1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "jvm.h"
  27 #include "classfile/classLoader.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/vtableStubs.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/disassembler.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "logging/log.hpp"
  36 #include "logging/logStream.hpp"
  37 #include "memory/allocation.inline.hpp"
  38 #include "memory/filemap.hpp"
  39 #include "oops/oop.inline.hpp"
  40 #include "os_linux.inline.hpp"
  41 #include "os_share_linux.hpp"
  42 #include "osContainer_linux.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm_misc.hpp"
  45 #include "runtime/arguments.hpp"
  46 #include "runtime/atomic.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.inline.hpp"
  50 #include "runtime/init.hpp"
  51 #include "runtime/java.hpp"
  52 #include "runtime/javaCalls.hpp"
  53 #include "runtime/mutexLocker.hpp"
  54 #include "runtime/objectMonitor.hpp"
  55 #include "runtime/orderAccess.hpp"
  56 #include "runtime/osThread.hpp"
  57 #include "runtime/perfMemory.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/statSampler.hpp"
  60 #include "runtime/stubRoutines.hpp"
  61 #include "runtime/thread.inline.hpp"
  62 #include "runtime/threadCritical.hpp"
  63 #include "runtime/threadSMR.hpp"
  64 #include "runtime/timer.hpp"
  65 #include "runtime/vm_version.hpp"
  66 #include "semaphore_posix.hpp"
  67 #include "services/attachListener.hpp"
  68 #include "services/memTracker.hpp"
  69 #include "services/runtimeService.hpp"
  70 #include "utilities/align.hpp"
  71 #include "utilities/decoder.hpp"
  72 #include "utilities/defaultStream.hpp"
  73 #include "utilities/events.hpp"
  74 #include "utilities/elfFile.hpp"
  75 #include "utilities/growableArray.hpp"
  76 #include "utilities/macros.hpp"
  77 #include "utilities/vmError.hpp"
  78 
  79 // put OS-includes here
  80 # include <sys/types.h>
  81 # include <sys/mman.h>
  82 # include <sys/stat.h>
  83 # include <sys/select.h>
  84 # include <pthread.h>
  85 # include <signal.h>
  86 # include <errno.h>
  87 # include <dlfcn.h>
  88 # include <stdio.h>
  89 # include <unistd.h>
  90 # include <sys/resource.h>
  91 # include <pthread.h>
  92 # include <sys/stat.h>
  93 # include <sys/time.h>
  94 # include <sys/times.h>
  95 # include <sys/utsname.h>
  96 # include <sys/socket.h>
  97 # include <sys/wait.h>
  98 # include <pwd.h>
  99 # include <poll.h>
 100 # include <fcntl.h>
 101 # include <string.h>
 102 # include <syscall.h>
 103 # include <sys/sysinfo.h>
 104 # include <gnu/libc-version.h>
 105 # include <sys/ipc.h>
 106 # include <sys/shm.h>
 107 # include <link.h>
 108 # include <stdint.h>
 109 # include <inttypes.h>
 110 # include <sys/ioctl.h>
 111 
 112 #ifndef _GNU_SOURCE
 113   #define _GNU_SOURCE
 114   #include <sched.h>
 115   #undef _GNU_SOURCE
 116 #else
 117   #include <sched.h>
 118 #endif
 119 
 120 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 121 // getrusage() is prepared to handle the associated failure.
 122 #ifndef RUSAGE_THREAD
 123   #define RUSAGE_THREAD   (1)               /* only the calling thread */
 124 #endif
 125 
 126 #define MAX_PATH    (2 * K)
 127 
 128 #define MAX_SECS 100000000
 129 
 130 // for timer info max values which include all bits
 131 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 132 
 133 enum CoredumpFilterBit {
 134   FILE_BACKED_PVT_BIT = 1 << 2,
 135   FILE_BACKED_SHARED_BIT = 1 << 3,
 136   LARGEPAGES_BIT = 1 << 6,
 137   DAX_SHARED_BIT = 1 << 8
 138 };
 139 
 140 ////////////////////////////////////////////////////////////////////////////////
 141 // global variables
 142 julong os::Linux::_physical_memory = 0;
 143 
 144 address   os::Linux::_initial_thread_stack_bottom = NULL;
 145 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 146 
 147 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 148 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 149 int (*os::Linux::_pthread_setname_np)(pthread_t, const char*) = NULL;
 150 Mutex* os::Linux::_createThread_lock = NULL;
 151 pthread_t os::Linux::_main_thread;
 152 int os::Linux::_page_size = -1;
 153 bool os::Linux::_supports_fast_thread_cpu_time = false;
 154 uint32_t os::Linux::_os_version = 0;
 155 const char * os::Linux::_glibc_version = NULL;
 156 const char * os::Linux::_libpthread_version = NULL;
 157 
 158 static jlong initial_time_count=0;
 159 
 160 static int clock_tics_per_sec = 100;
 161 
 162 // If the VM might have been created on the primordial thread, we need to resolve the
 163 // primordial thread stack bounds and check if the current thread might be the
 164 // primordial thread in places. If we know that the primordial thread is never used,
 165 // such as when the VM was created by one of the standard java launchers, we can
 166 // avoid this
 167 static bool suppress_primordial_thread_resolution = false;
 168 
 169 // For diagnostics to print a message once. see run_periodic_checks
 170 static sigset_t check_signal_done;
 171 static bool check_signals = true;
 172 
 173 // Signal number used to suspend/resume a thread
 174 
 175 // do not use any signal number less than SIGSEGV, see 4355769
 176 static int SR_signum = SIGUSR2;
 177 sigset_t SR_sigset;
 178 
 179 // utility functions
 180 
 181 static int SR_initialize();
 182 
 183 julong os::available_memory() {
 184   return Linux::available_memory();
 185 }
 186 
 187 julong os::Linux::available_memory() {
 188   // values in struct sysinfo are "unsigned long"
 189   struct sysinfo si;
 190   julong avail_mem;
 191 
 192   if (OSContainer::is_containerized()) {
 193     jlong mem_limit, mem_usage;
 194     if ((mem_limit = OSContainer::memory_limit_in_bytes()) < 1) {
 195       log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 196                              mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 197     }
 198     if (mem_limit > 0 && (mem_usage = OSContainer::memory_usage_in_bytes()) < 1) {
 199       log_debug(os, container)("container memory usage failed: " JLONG_FORMAT ", using host value", mem_usage);
 200     }
 201     if (mem_limit > 0 && mem_usage > 0 ) {
 202       avail_mem = mem_limit > mem_usage ? (julong)mem_limit - (julong)mem_usage : 0;
 203       log_trace(os)("available container memory: " JULONG_FORMAT, avail_mem);
 204       return avail_mem;
 205     }
 206   }
 207 
 208   sysinfo(&si);
 209   avail_mem = (julong)si.freeram * si.mem_unit;
 210   log_trace(os)("available memory: " JULONG_FORMAT, avail_mem);
 211   return avail_mem;
 212 }
 213 
 214 julong os::physical_memory() {
 215   jlong phys_mem = 0;
 216   if (OSContainer::is_containerized()) {
 217     jlong mem_limit;
 218     if ((mem_limit = OSContainer::memory_limit_in_bytes()) > 0) {
 219       log_trace(os)("total container memory: " JLONG_FORMAT, mem_limit);
 220       return mem_limit;
 221     }
 222     log_debug(os, container)("container memory limit %s: " JLONG_FORMAT ", using host value",
 223                             mem_limit == OSCONTAINER_ERROR ? "failed" : "unlimited", mem_limit);
 224   }
 225 
 226   phys_mem = Linux::physical_memory();
 227   log_trace(os)("total system memory: " JLONG_FORMAT, phys_mem);
 228   return phys_mem;
 229 }
 230 
 231 static uint64_t initial_total_ticks = 0;
 232 static uint64_t initial_steal_ticks = 0;
 233 static bool     has_initial_tick_info = false;
 234 
 235 static void next_line(FILE *f) {
 236   int c;
 237   do {
 238     c = fgetc(f);
 239   } while (c != '\n' && c != EOF);
 240 }
 241 
 242 bool os::Linux::get_tick_information(CPUPerfTicks* pticks, int which_logical_cpu) {
 243   FILE*         fh;
 244   uint64_t      userTicks, niceTicks, systemTicks, idleTicks;
 245   // since at least kernel 2.6 : iowait: time waiting for I/O to complete
 246   // irq: time  servicing interrupts; softirq: time servicing softirqs
 247   uint64_t      iowTicks = 0, irqTicks = 0, sirqTicks= 0;
 248   // steal (since kernel 2.6.11): time spent in other OS when running in a virtualized environment
 249   uint64_t      stealTicks = 0;
 250   // guest (since kernel 2.6.24): time spent running a virtual CPU for guest OS under the
 251   // control of the Linux kernel
 252   uint64_t      guestNiceTicks = 0;
 253   int           logical_cpu = -1;
 254   const int     required_tickinfo_count = (which_logical_cpu == -1) ? 4 : 5;
 255   int           n;
 256 
 257   memset(pticks, 0, sizeof(CPUPerfTicks));
 258 
 259   if ((fh = fopen("/proc/stat", "r")) == NULL) {
 260     return false;
 261   }
 262 
 263   if (which_logical_cpu == -1) {
 264     n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 265             UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 266             UINT64_FORMAT " " UINT64_FORMAT " ",
 267             &userTicks, &niceTicks, &systemTicks, &idleTicks,
 268             &iowTicks, &irqTicks, &sirqTicks,
 269             &stealTicks, &guestNiceTicks);
 270   } else {
 271     // Move to next line
 272     next_line(fh);
 273 
 274     // find the line for requested cpu faster to just iterate linefeeds?
 275     for (int i = 0; i < which_logical_cpu; i++) {
 276       next_line(fh);
 277     }
 278 
 279     n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 280                UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " "
 281                UINT64_FORMAT " " UINT64_FORMAT " ",
 282                &logical_cpu, &userTicks, &niceTicks,
 283                &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks,
 284                &stealTicks, &guestNiceTicks);
 285   }
 286 
 287   fclose(fh);
 288   if (n < required_tickinfo_count || logical_cpu != which_logical_cpu) {
 289     return false;
 290   }
 291   pticks->used       = userTicks + niceTicks;
 292   pticks->usedKernel = systemTicks + irqTicks + sirqTicks;
 293   pticks->total      = userTicks + niceTicks + systemTicks + idleTicks +
 294                        iowTicks + irqTicks + sirqTicks + stealTicks + guestNiceTicks;
 295 
 296   if (n > required_tickinfo_count + 3) {
 297     pticks->steal = stealTicks;
 298     pticks->has_steal_ticks = true;
 299   } else {
 300     pticks->steal = 0;
 301     pticks->has_steal_ticks = false;
 302   }
 303 
 304   return true;
 305 }
 306 
 307 // Return true if user is running as root.
 308 
 309 bool os::have_special_privileges() {
 310   static bool init = false;
 311   static bool privileges = false;
 312   if (!init) {
 313     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 314     init = true;
 315   }
 316   return privileges;
 317 }
 318 
 319 
 320 #ifndef SYS_gettid
 321 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 322   #ifdef __ia64__
 323     #define SYS_gettid 1105
 324   #else
 325     #ifdef __i386__
 326       #define SYS_gettid 224
 327     #else
 328       #ifdef __amd64__
 329         #define SYS_gettid 186
 330       #else
 331         #ifdef __sparc__
 332           #define SYS_gettid 143
 333         #else
 334           #error define gettid for the arch
 335         #endif
 336       #endif
 337     #endif
 338   #endif
 339 #endif
 340 
 341 
 342 // pid_t gettid()
 343 //
 344 // Returns the kernel thread id of the currently running thread. Kernel
 345 // thread id is used to access /proc.
 346 pid_t os::Linux::gettid() {
 347   int rslt = syscall(SYS_gettid);
 348   assert(rslt != -1, "must be."); // old linuxthreads implementation?
 349   return (pid_t)rslt;
 350 }
 351 
 352 // Most versions of linux have a bug where the number of processors are
 353 // determined by looking at the /proc file system.  In a chroot environment,
 354 // the system call returns 1.  This causes the VM to act as if it is
 355 // a single processor and elide locking (see is_MP() call).
 356 static bool unsafe_chroot_detected = false;
 357 static const char *unstable_chroot_error = "/proc file system not found.\n"
 358                      "Java may be unstable running multithreaded in a chroot "
 359                      "environment on Linux when /proc filesystem is not mounted.";
 360 
 361 void os::Linux::initialize_system_info() {
 362   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 363   if (processor_count() == 1) {
 364     pid_t pid = os::Linux::gettid();
 365     char fname[32];
 366     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 367     FILE *fp = fopen(fname, "r");
 368     if (fp == NULL) {
 369       unsafe_chroot_detected = true;
 370     } else {
 371       fclose(fp);
 372     }
 373   }
 374   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 375   assert(processor_count() > 0, "linux error");
 376 }
 377 
 378 void os::init_system_properties_values() {
 379   // The next steps are taken in the product version:
 380   //
 381   // Obtain the JAVA_HOME value from the location of libjvm.so.
