr)) {
7541     _bit_map->mark(addr);
7542     bool simulate_overflow = false;
7543     NOT_PRODUCT(
7544       if (CMSMarkStackOverflowALot &&
7545           _collector->simulate_overflow()) {
7546         // simulate a stack overflow
7547         simulate_overflow = true;
7548       }
7549     )
7550     if (simulate_overflow || !_mark_stack->push(obj)) {
7551       if (_concurrent_precleaning) {
7552         // We dirty the overflown object and let the remark
7553         // phase deal with it.
7554         assert(_collector->overflow_list_is_empty(), "Error");
7555         // In the case of object arrays, we need to dirty all of
7556         // the cards that the object spans. No locking or atomics
7557         // are needed since no one else can be mutating the mod union
7558         // table.
7559         if (obj->is_objArray()) {
7560           size_t sz = obj->size();
7561           HeapWord* end_card_addr = align_up(addr + sz, CardTable::card_size);
7562           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7563           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7564           _collector->_modUnionTable.mark_range(redirty_range);
7565         } else {
7566           _collector->_modUnionTable.mark(addr);
7567         }
7568         _collector->_ser_kac_preclean_ovflw++;
7569       } else {
7570         _collector->push_on_overflow_list(obj);
7571         _collector->_ser_kac_ovflw++;
7572       }
7573     }
7574   }
7575 }
7576 
7577 // CMSParKeepAliveClosure: a parallel version of the above.
7578 // The work queues are private to each closure (thread),
7579 // but (may be) available for stealing by other threads.
7580 void CMSParKeepAliveClosure::do_oop(oop obj) {
7581   HeapWord* addr = (HeapWord*)obj;
7582   if (_span.contains(addr) &&
7583       !_bit_map->isMarked(addr)) {
7584     // In general, during recursive tracing, several threads
7585     // may be concurrently getting here; the first one to
7586     // "tag" it, claims it.
7587     if (_bit_map->par_mark(addr)) {
7588       bool res = _work_queue->push(obj);
7589       assert(res, "Low water mark should be much less than capacity");
7590       // Do a recursive trim in the hope that this will keep
7591       // stack usage lower, but leave some oops for potential stealers
7592       trim_queue(_low_water_mark);
7593     } // Else, another thread got there first
7594   }
7595 }
7596 
7597 void CMSParKeepAliveClosure::trim_queue(uint max) {
7598   while (_work_queue->size() > max) {
7599     oop new_oop;
7600     if (_work_queue->pop_local(new_oop)) {
7601       assert(new_oop != NULL && oopDesc::is_oop(new_oop), "Expected an oop");
7602       assert(_bit_map->isMarked((HeapWord*)new_oop),
7603              "no white objects on this stack!");
7604       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7605       // iterate over the oops in this oop, marking and pushing
7606       // the ones in CMS heap (i.e. in _span).
7607       new_oop->oop_iterate(&_mark_and_push);
7608     }
7609   }
7610 }
7611 
7612 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
7613                                 CMSCollector* collector,
7614                                 MemRegion span, CMSBitMap* bit_map,
7615                                 OopTaskQueue* work_queue):
7616   _collector(collector),
7617   _span(span),
7618   _work_queue(work_queue),
7619   _bit_map(bit_map) { }
7620 
7621 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
7622   HeapWord* addr = (HeapWord*)obj;
7623   if (_span.contains(addr) &&
7624       !_bit_map->isMarked(addr)) {
7625     if (_bit_map->par_mark(addr)) {
7626       bool simulate_overflow = false;
7627       NOT_PRODUCT(
7628         if (CMSMarkStackOverflowALot &&
7629             _collector->par_simulate_overflow()) {
7630           // simulate a stack overflow
7631           simulate_overflow = true;
7632         }
7633       )
7634       if (simulate_overflow || !_work_queue->push(obj)) {
7635         _collector->par_push_on_overflow_list(obj);
7636         _collector->_par_kac_ovflw++;
7637       }
7638     } // Else another thread got there already
7639   }
7640 }
7641 
7642 //////////////////////////////////////////////////////////////////
7643 //  CMSExpansionCause                /////////////////////////////
7644 //////////////////////////////////////////////////////////////////
7645 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
7646   switch (cause) {
7647     case _no_expansion:
7648       return "No expansion";
7649     case _satisfy_free_ratio:
7650       return "Free ratio";
7651     case _satisfy_promotion:
7652       return "Satisfy promotion";
7653     case _satisfy_allocation:
7654       return "allocation";
7655     case _allocate_par_lab:
7656       return "Par LAB";
