1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderDataGraph.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "gc/g1/g1BarrierSet.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorState.hpp"
  31 #include "gc/g1/g1ConcurrentMark.inline.hpp"
  32 #include "gc/g1/g1ConcurrentMarkThread.inline.hpp"
  33 #include "gc/g1/g1HeapVerifier.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1Policy.hpp"
  36 #include "gc/g1/g1RegionMarkStatsCache.inline.hpp"
  37 #include "gc/g1/g1StringDedup.hpp"
  38 #include "gc/g1/g1ThreadLocalData.hpp"
  39 #include "gc/g1/heapRegion.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/g1/heapRegionSet.inline.hpp"
  42 #include "gc/shared/adaptiveSizePolicy.hpp"
  43 #include "gc/shared/gcId.hpp"
  44 #include "gc/shared/gcTimer.hpp"
  45 #include "gc/shared/gcTrace.hpp"
  46 #include "gc/shared/gcTraceTime.inline.hpp"
  47 #include "gc/shared/genOopClosures.inline.hpp"
  48 #include "gc/shared/referencePolicy.hpp"
  49 #include "gc/shared/strongRootsScope.hpp"
  50 #include "gc/shared/suspendibleThreadSet.hpp"
  51 #include "gc/shared/taskqueue.inline.hpp"
  52 #include "gc/shared/vmGCOperations.hpp"
  53 #include "gc/shared/weakProcessor.inline.hpp"
  54 #include "include/jvm.h"
  55 #include "logging/log.hpp"
  56 #include "memory/allocation.hpp"
  57 #include "memory/resourceArea.hpp"
  58 #include "oops/access.inline.hpp"
  59 #include "oops/oop.inline.hpp"
  60 #include "runtime/atomic.hpp"
  61 #include "runtime/handles.inline.hpp"
  62 #include "runtime/java.hpp"
  63 #include "runtime/prefetch.inline.hpp"
  64 #include "services/memTracker.hpp"
  65 #include "utilities/align.hpp"
  66 #include "utilities/growableArray.hpp"
  67 
  68 bool G1CMBitMapClosure::do_addr(HeapWord* const addr) {
  69   assert(addr < _cm->finger(), "invariant");
  70   assert(addr >= _task->finger(), "invariant");
  71 
  72   // We move that task's local finger along.
  73   _task->move_finger_to(addr);
  74 
  75   _task->scan_task_entry(G1TaskQueueEntry::from_oop(oop(addr)));
  76   // we only partially drain the local queue and global stack
  77   _task->drain_local_queue(true);
  78   _task->drain_global_stack(true);
  79 
  80   // if the has_aborted flag has been raised, we need to bail out of
  81   // the iteration
  82   return !_task->has_aborted();
  83 }
  84 
  85 G1CMMarkStack::G1CMMarkStack() :
  86   _max_chunk_capacity(0),
  87   _base(NULL),
  88   _chunk_capacity(0) {
  89   set_empty();
  90 }
  91 
  92 bool G1CMMarkStack::resize(size_t new_capacity) {
  93   assert(is_empty(), "Only resize when stack is empty.");
  94   assert(new_capacity <= _max_chunk_capacity,
  95          "Trying to resize stack to " SIZE_FORMAT " chunks when the maximum is " SIZE_FORMAT, new_capacity, _max_chunk_capacity);
  96 
  97   TaskQueueEntryChunk* new_base = MmapArrayAllocator<TaskQueueEntryChunk>::allocate_or_null(new_capacity, mtGC);
  98 
  99   if (new_base == NULL) {
 100     log_warning(gc)("Failed to reserve memory for new overflow mark stack with " SIZE_FORMAT " chunks and size " SIZE_FORMAT "B.", new_capacity, new_capacity * sizeof(TaskQueueEntryChunk));
 101     return false;
 102   }
 103   // Release old mapping.
 104   if (_base != NULL) {
 105     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 106   }
 107 
 108   _base = new_base;
 109   _chunk_capacity = new_capacity;
 110   set_empty();
 111 
 112   return true;
 113 }
 114 
 115 size_t G1CMMarkStack::capacity_alignment() {
 116   return (size_t)lcm(os::vm_allocation_granularity(), sizeof(TaskQueueEntryChunk)) / sizeof(G1TaskQueueEntry);
 117 }
 118 
 119 bool G1CMMarkStack::initialize(size_t initial_capacity, size_t max_capacity) {
 120   guarantee(_max_chunk_capacity == 0, "G1CMMarkStack already initialized.");
 121 
 122   size_t const TaskEntryChunkSizeInVoidStar = sizeof(TaskQueueEntryChunk) / sizeof(G1TaskQueueEntry);
 123 
 124   _max_chunk_capacity = align_up(max_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 125   size_t initial_chunk_capacity = align_up(initial_capacity, capacity_alignment()) / TaskEntryChunkSizeInVoidStar;
 126 
 127   guarantee(initial_chunk_capacity <= _max_chunk_capacity,
 128             "Maximum chunk capacity " SIZE_FORMAT " smaller than initial capacity " SIZE_FORMAT,
 129             _max_chunk_capacity,
 130             initial_chunk_capacity);
 131 
 132   log_debug(gc)("Initialize mark stack with " SIZE_FORMAT " chunks, maximum " SIZE_FORMAT,
 133                 initial_chunk_capacity, _max_chunk_capacity);
 134 
 135   return resize(initial_chunk_capacity);
 136 }
 137 
 138 void G1CMMarkStack::expand() {
 139   if (_chunk_capacity == _max_chunk_capacity) {
 140     log_debug(gc)("Can not expand overflow mark stack further, already at maximum capacity of " SIZE_FORMAT " chunks.", _chunk_capacity);
 141     return;
 142   }
 143   size_t old_capacity = _chunk_capacity;
 144   // Double capacity if possible
 145   size_t new_capacity = MIN2(old_capacity * 2, _max_chunk_capacity);
 146 
 147   if (resize(new_capacity)) {
 148     log_debug(gc)("Expanded mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 149                   old_capacity, new_capacity);
 150   } else {
 151     log_warning(gc)("Failed to expand mark stack capacity from " SIZE_FORMAT " to " SIZE_FORMAT " chunks",
 152                     old_capacity, new_capacity);
 153   }
 154 }
 155 
 156 G1CMMarkStack::~G1CMMarkStack() {
 157   if (_base != NULL) {
 158     MmapArrayAllocator<TaskQueueEntryChunk>::free(_base, _chunk_capacity);
 159   }
 160 }
 161 
 162 void G1CMMarkStack::add_chunk_to_list(TaskQueueEntryChunk* volatile* list, TaskQueueEntryChunk* elem) {
 163   elem->next = *list;
 164   *list = elem;
 165 }
 166 
 167 void G1CMMarkStack::add_chunk_to_chunk_list(TaskQueueEntryChunk* elem) {
 168   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 169   add_chunk_to_list(&_chunk_list, elem);
 170   _chunks_in_chunk_list++;
 171 }
 172 
 173 void G1CMMarkStack::add_chunk_to_free_list(TaskQueueEntryChunk* elem) {
 174   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 175   add_chunk_to_list(&_free_list, elem);
 176 }
 177 
 178 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_list(TaskQueueEntryChunk* volatile* list) {
 179   TaskQueueEntryChunk* result = *list;
 180   if (result != NULL) {
 181     *list = (*list)->next;
 182   }
 183   return result;
 184 }
 185 
 186 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_chunk_list() {
 187   MutexLockerEx x(MarkStackChunkList_lock, Mutex::_no_safepoint_check_flag);
 188   TaskQueueEntryChunk* result = remove_chunk_from_list(&_chunk_list);
 189   if (result != NULL) {
 190     _chunks_in_chunk_list--;
 191   }
 192   return result;
 193 }
 194 
 195 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::remove_chunk_from_free_list() {
 196   MutexLockerEx x(MarkStackFreeList_lock, Mutex::_no_safepoint_check_flag);
 197   return remove_chunk_from_list(&_free_list);
 198 }
 199 
 200 G1CMMarkStack::TaskQueueEntryChunk* G1CMMarkStack::allocate_new_chunk() {
 201   // This dirty read of _hwm is okay because we only ever increase the _hwm in parallel code.
 202   // Further this limits _hwm to a value of _chunk_capacity + #threads, avoiding
 203   // wraparound of _hwm.
 204   if (_hwm >= _chunk_capacity) {
 205     return NULL;
 206   }
 207 
 208   size_t cur_idx = Atomic::add(1u, &_hwm) - 1;
 209   if (cur_idx >= _chunk_capacity) {
 210     return NULL;
 211   }
 212 
 213   TaskQueueEntryChunk* result = ::new (&_base[cur_idx]) TaskQueueEntryChunk;
 214   result->next = NULL;
 215   return result;
 216 }
 217 
 218 bool G1CMMarkStack::par_push_chunk(G1TaskQueueEntry* ptr_arr) {
 219   // Get a new chunk.
 220   TaskQueueEntryChunk* new_chunk = remove_chunk_from_free_list();
 221 
 222   if (new_chunk == NULL) {
 223     // Did not get a chunk from the free list. Allocate from backing memory.
 224     new_chunk = allocate_new_chunk();
 225 
 226     if (new_chunk == NULL) {
 227       return false;
 228     }
 229   }
 230 
 231   Copy::conjoint_memory_atomic(ptr_arr, new_chunk->data, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 232 
 233   add_chunk_to_chunk_list(new_chunk);
 234 
 235   return true;
 236 }
 237 
 238 bool G1CMMarkStack::par_pop_chunk(G1TaskQueueEntry* ptr_arr) {
 239   TaskQueueEntryChunk* cur = remove_chunk_from_chunk_list();
 240 
 241   if (cur == NULL) {
 242     return false;
 243   }
 244 
 245   Copy::conjoint_memory_atomic(cur->data, ptr_arr, EntriesPerChunk * sizeof(G1TaskQueueEntry));
 246 
 247   add_chunk_to_free_list(cur);
 248   return true;
 249 }
 250 
 251 void G1CMMarkStack::set_empty() {
 252   _chunks_in_chunk_list = 0;
 253   _hwm = 0;
 254   _chunk_list = NULL;
 255   _free_list = NULL;
 256 }
 257 
 258 G1CMRootRegions::G1CMRootRegions() :
 259   _survivors(NULL), _cm(NULL), _scan_in_progress(false),
 260   _should_abort(false), _claimed_survivor_index(0) { }
 261 
 262 void G1CMRootRegions::init(const G1SurvivorRegions* survivors, G1ConcurrentMark* cm) {
 263   _survivors = survivors;
 264   _cm = cm;
 265 }
 266 
 267 void G1CMRootRegions::prepare_for_scan() {
 268   assert(!scan_in_progress(), "pre-condition");
 269 
 270   // Currently, only survivors can be root regions.
 271   _claimed_survivor_index = 0;
 272   _scan_in_progress = _survivors->regions()->is_nonempty();
 273   _should_abort = false;
 274 }
 275 
 276 HeapRegion* G1CMRootRegions::claim_next() {
 277   if (_should_abort) {
 278     // If someone has set the should_abort flag, we return NULL to
 279     // force the caller to bail out of their loop.
 280     return NULL;
 281   }
 282 
 283   // Currently, only survivors can be root regions.
 284   const GrowableArray<HeapRegion*>* survivor_regions = _survivors->regions();
 285 
 286   int claimed_index = Atomic::add(1, &_claimed_survivor_index) - 1;
 287   if (claimed_index < survivor_regions->length()) {
 288     return survivor_regions->at(claimed_index);
 289   }
 290   return NULL;
 291 }
 292 
 293 uint G1CMRootRegions::num_root_regions() const {
 294   return (uint)_survivors->regions()->length();
 295 }
 296 
 297 void G1CMRootRegions::notify_scan_done() {
 298   MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 299   _scan_in_progress = false;
 300   RootRegionScan_lock->notify_all();
 301 }
 302 
 303 void G1CMRootRegions::cancel_scan() {
 304   notify_scan_done();
 305 }
 306 
 307 void G1CMRootRegions::scan_finished() {
 308   assert(scan_in_progress(), "pre-condition");
 309 
 310   // Currently, only survivors can be root regions.
 311   if (!_should_abort) {
 312     assert(_claimed_survivor_index >= 0, "otherwise comparison is invalid: %d", _claimed_survivor_index);
 313     assert((uint)_claimed_survivor_index >= _survivors->length(),
 314            "we should have claimed all survivors, claimed index = %u, length = %u",
 315            (uint)_claimed_survivor_index, _survivors->length());
 316   }
 317 
 318   notify_scan_done();
 319 }
 320 
 321 bool G1CMRootRegions::wait_until_scan_finished() {
 322   if (!scan_in_progress()) {
 323     return false;
 324   }
 325 
 326   {
 327     MutexLockerEx x(RootRegionScan_lock, Mutex::_no_safepoint_check_flag);
 328     while (scan_in_progress()) {
 329       RootRegionScan_lock->wait(Mutex::_no_safepoint_check_flag);
 330     }
 331   }
 332   return true;
 333 }
 334 
 335 // Returns the maximum number of workers to be used in a concurrent
 336 // phase based on the number of GC workers being used in a STW
 337 // phase.
 338 static uint scale_concurrent_worker_threads(uint num_gc_workers) {
 339   return MAX2((num_gc_workers + 2) / 4, 1U);
 340 }
 341 
 342 G1ConcurrentMark::G1ConcurrentMark(G1CollectedHeap* g1h,
 343                                    G1RegionToSpaceMapper* prev_bitmap_storage,
 344                                    G1RegionToSpaceMapper* next_bitmap_storage) :
 345   // _cm_thread set inside the constructor
 346   _g1h(g1h),
 347   _completed_initialization(false),
 348 
 349   _mark_bitmap_1(),
 350   _mark_bitmap_2(),
 351   _prev_mark_bitmap(&_mark_bitmap_1),
 352   _next_mark_bitmap(&_mark_bitmap_2),
 353 
 354   _heap(_g1h->reserved_region()),
 355 
 356   _root_regions(),
 357 
 358   _global_mark_stack(),
 359 
 360   // _finger set in set_non_marking_state
 361 
 362   _worker_id_offset(DirtyCardQueueSet::num_par_ids() + G1ConcRefinementThreads),
 363   _max_num_tasks(ParallelGCThreads),
 364   // _num_active_tasks set in set_non_marking_state()
 365   // _tasks set inside the constructor
 366 
 367   _task_queues(new G1CMTaskQueueSet((int) _max_num_tasks)),
 368   _terminator(ParallelTaskTerminator((int) _max_num_tasks, _task_queues)),
 369 
 370   _first_overflow_barrier_sync(),
 371   _second_overflow_barrier_sync(),
 372 
 373   _has_overflown(false),
 374   _concurrent(false),
 375   _has_aborted(false),
 376   _restart_for_overflow(false),
 377   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 378   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()),
 379 
 380   // _verbose_level set below
 381 
 382   _init_times(),
 383   _remark_times(),
 384   _remark_mark_times(),
 385   _remark_weak_ref_times(),
 386   _cleanup_times(),
 387   _total_cleanup_time(0.0),
 388 
 389   _accum_task_vtime(NULL),
 390 
 391   _concurrent_workers(NULL),
 392   _num_concurrent_workers(0),
 393   _max_concurrent_workers(0),
 394 
 395   _region_mark_stats(NEW_C_HEAP_ARRAY(G1RegionMarkStats, _g1h->max_regions(), mtGC)),
 396   _top_at_rebuild_starts(NEW_C_HEAP_ARRAY(HeapWord*, _g1h->max_regions(), mtGC))
 397 {
 398   _mark_bitmap_1.initialize(g1h->reserved_region(), prev_bitmap_storage);
 399   _mark_bitmap_2.initialize(g1h->reserved_region(), next_bitmap_storage);
 400 
 401   // Create & start ConcurrentMark thread.
 402   _cm_thread = new G1ConcurrentMarkThread(this);
 403   if (_cm_thread->osthread() == NULL) {
 404     vm_shutdown_during_initialization("Could not create ConcurrentMarkThread");
 405   }
 406 
 407   assert(CGC_lock != NULL, "CGC_lock must be initialized");
 408 
 409   _root_regions.init(_g1h->survivor(), this);
 410 
 411   if (FLAG_IS_DEFAULT(ConcGCThreads) || ConcGCThreads == 0) {
 412     // Calculate the number of concurrent worker threads by scaling
 413     // the number of parallel GC threads.