 382   // This library should be located at:
 383   // <JAVA_HOME>/lib/{client|server}/libjvm.so.
 384   //
 385   // If "/jre/lib/" appears at the right place in the path, then we
 386   // assume libjvm.so is installed in a JDK and we use this path.
 387   //
 388   // Otherwise exit with message: "Could not create the Java virtual machine."
 389   //
 390   // The following extra steps are taken in the debugging version:
 391   //
 392   // If "/jre/lib/" does NOT appear at the right place in the path
 393   // instead of exit check for $JAVA_HOME environment variable.
 394   //
 395   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 396   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 397   // it looks like libjvm.so is installed there
 398   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 399   //
 400   // Otherwise exit.
 401   //
 402   // Important note: if the location of libjvm.so changes this
 403   // code needs to be changed accordingly.
 404 
 405   // See ld(1):
 406   //      The linker uses the following search paths to locate required
 407   //      shared libraries:
 408   //        1: ...
 409   //        ...
 410   //        7: The default directories, normally /lib and /usr/lib.
 411 #if defined(AMD64) || (defined(_LP64) && defined(SPARC)) || defined(PPC64) || defined(S390)
 412   #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 413 #else
 414   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 415 #endif
 416 
 417 // Base path of extensions installed on the system.
 418 #define SYS_EXT_DIR     "/usr/java/packages"
 419 #define EXTENSIONS_DIR  "/lib/ext"
 420 
 421   // Buffer that fits several sprintfs.
 422   // Note that the space for the colon and the trailing null are provided
 423   // by the nulls included by the sizeof operator.
 424   const size_t bufsize =
 425     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 426          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR) + sizeof(SYS_EXT_DIR) + sizeof(EXTENSIONS_DIR)); // extensions dir
 427   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 428 
 429   // sysclasspath, java_home, dll_dir
 430   {
 431     char *pslash;
 432     os::jvm_path(buf, bufsize);
 433 
 434     // Found the full path to libjvm.so.
 435     // Now cut the path to <java_home>/jre if we can.
 436     pslash = strrchr(buf, '/');
 437     if (pslash != NULL) {
 438       *pslash = '\0';            // Get rid of /libjvm.so.
 439     }
 440     pslash = strrchr(buf, '/');
 441     if (pslash != NULL) {
 442       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 443     }
 444     Arguments::set_dll_dir(buf);
 445 
 446     if (pslash != NULL) {
 447       pslash = strrchr(buf, '/');
 448       if (pslash != NULL) {
 449         *pslash = '\0';        // Get rid of /lib.
 450       }
 451     }
 452     Arguments::set_java_home(buf);
 453     set_boot_path('/', ':');
 454   }
 455 
 456   // Where to look for native libraries.
 457   //
 458   // Note: Due to a legacy implementation, most of the library path
 459   // is set in the launcher. This was to accomodate linking restrictions
 460   // on legacy Linux implementations (which are no longer supported).
 461   // Eventually, all the library path setting will be done here.
 462   //
 463   // However, to prevent the proliferation of improperly built native
 464   // libraries, the new path component /usr/java/packages is added here.
 465   // Eventually, all the library path setting will be done here.
 466   {
 467     // Get the user setting of LD_LIBRARY_PATH, and prepended it. It
 468     // should always exist (until the legacy problem cited above is
 469     // addressed).
 470     const char *v = ::getenv("LD_LIBRARY_PATH");
 471     const char *v_colon = ":";
 472     if (v == NULL) { v = ""; v_colon = ""; }
 473     // That's +1 for the colon and +1 for the trailing '\0'.
 474     char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char,
 475                                                      strlen(v) + 1 +
 476                                                      sizeof(SYS_EXT_DIR) + sizeof("/lib/") + sizeof(DEFAULT_LIBPATH) + 1,
 477                                                      mtInternal);
 478     sprintf(ld_library_path, "%s%s" SYS_EXT_DIR "/lib:" DEFAULT_LIBPATH, v, v_colon);
 479     Arguments::set_library_path(ld_library_path);
 480     FREE_C_HEAP_ARRAY(char, ld_library_path);
 481   }
 482 
 483   // Extensions directories.
 484   sprintf(buf, "%s" EXTENSIONS_DIR ":" SYS_EXT_DIR EXTENSIONS_DIR, Arguments::get_java_home());
 485   Arguments::set_ext_dirs(buf);
 486 
 487   FREE_C_HEAP_ARRAY(char, buf);
 488 
 489 #undef DEFAULT_LIBPATH
 490 #undef SYS_EXT_DIR
 491 #undef EXTENSIONS_DIR
 492 }
 493 
 494 ////////////////////////////////////////////////////////////////////////////////
 495 // breakpoint support
 496 
 497 void os::breakpoint() {
 498   BREAKPOINT;
 499 }
 500 
 501 extern "C" void breakpoint() {
 502   // use debugger to set breakpoint here
 503 }
 504 
 505 ////////////////////////////////////////////////////////////////////////////////
 506 // signal support
 507 
 508 debug_only(static bool signal_sets_initialized = false);
 509 static sigset_t unblocked_sigs, vm_sigs;
 510 
 511 void os::Linux::signal_sets_init() {
 512   // Should also have an assertion stating we are still single-threaded.
 513   assert(!signal_sets_initialized, "Already initialized");
 514   // Fill in signals that are necessarily unblocked for all threads in
 515   // the VM. Currently, we unblock the following signals:
 516   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 517   //                         by -Xrs (=ReduceSignalUsage));
 518   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 519   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 520   // the dispositions or masks wrt these signals.
 521   // Programs embedding the VM that want to use the above signals for their
 522   // own purposes must, at this time, use the "-Xrs" option to prevent
 523   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 524   // (See bug 4345157, and other related bugs).
 525   // In reality, though, unblocking these signals is really a nop, since
 526   // these signals are not blocked by default.
 527   sigemptyset(&unblocked_sigs);
 528   sigaddset(&unblocked_sigs, SIGILL);
 529   sigaddset(&unblocked_sigs, SIGSEGV);
 530   sigaddset(&unblocked_sigs, SIGBUS);
 531   sigaddset(&unblocked_sigs, SIGFPE);
 532 #if defined(PPC64)
 533   sigaddset(&unblocked_sigs, SIGTRAP);
 534 #endif
 535   sigaddset(&unblocked_sigs, SR_signum);
 536 
 537   if (!ReduceSignalUsage) {
 538     if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 539       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 540     }
 541     if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 542       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 543     }
 544     if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 545       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 546     }
 547   }
 548   // Fill in signals that are blocked by all but the VM thread.
 549   sigemptyset(&vm_sigs);
 550   if (!ReduceSignalUsage) {
 551     sigaddset(&vm_sigs, BREAK_SIGNAL);
 552   }
 553   debug_only(signal_sets_initialized = true);
 554 
 555 }
 556 
 557 // These are signals that are unblocked while a thread is running Java.
 558 // (For some reason, they get blocked by default.)
 559 sigset_t* os::Linux::unblocked_signals() {
 560   assert(signal_sets_initialized, "Not initialized");
 561   return &unblocked_sigs;
 562 }
 563 
 564 // These are the signals that are blocked while a (non-VM) thread is
 565 // running Java. Only the VM thread handles these signals.
 566 sigset_t* os::Linux::vm_signals() {
 567   assert(signal_sets_initialized, "Not initialized");
 568   return &vm_sigs;
 569 }
 570 
 571 void os::Linux::hotspot_sigmask(Thread* thread) {
 572 
 573   //Save caller's signal mask before setting VM signal mask
 574   sigset_t caller_sigmask;
 575   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 576 
 577   OSThread* osthread = thread->osthread();
 578   osthread->set_caller_sigmask(caller_sigmask);
 579 
 580   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 581 
 582   if (!ReduceSignalUsage) {
 583     if (thread->is_VM_thread()) {
 584       // Only the VM thread handles BREAK_SIGNAL ...
 585       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 586     } else {
 587       // ... all other threads block BREAK_SIGNAL
 588       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 589     }
 590   }
 591 }
 592 
 593 //////////////////////////////////////////////////////////////////////////////
 594 // detecting pthread library
 595 
 596 void os::Linux::libpthread_init() {
 597   // Save glibc and pthread version strings.
 598 #if !defined(_CS_GNU_LIBC_VERSION) || \
 599     !defined(_CS_GNU_LIBPTHREAD_VERSION)
 600   #error "glibc too old (< 2.3.2)"
 601 #endif
 602 
 603   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 604   assert(n > 0, "cannot retrieve glibc version");
 605   char *str = (char *)malloc(n, mtInternal);
 606   confstr(_CS_GNU_LIBC_VERSION, str, n);
 607   os::Linux::set_glibc_version(str);
 608 
 609   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 610   assert(n > 0, "cannot retrieve pthread version");
 611   str = (char *)malloc(n, mtInternal);
 612   confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 613   os::Linux::set_libpthread_version(str);
 614 }
 615 
 616 /////////////////////////////////////////////////////////////////////////////
 617 // thread stack expansion
 618 
 619 // os::Linux::manually_expand_stack() takes care of expanding the thread
 620 // stack. Note that this is normally not needed: pthread stacks allocate
 621 // thread stack using mmap() without MAP_NORESERVE, so the stack is already
 622 // committed. Therefore it is not necessary to expand the stack manually.
 623 //
 624 // Manually expanding the stack was historically needed on LinuxThreads
 625 // thread stacks, which were allocated with mmap(MAP_GROWSDOWN). Nowadays
 626 // it is kept to deal with very rare corner cases:
 627 //
 628 // For one, user may run the VM on an own implementation of threads
 629 // whose stacks are - like the old LinuxThreads - implemented using
 630 // mmap(MAP_GROWSDOWN).
 631 //
 632 // Also, this coding may be needed if the VM is running on the primordial
 633 // thread. Normally we avoid running on the primordial thread; however,
 634 // user may still invoke the VM on the primordial thread.
 635 //
 636 // The following historical comment describes the details about running
 637 // on a thread stack allocated with mmap(MAP_GROWSDOWN):
 638 
 639 
 640 // Force Linux kernel to expand current thread stack. If "bottom" is close
 641 // to the stack guard, caller should block all signals.
 642 //
 643 // MAP_GROWSDOWN:
 644 //   A special mmap() flag that is used to implement thread stacks. It tells
 645 //   kernel that the memory region should extend downwards when needed. This
 646 //   allows early versions of LinuxThreads to only mmap the first few pages
 647 //   when creating a new thread. Linux kernel will automatically expand thread
 648 //   stack as needed (on page faults).
 649 //
 650 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 651 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 652 //   region, it's hard to tell if the fault is due to a legitimate stack
 653 //   access or because of reading/writing non-exist memory (e.g. buffer
 654 //   overrun). As a rule, if the fault happens below current stack pointer,
 655 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 656 //   application (see Linux kernel fault.c).
 657 //
 658 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 659 //   stack overflow detection.
 660 //
 661 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 662 //   not use MAP_GROWSDOWN.
 663 //
 664 // To get around the problem and allow stack banging on Linux, we need to
 665 // manually expand thread stack after receiving the SIGSEGV.
 666 //
 667 // There are two ways to expand thread stack to address "bottom", we used
 668 // both of them in JVM before 1.5:
 669 //   1. adjust stack pointer first so that it is below "bottom", and then
 670 //      touch "bottom"
 671 //   2. mmap() the page in question
 672 //
 673 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 674 // if current sp is already near the lower end of page 101, and we need to
 675 // call mmap() to map page 100, it is possible that part of the mmap() frame
 676 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 677 // That will destroy the mmap() frame and cause VM to crash.
 678 //
 679 // The following code works by adjusting sp first, then accessing the "bottom"
 680 // page to force a page fault. Linux kernel will then automatically expand the
 681 // stack mapping.
 682 //
 683 // _expand_stack_to() assumes its frame size is less than page size, which
 684 // should always be true if the function is not inlined.
 685 
 686 static void NOINLINE _expand_stack_to(address bottom) {
 687   address sp;
 688   size_t size;
 689   volatile char *p;
 690 
 691   // Adjust bottom to point to the largest address within the same page, it
 692   // gives us a one-page buffer if alloca() allocates slightly more memory.