7657     case _allocate_par_spooling_space:
7658       return "Par Spooling Space";
7659     case _adaptive_size_policy:
7660       return "Ergonomics";
7661     default:
7662       return "unknown";
7663   }
7664 }
7665 
7666 void CMSDrainMarkingStackClosure::do_void() {
7667   // the max number to take from overflow list at a time
7668   const size_t num = _mark_stack->capacity()/4;
7669   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
7670          "Overflow list should be NULL during concurrent phases");
7671   while (!_mark_stack->isEmpty() ||
7672          // if stack is empty, check the overflow list
7673          _collector->take_from_overflow_list(num, _mark_stack)) {
7674     oop obj = _mark_stack->pop();
7675     HeapWord* addr = (HeapWord*)obj;
7676     assert(_span.contains(addr), "Should be within span");
7677     assert(_bit_map->isMarked(addr), "Should be marked");
7678     assert(oopDesc::is_oop(obj), "Should be an oop");
7679     obj->oop_iterate(_keep_alive);
7680   }
7681 }
7682 
7683 void CMSParDrainMarkingStackClosure::do_void() {
7684   // drain queue
7685   trim_queue(0);
7686 }
7687 
7688 // Trim our work_queue so its length is below max at return
7689 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
7690   while (_work_queue->size() > max) {
7691     oop new_oop;
7692     if (_work_queue->pop_local(new_oop)) {
7693       assert(oopDesc::is_oop(new_oop), "Expected an oop");
7694       assert(_bit_map->isMarked((HeapWord*)new_oop),
7695              "no white objects on this stack!");
7696       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
7697       // iterate over the oops in this oop, marking and pushing
7698       // the ones in CMS heap (i.e. in _span).
7699       new_oop->oop_iterate(&_mark_and_push);
7700     }
7701   }
7702 }
7703 
7704 ////////////////////////////////////////////////////////////////////
7705 // Support for Marking Stack Overflow list handling and related code
7706 ////////////////////////////////////////////////////////////////////
7707 // Much of the following code is similar in shape and spirit to the
7708 // code used in ParNewGC. We should try and share that code
7709 // as much as possible in the future.
7710 
7711 #ifndef PRODUCT
7712 // Debugging support for CMSStackOverflowALot
7713 
7714 // It's OK to call this multi-threaded;  the worst thing
7715 // that can happen is that we'll get a bunch of closely
7716 // spaced simulated overflows, but that's OK, in fact
7717 // probably good as it would exercise the overflow code
7718 // under contention.
7719 bool CMSCollector::simulate_overflow() {
7720   if (_overflow_counter-- <= 0) { // just being defensive
7721     _overflow_counter = CMSMarkStackOverflowInterval;
7722     return true;
7723   } else {
7724     return false;
7725   }
7726 }
7727 
7728 bool CMSCollector::par_simulate_overflow() {
7729   return simulate_overflow();
7730 }
7731 #endif
7732 
7733 // Single-threaded
7734 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
7735   assert(stack->isEmpty(), "Expected precondition");
7736   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
7737   size_t i = num;
7738   oop  cur = _overflow_list;
7739   const markOop proto = markOopDesc::prototype();
7740   NOT_PRODUCT(ssize_t n = 0;)
7741   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
7742     next = oop(cur->mark_raw());
7743     cur->set_mark_raw(proto);   // until proven otherwise
7744     assert(oopDesc::is_oop(cur), "Should be an oop");
7745     bool res = stack->push(cur);
7746     assert(res, "Bit off more than can chew?");
7747     NOT_PRODUCT(n++;)
7748   }
7749   _overflow_list = cur;
7750 #ifndef PRODUCT
7751   assert(_num_par_pushes >= n, "Too many pops?");
7752   _num_par_pushes -=n;
7753 #endif
7754   return !stack->isEmpty();
7755 }
7756 
7757 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
7758 // (MT-safe) Get a prefix of at most "num" from the list.
7759 // The overflow list is chained through the mark word of
7760 // each object in the list. We fetch the entire list,
7761 // break off a prefix of the right size and return the
7762 // remainder. If other threads try to take objects from
7763 // the overflow list at that time, they will wait for
7764 // some time to see if data becomes available. If (and
7765 // only if) another thread places one or more object(s)
7766 // on the global list before we have returned the suffix
7767 // to the global list, we will walk down our local list
7768 // to find its end and append the global list to
7769 // our suffix before returning it. This suffix walk can
7770 // prove to be expensive (quadratic in the amount of traffic)
7771 // when there are many objects in the overflow list and
7772 // there is much producer-consumer contention on the list.