 414     uint marking_thread_num = scale_concurrent_worker_threads(ParallelGCThreads);
 415     FLAG_SET_ERGO(uint, ConcGCThreads, marking_thread_num);
 416   }
 417 
 418   assert(ConcGCThreads > 0, "ConcGCThreads have been set.");
 419   if (ConcGCThreads > ParallelGCThreads) {
 420     log_warning(gc)("More ConcGCThreads (%u) than ParallelGCThreads (%u).",
 421                     ConcGCThreads, ParallelGCThreads);
 422     return;
 423   }
 424 
 425   log_debug(gc)("ConcGCThreads: %u offset %u", ConcGCThreads, _worker_id_offset);
 426   log_debug(gc)("ParallelGCThreads: %u", ParallelGCThreads);
 427 
 428   _num_concurrent_workers = ConcGCThreads;
 429   _max_concurrent_workers = _num_concurrent_workers;
 430 
 431   _concurrent_workers = new WorkGang("G1 Conc", _max_concurrent_workers, false, true);
 432   _concurrent_workers->initialize_workers();
 433 
 434   if (FLAG_IS_DEFAULT(MarkStackSize)) {
 435     size_t mark_stack_size =
 436       MIN2(MarkStackSizeMax,
 437           MAX2(MarkStackSize, (size_t) (_max_concurrent_workers * TASKQUEUE_SIZE)));
 438     // Verify that the calculated value for MarkStackSize is in range.
 439     // It would be nice to use the private utility routine from Arguments.
 440     if (!(mark_stack_size >= 1 && mark_stack_size <= MarkStackSizeMax)) {
 441       log_warning(gc)("Invalid value calculated for MarkStackSize (" SIZE_FORMAT "): "
 442                       "must be between 1 and " SIZE_FORMAT,
 443                       mark_stack_size, MarkStackSizeMax);
 444       return;
 445     }
 446     FLAG_SET_ERGO(size_t, MarkStackSize, mark_stack_size);
 447   } else {
 448     // Verify MarkStackSize is in range.
 449     if (FLAG_IS_CMDLINE(MarkStackSize)) {
 450       if (FLAG_IS_DEFAULT(MarkStackSizeMax)) {
 451         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 452           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT "): "
 453                           "must be between 1 and " SIZE_FORMAT,
 454                           MarkStackSize, MarkStackSizeMax);
 455           return;
 456         }
 457       } else if (FLAG_IS_CMDLINE(MarkStackSizeMax)) {
 458         if (!(MarkStackSize >= 1 && MarkStackSize <= MarkStackSizeMax)) {
 459           log_warning(gc)("Invalid value specified for MarkStackSize (" SIZE_FORMAT ")"
 460                           " or for MarkStackSizeMax (" SIZE_FORMAT ")",
 461                           MarkStackSize, MarkStackSizeMax);
 462           return;
 463         }
 464       }
 465     }
 466   }
 467 
 468   if (!_global_mark_stack.initialize(MarkStackSize, MarkStackSizeMax)) {
 469     vm_exit_during_initialization("Failed to allocate initial concurrent mark overflow mark stack.");
 470   }
 471 
 472   _tasks = NEW_C_HEAP_ARRAY(G1CMTask*, _max_num_tasks, mtGC);
 473   _accum_task_vtime = NEW_C_HEAP_ARRAY(double, _max_num_tasks, mtGC);
 474 
 475   // so that the assertion in MarkingTaskQueue::task_queue doesn't fail
 476   _num_active_tasks = _max_num_tasks;
 477 
 478   for (uint i = 0; i < _max_num_tasks; ++i) {
 479     G1CMTaskQueue* task_queue = new G1CMTaskQueue();
 480     task_queue->initialize();
 481     _task_queues->register_queue(i, task_queue);
 482 
 483     _tasks[i] = new G1CMTask(i, this, task_queue, _region_mark_stats, _g1h->max_regions());
 484 
 485     _accum_task_vtime[i] = 0.0;
 486   }
 487 
 488   reset_at_marking_complete();
 489   _completed_initialization = true;
 490 }
 491 
 492 void G1ConcurrentMark::reset() {
 493   _has_aborted = false;
 494 
 495   reset_marking_for_restart();
 496 
 497   // Reset all tasks, since different phases will use different number of active
 498   // threads. So, it's easiest to have all of them ready.
 499   for (uint i = 0; i < _max_num_tasks; ++i) {
 500     _tasks[i]->reset(_next_mark_bitmap);
 501   }
 502 
 503   uint max_regions = _g1h->max_regions();
 504   for (uint i = 0; i < max_regions; i++) {
 505     _top_at_rebuild_starts[i] = NULL;
 506     _region_mark_stats[i].clear();
 507   }
 508 }
 509 
 510 void G1ConcurrentMark::clear_statistics_in_region(uint region_idx) {
 511   for (uint j = 0; j < _max_num_tasks; ++j) {
 512     _tasks[j]->clear_mark_stats_cache(region_idx);
 513   }
 514   _top_at_rebuild_starts[region_idx] = NULL;
 515   _region_mark_stats[region_idx].clear();
 516 }
 517 
 518 void G1ConcurrentMark::clear_statistics(HeapRegion* r) {
 519   uint const region_idx = r->hrm_index();
 520   if (r->is_humongous()) {
 521     assert(r->is_starts_humongous(), "Got humongous continues region here");
 522     uint const size_in_regions = (uint)_g1h->humongous_obj_size_in_regions(oop(r->humongous_start_region()->bottom())->size());
 523     for (uint j = region_idx; j < (region_idx + size_in_regions); j++) {
 524       clear_statistics_in_region(j);
 525     }
 526   } else {
 527     clear_statistics_in_region(region_idx);
 528   }
 529 }
 530 
 531 static void clear_mark_if_set(G1CMBitMap* bitmap, HeapWord* addr) {
 532   if (bitmap->is_marked(addr)) {
 533     bitmap->clear(addr);
 534   }
 535 }
 536 
 537 void G1ConcurrentMark::humongous_object_eagerly_reclaimed(HeapRegion* r) {
 538   assert_at_safepoint_on_vm_thread();
 539 
 540   // Need to clear all mark bits of the humongous object.
 541   clear_mark_if_set(_prev_mark_bitmap, r->bottom());
 542   clear_mark_if_set(_next_mark_bitmap, r->bottom());
 543 
 544   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
 545     return;
 546   }
 547 
 548   // Clear any statistics about the region gathered so far.
 549   clear_statistics(r);
 550 }
 551 
 552 void G1ConcurrentMark::reset_marking_for_restart() {
 553   _global_mark_stack.set_empty();
 554 
 555   // Expand the marking stack, if we have to and if we can.
 556   if (has_overflown()) {
 557     _global_mark_stack.expand();
 558 
 559     uint max_regions = _g1h->max_regions();
 560     for (uint i = 0; i < max_regions; i++) {
 561       _region_mark_stats[i].clear_during_overflow();
 562     }
 563   }
 564 
 565   clear_has_overflown();
 566   _finger = _heap.start();
 567 
 568   for (uint i = 0; i < _max_num_tasks; ++i) {
 569     G1CMTaskQueue* queue = _task_queues->queue(i);
 570     queue->set_empty();
 571   }
 572 }
 573 
 574 void G1ConcurrentMark::set_concurrency(uint active_tasks) {
 575   assert(active_tasks <= _max_num_tasks, "we should not have more");
 576 
 577   _num_active_tasks = active_tasks;
 578   // Need to update the three data structures below according to the
 579   // number of active threads for this phase.
 580   _terminator = ParallelTaskTerminator((int) active_tasks, _task_queues);
 581   _first_overflow_barrier_sync.set_n_workers((int) active_tasks);
 582   _second_overflow_barrier_sync.set_n_workers((int) active_tasks);
 583 }
 584 
 585 void G1ConcurrentMark::set_concurrency_and_phase(uint active_tasks, bool concurrent) {
 586   set_concurrency(active_tasks);
 587 
 588   _concurrent = concurrent;
 589 
 590   if (!concurrent) {
 591     // At this point we should be in a STW phase, and completed marking.
 592     assert_at_safepoint_on_vm_thread();
 593     assert(out_of_regions(),
 594            "only way to get here: _finger: " PTR_FORMAT ", _heap_end: " PTR_FORMAT,
 595            p2i(_finger), p2i(_heap.end()));
 596   }
 597 }
 598 
 599 void G1ConcurrentMark::reset_at_marking_complete() {
 600   // We set the global marking state to some default values when we're
 601   // not doing marking.
 602   reset_marking_for_restart();
 603   _num_active_tasks = 0;
 604 }
 605 
 606 G1ConcurrentMark::~G1ConcurrentMark() {
 607   FREE_C_HEAP_ARRAY(HeapWord*, _top_at_rebuild_starts);
 608   FREE_C_HEAP_ARRAY(G1RegionMarkStats, _region_mark_stats);
 609   // The G1ConcurrentMark instance is never freed.
 610   ShouldNotReachHere();
 611 }
 612 
 613 class G1ClearBitMapTask : public AbstractGangTask {
 614 public:
 615   static size_t chunk_size() { return M; }
 616 
 617 private:
 618   // Heap region closure used for clearing the given mark bitmap.
 619   class G1ClearBitmapHRClosure : public HeapRegionClosure {
 620   private:
 621     G1CMBitMap* _bitmap;
 622     G1ConcurrentMark* _cm;
 623   public:
 624     G1ClearBitmapHRClosure(G1CMBitMap* bitmap, G1ConcurrentMark* cm) : HeapRegionClosure(), _bitmap(bitmap), _cm(cm) {
 625     }
 626 
 627     virtual bool do_heap_region(HeapRegion* r) {
 628       size_t const chunk_size_in_words = G1ClearBitMapTask::chunk_size() / HeapWordSize;
 629 
 630       HeapWord* cur = r->bottom();
 631       HeapWord* const end = r->end();
 632 
 633       while (cur < end) {
 634         MemRegion mr(cur, MIN2(cur + chunk_size_in_words, end));
 635         _bitmap->clear_range(mr);
 636 
 637         cur += chunk_size_in_words;
 638 
 639         // Abort iteration if after yielding the marking has been aborted.
 640         if (_cm != NULL && _cm->do_yield_check() && _cm->has_aborted()) {
 641           return true;
 642         }
 643         // Repeat the asserts from before the start of the closure. We will do them
 644         // as asserts here to minimize their overhead on the product. However, we
 645         // will have them as guarantees at the beginning / end of the bitmap
 646         // clearing to get some checking in the product.
 647         assert(_cm == NULL || _cm->cm_thread()->during_cycle(), "invariant");
 648         assert(_cm == NULL || !G1CollectedHeap::heap()->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 649       }
 650       assert(cur == end, "Must have completed iteration over the bitmap for region %u.", r->hrm_index());
 651 
 652       return false;
 653     }
 654   };
 655 
 656   G1ClearBitmapHRClosure _cl;
 657   HeapRegionClaimer _hr_claimer;
 658   bool _suspendible; // If the task is suspendible, workers must join the STS.
 659 
 660 public:
 661   G1ClearBitMapTask(G1CMBitMap* bitmap, G1ConcurrentMark* cm, uint n_workers, bool suspendible) :
 662     AbstractGangTask("G1 Clear Bitmap"),
 663     _cl(bitmap, suspendible ? cm : NULL),
 664     _hr_claimer(n_workers),
 665     _suspendible(suspendible)
 666   { }
 667 
 668   void work(uint worker_id) {
 669     SuspendibleThreadSetJoiner sts_join(_suspendible);
 670     G1CollectedHeap::heap()->heap_region_par_iterate_from_worker_offset(&_cl, &_hr_claimer, worker_id);
 671   }
 672 
 673   bool is_complete() {
 674     return _cl.is_complete();
 675   }
 676 };
 677 
 678 void G1ConcurrentMark::clear_bitmap(G1CMBitMap* bitmap, WorkGang* workers, bool may_yield) {
 679   assert(may_yield || SafepointSynchronize::is_at_safepoint(), "Non-yielding bitmap clear only allowed at safepoint.");
 680 
 681   size_t const num_bytes_to_clear = (HeapRegion::GrainBytes * _g1h->num_regions()) / G1CMBitMap::heap_map_factor();
 682   size_t const num_chunks = align_up(num_bytes_to_clear, G1ClearBitMapTask::chunk_size()) / G1ClearBitMapTask::chunk_size();
 683 
 684   uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 685 
 686   G1ClearBitMapTask cl(bitmap, this, num_workers, may_yield);
 687 
 688   log_debug(gc, ergo)("Running %s with %u workers for " SIZE_FORMAT " work units.", cl.name(), num_workers, num_chunks);
 689   workers->run_task(&cl, num_workers);
 690   guarantee(!may_yield || cl.is_complete(), "Must have completed iteration when not yielding.");
 691 }
 692 
 693 void G1ConcurrentMark::cleanup_for_next_mark() {
 694   // Make sure that the concurrent mark thread looks to still be in
 695   // the current cycle.
 696   guarantee(cm_thread()->during_cycle(), "invariant");
 697 
 698   // We are finishing up the current cycle by clearing the next
 699   // marking bitmap and getting it ready for the next cycle. During
 700   // this time no other cycle can start. So, let's make sure that this
 701   // is the case.
 702   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 703 
 704   clear_bitmap(_next_mark_bitmap, _concurrent_workers, true);
 705 
 706   // Repeat the asserts from above.
 707   guarantee(cm_thread()->during_cycle(), "invariant");
 708   guarantee(!_g1h->collector_state()->mark_or_rebuild_in_progress(), "invariant");
 709 }
 710 
 711 void G1ConcurrentMark::clear_prev_bitmap(WorkGang* workers) {
 712   assert_at_safepoint_on_vm_thread();
 713   clear_bitmap(_prev_mark_bitmap, workers, false);
 714 }
 715 
 716 class NoteStartOfMarkHRClosure : public HeapRegionClosure {
 717 public:
 718   bool do_heap_region(HeapRegion* r) {
 719     r->note_start_of_marking();
 720     return false;
 721   }
 722 };
 723 
 724 void G1ConcurrentMark::pre_initial_mark() {
 725   // Initialize marking structures. This has to be done in a STW phase.
 726   reset();
 727 
 728   // For each region note start of marking.
 729   NoteStartOfMarkHRClosure startcl;
 730   _g1h->heap_region_iterate(&startcl);
 731 }
 732 
 733 
 734 void G1ConcurrentMark::post_initial_mark() {
 735   // Start Concurrent Marking weak-reference discovery.
 736   ReferenceProcessor* rp = _g1h->ref_processor_cm();
 737   // enable ("weak") refs discovery
 738   rp->enable_discovery();
 739   rp->setup_policy(false); // snapshot the soft ref policy to be used in this cycle
 740 
 741   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
 742   // This is the start of  the marking cycle, we're expected all
 743   // threads to have SATB queues with active set to false.
 744   satb_mq_set.set_active_all_threads(true, /* new active value */
 745                                      false /* expected_active */);
 746 
 747   _root_regions.prepare_for_scan();
 748 
 749   // update_g1_committed() will be called at the end of an evac pause
 750   // when marking is on. So, it's also called at the end of the
 751   // initial-mark pause to update the heap end, if the heap expands
 752   // during it. No need to call it here.
 753 }
 754 
 755 /*
 756  * Notice that in the next two methods, we actually leave the STS
 757  * during the barrier sync and join it immediately afterwards. If we
 758  * do not do this, the following deadlock can occur: one thread could
 759  * be in the barrier sync code, waiting for the other thread to also
 760  * sync up, whereas another one could be trying to yield, while also
 761  * waiting for the other threads to sync up too.
 762  *
 763  * Note, however, that this code is also used during remark and in
 764  * this case we should not attempt to leave / enter the STS, otherwise
 765  * we'll either hit an assert (debug / fastdebug) or deadlock
 766  * (product). So we should only leave / enter the STS if we are
 767  * operating concurrently.
 768  *
 769  * Because the thread that does the sync barrier has left the STS, it
 770  * is possible to be suspended for a Full GC or an evacuation pause
 771  * could occur. This is actually safe, since the entering the sync
 772  * barrier is one of the last things do_marking_step() does, and it
 773  * doesn't manipulate any data structures afterwards.
 774  */
 775 
 776 void G1ConcurrentMark::enter_first_sync_barrier(uint worker_id) {
 777   bool barrier_aborted;
 778   {
 779     SuspendibleThreadSetLeaver sts_leave(concurrent());
 780     barrier_aborted = !_first_overflow_barrier_sync.enter();
 781   }
 782 
 783   // at this point everyone should have synced up and not be doing any
 784   // more work
 785 
 786   if (barrier_aborted) {
 787     // If the barrier aborted we ignore the overflow condition and
 788     // just abort the whole marking phase as quickly as possible.
