< prev index next >

src/java.base/share/classes/java/util/concurrent/LinkedTransferQueue.java

Print this page
8246677: LinkedTransferQueue and SynchronousQueue synchronization updates
Reviewed-by: martin


 292      *    this call was ASYNC (e.g. offer), an element was
 293      *    successfully added to the end of the queue and we return.
 294      *
 295      *    Of course, this naive traversal is O(n) when no match is
 296      *    possible.  We optimize the traversal by maintaining a tail
 297      *    pointer, which is expected to be "near" the end of the list.
 298      *    It is only safe to fast-forward to tail (in the presence of
 299      *    arbitrary concurrent changes) if it is pointing to a node of
 300      *    the same mode, even if it is dead (in this case no preceding
 301      *    node could still be matchable by this traversal).  If we
 302      *    need to restart due to falling off-list, we can again
 303      *    fast-forward to tail, but only if it has changed since the
 304      *    last traversal (else we might loop forever).  If tail cannot
 305      *    be used, traversal starts at head (but in this case we
 306      *    expect to be able to match near head).  As with head, we
 307      *    CAS-advance the tail pointer by at least two hops.
 308      *
 309      * 2. Await match or cancellation (method awaitMatch)
 310      *
 311      *    Wait for another thread to match node; instead cancelling if
 312      *    the current thread was interrupted or the wait timed out. On
 313      *    multiprocessors, we use front-of-queue spinning: If a node
 314      *    appears to be the first unmatched node in the queue, it
 315      *    spins a bit before blocking. In either case, before blocking
 316      *    it tries to unsplice any nodes between the current "head"
 317      *    and the first unmatched node.
 318      *
 319      *    Front-of-queue spinning vastly improves performance of
 320      *    heavily contended queues. And so long as it is relatively
 321      *    brief and "quiet", spinning does not much impact performance
 322      *    of less-contended queues.  During spins threads check their
 323      *    interrupt status and generate a thread-local random number
 324      *    to decide to occasionally perform a Thread.yield. While
 325      *    yield has underdefined specs, we assume that it might help,
 326      *    and will not hurt, in limiting impact of spinning on busy
 327      *    systems.  We also use smaller (1/2) spins for nodes that are
 328      *    not known to be front but whose predecessors have not
 329      *    blocked -- these "chained" spins avoid artifacts of
 330      *    front-of-queue rules which otherwise lead to alternating
 331      *    nodes spinning vs blocking. Further, front threads that
 332      *    represent phase changes (from data to request node or vice
 333      *    versa) compared to their predecessors receive additional
 334      *    chained spins, reflecting longer paths typically required to
 335      *    unblock threads during phase changes.
 336      *
 337      *
 338      * ** Unlinking removed interior nodes **
 339      *
 340      * In addition to minimizing garbage retention via self-linking
 341      * described above, we also unlink removed interior nodes. These
 342      * may arise due to timed out or interrupted waits, or calls to
 343      * remove(x) or Iterator.remove.  Normally, given a node that was
 344      * at one time known to be the predecessor of some node s that is
 345      * to be removed, we can unsplice s by CASing the next field of
 346      * its predecessor if it still points to s (otherwise s must
 347      * already have been removed or is now offlist). But there are two
 348      * situations in which we cannot guarantee to make node s
 349      * unreachable in this way: (1) If s is the trailing node of list
 350      * (i.e., with null next), then it is pinned as the target node
 351      * for appends, so can only be removed later after other nodes are
 352      * appended. (2) We cannot necessarily unlink s given a
 353      * predecessor node that is matched (including the case of being
 354      * cancelled): the predecessor may already be unspliced, in which
 355      * case some previous reachable node may still point to s.
 356      * (For further explanation see Herlihy & Shavit "The Art of
 357      * Multiprocessor Programming" chapter 9).  Although, in both
 358      * cases, we can rule out the need for further action if either s
 359      * or its predecessor are (or can be made to be) at, or fall off
 360      * from, the head of list.
 361      *
 362      * Without taking these into account, it would be possible for an
 363      * unbounded number of supposedly removed nodes to remain reachable.
 364      * Situations leading to such buildup are uncommon but can occur
 365      * in practice; for example when a series of short timed calls to
 366      * poll repeatedly time out at the trailing node but otherwise
 367      * never fall off the list because of an untimed call to take() at
 368      * the front of the queue.
 369      *
 370      * When these cases arise, rather than always retraversing the
 371      * entire list to find an actual predecessor to unlink (which
 372      * won't help for case (1) anyway), we record a conservative
 373      * estimate of possible unsplice failures (in "sweepVotes").
 374      * We trigger a full sweep when the estimate exceeds a threshold
 375      * ("SWEEP_THRESHOLD") indicating the maximum number of estimated
 376      * removal failures to tolerate before sweeping through, unlinking
 377      * cancelled nodes that were not unlinked upon initial removal.
 378      * We perform sweeps by the thread hitting threshold (rather than
 379      * background threads or by spreading work to other threads)
 380      * because in the main contexts in which removal occurs, the
 381      * caller is timed-out or cancelled, which are not time-critical
 382      * enough to warrant the overhead that alternatives would impose
 383      * on other threads.
 384      *
 385      * Because the sweepVotes estimate is conservative, and because
 386      * nodes become unlinked "naturally" as they fall off the head of
 387      * the queue, and because we allow votes to accumulate even while
 388      * sweeps are in progress, there are typically significantly fewer
 389      * such nodes than estimated.  Choice of a threshold value
 390      * balances the likelihood of wasted effort and contention, versus
 391      * providing a worst-case bound on retention of interior nodes in
 392      * quiescent queues. The value defined below was chosen
 393      * empirically to balance these under various timeout scenarios.
 394      *
 395      * Because traversal operations on the linked list of nodes are a
 396      * natural opportunity to sweep dead nodes, we generally do so,
 397      * including all the operations that might remove elements as they
 398      * traverse, such as removeIf and Iterator.remove.  This largely
 399      * eliminates long chains of dead interior nodes, except from
 400      * cancelled or timed out blocking operations.
 401      *
 402      * Note that we cannot self-link unlinked interior nodes during
 403      * sweeps. However, the associated garbage chains terminate when
 404      * some successor ultimately falls off the head of the list and is
 405      * self-linked.
 406      */
 407 
 408     /** True if on multiprocessor */
 409     private static final boolean MP =
 410         Runtime.getRuntime().availableProcessors() > 1;
 411 
 412     /**
 413      * The number of times to spin (with randomly interspersed calls
 414      * to Thread.yield) on multiprocessor before blocking when a node
 415      * is apparently the first waiter in the queue.  See above for
 416      * explanation. Must be a power of two. The value is empirically
 417      * derived -- it works pretty well across a variety of processors,
 418      * numbers of CPUs, and OSes.
 419      */
 420     private static final int FRONT_SPINS   = 1 << 7;
 421 
 422     /**
 423      * The number of times to spin before blocking when a node is
 424      * preceded by another node that is apparently spinning.  Also
 425      * serves as an increment to FRONT_SPINS on phase changes, and as
 426      * base average frequency for yielding during spins. Must be a
 427      * power of two.
 428      */
 429     private static final int CHAINED_SPINS = FRONT_SPINS >>> 1;
 430 
 431     /**
 432      * The maximum number of estimated removal failures (sweepVotes)
 433      * to tolerate before sweeping through the queue unlinking
 434      * cancelled nodes that were not unlinked upon initial
 435      * removal. See above for explanation. The value must be at least
 436      * two to avoid useless sweeps when removing trailing nodes.
 437      */
 438     static final int SWEEP_THRESHOLD = 32;
 439 
 440     /**
 441      * Queue nodes. Uses Object, not E, for items to allow forgetting
 442      * them after use.  Writes that are intrinsically ordered wrt
 443      * other accesses or CASes use simple relaxed forms.
 444      */
 445     static final class Node {
 446         final boolean isData;   // false if this is a request node
 447         volatile Object item;   // initially non-null if isData; CASed to match
 448         volatile Node next;
 449         volatile Thread waiter; // null when not waiting for a match
 450 
 451         /**
 452          * Constructs a data node holding item if item is non-null,
 453          * else a request node.  Uses relaxed write because item can
 454          * only be seen after piggy-backing publication via CAS.
 455          */
 456         Node(Object item) {
 457             ITEM.set(this, item);
 458             isData = (item != null);
 459         }
 460 
 461         /** Constructs a (matched data) dummy node. */
 462         Node() {
 463             isData = true;
 464         }
 465 


