1 /*
   2  * Copyright (c) 1999, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "libo4.hpp"
  42 #include "libperfstat_aix.hpp"
  43 #include "libodm_aix.hpp"
  44 #include "loadlib_aix.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/filemap.hpp"
  47 #include "misc_aix.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "os_aix.inline.hpp"
  50 #include "os_share_aix.hpp"
  51 #include "porting_aix.hpp"
  52 #include "prims/jniFastGetField.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/extendedPC.hpp"
  57 #include "runtime/globals.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.hpp"
  64 #include "runtime/os.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/perfMemory.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/thread.inline.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/runtimeService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/decoder.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/growableArray.hpp"
  81 #include "utilities/vmError.hpp"
  82 
  83 // put OS-includes here (sorted alphabetically)
  84 #include <errno.h>
  85 #include <fcntl.h>
  86 #include <inttypes.h>
  87 #include <poll.h>
  88 #include <procinfo.h>
  89 #include <pthread.h>
  90 #include <pwd.h>
  91 #include <semaphore.h>
  92 #include <signal.h>
  93 #include <stdint.h>
  94 #include <stdio.h>
  95 #include <string.h>
  96 #include <unistd.h>
  97 #include <sys/ioctl.h>
  98 #include <sys/ipc.h>
  99 #include <sys/mman.h>
 100 #include <sys/resource.h>
 101 #include <sys/select.h>
 102 #include <sys/shm.h>
 103 #include <sys/socket.h>
 104 #include <sys/stat.h>
 105 #include <sys/sysinfo.h>
 106 #include <sys/systemcfg.h>
 107 #include <sys/time.h>
 108 #include <sys/times.h>
 109 #include <sys/types.h>
 110 #include <sys/utsname.h>
 111 #include <sys/vminfo.h>
 112 #include <sys/wait.h>
 113 
 114 // Missing prototypes for various system APIs.
 115 extern "C"
 116 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 117 
 118 #if !defined(_AIXVERSION_610)
 119 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 120 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 121 extern "C" int getargs(procsinfo*, int, char*, int);
 122 #endif
 123 
 124 #define MAX_PATH (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 // for multipage initialization error analysis (in 'g_multipage_error')
 129 #define ERROR_MP_OS_TOO_OLD                          100
 130 #define ERROR_MP_EXTSHM_ACTIVE                       101
 131 #define ERROR_MP_VMGETINFO_FAILED                    102
 132 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 133 
 134 // excerpts from systemcfg.h that might be missing on older os levels
 135 #ifndef PV_5_Compat
 136   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 137 #endif
 138 #ifndef PV_6
 139   #define PV_6 0x100000          /* Power PC 6 */
 140 #endif
 141 #ifndef PV_6_1
 142   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 143 #endif
 144 #ifndef PV_6_Compat
 145   #define PV_6_Compat 0x108000   /* Power PC 6 */
 146 #endif
 147 #ifndef PV_7
 148   #define PV_7 0x200000          /* Power PC 7 */
 149 #endif
 150 #ifndef PV_7_Compat
 151   #define PV_7_Compat 0x208000   /* Power PC 7 */
 152 #endif
 153 #ifndef PV_8
 154   #define PV_8 0x300000          /* Power PC 8 */
 155 #endif
 156 #ifndef PV_8_Compat
 157   #define PV_8_Compat 0x308000   /* Power PC 8 */
 158 #endif
 159 
 160 static address resolve_function_descriptor_to_code_pointer(address p);
 161 
 162 static void vmembk_print_on(outputStream* os);
 163 
 164 ////////////////////////////////////////////////////////////////////////////////
 165 // global variables (for a description see os_aix.hpp)
 166 
 167 julong    os::Aix::_physical_memory = 0;
 168 
 169 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 170 int       os::Aix::_page_size = -1;
 171 
 172 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 173 int       os::Aix::_on_pase = -1;
 174 
 175 // 0 = uninitialized, otherwise 32 bit number:
 176 //  0xVVRRTTSS
 177 //  VV - major version
 178 //  RR - minor version
 179 //  TT - tech level, if known, 0 otherwise
 180 //  SS - service pack, if known, 0 otherwise
 181 uint32_t  os::Aix::_os_version = 0;
 182 
 183 // -1 = uninitialized, 0 - no, 1 - yes
 184 int       os::Aix::_xpg_sus_mode = -1;
 185 
 186 // -1 = uninitialized, 0 - no, 1 - yes
 187 int       os::Aix::_extshm = -1;
 188 
 189 ////////////////////////////////////////////////////////////////////////////////
 190 // local variables
 191 
 192 static volatile jlong max_real_time = 0;
 193 static jlong    initial_time_count = 0;
 194 static int      clock_tics_per_sec = 100;
 195 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 196 static bool     check_signals      = true;
 197 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 198 static sigset_t SR_sigset;
 199 
 200 // Process break recorded at startup.
 201 static address g_brk_at_startup = NULL;
 202 
 203 // This describes the state of multipage support of the underlying
 204 // OS. Note that this is of no interest to the outsize world and
 205 // therefore should not be defined in AIX class.
 206 //
 207 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 208 // latter two (16M "large" resp. 16G "huge" pages) require special
 209 // setup and are normally not available.
 210 //
 211 // AIX supports multiple page sizes per process, for:
 212 //  - Stack (of the primordial thread, so not relevant for us)
 213 //  - Data - data, bss, heap, for us also pthread stacks
 214 //  - Text - text code
 215 //  - shared memory
 216 //
 217 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 218 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 219 //
 220 // For shared memory, page size can be set dynamically via
 221 // shmctl(). Different shared memory regions can have different page
 222 // sizes.
 223 //
 224 // More information can be found at AIBM info center:
 225 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 226 //
 227 static struct {
 228   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 229   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 230   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 231   size_t pthr_stack_pagesize; // stack page size of pthread threads
 232   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 233   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 234   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 235   int error;                  // Error describing if something went wrong at multipage init.
 236 } g_multipage_support = {
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   (size_t) -1,
 242   false, false,
 243   0
 244 };
 245 
 246 // We must not accidentally allocate memory close to the BRK - even if
 247 // that would work - because then we prevent the BRK segment from
 248 // growing which may result in a malloc OOM even though there is
 249 // enough memory. The problem only arises if we shmat() or mmap() at
 250 // a specific wish address, e.g. to place the heap in a
 251 // compressed-oops-friendly way.
 252 static bool is_close_to_brk(address a) {
 253   assert0(g_brk_at_startup != NULL);
 254   if (a >= g_brk_at_startup &&
 255       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 256     return true;
 257   }
 258   return false;
 259 }
 260 
 261 julong os::available_memory() {
 262   return Aix::available_memory();
 263 }
 264 
 265 julong os::Aix::available_memory() {
 266   // Avoid expensive API call here, as returned value will always be null.
 267   if (os::Aix::on_pase()) {
 268     return 0x0LL;
 269   }
 270   os::Aix::meminfo_t mi;
 271   if (os::Aix::get_meminfo(&mi)) {
 272     return mi.real_free;
 273   } else {
 274     return ULONG_MAX;
 275   }
 276 }
 277 
 278 julong os::physical_memory() {
 279   return Aix::physical_memory();
 280 }
 281 
 282 // Return true if user is running as root.
 283 
 284 bool os::have_special_privileges() {
 285   static bool init = false;
 286   static bool privileges = false;
 287   if (!init) {
 288     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 289     init = true;
 290   }
 291   return privileges;
 292 }
 293 
 294 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 295 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 296 static bool my_disclaim64(char* addr, size_t size) {
 297 
 298   if (size == 0) {
 299     return true;
 300   }
 301 
 302   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 303   const unsigned int maxDisclaimSize = 0x40000000;
 304 
 305   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 306   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 307 
 308   char* p = addr;
 309 
 310   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 311     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 312       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 313       return false;
 314     }
 315     p += maxDisclaimSize;
 316   }
 317 
 318   if (lastDisclaimSize > 0) {
 319     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 320       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 321       return false;
 322     }
 323   }
 324 
 325   return true;
 326 }
 327 
 328 // Cpu architecture string
 329 #if defined(PPC32)
 330 static char cpu_arch[] = "ppc";
 331 #elif defined(PPC64)
 332 static char cpu_arch[] = "ppc64";
 333 #else
 334 #error Add appropriate cpu_arch setting
 335 #endif
 336 
 337 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 338 static int checked_vmgetinfo(void *out, int command, int arg) {
 339   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 340     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 341   }
 342   return ::vmgetinfo(out, command, arg);
 343 }
 344 
 345 // Given an address, returns the size of the page backing that address.
 346 size_t os::Aix::query_pagesize(void* addr) {
 347 
 348   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 349     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 350     return 4*K;
 351   }
 352 
 353   vm_page_info pi;
 354   pi.addr = (uint64_t)addr;
 355   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 356     return pi.pagesize;
 357   } else {
 358     assert(false, "vmgetinfo failed to retrieve page size");
 359     return 4*K;
 360   }
 361 }
 362 
 363 void os::Aix::initialize_system_info() {
 364 
 365   // Get the number of online(logical) cpus instead of configured.
 366   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 367   assert(_processor_count > 0, "_processor_count must be > 0");
 368 
 369   // Retrieve total physical storage.
 370   os::Aix::meminfo_t mi;
 371   if (!os::Aix::get_meminfo(&mi)) {
 372     assert(false, "os::Aix::get_meminfo failed.");
 373   }
 374   _physical_memory = (julong) mi.real_total;
 375 }
 376 
 377 // Helper function for tracing page sizes.
 378 static const char* describe_pagesize(size_t pagesize) {
 379   switch (pagesize) {
 380     case 4*K : return "4K";
 381     case 64*K: return "64K";
 382     case 16*M: return "16M";
 383     case 16*G: return "16G";
 384     default:
 385       assert(false, "surprise");
 386       return "??";
 387   }
 388 }
 389 
 390 // Probe OS for multipage support.
 391 // Will fill the global g_multipage_support structure.
 392 // Must be called before calling os::large_page_init().
 393 static void query_multipage_support() {
 394 
 395   guarantee(g_multipage_support.pagesize == -1,
 396             "do not call twice");
 397 
 398   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 399 
 400   // This really would surprise me.
 401   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 402 
 403   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 404   // Default data page size is defined either by linker options (-bdatapsize)
 405   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 406   // default should be 4K.
 407   {
 408     void* p = ::malloc(16*M);
 409     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 410     ::free(p);
 411   }
 412 
 413   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 414   // Note that this is pure curiosity. We do not rely on default page size but set
 415   // our own page size after allocated.
 416   {
 417     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 418     guarantee(shmid != -1, "shmget failed");
 419     void* p = ::shmat(shmid, NULL, 0);
 420     ::shmctl(shmid, IPC_RMID, NULL);
 421     guarantee(p != (void*) -1, "shmat failed");
 422     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 423     ::shmdt(p);
 424   }
 425 
 426   // Before querying the stack page size, make sure we are not running as primordial
 427   // thread (because primordial thread's stack may have different page size than
 428   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 429   // number of reasons so we may just as well guarantee it here.
 430   guarantee0(!os::is_primordial_thread());
 431 
 432   // Query pthread stack page size. Should be the same as data page size because
 433   // pthread stacks are allocated from C-Heap.
 434   {
 435     int dummy = 0;
 436     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 437   }
 438 
 439   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 440   {
 441     address any_function =
 442       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 443     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 444   }
 445 
 446   // Now probe for support of 64K pages and 16M pages.
 447 
 448   // Before OS/400 V6R1, there is no support for pages other than 4K.
 449   if (os::Aix::on_pase_V5R4_or_older()) {
 450     trcVerbose("OS/400 < V6R1 - no large page support.");
 451     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 452     goto query_multipage_support_end;
 453   }
 454 
 455   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 456   {
 457     const int MAX_PAGE_SIZES = 4;
 458     psize_t sizes[MAX_PAGE_SIZES];
 459     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 460     if (num_psizes == -1) {
 461       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 462       trcVerbose("disabling multipage support.");
 463       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 464       goto query_multipage_support_end;
 465     }
 466     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 467     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 468     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 469     for (int i = 0; i < num_psizes; i ++) {
 470       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 471     }
 472 
 473     // Can we use 64K, 16M pages?
 474     for (int i = 0; i < num_psizes; i ++) {
 475       const size_t pagesize = sizes[i];
 476       if (pagesize != 64*K && pagesize != 16*M) {
 477         continue;
 478       }
 479       bool can_use = false;
 480       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 481       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 482         IPC_CREAT | S_IRUSR | S_IWUSR);
 483       guarantee0(shmid != -1); // Should always work.
 484       // Try to set pagesize.
 485       struct shmid_ds shm_buf = { 0 };
 486       shm_buf.shm_pagesize = pagesize;
 487       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 488         const int en = errno;
 489         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 490         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%n",
 491           errno);
 492       } else {
 493         // Attach and double check pageisze.
 494         void* p = ::shmat(shmid, NULL, 0);
 495         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 496         guarantee0(p != (void*) -1); // Should always work.
 497         const size_t real_pagesize = os::Aix::query_pagesize(p);
 498         if (real_pagesize != pagesize) {
 499           trcVerbose("real page size (0x%llX) differs.", real_pagesize);
 500         } else {
 501           can_use = true;
 502         }
 503         ::shmdt(p);
 504       }
 505       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 506       if (pagesize == 64*K) {
 507         g_multipage_support.can_use_64K_pages = can_use;
 508       } else if (pagesize == 16*M) {
 509         g_multipage_support.can_use_16M_pages = can_use;
 510       }
 511     }
 512 
 513   } // end: check which pages can be used for shared memory
 514 
 515 query_multipage_support_end:
 516 
 517   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 518       describe_pagesize(g_multipage_support.pagesize));
 519   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 520       describe_pagesize(g_multipage_support.datapsize));
 521   trcVerbose("Text page size: %s",
 522       describe_pagesize(g_multipage_support.textpsize));
 523   trcVerbose("Thread stack page size (pthread): %s",
 524       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 525   trcVerbose("Default shared memory page size: %s",
 526       describe_pagesize(g_multipage_support.shmpsize));
 527   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 528       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 529   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 530       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 531   trcVerbose("Multipage error details: %d",
 532       g_multipage_support.error);
 533 
 534   // sanity checks
 535   assert0(g_multipage_support.pagesize == 4*K);
 536   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 537   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 538   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 539   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 540 
 541 }
 542 
 543 void os::init_system_properties_values() {
 544 
 545 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 546 #define EXTENSIONS_DIR  "/lib/ext"
 547 
 548   // Buffer that fits several sprintfs.
 549   // Note that the space for the trailing null is provided
 550   // by the nulls included by the sizeof operator.
 551   const size_t bufsize =
 552     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 553          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 554   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 555 
 556   // sysclasspath, java_home, dll_dir
 557   {
 558     char *pslash;
 559     os::jvm_path(buf, bufsize);
 560 
 561     // Found the full path to libjvm.so.
 562     // Now cut the path to <java_home>/jre if we can.
 563     pslash = strrchr(buf, '/');
 564     if (pslash != NULL) {
 565       *pslash = '\0';            // Get rid of /libjvm.so.
 566     }
 567     pslash = strrchr(buf, '/');
 568     if (pslash != NULL) {
 569       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 570     }
 571     Arguments::set_dll_dir(buf);
 572 
 573     if (pslash != NULL) {
 574       pslash = strrchr(buf, '/');
 575       if (pslash != NULL) {
 576         *pslash = '\0';        // Get rid of /lib.
 577       }
 578     }
 579     Arguments::set_java_home(buf);
 580     set_boot_path('/', ':');
 581   }
 582 
 583   // Where to look for native libraries.
 584 
 585   // On Aix we get the user setting of LIBPATH.
 586   // Eventually, all the library path setting will be done here.
 587   // Get the user setting of LIBPATH.
 588   const char *v = ::getenv("LIBPATH");
 589   const char *v_colon = ":";
 590   if (v == NULL) { v = ""; v_colon = ""; }
 591 
 592   // Concatenate user and invariant part of ld_library_path.
 593   // That's +1 for the colon and +1 for the trailing '\0'.
 594   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 595   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 596   Arguments::set_library_path(ld_library_path);
 597   FREE_C_HEAP_ARRAY(char, ld_library_path);
 598 
 599   // Extensions directories.