 789     return;
 790   }
 791 }
 792 
 793 void G1ConcurrentMark::enter_second_sync_barrier(uint worker_id) {
 794   SuspendibleThreadSetLeaver sts_leave(concurrent());
 795   _second_overflow_barrier_sync.enter();
 796 
 797   // at this point everything should be re-initialized and ready to go
 798 }
 799 
 800 class G1CMConcurrentMarkingTask : public AbstractGangTask {
 801   G1ConcurrentMark*     _cm;
 802 
 803 public:
 804   void work(uint worker_id) {
 805     assert(Thread::current()->is_ConcurrentGC_thread(), "Not a concurrent GC thread");
 806     ResourceMark rm;
 807 
 808     double start_vtime = os::elapsedVTime();
 809 
 810     {
 811       SuspendibleThreadSetJoiner sts_join;
 812 
 813       assert(worker_id < _cm->active_tasks(), "invariant");
 814 
 815       G1CMTask* task = _cm->task(worker_id);
 816       task->record_start_time();
 817       if (!_cm->has_aborted()) {
 818         do {
 819           task->do_marking_step(G1ConcMarkStepDurationMillis,
 820                                 true  /* do_termination */,
 821                                 false /* is_serial*/);
 822 
 823           _cm->do_yield_check();
 824         } while (!_cm->has_aborted() && task->has_aborted());
 825       }
 826       task->record_end_time();
 827       guarantee(!task->has_aborted() || _cm->has_aborted(), "invariant");
 828     }
 829 
 830     double end_vtime = os::elapsedVTime();
 831     _cm->update_accum_task_vtime(worker_id, end_vtime - start_vtime);
 832   }
 833 
 834   G1CMConcurrentMarkingTask(G1ConcurrentMark* cm) :
 835       AbstractGangTask("Concurrent Mark"), _cm(cm) { }
 836 
 837   ~G1CMConcurrentMarkingTask() { }
 838 };
 839 
 840 uint G1ConcurrentMark::calc_active_marking_workers() {
 841   uint result = 0;
 842   if (!UseDynamicNumberOfGCThreads ||
 843       (!FLAG_IS_DEFAULT(ConcGCThreads) &&
 844        !ForceDynamicNumberOfGCThreads)) {
 845     result = _max_concurrent_workers;
 846   } else {
 847     result =
 848       AdaptiveSizePolicy::calc_default_active_workers(_max_concurrent_workers,
 849                                                       1, /* Minimum workers */
 850                                                       _num_concurrent_workers,
 851                                                       Threads::number_of_non_daemon_threads());
 852     // Don't scale the result down by scale_concurrent_workers() because
 853     // that scaling has already gone into "_max_concurrent_workers".
 854   }
 855   assert(result > 0 && result <= _max_concurrent_workers,
 856          "Calculated number of marking workers must be larger than zero and at most the maximum %u, but is %u",
 857          _max_concurrent_workers, result);
 858   return result;
 859 }
 860 
 861 void G1ConcurrentMark::scan_root_region(HeapRegion* hr, uint worker_id) {
 862   // Currently, only survivors can be root regions.
 863   assert(hr->next_top_at_mark_start() == hr->bottom(), "invariant");
 864   G1RootRegionScanClosure cl(_g1h, this, worker_id);
 865 
 866   const uintx interval = PrefetchScanIntervalInBytes;
 867   HeapWord* curr = hr->bottom();
 868   const HeapWord* end = hr->top();
 869   while (curr < end) {
 870     Prefetch::read(curr, interval);
 871     oop obj = oop(curr);
 872     int size = obj->oop_iterate_size(&cl);
 873     assert(size == obj->size(), "sanity");
 874     curr += size;
 875   }
 876 }
 877 
 878 class G1CMRootRegionScanTask : public AbstractGangTask {
 879   G1ConcurrentMark* _cm;
 880 public:
 881   G1CMRootRegionScanTask(G1ConcurrentMark* cm) :
 882     AbstractGangTask("G1 Root Region Scan"), _cm(cm) { }
 883 
 884   void work(uint worker_id) {
 885     assert(Thread::current()->is_ConcurrentGC_thread(),
 886            "this should only be done by a conc GC thread");
 887 
 888     G1CMRootRegions* root_regions = _cm->root_regions();
 889     HeapRegion* hr = root_regions->claim_next();
 890     while (hr != NULL) {
 891       _cm->scan_root_region(hr, worker_id);
 892       hr = root_regions->claim_next();
 893     }
 894   }
 895 };
 896 
 897 void G1ConcurrentMark::scan_root_regions() {
 898   // scan_in_progress() will have been set to true only if there was
 899   // at least one root region to scan. So, if it's false, we
 900   // should not attempt to do any further work.
 901   if (root_regions()->scan_in_progress()) {
 902     assert(!has_aborted(), "Aborting before root region scanning is finished not supported.");
 903 
 904     _num_concurrent_workers = MIN2(calc_active_marking_workers(),
 905                                    // We distribute work on a per-region basis, so starting
 906                                    // more threads than that is useless.
 907                                    root_regions()->num_root_regions());
 908     assert(_num_concurrent_workers <= _max_concurrent_workers,
 909            "Maximum number of marking threads exceeded");
 910 
 911     G1CMRootRegionScanTask task(this);
 912     log_debug(gc, ergo)("Running %s using %u workers for %u work units.",
 913                         task.name(), _num_concurrent_workers, root_regions()->num_root_regions());
 914     _concurrent_workers->run_task(&task, _num_concurrent_workers);
 915 
 916     // It's possible that has_aborted() is true here without actually
 917     // aborting the survivor scan earlier. This is OK as it's
 918     // mainly used for sanity checking.
 919     root_regions()->scan_finished();
 920   }
 921 }
 922 
 923 void G1ConcurrentMark::concurrent_cycle_start() {
 924   _gc_timer_cm->register_gc_start();
 925 
 926   _gc_tracer_cm->report_gc_start(GCCause::_no_gc /* first parameter is not used */, _gc_timer_cm->gc_start());
 927 
 928   _g1h->trace_heap_before_gc(_gc_tracer_cm);
 929 }
 930 
 931 void G1ConcurrentMark::concurrent_cycle_end() {
 932   _g1h->collector_state()->set_clearing_next_bitmap(false);
 933 
 934   _g1h->trace_heap_after_gc(_gc_tracer_cm);
 935 
 936   if (has_aborted()) {
 937     log_info(gc, marking)("Concurrent Mark Abort");
 938     _gc_tracer_cm->report_concurrent_mode_failure();
 939   }
 940 
 941   _gc_timer_cm->register_gc_end();
 942 
 943   _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
 944 }
 945 
 946 void G1ConcurrentMark::mark_from_roots() {
 947   _restart_for_overflow = false;
 948 
 949   _num_concurrent_workers = calc_active_marking_workers();
 950 
 951   uint active_workers = MAX2(1U, _num_concurrent_workers);
 952 
 953   // Setting active workers is not guaranteed since fewer
 954   // worker threads may currently exist and more may not be
 955   // available.
 956   active_workers = _concurrent_workers->update_active_workers(active_workers);
 957   log_info(gc, task)("Using %u workers of %u for marking", active_workers, _concurrent_workers->total_workers());
 958 
 959   // Parallel task terminator is set in "set_concurrency_and_phase()"
 960   set_concurrency_and_phase(active_workers, true /* concurrent */);
 961 
 962   G1CMConcurrentMarkingTask marking_task(this);
 963   _concurrent_workers->run_task(&marking_task);
 964   print_stats();
 965 }
 966 
 967 void G1ConcurrentMark::verify_during_pause(G1HeapVerifier::G1VerifyType type, VerifyOption vo, const char* caller) {
 968   G1HeapVerifier* verifier = _g1h->verifier();
 969 
 970   verifier->verify_region_sets_optional();
 971 
 972   if (VerifyDuringGC) {
 973     GCTraceTime(Debug, gc, phases) debug(caller, _gc_timer_cm);
 974 
 975     size_t const BufLen = 512;
 976     char buffer[BufLen];
 977 
 978     jio_snprintf(buffer, BufLen, "During GC (%s)", caller);
 979     verifier->verify(type, vo, buffer);
 980   }
 981 
 982   verifier->check_bitmaps(caller);
 983 }
 984 
 985 class G1UpdateRemSetTrackingBeforeRebuildTask : public AbstractGangTask {
 986   G1CollectedHeap* _g1h;
 987   G1ConcurrentMark* _cm;
 988   HeapRegionClaimer _hrclaimer;
 989   uint volatile _total_selected_for_rebuild;
 990 
 991   G1PrintRegionLivenessInfoClosure _cl;
 992 
 993   class G1UpdateRemSetTrackingBeforeRebuild : public HeapRegionClosure {
 994     G1CollectedHeap* _g1h;
 995     G1ConcurrentMark* _cm;
 996 
 997     G1PrintRegionLivenessInfoClosure* _cl;
 998 
 999     uint _num_regions_selected_for_rebuild;  // The number of regions actually selected for rebuild.
1000 
1001     void update_remset_before_rebuild(HeapRegion* hr) {
1002       G1RemSetTrackingPolicy* tracking_policy = _g1h->g1_policy()->remset_tracker();
1003 
1004       bool selected_for_rebuild;
1005       if (hr->is_humongous()) {
1006         bool const is_live = _cm->liveness(hr->humongous_start_region()->hrm_index()) > 0;
1007         selected_for_rebuild = tracking_policy->update_humongous_before_rebuild(hr, is_live);
1008       } else {
1009         size_t const live_bytes = _cm->liveness(hr->hrm_index());
1010         selected_for_rebuild = tracking_policy->update_before_rebuild(hr, live_bytes);
1011       }
1012       if (selected_for_rebuild) {
1013         _num_regions_selected_for_rebuild++;
1014       }
1015       _cm->update_top_at_rebuild_start(hr);
1016     }
1017 
1018     // Distribute the given words across the humongous object starting with hr and
1019     // note end of marking.
1020     void distribute_marked_bytes(HeapRegion* hr, size_t marked_words) {
1021       uint const region_idx = hr->hrm_index();
1022       size_t const obj_size_in_words = (size_t)oop(hr->bottom())->size();
1023       uint const num_regions_in_humongous = (uint)G1CollectedHeap::humongous_obj_size_in_regions(obj_size_in_words);
1024 
1025       // "Distributing" zero words means that we only note end of marking for these
1026       // regions.
1027       assert(marked_words == 0 || obj_size_in_words == marked_words,
1028              "Marked words should either be 0 or the same as humongous object (" SIZE_FORMAT ") but is " SIZE_FORMAT,
1029              obj_size_in_words, marked_words);
1030 
1031       for (uint i = region_idx; i < (region_idx + num_regions_in_humongous); i++) {
1032         HeapRegion* const r = _g1h->region_at(i);
1033         size_t const words_to_add = MIN2(HeapRegion::GrainWords, marked_words);
1034 
1035         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to humongous region %u (%s)",
1036                                words_to_add, i, r->get_type_str());
1037         add_marked_bytes_and_note_end(r, words_to_add * HeapWordSize);
1038         marked_words -= words_to_add;
1039       }
1040       assert(marked_words == 0,
1041              SIZE_FORMAT " words left after distributing space across %u regions",
1042              marked_words, num_regions_in_humongous);
1043     }
1044 
1045     void update_marked_bytes(HeapRegion* hr) {
1046       uint const region_idx = hr->hrm_index();
1047       size_t const marked_words = _cm->liveness(region_idx);
1048       // The marking attributes the object's size completely to the humongous starts
1049       // region. We need to distribute this value across the entire set of regions a
1050       // humongous object spans.
1051       if (hr->is_humongous()) {
1052         assert(hr->is_starts_humongous() || marked_words == 0,
1053                "Should not have marked words " SIZE_FORMAT " in non-starts humongous region %u (%s)",
1054                marked_words, region_idx, hr->get_type_str());
1055         if (hr->is_starts_humongous()) {
1056           distribute_marked_bytes(hr, marked_words);
1057         }
1058       } else {
1059         log_trace(gc, marking)("Adding " SIZE_FORMAT " words to region %u (%s)", marked_words, region_idx, hr->get_type_str());
1060         add_marked_bytes_and_note_end(hr, marked_words * HeapWordSize);
1061       }
1062     }
1063 
1064     void add_marked_bytes_and_note_end(HeapRegion* hr, size_t marked_bytes) {
1065       hr->add_to_marked_bytes(marked_bytes);
1066       _cl->do_heap_region(hr);
1067       hr->note_end_of_marking();
1068     }
1069 
1070   public:
1071     G1UpdateRemSetTrackingBeforeRebuild(G1CollectedHeap* g1h, G1ConcurrentMark* cm, G1PrintRegionLivenessInfoClosure* cl) :
1072       _g1h(g1h), _cm(cm), _cl(cl), _num_regions_selected_for_rebuild(0) { }
1073 
1074     virtual bool do_heap_region(HeapRegion* r) {
1075       update_remset_before_rebuild(r);
1076       update_marked_bytes(r);
1077 
1078       return false;
1079     }
1080 
1081     uint num_selected_for_rebuild() const { return _num_regions_selected_for_rebuild; }
1082   };
1083 
1084 public:
1085   G1UpdateRemSetTrackingBeforeRebuildTask(G1CollectedHeap* g1h, G1ConcurrentMark* cm, uint num_workers) :
1086     AbstractGangTask("G1 Update RemSet Tracking Before Rebuild"),
1087     _g1h(g1h), _cm(cm), _hrclaimer(num_workers), _total_selected_for_rebuild(0), _cl("Post-Marking") { }
1088 
1089   virtual void work(uint worker_id) {
1090     G1UpdateRemSetTrackingBeforeRebuild update_cl(_g1h, _cm, &_cl);
1091     _g1h->heap_region_par_iterate_from_worker_offset(&update_cl, &_hrclaimer, worker_id);
1092     Atomic::add(update_cl.num_selected_for_rebuild(), &_total_selected_for_rebuild);
1093   }
1094 
1095   uint total_selected_for_rebuild() const { return _total_selected_for_rebuild; }
1096 
1097   // Number of regions for which roughly one thread should be spawned for this work.
1098   static const uint RegionsPerThread = 384;
1099 };
1100 
1101 class G1UpdateRemSetTrackingAfterRebuild : public HeapRegionClosure {
1102   G1CollectedHeap* _g1h;
1103 public:
1104   G1UpdateRemSetTrackingAfterRebuild(G1CollectedHeap* g1h) : _g1h(g1h) { }
1105 
1106   virtual bool do_heap_region(HeapRegion* r) {
1107     _g1h->g1_policy()->remset_tracker()->update_after_rebuild(r);
1108     return false;
1109   }
1110 };
1111 
1112 void G1ConcurrentMark::remark() {
1113   assert_at_safepoint_on_vm_thread();
1114 
1115   // If a full collection has happened, we should not continue. However we might
1116   // have ended up here as the Remark VM operation has been scheduled already.
1117   if (has_aborted()) {
1118     return;
1119   }
1120 
1121   G1Policy* g1p = _g1h->g1_policy();
1122   g1p->record_concurrent_mark_remark_start();
1123 
1124   double start = os::elapsedTime();
1125 
1126   verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark before");
1127 
1128   {
1129     GCTraceTime(Debug, gc, phases) debug("Finalize Marking", _gc_timer_cm);
1130     finalize_marking();
1131   }
1132 
1133   double mark_work_end = os::elapsedTime();
1134 
1135   bool const mark_finished = !has_overflown();
1136   if (mark_finished) {
1137     weak_refs_work(false /* clear_all_soft_refs */);
1138 
1139     SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1140     // We're done with marking.
1141     // This is the end of the marking cycle, we're expected all
1142     // threads to have SATB queues with active set to true.
1143     satb_mq_set.set_active_all_threads(false, /* new active value */
1144                                        true /* expected_active */);
1145 
1146     {
1147       GCTraceTime(Debug, gc, phases) debug("Flush Task Caches", _gc_timer_cm);
1148       flush_all_task_caches();
1149     }
1150 
1151     // Install newly created mark bitmap as "prev".