 470 
 471         final boolean casItem(Object cmp, Object val) {
 472             // assert isData == (cmp != null);
 473             // assert isData == (val == null);
 474             // assert !(cmp instanceof Node);
 475             return ITEM.compareAndSet(this, cmp, val);
 476         }
 477 
 478         /**
 479          * Links node to itself to avoid garbage retention.  Called
 480          * only after CASing head field, so uses relaxed write.
 481          */
 482         final void selfLink() {
 483             // assert isMatched();
 484             NEXT.setRelease(this, this);
 485         }
 486 
 487         final void appendRelaxed(Node next) {
 488             // assert next != null;
 489             // assert this.next == null;
 490             NEXT.set(this, next);
 491         }
 492 
 493         /**
 494          * Sets item (of a request node) to self and waiter to null,
 495          * to avoid garbage retention after matching or cancelling.
 496          * Uses relaxed writes because order is already constrained in
 497          * the only calling contexts: item is forgotten only after
 498          * volatile/atomic mechanics that extract items, and visitors
 499          * of request nodes only ever check whether item is null.
 500          * Similarly, clearing waiter follows either CAS or return
 501          * from park (if ever parked; else we don't care).
 502          */
 503         final void forgetContents() {
 504             // assert isMatched();
 505             if (!isData)
 506                 ITEM.set(this, this);
 507             WAITER.set(this, null);
 508         }
 509 
 510         /**
 511          * Returns true if this node has been matched, including the
 512          * case of artificial matches due to cancellation.
 513          */
 514         final boolean isMatched() {
 515             return isData == (item == null);
 516         }
 517 
 518         /** Tries to CAS-match this node; if successful, wakes waiter. */
 519         final boolean tryMatch(Object cmp, Object val) {
 520             if (casItem(cmp, val)) {
 521                 LockSupport.unpark(waiter);
 522                 return true;
 523             }
 524             return false;
 525         }
 526 
 527         /**
 528          * Returns true if a node with the given mode cannot be
 529          * appended to this node because this node is unmatched and
 530          * has opposite data mode.
 531          */
 532         final boolean cannotPrecede(boolean haveData) {
 533             boolean d = isData;
 534             return d != haveData && d != (item == null);
 535         }
 536 










 537         private static final long serialVersionUID = -3375979862319811754L;
 538     }
 539 
 540     /**
 541      * A node from which the first live (non-matched) node (if any)
 542      * can be reached in O(1) time.
 543      * Invariants:
 544      * - all live nodes are reachable from head via .next
 545      * - head != null
 546      * - (tmp = head).next != tmp || tmp != head
 547      * Non-invariants:
 548      * - head may or may not be live
 549      * - it is permitted for tail to lag behind head, that is, for tail
 550      *   to not be reachable from head!
 551      */
 552     transient volatile Node head;
 553 
 554     /**
 555      * A node from which the last node on list (that is, the unique
 556      * node with node.next == null) can be reached in O(1) time.
 557      * Invariants:
 558      * - the last node is always reachable from tail via .next
 559      * - tail != null
 560      * Non-invariants:
 561      * - tail may or may not be live
 562      * - it is permitted for tail to lag behind head, that is, for tail
 563      *   to not be reachable from head!
 564      * - tail.next may or may not be self-linked.
 565      */
 566     private transient volatile Node tail;
 567 
 568     /** The number of apparent failures to unsplice cancelled nodes */
 569     private transient volatile int sweepVotes;
 570 
 571     private boolean casTail(Node cmp, Node val) {
 572         // assert cmp != null;
 573         // assert val != null;
 574         return TAIL.compareAndSet(this, cmp, val);
 575     }
 576 
 577     private boolean casHead(Node cmp, Node val) {
 578         return HEAD.compareAndSet(this, cmp, val);
 579     }
 580 
 581     /** Atomic version of ++sweepVotes. */
 582     private int incSweepVotes() {
 583         return (int) SWEEPVOTES.getAndAdd(this, 1) + 1;
 584     }
 585 
 586     /**
 587      * Tries to CAS pred.next (or head, if pred is null) from c to p.
 588      * Caller must ensure that we're not unlinking the trailing node.
 589      */
 590     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
 591         // assert p != null;
 592         // assert c.isData != (c.item != null);
 593         // assert c != p;
 594         if (pred != null)
 595             return pred.casNext(c, p);
 596         if (casHead(c, p)) {
 597             c.selfLink();
 598             return true;
 599         }
 600         return false;
 601     }
 602 
 603     /**
 604      * Collapses dead (matched) nodes between pred and q.
 605      * @param pred the last known live node, or null if none