 600   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 601   Arguments::set_ext_dirs(buf);
 602 
 603   FREE_C_HEAP_ARRAY(char, buf);
 604 
 605 #undef DEFAULT_LIBPATH
 606 #undef EXTENSIONS_DIR
 607 }
 608 
 609 ////////////////////////////////////////////////////////////////////////////////
 610 // breakpoint support
 611 
 612 void os::breakpoint() {
 613   BREAKPOINT;
 614 }
 615 
 616 extern "C" void breakpoint() {
 617   // use debugger to set breakpoint here
 618 }
 619 
 620 ////////////////////////////////////////////////////////////////////////////////
 621 // signal support
 622 
 623 debug_only(static bool signal_sets_initialized = false);
 624 static sigset_t unblocked_sigs, vm_sigs;
 625 
 626 void os::Aix::signal_sets_init() {
 627   // Should also have an assertion stating we are still single-threaded.
 628   assert(!signal_sets_initialized, "Already initialized");
 629   // Fill in signals that are necessarily unblocked for all threads in
 630   // the VM. Currently, we unblock the following signals:
 631   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 632   //                         by -Xrs (=ReduceSignalUsage));
 633   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 634   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 635   // the dispositions or masks wrt these signals.
 636   // Programs embedding the VM that want to use the above signals for their
 637   // own purposes must, at this time, use the "-Xrs" option to prevent
 638   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 639   // (See bug 4345157, and other related bugs).
 640   // In reality, though, unblocking these signals is really a nop, since
 641   // these signals are not blocked by default.
 642   sigemptyset(&unblocked_sigs);
 643   sigaddset(&unblocked_sigs, SIGILL);
 644   sigaddset(&unblocked_sigs, SIGSEGV);
 645   sigaddset(&unblocked_sigs, SIGBUS);
 646   sigaddset(&unblocked_sigs, SIGFPE);
 647   sigaddset(&unblocked_sigs, SIGTRAP);
 648   sigaddset(&unblocked_sigs, SR_signum);
 649 
 650   if (!ReduceSignalUsage) {
 651    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 652      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 653    }
 654    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 655      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 656    }
 657    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 658      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 659    }
 660   }
 661   // Fill in signals that are blocked by all but the VM thread.
 662   sigemptyset(&vm_sigs);
 663   if (!ReduceSignalUsage)
 664     sigaddset(&vm_sigs, BREAK_SIGNAL);
 665   debug_only(signal_sets_initialized = true);
 666 }
 667 
 668 // These are signals that are unblocked while a thread is running Java.
 669 // (For some reason, they get blocked by default.)
 670 sigset_t* os::Aix::unblocked_signals() {
 671   assert(signal_sets_initialized, "Not initialized");
 672   return &unblocked_sigs;
 673 }
 674 
 675 // These are the signals that are blocked while a (non-VM) thread is
 676 // running Java. Only the VM thread handles these signals.
 677 sigset_t* os::Aix::vm_signals() {
 678   assert(signal_sets_initialized, "Not initialized");
 679   return &vm_sigs;
 680 }
 681 
 682 void os::Aix::hotspot_sigmask(Thread* thread) {
 683 
 684   //Save caller's signal mask before setting VM signal mask
 685   sigset_t caller_sigmask;
 686   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 687 
 688   OSThread* osthread = thread->osthread();
 689   osthread->set_caller_sigmask(caller_sigmask);
 690 
 691   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 692 
 693   if (!ReduceSignalUsage) {
 694     if (thread->is_VM_thread()) {
 695       // Only the VM thread handles BREAK_SIGNAL ...
 696       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 697     } else {
 698       // ... all other threads block BREAK_SIGNAL
 699       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 700     }
 701   }
 702 }
 703 
 704 // retrieve memory information.
 705 // Returns false if something went wrong;
 706 // content of pmi undefined in this case.
 707 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 708 
 709   assert(pmi, "get_meminfo: invalid parameter");
 710 
 711   memset(pmi, 0, sizeof(meminfo_t));
 712 
 713   if (os::Aix::on_pase()) {
 714     // On PASE, use the libo4 porting library.
 715 
 716     unsigned long long virt_total = 0;
 717     unsigned long long real_total = 0;
 718     unsigned long long real_free = 0;
 719     unsigned long long pgsp_total = 0;
 720     unsigned long long pgsp_free = 0;
 721     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 722       pmi->virt_total = virt_total;
 723       pmi->real_total = real_total;
 724       pmi->real_free = real_free;
 725       pmi->pgsp_total = pgsp_total;
 726       pmi->pgsp_free = pgsp_free;
 727       return true;
 728     }
 729     return false;
 730 
 731   } else {
 732 
 733     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 734     // See:
 735     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 736     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 737     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 738     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 739 
 740     perfstat_memory_total_t psmt;
 741     memset (&psmt, '\0', sizeof(psmt));
 742     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 743     if (rc == -1) {
 744       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 745       assert(0, "perfstat_memory_total() failed");
 746       return false;
 747     }
 748 
 749     assert(rc == 1, "perfstat_memory_total() - weird return code");
 750 
 751     // excerpt from
 752     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 753     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 754     // The fields of perfstat_memory_total_t:
 755     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 756     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 757     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 758     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 759     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 760 
 761     pmi->virt_total = psmt.virt_total * 4096;
 762     pmi->real_total = psmt.real_total * 4096;
 763     pmi->real_free = psmt.real_free * 4096;
 764     pmi->pgsp_total = psmt.pgsp_total * 4096;
 765     pmi->pgsp_free = psmt.pgsp_free * 4096;
 766 
 767     return true;
 768 
 769   }
 770 } // end os::Aix::get_meminfo
 771 
 772 //////////////////////////////////////////////////////////////////////////////
 773 // create new thread
 774 
 775 // Thread start routine for all newly created threads
 776 static void *thread_native_entry(Thread *thread) {
 777 
 778   thread->record_stack_base_and_size();
 779 
 780   const pthread_t pthread_id = ::pthread_self();
 781   const tid_t kernel_thread_id = ::thread_self();
 782 
 783   LogTarget(Info, os, thread) lt;
 784   if (lt.is_enabled()) {
 785     address low_address = thread->stack_end();
 786     address high_address = thread->stack_base();
 787     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 788              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 789              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 790              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 791   }
 792 
 793   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 794   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 795   // tools hook pthread_create(). In this case, we may run into problems establishing
 796   // guard pages on those stacks, because the stacks may reside in memory which is not
 797   // protectable (shmated).
 798   if (thread->stack_base() > ::sbrk(0)) {
 799     log_warning(os, thread)("Thread stack not in data segment.");
 800   }
 801 
 802   // Try to randomize the cache line index of hot stack frames.
 803   // This helps when threads of the same stack traces evict each other's
 804   // cache lines. The threads can be either from the same JVM instance, or
 805   // from different JVM instances. The benefit is especially true for
 806   // processors with hyperthreading technology.
 807 
 808   static int counter = 0;
 809   int pid = os::current_process_id();
 810   alloca(((pid ^ counter++) & 7) * 128);
 811 
 812   thread->initialize_thread_current();
 813 
 814   OSThread* osthread = thread->osthread();
 815 
 816   // Thread_id is pthread id.
 817   osthread->set_thread_id(pthread_id);
 818 
 819   // .. but keep kernel thread id too for diagnostics
 820   osthread->set_kernel_thread_id(kernel_thread_id);
 821 
 822   // Initialize signal mask for this thread.
 823   os::Aix::hotspot_sigmask(thread);
 824 
 825   // Initialize floating point control register.
 826   os::Aix::init_thread_fpu_state();
 827 
 828   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 829 
 830   // Call one more level start routine.
 831   thread->call_run();
 832 
 833   // Note: at this point the thread object may already have deleted itself.
 834   // Prevent dereferencing it from here on out.
 835   thread = NULL;
 836 
 837   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 838     os::current_thread_id(), (uintx) kernel_thread_id);
 839 
 840   return 0;
 841 }
 842 
 843 bool os::create_thread(Thread* thread, ThreadType thr_type,
 844                        size_t req_stack_size) {
 845 
 846   assert(thread->osthread() == NULL, "caller responsible");
 847 
 848   // Allocate the OSThread object.
 849   OSThread* osthread = new OSThread(NULL, NULL);
 850   if (osthread == NULL) {
 851     return false;
 852   }
 853 
 854   // Set the correct thread state.
 855   osthread->set_thread_type(thr_type);
 856 
 857   // Initial state is ALLOCATED but not INITIALIZED
 858   osthread->set_state(ALLOCATED);
 859 
 860   thread->set_osthread(osthread);
 861 
 862   // Init thread attributes.
 863   pthread_attr_t attr;
 864   pthread_attr_init(&attr);
 865   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 866 
 867   // Make sure we run in 1:1 kernel-user-thread mode.
 868   if (os::Aix::on_aix()) {
 869     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 870     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 871   }
 872 
 873   // Start in suspended state, and in os::thread_start, wake the thread up.
 874   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 875 
 876   // Calculate stack size if it's not specified by caller.
 877   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 878 
 879   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 880   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 881   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 882   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 883   if (stack_size < 4096 * K) {
 884     stack_size += 64 * K;
 885   }
 886 
 887   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 888   // thread size in attr unchanged. If this is the minimal stack size as set
 889   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 890   // guard pages might not fit on the tiny stack created.
 891   int ret = pthread_attr_setstacksize(&attr, stack_size);
 892   if (ret != 0) {
 893     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 894                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 895                             stack_size / K);
 896     thread->set_osthread(NULL);
 897     delete osthread;
 898     return false;
 899   }
 900 
 901   // Save some cycles and a page by disabling OS guard pages where we have our own
 902   // VM guard pages (in java threads). For other threads, keep system default guard
 903   // pages in place.
 904   if (thr_type == java_thread || thr_type == compiler_thread) {
 905     ret = pthread_attr_setguardsize(&attr, 0);
 906   }
 907 
 908   pthread_t tid = 0;
 909   if (ret == 0) {
 910     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 911   }
 912 
 913   if (ret == 0) {
 914     char buf[64];
 915     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 916       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 917   } else {
 918     char buf[64];
 919     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 920       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 921     // Log some OS information which might explain why creating the thread failed.
 922     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 923     LogStream st(Log(os, thread)::info());
 924     os::Posix::print_rlimit_info(&st);
 925     os::print_memory_info(&st);
 926   }
 927 
 928   pthread_attr_destroy(&attr);
 929 
 930   if (ret != 0) {
 931     // Need to clean up stuff we've allocated so far.
 932     thread->set_osthread(NULL);
 933     delete osthread;
 934     return false;
 935   }
 936 
 937   // OSThread::thread_id is the pthread id.
 938   osthread->set_thread_id(tid);
 939 
 940   return true;
 941 }
 942 
 943 /////////////////////////////////////////////////////////////////////////////
 944 // attach existing thread
 945 
 946 // bootstrap the main thread
 947 bool os::create_main_thread(JavaThread* thread) {
 948   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 949   return create_attached_thread(thread);
 950 }
 951 
 952 bool os::create_attached_thread(JavaThread* thread) {
 953 #ifdef ASSERT
 954     thread->verify_not_published();
 955 #endif
 956 
 957   // Allocate the OSThread object
 958   OSThread* osthread = new OSThread(NULL, NULL);
 959 
 960   if (osthread == NULL) {
 961     return false;
 962   }
 963 
 964   const pthread_t pthread_id = ::pthread_self();
 965   const tid_t kernel_thread_id = ::thread_self();
 966 
 967   // OSThread::thread_id is the pthread id.
 968   osthread->set_thread_id(pthread_id);
 969 
 970   // .. but keep kernel thread id too for diagnostics
 971   osthread->set_kernel_thread_id(kernel_thread_id);
 972 
 973   // initialize floating point control register
 974   os::Aix::init_thread_fpu_state();
 975 
 976   // Initial thread state is RUNNABLE
 977   osthread->set_state(RUNNABLE);
 978 
 979   thread->set_osthread(osthread);
 980 
 981   if (UseNUMA) {
 982     int lgrp_id = os::numa_get_group_id();
 983     if (lgrp_id != -1) {
 984       thread->set_lgrp_id(lgrp_id);
 985     }
 986   }
 987 
 988   // initialize signal mask for this thread
 989   // and save the caller's signal mask
 990   os::Aix::hotspot_sigmask(thread);
 991 
 992   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 993     os::current_thread_id(), (uintx) kernel_thread_id);
 994 
 995   return true;
 996 }
 997 
 998 void os::pd_start_thread(Thread* thread) {
 999   int status = pthread_continue_np(thread->osthread()->pthread_id());
1000   assert(status == 0, "thr_continue failed");
1001 }
1002 
1003 // Free OS resources related to the OSThread
1004 void os::free_thread(OSThread* osthread) {
1005   assert(osthread != NULL, "osthread not set");
1006 
1007   // We are told to free resources of the argument thread,
1008   // but we can only really operate on the current thread.
1009   assert(Thread::current()->osthread() == osthread,
1010          "os::free_thread but not current thread");
1011 
1012   // Restore caller's signal mask
1013   sigset_t sigmask = osthread->caller_sigmask();
1014   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1015 
1016   delete osthread;
1017 }
1018 
1019 ////////////////////////////////////////////////////////////////////////////////
1020 // time support
1021 
1022 // Time since start-up in seconds to a fine granularity.
1023 // Used by VMSelfDestructTimer and the MemProfiler.
1024 double os::elapsedTime() {
1025   return (double)(os::elapsed_counter()) * 0.000001;
1026 }
1027 
1028 jlong os::elapsed_counter() {
1029   timeval time;
1030   int status = gettimeofday(&time, NULL);
1031   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1032 }
1033 
1034 jlong os::elapsed_frequency() {
1035   return (1000 * 1000);
1036 }
1037 
1038 bool os::supports_vtime() { return true; }
1039 bool os::enable_vtime()   { return false; }
1040 bool os::vtime_enabled()  { return false; }
1041 
1042 double os::elapsedVTime() {
1043   struct rusage usage;
1044   int retval = getrusage(RUSAGE_THREAD, &usage);
1045   if (retval == 0) {
1046     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1047   } else {
1048     // better than nothing, but not much
1049     return elapsedTime();
1050   }
1051 }
1052 
1053 jlong os::javaTimeMillis() {
1054   timeval time;
1055   int status = gettimeofday(&time, NULL);
1056   assert(status != -1, "aix error at gettimeofday()");
1057   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1058 }
1059 
1060 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1061   timeval time;
1062   int status = gettimeofday(&time, NULL);
1063   assert(status != -1, "aix error at gettimeofday()");
1064   seconds = jlong(time.tv_sec);
1065   nanos = jlong(time.tv_usec) * 1000;
1066 }
1067 
1068 // We use mread_real_time here.
1069 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1070 // it has to be converted to real time. AIX documentations suggests to do
1071 // this unconditionally, so we do it.
1072 //
1073 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1074 //
1075 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1076 // conversion is necessary. However, mread_real_time will not return
1077 // monotonic results but merely matches read_real_time. So we need a tweak
1078 // to ensure monotonic results.
1079 //
1080 // For PASE no public documentation exists, just word by IBM
1081 jlong os::javaTimeNanos() {
1082   timebasestruct_t time;
1083   int rc = mread_real_time(&time, TIMEBASE_SZ);
1084   if (os::Aix::on_pase()) {
1085     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1086     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1087     jlong prev = max_real_time;
1088     if (now <= prev) {
1089       return prev;   // same or retrograde time;
1090     }
1091     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1092     assert(obsv >= prev, "invariant");   // Monotonicity
1093     // If the CAS succeeded then we're done and return "now".
1094     // If the CAS failed and the observed value "obsv" is >= now then
1095     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1096     // some other thread raced this thread and installed a new value, in which case
1097     // we could either (a) retry the entire operation, (b) retry trying to install now
1098     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1099     // we might discard a higher "now" value in deference to a slightly lower but freshly
1100     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1101     // to (a) or (b) -- and greatly reduces coherence traffic.
1102     // We might also condition (c) on the magnitude of the delta between obsv and now.
1103     // Avoiding excessive CAS operations to hot RW locations is critical.
1104     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1105     return (prev == obsv) ? now : obsv;
1106   } else {
1107     if (rc != RTC_POWER) {
1108       rc = time_base_to_time(&time, TIMEBASE_SZ);
1109       assert(rc != -1, "error calling time_base_to_time()");
1110     }
1111     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1112   }
1113 }
1114 
1115 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1116   info_ptr->max_value = ALL_64_BITS;
1117   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1118   info_ptr->may_skip_backward = false;
1119   info_ptr->may_skip_forward = false;
1120   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1121 }
1122 
1123 // Return the real, user, and system times in seconds from an
1124 // arbitrary fixed point in the past.