1152     swap_mark_bitmaps();
1153     {
1154       GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking Before Rebuild", _gc_timer_cm);
1155 
1156       uint const workers_by_capacity = (_g1h->num_regions() + G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread - 1) /
1157                                        G1UpdateRemSetTrackingBeforeRebuildTask::RegionsPerThread;
1158       uint const num_workers = MIN2(_g1h->workers()->active_workers(), workers_by_capacity);
1159 
1160       G1UpdateRemSetTrackingBeforeRebuildTask cl(_g1h, this, num_workers);
1161       log_debug(gc,ergo)("Running %s using %u workers for %u regions in heap", cl.name(), num_workers, _g1h->num_regions());
1162       _g1h->workers()->run_task(&cl, num_workers);
1163 
1164       log_debug(gc, remset, tracking)("Remembered Set Tracking update regions total %u, selected %u",
1165                                       _g1h->num_regions(), cl.total_selected_for_rebuild());
1166     }
1167     {
1168       GCTraceTime(Debug, gc, phases) debug("Reclaim Empty Regions", _gc_timer_cm);
1169       reclaim_empty_regions();
1170     }
1171 
1172     // Clean out dead classes
1173     if (ClassUnloadingWithConcurrentMark) {
1174       GCTraceTime(Debug, gc, phases) debug("Purge Metaspace", _gc_timer_cm);
1175       ClassLoaderDataGraph::purge();
1176     }
1177 
1178     _g1h->resize_heap_if_necessary();
1179 
1180     compute_new_sizes();
1181 
1182     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark after");
1183 
1184     assert(!restart_for_overflow(), "sanity");
1185     // Completely reset the marking state since marking completed
1186     reset_at_marking_complete();
1187   } else {
1188     // We overflowed.  Restart concurrent marking.
1189     _restart_for_overflow = true;
1190 
1191     verify_during_pause(G1HeapVerifier::G1VerifyRemark, VerifyOption_G1UsePrevMarking, "Remark overflow");
1192 
1193     // Clear the marking state because we will be restarting
1194     // marking due to overflowing the global mark stack.
1195     reset_marking_for_restart();
1196   }
1197 
1198   {
1199     GCTraceTime(Debug, gc, phases) debug("Report Object Count", _gc_timer_cm);
1200     report_object_count(mark_finished);
1201   }
1202 
1203   // Statistics
1204   double now = os::elapsedTime();
1205   _remark_mark_times.add((mark_work_end - start) * 1000.0);
1206   _remark_weak_ref_times.add((now - mark_work_end) * 1000.0);
1207   _remark_times.add((now - start) * 1000.0);
1208 
1209   g1p->record_concurrent_mark_remark_end();
1210 }
1211 
1212 class G1ReclaimEmptyRegionsTask : public AbstractGangTask {
1213   // Per-region work during the Cleanup pause.
1214   class G1ReclaimEmptyRegionsClosure : public HeapRegionClosure {
1215     G1CollectedHeap* _g1h;
1216     size_t _freed_bytes;
1217     FreeRegionList* _local_cleanup_list;
1218     uint _old_regions_removed;
1219     uint _humongous_regions_removed;
1220     HRRSCleanupTask* _hrrs_cleanup_task;
1221 
1222   public:
1223     G1ReclaimEmptyRegionsClosure(G1CollectedHeap* g1h,
1224                                  FreeRegionList* local_cleanup_list,
1225                                  HRRSCleanupTask* hrrs_cleanup_task) :
1226       _g1h(g1h),
1227       _freed_bytes(0),
1228       _local_cleanup_list(local_cleanup_list),
1229       _old_regions_removed(0),
1230       _humongous_regions_removed(0),
1231       _hrrs_cleanup_task(hrrs_cleanup_task) { }
1232 
1233     size_t freed_bytes() { return _freed_bytes; }
1234     const uint old_regions_removed() { return _old_regions_removed; }
1235     const uint humongous_regions_removed() { return _humongous_regions_removed; }
1236 
1237     bool do_heap_region(HeapRegion *hr) {
1238       if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young() && !hr->is_archive()) {
1239         _freed_bytes += hr->used();
1240         hr->set_containing_set(NULL);
1241         if (hr->is_humongous()) {
1242           _humongous_regions_removed++;
1243           _g1h->free_humongous_region(hr, _local_cleanup_list);
1244         } else {
1245           _old_regions_removed++;
1246           _g1h->free_region(hr, _local_cleanup_list, false /* skip_remset */, false /* skip_hcc */, true /* locked */);
1247         }
1248         hr->clear_cardtable();
1249         _g1h->concurrent_mark()->clear_statistics_in_region(hr->hrm_index());
1250         log_trace(gc)("Reclaimed empty region %u (%s) bot " PTR_FORMAT, hr->hrm_index(), hr->get_short_type_str(), p2i(hr->bottom()));
1251       } else {
1252         hr->rem_set()->do_cleanup_work(_hrrs_cleanup_task);
1253       }
1254 
1255       return false;
1256     }
1257   };
1258 
1259   G1CollectedHeap* _g1h;
1260   FreeRegionList* _cleanup_list;
1261   HeapRegionClaimer _hrclaimer;
1262 
1263 public:
1264   G1ReclaimEmptyRegionsTask(G1CollectedHeap* g1h, FreeRegionList* cleanup_list, uint n_workers) :
1265     AbstractGangTask("G1 Cleanup"),
1266     _g1h(g1h),
1267     _cleanup_list(cleanup_list),
1268     _hrclaimer(n_workers) {
1269 
1270     HeapRegionRemSet::reset_for_cleanup_tasks();
1271   }
1272 
1273   void work(uint worker_id) {
1274     FreeRegionList local_cleanup_list("Local Cleanup List");
1275     HRRSCleanupTask hrrs_cleanup_task;
1276     G1ReclaimEmptyRegionsClosure cl(_g1h,
1277                                     &local_cleanup_list,
1278                                     &hrrs_cleanup_task);
1279     _g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hrclaimer, worker_id);
1280     assert(cl.is_complete(), "Shouldn't have aborted!");
1281 
1282     // Now update the old/humongous region sets
1283     _g1h->remove_from_old_sets(cl.old_regions_removed(), cl.humongous_regions_removed());
1284     {
1285       MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
1286       _g1h->decrement_summary_bytes(cl.freed_bytes());
1287 
1288       _cleanup_list->add_ordered(&local_cleanup_list);
1289       assert(local_cleanup_list.is_empty(), "post-condition");
1290 
1291       HeapRegionRemSet::finish_cleanup_task(&hrrs_cleanup_task);
1292     }
1293   }
1294 };
1295 
1296 void G1ConcurrentMark::reclaim_empty_regions() {
1297   WorkGang* workers = _g1h->workers();
1298   FreeRegionList empty_regions_list("Empty Regions After Mark List");
1299 
1300   G1ReclaimEmptyRegionsTask cl(_g1h, &empty_regions_list, workers->active_workers());
1301   workers->run_task(&cl);
1302 
1303   if (!empty_regions_list.is_empty()) {
1304     log_debug(gc)("Reclaimed %u empty regions", empty_regions_list.length());
1305     // Now print the empty regions list.
1306     G1HRPrinter* hrp = _g1h->hr_printer();
1307     if (hrp->is_active()) {
1308       FreeRegionListIterator iter(&empty_regions_list);
1309       while (iter.more_available()) {
1310         HeapRegion* hr = iter.get_next();
1311         hrp->cleanup(hr);
1312       }
1313     }
1314     // And actually make them available.
1315     _g1h->prepend_to_freelist(&empty_regions_list);
1316   }
1317 }
1318 
1319 void G1ConcurrentMark::compute_new_sizes() {
1320   MetaspaceGC::compute_new_size();
1321 
1322   // Cleanup will have freed any regions completely full of garbage.
1323   // Update the soft reference policy with the new heap occupancy.
1324   Universe::update_heap_info_at_gc();
1325 
1326   // We reclaimed old regions so we should calculate the sizes to make
1327   // sure we update the old gen/space data.
1328   _g1h->g1mm()->update_sizes();
1329 }
1330 
1331 void G1ConcurrentMark::cleanup() {
1332   assert_at_safepoint_on_vm_thread();
1333 
1334   // If a full collection has happened, we shouldn't do this.
1335   if (has_aborted()) {
1336     return;
1337   }
1338 
1339   G1Policy* g1p = _g1h->g1_policy();
1340   g1p->record_concurrent_mark_cleanup_start();
1341 
1342   double start = os::elapsedTime();
1343 
1344   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup before");
1345 
1346   {
1347     GCTraceTime(Debug, gc, phases) debug("Update Remembered Set Tracking After Rebuild", _gc_timer_cm);
1348     G1UpdateRemSetTrackingAfterRebuild cl(_g1h);
1349     _g1h->heap_region_iterate(&cl);
1350   }
1351 
1352   if (log_is_enabled(Trace, gc, liveness)) {
1353     G1PrintRegionLivenessInfoClosure cl("Post-Cleanup");
1354     _g1h->heap_region_iterate(&cl);
1355   }
1356 
1357   verify_during_pause(G1HeapVerifier::G1VerifyCleanup, VerifyOption_G1UsePrevMarking, "Cleanup after");
1358 
1359   // We need to make this be a "collection" so any collection pause that
1360   // races with it goes around and waits for Cleanup to finish.
1361   _g1h->increment_total_collections();
1362 
1363   // Local statistics
1364   double recent_cleanup_time = (os::elapsedTime() - start);
1365   _total_cleanup_time += recent_cleanup_time;
1366   _cleanup_times.add(recent_cleanup_time);
1367 
1368   {
1369     GCTraceTime(Debug, gc, phases) debug("Finalize Concurrent Mark Cleanup", _gc_timer_cm);
1370     _g1h->g1_policy()->record_concurrent_mark_cleanup_end();
1371   }
1372 }
1373 
1374 // 'Keep Alive' oop closure used by both serial parallel reference processing.
1375 // Uses the G1CMTask associated with a worker thread (for serial reference
1376 // processing the G1CMTask for worker 0 is used) to preserve (mark) and
1377 // trace referent objects.
1378 //
1379 // Using the G1CMTask and embedded local queues avoids having the worker
1380 // threads operating on the global mark stack. This reduces the risk
1381 // of overflowing the stack - which we would rather avoid at this late
1382 // state. Also using the tasks' local queues removes the potential
1383 // of the workers interfering with each other that could occur if
1384 // operating on the global stack.
1385 
1386 class G1CMKeepAliveAndDrainClosure : public OopClosure {
1387   G1ConcurrentMark* _cm;
1388   G1CMTask*         _task;
1389   uint              _ref_counter_limit;
1390   uint              _ref_counter;
1391   bool              _is_serial;
1392 public:
1393   G1CMKeepAliveAndDrainClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1394     _cm(cm), _task(task), _ref_counter_limit(G1RefProcDrainInterval),
1395     _ref_counter(_ref_counter_limit), _is_serial(is_serial) {
1396     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1397   }
1398 
1399   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
1400   virtual void do_oop(      oop* p) { do_oop_work(p); }
1401 
1402   template <class T> void do_oop_work(T* p) {
1403     if (_cm->has_overflown()) {
1404       return;
1405     }
1406     if (!_task->deal_with_reference(p)) {
1407       // We did not add anything to the mark bitmap (or mark stack), so there is
1408       // no point trying to drain it.
1409       return;
1410     }
1411     _ref_counter--;
1412 
1413     if (_ref_counter == 0) {
1414       // We have dealt with _ref_counter_limit references, pushing them
1415       // and objects reachable from them on to the local stack (and
1416       // possibly the global stack). Call G1CMTask::do_marking_step() to
1417       // process these entries.
1418       //
1419       // We call G1CMTask::do_marking_step() in a loop, which we'll exit if
1420       // there's nothing more to do (i.e. we're done with the entries that
1421       // were pushed as a result of the G1CMTask::deal_with_reference() calls
1422       // above) or we overflow.
1423       //
1424       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1425       // flag while there may still be some work to do. (See the comment at
1426       // the beginning of G1CMTask::do_marking_step() for those conditions -
1427       // one of which is reaching the specified time target.) It is only
1428       // when G1CMTask::do_marking_step() returns without setting the
1429       // has_aborted() flag that the marking step has completed.
1430       do {
1431         double mark_step_duration_ms = G1ConcMarkStepDurationMillis;
1432         _task->do_marking_step(mark_step_duration_ms,
1433                                false      /* do_termination */,
1434                                _is_serial);
1435       } while (_task->has_aborted() && !_cm->has_overflown());
1436       _ref_counter = _ref_counter_limit;
1437     }
1438   }
1439 };
1440 
1441 // 'Drain' oop closure used by both serial and parallel reference processing.
1442 // Uses the G1CMTask associated with a given worker thread (for serial
1443 // reference processing the G1CMtask for worker 0 is used). Calls the
1444 // do_marking_step routine, with an unbelievably large timeout value,
1445 // to drain the marking data structures of the remaining entries
1446 // added by the 'keep alive' oop closure above.
1447 
1448 class G1CMDrainMarkingStackClosure : public VoidClosure {
1449   G1ConcurrentMark* _cm;
1450   G1CMTask*         _task;
1451   bool              _is_serial;
1452  public:
1453   G1CMDrainMarkingStackClosure(G1ConcurrentMark* cm, G1CMTask* task, bool is_serial) :
1454     _cm(cm), _task(task), _is_serial(is_serial) {
1455     assert(!_is_serial || _task->worker_id() == 0, "only task 0 for serial code");
1456   }
1457 
1458   void do_void() {
1459     do {
1460       // We call G1CMTask::do_marking_step() to completely drain the local
1461       // and global marking stacks of entries pushed by the 'keep alive'
1462       // oop closure (an instance of G1CMKeepAliveAndDrainClosure above).
1463       //
1464       // G1CMTask::do_marking_step() is called in a loop, which we'll exit
1465       // if there's nothing more to do (i.e. we've completely drained the
1466       // entries that were pushed as a a result of applying the 'keep alive'
1467       // closure to the entries on the discovered ref lists) or we overflow
1468       // the global marking stack.
1469       //
1470       // Note: G1CMTask::do_marking_step() can set the G1CMTask::has_aborted()
1471       // flag while there may still be some work to do. (See the comment at
1472       // the beginning of G1CMTask::do_marking_step() for those conditions -
1473       // one of which is reaching the specified time target.) It is only
1474       // when G1CMTask::do_marking_step() returns without setting the
1475       // has_aborted() flag that the marking step has completed.
1476 
1477       _task->do_marking_step(1000000000.0 /* something very large */,
1478                              true         /* do_termination */,
1479                              _is_serial);
1480     } while (_task->has_aborted() && !_cm->has_overflown());
1481   }
1482 };
1483 
1484 // Implementation of AbstractRefProcTaskExecutor for parallel
1485 // reference processing at the end of G1 concurrent marking
1486 
1487 class G1CMRefProcTaskExecutor : public AbstractRefProcTaskExecutor {
1488 private:
1489   G1CollectedHeap*  _g1h;
1490   G1ConcurrentMark* _cm;
1491   WorkGang*         _workers;
1492   uint              _active_workers;
1493 
1494 public:
1495   G1CMRefProcTaskExecutor(G1CollectedHeap* g1h,
1496                           G1ConcurrentMark* cm,
1497                           WorkGang* workers,
1498                           uint n_workers) :
1499     _g1h(g1h), _cm(cm),
1500     _workers(workers), _active_workers(n_workers) { }
1501 
1502   virtual void execute(ProcessTask& task, uint ergo_workers);
1503 };
1504 
1505 class G1CMRefProcTaskProxy : public AbstractGangTask {
1506   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
1507   ProcessTask&      _proc_task;
1508   G1CollectedHeap*  _g1h;
1509   G1ConcurrentMark* _cm;
1510 
1511 public:
1512   G1CMRefProcTaskProxy(ProcessTask& proc_task,
1513                        G1CollectedHeap* g1h,
1514                        G1ConcurrentMark* cm) :
1515     AbstractGangTask("Process reference objects in parallel"),
1516     _proc_task(proc_task), _g1h(g1h), _cm(cm) {
1517     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1518     assert(rp->processing_is_mt(), "shouldn't be here otherwise");
1519   }
1520 
1521   virtual void work(uint worker_id) {
1522     ResourceMark rm;
1523     HandleMark hm;
1524     G1CMTask* task = _cm->task(worker_id);
1525     G1CMIsAliveClosure g1_is_alive(_g1h);
1526     G1CMKeepAliveAndDrainClosure g1_par_keep_alive(_cm, task, false /* is_serial */);
1527     G1CMDrainMarkingStackClosure g1_par_drain(_cm, task, false /* is_serial */);
1528 
1529     _proc_task.work(worker_id, g1_is_alive, g1_par_keep_alive, g1_par_drain);
1530   }
1531 };
1532 
1533 void G1CMRefProcTaskExecutor::execute(ProcessTask& proc_task, uint ergo_workers) {
1534   assert(_workers != NULL, "Need parallel worker threads.");
1535   assert(_g1h->ref_processor_cm()->processing_is_mt(), "processing is not MT");
1536   assert(_workers->active_workers() >= ergo_workers,
1537          "Ergonomically chosen workers(%u) should be less than or equal to active workers(%u)",
1538          ergo_workers, _workers->active_workers());
1539 
1540   G1CMRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _cm);
1541 
1542   // We need to reset the concurrency level before each
1543   // proxy task execution, so that the termination protocol
1544   // and overflow handling in G1CMTask::do_marking_step() knows
1545   // how many workers to wait for.