 693   bottom = (address)align_down((uintptr_t)bottom, os::Linux::page_size());
 694   bottom += os::Linux::page_size() - 1;
 695 
 696   // sp might be slightly above current stack pointer; if that's the case, we
 697   // will alloca() a little more space than necessary, which is OK. Don't use
 698   // os::current_stack_pointer(), as its result can be slightly below current
 699   // stack pointer, causing us to not alloca enough to reach "bottom".
 700   sp = (address)&sp;
 701 
 702   if (sp > bottom) {
 703     size = sp - bottom;
 704     p = (volatile char *)alloca(size);
 705     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 706     p[0] = '\0';
 707   }
 708 }
 709 
 710 void os::Linux::expand_stack_to(address bottom) {
 711   _expand_stack_to(bottom);
 712 }
 713 
 714 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 715   assert(t!=NULL, "just checking");
 716   assert(t->osthread()->expanding_stack(), "expand should be set");
 717   assert(t->stack_base() != NULL, "stack_base was not initialized");
 718 
 719   if (addr <  t->stack_base() && addr >= t->stack_reserved_zone_base()) {
 720     sigset_t mask_all, old_sigset;
 721     sigfillset(&mask_all);
 722     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 723     _expand_stack_to(addr);
 724     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 725     return true;
 726   }
 727   return false;
 728 }
 729 
 730 //////////////////////////////////////////////////////////////////////////////
 731 // create new thread
 732 
 733 // Thread start routine for all newly created threads
 734 static void *thread_native_entry(Thread *thread) {
 735 
 736   thread->record_stack_base_and_size();
 737 
 738   // Try to randomize the cache line index of hot stack frames.
 739   // This helps when threads of the same stack traces evict each other's
 740   // cache lines. The threads can be either from the same JVM instance, or
 741   // from different JVM instances. The benefit is especially true for
 742   // processors with hyperthreading technology.
 743   static int counter = 0;
 744   int pid = os::current_process_id();
 745   alloca(((pid ^ counter++) & 7) * 128);
 746 
 747   thread->initialize_thread_current();
 748 
 749   OSThread* osthread = thread->osthread();
 750   Monitor* sync = osthread->startThread_lock();
 751 
 752   osthread->set_thread_id(os::current_thread_id());
 753 
 754   log_info(os, thread)("Thread is alive (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 755     os::current_thread_id(), (uintx) pthread_self());
 756 
 757   if (UseNUMA) {
 758     int lgrp_id = os::numa_get_group_id();
 759     if (lgrp_id != -1) {
 760       thread->set_lgrp_id(lgrp_id);
 761     }
 762   }
 763   // initialize signal mask for this thread
 764   os::Linux::hotspot_sigmask(thread);
 765 
 766   // initialize floating point control register
 767   os::Linux::init_thread_fpu_state();
 768 
 769   // handshaking with parent thread
 770   {
 771     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 772 
 773     // notify parent thread
 774     osthread->set_state(INITIALIZED);
 775     sync->notify_all();
 776 
 777     // wait until os::start_thread()
 778     while (osthread->get_state() == INITIALIZED) {
 779       sync->wait(Mutex::_no_safepoint_check_flag);
 780     }
 781   }
 782 
 783   // call one more level start routine
 784   thread->call_run();
 785 
 786   // Note: at this point the thread object may already have deleted itself.
 787   // Prevent dereferencing it from here on out.
 788   thread = NULL;
 789 
 790   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 791     os::current_thread_id(), (uintx) pthread_self());
 792 
 793   return 0;
 794 }
 795 
 796 bool os::create_thread(Thread* thread, ThreadType thr_type,
 797                        size_t req_stack_size) {
 798   assert(thread->osthread() == NULL, "caller responsible");
 799 
 800   // Allocate the OSThread object
 801   OSThread* osthread = new OSThread(NULL, NULL);
 802   if (osthread == NULL) {
 803     return false;
 804   }
 805 
 806   // set the correct thread state
 807   osthread->set_thread_type(thr_type);
 808 
 809   // Initial state is ALLOCATED but not INITIALIZED
 810   osthread->set_state(ALLOCATED);
 811 
 812   thread->set_osthread(osthread);
 813 
 814   // init thread attributes
 815   pthread_attr_t attr;
 816   pthread_attr_init(&attr);
 817   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 818 
 819   // Calculate stack size if it's not specified by caller.
 820   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 821   // In the Linux NPTL pthread implementation the guard size mechanism
 822   // is not implemented properly. The posix standard requires adding
 823   // the size of the guard pages to the stack size, instead Linux
 824   // takes the space out of 'stacksize'. Thus we adapt the requested
 825   // stack_size by the size of the guard pages to mimick proper
 826   // behaviour. However, be careful not to end up with a size
 827   // of zero due to overflow. Don't add the guard page in that case.
 828   size_t guard_size = os::Linux::default_guard_size(thr_type);
 829   if (stack_size <= SIZE_MAX - guard_size) {
 830     stack_size += guard_size;
 831   }
 832   assert(is_aligned(stack_size, os::vm_page_size()), "stack_size not aligned");
 833 
 834   int status = pthread_attr_setstacksize(&attr, stack_size);
 835   assert_status(status == 0, status, "pthread_attr_setstacksize");
 836 
 837   // Configure glibc guard page.
 838   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 839 
 840   ThreadState state;
 841 
 842   {
 843     pthread_t tid;
 844     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 845 
 846     char buf[64];
 847     if (ret == 0) {
 848       log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 849         (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 850     } else {
 851       log_warning(os, thread)("Failed to start thread - pthread_create failed (%s) for attributes: %s.",
 852         os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 853       // Log some OS information which might explain why creating the thread failed.
 854       log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 855       LogStream st(Log(os, thread)::info());
 856       os::Posix::print_rlimit_info(&st);
 857       os::print_memory_info(&st);
 858       os::Linux::print_proc_sys_info(&st);
 859       os::Linux::print_container_info(&st);
 860     }
 861 
 862     pthread_attr_destroy(&attr);
 863 
 864     if (ret != 0) {
 865       // Need to clean up stuff we've allocated so far
 866       thread->set_osthread(NULL);
 867       delete osthread;
 868       return false;
 869     }
 870 
 871     // Store pthread info into the OSThread
 872     osthread->set_pthread_id(tid);
 873 
 874     // Wait until child thread is either initialized or aborted
 875     {
 876       Monitor* sync_with_child = osthread->startThread_lock();
 877       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 878       while ((state = osthread->get_state()) == ALLOCATED) {
 879         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 880       }
 881     }
 882   }
 883 
 884   // Aborted due to thread limit being reached
 885   if (state == ZOMBIE) {
 886     thread->set_osthread(NULL);
 887     delete osthread;
 888     return false;
 889   }
 890 
 891   // The thread is returned suspended (in state INITIALIZED),
 892   // and is started higher up in the call chain
 893   assert(state == INITIALIZED, "race condition");
 894   return true;
 895 }
 896 
 897 /////////////////////////////////////////////////////////////////////////////
 898 // attach existing thread
 899 
 900 // bootstrap the main thread
 901 bool os::create_main_thread(JavaThread* thread) {
 902   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 903   return create_attached_thread(thread);
 904 }
 905 
 906 bool os::create_attached_thread(JavaThread* thread) {
 907 #ifdef ASSERT
 908   thread->verify_not_published();
 909 #endif
 910 
 911   // Allocate the OSThread object
 912   OSThread* osthread = new OSThread(NULL, NULL);
 913 
 914   if (osthread == NULL) {
 915     return false;
 916   }
 917 
 918   // Store pthread info into the OSThread
 919   osthread->set_thread_id(os::Linux::gettid());
 920   osthread->set_pthread_id(::pthread_self());
 921 
 922   // initialize floating point control register
 923   os::Linux::init_thread_fpu_state();
 924 
 925   // Initial thread state is RUNNABLE
 926   osthread->set_state(RUNNABLE);
 927 
 928   thread->set_osthread(osthread);
 929 
 930   if (UseNUMA) {
 931     int lgrp_id = os::numa_get_group_id();
 932     if (lgrp_id != -1) {
 933       thread->set_lgrp_id(lgrp_id);
 934     }
 935   }
 936 
 937   if (os::is_primordial_thread()) {
 938     // If current thread is primordial thread, its stack is mapped on demand,
 939     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
 940     // the entire stack region to avoid SEGV in stack banging.
 941     // It is also useful to get around the heap-stack-gap problem on SuSE
 942     // kernel (see 4821821 for details). We first expand stack to the top
 943     // of yellow zone, then enable stack yellow zone (order is significant,
 944     // enabling yellow zone first will crash JVM on SuSE Linux), so there
 945     // is no gap between the last two virtual memory regions.
 946 
 947     JavaThread *jt = (JavaThread *)thread;
 948     address addr = jt->stack_reserved_zone_base();
 949     assert(addr != NULL, "initialization problem?");
 950     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
 951 
 952     osthread->set_expanding_stack();
 953     os::Linux::manually_expand_stack(jt, addr);
 954     osthread->clear_expanding_stack();
 955   }
 956 
 957   // initialize signal mask for this thread
 958   // and save the caller's signal mask
 959   os::Linux::hotspot_sigmask(thread);
 960 
 961   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", pthread id: " UINTX_FORMAT ").",
 962     os::current_thread_id(), (uintx) pthread_self());
 963 
 964   return true;
 965 }
 966 
 967 void os::pd_start_thread(Thread* thread) {
 968   OSThread * osthread = thread->osthread();
 969   assert(osthread->get_state() != INITIALIZED, "just checking");
 970   Monitor* sync_with_child = osthread->startThread_lock();
 971   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 972   sync_with_child->notify();
 973 }
 974 
 975 // Free Linux resources related to the OSThread
 976 void os::free_thread(OSThread* osthread) {
 977   assert(osthread != NULL, "osthread not set");
 978 
 979   // We are told to free resources of the argument thread,
 980   // but we can only really operate on the current thread.
 981   assert(Thread::current()->osthread() == osthread,
 982          "os::free_thread but not current thread");
 983 
 984 #ifdef ASSERT
 985   sigset_t current;
 986   sigemptyset(&current);
 987   pthread_sigmask(SIG_SETMASK, NULL, &current);
 988   assert(!sigismember(&current, SR_signum), "SR signal should not be blocked!");
 989 #endif
 990 
 991   // Restore caller's signal mask
 992   sigset_t sigmask = osthread->caller_sigmask();
 993   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
 994 
 995   delete osthread;
 996 }
 997 
 998 //////////////////////////////////////////////////////////////////////////////
 999 // primordial thread
1000 
1001 // Check if current thread is the primordial thread, similar to Solaris thr_main.
1002 bool os::is_primordial_thread(void) {
1003   if (suppress_primordial_thread_resolution) {
1004     return false;
1005   }
1006   char dummy;
1007   // If called before init complete, thread stack bottom will be null.
1008   // Can be called if fatal error occurs before initialization.
1009   if (os::Linux::initial_thread_stack_bottom() == NULL) return false;
1010   assert(os::Linux::initial_thread_stack_bottom() != NULL &&
1011          os::Linux::initial_thread_stack_size()   != 0,
1012          "os::init did not locate primordial thread's stack region");
1013   if ((address)&dummy >= os::Linux::initial_thread_stack_bottom() &&
1014       (address)&dummy < os::Linux::initial_thread_stack_bottom() +
1015                         os::Linux::initial_thread_stack_size()) {
1016     return true;
1017   } else {
1018     return false;
1019   }
1020 }
1021 
1022 // Find the virtual memory area that contains addr
1023 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1024   FILE *fp = fopen("/proc/self/maps", "r");
1025   if (fp) {
1026     address low, high;
1027     while (!feof(fp)) {
1028       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1029         if (low <= addr && addr < high) {
1030           if (vma_low)  *vma_low  = low;
1031           if (vma_high) *vma_high = high;
1032           fclose(fp);
1033           return true;
1034         }
1035       }
1036       for (;;) {
1037         int ch = fgetc(fp);
1038         if (ch == EOF || ch == (int)'\n') break;
1039       }
1040     }
1041     fclose(fp);
1042   }
1043   return false;
1044 }
1045 
1046 // Locate primordial thread stack. This special handling of primordial thread stack
1047 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1048 // bogus value for the primordial process thread. While the launcher has created
1049 // the VM in a new thread since JDK 6, we still have to allow for the use of the
1050 // JNI invocation API from a primordial thread.
1051 void os::Linux::capture_initial_stack(size_t max_size) {
1052 
1053   // max_size is either 0 (which means accept OS default for thread stacks) or
1054   // a user-specified value known to be at least the minimum needed. If we
1055   // are actually on the primordial thread we can make it appear that we have a
1056   // smaller max_size stack by inserting the guard pages at that location. But we
1057   // cannot do anything to emulate a larger stack than what has been provided by
1058   // the OS or threading library. In fact if we try to use a stack greater than
1059   // what is set by rlimit then we will crash the hosting process.