1125 bool os::getTimesSecs(double* process_real_time,
1126                       double* process_user_time,
1127                       double* process_system_time) {
1128   struct tms ticks;
1129   clock_t real_ticks = times(&ticks);
1130 
1131   if (real_ticks == (clock_t) (-1)) {
1132     return false;
1133   } else {
1134     double ticks_per_second = (double) clock_tics_per_sec;
1135     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1136     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1137     *process_real_time = ((double) real_ticks) / ticks_per_second;
1138 
1139     return true;
1140   }
1141 }
1142 
1143 char * os::local_time_string(char *buf, size_t buflen) {
1144   struct tm t;
1145   time_t long_time;
1146   time(&long_time);
1147   localtime_r(&long_time, &t);
1148   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1149                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1150                t.tm_hour, t.tm_min, t.tm_sec);
1151   return buf;
1152 }
1153 
1154 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1155   return localtime_r(clock, res);
1156 }
1157 
1158 ////////////////////////////////////////////////////////////////////////////////
1159 // runtime exit support
1160 
1161 // Note: os::shutdown() might be called very early during initialization, or
1162 // called from signal handler. Before adding something to os::shutdown(), make
1163 // sure it is async-safe and can handle partially initialized VM.
1164 void os::shutdown() {
1165 
1166   // allow PerfMemory to attempt cleanup of any persistent resources
1167   perfMemory_exit();
1168 
1169   // needs to remove object in file system
1170   AttachListener::abort();
1171 
1172   // flush buffered output, finish log files
1173   ostream_abort();
1174 
1175   // Check for abort hook
1176   abort_hook_t abort_hook = Arguments::abort_hook();
1177   if (abort_hook != NULL) {
1178     abort_hook();
1179   }
1180 }
1181 
1182 // Note: os::abort() might be called very early during initialization, or
1183 // called from signal handler. Before adding something to os::abort(), make
1184 // sure it is async-safe and can handle partially initialized VM.
1185 void os::abort(bool dump_core, void* siginfo, const void* context) {
1186   os::shutdown();
1187   if (dump_core) {
1188 #ifndef PRODUCT
1189     fdStream out(defaultStream::output_fd());
1190     out.print_raw("Current thread is ");
1191     char buf[16];
1192     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1193     out.print_raw_cr(buf);
1194     out.print_raw_cr("Dumping core ...");
1195 #endif
1196     ::abort(); // dump core
1197   }
1198 
1199   ::exit(1);
1200 }
1201 
1202 // Die immediately, no exit hook, no abort hook, no cleanup.
1203 void os::die() {
1204   ::abort();
1205 }
1206 
1207 // This method is a copy of JDK's sysGetLastErrorString
1208 // from src/solaris/hpi/src/system_md.c
1209 
1210 size_t os::lasterror(char *buf, size_t len) {
1211   if (errno == 0) return 0;
1212 
1213   const char *s = os::strerror(errno);
1214   size_t n = ::strlen(s);
1215   if (n >= len) {
1216     n = len - 1;
1217   }
1218   ::strncpy(buf, s, n);
1219   buf[n] = '\0';
1220   return n;
1221 }
1222 
1223 intx os::current_thread_id() {
1224   return (intx)pthread_self();
1225 }
1226 
1227 int os::current_process_id() {
1228   return getpid();
1229 }
1230 
1231 // DLL functions
1232 
1233 const char* os::dll_file_extension() { return ".so"; }
1234 
1235 // This must be hard coded because it's the system's temporary
1236 // directory not the java application's temp directory, ala java.io.tmpdir.
1237 const char* os::get_temp_directory() { return "/tmp"; }
1238 
1239 // Check if addr is inside libjvm.so.
1240 bool os::address_is_in_vm(address addr) {
1241 
1242   // Input could be a real pc or a function pointer literal. The latter
1243   // would be a function descriptor residing in the data segment of a module.
1244   loaded_module_t lm;
1245   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1246     return lm.is_in_vm;
1247   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1248     return lm.is_in_vm;
1249   } else {
1250     return false;
1251   }
1252 
1253 }
1254 
1255 // Resolve an AIX function descriptor literal to a code pointer.
1256 // If the input is a valid code pointer to a text segment of a loaded module,
1257 //   it is returned unchanged.
1258 // If the input is a valid AIX function descriptor, it is resolved to the
1259 //   code entry point.
1260 // If the input is neither a valid function descriptor nor a valid code pointer,
1261 //   NULL is returned.
1262 static address resolve_function_descriptor_to_code_pointer(address p) {
1263 
1264   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1265     // It is a real code pointer.
1266     return p;
1267   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1268     // Pointer to data segment, potential function descriptor.
1269     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1270     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1271       // It is a function descriptor.
1272       return code_entry;
1273     }
1274   }
1275 
1276   return NULL;
1277 }
1278 
1279 bool os::dll_address_to_function_name(address addr, char *buf,
1280                                       int buflen, int *offset,
1281                                       bool demangle) {
1282   if (offset) {
1283     *offset = -1;
1284   }
1285   // Buf is not optional, but offset is optional.
1286   assert(buf != NULL, "sanity check");
1287   buf[0] = '\0';
1288 
1289   // Resolve function ptr literals first.
1290   addr = resolve_function_descriptor_to_code_pointer(addr);
1291   if (!addr) {
1292     return false;
1293   }
1294 
1295   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1296 }
1297 
1298 bool os::dll_address_to_library_name(address addr, char* buf,
1299                                      int buflen, int* offset) {
1300   if (offset) {
1301     *offset = -1;
1302   }
1303   // Buf is not optional, but offset is optional.
1304   assert(buf != NULL, "sanity check");
1305   buf[0] = '\0';
1306 
1307   // Resolve function ptr literals first.
1308   addr = resolve_function_descriptor_to_code_pointer(addr);
1309   if (!addr) {
1310     return false;
1311   }
1312 
1313   return AixSymbols::get_module_name(addr, buf, buflen);
1314 }
1315 
1316 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1317 // for the same architecture as Hotspot is running on.
1318 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1319 
1320   if (ebuf && ebuflen > 0) {
1321     ebuf[0] = '\0';
1322     ebuf[ebuflen - 1] = '\0';
1323   }
1324 
1325   if (!filename || strlen(filename) == 0) {
1326     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1327     return NULL;
1328   }
1329 
1330   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1331   void * result= ::dlopen(filename, RTLD_LAZY);
1332   if (result != NULL) {
1333     // Reload dll cache. Don't do this in signal handling.
1334     LoadedLibraries::reload();
1335     return result;
1336   } else {
1337     // error analysis when dlopen fails
1338     const char* const error_report = ::dlerror();
1339     if (error_report && ebuf && ebuflen > 0) {
1340       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1341                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1342     }
1343   }
1344   return NULL;
1345 }
1346 
1347 void* os::dll_lookup(void* handle, const char* name) {
1348   void* res = dlsym(handle, name);
1349   return res;
1350 }
1351 
1352 void* os::get_default_process_handle() {
1353   return (void*)::dlopen(NULL, RTLD_LAZY);
1354 }
1355 
1356 void os::print_dll_info(outputStream *st) {
1357   st->print_cr("Dynamic libraries:");
1358   LoadedLibraries::print(st);
1359 }
1360 
1361 void os::get_summary_os_info(char* buf, size_t buflen) {
1362   // There might be something more readable than uname results for AIX.
1363   struct utsname name;
1364   uname(&name);
1365   snprintf(buf, buflen, "%s %s", name.release, name.version);
1366 }
1367 
1368 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1369   // Not yet implemented.
1370   return 0;
1371 }
1372 
1373 void os::print_os_info_brief(outputStream* st) {
1374   uint32_t ver = os::Aix::os_version();
1375   st->print_cr("AIX kernel version %u.%u.%u.%u",
1376                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1377 
1378   os::Posix::print_uname_info(st);
1379 
1380   // Linux uses print_libversion_info(st); here.
1381 }
1382 
1383 void os::print_os_info(outputStream* st) {
1384   st->print("OS:");
1385 
1386   st->print("uname:");
1387   struct utsname name;
1388   uname(&name);
1389   st->print(name.sysname); st->print(" ");
1390   st->print(name.nodename); st->print(" ");
1391   st->print(name.release); st->print(" ");
1392   st->print(name.version); st->print(" ");
1393   st->print(name.machine);
1394   st->cr();
1395 
1396   uint32_t ver = os::Aix::os_version();
1397   st->print_cr("AIX kernel version %u.%u.%u.%u",
1398                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1399 
1400   os::Posix::print_rlimit_info(st);
1401 
1402   // _SC_THREAD_THREADS_MAX is the maximum number of threads within a process.
1403   long tmax = sysconf(_SC_THREAD_THREADS_MAX);
1404   st->print_cr("maximum #threads within a process:%ld", tmax);
1405 
1406   // load average
1407   st->print("load average:");
1408   double loadavg[3] = {-1.L, -1.L, -1.L};
1409   os::loadavg(loadavg, 3);
1410   st->print_cr("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1411 
1412   // print wpar info
1413   libperfstat::wparinfo_t wi;
1414   if (libperfstat::get_wparinfo(&wi)) {
1415     st->print_cr("wpar info");
1416     st->print_cr("name: %s", wi.name);
1417     st->print_cr("id:   %d", wi.wpar_id);
1418     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1419   }
1420 
1421   VM_Version::print_platform_virtualization_info(st);
1422 }
1423 
1424 void os::print_memory_info(outputStream* st) {
1425 
1426   st->print_cr("Memory:");
1427 
1428   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1429     describe_pagesize(g_multipage_support.pagesize));
1430   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1431     describe_pagesize(g_multipage_support.datapsize));
1432   st->print_cr("  Text page size:                         %s",
1433     describe_pagesize(g_multipage_support.textpsize));
1434   st->print_cr("  Thread stack page size (pthread):       %s",
1435     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1436   st->print_cr("  Default shared memory page size:        %s",
1437     describe_pagesize(g_multipage_support.shmpsize));
1438   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1439     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1440   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1441     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1442   st->print_cr("  Multipage error: %d",
1443     g_multipage_support.error);
1444   st->cr();
1445   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1446 
1447   // print out LDR_CNTRL because it affects the default page sizes
1448   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1449   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1450 
1451   // Print out EXTSHM because it is an unsupported setting.
1452   const char* const extshm = ::getenv("EXTSHM");
1453   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1454   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1455     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1456   }
1457 
1458   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1459   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1460   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1461       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1462   st->cr();
1463 
1464   os::Aix::meminfo_t mi;
1465   if (os::Aix::get_meminfo(&mi)) {
1466     if (os::Aix::on_aix()) {
1467       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1468       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1469       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1470       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1471     } else {
1472       // PASE - Numbers are result of QWCRSSTS; they mean:
1473       // real_total: Sum of all system pools
1474       // real_free: always 0
1475       // pgsp_total: we take the size of the system ASP
1476       // pgsp_free: size of system ASP times percentage of system ASP unused
1477       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1478       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1479       st->print_cr("%% system asp used : %.2f",
1480         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1481     }
1482   }
1483   st->cr();
1484 
1485   // Print program break.
1486   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1487   address brk_now = (address)::sbrk(0);
1488   if (brk_now != (address)-1) {
1489     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1490                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1491   }
1492   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1493   st->cr();
1494 
1495   // Print segments allocated with os::reserve_memory.
1496   st->print_cr("internal virtual memory regions used by vm:");
1497   vmembk_print_on(st);
1498 }
1499 
1500 // Get a string for the cpuinfo that is a summary of the cpu type
1501 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1502   // read _system_configuration.version
1503   switch (_system_configuration.version) {
1504   case PV_8:
1505     strncpy(buf, "Power PC 8", buflen);
1506     break;
1507   case PV_7:
1508     strncpy(buf, "Power PC 7", buflen);
1509     break;
1510   case PV_6_1:
1511     strncpy(buf, "Power PC 6 DD1.x", buflen);
1512     break;
1513   case PV_6:
1514     strncpy(buf, "Power PC 6", buflen);
1515     break;
1516   case PV_5:
1517     strncpy(buf, "Power PC 5", buflen);
1518     break;
1519   case PV_5_2:
1520     strncpy(buf, "Power PC 5_2", buflen);
1521     break;
1522   case PV_5_3:
1523     strncpy(buf, "Power PC 5_3", buflen);
1524     break;
1525   case PV_5_Compat:
1526     strncpy(buf, "PV_5_Compat", buflen);
1527     break;
1528   case PV_6_Compat:
1529     strncpy(buf, "PV_6_Compat", buflen);
1530     break;
1531   case PV_7_Compat:
1532     strncpy(buf, "PV_7_Compat", buflen);
1533     break;
1534   case PV_8_Compat:
1535     strncpy(buf, "PV_8_Compat", buflen);
1536     break;
1537   default:
1538     strncpy(buf, "unknown", buflen);
1539   }
1540 }
1541 
1542 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1543   // Nothing to do beyond of what os::print_cpu_info() does.
1544 }
1545 
1546 static void print_signal_handler(outputStream* st, int sig,
1547                                  char* buf, size_t buflen);
1548 
1549 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1550   st->print_cr("Signal Handlers:");
1551   print_signal_handler(st, SIGSEGV, buf, buflen);
1552   print_signal_handler(st, SIGBUS , buf, buflen);
1553   print_signal_handler(st, SIGFPE , buf, buflen);
1554   print_signal_handler(st, SIGPIPE, buf, buflen);
1555   print_signal_handler(st, SIGXFSZ, buf, buflen);
1556   print_signal_handler(st, SIGILL , buf, buflen);
1557   print_signal_handler(st, SR_signum, buf, buflen);
1558   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1559   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1560   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1561   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1562   print_signal_handler(st, SIGTRAP, buf, buflen);
1563   // We also want to know if someone else adds a SIGDANGER handler because
1564   // that will interfere with OOM killling.
1565   print_signal_handler(st, SIGDANGER, buf, buflen);
1566 }
1567 
1568 static char saved_jvm_path[MAXPATHLEN] = {0};
1569 
1570 // Find the full path to the current module, libjvm.so.
1571 void os::jvm_path(char *buf, jint buflen) {
1572   // Error checking.
1573   if (buflen < MAXPATHLEN) {
1574     assert(false, "must use a large-enough buffer");
1575     buf[0] = '\0';
1576     return;
1577   }
1578   // Lazy resolve the path to current module.
1579   if (saved_jvm_path[0] != 0) {
1580     strcpy(buf, saved_jvm_path);
1581     return;
1582   }
1583 
1584   Dl_info dlinfo;
1585   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1586   assert(ret != 0, "cannot locate libjvm");
1587   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1588   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1589 
1590   if (Arguments::sun_java_launcher_is_altjvm()) {
1591     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1592     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1593     // If "/jre/lib/" appears at the right place in the string, then
1594     // assume we are installed in a JDK and we're done. Otherwise, check
1595     // for a JAVA_HOME environment variable and fix up the path so it
1596     // looks like libjvm.so is installed there (append a fake suffix
1597     // hotspot/libjvm.so).
1598     const char *p = buf + strlen(buf) - 1;
1599     for (int count = 0; p > buf && count < 4; ++count) {
1600       for (--p; p > buf && *p != '/'; --p)
1601         /* empty */ ;
1602     }
1603 
1604     if (strncmp(p, "/jre/lib/", 9) != 0) {
1605       // Look for JAVA_HOME in the environment.
1606       char* java_home_var = ::getenv("JAVA_HOME");
1607       if (java_home_var != NULL && java_home_var[0] != 0) {
1608         char* jrelib_p;
1609         int len;
1610 
1611         // Check the current module name "libjvm.so".