1546   _cm->set_concurrency(ergo_workers);
1547   _workers->run_task(&proc_task_proxy, ergo_workers);
1548 }
1549 
1550 void G1ConcurrentMark::weak_refs_work(bool clear_all_soft_refs) {
1551   ResourceMark rm;
1552   HandleMark   hm;
1553 
1554   // Is alive closure.
1555   G1CMIsAliveClosure g1_is_alive(_g1h);
1556 
1557   // Inner scope to exclude the cleaning of the string table
1558   // from the displayed time.
1559   {
1560     GCTraceTime(Debug, gc, phases) debug("Reference Processing", _gc_timer_cm);
1561 
1562     ReferenceProcessor* rp = _g1h->ref_processor_cm();
1563 
1564     // See the comment in G1CollectedHeap::ref_processing_init()
1565     // about how reference processing currently works in G1.
1566 
1567     // Set the soft reference policy
1568     rp->setup_policy(clear_all_soft_refs);
1569     assert(_global_mark_stack.is_empty(), "mark stack should be empty");
1570 
1571     // Instances of the 'Keep Alive' and 'Complete GC' closures used
1572     // in serial reference processing. Note these closures are also
1573     // used for serially processing (by the the current thread) the
1574     // JNI references during parallel reference processing.
1575     //
1576     // These closures do not need to synchronize with the worker
1577     // threads involved in parallel reference processing as these
1578     // instances are executed serially by the current thread (e.g.
1579     // reference processing is not multi-threaded and is thus
1580     // performed by the current thread instead of a gang worker).
1581     //
1582     // The gang tasks involved in parallel reference processing create
1583     // their own instances of these closures, which do their own
1584     // synchronization among themselves.
1585     G1CMKeepAliveAndDrainClosure g1_keep_alive(this, task(0), true /* is_serial */);
1586     G1CMDrainMarkingStackClosure g1_drain_mark_stack(this, task(0), true /* is_serial */);
1587 
1588     // We need at least one active thread. If reference processing
1589     // is not multi-threaded we use the current (VMThread) thread,
1590     // otherwise we use the work gang from the G1CollectedHeap and
1591     // we utilize all the worker threads we can.
1592     bool processing_is_mt = rp->processing_is_mt();
1593     uint active_workers = (processing_is_mt ? _g1h->workers()->active_workers() : 1U);
1594     active_workers = MAX2(MIN2(active_workers, _max_num_tasks), 1U);
1595 
1596     // Parallel processing task executor.
1597     G1CMRefProcTaskExecutor par_task_executor(_g1h, this,
1598                                               _g1h->workers(), active_workers);
1599     AbstractRefProcTaskExecutor* executor = (processing_is_mt ? &par_task_executor : NULL);
1600 
1601     // Set the concurrency level. The phase was already set prior to
1602     // executing the remark task.
1603     set_concurrency(active_workers);
1604 
1605     // Set the degree of MT processing here.  If the discovery was done MT,
1606     // the number of threads involved during discovery could differ from
1607     // the number of active workers.  This is OK as long as the discovered
1608     // Reference lists are balanced (see balance_all_queues() and balance_queues()).
1609     rp->set_active_mt_degree(active_workers);
1610 
1611     ReferenceProcessorPhaseTimes pt(_gc_timer_cm, rp->max_num_queues());
1612 
1613     // Process the weak references.
1614     const ReferenceProcessorStats& stats =
1615         rp->process_discovered_references(&g1_is_alive,
1616                                           &g1_keep_alive,
1617                                           &g1_drain_mark_stack,
1618                                           executor,
1619                                           &pt);
1620     _gc_tracer_cm->report_gc_reference_stats(stats);
1621     pt.print_all_references();
1622 
1623     // The do_oop work routines of the keep_alive and drain_marking_stack
1624     // oop closures will set the has_overflown flag if we overflow the
1625     // global marking stack.
1626 
1627     assert(has_overflown() || _global_mark_stack.is_empty(),
1628            "Mark stack should be empty (unless it has overflown)");
1629 
1630     assert(rp->num_queues() == active_workers, "why not");
1631 
1632     rp->verify_no_references_recorded();
1633     assert(!rp->discovery_enabled(), "Post condition");
1634   }
1635 
1636   if (has_overflown()) {
1637     // We can not trust g1_is_alive and the contents of the heap if the marking stack
1638     // overflowed while processing references. Exit the VM.
1639     fatal("Overflow during reference processing, can not continue. Please "
1640           "increase MarkStackSizeMax (current value: " SIZE_FORMAT ") and "
1641           "restart.", MarkStackSizeMax);
1642     return;
1643   }
1644 
1645   assert(_global_mark_stack.is_empty(), "Marking should have completed");
1646 
1647   {
1648     GCTraceTime(Debug, gc, phases) debug("Weak Processing", _gc_timer_cm);
1649     WeakProcessor::weak_oops_do(_g1h->workers(), &g1_is_alive, &do_nothing_cl, 1);
1650   }
1651 
1652   // Unload Klasses, String, Code Cache, etc.
1653   if (ClassUnloadingWithConcurrentMark) {
1654     GCTraceTime(Debug, gc, phases) debug("Class Unloading", _gc_timer_cm);
1655     bool purged_classes = SystemDictionary::do_unloading(_gc_timer_cm);
1656     _g1h->complete_cleaning(&g1_is_alive, purged_classes);
1657   } else {
1658     GCTraceTime(Debug, gc, phases) debug("Cleanup", _gc_timer_cm);
1659     // No need to clean string table as it is treated as strong roots when
1660     // class unloading is disabled.
1661     _g1h->partial_cleaning(&g1_is_alive, false, G1StringDedup::is_enabled());
1662   }
1663 }
1664 
1665 class G1PrecleanYieldClosure : public YieldClosure {
1666   G1ConcurrentMark* _cm;
1667 
1668 public:
1669   G1PrecleanYieldClosure(G1ConcurrentMark* cm) : _cm(cm) { }
1670 
1671   virtual bool should_return() {
1672     return _cm->has_aborted();
1673   }
1674 
1675   virtual bool should_return_fine_grain() {
1676     _cm->do_yield_check();
1677     return _cm->has_aborted();
1678   }
1679 };
1680 
1681 void G1ConcurrentMark::preclean() {
1682   assert(G1UseReferencePrecleaning, "Precleaning must be enabled.");
1683 
1684   SuspendibleThreadSetJoiner joiner;
1685 
1686   G1CMKeepAliveAndDrainClosure keep_alive(this, task(0), true /* is_serial */);
1687   G1CMDrainMarkingStackClosure drain_mark_stack(this, task(0), true /* is_serial */);
1688 
1689   set_concurrency_and_phase(1, true);
1690 
1691   G1PrecleanYieldClosure yield_cl(this);
1692 
1693   ReferenceProcessor* rp = _g1h->ref_processor_cm();
1694   // Precleaning is single threaded. Temporarily disable MT discovery.
1695   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
1696   rp->preclean_discovered_references(rp->is_alive_non_header(),
1697                                      &keep_alive,
1698                                      &drain_mark_stack,
1699                                      &yield_cl,
1700                                      _gc_timer_cm);
1701 }
1702 
1703 // When sampling object counts, we already swapped the mark bitmaps, so we need to use
1704 // the prev bitmap determining liveness.
1705 class G1ObjectCountIsAliveClosure: public BoolObjectClosure {
1706   G1CollectedHeap* _g1h;
1707 public:
1708   G1ObjectCountIsAliveClosure(G1CollectedHeap* g1h) : _g1h(g1h) { }
1709 
1710   bool do_object_b(oop obj) {
1711     HeapWord* addr = (HeapWord*)obj;
1712     return addr != NULL &&
1713            (!_g1h->is_in_g1_reserved(addr) || !_g1h->is_obj_dead(obj));
1714   }
1715 };
1716 
1717 void G1ConcurrentMark::report_object_count(bool mark_completed) {
1718   // Depending on the completion of the marking liveness needs to be determined
1719   // using either the next or prev bitmap.
1720   if (mark_completed) {
1721     G1ObjectCountIsAliveClosure is_alive(_g1h);
1722     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1723   } else {
1724     G1CMIsAliveClosure is_alive(_g1h);
1725     _gc_tracer_cm->report_object_count_after_gc(&is_alive);
1726   }
1727 }
1728 
1729 
1730 void G1ConcurrentMark::swap_mark_bitmaps() {
1731   G1CMBitMap* temp = _prev_mark_bitmap;
1732   _prev_mark_bitmap = _next_mark_bitmap;
1733   _next_mark_bitmap = temp;
1734   _g1h->collector_state()->set_clearing_next_bitmap(true);
1735 }
1736 
1737 // Closure for marking entries in SATB buffers.
1738 class G1CMSATBBufferClosure : public SATBBufferClosure {
1739 private:
1740   G1CMTask* _task;
1741   G1CollectedHeap* _g1h;
1742 
1743   // This is very similar to G1CMTask::deal_with_reference, but with
1744   // more relaxed requirements for the argument, so this must be more
1745   // circumspect about treating the argument as an object.
1746   void do_entry(void* entry) const {
1747     _task->increment_refs_reached();
1748     oop const obj = static_cast<oop>(entry);
1749     _task->make_reference_grey(obj);
1750   }
1751 
1752 public:
1753   G1CMSATBBufferClosure(G1CMTask* task, G1CollectedHeap* g1h)
1754     : _task(task), _g1h(g1h) { }
1755 
1756   virtual void do_buffer(void** buffer, size_t size) {
1757     for (size_t i = 0; i < size; ++i) {
1758       do_entry(buffer[i]);
1759     }
1760   }
1761 };
1762 
1763 class G1RemarkThreadsClosure : public ThreadClosure {
1764   G1CMSATBBufferClosure _cm_satb_cl;
1765   G1CMOopClosure _cm_cl;
1766   MarkingCodeBlobClosure _code_cl;
1767   int _thread_parity;
1768 
1769  public:
1770   G1RemarkThreadsClosure(G1CollectedHeap* g1h, G1CMTask* task) :
1771     _cm_satb_cl(task, g1h),
1772     _cm_cl(g1h, task),
1773     _code_cl(&_cm_cl, !CodeBlobToOopClosure::FixRelocations),
1774     _thread_parity(Threads::thread_claim_parity()) {}
1775 
1776   void do_thread(Thread* thread) {
1777     if (thread->is_Java_thread()) {
1778       if (thread->claim_oops_do(true, _thread_parity)) {
1779         JavaThread* jt = (JavaThread*)thread;
1780 
1781         // In theory it should not be neccessary to explicitly walk the nmethods to find roots for concurrent marking
1782         // however the liveness of oops reachable from nmethods have very complex lifecycles:
1783         // * Alive if on the stack of an executing method
1784         // * Weakly reachable otherwise
1785         // Some objects reachable from nmethods, such as the class loader (or klass_holder) of the receiver should be
1786         // live by the SATB invariant but other oops recorded in nmethods may behave differently.
1787         jt->nmethods_do(&_code_cl);
1788 
1789         G1ThreadLocalData::satb_mark_queue(jt).apply_closure_and_empty(&_cm_satb_cl);
1790       }
1791     } else if (thread->is_VM_thread()) {
1792       if (thread->claim_oops_do(true, _thread_parity)) {
1793         G1BarrierSet::satb_mark_queue_set().shared_satb_queue()->apply_closure_and_empty(&_cm_satb_cl);
1794       }
1795     }
1796   }
1797 };
1798 
1799 class G1CMRemarkTask : public AbstractGangTask {
1800   G1ConcurrentMark* _cm;
1801 public:
1802   void work(uint worker_id) {
1803     G1CMTask* task = _cm->task(worker_id);
1804     task->record_start_time();
1805     {
1806       ResourceMark rm;
1807       HandleMark hm;
1808 
1809       G1RemarkThreadsClosure threads_f(G1CollectedHeap::heap(), task);
1810       Threads::threads_do(&threads_f);
1811     }
1812 
1813     do {
1814       task->do_marking_step(1000000000.0 /* something very large */,
1815                             true         /* do_termination       */,
1816                             false        /* is_serial            */);
1817     } while (task->has_aborted() && !_cm->has_overflown());
1818     // If we overflow, then we do not want to restart. We instead
1819     // want to abort remark and do concurrent marking again.
1820     task->record_end_time();
1821   }
1822 
1823   G1CMRemarkTask(G1ConcurrentMark* cm, uint active_workers) :
1824     AbstractGangTask("Par Remark"), _cm(cm) {
1825     _cm->terminator()->reset_for_reuse(active_workers);
1826   }
1827 };
1828 
1829 void G1ConcurrentMark::finalize_marking() {
1830   ResourceMark rm;
1831   HandleMark   hm;
1832 
1833   _g1h->ensure_parsability(false);
1834 
1835   // this is remark, so we'll use up all active threads
1836   uint active_workers = _g1h->workers()->active_workers();
1837   set_concurrency_and_phase(active_workers, false /* concurrent */);
1838   // Leave _parallel_marking_threads at it's
1839   // value originally calculated in the G1ConcurrentMark
1840   // constructor and pass values of the active workers
1841   // through the gang in the task.
1842 
1843   {
1844     StrongRootsScope srs(active_workers);
1845 
1846     G1CMRemarkTask remarkTask(this, active_workers);
1847     // We will start all available threads, even if we decide that the
1848     // active_workers will be fewer. The extra ones will just bail out
1849     // immediately.
1850     _g1h->workers()->run_task(&remarkTask);
1851   }
1852 
1853   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
1854   guarantee(has_overflown() ||
1855             satb_mq_set.completed_buffers_num() == 0,
1856             "Invariant: has_overflown = %s, num buffers = " SIZE_FORMAT,
1857             BOOL_TO_STR(has_overflown()),
1858             satb_mq_set.completed_buffers_num());
1859 
1860   print_stats();
1861 }
1862 
1863 void G1ConcurrentMark::flush_all_task_caches() {
1864   size_t hits = 0;
1865   size_t misses = 0;
1866   for (uint i = 0; i < _max_num_tasks; i++) {
1867     Pair<size_t, size_t> stats = _tasks[i]->flush_mark_stats_cache();
1868     hits += stats.first;
1869     misses += stats.second;
1870   }
1871   size_t sum = hits + misses;
1872   log_debug(gc, stats)("Mark stats cache hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %1.3lf",
1873                        hits, misses, percent_of(hits, sum));
1874 }
1875 
1876 void G1ConcurrentMark::clear_range_in_prev_bitmap(MemRegion mr) {
1877   _prev_mark_bitmap->clear_range(mr);
1878 }
1879 
1880 HeapRegion*
1881 G1ConcurrentMark::claim_region(uint worker_id) {
1882   // "checkpoint" the finger
1883   HeapWord* finger = _finger;
1884 
1885   while (finger < _heap.end()) {
1886     assert(_g1h->is_in_g1_reserved(finger), "invariant");
1887 
1888     HeapRegion* curr_region = _g1h->heap_region_containing(finger);
1889     // Make sure that the reads below do not float before loading curr_region.
1890     OrderAccess::loadload();
1891     // Above heap_region_containing may return NULL as we always scan claim
1892     // until the end of the heap. In this case, just jump to the next region.
1893     HeapWord* end = curr_region != NULL ? curr_region->end() : finger + HeapRegion::GrainWords;
1894 
1895     // Is the gap between reading the finger and doing the CAS too long?
1896     HeapWord* res = Atomic::cmpxchg(end, &_finger, finger);
1897     if (res == finger && curr_region != NULL) {
1898       // we succeeded
1899       HeapWord*   bottom        = curr_region->bottom();
1900       HeapWord*   limit         = curr_region->next_top_at_mark_start();
1901 
1902       // notice that _finger == end cannot be guaranteed here since,
1903       // someone else might have moved the finger even further
1904       assert(_finger >= end, "the finger should have moved forward");
1905 
1906       if (limit > bottom) {
1907         return curr_region;
1908       } else {
1909         assert(limit == bottom,
1910                "the region limit should be at bottom");
1911         // we return NULL and the caller should try calling
1912         // claim_region() again.