 672                     if (h == null) h = head;
 673                     if (p.tryMatch(item, e)) {
 674                         if (h != p) skipDeadNodesNearHead(h, p);
 675                         return (E) item;
 676                     }
 677                 }
 678                 if ((q = p.next) == null) {
 679                     if (how == NOW) return e;
 680                     if (s == null) s = new Node(e);
 681                     if (!p.casNext(null, s)) continue;
 682                     if (p != t) casTail(t, s);
 683                     if (how == ASYNC) return e;
 684                     return awaitMatch(s, p, e, (how == TIMED), nanos);
 685                 }
 686                 if (p == (p = q)) continue restart;
 687             }
 688         }
 689     }
 690 
 691     /**
 692      * Spins/yields/blocks until node s is matched or caller gives up.
 693      *
 694      * @param s the waiting node
 695      * @param pred the predecessor of s, or null if unknown (the null
 696      * case does not occur in any current calls but may in possible
 697      * future extensions)
 698      * @param e the comparison value for checking match
 699      * @param timed if true, wait only until timeout elapses
 700      * @param nanos timeout in nanosecs, used only if timed is true
 701      * @return matched item, or e if unmatched on interrupt or timeout
 702      */

 703     private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {

 704         final long deadline = timed ? System.nanoTime() + nanos : 0L;
 705         Thread w = Thread.currentThread();
 706         int spins = -1; // initialized after first item and cancel checks
 707         ThreadLocalRandom randomYields = null; // bound if needed
 708 
 709         for (;;) {
 710             final Object item;
 711             if ((item = s.item) != e) {       // matched
 712                 // assert item != s;
 713                 s.forgetContents();           // avoid garbage
 714                 @SuppressWarnings("unchecked") E itemE = (E) item;
 715                 return itemE;
 716             }
 717             else if (w.isInterrupted() || (timed && nanos <= 0L)) {
 718                 // try to cancel and unlink
 719                 if (s.casItem(e, s.isData ? null : s)) {
 720                     unsplice(pred, s);
 721                     return e;
 722                 }
 723                 // return normally if lost CAS
 724             }
 725             else if (spins < 0) {            // establish spins at/near front
 726                 if ((spins = spinsFor(pred, s.isData)) > 0)
 727                     randomYields = ThreadLocalRandom.current();



 728             }
 729             else if (spins > 0) {             // spin
 730                 --spins;
 731                 if (randomYields.nextInt(CHAINED_SPINS) == 0)
 732                     Thread.yield();           // occasionally yield
 733             }
 734             else if (s.waiter == null) {
 735                 s.waiter = w;                 // request unpark then recheck
 736             }
 737             else if (timed) {
 738                 nanos = deadline - System.nanoTime();
 739                 if (nanos > 0L)
 740                     LockSupport.parkNanos(this, nanos);




 741             }
 742             else {
 743                 LockSupport.park(this);
 744             }
 745         }
 746     }
 747 
 748     /**
 749      * Returns spin/yield value for a node with given predecessor and
 750      * data mode. See above for explanation.
 751      */
 752     private static int spinsFor(Node pred, boolean haveData) {
 753         if (MP && pred != null) {
 754             if (pred.isData != haveData)      // phase change
 755                 return FRONT_SPINS + CHAINED_SPINS;
 756             if (pred.isMatched())             // probably at front
 757                 return FRONT_SPINS;
 758             if (pred.waiter == null)          // pred apparently spinning
 759                 return CHAINED_SPINS;
 760         }
 761         return 0;




 762     }
 763 
 764     /* -------------- Traversal methods -------------- */
 765 
 766     /**
 767      * Returns the first unmatched data node, or null if none.
 768      * Callers must recheck if the returned node is unmatched
 769      * before using.
 770      */
 771     final Node firstDataNode() {
 772         Node first = null;
 773         restartFromHead: for (;;) {
 774             Node h = head, p = h;
 775             while (p != null) {
 776                 if (p.item != null) {
 777                     if (p.isData) {
 778                         first = p;
 779                         break;
 780                     }
 781                 }


1164 
1165     /**
1166      * Unsplices (now or later) the given deleted/cancelled node with
1167      * the given predecessor.
1168      *
1169      * @param pred a node that was at one time known to be the
1170      * predecessor of s
1171      * @param s the node to be unspliced
1172      */
1173     final void unsplice(Node pred, Node s) {
1174         // assert pred != null;
1175         // assert pred != s;
1176         // assert s != null;
1177         // assert s.isMatched();
1178         // assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
1179         s.waiter = null; // disable signals
1180         /*
1181          * See above for rationale. Briefly: if pred still points to
1182          * s, try to unlink s.  If s cannot be unlinked, because it is
1183          * trailing node or pred might be unlinked, and neither pred
1184          * nor s are head or offlist, add to sweepVotes, and if enough
1185          * votes have accumulated, sweep.
1186          */
1187         if (pred != null && pred.next == s) {
1188             Node n = s.next;
1189             if (n == null ||
1190                 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1191                 for (;;) {               // check if at, or could be, head
1192                     Node h = head;
1193                     if (h == pred || h == s)
1194                         return;          // at head or list empty
1195                     if (!h.isMatched())
1196                         break;
1197                     Node hn = h.next;
1198                     if (hn == null)
1199                         return;          // now empty
1200                     if (hn != h && casHead(h, hn))
1201                         h.selfLink();  // advance head
1202                 }
1203                 // sweep every SWEEP_THRESHOLD votes
1204                 if (pred.next != pred && s.next != s // recheck if offlist
1205                     && (incSweepVotes() & (SWEEP_THRESHOLD - 1)) == 0)
1206                     sweep();
1207             }
1208         }
1209     }
1210 
1211     /**
1212      * Unlinks matched (typically cancelled) nodes encountered in a
1213      * traversal from head.
1214      */
1215     private void sweep() {