7773 // *NOTE*: The overflow list manipulation code here and
7774 // in ParNewGeneration:: are very similar in shape,
7775 // except that in the ParNew case we use the old (from/eden)
7776 // copy of the object to thread the list via its klass word.
7777 // Because of the common code, if you make any changes in
7778 // the code below, please check the ParNew version to see if
7779 // similar changes might be needed.
7780 // CR 6797058 has been filed to consolidate the common code.
7781 bool CMSCollector::par_take_from_overflow_list(size_t num,
7782                                                OopTaskQueue* work_q,
7783                                                int no_of_gc_threads) {
7784   assert(work_q->size() == 0, "First empty local work queue");
7785   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
7786   if (_overflow_list == NULL) {
7787     return false;
7788   }
7789   // Grab the entire list; we'll put back a suffix
7790   oop prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7791   Thread* tid = Thread::current();
7792   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
7793   // set to ParallelGCThreads.
7794   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
7795   size_t sleep_time_millis = MAX2((size_t)1, num/100);
7796   // If the list is busy, we spin for a short while,
7797   // sleeping between attempts to get the list.
7798   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
7799     os::sleep(tid, sleep_time_millis, false);
7800     if (_overflow_list == NULL) {
7801       // Nothing left to take
7802       return false;
7803     } else if (_overflow_list != BUSY) {
7804       // Try and grab the prefix
7805       prefix = cast_to_oop(Atomic::xchg((oopDesc*)BUSY, &_overflow_list));
7806     }
7807   }
7808   // If the list was found to be empty, or we spun long
7809   // enough, we give up and return empty-handed. If we leave
7810   // the list in the BUSY state below, it must be the case that
7811   // some other thread holds the overflow list and will set it
7812   // to a non-BUSY state in the future.
7813   if (prefix == NULL || prefix == BUSY) {
7814      // Nothing to take or waited long enough
7815      if (prefix == NULL) {
7816        // Write back the NULL in case we overwrote it with BUSY above
7817        // and it is still the same value.
7818        Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7819      }
7820      return false;
7821   }
7822   assert(prefix != NULL && prefix != BUSY, "Error");
7823   size_t i = num;
7824   oop cur = prefix;
7825   // Walk down the first "num" objects, unless we reach the end.
7826   for (; i > 1 && cur->mark_raw() != NULL; cur = oop(cur->mark_raw()), i--);
7827   if (cur->mark_raw() == NULL) {
7828     // We have "num" or fewer elements in the list, so there
7829     // is nothing to return to the global list.
7830     // Write back the NULL in lieu of the BUSY we wrote
7831     // above, if it is still the same value.
7832     if (_overflow_list == BUSY) {
7833       Atomic::cmpxchg((oopDesc*)NULL, &_overflow_list, (oopDesc*)BUSY);
7834     }
7835   } else {
7836     // Chop off the suffix and return it to the global list.
7837     assert(cur->mark_raw() != BUSY, "Error");
7838     oop suffix_head = cur->mark_raw(); // suffix will be put back on global list
7839     cur->set_mark_raw(NULL);           // break off suffix
7840     // It's possible that the list is still in the empty(busy) state
7841     // we left it in a short while ago; in that case we may be
7842     // able to place back the suffix without incurring the cost
7843     // of a walk down the list.
7844     oop observed_overflow_list = _overflow_list;
7845     oop cur_overflow_list = observed_overflow_list;
7846     bool attached = false;
7847     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
7848       observed_overflow_list =
7849         Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7850       if (cur_overflow_list == observed_overflow_list) {
7851         attached = true;
7852         break;
7853       } else cur_overflow_list = observed_overflow_list;
7854     }
7855     if (!attached) {
7856       // Too bad, someone else sneaked in (at least) an element; we'll need
7857       // to do a splice. Find tail of suffix so we can prepend suffix to global
7858       // list.
7859       for (cur = suffix_head; cur->mark_raw() != NULL; cur = (oop)(cur->mark_raw()));
7860       oop suffix_tail = cur;
7861       assert(suffix_tail != NULL && suffix_tail->mark_raw() == NULL,
7862              "Tautology");
7863       observed_overflow_list = _overflow_list;
7864       do {
7865         cur_overflow_list = observed_overflow_list;
7866         if (cur_overflow_list != BUSY) {
7867           // Do the splice ...
7868           suffix_tail->set_mark_raw(markOop(cur_overflow_list));
7869         } else { // cur_overflow_list == BUSY
7870           suffix_tail->set_mark_raw(NULL);
7871         }
7872         // ... and try to place spliced list back on overflow_list ...