1913         return NULL;
1914       }
1915     } else {
1916       assert(_finger > finger, "the finger should have moved forward");
1917       // read it again
1918       finger = _finger;
1919     }
1920   }
1921 
1922   return NULL;
1923 }
1924 
1925 #ifndef PRODUCT
1926 class VerifyNoCSetOops {
1927   G1CollectedHeap* _g1h;
1928   const char* _phase;
1929   int _info;
1930 
1931 public:
1932   VerifyNoCSetOops(const char* phase, int info = -1) :
1933     _g1h(G1CollectedHeap::heap()),
1934     _phase(phase),
1935     _info(info)
1936   { }
1937 
1938   void operator()(G1TaskQueueEntry task_entry) const {
1939     if (task_entry.is_array_slice()) {
1940       guarantee(_g1h->is_in_reserved(task_entry.slice()), "Slice " PTR_FORMAT " must be in heap.", p2i(task_entry.slice()));
1941       return;
1942     }
1943     guarantee(oopDesc::is_oop(task_entry.obj()),
1944               "Non-oop " PTR_FORMAT ", phase: %s, info: %d",
1945               p2i(task_entry.obj()), _phase, _info);
1946     guarantee(!_g1h->is_in_cset(task_entry.obj()),
1947               "obj: " PTR_FORMAT " in CSet, phase: %s, info: %d",
1948               p2i(task_entry.obj()), _phase, _info);
1949   }
1950 };
1951 
1952 void G1ConcurrentMark::verify_no_cset_oops() {
1953   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1954   if (!_g1h->collector_state()->mark_or_rebuild_in_progress()) {
1955     return;
1956   }
1957 
1958   // Verify entries on the global mark stack
1959   _global_mark_stack.iterate(VerifyNoCSetOops("Stack"));
1960 
1961   // Verify entries on the task queues
1962   for (uint i = 0; i < _max_num_tasks; ++i) {
1963     G1CMTaskQueue* queue = _task_queues->queue(i);
1964     queue->iterate(VerifyNoCSetOops("Queue", i));
1965   }
1966 
1967   // Verify the global finger
1968   HeapWord* global_finger = finger();
1969   if (global_finger != NULL && global_finger < _heap.end()) {
1970     // Since we always iterate over all regions, we might get a NULL HeapRegion
1971     // here.
1972     HeapRegion* global_hr = _g1h->heap_region_containing(global_finger);
1973     guarantee(global_hr == NULL || global_finger == global_hr->bottom(),
1974               "global finger: " PTR_FORMAT " region: " HR_FORMAT,
1975               p2i(global_finger), HR_FORMAT_PARAMS(global_hr));
1976   }
1977 
1978   // Verify the task fingers
1979   assert(_num_concurrent_workers <= _max_num_tasks, "sanity");
1980   for (uint i = 0; i < _num_concurrent_workers; ++i) {
1981     G1CMTask* task = _tasks[i];
1982     HeapWord* task_finger = task->finger();
1983     if (task_finger != NULL && task_finger < _heap.end()) {
1984       // See above note on the global finger verification.
1985       HeapRegion* task_hr = _g1h->heap_region_containing(task_finger);
1986       guarantee(task_hr == NULL || task_finger == task_hr->bottom() ||
1987                 !task_hr->in_collection_set(),
1988                 "task finger: " PTR_FORMAT " region: " HR_FORMAT,
1989                 p2i(task_finger), HR_FORMAT_PARAMS(task_hr));
1990     }
1991   }
1992 }
1993 #endif // PRODUCT
1994 
1995 void G1ConcurrentMark::rebuild_rem_set_concurrently() {
1996   _g1h->g1_rem_set()->rebuild_rem_set(this, _concurrent_workers, _worker_id_offset);
1997 }
1998 
1999 void G1ConcurrentMark::print_stats() {
2000   if (!log_is_enabled(Debug, gc, stats)) {
2001     return;
2002   }
2003   log_debug(gc, stats)("---------------------------------------------------------------------");
2004   for (size_t i = 0; i < _num_active_tasks; ++i) {
2005     _tasks[i]->print_stats();
2006     log_debug(gc, stats)("---------------------------------------------------------------------");
2007   }
2008 }
2009 
2010 void G1ConcurrentMark::concurrent_cycle_abort() {
2011   if (!cm_thread()->during_cycle() || _has_aborted) {
2012     // We haven't started a concurrent cycle or we have already aborted it. No need to do anything.
2013     return;
2014   }
2015 
2016   // Clear all marks in the next bitmap for the next marking cycle. This will allow us to skip the next
2017   // concurrent bitmap clearing.
2018   {
2019     GCTraceTime(Debug, gc) debug("Clear Next Bitmap");
2020     clear_bitmap(_next_mark_bitmap, _g1h->workers(), false);
2021   }
2022   // Note we cannot clear the previous marking bitmap here
2023   // since VerifyDuringGC verifies the objects marked during
2024   // a full GC against the previous bitmap.
2025 
2026   // Empty mark stack
2027   reset_marking_for_restart();
2028   for (uint i = 0; i < _max_num_tasks; ++i) {
2029     _tasks[i]->clear_region_fields();
2030   }
2031   _first_overflow_barrier_sync.abort();
2032   _second_overflow_barrier_sync.abort();
2033   _has_aborted = true;
2034 
2035   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2036   satb_mq_set.abandon_partial_marking();
2037   // This can be called either during or outside marking, we'll read
2038   // the expected_active value from the SATB queue set.
2039   satb_mq_set.set_active_all_threads(
2040                                  false, /* new active value */
2041                                  satb_mq_set.is_active() /* expected_active */);
2042 }
2043 
2044 static void print_ms_time_info(const char* prefix, const char* name,
2045                                NumberSeq& ns) {
2046   log_trace(gc, marking)("%s%5d %12s: total time = %8.2f s (avg = %8.2f ms).",
2047                          prefix, ns.num(), name, ns.sum()/1000.0, ns.avg());
2048   if (ns.num() > 0) {
2049     log_trace(gc, marking)("%s         [std. dev = %8.2f ms, max = %8.2f ms]",
2050                            prefix, ns.sd(), ns.maximum());
2051   }
2052 }
2053 
2054 void G1ConcurrentMark::print_summary_info() {
2055   Log(gc, marking) log;
2056   if (!log.is_trace()) {
2057     return;
2058   }
2059 
2060   log.trace(" Concurrent marking:");
2061   print_ms_time_info("  ", "init marks", _init_times);
2062   print_ms_time_info("  ", "remarks", _remark_times);
2063   {
2064     print_ms_time_info("     ", "final marks", _remark_mark_times);
2065     print_ms_time_info("     ", "weak refs", _remark_weak_ref_times);
2066 
2067   }
2068   print_ms_time_info("  ", "cleanups", _cleanup_times);
2069   log.trace("    Finalize live data total time = %8.2f s (avg = %8.2f ms).",
2070             _total_cleanup_time, (_cleanup_times.num() > 0 ? _total_cleanup_time * 1000.0 / (double)_cleanup_times.num() : 0.0));
2071   log.trace("  Total stop_world time = %8.2f s.",
2072             (_init_times.sum() + _remark_times.sum() + _cleanup_times.sum())/1000.0);
2073   log.trace("  Total concurrent time = %8.2f s (%8.2f s marking).",
2074             cm_thread()->vtime_accum(), cm_thread()->vtime_mark_accum());
2075 }
2076 
2077 void G1ConcurrentMark::print_worker_threads_on(outputStream* st) const {
2078   _concurrent_workers->print_worker_threads_on(st);
2079 }
2080 
2081 void G1ConcurrentMark::threads_do(ThreadClosure* tc) const {
2082   _concurrent_workers->threads_do(tc);
2083 }
2084 
2085 void G1ConcurrentMark::print_on_error(outputStream* st) const {
2086   st->print_cr("Marking Bits (Prev, Next): (CMBitMap*) " PTR_FORMAT ", (CMBitMap*) " PTR_FORMAT,
2087                p2i(_prev_mark_bitmap), p2i(_next_mark_bitmap));
2088   _prev_mark_bitmap->print_on_error(st, " Prev Bits: ");
2089   _next_mark_bitmap->print_on_error(st, " Next Bits: ");
2090 }
2091 
2092 static ReferenceProcessor* get_cm_oop_closure_ref_processor(G1CollectedHeap* g1h) {
2093   ReferenceProcessor* result = g1h->ref_processor_cm();
2094   assert(result != NULL, "CM reference processor should not be NULL");
2095   return result;
2096 }
2097 
2098 G1CMOopClosure::G1CMOopClosure(G1CollectedHeap* g1h,
2099                                G1CMTask* task)
2100   : MetadataVisitingOopIterateClosure(get_cm_oop_closure_ref_processor(g1h)),
2101     _g1h(g1h), _task(task)
2102 { }
2103 
2104 void G1CMTask::setup_for_region(HeapRegion* hr) {
2105   assert(hr != NULL,
2106         "claim_region() should have filtered out NULL regions");
2107   _curr_region  = hr;
2108   _finger       = hr->bottom();
2109   update_region_limit();
2110 }
2111 
2112 void G1CMTask::update_region_limit() {
2113   HeapRegion* hr            = _curr_region;
2114   HeapWord* bottom          = hr->bottom();
2115   HeapWord* limit           = hr->next_top_at_mark_start();
2116 
2117   if (limit == bottom) {
2118     // The region was collected underneath our feet.
2119     // We set the finger to bottom to ensure that the bitmap
2120     // iteration that will follow this will not do anything.
2121     // (this is not a condition that holds when we set the region up,
2122     // as the region is not supposed to be empty in the first place)
2123     _finger = bottom;
2124   } else if (limit >= _region_limit) {
2125     assert(limit >= _finger, "peace of mind");
2126   } else {
2127     assert(limit < _region_limit, "only way to get here");
2128     // This can happen under some pretty unusual circumstances.  An
2129     // evacuation pause empties the region underneath our feet (NTAMS
2130     // at bottom). We then do some allocation in the region (NTAMS
2131     // stays at bottom), followed by the region being used as a GC
2132     // alloc region (NTAMS will move to top() and the objects
2133     // originally below it will be grayed). All objects now marked in
2134     // the region are explicitly grayed, if below the global finger,
2135     // and we do not need in fact to scan anything else. So, we simply
2136     // set _finger to be limit to ensure that the bitmap iteration
2137     // doesn't do anything.
2138     _finger = limit;
2139   }
2140 
2141   _region_limit = limit;
2142 }
2143 
2144 void G1CMTask::giveup_current_region() {
2145   assert(_curr_region != NULL, "invariant");
2146   clear_region_fields();
2147 }
2148 
2149 void G1CMTask::clear_region_fields() {
2150   // Values for these three fields that indicate that we're not
2151   // holding on to a region.
2152   _curr_region   = NULL;
2153   _finger        = NULL;
2154   _region_limit  = NULL;
2155 }
2156 
2157 void G1CMTask::set_cm_oop_closure(G1CMOopClosure* cm_oop_closure) {
2158   if (cm_oop_closure == NULL) {
2159     assert(_cm_oop_closure != NULL, "invariant");
2160   } else {
2161     assert(_cm_oop_closure == NULL, "invariant");
2162   }
2163   _cm_oop_closure = cm_oop_closure;
2164 }
2165 
2166 void G1CMTask::reset(G1CMBitMap* next_mark_bitmap) {
2167   guarantee(next_mark_bitmap != NULL, "invariant");
2168   _next_mark_bitmap              = next_mark_bitmap;
2169   clear_region_fields();
2170 
2171   _calls                         = 0;
2172   _elapsed_time_ms               = 0.0;
2173   _termination_time_ms           = 0.0;
2174   _termination_start_time_ms     = 0.0;
2175 
2176   _mark_stats_cache.reset();
2177 }
2178 
2179 bool G1CMTask::should_exit_termination() {
2180   regular_clock_call();
2181   // This is called when we are in the termination protocol. We should
2182   // quit if, for some reason, this task wants to abort or the global
2183   // stack is not empty (this means that we can get work from it).
2184   return !_cm->mark_stack_empty() || has_aborted();
2185 }
2186 
2187 void G1CMTask::reached_limit() {
2188   assert(_words_scanned >= _words_scanned_limit ||
2189          _refs_reached >= _refs_reached_limit ,
2190          "shouldn't have been called otherwise");
2191   regular_clock_call();
2192 }
2193 
2194 void G1CMTask::regular_clock_call() {
2195   if (has_aborted()) {
2196     return;
2197   }
2198 
2199   // First, we need to recalculate the words scanned and refs reached
2200   // limits for the next clock call.
2201   recalculate_limits();
2202 
2203   // During the regular clock call we do the following
2204 
2205   // (1) If an overflow has been flagged, then we abort.
2206   if (_cm->has_overflown()) {
2207     set_has_aborted();
2208     return;
2209   }
2210 
2211   // If we are not concurrent (i.e. we're doing remark) we don't need
2212   // to check anything else. The other steps are only needed during
2213   // the concurrent marking phase.
2214   if (!_cm->concurrent()) {
2215     return;
2216   }
2217 
2218   // (2) If marking has been aborted for Full GC, then we also abort.
2219   if (_cm->has_aborted()) {
2220     set_has_aborted();
2221     return;
2222   }
2223 
2224   double curr_time_ms = os::elapsedVTime() * 1000.0;
2225 
2226   // (4) We check whether we should yield. If we have to, then we abort.
2227   if (SuspendibleThreadSet::should_yield()) {
2228     // We should yield. To do this we abort the task. The caller is
2229     // responsible for yielding.
2230     set_has_aborted();
2231     return;
2232   }
2233 
2234   // (5) We check whether we've reached our time quota. If we have,
2235   // then we abort.
2236   double elapsed_time_ms = curr_time_ms - _start_time_ms;
2237   if (elapsed_time_ms > _time_target_ms) {
2238     set_has_aborted();
2239     _has_timed_out = true;
2240     return;
2241   }
2242 
2243   // (6) Finally, we check whether there are enough completed STAB
2244   // buffers available for processing. If there are, we abort.
2245   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2246   if (!_draining_satb_buffers && satb_mq_set.process_completed_buffers()) {
2247     // we do need to process SATB buffers, we'll abort and restart
2248     // the marking task to do so
2249     set_has_aborted();
2250     return;
2251   }
2252 }
2253 
2254 void G1CMTask::recalculate_limits() {
2255   _real_words_scanned_limit = _words_scanned + words_scanned_period;
2256   _words_scanned_limit      = _real_words_scanned_limit;
2257 
2258   _real_refs_reached_limit  = _refs_reached  + refs_reached_period;
2259   _refs_reached_limit       = _real_refs_reached_limit;
2260 }
2261 
2262 void G1CMTask::decrease_limits() {
2263   // This is called when we believe that we're going to do an infrequent
2264   // operation which will increase the per byte scanned cost (i.e. move
2265   // entries to/from the global stack). It basically tries to decrease the
2266   // scanning limit so that the clock is called earlier.
2267 
2268   _words_scanned_limit = _real_words_scanned_limit - 3 * words_scanned_period / 4;
2269   _refs_reached_limit  = _real_refs_reached_limit - 3 * refs_reached_period / 4;
2270 }
2271 
2272 void G1CMTask::move_entries_to_global_stack() {
2273   // Local array where we'll store the entries that will be popped
2274   // from the local queue.
2275   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2276 
2277   size_t n = 0;
2278   G1TaskQueueEntry task_entry;
2279   while (n < G1CMMarkStack::EntriesPerChunk && _task_queue->pop_local(task_entry)) {
2280     buffer[n] = task_entry;
2281     ++n;
2282   }
2283   if (n < G1CMMarkStack::EntriesPerChunk) {
2284     buffer[n] = G1TaskQueueEntry();
2285   }
2286 
2287   if (n > 0) {
2288     if (!_cm->mark_stack_push(buffer)) {
2289       set_has_aborted();
2290     }
2291   }
2292 
2293   // This operation was quite expensive, so decrease the limits.
2294   decrease_limits();
2295 }
2296 
2297 bool G1CMTask::get_entries_from_global_stack() {
2298   // Local array where we'll store the entries that will be popped
2299   // from the global stack.
2300   G1TaskQueueEntry buffer[G1CMMarkStack::EntriesPerChunk];
2301 
2302   if (!_cm->mark_stack_pop(buffer)) {
2303     return false;
2304   }
2305 
2306   // We did actually pop at least one entry.
2307   for (size_t i = 0; i < G1CMMarkStack::EntriesPerChunk; ++i) {
2308     G1TaskQueueEntry task_entry = buffer[i];
2309     if (task_entry.is_null()) {
2310       break;
2311     }
2312     assert(task_entry.is_array_slice() || oopDesc::is_oop(task_entry.obj()), "Element " PTR_FORMAT " must be an array slice or oop", p2i(task_entry.obj()));
2313     bool success = _task_queue->push(task_entry);
2314     // We only call this when the local queue is empty or under a
2315     // given target limit. So, we do not expect this push to fail.