1060 
1061   // Maximum stack size is the easy part, get it from RLIMIT_STACK.
1062   // If this is "unlimited" then it will be a huge value.
1063   struct rlimit rlim;
1064   getrlimit(RLIMIT_STACK, &rlim);
1065   size_t stack_size = rlim.rlim_cur;
1066 
1067   // 6308388: a bug in ld.so will relocate its own .data section to the
1068   //   lower end of primordial stack; reduce ulimit -s value a little bit
1069   //   so we won't install guard page on ld.so's data section.
1070   //   But ensure we don't underflow the stack size - allow 1 page spare
1071   if (stack_size >= (size_t)(3 * page_size())) {
1072     stack_size -= 2 * page_size();
1073   }
1074 
1075   // Try to figure out where the stack base (top) is. This is harder.
1076   //
1077   // When an application is started, glibc saves the initial stack pointer in
1078   // a global variable "__libc_stack_end", which is then used by system
1079   // libraries. __libc_stack_end should be pretty close to stack top. The
1080   // variable is available since the very early days. However, because it is
1081   // a private interface, it could disappear in the future.
1082   //
1083   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1084   // to __libc_stack_end, it is very close to stack top, but isn't the real
1085   // stack top. Note that /proc may not exist if VM is running as a chroot
1086   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1087   // /proc/<pid>/stat could change in the future (though unlikely).
1088   //
1089   // We try __libc_stack_end first. If that doesn't work, look for
1090   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1091   // as a hint, which should work well in most cases.
1092 
1093   uintptr_t stack_start;
1094 
1095   // try __libc_stack_end first
1096   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1097   if (p && *p) {
1098     stack_start = *p;
1099   } else {
1100     // see if we can get the start_stack field from /proc/self/stat
1101     FILE *fp;
1102     int pid;
1103     char state;
1104     int ppid;
1105     int pgrp;
1106     int session;
1107     int nr;
1108     int tpgrp;
1109     unsigned long flags;
1110     unsigned long minflt;
1111     unsigned long cminflt;
1112     unsigned long majflt;
1113     unsigned long cmajflt;
1114     unsigned long utime;
1115     unsigned long stime;
1116     long cutime;
1117     long cstime;
1118     long prio;
1119     long nice;
1120     long junk;
1121     long it_real;
1122     uintptr_t start;
1123     uintptr_t vsize;
1124     intptr_t rss;
1125     uintptr_t rsslim;
1126     uintptr_t scodes;
1127     uintptr_t ecode;
1128     int i;
1129 
1130     // Figure what the primordial thread stack base is. Code is inspired
1131     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1132     // followed by command name surrounded by parentheses, state, etc.
1133     char stat[2048];
1134     int statlen;
1135 
1136     fp = fopen("/proc/self/stat", "r");
1137     if (fp) {
1138       statlen = fread(stat, 1, 2047, fp);
1139       stat[statlen] = '\0';
1140       fclose(fp);
1141 
1142       // Skip pid and the command string. Note that we could be dealing with
1143       // weird command names, e.g. user could decide to rename java launcher
1144       // to "java 1.4.2 :)", then the stat file would look like
1145       //                1234 (java 1.4.2 :)) R ... ...
1146       // We don't really need to know the command string, just find the last
1147       // occurrence of ")" and then start parsing from there. See bug 4726580.
1148       char * s = strrchr(stat, ')');
1149 
1150       i = 0;
1151       if (s) {
1152         // Skip blank chars
1153         do { s++; } while (s && isspace(*s));
1154 
1155 #define _UFM UINTX_FORMAT
1156 #define _DFM INTX_FORMAT
1157 
1158         //                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2
1159         //              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8
1160         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1161                    &state,          // 3  %c
1162                    &ppid,           // 4  %d
1163                    &pgrp,           // 5  %d
1164                    &session,        // 6  %d
1165                    &nr,             // 7  %d
1166                    &tpgrp,          // 8  %d
1167                    &flags,          // 9  %lu
1168                    &minflt,         // 10 %lu
1169                    &cminflt,        // 11 %lu
1170                    &majflt,         // 12 %lu
1171                    &cmajflt,        // 13 %lu
1172                    &utime,          // 14 %lu
1173                    &stime,          // 15 %lu
1174                    &cutime,         // 16 %ld
1175                    &cstime,         // 17 %ld
1176                    &prio,           // 18 %ld
1177                    &nice,           // 19 %ld
1178                    &junk,           // 20 %ld
1179                    &it_real,        // 21 %ld
1180                    &start,          // 22 UINTX_FORMAT
1181                    &vsize,          // 23 UINTX_FORMAT
1182                    &rss,            // 24 INTX_FORMAT
1183                    &rsslim,         // 25 UINTX_FORMAT
1184                    &scodes,         // 26 UINTX_FORMAT
1185                    &ecode,          // 27 UINTX_FORMAT
1186                    &stack_start);   // 28 UINTX_FORMAT
1187       }
1188 
1189 #undef _UFM
1190 #undef _DFM
1191 
1192       if (i != 28 - 2) {
1193         assert(false, "Bad conversion from /proc/self/stat");
1194         // product mode - assume we are the primordial thread, good luck in the
1195         // embedded case.
1196         warning("Can't detect primordial thread stack location - bad conversion");
1197         stack_start = (uintptr_t) &rlim;
1198       }
1199     } else {
1200       // For some reason we can't open /proc/self/stat (for example, running on
1201       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1202       // most cases, so don't abort:
1203       warning("Can't detect primordial thread stack location - no /proc/self/stat");
1204       stack_start = (uintptr_t) &rlim;
1205     }
1206   }
1207 
1208   // Now we have a pointer (stack_start) very close to the stack top, the
1209   // next thing to do is to figure out the exact location of stack top. We
1210   // can find out the virtual memory area that contains stack_start by
1211   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1212   // and its upper limit is the real stack top. (again, this would fail if
1213   // running inside chroot, because /proc may not exist.)
1214 
1215   uintptr_t stack_top;
1216   address low, high;
1217   if (find_vma((address)stack_start, &low, &high)) {
1218     // success, "high" is the true stack top. (ignore "low", because initial
1219     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1220     stack_top = (uintptr_t)high;
1221   } else {
1222     // failed, likely because /proc/self/maps does not exist
1223     warning("Can't detect primordial thread stack location - find_vma failed");
1224     // best effort: stack_start is normally within a few pages below the real
1225     // stack top, use it as stack top, and reduce stack size so we won't put
1226     // guard page outside stack.
1227     stack_top = stack_start;
1228     stack_size -= 16 * page_size();
1229   }
1230 
1231   // stack_top could be partially down the page so align it
1232   stack_top = align_up(stack_top, page_size());
1233 
1234   // Allowed stack value is minimum of max_size and what we derived from rlimit
1235   if (max_size > 0) {
1236     _initial_thread_stack_size = MIN2(max_size, stack_size);
1237   } else {
1238     // Accept the rlimit max, but if stack is unlimited then it will be huge, so
1239     // clamp it at 8MB as we do on Solaris
1240     _initial_thread_stack_size = MIN2(stack_size, 8*M);
1241   }
1242   _initial_thread_stack_size = align_down(_initial_thread_stack_size, page_size());
1243   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1244 
1245   assert(_initial_thread_stack_bottom < (address)stack_top, "overflow!");
1246 
1247   if (log_is_enabled(Info, os, thread)) {
1248     // See if we seem to be on primordial process thread
1249     bool primordial = uintptr_t(&rlim) > uintptr_t(_initial_thread_stack_bottom) &&
1250                       uintptr_t(&rlim) < stack_top;
1251 
1252     log_info(os, thread)("Capturing initial stack in %s thread: req. size: " SIZE_FORMAT "K, actual size: "
1253                          SIZE_FORMAT "K, top=" INTPTR_FORMAT ", bottom=" INTPTR_FORMAT,
1254                          primordial ? "primordial" : "user", max_size / K,  _initial_thread_stack_size / K,
1255                          stack_top, intptr_t(_initial_thread_stack_bottom));
1256   }
1257 }
1258 
1259 ////////////////////////////////////////////////////////////////////////////////
1260 // time support
1261 
1262 // Time since start-up in seconds to a fine granularity.
1263 // Used by VMSelfDestructTimer and the MemProfiler.
1264 double os::elapsedTime() {
1265 
1266   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1267 }
1268 
1269 jlong os::elapsed_counter() {
1270   return javaTimeNanos() - initial_time_count;
1271 }
1272 
1273 jlong os::elapsed_frequency() {
1274   return NANOSECS_PER_SEC; // nanosecond resolution
1275 }
1276 
1277 bool os::supports_vtime() { return true; }
1278 bool os::enable_vtime()   { return false; }
1279 bool os::vtime_enabled()  { return false; }
1280 
1281 double os::elapsedVTime() {
1282   struct rusage usage;
1283   int retval = getrusage(RUSAGE_THREAD, &usage);
1284   if (retval == 0) {
1285     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1286   } else {
1287     // better than nothing, but not much
1288     return elapsedTime();
1289   }
1290 }
1291 
1292 jlong os::javaTimeMillis() {
1293   timeval time;
1294   int status = gettimeofday(&time, NULL);
1295   assert(status != -1, "linux error");
1296   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1297 }
1298 
1299 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1300   timeval time;
1301   int status = gettimeofday(&time, NULL);
1302   assert(status != -1, "linux error");
1303   seconds = jlong(time.tv_sec);
1304   nanos = jlong(time.tv_usec) * 1000;
1305 }
1306 
1307 
1308 #ifndef CLOCK_MONOTONIC
1309   #define CLOCK_MONOTONIC (1)
1310 #endif
1311 
1312 void os::Linux::clock_init() {
1313   // we do dlopen's in this particular order due to bug in linux
1314   // dynamical loader (see 6348968) leading to crash on exit
1315   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1316   if (handle == NULL) {
1317     handle = dlopen("librt.so", RTLD_LAZY);
1318   }
1319 
1320   if (handle) {
1321     int (*clock_getres_func)(clockid_t, struct timespec*) =
1322            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1323     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1324            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1325     if (clock_getres_func && clock_gettime_func) {
1326       // See if monotonic clock is supported by the kernel. Note that some
1327       // early implementations simply return kernel jiffies (updated every
1328       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1329       // for nano time (though the monotonic property is still nice to have).
1330       // It's fixed in newer kernels, however clock_getres() still returns
1331       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1332       // resolution for now. Hopefully as people move to new kernels, this
1333       // won't be a problem.
1334       struct timespec res;
1335       struct timespec tp;
1336       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1337           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1338         // yes, monotonic clock is supported
1339         _clock_gettime = clock_gettime_func;
1340         return;
1341       } else {
1342         // close librt if there is no monotonic clock
1343         dlclose(handle);
1344       }
1345     }
1346   }
1347   warning("No monotonic clock was available - timed services may " \
1348           "be adversely affected if the time-of-day clock changes");
1349 }
1350 
1351 #ifndef SYS_clock_getres
1352   #if defined(X86) || defined(PPC64) || defined(S390)
1353     #define SYS_clock_getres AMD64_ONLY(229) IA32_ONLY(266) PPC64_ONLY(247) S390_ONLY(261)
1354     #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1355   #else
1356     #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1357     #define sys_clock_getres(x,y)  -1
1358   #endif
1359 #else
1360   #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1361 #endif
1362 
1363 void os::Linux::fast_thread_clock_init() {
1364   if (!UseLinuxPosixThreadCPUClocks) {
1365     return;
1366   }
1367   clockid_t clockid;
1368   struct timespec tp;
1369   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1370       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1371 
1372   // Switch to using fast clocks for thread cpu time if
1373   // the sys_clock_getres() returns 0 error code.
1374   // Note, that some kernels may support the current thread
1375   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1376   // returned by the pthread_getcpuclockid().
1377   // If the fast Posix clocks are supported then the sys_clock_getres()
1378   // must return at least tp.tv_sec == 0 which means a resolution
1379   // better than 1 sec. This is extra check for reliability.