1612         p = strrchr(buf, '/');
1613         if (p == NULL) {
1614           return;
1615         }
1616         assert(strstr(p, "/libjvm") == p, "invalid library name");
1617 
1618         rp = os::Posix::realpath(java_home_var, buf, buflen);
1619         if (rp == NULL) {
1620           return;
1621         }
1622 
1623         // determine if this is a legacy image or modules image
1624         // modules image doesn't have "jre" subdirectory
1625         len = strlen(buf);
1626         assert(len < buflen, "Ran out of buffer room");
1627         jrelib_p = buf + len;
1628         snprintf(jrelib_p, buflen-len, "/jre/lib");
1629         if (0 != access(buf, F_OK)) {
1630           snprintf(jrelib_p, buflen-len, "/lib");
1631         }
1632 
1633         if (0 == access(buf, F_OK)) {
1634           // Use current module name "libjvm.so"
1635           len = strlen(buf);
1636           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1637         } else {
1638           // Go back to path of .so
1639           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1640           if (rp == NULL) {
1641             return;
1642           }
1643         }
1644       }
1645     }
1646   }
1647 
1648   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1649   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1650 }
1651 
1652 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1653   // no prefix required, not even "_"
1654 }
1655 
1656 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1657   // no suffix required
1658 }
1659 
1660 ////////////////////////////////////////////////////////////////////////////////
1661 // sun.misc.Signal support
1662 
1663 static volatile jint sigint_count = 0;
1664 
1665 static void
1666 UserHandler(int sig, void *siginfo, void *context) {
1667   // 4511530 - sem_post is serialized and handled by the manager thread. When
1668   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1669   // don't want to flood the manager thread with sem_post requests.
1670   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1671     return;
1672 
1673   // Ctrl-C is pressed during error reporting, likely because the error
1674   // handler fails to abort. Let VM die immediately.
1675   if (sig == SIGINT && VMError::is_error_reported()) {
1676     os::die();
1677   }
1678 
1679   os::signal_notify(sig);
1680 }
1681 
1682 void* os::user_handler() {
1683   return CAST_FROM_FN_PTR(void*, UserHandler);
1684 }
1685 
1686 extern "C" {
1687   typedef void (*sa_handler_t)(int);
1688   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1689 }
1690 
1691 void* os::signal(int signal_number, void* handler) {
1692   struct sigaction sigAct, oldSigAct;
1693 
1694   sigfillset(&(sigAct.sa_mask));
1695 
1696   // Do not block out synchronous signals in the signal handler.
1697   // Blocking synchronous signals only makes sense if you can really
1698   // be sure that those signals won't happen during signal handling,
1699   // when the blocking applies. Normal signal handlers are lean and
1700   // do not cause signals. But our signal handlers tend to be "risky"
1701   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1702   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1703   // by a SIGILL, which was blocked due to the signal mask. The process
1704   // just hung forever. Better to crash from a secondary signal than to hang.
1705   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1706   sigdelset(&(sigAct.sa_mask), SIGBUS);
1707   sigdelset(&(sigAct.sa_mask), SIGILL);
1708   sigdelset(&(sigAct.sa_mask), SIGFPE);
1709   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1710 
1711   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1712 
1713   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1714 
1715   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1716     // -1 means registration failed
1717     return (void *)-1;
1718   }
1719 
1720   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1721 }
1722 
1723 void os::signal_raise(int signal_number) {
1724   ::raise(signal_number);
1725 }
1726 
1727 //
1728 // The following code is moved from os.cpp for making this
1729 // code platform specific, which it is by its very nature.
1730 //
1731 
1732 // Will be modified when max signal is changed to be dynamic
1733 int os::sigexitnum_pd() {
1734   return NSIG;
1735 }
1736 
1737 // a counter for each possible signal value
1738 static volatile jint pending_signals[NSIG+1] = { 0 };
1739 
1740 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1741 // On AIX, we use sem_init(), sem_post(), sem_wait()
1742 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1743 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1744 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1745 // on AIX, msem_..() calls are suspected of causing problems.
1746 static sem_t sig_sem;
1747 static msemaphore* p_sig_msem = 0;
1748 
1749 static void local_sem_init() {
1750   if (os::Aix::on_aix()) {
1751     int rc = ::sem_init(&sig_sem, 0, 0);
1752     guarantee(rc != -1, "sem_init failed");
1753   } else {
1754     // Memory semaphores must live in shared mem.
1755     guarantee0(p_sig_msem == NULL);
1756     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1757     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1758     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1759   }
1760 }
1761 
1762 static void local_sem_post() {
1763   static bool warn_only_once = false;
1764   if (os::Aix::on_aix()) {
1765     int rc = ::sem_post(&sig_sem);
1766     if (rc == -1 && !warn_only_once) {
1767       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1768       warn_only_once = true;
1769     }
1770   } else {
1771     guarantee0(p_sig_msem != NULL);
1772     int rc = ::msem_unlock(p_sig_msem, 0);
1773     if (rc == -1 && !warn_only_once) {
1774       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1775       warn_only_once = true;
1776     }
1777   }
1778 }
1779 
1780 static void local_sem_wait() {
1781   static bool warn_only_once = false;
1782   if (os::Aix::on_aix()) {
1783     int rc = ::sem_wait(&sig_sem);
1784     if (rc == -1 && !warn_only_once) {
1785       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1786       warn_only_once = true;
1787     }
1788   } else {
1789     guarantee0(p_sig_msem != NULL); // must init before use
1790     int rc = ::msem_lock(p_sig_msem, 0);
1791     if (rc == -1 && !warn_only_once) {
1792       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1793       warn_only_once = true;
1794     }
1795   }
1796 }
1797 
1798 static void jdk_misc_signal_init() {
1799   // Initialize signal structures
1800   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1801 
1802   // Initialize signal semaphore
1803   local_sem_init();
1804 }
1805 
1806 void os::signal_notify(int sig) {
1807   Atomic::inc(&pending_signals[sig]);
1808   local_sem_post();
1809 }
1810 
1811 static int check_pending_signals() {
1812   Atomic::store(0, &sigint_count);
1813   for (;;) {
1814     for (int i = 0; i < NSIG + 1; i++) {
1815       jint n = pending_signals[i];
1816       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1817         return i;
1818       }
1819     }
1820     JavaThread *thread = JavaThread::current();
1821     ThreadBlockInVM tbivm(thread);
1822 
1823     bool threadIsSuspended;
1824     do {
1825       thread->set_suspend_equivalent();
1826       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1827 
1828       local_sem_wait();
1829 
1830       // were we externally suspended while we were waiting?
1831       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1832       if (threadIsSuspended) {
1833         //
1834         // The semaphore has been incremented, but while we were waiting
1835         // another thread suspended us. We don't want to continue running
1836         // while suspended because that would surprise the thread that
1837         // suspended us.
1838         //
1839 
1840         local_sem_post();
1841 
1842         thread->java_suspend_self();
1843       }
1844     } while (threadIsSuspended);
1845   }
1846 }
1847 
1848 int os::signal_wait() {
1849   return check_pending_signals();
1850 }
1851 
1852 ////////////////////////////////////////////////////////////////////////////////
1853 // Virtual Memory
1854 
1855 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1856 
1857 #define VMEM_MAPPED  1
1858 #define VMEM_SHMATED 2
1859 
1860 struct vmembk_t {
1861   int type;         // 1 - mmap, 2 - shmat
1862   char* addr;
1863   size_t size;      // Real size, may be larger than usersize.
1864   size_t pagesize;  // page size of area
1865   vmembk_t* next;
1866 
1867   bool contains_addr(char* p) const {
1868     return p >= addr && p < (addr + size);
1869   }
1870 
1871   bool contains_range(char* p, size_t s) const {
1872     return contains_addr(p) && contains_addr(p + s - 1);
1873   }
1874 
1875   void print_on(outputStream* os) const {
1876     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1877       " bytes, %d %s pages), %s",
1878       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1879       (type == VMEM_SHMATED ? "shmat" : "mmap")
1880     );
1881   }
1882 
1883   // Check that range is a sub range of memory block (or equal to memory block);
1884   // also check that range is fully page aligned to the page size if the block.
1885   void assert_is_valid_subrange(char* p, size_t s) const {
1886     if (!contains_range(p, s)) {
1887       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1888               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1889               p, p + s, addr, addr + size);
1890       guarantee0(false);
1891     }
1892     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1893       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1894               " aligned to pagesize (%lu)", p, p + s, (unsigned long) pagesize);
1895       guarantee0(false);
1896     }
1897   }
1898 };
1899 
1900 static struct {
1901   vmembk_t* first;
1902   MiscUtils::CritSect cs;
1903 } vmem;
1904 
1905 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1906   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1907   assert0(p);
1908   if (p) {
1909     MiscUtils::AutoCritSect lck(&vmem.cs);
1910     p->addr = addr; p->size = size;
1911     p->pagesize = pagesize;
1912     p->type = type;
1913     p->next = vmem.first;
1914     vmem.first = p;
1915   }
1916 }
1917 
1918 static vmembk_t* vmembk_find(char* addr) {
1919   MiscUtils::AutoCritSect lck(&vmem.cs);
1920   for (vmembk_t* p = vmem.first; p; p = p->next) {
1921     if (p->addr <= addr && (p->addr + p->size) > addr) {
1922       return p;
1923     }
1924   }
1925   return NULL;
1926 }
1927 
1928 static void vmembk_remove(vmembk_t* p0) {
1929   MiscUtils::AutoCritSect lck(&vmem.cs);
1930   assert0(p0);
1931   assert0(vmem.first); // List should not be empty.
1932   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1933     if (*pp == p0) {
1934       *pp = p0->next;
1935       ::free(p0);
1936       return;
1937     }
1938   }
1939   assert0(false); // Not found?
1940 }
1941 
1942 static void vmembk_print_on(outputStream* os) {
1943   MiscUtils::AutoCritSect lck(&vmem.cs);
1944   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1945     vmi->print_on(os);
1946     os->cr();
1947   }
1948 }
1949 
1950 // Reserve and attach a section of System V memory.
1951 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1952 // address. Failing that, it will attach the memory anywhere.
1953 // If <requested_addr> is NULL, function will attach the memory anywhere.
1954 //
1955 // <alignment_hint> is being ignored by this function. It is very probable however that the
1956 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1957 // Should this be not enogh, we can put more work into it.
1958 static char* reserve_shmated_memory (
1959   size_t bytes,
1960   char* requested_addr,
1961   size_t alignment_hint) {
1962 
1963   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1964     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1965     bytes, requested_addr, alignment_hint);
1966 
1967   // Either give me wish address or wish alignment but not both.
1968   assert0(!(requested_addr != NULL && alignment_hint != 0));
1969 
1970   // We must prevent anyone from attaching too close to the
1971   // BRK because that may cause malloc OOM.
1972   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1973     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1974       "Will attach anywhere.", requested_addr);
1975     // Act like the OS refused to attach there.
1976     requested_addr = NULL;
1977   }
1978 
1979   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1980   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1981   if (os::Aix::on_pase_V5R4_or_older()) {
1982     ShouldNotReachHere();
1983   }
1984 
1985   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1986   const size_t size = align_up(bytes, 64*K);
1987 
1988   // Reserve the shared segment.
1989   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1990   if (shmid == -1) {
1991     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1992     return NULL;
1993   }
1994 
1995   // Important note:
1996   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1997   // We must right after attaching it remove it from the system. System V shm segments are global and
1998   // survive the process.
1999   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2000 
2001   struct shmid_ds shmbuf;
2002   memset(&shmbuf, 0, sizeof(shmbuf));
2003   shmbuf.shm_pagesize = 64*K;
2004   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2005     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2006                size / (64*K), errno);
2007     // I want to know if this ever happens.
2008     assert(false, "failed to set page size for shmat");
2009   }
2010 
2011   // Now attach the shared segment.
2012   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2013   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2014   // were not a segment boundary.
2015   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2016   const int errno_shmat = errno;
2017 
2018   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2019   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2020     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2021     assert(false, "failed to remove shared memory segment!");
2022   }
2023 
2024   // Handle shmat error. If we failed to attach, just return.
2025   if (addr == (char*)-1) {
2026     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", requested_addr, errno_shmat);
2027     return NULL;
2028   }
2029 
2030   // Just for info: query the real page size. In case setting the page size did not
2031   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2032   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2033   if (real_pagesize != shmbuf.shm_pagesize) {
2034     trcVerbose("pagesize is, surprisingly, %h.", real_pagesize);
2035   }
2036 
2037   if (addr) {
2038     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2039       addr, addr + size - 1, size, size/real_pagesize, describe_pagesize(real_pagesize));
2040   } else {
2041     if (requested_addr != NULL) {
2042       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, requested_addr);
2043     } else {
2044       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2045     }
2046   }
2047 
2048   // book-keeping
2049   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2050   assert0(is_aligned_to(addr, os::vm_page_size()));
2051 
2052   return addr;
2053 }
2054 
2055 static bool release_shmated_memory(char* addr, size_t size) {
2056 
2057   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2058     addr, addr + size - 1);
2059 
2060   bool rc = false;
2061 
2062   // TODO: is there a way to verify shm size without doing bookkeeping?
2063   if (::shmdt(addr) != 0) {
2064     trcVerbose("error (%d).", errno);
2065   } else {
2066     trcVerbose("ok.");
2067     rc = true;
2068   }
2069   return rc;
2070 }
2071 
2072 static bool uncommit_shmated_memory(char* addr, size_t size) {
2073   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2074     addr, addr + size - 1);
2075 
2076   const bool rc = my_disclaim64(addr, size);
2077 
2078   if (!rc) {
2079     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", addr, size);
2080     return false;
2081   }
2082   return true;
2083 }
2084 
2085 ////////////////////////////////  mmap-based routines /////////////////////////////////
2086 
2087 // Reserve memory via mmap.
2088 // If <requested_addr> is given, an attempt is made to attach at the given address.
2089 // Failing that, memory is allocated at any address.
2090 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2091 // allocate at an address aligned with the given alignment. Failing that, memory
2092 // is aligned anywhere.
2093 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2094   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2095     "alignment_hint " UINTX_FORMAT "...",
2096     bytes, requested_addr, alignment_hint);
2097 
2098   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2099   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2100     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", requested_addr);
2101     return NULL;
2102   }
2103 
2104   // We must prevent anyone from attaching too close to the
2105   // BRK because that may cause malloc OOM.
2106   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2107     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2108       "Will attach anywhere.", requested_addr);
2109     // Act like the OS refused to attach there.
2110     requested_addr = NULL;
2111   }
2112 
2113   // Specify one or the other but not both.
2114   assert0(!(requested_addr != NULL && alignment_hint > 0));
2115 
2116   // In 64K mode, we claim the global page size (os::vm_page_size())
2117   // is 64K. This is one of the few points where that illusion may
2118   // break, because mmap() will always return memory aligned to 4K. So
2119   // we must ensure we only ever return memory aligned to 64k.
2120   if (alignment_hint) {
2121     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2122   } else {
2123     alignment_hint = os::vm_page_size();
2124   }
2125 
2126   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2127   const size_t size = align_up(bytes, os::vm_page_size());
2128 
2129   // alignment: Allocate memory large enough to include an aligned range of the right size and
2130   // cut off the leading and trailing waste pages.
2131   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2132   const size_t extra_size = size + alignment_hint;
2133 
2134   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2135   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2136   int flags = MAP_ANONYMOUS | MAP_SHARED;
2137 
2138   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2139   // it means if wishaddress is given but MAP_FIXED is not set.
2140   //
2141   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2142   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2143   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2144   // get clobbered.
2145   if (requested_addr != NULL) {
2146     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2147       flags |= MAP_FIXED;
2148     }
2149   }
2150 
2151   char* addr = (char*)::mmap(requested_addr, extra_size,
2152       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2153 
2154   if (addr == MAP_FAILED) {
2155     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", requested_addr, size, errno);
2156     return NULL;
2157   }
2158 
2159   // Handle alignment.
2160   char* const addr_aligned = align_up(addr, alignment_hint);
2161   const size_t waste_pre = addr_aligned - addr;
2162   char* const addr_aligned_end = addr_aligned + size;
2163   const size_t waste_post = extra_size - waste_pre - size;
2164   if (waste_pre > 0) {
2165     ::munmap(addr, waste_pre);
2166   }
2167   if (waste_post > 0) {
2168     ::munmap(addr_aligned_end, waste_post);
2169   }
2170   addr = addr_aligned;
2171 
2172   if (addr) {
2173     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2174       addr, addr + bytes, bytes);
2175   } else {
2176     if (requested_addr != NULL) {
2177       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, requested_addr);
2178     } else {
2179       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2180     }
2181   }
2182 
2183   // bookkeeping
2184   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2185 
2186   // Test alignment, see above.