7873         observed_overflow_list =
7874           Atomic::cmpxchg((oopDesc*)suffix_head, &_overflow_list, (oopDesc*)cur_overflow_list);
7875       } while (cur_overflow_list != observed_overflow_list);
7876       // ... until we have succeeded in doing so.
7877     }
7878   }
7879 
7880   // Push the prefix elements on work_q
7881   assert(prefix != NULL, "control point invariant");
7882   const markOop proto = markOopDesc::prototype();
7883   oop next;
7884   NOT_PRODUCT(ssize_t n = 0;)
7885   for (cur = prefix; cur != NULL; cur = next) {
7886     next = oop(cur->mark_raw());
7887     cur->set_mark_raw(proto);   // until proven otherwise
7888     assert(oopDesc::is_oop(cur), "Should be an oop");
7889     bool res = work_q->push(cur);
7890     assert(res, "Bit off more than we can chew?");
7891     NOT_PRODUCT(n++;)
7892   }
7893 #ifndef PRODUCT
7894   assert(_num_par_pushes >= n, "Too many pops?");
7895   Atomic::sub(n, &_num_par_pushes);
7896 #endif
7897   return true;
7898 }
7899 
7900 // Single-threaded
7901 void CMSCollector::push_on_overflow_list(oop p) {
7902   NOT_PRODUCT(_num_par_pushes++;)
7903   assert(oopDesc::is_oop(p), "Not an oop");
7904   preserve_mark_if_necessary(p);
7905   p->set_mark_raw((markOop)_overflow_list);
7906   _overflow_list = p;
7907 }
7908 
7909 // Multi-threaded; use CAS to prepend to overflow list
7910 void CMSCollector::par_push_on_overflow_list(oop p) {
7911   NOT_PRODUCT(Atomic::inc(&_num_par_pushes);)
7912   assert(oopDesc::is_oop(p), "Not an oop");
7913   par_preserve_mark_if_necessary(p);
7914   oop observed_overflow_list = _overflow_list;
7915   oop cur_overflow_list;
7916   do {
7917     cur_overflow_list = observed_overflow_list;
7918     if (cur_overflow_list != BUSY) {
7919       p->set_mark_raw(markOop(cur_overflow_list));
7920     } else {
7921       p->set_mark_raw(NULL);
7922     }
7923     observed_overflow_list =
7924       Atomic::cmpxchg((oopDesc*)p, &_overflow_list, (oopDesc*)cur_overflow_list);
7925   } while (cur_overflow_list != observed_overflow_list);
7926 }
7927 #undef BUSY
7928 
7929 // Single threaded
7930 // General Note on GrowableArray: pushes may silently fail
7931 // because we are (temporarily) out of C-heap for expanding
7932 // the stack. The problem is quite ubiquitous and affects
7933 // a lot of code in the JVM. The prudent thing for GrowableArray
7934 // to do (for now) is to exit with an error. However, that may
7935 // be too draconian in some cases because the caller may be
7936 // able to recover without much harm. For such cases, we
7937 // should probably introduce a "soft_push" method which returns
7938 // an indication of success or failure with the assumption that
7939 // the caller may be able to recover from a failure; code in
7940 // the VM can then be changed, incrementally, to deal with such
7941 // failures where possible, thus, incrementally hardening the VM
7942 // in such low resource situations.
7943 void CMSCollector::preserve_mark_work(oop p, markOop m) {
7944   _preserved_oop_stack.push(p);
7945   _preserved_mark_stack.push(m);
7946   assert(m == p->mark_raw(), "Mark word changed");
7947   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
7948          "bijection");
7949 }
7950 
7951 // Single threaded
7952 void CMSCollector::preserve_mark_if_necessary(oop p) {
7953   markOop m = p->mark_raw();
7954   if (m->must_be_preserved(p)) {
7955     preserve_mark_work(p, m);
7956   }
7957 }
7958 
7959 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
7960   markOop m = p->mark_raw();
7961   if (m->must_be_preserved(p)) {
7962     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
7963     // Even though we read the mark word without holding
7964     // the lock, we are assured that it will not change
7965     // because we "own" this oop, so no other thread can
7966     // be trying to push it on the overflow list; see
7967     // the assertion in preserve_mark_work() that checks
7968     // that m == p->mark_raw().