1216         for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1217             if (!s.isMatched())
1218                 // Unmatched nodes are never self-linked
1219                 p = s;
1220             else if ((n = s.next) == null) // trailing node is pinned
1221                 break;
1222             else if (s == n)    // stale
1223                 // No need to also check for p == s, since that implies s == n
1224                 p = head;
1225             else
1226                 p.casNext(s, n);
1227         }
1228     }
1229 
1230     /**
1231      * Creates an initially empty {@code LinkedTransferQueue}.
1232      */
1233     public LinkedTransferQueue() {
1234         head = tail = new Node();
1235     }


1248         for (E e : c) {
1249             Node newNode = new Node(Objects.requireNonNull(e));
1250             if (h == null)
1251                 h = t = newNode;
1252             else
1253                 t.appendRelaxed(t = newNode);
1254         }
1255         if (h == null)
1256             h = t = new Node();
1257         head = h;
1258         tail = t;
1259     }
1260 
1261     /**
1262      * Inserts the specified element at the tail of this queue.
1263      * As the queue is unbounded, this method will never block.
1264      *
1265      * @throws NullPointerException if the specified element is null
1266      */
1267     public void put(E e) {
1268         xfer(e, true, ASYNC, 0);
1269     }
1270 
1271     /**
1272      * Inserts the specified element at the tail of this queue.
1273      * As the queue is unbounded, this method will never block or
1274      * return {@code false}.
1275      *
1276      * @return {@code true} (as specified by
1277      *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1278      * @throws NullPointerException if the specified element is null
1279      */
1280     public boolean offer(E e, long timeout, TimeUnit unit) {
1281         xfer(e, true, ASYNC, 0);
1282         return true;
1283     }
1284 
1285     /**
1286      * Inserts the specified element at the tail of this queue.
1287      * As the queue is unbounded, this method will never return {@code false}.
1288      *
1289      * @return {@code true} (as specified by {@link Queue#offer})
1290      * @throws NullPointerException if the specified element is null
1291      */
1292     public boolean offer(E e) {
1293         xfer(e, true, ASYNC, 0);
1294         return true;
1295     }
1296 
1297     /**
1298      * Inserts the specified element at the tail of this queue.
1299      * As the queue is unbounded, this method will never throw
1300      * {@link IllegalStateException} or return {@code false}.
1301      *
1302      * @return {@code true} (as specified by {@link Collection#add})
1303      * @throws NullPointerException if the specified element is null
1304      */
1305     public boolean add(E e) {
1306         xfer(e, true, ASYNC, 0);
1307         return true;
1308     }
1309 
1310     /**
1311      * Transfers the element to a waiting consumer immediately, if possible.
1312      *
1313      * <p>More precisely, transfers the specified element immediately
1314      * if there exists a consumer already waiting to receive it (in
1315      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1316      * otherwise returning {@code false} without enqueuing the element.
1317      *
1318      * @throws NullPointerException if the specified element is null
1319      */
1320     public boolean tryTransfer(E e) {
1321         return xfer(e, true, NOW, 0) == null;
1322     }
1323 
1324     /**
1325      * Transfers the element to a consumer, waiting if necessary to do so.
1326      *
1327      * <p>More precisely, transfers the specified element immediately
1328      * if there exists a consumer already waiting to receive it (in
1329      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1330      * else inserts the specified element at the tail of this queue
1331      * and waits until the element is received by a consumer.
1332      *
1333      * @throws NullPointerException if the specified element is null
1334      */
1335     public void transfer(E e) throws InterruptedException {
1336         if (xfer(e, true, SYNC, 0) != null) {
1337             Thread.interrupted(); // failure possible only due to interrupt
1338             throw new InterruptedException();
1339         }
1340     }
1341 
1342     /**
1343      * Transfers the element to a consumer if it is possible to do so
1344      * before the timeout elapses.
1345      *
1346      * <p>More precisely, transfers the specified element immediately
1347      * if there exists a consumer already waiting to receive it (in
1348      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1349      * else inserts the specified element at the tail of this queue
1350      * and waits until the element is received by a consumer,
1351      * returning {@code false} if the specified wait time elapses
1352      * before the element can be transferred.
1353      *
1354      * @throws NullPointerException if the specified element is null
1355      */
1356     public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1357         throws InterruptedException {
1358         if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1359             return true;
1360         if (!Thread.interrupted())
1361             return false;
1362         throw new InterruptedException();
1363     }
1364 
1365     public E take() throws InterruptedException {
1366         E e = xfer(null, false, SYNC, 0);
1367         if (e != null)
1368             return e;
1369         Thread.interrupted();
1370         throw new InterruptedException();
1371     }
1372 
1373     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1374         E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1375         if (e != null || !Thread.interrupted())
1376             return e;
1377         throw new InterruptedException();
1378     }
1379 
1380     public E poll() {
1381         return xfer(null, false, NOW, 0);
1382     }
1383 
1384     /**
1385      * @throws NullPointerException     {@inheritDoc}
1386      * @throws IllegalArgumentException {@inheritDoc}
1387      */
1388     public int drainTo(Collection<? super E> c) {
1389         Objects.requireNonNull(c);
1390         if (c == this)
1391             throw new IllegalArgumentException();
1392         int n = 0;
1393         for (E e; (e = poll()) != null; n++)
1394             c.add(e);
1395         return n;
1396     }
1397 
1398     /**
1399      * @throws NullPointerException     {@inheritDoc}
1400      * @throws IllegalArgumentException {@inheritDoc}
1401      */