2187   assert0(is_aligned_to(addr, os::vm_page_size()));
2188 
2189   return addr;
2190 }
2191 
2192 static bool release_mmaped_memory(char* addr, size_t size) {
2193   assert0(is_aligned_to(addr, os::vm_page_size()));
2194   assert0(is_aligned_to(size, os::vm_page_size()));
2195 
2196   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2197     addr, addr + size - 1);
2198   bool rc = false;
2199 
2200   if (::munmap(addr, size) != 0) {
2201     trcVerbose("failed (%d)\n", errno);
2202     rc = false;
2203   } else {
2204     trcVerbose("ok.");
2205     rc = true;
2206   }
2207 
2208   return rc;
2209 }
2210 
2211 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2212 
2213   assert0(is_aligned_to(addr, os::vm_page_size()));
2214   assert0(is_aligned_to(size, os::vm_page_size()));
2215 
2216   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2217     addr, addr + size - 1);
2218   bool rc = false;
2219 
2220   // Uncommit mmap memory with msync MS_INVALIDATE.
2221   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2222     trcVerbose("failed (%d)\n", errno);
2223     rc = false;
2224   } else {
2225     trcVerbose("ok.");
2226     rc = true;
2227   }
2228 
2229   return rc;
2230 }
2231 
2232 int os::vm_page_size() {
2233   // Seems redundant as all get out.
2234   assert(os::Aix::page_size() != -1, "must call os::init");
2235   return os::Aix::page_size();
2236 }
2237 
2238 // Aix allocates memory by pages.
2239 int os::vm_allocation_granularity() {
2240   assert(os::Aix::page_size() != -1, "must call os::init");
2241   return os::Aix::page_size();
2242 }
2243 
2244 #ifdef PRODUCT
2245 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2246                                     int err) {
2247   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2248           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2249           os::errno_name(err), err);
2250 }
2251 #endif
2252 
2253 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2254                                   const char* mesg) {
2255   assert(mesg != NULL, "mesg must be specified");
2256   if (!pd_commit_memory(addr, size, exec)) {
2257     // Add extra info in product mode for vm_exit_out_of_memory():
2258     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2259     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2260   }
2261 }
2262 
2263 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2264 
2265   assert(is_aligned_to(addr, os::vm_page_size()),
2266     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2267     p2i(addr), os::vm_page_size());
2268   assert(is_aligned_to(size, os::vm_page_size()),
2269     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2270     size, os::vm_page_size());
2271 
2272   vmembk_t* const vmi = vmembk_find(addr);
2273   guarantee0(vmi);
2274   vmi->assert_is_valid_subrange(addr, size);
2275 
2276   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", addr, addr + size - 1);
2277 
2278   if (UseExplicitCommit) {
2279     // AIX commits memory on touch. So, touch all pages to be committed.
2280     for (char* p = addr; p < (addr + size); p += 4*K) {
2281       *p = '\0';
2282     }
2283   }
2284 
2285   return true;
2286 }
2287 
2288 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2289   return pd_commit_memory(addr, size, exec);
2290 }
2291 
2292 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2293                                   size_t alignment_hint, bool exec,
2294                                   const char* mesg) {
2295   // Alignment_hint is ignored on this OS.
2296   pd_commit_memory_or_exit(addr, size, exec, mesg);
2297 }
2298 
2299 bool os::pd_uncommit_memory(char* addr, size_t size) {
2300   assert(is_aligned_to(addr, os::vm_page_size()),
2301     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2302     p2i(addr), os::vm_page_size());
2303   assert(is_aligned_to(size, os::vm_page_size()),
2304     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2305     size, os::vm_page_size());
2306 
2307   // Dynamically do different things for mmap/shmat.
2308   const vmembk_t* const vmi = vmembk_find(addr);
2309   guarantee0(vmi);
2310   vmi->assert_is_valid_subrange(addr, size);
2311 
2312   if (vmi->type == VMEM_SHMATED) {
2313     return uncommit_shmated_memory(addr, size);
2314   } else {
2315     return uncommit_mmaped_memory(addr, size);
2316   }
2317 }
2318 
2319 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2320   // Do not call this; no need to commit stack pages on AIX.
2321   ShouldNotReachHere();
2322   return true;
2323 }
2324 
2325 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2326   // Do not call this; no need to commit stack pages on AIX.
2327   ShouldNotReachHere();
2328   return true;
2329 }
2330 
2331 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2332 }
2333 
2334 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2335 }
2336 
2337 void os::numa_make_global(char *addr, size_t bytes) {
2338 }
2339 
2340 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2341 }
2342 
2343 bool os::numa_topology_changed() {
2344   return false;
2345 }
2346 
2347 size_t os::numa_get_groups_num() {
2348   return 1;
2349 }
2350 
2351 int os::numa_get_group_id() {
2352   return 0;
2353 }
2354 
2355 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2356   if (size > 0) {
2357     ids[0] = 0;
2358     return 1;
2359   }
2360   return 0;
2361 }
2362 
2363 bool os::get_page_info(char *start, page_info* info) {
2364   return false;
2365 }
2366 
2367 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2368   return end;
2369 }
2370 
2371 // Reserves and attaches a shared memory segment.
2372 // Will assert if a wish address is given and could not be obtained.
2373 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2374 
2375   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2376   // thereby clobbering old mappings at that place. That is probably
2377   // not intended, never used and almost certainly an error were it
2378   // ever be used this way (to try attaching at a specified address
2379   // without clobbering old mappings an alternate API exists,
2380   // os::attempt_reserve_memory_at()).
2381   // Instead of mimicking the dangerous coding of the other platforms, here I
2382   // just ignore the request address (release) or assert(debug).
2383   assert0(requested_addr == NULL);
2384 
2385   // Always round to os::vm_page_size(), which may be larger than 4K.
2386   bytes = align_up(bytes, os::vm_page_size());
2387   const size_t alignment_hint0 =
2388     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2389 
2390   // In 4K mode always use mmap.
2391   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2392   if (os::vm_page_size() == 4*K) {
2393     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2394   } else {
2395     if (bytes >= Use64KPagesThreshold) {
2396       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2397     } else {
2398       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2399     }
2400   }
2401 }
2402 
2403 bool os::pd_release_memory(char* addr, size_t size) {
2404 
2405   // Dynamically do different things for mmap/shmat.
2406   vmembk_t* const vmi = vmembk_find(addr);
2407   guarantee0(vmi);
2408 
2409   // Always round to os::vm_page_size(), which may be larger than 4K.
2410   size = align_up(size, os::vm_page_size());
2411   addr = align_up(addr, os::vm_page_size());
2412 
2413   bool rc = false;
2414   bool remove_bookkeeping = false;
2415   if (vmi->type == VMEM_SHMATED) {
2416     // For shmatted memory, we do:
2417     // - If user wants to release the whole range, release the memory (shmdt).
2418     // - If user only wants to release a partial range, uncommit (disclaim) that
2419     //   range. That way, at least, we do not use memory anymore (bust still page
2420     //   table space).
2421     vmi->assert_is_valid_subrange(addr, size);
2422     if (addr == vmi->addr && size == vmi->size) {
2423       rc = release_shmated_memory(addr, size);
2424       remove_bookkeeping = true;
2425     } else {
2426       rc = uncommit_shmated_memory(addr, size);
2427     }
2428   } else {
2429     // User may unmap partial regions but region has to be fully contained.
2430 #ifdef ASSERT
2431     vmi->assert_is_valid_subrange(addr, size);
2432 #endif
2433     rc = release_mmaped_memory(addr, size);
2434     remove_bookkeeping = true;
2435   }
2436 
2437   // update bookkeeping
2438   if (rc && remove_bookkeeping) {
2439     vmembk_remove(vmi);
2440   }
2441 
2442   return rc;
2443 }
2444 
2445 static bool checked_mprotect(char* addr, size_t size, int prot) {
2446 
2447   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2448   // not tell me if protection failed when trying to protect an un-protectable range.
2449   //
2450   // This means if the memory was allocated using shmget/shmat, protection wont work
2451   // but mprotect will still return 0:
2452   //
2453   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2454 
2455   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2456   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2457 
2458   if (!rc) {
2459     const char* const s_errno = os::errno_name(errno);
2460     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2461     return false;
2462   }
2463 
2464   // mprotect success check
2465   //
2466   // Mprotect said it changed the protection but can I believe it?
2467   //
2468   // To be sure I need to check the protection afterwards. Try to
2469   // read from protected memory and check whether that causes a segfault.
2470   //
2471   if (!os::Aix::xpg_sus_mode()) {
2472 
2473     if (CanUseSafeFetch32()) {
2474 
2475       const bool read_protected =
2476         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2477          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2478 
2479       if (prot & PROT_READ) {
2480         rc = !read_protected;
2481       } else {
2482         rc = read_protected;
2483       }
2484 
2485       if (!rc) {
2486         if (os::Aix::on_pase()) {
2487           // There is an issue on older PASE systems where mprotect() will return success but the
2488           // memory will not be protected.
2489           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2490           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2491           // a stack. It is an OS error.
2492           //
2493           // A valid strategy is just to try again. This usually works. :-/
2494 
2495           ::usleep(1000);
2496           Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2497           if (::mprotect(addr, size, prot) == 0) {
2498             const bool read_protected_2 =
2499               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2500               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2501             rc = true;
2502           }
2503         }
2504       }
2505     }
2506   }
2507 
2508   assert(rc == true, "mprotect failed.");
2509 
2510   return rc;
2511 }
2512 
2513 // Set protections specified
2514 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2515   unsigned int p = 0;
2516   switch (prot) {
2517   case MEM_PROT_NONE: p = PROT_NONE; break;
2518   case MEM_PROT_READ: p = PROT_READ; break;
2519   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2520   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2521   default:
2522     ShouldNotReachHere();
2523   }
2524   // is_committed is unused.
2525   return checked_mprotect(addr, size, p);
2526 }
2527 
2528 bool os::guard_memory(char* addr, size_t size) {
2529   return checked_mprotect(addr, size, PROT_NONE);
2530 }
2531 
2532 bool os::unguard_memory(char* addr, size_t size) {
2533   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2534 }
2535 
2536 // Large page support
2537 
2538 static size_t _large_page_size = 0;
2539 
2540 // Enable large page support if OS allows that.
2541 void os::large_page_init() {
2542   return; // Nothing to do. See query_multipage_support and friends.
2543 }
2544 
2545 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2546   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2547   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2548   // so this is not needed.
2549   assert(false, "should not be called on AIX");
2550   return NULL;
2551 }
2552 
2553 bool os::release_memory_special(char* base, size_t bytes) {
2554   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2555   Unimplemented();
2556   return false;
2557 }
2558 
2559 size_t os::large_page_size() {
2560   return _large_page_size;
2561 }
2562 
2563 bool os::can_commit_large_page_memory() {
2564   // Does not matter, we do not support huge pages.
2565   return false;
2566 }
2567 
2568 bool os::can_execute_large_page_memory() {
2569   // Does not matter, we do not support huge pages.
2570   return false;
2571 }
2572 
2573 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2574   assert(file_desc >= 0, "file_desc is not valid");
2575   char* result = NULL;
2576 
2577   // Always round to os::vm_page_size(), which may be larger than 4K.
2578   bytes = align_up(bytes, os::vm_page_size());
2579   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2580 
2581   if (result != NULL) {
2582     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2583       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2584     }
2585   }
2586   return result;
2587 }
2588 
2589 // Reserve memory at an arbitrary address, only if that area is
2590 // available (and not reserved for something else).
2591 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2592   char* addr = NULL;
2593 
2594   // Always round to os::vm_page_size(), which may be larger than 4K.
2595   bytes = align_up(bytes, os::vm_page_size());
2596 
2597   // In 4K mode always use mmap.
2598   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2599   if (os::vm_page_size() == 4*K) {
2600     return reserve_mmaped_memory(bytes, requested_addr, 0);
2601   } else {
2602     if (bytes >= Use64KPagesThreshold) {
2603       return reserve_shmated_memory(bytes, requested_addr, 0);
2604     } else {
2605       return reserve_mmaped_memory(bytes, requested_addr, 0);
2606     }
2607   }
2608 
2609   return addr;
2610 }
2611 
2612 size_t os::read(int fd, void *buf, unsigned int nBytes) {
2613   return ::read(fd, buf, nBytes);
2614 }
2615 
2616 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
2617   return ::pread(fd, buf, nBytes, offset);
2618 }
2619 
2620 void os::naked_short_sleep(jlong ms) {
2621   struct timespec req;
2622 
2623   assert(ms < 1000, "Un-interruptable sleep, short time use only");
2624   req.tv_sec = 0;
2625   if (ms > 0) {
2626     req.tv_nsec = (ms % 1000) * 1000000;
2627   }
2628   else {
2629     req.tv_nsec = 1;
2630   }
2631 
2632   nanosleep(&req, NULL);
2633 
2634   return;
2635 }
2636 
2637 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2638 void os::infinite_sleep() {
2639   while (true) {    // sleep forever ...
2640     ::sleep(100);   // ... 100 seconds at a time
2641   }
2642 }
2643 
2644 // Used to convert frequent JVM_Yield() to nops
2645 bool os::dont_yield() {
2646   return DontYieldALot;
2647 }
2648 
2649 void os::naked_yield() {
2650   sched_yield();
2651 }
2652 
2653 ////////////////////////////////////////////////////////////////////////////////
2654 // thread priority support
2655 
2656 // From AIX manpage to pthread_setschedparam
2657 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2658 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2659 //
2660 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2661 // range from 40 to 80, where 40 is the least favored priority and 80
2662 // is the most favored."
2663 //
2664 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2665 // scheduling there; however, this still leaves iSeries.)
2666 //
2667 // We use the same values for AIX and PASE.
2668 int os::java_to_os_priority[CriticalPriority + 1] = {
2669   54,             // 0 Entry should never be used
2670 
2671   55,             // 1 MinPriority
2672   55,             // 2
2673   56,             // 3
2674 
2675   56,             // 4
2676   57,             // 5 NormPriority
2677   57,             // 6
2678 
2679   58,             // 7
2680   58,             // 8
2681   59,             // 9 NearMaxPriority
2682 
2683   60,             // 10 MaxPriority
2684 
2685   60              // 11 CriticalPriority
2686 };
2687 
2688 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2689   if (!UseThreadPriorities) return OS_OK;
2690   pthread_t thr = thread->osthread()->pthread_id();
2691   int policy = SCHED_OTHER;
2692   struct sched_param param;
2693   param.sched_priority = newpri;
2694   int ret = pthread_setschedparam(thr, policy, &param);
2695 
2696   if (ret != 0) {
2697     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2698         (int)thr, newpri, ret, os::errno_name(ret));
2699   }
2700   return (ret == 0) ? OS_OK : OS_ERR;
2701 }
2702 
2703 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2704   if (!UseThreadPriorities) {
2705     *priority_ptr = java_to_os_priority[NormPriority];
2706     return OS_OK;
2707   }
2708   pthread_t thr = thread->osthread()->pthread_id();
2709   int policy = SCHED_OTHER;
2710   struct sched_param param;
2711   int ret = pthread_getschedparam(thr, &policy, &param);
2712   *priority_ptr = param.sched_priority;
2713 
2714   return (ret == 0) ? OS_OK : OS_ERR;
2715 }
2716 
2717 // Hint to the underlying OS that a task switch would not be good.
2718 // Void return because it's a hint and can fail.
2719 void os::hint_no_preempt() {}
2720 
2721 ////////////////////////////////////////////////////////////////////////////////
2722 // suspend/resume support
2723 
2724 //  The low-level signal-based suspend/resume support is a remnant from the
2725 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2726 //  within hotspot. Currently used by JFR's OSThreadSampler
2727 //
2728 //  The remaining code is greatly simplified from the more general suspension
2729 //  code that used to be used.
2730 //
2731 //  The protocol is quite simple:
2732 //  - suspend:
2733 //      - sends a signal to the target thread
2734 //      - polls the suspend state of the osthread using a yield loop
2735 //      - target thread signal handler (SR_handler) sets suspend state
2736 //        and blocks in sigsuspend until continued
2737 //  - resume:
2738 //      - sets target osthread state to continue
2739 //      - sends signal to end the sigsuspend loop in the SR_handler
2740 //
2741 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2742 //  but is checked for NULL in SR_handler as a thread termination indicator.