7969     preserve_mark_work(p, m);
7970   }
7971 }
7972 
7973 // We should be able to do this multi-threaded,
7974 // a chunk of stack being a task (this is
7975 // correct because each oop only ever appears
7976 // once in the overflow list. However, it's
7977 // not very easy to completely overlap this with
7978 // other operations, so will generally not be done
7979 // until all work's been completed. Because we
7980 // expect the preserved oop stack (set) to be small,
7981 // it's probably fine to do this single-threaded.
7982 // We can explore cleverer concurrent/overlapped/parallel
7983 // processing of preserved marks if we feel the
7984 // need for this in the future. Stack overflow should
7985 // be so rare in practice and, when it happens, its
7986 // effect on performance so great that this will
7987 // likely just be in the noise anyway.
7988 void CMSCollector::restore_preserved_marks_if_any() {
7989   assert(SafepointSynchronize::is_at_safepoint(),
7990          "world should be stopped");
7991   assert(Thread::current()->is_ConcurrentGC_thread() ||
7992          Thread::current()->is_VM_thread(),
7993          "should be single-threaded");
7994   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
7995          "bijection");
7996 
7997   while (!_preserved_oop_stack.is_empty()) {
7998     oop p = _preserved_oop_stack.pop();
7999     assert(oopDesc::is_oop(p), "Should be an oop");
8000     assert(_span.contains(p), "oop should be in _span");
8001     assert(p->mark_raw() == markOopDesc::prototype(),
8002            "Set when taken from overflow list");
8003     markOop m = _preserved_mark_stack.pop();
8004     p->set_mark_raw(m);
8005   }
8006   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
8007          "stacks were cleared above");
8008 }
8009 
8010 #ifndef PRODUCT
8011 bool CMSCollector::no_preserved_marks() const {
8012   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
8013 }
8014 #endif
8015 
8016 // Transfer some number of overflown objects to usual marking
8017 // stack. Return true if some objects were transferred.
8018 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
8019   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
8020                     (size_t)ParGCDesiredObjsFromOverflowList);
8021 
8022   bool res = _collector->take_from_overflow_list(num, _mark_stack);
8023   assert(_collector->overflow_list_is_empty() || res,
8024          "If list is not empty, we should have taken something");
8025   assert(!res || !_mark_stack->isEmpty(),
8026          "If we took something, it should now be on our stack");
8027   return res;
8028 }
8029 
8030 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
8031   size_t res = _sp->block_size_no_stall(addr, _collector);
8032   if (_sp->block_is_obj(addr)) {
8033     if (_live_bit_map->isMarked(addr)) {
8034       // It can't have been dead in a previous cycle
8035       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
8036     } else {
8037       _dead_bit_map->mark(addr);      // mark the dead object
8038     }
8039   }
8040   // Could be 0, if the block size could not be computed without stalling.
8041   return res;
8042 }
8043 
8044 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
8045   GCMemoryManager* manager = CMSHeap::heap()->old_manager();
8046   switch (phase) {
8047     case CMSCollector::InitialMarking:
8048       initialize(manager /* GC manager */ ,
8049                  cause   /* cause of the GC */,
8050                  true    /* allMemoryPoolsAffected */,
8051                  true    /* recordGCBeginTime */,
8052                  true    /* recordPreGCUsage */,
8053                  false   /* recordPeakUsage */,
8054                  false   /* recordPostGCusage */,
8055                  true    /* recordAccumulatedGCTime */,
8056                  false   /* recordGCEndTime */,
8057                  false   /* countCollection */  );
8058       break;
8059 
8060     case CMSCollector::FinalMarking:
8061       initialize(manager /* GC manager */ ,
8062                  cause   /* cause of the GC */,
8063                  true    /* allMemoryPoolsAffected */,
8064                  false   /* recordGCBeginTime */,
8065                  false   /* recordPreGCUsage */,
8066                  false   /* recordPeakUsage */,
8067                  false   /* recordPostGCusage */,
8068                  true    /* recordAccumulatedGCTime */,
8069                  false   /* recordGCEndTime */,
8070                  false   /* countCollection */  );
8071       break;
8072 
8073     case CMSCollector::Sweeping:
8074       initialize(manager /* GC manager */ ,
8075                  cause   /* cause of the GC */,
8076                  true    /* allMemoryPoolsAffected */,
8077                  false   /* recordGCBeginTime */,
8078                  false   /* recordPreGCUsage */,
8079                  true    /* recordPeakUsage */,
8080                  true    /* recordPostGCusage */,
8081                  false   /* recordAccumulatedGCTime */,
8082                  true    /* recordGCEndTime */,
8083                  true    /* countCollection */  );
8084       break;
8085 
8086     default:
8087       ShouldNotReachHere();
8088   }
8089 }