1705             for (Node c = p;; q = p.next) {
1706                 if (q == null || !q.isMatched()) {
1707                     pred = skipDeadNodes(pred, c, p, q); p = q; break;
1708                 }
1709                 if (p == (p = q)) { pred = null; p = head; break; }
1710             }
1711         }
1712     }
1713 
1714     /**
1715      * @throws NullPointerException {@inheritDoc}
1716      */
1717     public void forEach(Consumer<? super E> action) {
1718         Objects.requireNonNull(action);
1719         forEachFrom(action, head);
1720     }
1721 
1722     // VarHandle mechanics
1723     private static final VarHandle HEAD;
1724     private static final VarHandle TAIL;
1725     private static final VarHandle SWEEPVOTES;
1726     static final VarHandle ITEM;
1727     static final VarHandle NEXT;
1728     static final VarHandle WAITER;
1729     static {
1730         try {
1731             MethodHandles.Lookup l = MethodHandles.lookup();
1732             HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1733                                    Node.class);
1734             TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1735                                    Node.class);
1736             SWEEPVOTES = l.findVarHandle(LinkedTransferQueue.class, "sweepVotes",
1737                                          int.class);
1738             ITEM = l.findVarHandle(Node.class, "item", Object.class);
1739             NEXT = l.findVarHandle(Node.class, "next", Node.class);
1740             WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1741         } catch (ReflectiveOperationException e) {
1742             throw new ExceptionInInitializerError(e);
1743         }
1744 
1745         // Reduce the risk of rare disastrous classloading in first call to
1746         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1747         Class<?> ensureLoaded = LockSupport.class;
1748     }
1749 }


 292      *    this call was ASYNC (e.g. offer), an element was
 293      *    successfully added to the end of the queue and we return.
 294      *
 295      *    Of course, this naive traversal is O(n) when no match is
 296      *    possible.  We optimize the traversal by maintaining a tail
 297      *    pointer, which is expected to be "near" the end of the list.
 298      *    It is only safe to fast-forward to tail (in the presence of
 299      *    arbitrary concurrent changes) if it is pointing to a node of
 300      *    the same mode, even if it is dead (in this case no preceding
 301      *    node could still be matchable by this traversal).  If we
 302      *    need to restart due to falling off-list, we can again
 303      *    fast-forward to tail, but only if it has changed since the
 304      *    last traversal (else we might loop forever).  If tail cannot
 305      *    be used, traversal starts at head (but in this case we
 306      *    expect to be able to match near head).  As with head, we
 307      *    CAS-advance the tail pointer by at least two hops.
 308      *
 309      * 2. Await match or cancellation (method awaitMatch)
 310      *
 311      *    Wait for another thread to match node; instead cancelling if
 312      *    the current thread was interrupted or the wait timed out. To
 313      *    improve performance in common single-source / single-sink
 314      *    usages when there are more tasks that cores, an initial
 315      *    Thread.yield is tried when there is apparently only one
 316      *    waiter.  In other cases, waiters may help with some
 317      *    bookkeeping, then park/unpark.



















 318      *
 319      * ** Unlinking removed interior nodes **
 320      *
 321      * In addition to minimizing garbage retention via self-linking
 322      * described above, we also unlink removed interior nodes. These
 323      * may arise due to timed out or interrupted waits, or calls to
 324      * remove(x) or Iterator.remove.  Normally, given a node that was
 325      * at one time known to be the predecessor of some node s that is
 326      * to be removed, we can unsplice s by CASing the next field of
 327      * its predecessor if it still points to s (otherwise s must
 328      * already have been removed or is now offlist). But there are two
 329      * situations in which we cannot guarantee to make node s
 330      * unreachable in this way: (1) If s is the trailing node of list
 331      * (i.e., with null next), then it is pinned as the target node
 332      * for appends, so can only be removed later after other nodes are
 333      * appended. (2) We cannot necessarily unlink s given a
 334      * predecessor node that is matched (including the case of being
 335      * cancelled): the predecessor may already be unspliced, in which
 336      * case some previous reachable node may still point to s.
 337      * (For further explanation see Herlihy & Shavit "The Art of
 338      * Multiprocessor Programming" chapter 9).  Although, in both
 339      * cases, we can rule out the need for further action if either s
 340      * or its predecessor are (or can be made to be) at, or fall off
 341      * from, the head of list.
 342      *
 343      * Without taking these into account, it would be possible for an
 344      * unbounded number of supposedly removed nodes to remain reachable.
 345      * Situations leading to such buildup are uncommon but can occur
 346      * in practice; for example when a series of short timed calls to
 347      * poll repeatedly time out at the trailing node but otherwise
 348      * never fall off the list because of an untimed call to take() at
 349      * the front of the queue.
 350      *
 351      * When these cases arise, rather than always retraversing the
 352      * entire list to find an actual predecessor to unlink (which
 353      * won't help for case (1) anyway), we record the need to sweep the
 354      * next time any thread would otherwise block in awaitMatch. Also,
 355      * because traversal operations on the linked list of nodes are a





















 356      * natural opportunity to sweep dead nodes, we generally do so,
 357      * including all the operations that might remove elements as they
 358      * traverse, such as removeIf and Iterator.remove.  This largely
 359      * eliminates long chains of dead interior nodes, except from
 360      * cancelled or timed out blocking operations.
 361      *
 362      * Note that we cannot self-link unlinked interior nodes during
 363      * sweeps. However, the associated garbage chains terminate when
 364      * some successor ultimately falls off the head of the list and is
 365      * self-linked.
 366      */
 367 














 368     /**
 369      * The number of nanoseconds for which it is faster to spin
 370      * rather than to use timed park. A rough estimate suffices.
 371      * Using a power of two minus one simplifies some comparisons.