2743 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2744 //
2745 //  Note that resume_clear_context() and suspend_save_context() are needed
2746 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2747 //  which in part is used by:
2748 //    - Forte Analyzer: AsyncGetCallTrace()
2749 //    - StackBanging: get_frame_at_stack_banging_point()
2750 
2751 static void resume_clear_context(OSThread *osthread) {
2752   osthread->set_ucontext(NULL);
2753   osthread->set_siginfo(NULL);
2754 }
2755 
2756 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2757   osthread->set_ucontext(context);
2758   osthread->set_siginfo(siginfo);
2759 }
2760 
2761 //
2762 // Handler function invoked when a thread's execution is suspended or
2763 // resumed. We have to be careful that only async-safe functions are
2764 // called here (Note: most pthread functions are not async safe and
2765 // should be avoided.)
2766 //
2767 // Note: sigwait() is a more natural fit than sigsuspend() from an
2768 // interface point of view, but sigwait() prevents the signal hander
2769 // from being run. libpthread would get very confused by not having
2770 // its signal handlers run and prevents sigwait()'s use with the
2771 // mutex granting granting signal.
2772 //
2773 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2774 //
2775 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2776   // Save and restore errno to avoid confusing native code with EINTR
2777   // after sigsuspend.
2778   int old_errno = errno;
2779 
2780   Thread* thread = Thread::current_or_null_safe();
2781   assert(thread != NULL, "Missing current thread in SR_handler");
2782 
2783   // On some systems we have seen signal delivery get "stuck" until the signal
2784   // mask is changed as part of thread termination. Check that the current thread
2785   // has not already terminated (via SR_lock()) - else the following assertion
2786   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2787   // destructor has completed.
2788 
2789   if (thread->SR_lock() == NULL) {
2790     return;
2791   }
2792 
2793   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2794 
2795   OSThread* osthread = thread->osthread();
2796 
2797   os::SuspendResume::State current = osthread->sr.state();
2798   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2799     suspend_save_context(osthread, siginfo, context);
2800 
2801     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2802     os::SuspendResume::State state = osthread->sr.suspended();
2803     if (state == os::SuspendResume::SR_SUSPENDED) {
2804       sigset_t suspend_set;  // signals for sigsuspend()
2805 
2806       // get current set of blocked signals and unblock resume signal
2807       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2808       sigdelset(&suspend_set, SR_signum);
2809 
2810       // wait here until we are resumed
2811       while (1) {
2812         sigsuspend(&suspend_set);
2813 
2814         os::SuspendResume::State result = osthread->sr.running();
2815         if (result == os::SuspendResume::SR_RUNNING) {
2816           break;
2817         }
2818       }
2819 
2820     } else if (state == os::SuspendResume::SR_RUNNING) {
2821       // request was cancelled, continue
2822     } else {
2823       ShouldNotReachHere();
2824     }
2825 
2826     resume_clear_context(osthread);
2827   } else if (current == os::SuspendResume::SR_RUNNING) {
2828     // request was cancelled, continue
2829   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2830     // ignore
2831   } else {
2832     ShouldNotReachHere();
2833   }
2834 
2835   errno = old_errno;
2836 }
2837 
2838 static int SR_initialize() {
2839   struct sigaction act;
2840   char *s;
2841   // Get signal number to use for suspend/resume
2842   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2843     int sig = ::strtol(s, 0, 10);
2844     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2845         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2846       SR_signum = sig;
2847     } else {
2848       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2849               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2850     }
2851   }
2852 
2853   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2854         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2855 
2856   sigemptyset(&SR_sigset);
2857   sigaddset(&SR_sigset, SR_signum);
2858 
2859   // Set up signal handler for suspend/resume.
2860   act.sa_flags = SA_RESTART|SA_SIGINFO;
2861   act.sa_handler = (void (*)(int)) SR_handler;
2862 
2863   // SR_signum is blocked by default.
2864   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2865 
2866   if (sigaction(SR_signum, &act, 0) == -1) {
2867     return -1;
2868   }
2869 
2870   // Save signal flag
2871   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2872   return 0;
2873 }
2874 
2875 static int SR_finalize() {
2876   return 0;
2877 }
2878 
2879 static int sr_notify(OSThread* osthread) {
2880   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2881   assert_status(status == 0, status, "pthread_kill");
2882   return status;
2883 }
2884 
2885 // "Randomly" selected value for how long we want to spin
2886 // before bailing out on suspending a thread, also how often
2887 // we send a signal to a thread we want to resume
2888 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2889 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2890 
2891 // returns true on success and false on error - really an error is fatal
2892 // but this seems the normal response to library errors
2893 static bool do_suspend(OSThread* osthread) {
2894   assert(osthread->sr.is_running(), "thread should be running");
2895   // mark as suspended and send signal
2896 
2897   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2898     // failed to switch, state wasn't running?
2899     ShouldNotReachHere();
2900     return false;
2901   }
2902 
2903   if (sr_notify(osthread) != 0) {
2904     // try to cancel, switch to running
2905 
2906     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2907     if (result == os::SuspendResume::SR_RUNNING) {
2908       // cancelled
2909       return false;
2910     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2911       // somehow managed to suspend
2912       return true;
2913     } else {
2914       ShouldNotReachHere();
2915       return false;
2916     }
2917   }
2918 
2919   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2920 
2921   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2922     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2923       os::naked_yield();
2924     }
2925 
2926     // timeout, try to cancel the request
2927     if (n >= RANDOMLY_LARGE_INTEGER) {
2928       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2929       if (cancelled == os::SuspendResume::SR_RUNNING) {
2930         return false;
2931       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2932         return true;
2933       } else {
2934         ShouldNotReachHere();
2935         return false;
2936       }
2937     }
2938   }
2939 
2940   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2941   return true;
2942 }
2943 
2944 static void do_resume(OSThread* osthread) {
2945   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2946 
2947   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2948     // failed to switch to WAKEUP_REQUEST
2949     ShouldNotReachHere();
2950     return;
2951   }
2952 
2953   while (!osthread->sr.is_running()) {
2954     if (sr_notify(osthread) == 0) {
2955       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2956         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2957           os::naked_yield();
2958         }
2959       }
2960     } else {
2961       ShouldNotReachHere();
2962     }
2963   }
2964 
2965   guarantee(osthread->sr.is_running(), "Must be running!");
2966 }
2967 
2968 ///////////////////////////////////////////////////////////////////////////////////
2969 // signal handling (except suspend/resume)
2970 
2971 // This routine may be used by user applications as a "hook" to catch signals.
2972 // The user-defined signal handler must pass unrecognized signals to this
2973 // routine, and if it returns true (non-zero), then the signal handler must
2974 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2975 // routine will never retun false (zero), but instead will execute a VM panic
2976 // routine kill the process.
2977 //
2978 // If this routine returns false, it is OK to call it again. This allows
2979 // the user-defined signal handler to perform checks either before or after
2980 // the VM performs its own checks. Naturally, the user code would be making
2981 // a serious error if it tried to handle an exception (such as a null check
2982 // or breakpoint) that the VM was generating for its own correct operation.
2983 //
2984 // This routine may recognize any of the following kinds of signals:
2985 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2986 // It should be consulted by handlers for any of those signals.
2987 //
2988 // The caller of this routine must pass in the three arguments supplied
2989 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2990 // field of the structure passed to sigaction(). This routine assumes that
2991 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2992 //
2993 // Note that the VM will print warnings if it detects conflicting signal
2994 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2995 //
2996 extern "C" JNIEXPORT int
2997 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2998 
2999 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
3000 // to be the thing to call; documentation is not terribly clear about whether
3001 // pthread_sigmask also works, and if it does, whether it does the same.
3002 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
3003   const int rc = ::pthread_sigmask(how, set, oset);
3004   // return value semantics differ slightly for error case:
3005   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
3006   // (so, pthread_sigmask is more theadsafe for error handling)
3007   // But success is always 0.
3008   return rc == 0 ? true : false;
3009 }
3010 
3011 // Function to unblock all signals which are, according
3012 // to POSIX, typical program error signals. If they happen while being blocked,
3013 // they typically will bring down the process immediately.
3014 bool unblock_program_error_signals() {
3015   sigset_t set;
3016   ::sigemptyset(&set);
3017   ::sigaddset(&set, SIGILL);
3018   ::sigaddset(&set, SIGBUS);
3019   ::sigaddset(&set, SIGFPE);
3020   ::sigaddset(&set, SIGSEGV);
3021   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
3022 }
3023 
3024 // Renamed from 'signalHandler' to avoid collision with other shared libs.
3025 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
3026   assert(info != NULL && uc != NULL, "it must be old kernel");
3027 
3028   // Never leave program error signals blocked;
3029   // on all our platforms they would bring down the process immediately when
3030   // getting raised while being blocked.
3031   unblock_program_error_signals();
3032 
3033   int orig_errno = errno;  // Preserve errno value over signal handler.
3034   JVM_handle_aix_signal(sig, info, uc, true);
3035   errno = orig_errno;
3036 }
3037 
3038 // This boolean allows users to forward their own non-matching signals
3039 // to JVM_handle_aix_signal, harmlessly.
3040 bool os::Aix::signal_handlers_are_installed = false;
3041 
3042 // For signal-chaining
3043 bool os::Aix::libjsig_is_loaded = false;
3044 typedef struct sigaction *(*get_signal_t)(int);
3045 get_signal_t os::Aix::get_signal_action = NULL;
3046 
3047 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3048   struct sigaction *actp = NULL;
3049 
3050   if (libjsig_is_loaded) {
3051     // Retrieve the old signal handler from libjsig
3052     actp = (*get_signal_action)(sig);
3053   }
3054   if (actp == NULL) {
3055     // Retrieve the preinstalled signal handler from jvm
3056     actp = os::Posix::get_preinstalled_handler(sig);
3057   }
3058 
3059   return actp;
3060 }
3061 
3062 static bool call_chained_handler(struct sigaction *actp, int sig,
3063                                  siginfo_t *siginfo, void *context) {
3064   // Call the old signal handler
3065   if (actp->sa_handler == SIG_DFL) {
3066     // It's more reasonable to let jvm treat it as an unexpected exception
3067     // instead of taking the default action.
3068     return false;
3069   } else if (actp->sa_handler != SIG_IGN) {
3070     if ((actp->sa_flags & SA_NODEFER) == 0) {
3071       // automaticlly block the signal
3072       sigaddset(&(actp->sa_mask), sig);
3073     }
3074 
3075     sa_handler_t hand = NULL;
3076     sa_sigaction_t sa = NULL;
3077     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3078     // retrieve the chained handler
3079     if (siginfo_flag_set) {
3080       sa = actp->sa_sigaction;
3081     } else {
3082       hand = actp->sa_handler;
3083     }
3084 
3085     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3086       actp->sa_handler = SIG_DFL;
3087     }
3088 
3089     // try to honor the signal mask
3090     sigset_t oset;
3091     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3092 
3093     // call into the chained handler
3094     if (siginfo_flag_set) {
3095       (*sa)(sig, siginfo, context);
3096     } else {
3097       (*hand)(sig);
3098     }
3099 
3100     // restore the signal mask
3101     pthread_sigmask(SIG_SETMASK, &oset, 0);
3102   }
3103   // Tell jvm's signal handler the signal is taken care of.
3104   return true;
3105 }
3106 
3107 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3108   bool chained = false;
3109   // signal-chaining
3110   if (UseSignalChaining) {
3111     struct sigaction *actp = get_chained_signal_action(sig);
3112     if (actp != NULL) {
3113       chained = call_chained_handler(actp, sig, siginfo, context);
3114     }
3115   }
3116   return chained;
3117 }
3118 
3119 // for diagnostic
3120 int sigflags[NSIG];
3121 
3122 int os::Aix::get_our_sigflags(int sig) {
3123   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3124   return sigflags[sig];
3125 }
3126 
3127 void os::Aix::set_our_sigflags(int sig, int flags) {
3128   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3129   if (sig > 0 && sig < NSIG) {
3130     sigflags[sig] = flags;
3131   }
3132 }
3133 
3134 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3135   // Check for overwrite.
3136   struct sigaction oldAct;
3137   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3138 
3139   void* oldhand = oldAct.sa_sigaction
3140     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3141     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3142   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3143       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3144       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3145     if (AllowUserSignalHandlers || !set_installed) {
3146       // Do not overwrite; user takes responsibility to forward to us.
3147       return;
3148     } else if (UseSignalChaining) {
3149       // save the old handler in jvm
3150       os::Posix::save_preinstalled_handler(sig, oldAct);
3151       // libjsig also interposes the sigaction() call below and saves the
3152       // old sigaction on it own.
3153     } else {
3154       fatal("Encountered unexpected pre-existing sigaction handler "
3155             "%#lx for signal %d.", (long)oldhand, sig);
3156     }
3157   }
3158 
3159   struct sigaction sigAct;
3160   sigfillset(&(sigAct.sa_mask));
3161   if (!set_installed) {
3162     sigAct.sa_handler = SIG_DFL;
3163     sigAct.sa_flags = SA_RESTART;
3164   } else {
3165     sigAct.sa_sigaction = javaSignalHandler;
3166     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3167   }
3168   // Save flags, which are set by ours
3169   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3170   sigflags[sig] = sigAct.sa_flags;
3171 
3172   int ret = sigaction(sig, &sigAct, &oldAct);
3173   assert(ret == 0, "check");
3174 
3175   void* oldhand2 = oldAct.sa_sigaction
3176                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3177                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3178   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3179 }
3180 
3181 // install signal handlers for signals that HotSpot needs to
3182 // handle in order to support Java-level exception handling.
3183 void os::Aix::install_signal_handlers() {
3184   if (!signal_handlers_are_installed) {
3185     signal_handlers_are_installed = true;
3186 
3187     // signal-chaining
3188     typedef void (*signal_setting_t)();
3189     signal_setting_t begin_signal_setting = NULL;
3190     signal_setting_t end_signal_setting = NULL;
3191     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3192                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3193     if (begin_signal_setting != NULL) {
3194       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3195                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3196       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3197                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3198       libjsig_is_loaded = true;
3199       assert(UseSignalChaining, "should enable signal-chaining");
3200     }
3201     if (libjsig_is_loaded) {
3202       // Tell libjsig jvm is setting signal handlers.
3203       (*begin_signal_setting)();
3204     }
3205 
3206     set_signal_handler(SIGSEGV, true);
3207     set_signal_handler(SIGPIPE, true);
3208     set_signal_handler(SIGBUS, true);
3209     set_signal_handler(SIGILL, true);
3210     set_signal_handler(SIGFPE, true);
3211     set_signal_handler(SIGTRAP, true);
3212     set_signal_handler(SIGXFSZ, true);
3213 
3214     if (libjsig_is_loaded) {
3215       // Tell libjsig jvm finishes setting signal handlers.
3216       (*end_signal_setting)();
3217     }
3218 
3219     // We don't activate signal checker if libjsig is in place, we trust ourselves
3220     // and if UserSignalHandler is installed all bets are off.
3221     // Log that signal checking is off only if -verbose:jni is specified.
3222     if (CheckJNICalls) {
3223       if (libjsig_is_loaded) {
3224         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3225         check_signals = false;
3226       }
3227       if (AllowUserSignalHandlers) {
3228         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3229         check_signals = false;
3230       }
3231       // Need to initialize check_signal_done.
3232       ::sigemptyset(&check_signal_done);
3233     }
3234   }
3235 }
3236 
3237 static const char* get_signal_handler_name(address handler,
3238                                            char* buf, int buflen) {
3239   int offset;
3240   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3241   if (found) {
3242     // skip directory names
3243     const char *p1, *p2;
3244     p1 = buf;
3245     size_t len = strlen(os::file_separator());
3246     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3247     // The way os::dll_address_to_library_name is implemented on Aix
3248     // right now, it always returns -1 for the offset which is not
3249     // terribly informative.
3250     // Will fix that. For now, omit the offset.
3251     jio_snprintf(buf, buflen, "%s", p1);
3252   } else {
3253     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3254   }
3255   return buf;
3256 }
3257 
3258 static void print_signal_handler(outputStream* st, int sig,
3259                                  char* buf, size_t buflen) {
3260   struct sigaction sa;
3261   sigaction(sig, NULL, &sa);
3262 
3263   st->print("%s: ", os::exception_name(sig, buf, buflen));
3264 
3265   address handler = (sa.sa_flags & SA_SIGINFO)
3266     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3267     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3268 
3269   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3270     st->print("SIG_DFL");
3271   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3272     st->print("SIG_IGN");
3273   } else {
3274     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3275   }
3276 
3277   // Print readable mask.