1380 
1381   if (pthread_getcpuclockid_func &&
1382       pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1383       sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1384     _supports_fast_thread_cpu_time = true;
1385     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1386   }
1387 }
1388 
1389 jlong os::javaTimeNanos() {
1390   if (os::supports_monotonic_clock()) {
1391     struct timespec tp;
1392     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1393     assert(status == 0, "gettime error");
1394     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1395     return result;
1396   } else {
1397     timeval time;
1398     int status = gettimeofday(&time, NULL);
1399     assert(status != -1, "linux error");
1400     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1401     return 1000 * usecs;
1402   }
1403 }
1404 
1405 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1406   if (os::supports_monotonic_clock()) {
1407     info_ptr->max_value = ALL_64_BITS;
1408 
1409     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1410     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1411     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1412   } else {
1413     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1414     info_ptr->max_value = ALL_64_BITS;
1415 
1416     // gettimeofday is a real time clock so it skips
1417     info_ptr->may_skip_backward = true;
1418     info_ptr->may_skip_forward = true;
1419   }
1420 
1421   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1422 }
1423 
1424 // Return the real, user, and system times in seconds from an
1425 // arbitrary fixed point in the past.
1426 bool os::getTimesSecs(double* process_real_time,
1427                       double* process_user_time,
1428                       double* process_system_time) {
1429   struct tms ticks;
1430   clock_t real_ticks = times(&ticks);
1431 
1432   if (real_ticks == (clock_t) (-1)) {
1433     return false;
1434   } else {
1435     double ticks_per_second = (double) clock_tics_per_sec;
1436     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1437     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1438     *process_real_time = ((double) real_ticks) / ticks_per_second;
1439 
1440     return true;
1441   }
1442 }
1443 
1444 
1445 char * os::local_time_string(char *buf, size_t buflen) {
1446   struct tm t;
1447   time_t long_time;
1448   time(&long_time);
1449   localtime_r(&long_time, &t);
1450   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1451                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1452                t.tm_hour, t.tm_min, t.tm_sec);
1453   return buf;
1454 }
1455 
1456 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1457   return localtime_r(clock, res);
1458 }
1459 
1460 ////////////////////////////////////////////////////////////////////////////////
1461 // runtime exit support
1462 
1463 // Note: os::shutdown() might be called very early during initialization, or
1464 // called from signal handler. Before adding something to os::shutdown(), make
1465 // sure it is async-safe and can handle partially initialized VM.
1466 void os::shutdown() {
1467 
1468   // allow PerfMemory to attempt cleanup of any persistent resources
1469   perfMemory_exit();
1470 
1471   // needs to remove object in file system
1472   AttachListener::abort();
1473 
1474   // flush buffered output, finish log files
1475   ostream_abort();
1476 
1477   // Check for abort hook
1478   abort_hook_t abort_hook = Arguments::abort_hook();
1479   if (abort_hook != NULL) {
1480     abort_hook();
1481   }
1482 
1483 }
1484 
1485 // Note: os::abort() might be called very early during initialization, or
1486 // called from signal handler. Before adding something to os::abort(), make
1487 // sure it is async-safe and can handle partially initialized VM.
1488 void os::abort(bool dump_core, void* siginfo, const void* context) {
1489   os::shutdown();
1490   if (dump_core) {
1491     if (DumpPrivateMappingsInCore) {
1492       ClassLoader::close_jrt_image();
1493     }
1494 #ifndef PRODUCT
1495     fdStream out(defaultStream::output_fd());
1496     out.print_raw("Current thread is ");
1497     char buf[16];
1498     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1499     out.print_raw_cr(buf);
1500     out.print_raw_cr("Dumping core ...");
1501 #endif
1502     ::abort(); // dump core
1503   }
1504 
1505   ::exit(1);
1506 }
1507 
1508 // Die immediately, no exit hook, no abort hook, no cleanup.
1509 void os::die() {
1510   ::abort();
1511 }
1512 
1513 
1514 // This method is a copy of JDK's sysGetLastErrorString
1515 // from src/solaris/hpi/src/system_md.c
1516 
1517 size_t os::lasterror(char *buf, size_t len) {
1518   if (errno == 0)  return 0;
1519 
1520   const char *s = os::strerror(errno);
1521   size_t n = ::strlen(s);
1522   if (n >= len) {
1523     n = len - 1;
1524   }
1525   ::strncpy(buf, s, n);
1526   buf[n] = '\0';
1527   return n;
1528 }
1529 
1530 // thread_id is kernel thread id (similar to Solaris LWP id)
1531 intx os::current_thread_id() { return os::Linux::gettid(); }
1532 int os::current_process_id() {
1533   return ::getpid();
1534 }
1535 
1536 // DLL functions
1537 
1538 const char* os::dll_file_extension() { return ".so"; }
1539 
1540 // This must be hard coded because it's the system's temporary
1541 // directory not the java application's temp directory, ala java.io.tmpdir.
1542 const char* os::get_temp_directory() { return "/tmp"; }
1543 
1544 static bool file_exists(const char* filename) {
1545   struct stat statbuf;
1546   if (filename == NULL || strlen(filename) == 0) {
1547     return false;
1548   }
1549   return os::stat(filename, &statbuf) == 0;
1550 }
1551 
1552 // check if addr is inside libjvm.so
1553 bool os::address_is_in_vm(address addr) {
1554   static address libjvm_base_addr;
1555   Dl_info dlinfo;
1556 
1557   if (libjvm_base_addr == NULL) {
1558     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1559       libjvm_base_addr = (address)dlinfo.dli_fbase;
1560     }
1561     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1562   }
1563 
1564   if (dladdr((void *)addr, &dlinfo) != 0) {
1565     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1566   }
1567 
1568   return false;
1569 }
1570 
1571 bool os::dll_address_to_function_name(address addr, char *buf,
1572                                       int buflen, int *offset,
1573                                       bool demangle) {
1574   // buf is not optional, but offset is optional
1575   assert(buf != NULL, "sanity check");
1576 
1577   Dl_info dlinfo;
1578 
1579   if (dladdr((void*)addr, &dlinfo) != 0) {
1580     // see if we have a matching symbol
1581     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1582       if (!(demangle && Decoder::demangle(dlinfo.dli_sname, buf, buflen))) {
1583         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1584       }
1585       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1586       return true;
1587     }
1588     // no matching symbol so try for just file info
1589     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1590       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1591                           buf, buflen, offset, dlinfo.dli_fname, demangle)) {
1592         return true;
1593       }
1594     }
1595   }
1596 
1597   buf[0] = '\0';
1598   if (offset != NULL) *offset = -1;
1599   return false;
1600 }
1601 
1602 struct _address_to_library_name {
1603   address addr;          // input : memory address
1604   size_t  buflen;        //         size of fname
1605   char*   fname;         // output: library name
1606   address base;          //         library base addr
1607 };
1608 
1609 static int address_to_library_name_callback(struct dl_phdr_info *info,
1610                                             size_t size, void *data) {
1611   int i;
1612   bool found = false;
1613   address libbase = NULL;
1614   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1615 
1616   // iterate through all loadable segments
1617   for (i = 0; i < info->dlpi_phnum; i++) {
1618     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1619     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1620       // base address of a library is the lowest address of its loaded
1621       // segments.
1622       if (libbase == NULL || libbase > segbase) {
1623         libbase = segbase;
1624       }
1625       // see if 'addr' is within current segment
1626       if (segbase <= d->addr &&
1627           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1628         found = true;
1629       }
1630     }
1631   }
1632 
1633   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1634   // so dll_address_to_library_name() can fall through to use dladdr() which
1635   // can figure out executable name from argv[0].
1636   if (found && info->dlpi_name && info->dlpi_name[0]) {
1637     d->base = libbase;
1638     if (d->fname) {
1639       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1640     }
1641     return 1;
1642   }
1643   return 0;
1644 }
1645 
1646 bool os::dll_address_to_library_name(address addr, char* buf,
1647                                      int buflen, int* offset) {
1648   // buf is not optional, but offset is optional
1649   assert(buf != NULL, "sanity check");
1650 
1651   Dl_info dlinfo;
1652   struct _address_to_library_name data;
1653 
1654   // There is a bug in old glibc dladdr() implementation that it could resolve
1655   // to wrong library name if the .so file has a base address != NULL. Here
1656   // we iterate through the program headers of all loaded libraries to find
1657   // out which library 'addr' really belongs to. This workaround can be
1658   // removed once the minimum requirement for glibc is moved to 2.3.x.
1659   data.addr = addr;
1660   data.fname = buf;
1661   data.buflen = buflen;
1662   data.base = NULL;
1663   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1664 
1665   if (rslt) {
1666     // buf already contains library name
1667     if (offset) *offset = addr - data.base;
1668     return true;
1669   }
1670   if (dladdr((void*)addr, &dlinfo) != 0) {
1671     if (dlinfo.dli_fname != NULL) {
1672       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1673     }
1674     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1675       *offset = addr - (address)dlinfo.dli_fbase;
1676     }
1677     return true;
1678   }
1679 
1680   buf[0] = '\0';
1681   if (offset) *offset = -1;
1682   return false;
1683 }
1684 
1685 // Loads .dll/.so and
1686 // in case of error it checks if .dll/.so was built for the
1687 // same architecture as Hotspot is running on
1688 
1689 
1690 // Remember the stack's state. The Linux dynamic linker will change
1691 // the stack to 'executable' at most once, so we must safepoint only once.
1692 bool os::Linux::_stack_is_executable = false;
1693 
1694 // VM operation that loads a library.  This is necessary if stack protection
1695 // of the Java stacks can be lost during loading the library.  If we
1696 // do not stop the Java threads, they can stack overflow before the stacks
1697 // are protected again.
1698 class VM_LinuxDllLoad: public VM_Operation {
1699  private:
1700   const char *_filename;
1701   char *_ebuf;
1702   int _ebuflen;
1703   void *_lib;
1704  public:
1705   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1706     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1707   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1708   void doit() {
1709     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1710     os::Linux::_stack_is_executable = true;
1711   }
1712   void* loaded_library() { return _lib; }
1713 };
1714 
1715 void * os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1716   void * result = NULL;
1717   bool load_attempted = false;
1718 
1719   // Check whether the library to load might change execution rights
1720   // of the stack. If they are changed, the protection of the stack
1721   // guard pages will be lost. We need a safepoint to fix this.
1722   //
1723   // See Linux man page execstack(8) for more info.
1724   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1725     if (!ElfFile::specifies_noexecstack(filename)) {
1726       if (!is_init_completed()) {
1727         os::Linux::_stack_is_executable = true;
1728         // This is OK - No Java threads have been created yet, and hence no
1729         // stack guard pages to fix.
1730         //
1731         // Dynamic loader will make all stacks executable after
1732         // this function returns, and will not do that again.
1733         assert(Threads::number_of_threads() == 0, "no Java threads should exist yet.");
1734       } else {
1735         warning("You have loaded library %s which might have disabled stack guard. "
1736                 "The VM will try to fix the stack guard now.\n"
1737                 "It's highly recommended that you fix the library with "
1738                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1739                 filename);
1740 
1741         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1742         JavaThread *jt = JavaThread::current();
1743         if (jt->thread_state() != _thread_in_native) {
1744           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1745           // that requires ExecStack. Cannot enter safe point. Let's give up.
1746           warning("Unable to fix stack guard. Giving up.");
1747         } else {
1748           if (!LoadExecStackDllInVMThread) {
1749             // This is for the case where the DLL has an static
1750             // constructor function that executes JNI code. We cannot
1751             // load such DLLs in the VMThread.