 372      */
 373     static final long SPIN_FOR_TIMEOUT_THRESHOLD = 1023L;
 374 
 375     /**
 376      * The maximum number of estimated removal failures (sweepVotes)
 377      * to tolerate before sweeping through the queue unlinking
 378      * cancelled nodes that were not unlinked upon initial
 379      * removal. See above for explanation. The value must be at least
 380      * two to avoid useless sweeps when removing trailing nodes.
 381      */
 382     static final int SWEEP_THRESHOLD = 32;
 383 
 384     /**
 385      * Queue nodes. Uses Object, not E, for items to allow forgetting
 386      * them after use.  Writes that are intrinsically ordered wrt
 387      * other accesses or CASes use simple relaxed forms.
 388      */
 389     static final class Node implements ForkJoinPool.ManagedBlocker {
 390         final boolean isData;   // false if this is a request node
 391         volatile Object item;   // initially non-null if isData; CASed to match
 392         volatile Node next;
 393         volatile Thread waiter; // null when not waiting for a match
 394 
 395         /**
 396          * Constructs a data node holding item if item is non-null,
 397          * else a request node.  Uses relaxed write because item can
 398          * only be seen after piggy-backing publication via CAS.
 399          */
 400         Node(Object item) {
 401             ITEM.set(this, item);
 402             isData = (item != null);
 403         }
 404 
 405         /** Constructs a (matched data) dummy node. */
 406         Node() {
 407             isData = true;
 408         }
 409 


 414 
 415         final boolean casItem(Object cmp, Object val) {
 416             // assert isData == (cmp != null);
 417             // assert isData == (val == null);
 418             // assert !(cmp instanceof Node);
 419             return ITEM.compareAndSet(this, cmp, val);
 420         }
 421 
 422         /**
 423          * Links node to itself to avoid garbage retention.  Called
 424          * only after CASing head field, so uses relaxed write.
 425          */
 426         final void selfLink() {
 427             // assert isMatched();
 428             NEXT.setRelease(this, this);
 429         }
 430 
 431         final void appendRelaxed(Node next) {
 432             // assert next != null;
 433             // assert this.next == null;
 434             NEXT.setOpaque(this, next);

















 435         }
 436 
 437         /**
 438          * Returns true if this node has been matched, including the
 439          * case of artificial matches due to cancellation.
 440          */
 441         final boolean isMatched() {
 442             return isData == (item == null);
 443         }
 444 
 445         /** Tries to CAS-match this node; if successful, wakes waiter. */
 446         final boolean tryMatch(Object cmp, Object val) {
 447             if (casItem(cmp, val)) {
 448                 LockSupport.unpark(waiter);
 449                 return true;
 450             }
 451             return false;
 452         }
 453 
 454         /**
 455          * Returns true if a node with the given mode cannot be
 456          * appended to this node because this node is unmatched and
 457          * has opposite data mode.
 458          */
 459         final boolean cannotPrecede(boolean haveData) {
 460             boolean d = isData;
 461             return d != haveData && d != (item == null);
 462         }
 463 
 464         public final boolean isReleasable() {
 465             return (isData == (item == null)) ||
 466                 Thread.currentThread().isInterrupted();
 467         }
 468 
 469         public final boolean block() {
 470             while (!isReleasable()) LockSupport.park();
 471             return true;
 472         }
 473 
 474         private static final long serialVersionUID = -3375979862319811754L;
 475     }
 476 
 477     /**
 478      * A node from which the first live (non-matched) node (if any)
 479      * can be reached in O(1) time.
 480      * Invariants:
 481      * - all live nodes are reachable from head via .next
 482      * - head != null
 483      * - (tmp = head).next != tmp || tmp != head
 484      * Non-invariants:
 485      * - head may or may not be live
 486      * - it is permitted for tail to lag behind head, that is, for tail
 487      *   to not be reachable from head!
 488      */
 489     transient volatile Node head;
 490 
 491     /**
 492      * A node from which the last node on list (that is, the unique
 493      * node with node.next == null) can be reached in O(1) time.
 494      * Invariants:
 495      * - the last node is always reachable from tail via .next
 496      * - tail != null
 497      * Non-invariants:
 498      * - tail may or may not be live
 499      * - it is permitted for tail to lag behind head, that is, for tail
 500      *   to not be reachable from head!
 501      * - tail.next may or may not be self-linked.
 502      */
 503     private transient volatile Node tail;
 504 
 505     /** The number of apparent failures to unsplice cancelled nodes */
 506     private transient volatile boolean needSweep;
 507 
 508     private boolean casTail(Node cmp, Node val) {
 509         // assert cmp != null;
 510         // assert val != null;
 511         return TAIL.compareAndSet(this, cmp, val);
 512     }
 513 
 514     private boolean casHead(Node cmp, Node val) {
 515         return HEAD.compareAndSet(this, cmp, val);
 516     }
 517 





 518     /**
 519      * Tries to CAS pred.next (or head, if pred is null) from c to p.
 520      * Caller must ensure that we're not unlinking the trailing node.
 521      */
 522     private boolean tryCasSuccessor(Node pred, Node c, Node p) {
 523         // assert p != null;
 524         // assert c.isData != (c.item != null);
 525         // assert c != p;
 526         if (pred != null)
 527             return pred.casNext(c, p);
 528         if (casHead(c, p)) {
 529             c.selfLink();
 530             return true;
 531         }
 532         return false;
 533     }
 534 
 535     /**
 536      * Collapses dead (matched) nodes between pred and q.
 537      * @param pred the last known live node, or null if none


 604                     if (h == null) h = head;
 605                     if (p.tryMatch(item, e)) {
 606                         if (h != p) skipDeadNodesNearHead(h, p);
 607                         return (E) item;
 608                     }
 609                 }
 610                 if ((q = p.next) == null) {
 611                     if (how == NOW) return e;
 612                     if (s == null) s = new Node(e);
 613                     if (!p.casNext(null, s)) continue;
 614                     if (p != t) casTail(t, s);
 615                     if (how == ASYNC) return e;
 616                     return awaitMatch(s, p, e, (how == TIMED), nanos);
 617                 }
 618                 if (p == (p = q)) continue restart;
 619             }
 620         }
 621     }
 622 
 623     /**
 624      * Possibly blocks until node s is matched or caller gives up.
 625      *
 626      * @param s the waiting node
 627      * @param pred the predecessor of s, or null if unknown (the null
 628      * case does not occur in any current calls but may in possible
 629      * future extensions)
 630      * @param e the comparison value for checking match
 631      * @param timed if true, wait only until timeout elapses
 632      * @param nanos timeout in nanosecs, used only if timed is true
 633      * @return matched item, or e if unmatched on interrupt or timeout
 634      */
 635     @SuppressWarnings("unchecked")
 636     private E awaitMatch(Node s, Node pred, E e, boolean timed, long nanos) {
 637         final boolean isData = s.isData;
 638         final long deadline = timed ? System.nanoTime() + nanos : 0L;
 639         final Thread w = Thread.currentThread();
 640         int stat = -1;                   // -1: may yield, +1: park, else 0
 641         Object item;
 642         while ((item = s.item) == e) {
 643             if (needSweep)               // help clean
 644                 sweep();
 645             else if ((timed && nanos <= 0L) || w.isInterrupted()) {
 646                 if (s.casItem(e, (e == null) ? s : null)) {
 647                     unsplice(pred, s);   // cancelled