3278   st->print(", sa_mask[0]=");
3279   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3280 
3281   address rh = VMError::get_resetted_sighandler(sig);
3282   // May be, handler was resetted by VMError?
3283   if (rh != NULL) {
3284     handler = rh;
3285     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3286   }
3287 
3288   // Print textual representation of sa_flags.
3289   st->print(", sa_flags=");
3290   os::Posix::print_sa_flags(st, sa.sa_flags);
3291 
3292   // Check: is it our handler?
3293   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3294       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3295     // It is our signal handler.
3296     // Check for flags, reset system-used one!
3297     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3298       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3299                 os::Aix::get_our_sigflags(sig));
3300     }
3301   }
3302   st->cr();
3303 }
3304 
3305 #define DO_SIGNAL_CHECK(sig) \
3306   if (!sigismember(&check_signal_done, sig)) \
3307     os::Aix::check_signal_handler(sig)
3308 
3309 // This method is a periodic task to check for misbehaving JNI applications
3310 // under CheckJNI, we can add any periodic checks here
3311 
3312 void os::run_periodic_checks() {
3313 
3314   if (check_signals == false) return;
3315 
3316   // SEGV and BUS if overridden could potentially prevent
3317   // generation of hs*.log in the event of a crash, debugging
3318   // such a case can be very challenging, so we absolutely
3319   // check the following for a good measure:
3320   DO_SIGNAL_CHECK(SIGSEGV);
3321   DO_SIGNAL_CHECK(SIGILL);
3322   DO_SIGNAL_CHECK(SIGFPE);
3323   DO_SIGNAL_CHECK(SIGBUS);
3324   DO_SIGNAL_CHECK(SIGPIPE);
3325   DO_SIGNAL_CHECK(SIGXFSZ);
3326   if (UseSIGTRAP) {
3327     DO_SIGNAL_CHECK(SIGTRAP);
3328   }
3329 
3330   // ReduceSignalUsage allows the user to override these handlers
3331   // see comments at the very top and jvm_md.h
3332   if (!ReduceSignalUsage) {
3333     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3334     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3335     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3336     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3337   }
3338 
3339   DO_SIGNAL_CHECK(SR_signum);
3340 }
3341 
3342 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3343 
3344 static os_sigaction_t os_sigaction = NULL;
3345 
3346 void os::Aix::check_signal_handler(int sig) {
3347   char buf[O_BUFLEN];
3348   address jvmHandler = NULL;
3349 
3350   struct sigaction act;
3351   if (os_sigaction == NULL) {
3352     // only trust the default sigaction, in case it has been interposed
3353     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3354     if (os_sigaction == NULL) return;
3355   }
3356 
3357   os_sigaction(sig, (struct sigaction*)NULL, &act);
3358 
3359   address thisHandler = (act.sa_flags & SA_SIGINFO)
3360     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3361     : CAST_FROM_FN_PTR(address, act.sa_handler);
3362 
3363   switch(sig) {
3364   case SIGSEGV:
3365   case SIGBUS:
3366   case SIGFPE:
3367   case SIGPIPE:
3368   case SIGILL:
3369   case SIGXFSZ:
3370     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3371     break;
3372 
3373   case SHUTDOWN1_SIGNAL:
3374   case SHUTDOWN2_SIGNAL:
3375   case SHUTDOWN3_SIGNAL:
3376   case BREAK_SIGNAL:
3377     jvmHandler = (address)user_handler();
3378     break;
3379 
3380   default:
3381     if (sig == SR_signum) {
3382       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3383     } else {
3384       return;
3385     }
3386     break;
3387   }
3388 
3389   if (thisHandler != jvmHandler) {
3390     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3391     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3392     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3393     // No need to check this sig any longer
3394     sigaddset(&check_signal_done, sig);
3395     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3396     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3397       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3398                     exception_name(sig, buf, O_BUFLEN));
3399     }
3400   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3401     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3402     tty->print("expected:");
3403     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3404     tty->cr();
3405     tty->print("  found:");
3406     os::Posix::print_sa_flags(tty, act.sa_flags);
3407     tty->cr();
3408     // No need to check this sig any longer
3409     sigaddset(&check_signal_done, sig);
3410   }
3411 
3412   // Dump all the signal
3413   if (sigismember(&check_signal_done, sig)) {
3414     print_signal_handlers(tty, buf, O_BUFLEN);
3415   }
3416 }
3417 
3418 // To install functions for atexit system call
3419 extern "C" {
3420   static void perfMemory_exit_helper() {
3421     perfMemory_exit();
3422   }
3423 }
3424 
3425 // This is called _before_ the most of global arguments have been parsed.
3426 void os::init(void) {
3427   // This is basic, we want to know if that ever changes.
3428   // (Shared memory boundary is supposed to be a 256M aligned.)
3429   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3430 
3431   // Record process break at startup.
3432   g_brk_at_startup = (address) ::sbrk(0);
3433   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3434 
3435   // First off, we need to know whether we run on AIX or PASE, and
3436   // the OS level we run on.
3437   os::Aix::initialize_os_info();
3438 
3439   // Scan environment (SPEC1170 behaviour, etc).
3440   os::Aix::scan_environment();
3441 
3442   // Probe multipage support.
3443   query_multipage_support();
3444 
3445   // Act like we only have one page size by eliminating corner cases which
3446   // we did not support very well anyway.
3447   // We have two input conditions:
3448   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3449   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3450   //    setting.
3451   //    Data segment page size is important for us because it defines the thread stack page
3452   //    size, which is needed for guard page handling, stack banging etc.
3453   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3454   //    and should be allocated with 64k pages.
3455   //
3456   // So, we do the following:
3457   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3458   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3459   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3460   // 64k          no              --- AIX 5.2 ? ---
3461   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3462 
3463   // We explicitly leave no option to change page size, because only upgrading would work,
3464   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3465 
3466   if (g_multipage_support.datapsize == 4*K) {
3467     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3468     if (g_multipage_support.can_use_64K_pages) {
3469       // .. but we are able to use 64K pages dynamically.
3470       // This would be typical for java launchers which are not linked
3471       // with datapsize=64K (like, any other launcher but our own).
3472       //
3473       // In this case it would be smart to allocate the java heap with 64K
3474       // to get the performance benefit, and to fake 64k pages for the
3475       // data segment (when dealing with thread stacks).
3476       //
3477       // However, leave a possibility to downgrade to 4K, using
3478       // -XX:-Use64KPages.
3479       if (Use64KPages) {
3480         trcVerbose("64K page mode (faked for data segment)");
3481         Aix::_page_size = 64*K;
3482       } else {
3483         trcVerbose("4K page mode (Use64KPages=off)");
3484         Aix::_page_size = 4*K;
3485       }
3486     } else {
3487       // .. and not able to allocate 64k pages dynamically. Here, just
3488       // fall back to 4K paged mode and use mmap for everything.
3489       trcVerbose("4K page mode");
3490       Aix::_page_size = 4*K;
3491       FLAG_SET_ERGO(bool, Use64KPages, false);
3492     }
3493   } else {
3494     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3495     // This normally means that we can allocate 64k pages dynamically.
3496     // (There is one special case where this may be false: EXTSHM=on.
3497     // but we decided to not support that mode).
3498     assert0(g_multipage_support.can_use_64K_pages);
3499     Aix::_page_size = 64*K;
3500     trcVerbose("64K page mode");
3501     FLAG_SET_ERGO(bool, Use64KPages, true);
3502   }
3503 
3504   // For now UseLargePages is just ignored.
3505   FLAG_SET_ERGO(bool, UseLargePages, false);
3506   _page_sizes[0] = 0;
3507 
3508   // debug trace
3509   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3510 
3511   // Next, we need to initialize libo4 and libperfstat libraries.
3512   if (os::Aix::on_pase()) {
3513     os::Aix::initialize_libo4();
3514   } else {
3515     os::Aix::initialize_libperfstat();
3516   }
3517 
3518   // Reset the perfstat information provided by ODM.
3519   if (os::Aix::on_aix()) {
3520     libperfstat::perfstat_reset();
3521   }
3522 
3523   // Now initialze basic system properties. Note that for some of the values we
3524   // need libperfstat etc.
3525   os::Aix::initialize_system_info();
3526 
3527   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3528 
3529   init_random(1234567);
3530 
3531   // _main_thread points to the thread that created/loaded the JVM.
3532   Aix::_main_thread = pthread_self();
3533 
3534   initial_time_count = os::elapsed_counter();
3535 
3536   os::Posix::init();
3537 }
3538 
3539 // This is called _after_ the global arguments have been parsed.
3540 jint os::init_2(void) {
3541 
3542   os::Posix::init_2();
3543 
3544   if (os::Aix::on_pase()) {
3545     trcVerbose("Running on PASE.");
3546   } else {
3547     trcVerbose("Running on AIX (not PASE).");
3548   }
3549 
3550   trcVerbose("processor count: %d", os::_processor_count);
3551   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3552 
3553   // Initially build up the loaded dll map.
3554   LoadedLibraries::reload();
3555   if (Verbose) {
3556     trcVerbose("Loaded Libraries: ");
3557     LoadedLibraries::print(tty);
3558   }
3559 
3560   // initialize suspend/resume support - must do this before signal_sets_init()
3561   if (SR_initialize() != 0) {
3562     perror("SR_initialize failed");
3563     return JNI_ERR;
3564   }
3565 
3566   Aix::signal_sets_init();
3567   Aix::install_signal_handlers();
3568   // Initialize data for jdk.internal.misc.Signal
3569   if (!ReduceSignalUsage) {
3570     jdk_misc_signal_init();
3571   }
3572 
3573   // Check and sets minimum stack sizes against command line options
3574   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3575     return JNI_ERR;
3576   }
3577 
3578   if (UseNUMA) {
3579     UseNUMA = false;
3580     warning("NUMA optimizations are not available on this OS.");
3581   }
3582 
3583   if (MaxFDLimit) {
3584     // Set the number of file descriptors to max. print out error
3585     // if getrlimit/setrlimit fails but continue regardless.
3586     struct rlimit nbr_files;
3587     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3588     if (status != 0) {
3589       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3590     } else {
3591       nbr_files.rlim_cur = nbr_files.rlim_max;
3592       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3593       if (status != 0) {
3594         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3595       }
3596     }
3597   }
3598 
3599   if (PerfAllowAtExitRegistration) {
3600     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3601     // At exit functions can be delayed until process exit time, which
3602     // can be problematic for embedded VM situations. Embedded VMs should
3603     // call DestroyJavaVM() to assure that VM resources are released.
3604 
3605     // Note: perfMemory_exit_helper atexit function may be removed in
3606     // the future if the appropriate cleanup code can be added to the
3607     // VM_Exit VMOperation's doit method.
3608     if (atexit(perfMemory_exit_helper) != 0) {
3609       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3610     }
3611   }
3612 
3613   return JNI_OK;
3614 }
3615 
3616 // Mark the polling page as unreadable
3617 void os::make_polling_page_unreadable(void) {
3618   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3619     fatal("Could not disable polling page");
3620   }
3621 };
3622 
3623 // Mark the polling page as readable
3624 void os::make_polling_page_readable(void) {
3625   // Changed according to os_linux.cpp.
3626   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3627     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3628   }
3629 };
3630 
3631 int os::active_processor_count() {
3632   // User has overridden the number of active processors
3633   if (ActiveProcessorCount > 0) {
3634     log_trace(os)("active_processor_count: "
3635                   "active processor count set by user : %d",
3636                   ActiveProcessorCount);
3637     return ActiveProcessorCount;
3638   }
3639 
3640   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3641   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3642   return online_cpus;
3643 }
3644 
3645 void os::set_native_thread_name(const char *name) {
3646   // Not yet implemented.
3647   return;
3648 }
3649 
3650 bool os::distribute_processes(uint length, uint* distribution) {
3651   // Not yet implemented.
3652   return false;
3653 }
3654 
3655 bool os::bind_to_processor(uint processor_id) {
3656   // Not yet implemented.
3657   return false;
3658 }
3659 
3660 void os::SuspendedThreadTask::internal_do_task() {
3661   if (do_suspend(_thread->osthread())) {
3662     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3663     do_task(context);
3664     do_resume(_thread->osthread());
3665   }
3666 }
3667 
3668 ////////////////////////////////////////////////////////////////////////////////
3669 // debug support
3670 
3671 bool os::find(address addr, outputStream* st) {
3672 
3673   st->print(PTR_FORMAT ": ", addr);
3674 
3675   loaded_module_t lm;
3676   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3677       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3678     st->print_cr("%s", lm.path);
3679     return true;
3680   }
3681 
3682   return false;
3683 }
3684 
3685 ////////////////////////////////////////////////////////////////////////////////
3686 // misc
3687 
3688 // This does not do anything on Aix. This is basically a hook for being
3689 // able to use structured exception handling (thread-local exception filters)
3690 // on, e.g., Win32.
3691 void
3692 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3693                          JavaCallArguments* args, Thread* thread) {
3694   f(value, method, args, thread);
3695 }
3696 
3697 void os::print_statistics() {
3698 }
3699 
3700 bool os::message_box(const char* title, const char* message) {
3701   int i;
3702   fdStream err(defaultStream::error_fd());
3703   for (i = 0; i < 78; i++) err.print_raw("=");
3704   err.cr();
3705   err.print_raw_cr(title);
3706   for (i = 0; i < 78; i++) err.print_raw("-");
3707   err.cr();
3708   err.print_raw_cr(message);
3709   for (i = 0; i < 78; i++) err.print_raw("=");
3710   err.cr();
3711 
3712   char buf[16];
3713   // Prevent process from exiting upon "read error" without consuming all CPU
3714   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3715 
3716   return buf[0] == 'y' || buf[0] == 'Y';
3717 }
3718 
3719 // Is a (classpath) directory empty?
3720 bool os::dir_is_empty(const char* path) {
3721   DIR *dir = NULL;
3722   struct dirent *ptr;
3723 
3724   dir = opendir(path);
3725   if (dir == NULL) return true;
3726 
3727   /* Scan the directory */
3728   bool result = true;
3729   while (result && (ptr = readdir(dir)) != NULL) {
3730     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3731       result = false;
3732     }
3733   }
3734   closedir(dir);
3735   return result;
3736 }
3737 
3738 // This code originates from JDK's sysOpen and open64_w
3739 // from src/solaris/hpi/src/system_md.c
3740 
3741 int os::open(const char *path, int oflag, int mode) {
3742 
3743   if (strlen(path) > MAX_PATH - 1) {
3744     errno = ENAMETOOLONG;
3745     return -1;
3746   }
3747   int fd;
3748 
3749   fd = ::open64(path, oflag, mode);
3750   if (fd == -1) return -1;
3751 
3752   // If the open succeeded, the file might still be a directory.
3753   {
3754     struct stat64 buf64;
3755     int ret = ::fstat64(fd, &buf64);
3756     int st_mode = buf64.st_mode;
3757 
3758     if (ret != -1) {
3759       if ((st_mode & S_IFMT) == S_IFDIR) {
3760         errno = EISDIR;
3761         ::close(fd);
3762         return -1;
3763       }
3764     } else {
3765       ::close(fd);
3766       return -1;
3767     }
3768   }
3769 
3770   // All file descriptors that are opened in the JVM and not
3771   // specifically destined for a subprocess should have the
3772   // close-on-exec flag set. If we don't set it, then careless 3rd
3773   // party native code might fork and exec without closing all
3774   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3775   // UNIXProcess.c), and this in turn might:
3776   //
3777   // - cause end-of-file to fail to be detected on some file
3778   //   descriptors, resulting in mysterious hangs, or
3779   //
3780   // - might cause an fopen in the subprocess to fail on a system
3781   //   suffering from bug 1085341.
3782   //
3783   // (Yes, the default setting of the close-on-exec flag is a Unix
3784   // design flaw.)