1752             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1753           }
1754 
1755           ThreadInVMfromNative tiv(jt);
1756           debug_only(VMNativeEntryWrapper vew;)
1757 
1758           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1759           VMThread::execute(&op);
1760           if (LoadExecStackDllInVMThread) {
1761             result = op.loaded_library();
1762           }
1763           load_attempted = true;
1764         }
1765       }
1766     }
1767   }
1768 
1769   if (!load_attempted) {
1770     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1771   }
1772 
1773   if (result != NULL) {
1774     // Successful loading
1775     return result;
1776   }
1777 
1778   Elf32_Ehdr elf_head;
1779   int diag_msg_max_length=ebuflen-strlen(ebuf);
1780   char* diag_msg_buf=ebuf+strlen(ebuf);
1781 
1782   if (diag_msg_max_length==0) {
1783     // No more space in ebuf for additional diagnostics message
1784     return NULL;
1785   }
1786 
1787 
1788   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1789 
1790   if (file_descriptor < 0) {
1791     // Can't open library, report dlerror() message
1792     return NULL;
1793   }
1794 
1795   bool failed_to_read_elf_head=
1796     (sizeof(elf_head)!=
1797      (::read(file_descriptor, &elf_head,sizeof(elf_head))));
1798 
1799   ::close(file_descriptor);
1800   if (failed_to_read_elf_head) {
1801     // file i/o error - report dlerror() msg
1802     return NULL;
1803   }
1804 
1805   typedef struct {
1806     Elf32_Half    code;         // Actual value as defined in elf.h
1807     Elf32_Half    compat_class; // Compatibility of archs at VM's sense
1808     unsigned char elf_class;    // 32 or 64 bit
1809     unsigned char endianess;    // MSB or LSB
1810     char*         name;         // String representation
1811   } arch_t;
1812 
1813 #ifndef EM_486
1814   #define EM_486          6               /* Intel 80486 */
1815 #endif
1816 #ifndef EM_AARCH64
1817   #define EM_AARCH64    183               /* ARM AARCH64 */
1818 #endif
1819 
1820   static const arch_t arch_array[]={
1821     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1822     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1823     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1824     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1825     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1826     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1827     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1828     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1829 #if defined(VM_LITTLE_ENDIAN)
1830     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2LSB, (char*)"Power PC 64 LE"},
1831     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2LSB, (char*)"SuperH"},
1832 #else
1833     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1834     {EM_SH,          EM_SH,      ELFCLASS32, ELFDATA2MSB, (char*)"SuperH BE"},
1835 #endif
1836     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1837     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1838     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1839     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1840     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1841     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1842     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"},
1843     {EM_AARCH64,     EM_AARCH64, ELFCLASS64, ELFDATA2LSB, (char*)"AARCH64"},
1844   };
1845 
1846 #if  (defined IA32)
1847   static  Elf32_Half running_arch_code=EM_386;
1848 #elif   (defined AMD64)
1849   static  Elf32_Half running_arch_code=EM_X86_64;
1850 #elif  (defined IA64)
1851   static  Elf32_Half running_arch_code=EM_IA_64;
1852 #elif  (defined __sparc) && (defined _LP64)
1853   static  Elf32_Half running_arch_code=EM_SPARCV9;
1854 #elif  (defined __sparc) && (!defined _LP64)
1855   static  Elf32_Half running_arch_code=EM_SPARC;
1856 #elif  (defined __powerpc64__)
1857   static  Elf32_Half running_arch_code=EM_PPC64;
1858 #elif  (defined __powerpc__)
1859   static  Elf32_Half running_arch_code=EM_PPC;
1860 #elif  (defined AARCH64)
1861   static  Elf32_Half running_arch_code=EM_AARCH64;
1862 #elif  (defined ARM)
1863   static  Elf32_Half running_arch_code=EM_ARM;
1864 #elif  (defined S390)
1865   static  Elf32_Half running_arch_code=EM_S390;
1866 #elif  (defined ALPHA)
1867   static  Elf32_Half running_arch_code=EM_ALPHA;
1868 #elif  (defined MIPSEL)
1869   static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1870 #elif  (defined PARISC)
1871   static  Elf32_Half running_arch_code=EM_PARISC;
1872 #elif  (defined MIPS)
1873   static  Elf32_Half running_arch_code=EM_MIPS;
1874 #elif  (defined M68K)
1875   static  Elf32_Half running_arch_code=EM_68K;
1876 #elif  (defined SH)
1877   static  Elf32_Half running_arch_code=EM_SH;
1878 #else
1879     #error Method os::dll_load requires that one of following is defined:\
1880         AARCH64, ALPHA, ARM, AMD64, IA32, IA64, M68K, MIPS, MIPSEL, PARISC, __powerpc__, __powerpc64__, S390, SH, __sparc
1881 #endif
1882 
1883   // Identify compatability class for VM's architecture and library's architecture
1884   // Obtain string descriptions for architectures
1885 
1886   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1887   int running_arch_index=-1;
1888 
1889   for (unsigned int i=0; i < ARRAY_SIZE(arch_array); i++) {
1890     if (running_arch_code == arch_array[i].code) {
1891       running_arch_index    = i;
1892     }
1893     if (lib_arch.code == arch_array[i].code) {
1894       lib_arch.compat_class = arch_array[i].compat_class;
1895       lib_arch.name         = arch_array[i].name;
1896     }
1897   }
1898 
1899   assert(running_arch_index != -1,
1900          "Didn't find running architecture code (running_arch_code) in arch_array");
1901   if (running_arch_index == -1) {
1902     // Even though running architecture detection failed
1903     // we may still continue with reporting dlerror() message
1904     return NULL;
1905   }
1906 
1907   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1908     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1909     return NULL;
1910   }
1911 
1912 #ifndef S390
1913   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1914     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1915     return NULL;
1916   }
1917 #endif // !S390
1918 
1919   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1920     if (lib_arch.name!=NULL) {
1921       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1922                  " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1923                  lib_arch.name, arch_array[running_arch_index].name);
1924     } else {
1925       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1926                  " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1927                  lib_arch.code,
1928                  arch_array[running_arch_index].name);
1929     }
1930   }
1931 
1932   return NULL;
1933 }
1934 
1935 void * os::Linux::dlopen_helper(const char *filename, char *ebuf,
1936                                 int ebuflen) {
1937   void * result = ::dlopen(filename, RTLD_LAZY);
1938   if (result == NULL) {
1939     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
1940     ebuf[ebuflen-1] = '\0';
1941   }
1942   return result;
1943 }
1944 
1945 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf,
1946                                        int ebuflen) {
1947   void * result = NULL;
1948   if (LoadExecStackDllInVMThread) {
1949     result = dlopen_helper(filename, ebuf, ebuflen);
1950   }
1951 
1952   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
1953   // library that requires an executable stack, or which does not have this
1954   // stack attribute set, dlopen changes the stack attribute to executable. The
1955   // read protection of the guard pages gets lost.
1956   //
1957   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
1958   // may have been queued at the same time.
1959 
1960   if (!_stack_is_executable) {
1961     for (JavaThreadIteratorWithHandle jtiwh; JavaThread *jt = jtiwh.next(); ) {
1962       if (!jt->stack_guard_zone_unused() &&     // Stack not yet fully initialized
1963           jt->stack_guards_enabled()) {         // No pending stack overflow exceptions
1964         if (!os::guard_memory((char *)jt->stack_end(), jt->stack_guard_zone_size())) {
1965           warning("Attempt to reguard stack yellow zone failed.");
1966         }
1967       }
1968     }
1969   }
1970 
1971   return result;
1972 }
1973 
1974 void* os::dll_lookup(void* handle, const char* name) {
1975   void* res = dlsym(handle, name);
1976   return res;
1977 }
1978 
1979 void* os::get_default_process_handle() {
1980   return (void*)::dlopen(NULL, RTLD_LAZY);
1981 }
1982 
1983 static bool _print_ascii_file(const char* filename, outputStream* st, const char* hdr = NULL) {
1984   int fd = ::open(filename, O_RDONLY);
1985   if (fd == -1) {
1986     return false;
1987   }
1988 
1989   if (hdr != NULL) {
1990     st->print_cr("%s", hdr);
1991   }
1992 
1993   char buf[33];
1994   int bytes;
1995   buf[32] = '\0';
1996   while ((bytes = ::read(fd, buf, sizeof(buf)-1)) > 0) {
1997     st->print_raw(buf, bytes);
1998   }
1999 
2000   ::close(fd);
2001 
2002   return true;
2003 }
2004 
2005 void os::print_dll_info(outputStream *st) {
2006   st->print_cr("Dynamic libraries:");
2007 
2008   char fname[32];
2009   pid_t pid = os::Linux::gettid();
2010 
2011   jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2012 
2013   if (!_print_ascii_file(fname, st)) {
2014     st->print("Can not get library information for pid = %d\n", pid);
2015   }
2016 }
2017 
2018 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
2019   FILE *procmapsFile = NULL;
2020 
2021   // Open the procfs maps file for the current process
2022   if ((procmapsFile = fopen("/proc/self/maps", "r")) != NULL) {
2023     // Allocate PATH_MAX for file name plus a reasonable size for other fields.
2024     char line[PATH_MAX + 100];
2025 
2026     // Read line by line from 'file'
2027     while (fgets(line, sizeof(line), procmapsFile) != NULL) {
2028       u8 base, top, offset, inode;
2029       char permissions[5];
2030       char device[6];
2031       char name[PATH_MAX + 1];
2032 
2033       // Parse fields from line
2034       sscanf(line, UINT64_FORMAT_X "-" UINT64_FORMAT_X " %4s " UINT64_FORMAT_X " %7s " INT64_FORMAT " %s",
2035              &base, &top, permissions, &offset, device, &inode, name);
2036 
2037       // Filter by device id '00:00' so that we only get file system mapped files.
2038       if (strcmp(device, "00:00") != 0) {
2039 
2040         // Call callback with the fields of interest
2041         if(callback(name, (address)base, (address)top, param)) {
2042           // Oops abort, callback aborted
2043           fclose(procmapsFile);
2044           return 1;
2045         }
2046       }
2047     }
2048     fclose(procmapsFile);
2049   }
2050   return 0;
2051 }
2052 
2053 void os::print_os_info_brief(outputStream* st) {
2054   os::Linux::print_distro_info(st);
2055 
2056   os::Posix::print_uname_info(st);
2057 
2058   os::Linux::print_libversion_info(st);
2059 
2060 }
2061 
2062 void os::print_os_info(outputStream* st) {
2063   st->print("OS:");
2064 
2065   os::Linux::print_distro_info(st);
2066 
2067   os::Posix::print_uname_info(st);
2068 
2069   // Print warning if unsafe chroot environment detected
2070   if (unsafe_chroot_detected) {
2071     st->print("WARNING!! ");
2072     st->print_cr("%s", unstable_chroot_error);
2073   }
2074 
2075   os::Linux::print_libversion_info(st);
2076 
2077   os::Posix::print_rlimit_info(st);
2078 
2079   os::Posix::print_load_average(st);
2080 
2081   os::Linux::print_full_memory_info(st);
2082 
2083   os::Linux::print_proc_sys_info(st);
2084 
2085   os::Linux::print_ld_preload_file(st);
2086 
2087   os::Linux::print_container_info(st);
2088 
2089   VM_Version::print_platform_virtualization_info(st);
2090 
2091   os::Linux::print_steal_info(st);
2092 }
2093 
2094 // Try to identify popular distros.
2095 // Most Linux distributions have a /etc/XXX-release file, which contains
2096 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2097 // file that also contains the OS version string. Some have more than one
2098 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2099 // /etc/redhat-release.), so the order is important.
2100 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2101 // their own specific XXX-release file as well as a redhat-release file.
2102 // Because of this the XXX-release file needs to be searched for before the
2103 // redhat-release file.
2104 // Since Red Hat and SuSE have an lsb-release file that is not very descriptive the
2105 // search for redhat-release / SuSE-release needs to be before lsb-release.
2106 // Since the lsb-release file is the new standard it needs to be searched
2107 // before the older style release files.
2108 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2109 // next to last resort.  The os-release file is a new standard that contains
2110 // distribution information and the system-release file seems to be an old
2111 // standard that has been replaced by the lsb-release and os-release files.
2112 // Searching for the debian_version file is the last resort.  It contains
2113 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2114 // "Debian " is printed before the contents of the debian_version file.
2115 
2116 const char* distro_files[] = {
2117   "/etc/oracle-release",
2118   "/etc/mandriva-release",
2119   "/etc/mandrake-release",
2120   "/etc/sun-release",
2121   "/etc/redhat-release",
2122   "/etc/SuSE-release",
2123   "/etc/lsb-release",
2124   "/etc/turbolinux-release",
2125   "/etc/gentoo-release",
2126   "/etc/ltib-release",
2127   "/etc/angstrom-version",
2128   "/etc/system-release",
2129   "/etc/os-release",
2130   NULL };
2131 
2132 void os::Linux::print_distro_info(outputStream* st) {
2133   for (int i = 0;; i++) {
2134     const char* file = distro_files[i];
2135     if (file == NULL) {
2136       break;  // done
2137     }
2138     // If file prints, we found it.