 648                     return e;
 649                 }

 650             }
 651             else if (stat <= 0) {
 652                 if (pred != null && pred.next == s) {
 653                     if (stat < 0 &&
 654                         (pred.isData != isData || pred.isMatched())) {
 655                         stat = 0;        // yield once if first
 656                         Thread.yield();
 657                     }
 658                     else {
 659                         stat = 1;
 660                         s.waiter = w;    // enable unpark

 661                     }
 662                 }                        // else signal in progress

 663             }
 664             else if ((item = s.item) != e)
 665                 break;                   // recheck
 666             else if (!timed) {
 667                 LockSupport.setCurrentBlocker(this);
 668                 try {
 669                     ForkJoinPool.managedBlock(s);
 670                 } catch (InterruptedException cannotHappen) { }
 671                 LockSupport.setCurrentBlocker(null);
 672             }
 673             else {
 674                 nanos = deadline - System.nanoTime();
 675                 if (nanos > SPIN_FOR_TIMEOUT_THRESHOLD)
 676                     LockSupport.parkNanos(this, nanos);
 677             }













 678         }
 679         if (stat == 1)
 680             WAITER.set(s, null);
 681         if (!isData)
 682             ITEM.set(s, s);              // self-link to avoid garbage
 683         return (E) item;
 684     }
 685 
 686     /* -------------- Traversal methods -------------- */
 687 
 688     /**
 689      * Returns the first unmatched data node, or null if none.
 690      * Callers must recheck if the returned node is unmatched
 691      * before using.
 692      */
 693     final Node firstDataNode() {
 694         Node first = null;
 695         restartFromHead: for (;;) {
 696             Node h = head, p = h;
 697             while (p != null) {
 698                 if (p.item != null) {
 699                     if (p.isData) {
 700                         first = p;
 701                         break;
 702                     }
 703                 }


1086 
1087     /**
1088      * Unsplices (now or later) the given deleted/cancelled node with
1089      * the given predecessor.
1090      *
1091      * @param pred a node that was at one time known to be the
1092      * predecessor of s
1093      * @param s the node to be unspliced
1094      */
1095     final void unsplice(Node pred, Node s) {
1096         // assert pred != null;
1097         // assert pred != s;
1098         // assert s != null;
1099         // assert s.isMatched();
1100         // assert (SWEEP_THRESHOLD & (SWEEP_THRESHOLD - 1)) == 0;
1101         s.waiter = null; // disable signals
1102         /*
1103          * See above for rationale. Briefly: if pred still points to
1104          * s, try to unlink s.  If s cannot be unlinked, because it is
1105          * trailing node or pred might be unlinked, and neither pred
1106          * nor s are head or offlist, set needSweep;

1107          */
1108         if (pred != null && pred.next == s) {
1109             Node n = s.next;
1110             if (n == null ||
1111                 (n != s && pred.casNext(s, n) && pred.isMatched())) {
1112                 for (;;) {               // check if at, or could be, head
1113                     Node h = head;
1114                     if (h == pred || h == s)
1115                         return;          // at head or list empty
1116                     if (!h.isMatched())
1117                         break;
1118                     Node hn = h.next;
1119                     if (hn == null)
1120                         return;          // now empty
1121                     if (hn != h && casHead(h, hn))
1122                         h.selfLink();  // advance head
1123                 }
1124                 if (pred.next != pred && s.next != s)
1125                     needSweep = true;


1126             }
1127         }
1128     }
1129 
1130     /**
1131      * Unlinks matched (typically cancelled) nodes encountered in a
1132      * traversal from head.
1133      */
1134     private void sweep() {
1135         needSweep = false;
1136         for (Node p = head, s, n; p != null && (s = p.next) != null; ) {
1137             if (!s.isMatched())
1138                 // Unmatched nodes are never self-linked
1139                 p = s;
1140             else if ((n = s.next) == null) // trailing node is pinned
1141                 break;
1142             else if (s == n)    // stale
1143                 // No need to also check for p == s, since that implies s == n
1144                 p = head;
1145             else
1146                 p.casNext(s, n);
1147         }
1148     }
1149 
1150     /**
1151      * Creates an initially empty {@code LinkedTransferQueue}.
1152      */
1153     public LinkedTransferQueue() {
1154         head = tail = new Node();
1155     }