2316     assert(success, "invariant");
2317   }
2318 
2319   // This operation was quite expensive, so decrease the limits
2320   decrease_limits();
2321   return true;
2322 }
2323 
2324 void G1CMTask::drain_local_queue(bool partially) {
2325   if (has_aborted()) {
2326     return;
2327   }
2328 
2329   // Decide what the target size is, depending whether we're going to
2330   // drain it partially (so that other tasks can steal if they run out
2331   // of things to do) or totally (at the very end).
2332   size_t target_size;
2333   if (partially) {
2334     target_size = MIN2((size_t)_task_queue->max_elems()/3, (size_t)GCDrainStackTargetSize);
2335   } else {
2336     target_size = 0;
2337   }
2338 
2339   if (_task_queue->size() > target_size) {
2340     G1TaskQueueEntry entry;
2341     bool ret = _task_queue->pop_local(entry);
2342     while (ret) {
2343       scan_task_entry(entry);
2344       if (_task_queue->size() <= target_size || has_aborted()) {
2345         ret = false;
2346       } else {
2347         ret = _task_queue->pop_local(entry);
2348       }
2349     }
2350   }
2351 }
2352 
2353 void G1CMTask::drain_global_stack(bool partially) {
2354   if (has_aborted()) {
2355     return;
2356   }
2357 
2358   // We have a policy to drain the local queue before we attempt to
2359   // drain the global stack.
2360   assert(partially || _task_queue->size() == 0, "invariant");
2361 
2362   // Decide what the target size is, depending whether we're going to
2363   // drain it partially (so that other tasks can steal if they run out
2364   // of things to do) or totally (at the very end).
2365   // Notice that when draining the global mark stack partially, due to the racyness
2366   // of the mark stack size update we might in fact drop below the target. But,
2367   // this is not a problem.
2368   // In case of total draining, we simply process until the global mark stack is
2369   // totally empty, disregarding the size counter.
2370   if (partially) {
2371     size_t const target_size = _cm->partial_mark_stack_size_target();
2372     while (!has_aborted() && _cm->mark_stack_size() > target_size) {
2373       if (get_entries_from_global_stack()) {
2374         drain_local_queue(partially);
2375       }
2376     }
2377   } else {
2378     while (!has_aborted() && get_entries_from_global_stack()) {
2379       drain_local_queue(partially);
2380     }
2381   }
2382 }
2383 
2384 // SATB Queue has several assumptions on whether to call the par or
2385 // non-par versions of the methods. this is why some of the code is
2386 // replicated. We should really get rid of the single-threaded version
2387 // of the code to simplify things.
2388 void G1CMTask::drain_satb_buffers() {
2389   if (has_aborted()) {
2390     return;
2391   }
2392 
2393   // We set this so that the regular clock knows that we're in the
2394   // middle of draining buffers and doesn't set the abort flag when it
2395   // notices that SATB buffers are available for draining. It'd be
2396   // very counter productive if it did that. :-)
2397   _draining_satb_buffers = true;
2398 
2399   G1CMSATBBufferClosure satb_cl(this, _g1h);
2400   SATBMarkQueueSet& satb_mq_set = G1BarrierSet::satb_mark_queue_set();
2401 
2402   // This keeps claiming and applying the closure to completed buffers
2403   // until we run out of buffers or we need to abort.
2404   while (!has_aborted() &&
2405          satb_mq_set.apply_closure_to_completed_buffer(&satb_cl)) {
2406     regular_clock_call();
2407   }
2408 
2409   _draining_satb_buffers = false;
2410 
2411   assert(has_aborted() ||
2412          _cm->concurrent() ||
2413          satb_mq_set.completed_buffers_num() == 0, "invariant");
2414 
2415   // again, this was a potentially expensive operation, decrease the
2416   // limits to get the regular clock call early
2417   decrease_limits();
2418 }
2419 
2420 void G1CMTask::clear_mark_stats_cache(uint region_idx) {
2421   _mark_stats_cache.reset(region_idx);
2422 }
2423 
2424 Pair<size_t, size_t> G1CMTask::flush_mark_stats_cache() {
2425   return _mark_stats_cache.evict_all();
2426 }
2427 
2428 void G1CMTask::print_stats() {
2429   log_debug(gc, stats)("Marking Stats, task = %u, calls = %u", _worker_id, _calls);
2430   log_debug(gc, stats)("  Elapsed time = %1.2lfms, Termination time = %1.2lfms",
2431                        _elapsed_time_ms, _termination_time_ms);
2432   log_debug(gc, stats)("  Step Times (cum): num = %d, avg = %1.2lfms, sd = %1.2lfms max = %1.2lfms, total = %1.2lfms",
2433                        _step_times_ms.num(),
2434                        _step_times_ms.avg(),
2435                        _step_times_ms.sd(),
2436                        _step_times_ms.maximum(),
2437                        _step_times_ms.sum());
2438   size_t const hits = _mark_stats_cache.hits();
2439   size_t const misses = _mark_stats_cache.misses();
2440   log_debug(gc, stats)("  Mark Stats Cache: hits " SIZE_FORMAT " misses " SIZE_FORMAT " ratio %.3f",
2441                        hits, misses, percent_of(hits, hits + misses));
2442 }
2443 
2444 bool G1ConcurrentMark::try_stealing(uint worker_id, G1TaskQueueEntry& task_entry) {
2445   return _task_queues->steal(worker_id, task_entry);
2446 }
2447 
2448 /*****************************************************************************
2449 
2450     The do_marking_step(time_target_ms, ...) method is the building
2451     block of the parallel marking framework. It can be called in parallel
2452     with other invocations of do_marking_step() on different tasks
2453     (but only one per task, obviously) and concurrently with the
2454     mutator threads, or during remark, hence it eliminates the need
2455     for two versions of the code. When called during remark, it will
2456     pick up from where the task left off during the concurrent marking
2457     phase. Interestingly, tasks are also claimable during evacuation
2458     pauses too, since do_marking_step() ensures that it aborts before
2459     it needs to yield.
2460 
2461     The data structures that it uses to do marking work are the
2462     following:
2463 
2464       (1) Marking Bitmap. If there are gray objects that appear only
2465       on the bitmap (this happens either when dealing with an overflow
2466       or when the initial marking phase has simply marked the roots
2467       and didn't push them on the stack), then tasks claim heap
2468       regions whose bitmap they then scan to find gray objects. A
2469       global finger indicates where the end of the last claimed region
2470       is. A local finger indicates how far into the region a task has
2471       scanned. The two fingers are used to determine how to gray an
2472       object (i.e. whether simply marking it is OK, as it will be
2473       visited by a task in the future, or whether it needs to be also
2474       pushed on a stack).
2475 
2476       (2) Local Queue. The local queue of the task which is accessed
2477       reasonably efficiently by the task. Other tasks can steal from
2478       it when they run out of work. Throughout the marking phase, a
2479       task attempts to keep its local queue short but not totally
2480       empty, so that entries are available for stealing by other
2481       tasks. Only when there is no more work, a task will totally
2482       drain its local queue.
2483 
2484       (3) Global Mark Stack. This handles local queue overflow. During
2485       marking only sets of entries are moved between it and the local
2486       queues, as access to it requires a mutex and more fine-grain
2487       interaction with it which might cause contention. If it
2488       overflows, then the marking phase should restart and iterate
2489       over the bitmap to identify gray objects. Throughout the marking
2490       phase, tasks attempt to keep the global mark stack at a small
2491       length but not totally empty, so that entries are available for
2492       popping by other tasks. Only when there is no more work, tasks
2493       will totally drain the global mark stack.
2494 
2495       (4) SATB Buffer Queue. This is where completed SATB buffers are
2496       made available. Buffers are regularly removed from this queue
2497       and scanned for roots, so that the queue doesn't get too
2498       long. During remark, all completed buffers are processed, as
2499       well as the filled in parts of any uncompleted buffers.
2500 
2501     The do_marking_step() method tries to abort when the time target
2502     has been reached. There are a few other cases when the
2503     do_marking_step() method also aborts:
2504 
2505       (1) When the marking phase has been aborted (after a Full GC).
2506 
2507       (2) When a global overflow (on the global stack) has been
2508       triggered. Before the task aborts, it will actually sync up with
2509       the other tasks to ensure that all the marking data structures
2510       (local queues, stacks, fingers etc.)  are re-initialized so that
2511       when do_marking_step() completes, the marking phase can
2512       immediately restart.
2513 
2514       (3) When enough completed SATB buffers are available. The
2515       do_marking_step() method only tries to drain SATB buffers right
2516       at the beginning. So, if enough buffers are available, the
2517       marking step aborts and the SATB buffers are processed at
2518       the beginning of the next invocation.
2519 
2520       (4) To yield. when we have to yield then we abort and yield
2521       right at the end of do_marking_step(). This saves us from a lot
2522       of hassle as, by yielding we might allow a Full GC. If this
2523       happens then objects will be compacted underneath our feet, the
2524       heap might shrink, etc. We save checking for this by just
2525       aborting and doing the yield right at the end.
2526 
2527     From the above it follows that the do_marking_step() method should
2528     be called in a loop (or, otherwise, regularly) until it completes.
2529 
2530     If a marking step completes without its has_aborted() flag being
2531     true, it means it has completed the current marking phase (and
2532     also all other marking tasks have done so and have all synced up).
2533 
2534     A method called regular_clock_call() is invoked "regularly" (in
2535     sub ms intervals) throughout marking. It is this clock method that
2536     checks all the abort conditions which were mentioned above and
2537     decides when the task should abort. A work-based scheme is used to
2538     trigger this clock method: when the number of object words the
2539     marking phase has scanned or the number of references the marking
2540     phase has visited reach a given limit. Additional invocations to
2541     the method clock have been planted in a few other strategic places
2542     too. The initial reason for the clock method was to avoid calling
2543     vtime too regularly, as it is quite expensive. So, once it was in
2544     place, it was natural to piggy-back all the other conditions on it
2545     too and not constantly check them throughout the code.
2546 
2547     If do_termination is true then do_marking_step will enter its
2548     termination protocol.
2549 
2550     The value of is_serial must be true when do_marking_step is being
2551     called serially (i.e. by the VMThread) and do_marking_step should
2552     skip any synchronization in the termination and overflow code.
2553     Examples include the serial remark code and the serial reference
2554     processing closures.
2555 
2556     The value of is_serial must be false when do_marking_step is
2557     being called by any of the worker threads in a work gang.
2558     Examples include the concurrent marking code (CMMarkingTask),
2559     the MT remark code, and the MT reference processing closures.
2560 
2561  *****************************************************************************/
2562 
2563 void G1CMTask::do_marking_step(double time_target_ms,
2564                                bool do_termination,
2565                                bool is_serial) {
2566   assert(time_target_ms >= 1.0, "minimum granularity is 1ms");
2567 
2568   _start_time_ms = os::elapsedVTime() * 1000.0;
2569 
2570   // If do_stealing is true then do_marking_step will attempt to
2571   // steal work from the other G1CMTasks. It only makes sense to
2572   // enable stealing when the termination protocol is enabled
2573   // and do_marking_step() is not being called serially.
2574   bool do_stealing = do_termination && !is_serial;
2575 
2576   double diff_prediction_ms = _g1h->g1_policy()->predictor().get_new_prediction(&_marking_step_diffs_ms);
2577   _time_target_ms = time_target_ms - diff_prediction_ms;
2578 
2579   // set up the variables that are used in the work-based scheme to
2580   // call the regular clock method
2581   _words_scanned = 0;
2582   _refs_reached  = 0;
2583   recalculate_limits();
2584 
2585   // clear all flags
2586   clear_has_aborted();
2587   _has_timed_out = false;
2588   _draining_satb_buffers = false;
2589 
2590   ++_calls;
2591 
2592   // Set up the bitmap and oop closures. Anything that uses them is
2593   // eventually called from this method, so it is OK to allocate these
2594   // statically.
2595   G1CMBitMapClosure bitmap_closure(this, _cm);
2596   G1CMOopClosure cm_oop_closure(_g1h, this);
2597   set_cm_oop_closure(&cm_oop_closure);
2598 
2599   if (_cm->has_overflown()) {
2600     // This can happen if the mark stack overflows during a GC pause
2601     // and this task, after a yield point, restarts. We have to abort
2602     // as we need to get into the overflow protocol which happens
2603     // right at the end of this task.
2604     set_has_aborted();
2605   }
2606 
2607   // First drain any available SATB buffers. After this, we will not
2608   // look at SATB buffers before the next invocation of this method.
2609   // If enough completed SATB buffers are queued up, the regular clock
2610   // will abort this task so that it restarts.
2611   drain_satb_buffers();
2612   // ...then partially drain the local queue and the global stack
2613   drain_local_queue(true);
2614   drain_global_stack(true);
2615 
2616   do {
2617     if (!has_aborted() && _curr_region != NULL) {
2618       // This means that we're already holding on to a region.
2619       assert(_finger != NULL, "if region is not NULL, then the finger "
2620              "should not be NULL either");
2621 
2622       // We might have restarted this task after an evacuation pause
2623       // which might have evacuated the region we're holding on to
2624       // underneath our feet. Let's read its limit again to make sure
2625       // that we do not iterate over a region of the heap that
2626       // contains garbage (update_region_limit() will also move
2627       // _finger to the start of the region if it is found empty).
2628       update_region_limit();
2629       // We will start from _finger not from the start of the region,
2630       // as we might be restarting this task after aborting half-way
2631       // through scanning this region. In this case, _finger points to
2632       // the address where we last found a marked object. If this is a
2633       // fresh region, _finger points to start().
2634       MemRegion mr = MemRegion(_finger, _region_limit);
2635 
2636       assert(!_curr_region->is_humongous() || mr.start() == _curr_region->bottom(),
2637              "humongous regions should go around loop once only");
2638 
2639       // Some special cases:
2640       // If the memory region is empty, we can just give up the region.
2641       // If the current region is humongous then we only need to check
2642       // the bitmap for the bit associated with the start of the object,
2643       // scan the object if it's live, and give up the region.
2644       // Otherwise, let's iterate over the bitmap of the part of the region
2645       // that is left.
2646       // If the iteration is successful, give up the region.
2647       if (mr.is_empty()) {
2648         giveup_current_region();
2649         regular_clock_call();
2650       } else if (_curr_region->is_humongous() && mr.start() == _curr_region->bottom()) {
2651         if (_next_mark_bitmap->is_marked(mr.start())) {
2652           // The object is marked - apply the closure
2653           bitmap_closure.do_addr(mr.start());
2654         }
2655         // Even if this task aborted while scanning the humongous object
2656         // we can (and should) give up the current region.
2657         giveup_current_region();
2658         regular_clock_call();
2659       } else if (_next_mark_bitmap->iterate(&bitmap_closure, mr)) {
2660         giveup_current_region();
2661         regular_clock_call();
2662       } else {
2663         assert(has_aborted(), "currently the only way to do so");
2664         // The only way to abort the bitmap iteration is to return
2665         // false from the do_bit() method. However, inside the
2666         // do_bit() method we move the _finger to point to the
2667         // object currently being looked at. So, if we bail out, we
2668         // have definitely set _finger to something non-null.
2669         assert(_finger != NULL, "invariant");
2670 
2671         // Region iteration was actually aborted. So now _finger
2672         // points to the address of the object we last scanned. If we
2673         // leave it there, when we restart this task, we will rescan
2674         // the object. It is easy to avoid this. We move the finger by
2675         // enough to point to the next possible object header.
2676         assert(_finger < _region_limit, "invariant");
2677         HeapWord* const new_finger = _finger + ((oop)_finger)->size();
2678         // Check if bitmap iteration was aborted while scanning the last object
2679         if (new_finger >= _region_limit) {
2680           giveup_current_region();
2681         } else {
2682           move_finger_to(new_finger);
2683         }
2684       }
2685     }
2686     // At this point we have either completed iterating over the
2687     // region we were holding on to, or we have aborted.
2688 
2689     // We then partially drain the local queue and the global stack.
2690     // (Do we really need this?)
2691     drain_local_queue(true);
2692     drain_global_stack(true);
2693 
2694     // Read the note on the claim_region() method on why it might
2695     // return NULL with potentially more regions available for
2696     // claiming and why we have to check out_of_regions() to determine
2697     // whether we're done or not.
2698     while (!has_aborted() && _curr_region == NULL && !_cm->out_of_regions()) {
2699       // We are going to try to claim a new region. We should have
2700       // given up on the previous one.
2701       // Separated the asserts so that we know which one fires.