3785   //
3786   // See:
3787   // 1085341: 32-bit stdio routines should support file descriptors >255
3788   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3789   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3790 #ifdef FD_CLOEXEC
3791   {
3792     int flags = ::fcntl(fd, F_GETFD);
3793     if (flags != -1)
3794       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3795   }
3796 #endif
3797 
3798   return fd;
3799 }
3800 
3801 // create binary file, rewriting existing file if required
3802 int os::create_binary_file(const char* path, bool rewrite_existing) {
3803   int oflags = O_WRONLY | O_CREAT;
3804   if (!rewrite_existing) {
3805     oflags |= O_EXCL;
3806   }
3807   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3808 }
3809 
3810 // return current position of file pointer
3811 jlong os::current_file_offset(int fd) {
3812   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3813 }
3814 
3815 // move file pointer to the specified offset
3816 jlong os::seek_to_file_offset(int fd, jlong offset) {
3817   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3818 }
3819 
3820 // This code originates from JDK's sysAvailable
3821 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3822 
3823 int os::available(int fd, jlong *bytes) {
3824   jlong cur, end;
3825   int mode;
3826   struct stat64 buf64;
3827 
3828   if (::fstat64(fd, &buf64) >= 0) {
3829     mode = buf64.st_mode;
3830     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3831       int n;
3832       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3833         *bytes = n;
3834         return 1;
3835       }
3836     }
3837   }
3838   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3839     return 0;
3840   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3841     return 0;
3842   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3843     return 0;
3844   }
3845   *bytes = end - cur;
3846   return 1;
3847 }
3848 
3849 // Map a block of memory.
3850 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3851                         char *addr, size_t bytes, bool read_only,
3852                         bool allow_exec) {
3853   int prot;
3854   int flags = MAP_PRIVATE;
3855 
3856   if (read_only) {
3857     prot = PROT_READ;
3858     flags = MAP_SHARED;
3859   } else {
3860     prot = PROT_READ | PROT_WRITE;
3861     flags = MAP_PRIVATE;
3862   }
3863 
3864   if (allow_exec) {
3865     prot |= PROT_EXEC;
3866   }
3867 
3868   if (addr != NULL) {
3869     flags |= MAP_FIXED;
3870   }
3871 
3872   // Allow anonymous mappings if 'fd' is -1.
3873   if (fd == -1) {
3874     flags |= MAP_ANONYMOUS;
3875   }
3876 
3877   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3878                                      fd, file_offset);
3879   if (mapped_address == MAP_FAILED) {
3880     return NULL;
3881   }
3882   return mapped_address;
3883 }
3884 
3885 // Remap a block of memory.
3886 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3887                           char *addr, size_t bytes, bool read_only,
3888                           bool allow_exec) {
3889   // same as map_memory() on this OS
3890   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3891                         allow_exec);
3892 }
3893 
3894 // Unmap a block of memory.
3895 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3896   return munmap(addr, bytes) == 0;
3897 }
3898 
3899 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3900 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3901 // of a thread.
3902 //
3903 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3904 // the fast estimate available on the platform.
3905 
3906 jlong os::current_thread_cpu_time() {
3907   // return user + sys since the cost is the same
3908   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3909   assert(n >= 0, "negative CPU time");
3910   return n;
3911 }
3912 
3913 jlong os::thread_cpu_time(Thread* thread) {
3914   // consistent with what current_thread_cpu_time() returns
3915   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3916   assert(n >= 0, "negative CPU time");
3917   return n;
3918 }
3919 
3920 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3921   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3922   assert(n >= 0, "negative CPU time");
3923   return n;
3924 }
3925 
3926 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3927   bool error = false;
3928 
3929   jlong sys_time = 0;
3930   jlong user_time = 0;
3931 
3932   // Reimplemented using getthrds64().
3933   //
3934   // Works like this:
3935   // For the thread in question, get the kernel thread id. Then get the
3936   // kernel thread statistics using that id.
3937   //
3938   // This only works of course when no pthread scheduling is used,
3939   // i.e. there is a 1:1 relationship to kernel threads.
3940   // On AIX, see AIXTHREAD_SCOPE variable.
3941 
3942   pthread_t pthtid = thread->osthread()->pthread_id();
3943 
3944   // retrieve kernel thread id for the pthread:
3945   tid64_t tid = 0;
3946   struct __pthrdsinfo pinfo;
3947   // I just love those otherworldly IBM APIs which force me to hand down
3948   // dummy buffers for stuff I dont care for...
3949   char dummy[1];
3950   int dummy_size = sizeof(dummy);
3951   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3952                           dummy, &dummy_size) == 0) {
3953     tid = pinfo.__pi_tid;
3954   } else {
3955     tty->print_cr("pthread_getthrds_np failed.");
3956     error = true;
3957   }
3958 
3959   // retrieve kernel timing info for that kernel thread
3960   if (!error) {
3961     struct thrdentry64 thrdentry;
3962     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3963       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3964       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3965     } else {
3966       tty->print_cr("pthread_getthrds_np failed.");
3967       error = true;
3968     }
3969   }
3970 
3971   if (p_sys_time) {
3972     *p_sys_time = sys_time;
3973   }
3974 
3975   if (p_user_time) {
3976     *p_user_time = user_time;
3977   }
3978 
3979   if (error) {
3980     return false;
3981   }
3982 
3983   return true;
3984 }
3985 
3986 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3987   jlong sys_time;
3988   jlong user_time;
3989 
3990   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3991     return -1;
3992   }
3993 
3994   return user_sys_cpu_time ? sys_time + user_time : user_time;
3995 }
3996 
3997 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3998   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3999   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4000   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4001   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4002 }
4003 
4004 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4005   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4006   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4007   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4008   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4009 }
4010 
4011 bool os::is_thread_cpu_time_supported() {
4012   return true;
4013 }
4014 
4015 // System loadavg support. Returns -1 if load average cannot be obtained.
4016 // For now just return the system wide load average (no processor sets).
4017 int os::loadavg(double values[], int nelem) {
4018 
4019   guarantee(nelem >= 0 && nelem <= 3, "argument error");
4020   guarantee(values, "argument error");
4021 
4022   if (os::Aix::on_pase()) {
4023 
4024     // AS/400 PASE: use libo4 porting library
4025     double v[3] = { 0.0, 0.0, 0.0 };
4026 
4027     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4028       for (int i = 0; i < nelem; i ++) {
4029         values[i] = v[i];
4030       }
4031       return nelem;
4032     } else {
4033       return -1;
4034     }
4035 
4036   } else {
4037 
4038     // AIX: use libperfstat
4039     libperfstat::cpuinfo_t ci;
4040     if (libperfstat::get_cpuinfo(&ci)) {
4041       for (int i = 0; i < nelem; i++) {
4042         values[i] = ci.loadavg[i];
4043       }
4044     } else {
4045       return -1;
4046     }
4047     return nelem;
4048   }
4049 }
4050 
4051 void os::pause() {
4052   char filename[MAX_PATH];
4053   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4054     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4055   } else {
4056     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4057   }
4058 
4059   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4060   if (fd != -1) {
4061     struct stat buf;
4062     ::close(fd);
4063     while (::stat(filename, &buf) == 0) {
4064       (void)::poll(NULL, 0, 100);
4065     }
4066   } else {
4067     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4068   }
4069 }
4070 
4071 bool os::is_primordial_thread(void) {
4072   if (pthread_self() == (pthread_t)1) {
4073     return true;
4074   } else {
4075     return false;
4076   }
4077 }
4078 
4079 // OS recognitions (PASE/AIX, OS level) call this before calling any
4080 // one of Aix::on_pase(), Aix::os_version() static
4081 void os::Aix::initialize_os_info() {
4082 
4083   assert(_on_pase == -1 && _os_version == 0, "already called.");
4084 
4085   struct utsname uts;
4086   memset(&uts, 0, sizeof(uts));
4087   strcpy(uts.sysname, "?");
4088   if (::uname(&uts) == -1) {
4089     trcVerbose("uname failed (%d)", errno);
4090     guarantee(0, "Could not determine whether we run on AIX or PASE");
4091   } else {
4092     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4093                "node \"%s\" machine \"%s\"\n",
4094                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4095     const int major = atoi(uts.version);
4096     assert(major > 0, "invalid OS version");
4097     const int minor = atoi(uts.release);
4098     assert(minor > 0, "invalid OS release");
4099     _os_version = (major << 24) | (minor << 16);
4100     char ver_str[20] = {0};
4101     char *name_str = "unknown OS";
4102     if (strcmp(uts.sysname, "OS400") == 0) {
4103       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4104       _on_pase = 1;
4105       if (os_version_short() < 0x0504) {
4106         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4107         assert(false, "OS/400 release too old.");
4108       }
4109       name_str = "OS/400 (pase)";
4110       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4111     } else if (strcmp(uts.sysname, "AIX") == 0) {
4112       // We run on AIX. We do not support versions older than AIX 5.3.
4113       _on_pase = 0;
4114       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4115       odmWrapper::determine_os_kernel_version(&_os_version);
4116       if (os_version_short() < 0x0503) {
4117         trcVerbose("AIX release older than AIX 5.3 not supported.");
4118         assert(false, "AIX release too old.");
4119       }
4120       name_str = "AIX";
4121       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4122                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4123     } else {
4124       assert(false, name_str);
4125     }
4126     trcVerbose("We run on %s %s", name_str, ver_str);
4127   }
4128 
4129   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4130 } // end: os::Aix::initialize_os_info()
4131 
4132 // Scan environment for important settings which might effect the VM.
4133 // Trace out settings. Warn about invalid settings and/or correct them.
4134 //
4135 // Must run after os::Aix::initialue_os_info().
4136 void os::Aix::scan_environment() {
4137 
4138   char* p;
4139   int rc;
4140 
4141   // Warn explicity if EXTSHM=ON is used. That switch changes how
4142   // System V shared memory behaves. One effect is that page size of
4143   // shared memory cannot be change dynamically, effectivly preventing
4144   // large pages from working.
4145   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4146   // recommendation is (in OSS notes) to switch it off.
4147   p = ::getenv("EXTSHM");
4148   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4149   if (p && strcasecmp(p, "ON") == 0) {
4150     _extshm = 1;
4151     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4152     if (!AllowExtshm) {
4153       // We allow under certain conditions the user to continue. However, we want this
4154       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4155       // that the VM is not able to allocate 64k pages for the heap.
4156       // We do not want to run with reduced performance.
4157       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4158     }
4159   } else {
4160     _extshm = 0;
4161   }
4162 
4163   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4164   // Not tested, not supported.
4165   //
4166   // Note that it might be worth the trouble to test and to require it, if only to
4167   // get useful return codes for mprotect.
4168   //
4169   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4170   // exec() ? before loading the libjvm ? ....)
4171   p = ::getenv("XPG_SUS_ENV");
4172   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4173   if (p && strcmp(p, "ON") == 0) {
4174     _xpg_sus_mode = 1;
4175     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4176     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4177     // clobber address ranges. If we ever want to support that, we have to do some
4178     // testing first.
4179     guarantee(false, "XPG_SUS_ENV=ON not supported");
4180   } else {
4181     _xpg_sus_mode = 0;
4182   }
4183 
4184   if (os::Aix::on_pase()) {
4185     p = ::getenv("QIBM_MULTI_THREADED");
4186     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4187   }
4188 
4189   p = ::getenv("LDR_CNTRL");
4190   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4191   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4192     if (p && ::strstr(p, "TEXTPSIZE")) {
4193       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4194         "you may experience hangs or crashes on OS/400 V7R1.");
4195     }
4196   }
4197 
4198   p = ::getenv("AIXTHREAD_GUARDPAGES");
4199   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4200 
4201 } // end: os::Aix::scan_environment()
4202 
4203 // PASE: initialize the libo4 library (PASE porting library).
4204 void os::Aix::initialize_libo4() {
4205   guarantee(os::Aix::on_pase(), "OS/400 only.");
4206   if (!libo4::init()) {
4207     trcVerbose("libo4 initialization failed.");
4208     assert(false, "libo4 initialization failed");
4209   } else {
4210     trcVerbose("libo4 initialized.");
4211   }
4212 }
4213 
4214 // AIX: initialize the libperfstat library.
4215 void os::Aix::initialize_libperfstat() {
4216   assert(os::Aix::on_aix(), "AIX only");
4217   if (!libperfstat::init()) {
4218     trcVerbose("libperfstat initialization failed.");
4219     assert(false, "libperfstat initialization failed");
4220   } else {
4221     trcVerbose("libperfstat initialized.");
4222   }
4223 }
4224 
4225 /////////////////////////////////////////////////////////////////////////////
4226 // thread stack
4227 
4228 // Get the current stack base from the OS (actually, the pthread library).
4229 // Note: usually not page aligned.
4230 address os::current_stack_base() {
4231   AixMisc::stackbounds_t bounds;
4232   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4233   guarantee(rc, "Unable to retrieve stack bounds.");
4234   return bounds.base;
4235 }
4236 
4237 // Get the current stack size from the OS (actually, the pthread library).
4238 // Returned size is such that (base - size) is always aligned to page size.
4239 size_t os::current_stack_size() {
4240   AixMisc::stackbounds_t bounds;
4241   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4242   guarantee(rc, "Unable to retrieve stack bounds.");
4243   // Align the returned stack size such that the stack low address
4244   // is aligned to page size (Note: base is usually not and we do not care).
4245   // We need to do this because caller code will assume stack low address is
4246   // page aligned and will place guard pages without checking.
4247   address low = bounds.base - bounds.size;
4248   address low_aligned = (address)align_up(low, os::vm_page_size());
4249   size_t s = bounds.base - low_aligned;
4250   return s;
4251 }
4252 
4253 extern char** environ;
4254 
4255 // Run the specified command in a separate process. Return its exit value,
4256 // or -1 on failure (e.g. can't fork a new process).
4257 // Unlike system(), this function can be called from signal handler. It
4258 // doesn't block SIGINT et al.
4259 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
4260   char * argv[4] = {"sh", "-c", cmd, NULL};
4261 
4262   pid_t pid = fork();
4263 
4264   if (pid < 0) {
4265     // fork failed
4266     return -1;
4267 
4268   } else if (pid == 0) {
4269     // child process
4270 
4271     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4272     execve("/usr/bin/sh", argv, environ);
4273 
4274     // execve failed
4275     _exit(-1);
4276 
4277   } else {
4278     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4279     // care about the actual exit code, for now.
4280 
4281     int status;
4282 
4283     // Wait for the child process to exit. This returns immediately if
4284     // the child has already exited. */
4285     while (waitpid(pid, &status, 0) < 0) {
4286       switch (errno) {
4287         case ECHILD: return 0;
4288         case EINTR: break;
4289         default: return -1;
4290       }
4291     }
4292 
4293     if (WIFEXITED(status)) {
4294       // The child exited normally; get its exit code.
4295       return WEXITSTATUS(status);
4296     } else if (WIFSIGNALED(status)) {
4297       // The child exited because of a signal.
4298       // The best value to return is 0x80 + signal number,
4299       // because that is what all Unix shells do, and because
4300       // it allows callers to distinguish between process exit and
4301       // process death by signal.
4302       return 0x80 + WTERMSIG(status);
4303     } else {
4304       // Unknown exit code; pass it through.
4305       return status;
4306     }
4307   }
4308   return -1;
4309 }
4310 
4311 // Get the default path to the core file
4312 // Returns the length of the string
4313 int os::get_core_path(char* buffer, size_t bufferSize) {
4314   const char* p = get_current_directory(buffer, bufferSize);
4315 
4316   if (p == NULL) {
4317     assert(p != NULL, "failed to get current directory");
4318     return 0;
4319   }
4320 
4321   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4322                                                p, current_process_id());
4323 
4324   return strlen(buffer);
4325 }
4326 
4327 #ifndef PRODUCT
4328 void TestReserveMemorySpecial_test() {
4329   // No tests available for this platform
4330 }
4331 #endif
4332 
4333 bool os::start_debugging(char *buf, int buflen) {
4334   int len = (int)strlen(buf);
4335   char *p = &buf[len];
4336 
4337   jio_snprintf(p, buflen -len,
4338                  "\n\n"
4339                  "Do you want to debug the problem?\n\n"
4340                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4341                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4342                  "Otherwise, press RETURN to abort...",
4343                  os::current_process_id(),
4344                  os::current_thread_id(), thread_self());
4345 
4346   bool yes = os::message_box("Unexpected Error", buf);
4347 
4348   if (yes) {
4349     // yes, user asked VM to launch debugger
4350     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4351 
4352     os::fork_and_exec(buf);
4353     yes = false;
4354   }
4355   return yes;
4356 }
4357 
4358 static inline time_t get_mtime(const char* filename) {
4359   struct stat st;
4360   int ret = os::stat(filename, &st);
4361   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
4362   return st.st_mtime;
4363 }
4364 
4365 int os::compare_file_modified_times(const char* file1, const char* file2) {
4366   time_t t1 = get_mtime(file1);
4367   time_t t2 = get_mtime(file2);
4368   return t1 - t2;
4369 }