1168         for (E e : c) {
1169             Node newNode = new Node(Objects.requireNonNull(e));
1170             if (h == null)
1171                 h = t = newNode;
1172             else
1173                 t.appendRelaxed(t = newNode);
1174         }
1175         if (h == null)
1176             h = t = new Node();
1177         head = h;
1178         tail = t;
1179     }
1180 
1181     /**
1182      * Inserts the specified element at the tail of this queue.
1183      * As the queue is unbounded, this method will never block.
1184      *
1185      * @throws NullPointerException if the specified element is null
1186      */
1187     public void put(E e) {
1188         xfer(e, true, ASYNC, 0L);
1189     }
1190 
1191     /**
1192      * Inserts the specified element at the tail of this queue.
1193      * As the queue is unbounded, this method will never block or
1194      * return {@code false}.
1195      *
1196      * @return {@code true} (as specified by
1197      *  {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
1198      * @throws NullPointerException if the specified element is null
1199      */
1200     public boolean offer(E e, long timeout, TimeUnit unit) {
1201         xfer(e, true, ASYNC, 0L);
1202         return true;
1203     }
1204 
1205     /**
1206      * Inserts the specified element at the tail of this queue.
1207      * As the queue is unbounded, this method will never return {@code false}.
1208      *
1209      * @return {@code true} (as specified by {@link Queue#offer})
1210      * @throws NullPointerException if the specified element is null
1211      */
1212     public boolean offer(E e) {
1213         xfer(e, true, ASYNC, 0L);
1214         return true;
1215     }
1216 
1217     /**
1218      * Inserts the specified element at the tail of this queue.
1219      * As the queue is unbounded, this method will never throw
1220      * {@link IllegalStateException} or return {@code false}.
1221      *
1222      * @return {@code true} (as specified by {@link Collection#add})
1223      * @throws NullPointerException if the specified element is null
1224      */
1225     public boolean add(E e) {
1226         xfer(e, true, ASYNC, 0L);
1227         return true;
1228     }
1229 
1230     /**
1231      * Transfers the element to a waiting consumer immediately, if possible.
1232      *
1233      * <p>More precisely, transfers the specified element immediately
1234      * if there exists a consumer already waiting to receive it (in
1235      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1236      * otherwise returning {@code false} without enqueuing the element.
1237      *
1238      * @throws NullPointerException if the specified element is null
1239      */
1240     public boolean tryTransfer(E e) {
1241         return xfer(e, true, NOW, 0L) == null;
1242     }
1243 
1244     /**
1245      * Transfers the element to a consumer, waiting if necessary to do so.
1246      *
1247      * <p>More precisely, transfers the specified element immediately
1248      * if there exists a consumer already waiting to receive it (in
1249      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1250      * else inserts the specified element at the tail of this queue
1251      * and waits until the element is received by a consumer.
1252      *
1253      * @throws NullPointerException if the specified element is null
1254      */
1255     public void transfer(E e) throws InterruptedException {
1256         if (xfer(e, true, SYNC, 0L) != null) {
1257             Thread.interrupted(); // failure possible only due to interrupt
1258             throw new InterruptedException();
1259         }
1260     }
1261 
1262     /**
1263      * Transfers the element to a consumer if it is possible to do so
1264      * before the timeout elapses.
1265      *
1266      * <p>More precisely, transfers the specified element immediately
1267      * if there exists a consumer already waiting to receive it (in
1268      * {@link #take} or timed {@link #poll(long,TimeUnit) poll}),
1269      * else inserts the specified element at the tail of this queue
1270      * and waits until the element is received by a consumer,
1271      * returning {@code false} if the specified wait time elapses
1272      * before the element can be transferred.
1273      *
1274      * @throws NullPointerException if the specified element is null
1275      */
1276     public boolean tryTransfer(E e, long timeout, TimeUnit unit)
1277         throws InterruptedException {
1278         if (xfer(e, true, TIMED, unit.toNanos(timeout)) == null)
1279             return true;
1280         if (!Thread.interrupted())
1281             return false;
1282         throw new InterruptedException();
1283     }
1284 
1285     public E take() throws InterruptedException {
1286         E e = xfer(null, false, SYNC, 0L);
1287         if (e != null)
1288             return e;
1289         Thread.interrupted();
1290         throw new InterruptedException();
1291     }
1292 
1293     public E poll(long timeout, TimeUnit unit) throws InterruptedException {
1294         E e = xfer(null, false, TIMED, unit.toNanos(timeout));
1295         if (e != null || !Thread.interrupted())
1296             return e;
1297         throw new InterruptedException();
1298     }
1299 
1300     public E poll() {
1301         return xfer(null, false, NOW, 0L);
1302     }
1303 
1304     /**
1305      * @throws NullPointerException     {@inheritDoc}
1306      * @throws IllegalArgumentException {@inheritDoc}
1307      */
1308     public int drainTo(Collection<? super E> c) {
1309         Objects.requireNonNull(c);
1310         if (c == this)
1311             throw new IllegalArgumentException();
1312         int n = 0;
1313         for (E e; (e = poll()) != null; n++)
1314             c.add(e);
1315         return n;
1316     }
1317 
1318     /**
1319      * @throws NullPointerException     {@inheritDoc}
1320      * @throws IllegalArgumentException {@inheritDoc}
1321      */


1625             for (Node c = p;; q = p.next) {
1626                 if (q == null || !q.isMatched()) {
1627                     pred = skipDeadNodes(pred, c, p, q); p = q; break;
1628                 }
1629                 if (p == (p = q)) { pred = null; p = head; break; }
1630             }
1631         }
1632     }
1633 
1634     /**
1635      * @throws NullPointerException {@inheritDoc}
1636      */
1637     public void forEach(Consumer<? super E> action) {
1638         Objects.requireNonNull(action);
1639         forEachFrom(action, head);
1640     }
1641 
1642     // VarHandle mechanics
1643     private static final VarHandle HEAD;
1644     private static final VarHandle TAIL;

1645     static final VarHandle ITEM;
1646     static final VarHandle NEXT;
1647     static final VarHandle WAITER;
1648     static {
1649         try {
1650             MethodHandles.Lookup l = MethodHandles.lookup();
1651             HEAD = l.findVarHandle(LinkedTransferQueue.class, "head",
1652                                    Node.class);
1653             TAIL = l.findVarHandle(LinkedTransferQueue.class, "tail",
1654                                    Node.class);


1655             ITEM = l.findVarHandle(Node.class, "item", Object.class);
1656             NEXT = l.findVarHandle(Node.class, "next", Node.class);
1657             WAITER = l.findVarHandle(Node.class, "waiter", Thread.class);
1658         } catch (ReflectiveOperationException e) {
1659             throw new ExceptionInInitializerError(e);
1660         }
1661 
1662         // Reduce the risk of rare disastrous classloading in first call to
1663         // LockSupport.park: https://bugs.openjdk.java.net/browse/JDK-8074773
1664         Class<?> ensureLoaded = LockSupport.class;
1665     }
1666 }
< prev index next >