2702       assert(_curr_region  == NULL, "invariant");
2703       assert(_finger       == NULL, "invariant");
2704       assert(_region_limit == NULL, "invariant");
2705       HeapRegion* claimed_region = _cm->claim_region(_worker_id);
2706       if (claimed_region != NULL) {
2707         // Yes, we managed to claim one
2708         setup_for_region(claimed_region);
2709         assert(_curr_region == claimed_region, "invariant");
2710       }
2711       // It is important to call the regular clock here. It might take
2712       // a while to claim a region if, for example, we hit a large
2713       // block of empty regions. So we need to call the regular clock
2714       // method once round the loop to make sure it's called
2715       // frequently enough.
2716       regular_clock_call();
2717     }
2718 
2719     if (!has_aborted() && _curr_region == NULL) {
2720       assert(_cm->out_of_regions(),
2721              "at this point we should be out of regions");
2722     }
2723   } while ( _curr_region != NULL && !has_aborted());
2724 
2725   if (!has_aborted()) {
2726     // We cannot check whether the global stack is empty, since other
2727     // tasks might be pushing objects to it concurrently.
2728     assert(_cm->out_of_regions(),
2729            "at this point we should be out of regions");
2730     // Try to reduce the number of available SATB buffers so that
2731     // remark has less work to do.
2732     drain_satb_buffers();
2733   }
2734 
2735   // Since we've done everything else, we can now totally drain the
2736   // local queue and global stack.
2737   drain_local_queue(false);
2738   drain_global_stack(false);
2739 
2740   // Attempt at work stealing from other task's queues.
2741   if (do_stealing && !has_aborted()) {
2742     // We have not aborted. This means that we have finished all that
2743     // we could. Let's try to do some stealing...
2744 
2745     // We cannot check whether the global stack is empty, since other
2746     // tasks might be pushing objects to it concurrently.
2747     assert(_cm->out_of_regions() && _task_queue->size() == 0,
2748            "only way to reach here");
2749     while (!has_aborted()) {
2750       G1TaskQueueEntry entry;
2751       if (_cm->try_stealing(_worker_id, entry)) {
2752         scan_task_entry(entry);
2753 
2754         // And since we're towards the end, let's totally drain the
2755         // local queue and global stack.
2756         drain_local_queue(false);
2757         drain_global_stack(false);
2758       } else {
2759         break;
2760       }
2761     }
2762   }
2763 
2764   // We still haven't aborted. Now, let's try to get into the
2765   // termination protocol.
2766   if (do_termination && !has_aborted()) {
2767     // We cannot check whether the global stack is empty, since other
2768     // tasks might be concurrently pushing objects on it.
2769     // Separated the asserts so that we know which one fires.
2770     assert(_cm->out_of_regions(), "only way to reach here");
2771     assert(_task_queue->size() == 0, "only way to reach here");
2772     _termination_start_time_ms = os::elapsedVTime() * 1000.0;
2773 
2774     // The G1CMTask class also extends the TerminatorTerminator class,
2775     // hence its should_exit_termination() method will also decide
2776     // whether to exit the termination protocol or not.
2777     bool finished = (is_serial ||
2778                      _cm->terminator()->offer_termination(this));
2779     double termination_end_time_ms = os::elapsedVTime() * 1000.0;
2780     _termination_time_ms +=
2781       termination_end_time_ms - _termination_start_time_ms;
2782 
2783     if (finished) {
2784       // We're all done.
2785 
2786       // We can now guarantee that the global stack is empty, since
2787       // all other tasks have finished. We separated the guarantees so
2788       // that, if a condition is false, we can immediately find out
2789       // which one.
2790       guarantee(_cm->out_of_regions(), "only way to reach here");
2791       guarantee(_cm->mark_stack_empty(), "only way to reach here");
2792       guarantee(_task_queue->size() == 0, "only way to reach here");
2793       guarantee(!_cm->has_overflown(), "only way to reach here");
2794     } else {
2795       // Apparently there's more work to do. Let's abort this task. It
2796       // will restart it and we can hopefully find more things to do.
2797       set_has_aborted();
2798     }
2799   }
2800 
2801   // Mainly for debugging purposes to make sure that a pointer to the
2802   // closure which was statically allocated in this frame doesn't
2803   // escape it by accident.
2804   set_cm_oop_closure(NULL);
2805   double end_time_ms = os::elapsedVTime() * 1000.0;
2806   double elapsed_time_ms = end_time_ms - _start_time_ms;
2807   // Update the step history.
2808   _step_times_ms.add(elapsed_time_ms);
2809 
2810   if (has_aborted()) {
2811     // The task was aborted for some reason.
2812     if (_has_timed_out) {
2813       double diff_ms = elapsed_time_ms - _time_target_ms;
2814       // Keep statistics of how well we did with respect to hitting
2815       // our target only if we actually timed out (if we aborted for
2816       // other reasons, then the results might get skewed).
2817       _marking_step_diffs_ms.add(diff_ms);
2818     }
2819 
2820     if (_cm->has_overflown()) {
2821       // This is the interesting one. We aborted because a global
2822       // overflow was raised. This means we have to restart the
2823       // marking phase and start iterating over regions. However, in
2824       // order to do this we have to make sure that all tasks stop
2825       // what they are doing and re-initialize in a safe manner. We
2826       // will achieve this with the use of two barrier sync points.
2827 
2828       if (!is_serial) {
2829         // We only need to enter the sync barrier if being called
2830         // from a parallel context
2831         _cm->enter_first_sync_barrier(_worker_id);
2832 
2833         // When we exit this sync barrier we know that all tasks have
2834         // stopped doing marking work. So, it's now safe to
2835         // re-initialize our data structures.
2836       }
2837 
2838       clear_region_fields();
2839       flush_mark_stats_cache();
2840 
2841       if (!is_serial) {
2842         // If we're executing the concurrent phase of marking, reset the marking
2843         // state; otherwise the marking state is reset after reference processing,
2844         // during the remark pause.
2845         // If we reset here as a result of an overflow during the remark we will
2846         // see assertion failures from any subsequent set_concurrency_and_phase()
2847         // calls.
2848         if (_cm->concurrent() && _worker_id == 0) {
2849           // Worker 0 is responsible for clearing the global data structures because
2850           // of an overflow. During STW we should not clear the overflow flag (in
2851           // G1ConcurrentMark::reset_marking_state()) since we rely on it being true when we exit
2852           // method to abort the pause and restart concurrent marking.
2853           _cm->reset_marking_for_restart();
2854 
2855           log_info(gc, marking)("Concurrent Mark reset for overflow");
2856         }
2857 
2858         // ...and enter the second barrier.
2859         _cm->enter_second_sync_barrier(_worker_id);
2860       }
2861       // At this point, if we're during the concurrent phase of
2862       // marking, everything has been re-initialized and we're
2863       // ready to restart.
2864     }
2865   }
2866 }
2867 
2868 G1CMTask::G1CMTask(uint worker_id,
2869                    G1ConcurrentMark* cm,
2870                    G1CMTaskQueue* task_queue,
2871                    G1RegionMarkStats* mark_stats,
2872                    uint max_regions) :
2873   _objArray_processor(this),
2874   _worker_id(worker_id),
2875   _g1h(G1CollectedHeap::heap()),
2876   _cm(cm),
2877   _next_mark_bitmap(NULL),
2878   _task_queue(task_queue),
2879   _mark_stats_cache(mark_stats, max_regions, RegionMarkStatsCacheSize),
2880   _calls(0),
2881   _time_target_ms(0.0),
2882   _start_time_ms(0.0),
2883   _cm_oop_closure(NULL),
2884   _curr_region(NULL),
2885   _finger(NULL),
2886   _region_limit(NULL),
2887   _words_scanned(0),
2888   _words_scanned_limit(0),
2889   _real_words_scanned_limit(0),
2890   _refs_reached(0),
2891   _refs_reached_limit(0),
2892   _real_refs_reached_limit(0),
2893   _has_aborted(false),
2894   _has_timed_out(false),
2895   _draining_satb_buffers(false),
2896   _step_times_ms(),
2897   _elapsed_time_ms(0.0),
2898   _termination_time_ms(0.0),
2899   _termination_start_time_ms(0.0),
2900   _marking_step_diffs_ms()
2901 {
2902   guarantee(task_queue != NULL, "invariant");
2903 
2904   _marking_step_diffs_ms.add(0.5);
2905 }
2906 
2907 // These are formatting macros that are used below to ensure
2908 // consistent formatting. The *_H_* versions are used to format the
2909 // header for a particular value and they should be kept consistent
2910 // with the corresponding macro. Also note that most of the macros add
2911 // the necessary white space (as a prefix) which makes them a bit
2912 // easier to compose.
2913 
2914 // All the output lines are prefixed with this string to be able to
2915 // identify them easily in a large log file.
2916 #define G1PPRL_LINE_PREFIX            "###"
2917 
2918 #define G1PPRL_ADDR_BASE_FORMAT    " " PTR_FORMAT "-" PTR_FORMAT
2919 #ifdef _LP64
2920 #define G1PPRL_ADDR_BASE_H_FORMAT  " %37s"
2921 #else // _LP64
2922 #define G1PPRL_ADDR_BASE_H_FORMAT  " %21s"
2923 #endif // _LP64
2924 
2925 // For per-region info
2926 #define G1PPRL_TYPE_FORMAT            "   %-4s"
2927 #define G1PPRL_TYPE_H_FORMAT          "   %4s"
2928 #define G1PPRL_STATE_FORMAT           "   %-5s"
2929 #define G1PPRL_STATE_H_FORMAT         "   %5s"
2930 #define G1PPRL_BYTE_FORMAT            "  " SIZE_FORMAT_W(9)
2931 #define G1PPRL_BYTE_H_FORMAT          "  %9s"
2932 #define G1PPRL_DOUBLE_FORMAT          "  %14.1f"
2933 #define G1PPRL_DOUBLE_H_FORMAT        "  %14s"
2934 
2935 // For summary info
2936 #define G1PPRL_SUM_ADDR_FORMAT(tag)    "  " tag ":" G1PPRL_ADDR_BASE_FORMAT
2937 #define G1PPRL_SUM_BYTE_FORMAT(tag)    "  " tag ": " SIZE_FORMAT
2938 #define G1PPRL_SUM_MB_FORMAT(tag)      "  " tag ": %1.2f MB"
2939 #define G1PPRL_SUM_MB_PERC_FORMAT(tag) G1PPRL_SUM_MB_FORMAT(tag) " / %1.2f %%"
2940 
2941 G1PrintRegionLivenessInfoClosure::G1PrintRegionLivenessInfoClosure(const char* phase_name) :
2942   _total_used_bytes(0), _total_capacity_bytes(0),
2943   _total_prev_live_bytes(0), _total_next_live_bytes(0),
2944   _total_remset_bytes(0), _total_strong_code_roots_bytes(0)
2945 {
2946   if (!log_is_enabled(Trace, gc, liveness)) {
2947     return;
2948   }
2949 
2950   G1CollectedHeap* g1h = G1CollectedHeap::heap();
2951   MemRegion g1_reserved = g1h->g1_reserved();
2952   double now = os::elapsedTime();
2953 
2954   // Print the header of the output.
2955   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" PHASE %s @ %1.3f", phase_name, now);
2956   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX" HEAP"
2957                           G1PPRL_SUM_ADDR_FORMAT("reserved")
2958                           G1PPRL_SUM_BYTE_FORMAT("region-size"),
2959                           p2i(g1_reserved.start()), p2i(g1_reserved.end()),
2960                           HeapRegion::GrainBytes);
2961   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
2962   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2963                           G1PPRL_TYPE_H_FORMAT
2964                           G1PPRL_ADDR_BASE_H_FORMAT
2965                           G1PPRL_BYTE_H_FORMAT
2966                           G1PPRL_BYTE_H_FORMAT
2967                           G1PPRL_BYTE_H_FORMAT
2968                           G1PPRL_DOUBLE_H_FORMAT
2969                           G1PPRL_BYTE_H_FORMAT
2970                           G1PPRL_STATE_H_FORMAT
2971                           G1PPRL_BYTE_H_FORMAT,
2972                           "type", "address-range",
2973                           "used", "prev-live", "next-live", "gc-eff",
2974                           "remset", "state", "code-roots");
2975   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
2976                           G1PPRL_TYPE_H_FORMAT
2977                           G1PPRL_ADDR_BASE_H_FORMAT
2978                           G1PPRL_BYTE_H_FORMAT
2979                           G1PPRL_BYTE_H_FORMAT
2980                           G1PPRL_BYTE_H_FORMAT
2981                           G1PPRL_DOUBLE_H_FORMAT
2982                           G1PPRL_BYTE_H_FORMAT
2983                           G1PPRL_STATE_H_FORMAT
2984                           G1PPRL_BYTE_H_FORMAT,
2985                           "", "",
2986                           "(bytes)", "(bytes)", "(bytes)", "(bytes/ms)",
2987                           "(bytes)", "", "(bytes)");
2988 }
2989 
2990 bool G1PrintRegionLivenessInfoClosure::do_heap_region(HeapRegion* r) {
2991   if (!log_is_enabled(Trace, gc, liveness)) {
2992     return false;
2993   }
2994 
2995   const char* type       = r->get_type_str();
2996   HeapWord* bottom       = r->bottom();
2997   HeapWord* end          = r->end();
2998   size_t capacity_bytes  = r->capacity();
2999   size_t used_bytes      = r->used();
3000   size_t prev_live_bytes = r->live_bytes();
3001   size_t next_live_bytes = r->next_live_bytes();
3002   double gc_eff          = r->gc_efficiency();
3003   size_t remset_bytes    = r->rem_set()->mem_size();
3004   size_t strong_code_roots_bytes = r->rem_set()->strong_code_roots_mem_size();
3005   const char* remset_type = r->rem_set()->get_short_state_str();
3006 
3007   _total_used_bytes      += used_bytes;
3008   _total_capacity_bytes  += capacity_bytes;
3009   _total_prev_live_bytes += prev_live_bytes;
3010   _total_next_live_bytes += next_live_bytes;
3011   _total_remset_bytes    += remset_bytes;
3012   _total_strong_code_roots_bytes += strong_code_roots_bytes;
3013 
3014   // Print a line for this particular region.
3015   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3016                           G1PPRL_TYPE_FORMAT
3017                           G1PPRL_ADDR_BASE_FORMAT
3018                           G1PPRL_BYTE_FORMAT
3019                           G1PPRL_BYTE_FORMAT
3020                           G1PPRL_BYTE_FORMAT
3021                           G1PPRL_DOUBLE_FORMAT
3022                           G1PPRL_BYTE_FORMAT
3023                           G1PPRL_STATE_FORMAT
3024                           G1PPRL_BYTE_FORMAT,
3025                           type, p2i(bottom), p2i(end),
3026                           used_bytes, prev_live_bytes, next_live_bytes, gc_eff,
3027                           remset_bytes, remset_type, strong_code_roots_bytes);
3028 
3029   return false;
3030 }
3031 
3032 G1PrintRegionLivenessInfoClosure::~G1PrintRegionLivenessInfoClosure() {
3033   if (!log_is_enabled(Trace, gc, liveness)) {
3034     return;
3035   }
3036 
3037   // add static memory usages to remembered set sizes
3038   _total_remset_bytes += HeapRegionRemSet::fl_mem_size() + HeapRegionRemSet::static_mem_size();
3039   // Print the footer of the output.
3040   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX);
3041   log_trace(gc, liveness)(G1PPRL_LINE_PREFIX
3042                          " SUMMARY"
3043                          G1PPRL_SUM_MB_FORMAT("capacity")
3044                          G1PPRL_SUM_MB_PERC_FORMAT("used")
3045                          G1PPRL_SUM_MB_PERC_FORMAT("prev-live")
3046                          G1PPRL_SUM_MB_PERC_FORMAT("next-live")
3047                          G1PPRL_SUM_MB_FORMAT("remset")
3048                          G1PPRL_SUM_MB_FORMAT("code-roots"),
3049                          bytes_to_mb(_total_capacity_bytes),
3050                          bytes_to_mb(_total_used_bytes),
3051                          percent_of(_total_used_bytes, _total_capacity_bytes),
3052                          bytes_to_mb(_total_prev_live_bytes),
3053                          percent_of(_total_prev_live_bytes, _total_capacity_bytes),
3054                          bytes_to_mb(_total_next_live_bytes),
3055                          percent_of(_total_next_live_bytes, _total_capacity_bytes),
3056                          bytes_to_mb(_total_remset_bytes),
3057                          bytes_to_mb(_total_strong_code_roots_bytes));
3058 }