2139     if (_print_ascii_file(file, st)) {
2140       return;
2141     }
2142   }
2143 
2144   if (file_exists("/etc/debian_version")) {
2145     st->print("Debian ");
2146     _print_ascii_file("/etc/debian_version", st);
2147   } else {
2148     st->print("Linux");
2149   }
2150   st->cr();
2151 }
2152 
2153 static void parse_os_info_helper(FILE* fp, char* distro, size_t length, bool get_first_line) {
2154   char buf[256];
2155   while (fgets(buf, sizeof(buf), fp)) {
2156     // Edit out extra stuff in expected format
2157     if (strstr(buf, "DISTRIB_DESCRIPTION=") != NULL || strstr(buf, "PRETTY_NAME=") != NULL) {
2158       char* ptr = strstr(buf, "\"");  // the name is in quotes
2159       if (ptr != NULL) {
2160         ptr++; // go beyond first quote
2161         char* nl = strchr(ptr, '\"');
2162         if (nl != NULL) *nl = '\0';
2163         strncpy(distro, ptr, length);
2164       } else {
2165         ptr = strstr(buf, "=");
2166         ptr++; // go beyond equals then
2167         char* nl = strchr(ptr, '\n');
2168         if (nl != NULL) *nl = '\0';
2169         strncpy(distro, ptr, length);
2170       }
2171       return;
2172     } else if (get_first_line) {
2173       char* nl = strchr(buf, '\n');
2174       if (nl != NULL) *nl = '\0';
2175       strncpy(distro, buf, length);
2176       return;
2177     }
2178   }
2179   // print last line and close
2180   char* nl = strchr(buf, '\n');
2181   if (nl != NULL) *nl = '\0';
2182   strncpy(distro, buf, length);
2183 }
2184 
2185 static void parse_os_info(char* distro, size_t length, const char* file) {
2186   FILE* fp = fopen(file, "r");
2187   if (fp != NULL) {
2188     // if suse format, print out first line
2189     bool get_first_line = (strcmp(file, "/etc/SuSE-release") == 0);
2190     parse_os_info_helper(fp, distro, length, get_first_line);
2191     fclose(fp);
2192   }
2193 }
2194 
2195 void os::get_summary_os_info(char* buf, size_t buflen) {
2196   for (int i = 0;; i++) {
2197     const char* file = distro_files[i];
2198     if (file == NULL) {
2199       break; // ran out of distro_files
2200     }
2201     if (file_exists(file)) {
2202       parse_os_info(buf, buflen, file);
2203       return;
2204     }
2205   }
2206   // special case for debian
2207   if (file_exists("/etc/debian_version")) {
2208     strncpy(buf, "Debian ", buflen);
2209     if (buflen > 7) {
2210       parse_os_info(&buf[7], buflen-7, "/etc/debian_version");
2211     }
2212   } else {
2213     strncpy(buf, "Linux", buflen);
2214   }
2215 }
2216 
2217 void os::Linux::print_libversion_info(outputStream* st) {
2218   // libc, pthread
2219   st->print("libc:");
2220   st->print("%s ", os::Linux::glibc_version());
2221   st->print("%s ", os::Linux::libpthread_version());
2222   st->cr();
2223 }
2224 
2225 void os::Linux::print_proc_sys_info(outputStream* st) {
2226   st->cr();
2227   st->print_cr("/proc/sys/kernel/threads-max (system-wide limit on the number of threads):");
2228   _print_ascii_file("/proc/sys/kernel/threads-max", st);
2229   st->cr();
2230   st->cr();
2231 
2232   st->print_cr("/proc/sys/vm/max_map_count (maximum number of memory map areas a process may have):");
2233   _print_ascii_file("/proc/sys/vm/max_map_count", st);
2234   st->cr();
2235   st->cr();
2236 
2237   st->print_cr("/proc/sys/kernel/pid_max (system-wide limit on number of process identifiers):");
2238   _print_ascii_file("/proc/sys/kernel/pid_max", st);
2239   st->cr();
2240   st->cr();
2241 }
2242 
2243 void os::Linux::print_full_memory_info(outputStream* st) {
2244   st->print("\n/proc/meminfo:\n");
2245   _print_ascii_file("/proc/meminfo", st);
2246   st->cr();
2247 }
2248 
2249 void os::Linux::print_ld_preload_file(outputStream* st) {
2250   _print_ascii_file("/etc/ld.so.preload", st, "\n/etc/ld.so.preload:");
2251   st->cr();
2252 }
2253 
2254 void os::Linux::print_container_info(outputStream* st) {
2255   if (!OSContainer::is_containerized()) {
2256     return;
2257   }
2258 
2259   st->print("container (cgroup) information:\n");
2260 
2261   const char *p_ct = OSContainer::container_type();
2262   st->print("container_type: %s\n", p_ct != NULL ? p_ct : "failed");
2263 
2264   char *p = OSContainer::cpu_cpuset_cpus();
2265   st->print("cpu_cpuset_cpus: %s\n", p != NULL ? p : "failed");
2266   free(p);
2267 
2268   p = OSContainer::cpu_cpuset_memory_nodes();
2269   st->print("cpu_memory_nodes: %s\n", p != NULL ? p : "failed");
2270   free(p);
2271 
2272   int i = OSContainer::active_processor_count();
2273   if (i > 0) {
2274     st->print("active_processor_count: %d\n", i);
2275   } else {
2276     st->print("active_processor_count: failed\n");
2277   }
2278 
2279   i = OSContainer::cpu_quota();
2280   st->print("cpu_quota: %d\n", i);
2281 
2282   i = OSContainer::cpu_period();
2283   st->print("cpu_period: %d\n", i);
2284 
2285   i = OSContainer::cpu_shares();
2286   st->print("cpu_shares: %d\n", i);
2287 
2288   jlong j = OSContainer::memory_limit_in_bytes();
2289   st->print("memory_limit_in_bytes: " JLONG_FORMAT "\n", j);
2290 
2291   j = OSContainer::memory_and_swap_limit_in_bytes();
2292   st->print("memory_and_swap_limit_in_bytes: " JLONG_FORMAT "\n", j);
2293 
2294   j = OSContainer::memory_soft_limit_in_bytes();
2295   st->print("memory_soft_limit_in_bytes: " JLONG_FORMAT "\n", j);
2296 
2297   j = OSContainer::OSContainer::memory_usage_in_bytes();
2298   st->print("memory_usage_in_bytes: " JLONG_FORMAT "\n", j);
2299 
2300   j = OSContainer::OSContainer::memory_max_usage_in_bytes();
2301   st->print("memory_max_usage_in_bytes: " JLONG_FORMAT "\n", j);
2302   st->cr();
2303 }
2304 
2305 void os::Linux::print_steal_info(outputStream* st) {
2306   if (has_initial_tick_info) {
2307     CPUPerfTicks pticks;
2308     bool res = os::Linux::get_tick_information(&pticks, -1);
2309 
2310     if (res && pticks.has_steal_ticks) {
2311       uint64_t steal_ticks_difference = pticks.steal - initial_steal_ticks;
2312       uint64_t total_ticks_difference = pticks.total - initial_total_ticks;
2313       double steal_ticks_perc = 0.0;
2314       if (total_ticks_difference != 0) {
2315         steal_ticks_perc = (double) steal_ticks_difference / total_ticks_difference;
2316       }
2317       st->print_cr("Steal ticks since vm start: " UINT64_FORMAT, steal_ticks_difference);
2318       st->print_cr("Steal ticks percentage since vm start:%7.3f", steal_ticks_perc);
2319     }
2320   }
2321 }
2322 
2323 void os::print_memory_info(outputStream* st) {
2324 
2325   st->print("Memory:");
2326   st->print(" %dk page", os::vm_page_size()>>10);
2327 
2328   // values in struct sysinfo are "unsigned long"
2329   struct sysinfo si;
2330   sysinfo(&si);
2331 
2332   st->print(", physical " UINT64_FORMAT "k",
2333             os::physical_memory() >> 10);
2334   st->print("(" UINT64_FORMAT "k free)",
2335             os::available_memory() >> 10);
2336   st->print(", swap " UINT64_FORMAT "k",
2337             ((jlong)si.totalswap * si.mem_unit) >> 10);
2338   st->print("(" UINT64_FORMAT "k free)",
2339             ((jlong)si.freeswap * si.mem_unit) >> 10);
2340   st->cr();
2341 }
2342 
2343 // Print the first "model name" line and the first "flags" line
2344 // that we find and nothing more. We assume "model name" comes
2345 // before "flags" so if we find a second "model name", then the
2346 // "flags" field is considered missing.
2347 static bool print_model_name_and_flags(outputStream* st, char* buf, size_t buflen) {
2348 #if defined(IA32) || defined(AMD64)
2349   // Other platforms have less repetitive cpuinfo files
2350   FILE *fp = fopen("/proc/cpuinfo", "r");
2351   if (fp) {
2352     while (!feof(fp)) {
2353       if (fgets(buf, buflen, fp)) {
2354         // Assume model name comes before flags
2355         bool model_name_printed = false;
2356         if (strstr(buf, "model name") != NULL) {
2357           if (!model_name_printed) {
2358             st->print_raw("CPU Model and flags from /proc/cpuinfo:\n");
2359             st->print_raw(buf);
2360             model_name_printed = true;
2361           } else {
2362             // model name printed but not flags?  Odd, just return
2363             fclose(fp);
2364             return true;
2365           }
2366         }
2367         // print the flags line too
2368         if (strstr(buf, "flags") != NULL) {
2369           st->print_raw(buf);
2370           fclose(fp);
2371           return true;
2372         }
2373       }
2374     }
2375     fclose(fp);
2376   }
2377 #endif // x86 platforms
2378   return false;
2379 }
2380 
2381 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
2382   // Only print the model name if the platform provides this as a summary
2383   if (!print_model_name_and_flags(st, buf, buflen)) {
2384     st->print("\n/proc/cpuinfo:\n");
2385     if (!_print_ascii_file("/proc/cpuinfo", st)) {
2386       st->print_cr("  <Not Available>");
2387     }
2388   }
2389 }
2390 
2391 #if defined(AMD64) || defined(IA32) || defined(X32)
2392 const char* search_string = "model name";
2393 #elif defined(M68K)
2394 const char* search_string = "CPU";
2395 #elif defined(PPC64)
2396 const char* search_string = "cpu";
2397 #elif defined(S390)
2398 const char* search_string = "machine =";
2399 #elif defined(SPARC)
2400 const char* search_string = "cpu";
2401 #else
2402 const char* search_string = "Processor";
2403 #endif
2404 
2405 // Parses the cpuinfo file for string representing the model name.
2406 void os::get_summary_cpu_info(char* cpuinfo, size_t length) {
2407   FILE* fp = fopen("/proc/cpuinfo", "r");
2408   if (fp != NULL) {
2409     while (!feof(fp)) {
2410       char buf[256];
2411       if (fgets(buf, sizeof(buf), fp)) {
2412         char* start = strstr(buf, search_string);
2413         if (start != NULL) {
2414           char *ptr = start + strlen(search_string);
2415           char *end = buf + strlen(buf);
2416           while (ptr != end) {
2417              // skip whitespace and colon for the rest of the name.
2418              if (*ptr != ' ' && *ptr != '\t' && *ptr != ':') {
2419                break;
2420              }
2421              ptr++;
2422           }
2423           if (ptr != end) {
2424             // reasonable string, get rid of newline and keep the rest
2425             char* nl = strchr(buf, '\n');
2426             if (nl != NULL) *nl = '\0';
2427             strncpy(cpuinfo, ptr, length);
2428             fclose(fp);
2429             return;
2430           }
2431         }
2432       }
2433     }
2434     fclose(fp);
2435   }
2436   // cpuinfo not found or parsing failed, just print generic string.  The entire
2437   // /proc/cpuinfo file will be printed later in the file (or enough of it for x86)
2438 #if   defined(AARCH64)
2439   strncpy(cpuinfo, "AArch64", length);
2440 #elif defined(AMD64)
2441   strncpy(cpuinfo, "x86_64", length);
2442 #elif defined(ARM)  // Order wrt. AARCH64 is relevant!
2443   strncpy(cpuinfo, "ARM", length);
2444 #elif defined(IA32)
2445   strncpy(cpuinfo, "x86_32", length);
2446 #elif defined(IA64)
2447   strncpy(cpuinfo, "IA64", length);
2448 #elif defined(PPC)
2449   strncpy(cpuinfo, "PPC64", length);
2450 #elif defined(S390)
2451   strncpy(cpuinfo, "S390", length);
2452 #elif defined(SPARC)
2453   strncpy(cpuinfo, "sparcv9", length);
2454 #elif defined(ZERO_LIBARCH)
2455   strncpy(cpuinfo, ZERO_LIBARCH, length);
2456 #else
2457   strncpy(cpuinfo, "unknown", length);
2458 #endif
2459 }
2460 
2461 static void print_signal_handler(outputStream* st, int sig,
2462                                  char* buf, size_t buflen);
2463 
2464 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2465   st->print_cr("Signal Handlers:");
2466   print_signal_handler(st, SIGSEGV, buf, buflen);
2467   print_signal_handler(st, SIGBUS , buf, buflen);
2468   print_signal_handler(st, SIGFPE , buf, buflen);
2469   print_signal_handler(st, SIGPIPE, buf, buflen);
2470   print_signal_handler(st, SIGXFSZ, buf, buflen);
2471   print_signal_handler(st, SIGILL , buf, buflen);
2472   print_signal_handler(st, SR_signum, buf, buflen);
2473   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2474   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2475   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2476   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2477 #if defined(PPC64)
2478   print_signal_handler(st, SIGTRAP, buf, buflen);
2479 #endif
2480 }
2481 
2482 static char saved_jvm_path[MAXPATHLEN] = {0};
2483 
2484 // Find the full path to the current module, libjvm.so
2485 void os::jvm_path(char *buf, jint buflen) {
2486   // Error checking.
2487   if (buflen < MAXPATHLEN) {
2488     assert(false, "must use a large-enough buffer");
2489     buf[0] = '\0';
2490     return;
2491   }
2492   // Lazy resolve the path to current module.
2493   if (saved_jvm_path[0] != 0) {
2494     strcpy(buf, saved_jvm_path);
2495     return;
2496   }
2497 
2498   char dli_fname[MAXPATHLEN];
2499   bool ret = dll_address_to_library_name(
2500                                          CAST_FROM_FN_PTR(address, os::jvm_path),
2501                                          dli_fname, sizeof(dli_fname), NULL);
2502   assert(ret, "cannot locate libjvm");
2503   char *rp = NULL;
2504   if (ret && dli_fname[0] != '\0') {
2505     rp = os::Posix::realpath(dli_fname, buf, buflen);
2506   }
2507   if (rp == NULL) {
2508     return;
2509   }
2510 
2511   if (Arguments::sun_java_launcher_is_altjvm()) {
2512     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2513     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
2514     // If "/jre/lib/" appears at the right place in the string, then
2515     // assume we are installed in a JDK and we're done. Otherwise, check
2516     // for a JAVA_HOME environment variable and fix up the path so it
2517     // looks like libjvm.so is installed there (append a fake suffix
2518     // hotspot/libjvm.so).
2519     const char *p = buf + strlen(buf) - 1;
2520     for (int count = 0; p > buf && count < 5; ++count) {
2521       for (--p; p > buf && *p != '/'; --p)
2522         /* empty */ ;
2523     }
2524 
2525     if (strncmp(p, "/jre/lib/", 9) != 0) {
2526       // Look for JAVA_HOME in the environment.
2527       char* java_home_var = ::getenv("JAVA_HOME");
2528       if (java_home_var != NULL && java_home_var[0] != 0) {
2529         char* jrelib_p;
2530         int len;
2531 
2532         // Check the current module name "libjvm.so".
2533         p = strrchr(buf, '/');
2534         if (p == NULL) {
2535           return;
2536         }
2537         assert(strstr(p, "/libjvm") == p, "invalid library name");
2538 
2539         rp = os::Posix::realpath(java_home_var, buf, buflen);
2540         if (rp == NULL) {
2541           return;
2542         }
2543 
2544         // determine if this is a legacy image or modules image
2545         // modules image doesn't have "jre" subdirectory
2546         len = strlen(buf);
2547         assert(len < buflen, "Ran out of buffer room");
2548         jrelib_p = buf + len;
2549         snprintf(jrelib_p, buflen-len, "/jre/lib");
2550         if (0 != access(buf, F_OK)) {
2551           snprintf(jrelib_p, buflen-len, "/lib");
2552         }
2553 
2554         if (0 == access(buf, F_OK)) {
2555           // Use current module name "libjvm.so"
2556           len = strlen(buf);
2557           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2558         } else {
2559           // Go back to path of .so
2560           rp = os::Posix::realpath(dli_fname, buf, buflen);
2561           if (rp == NULL) {
2562             return;
2563           }
2564         }
2565       }
2566     }
2567   }
2568 
2569   strncpy(saved_jvm_path, buf, MAXPATHLEN);
2570   saved_jvm_path[MAXPATHLEN - 1] = '\0';
2571 }
2572 
2573 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2574   // no prefix required, not even "_"
2575 }
2576 
2577 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2578   // no suffix required
2579 }
2580 
2581 ////////////////////////////////////////////////////////////////////////////////
2582 // sun.misc.Signal support
2583 
2584 static volatile jint sigint_count = 0;
2585 
2586 static void UserHandler(int sig, void *siginfo, void *context) {
2587   // 4511530 - sem_post is serialized and handled by the manager thread. When
2588   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2589   // don't want to flood the manager thread with sem_post requests.
2590   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1) {
2591     return;
2592   }
2593 
2594   // Ctrl-C is pressed during error reporting, likely because the error
2595   // handler fails to abort. Let VM die immediately.
2596   if (sig == SIGINT && VMError::is_error_reported()) {
2597     os::die();
2598   }
2599 
2600   os::signal_notify(sig);
2601 }
2602 
2603 void* os::user_handler() {
2604   return CAST_FROM_FN_PTR(void*, UserHandler);
2605 }
2606 
2607 static struct timespec create_semaphore_timespec(unsigned int sec, int nsec) {
2608   struct timespec ts;
2609   // Semaphore's are always associated with CLOCK_REALTIME
2610   os::Linux::clock_gettime(CLOCK_REALTIME, &ts);
2611   // see os_posix.cpp for discussion on overflow checking
2612   if (sec >= MAX_SECS) {
2613     ts.tv_sec += MAX_SECS;
2614     ts.tv_nsec = 0;
2615   } else {
2616     ts.tv_sec += sec;
2617     ts.tv_nsec += nsec;
2618     if (ts.tv_nsec >= NANOSECS_PER_SEC) {
2619       ts.tv_nsec -= NANOSECS_PER_SEC;
2620       ++ts.tv_sec; // note: this must be <= max_secs
2621     }
2622   }
2623 
2624   return ts;
2625 }
2626 
2627 extern "C" {
2628   typedef void (*sa_handler_t)(int);
2629   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2630 }
2631 
2632 void* os::signal(int signal_number, void* handler) {
2633   struct sigaction sigAct, oldSigAct;
2634 
2635   sigfillset(&(sigAct.sa_mask));
2636   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2637   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2638 
2639   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2640     // -1 means registration failed
2641     return (void *)-1;
2642   }
2643 
2644   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2645 }
2646 
2647 void os::signal_raise(int signal_number) {
2648   ::raise(signal_number);
2649 }
2650 
2651 // The following code is moved from os.cpp for making this
2652 // code platform specific, which it is by its very nature.
2653 
2654 // Will be modified when max signal is changed to be dynamic
2655 int os::sigexitnum_pd() {
2656   return NSIG;
2657 }
2658 
2659 // a counter for each possible signal value
2660 static volatile jint pending_signals[NSIG+1] = { 0 };
2661 
2662 // Linux(POSIX) specific hand shaking semaphore.
2663 static Semaphore* sig_sem = NULL;
2664 static PosixSemaphore sr_semaphore;
2665 
2666 static void jdk_misc_signal_init() {
2667   // Initialize signal structures
2668   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2669 
2670   // Initialize signal semaphore
2671   sig_sem = new Semaphore();
2672 }
2673 
2674 void os::signal_notify(int sig) {
2675   if (sig_sem != NULL) {
2676     Atomic::inc(&pending_signals[sig]);
2677     sig_sem->signal();
2678   } else {
2679     // Signal thread is not created with ReduceSignalUsage and jdk_misc_signal_init
2680     // initialization isn't called.
2681     assert(ReduceSignalUsage, "signal semaphore should be created");
2682   }
2683 }
2684 
2685 static int check_pending_signals() {
2686   Atomic::store(0, &sigint_count);
2687   for (;;) {
2688     for (int i = 0; i < NSIG + 1; i++) {
2689       jint n = pending_signals[i];
2690       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2691         return i;
2692       }
2693     }
2694     JavaThread *thread = JavaThread::current();
2695     ThreadBlockInVM tbivm(thread);
2696 
2697     bool threadIsSuspended;
2698     do {
2699       thread->set_suspend_equivalent();
2700       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2701       sig_sem->wait();
2702 
2703       // were we externally suspended while we were waiting?
2704       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2705       if (threadIsSuspended) {
2706         // The semaphore has been incremented, but while we were waiting
2707         // another thread suspended us. We don't want to continue running
2708         // while suspended because that would surprise the thread that
2709         // suspended us.
2710         sig_sem->signal();
2711 
2712         thread->java_suspend_self();
2713       }
2714     } while (threadIsSuspended);
2715   }
2716 }
2717 
2718 int os::signal_wait() {
2719   return check_pending_signals();
2720 }
2721 
2722 ////////////////////////////////////////////////////////////////////////////////
2723 // Virtual Memory
2724 
2725 int os::vm_page_size() {
2726   // Seems redundant as all get out
2727   assert(os::Linux::page_size() != -1, "must call os::init");
2728   return os::Linux::page_size();
2729 }
2730 
2731 // Solaris allocates memory by pages.
2732 int os::vm_allocation_granularity() {
2733   assert(os::Linux::page_size() != -1, "must call os::init");
2734   return os::Linux::page_size();
2735 }
2736 
2737 // Rationale behind this function:
2738 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2739 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2740 //  samples for JITted code. Here we create private executable mapping over the code cache
2741 //  and then we can use standard (well, almost, as mapping can change) way to provide
2742 //  info for the reporting script by storing timestamp and location of symbol
2743 void linux_wrap_code(char* base, size_t size) {
2744   static volatile jint cnt = 0;
2745 
2746   if (!UseOprofile) {
2747     return;
2748   }
2749 
2750   char buf[PATH_MAX+1];
2751   int num = Atomic::add(1, &cnt);
2752 
2753   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2754            os::get_temp_directory(), os::current_process_id(), num);
2755   unlink(buf);
2756 
2757   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2758 
2759   if (fd != -1) {
2760     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2761     if (rv != (off_t)-1) {
2762       if (::write(fd, "", 1) == 1) {
2763         mmap(base, size,
2764              PROT_READ|PROT_WRITE|PROT_EXEC,
2765              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2766       }
2767     }
2768     ::close(fd);
2769     unlink(buf);
2770   }
2771 }
2772 
2773 static bool recoverable_mmap_error(int err) {
2774   // See if the error is one we can let the caller handle. This
2775   // list of errno values comes from JBS-6843484. I can't find a
2776   // Linux man page that documents this specific set of errno
2777   // values so while this list currently matches Solaris, it may
2778   // change as we gain experience with this failure mode.
2779   switch (err) {
2780   case EBADF:
2781   case EINVAL:
2782   case ENOTSUP:
2783     // let the caller deal with these errors
2784     return true;
2785 
2786   default:
2787     // Any remaining errors on this OS can cause our reserved mapping
2788     // to be lost. That can cause confusion where different data
2789     // structures think they have the same memory mapped. The worst
2790     // scenario is if both the VM and a library think they have the
2791     // same memory mapped.
2792     return false;
2793   }
2794 }
2795 
2796 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2797                                     int err) {
2798   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2799           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2800           os::strerror(err), err);
2801 }
2802 
2803 static void warn_fail_commit_memory(char* addr, size_t size,
2804                                     size_t alignment_hint, bool exec,
2805                                     int err) {
2806   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2807           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", p2i(addr), size,
2808           alignment_hint, exec, os::strerror(err), err);
2809 }
2810 
2811 // NOTE: Linux kernel does not really reserve the pages for us.
2812 //       All it does is to check if there are enough free pages
2813 //       left at the time of mmap(). This could be a potential
2814 //       problem.
2815 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2816   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2817   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2818                                      MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2819   if (res != (uintptr_t) MAP_FAILED) {
2820     if (UseNUMAInterleaving) {
2821       numa_make_global(addr, size);
2822     }
2823     return 0;
2824   }
2825 
2826   int err = errno;  // save errno from mmap() call above
2827 
2828   if (!recoverable_mmap_error(err)) {
2829     warn_fail_commit_memory(addr, size, exec, err);
2830     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2831   }
2832 
2833   return err;
2834 }
2835 
2836 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2837   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2838 }
2839 
2840 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2841                                   const char* mesg) {
2842   assert(mesg != NULL, "mesg must be specified");
2843   int err = os::Linux::commit_memory_impl(addr, size, exec);
2844   if (err != 0) {
2845     // the caller wants all commit errors to exit with the specified mesg:
2846     warn_fail_commit_memory(addr, size, exec, err);
2847     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2848   }
2849 }
2850 
2851 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2852 #ifndef MAP_HUGETLB
2853   #define MAP_HUGETLB 0x40000
2854 #endif
2855 
2856 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2857 #ifndef MADV_HUGEPAGE
2858   #define MADV_HUGEPAGE 14
2859 #endif
2860 
2861 int os::Linux::commit_memory_impl(char* addr, size_t size,
2862                                   size_t alignment_hint, bool exec) {
2863   int err = os::Linux::commit_memory_impl(addr, size, exec);
2864   if (err == 0) {
2865     realign_memory(addr, size, alignment_hint);
2866   }
2867   return err;
2868 }
2869 
2870 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2871                           bool exec) {
2872   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2873 }
2874 
2875 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2876                                   size_t alignment_hint, bool exec,
2877                                   const char* mesg) {
2878   assert(mesg != NULL, "mesg must be specified");
2879   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2880   if (err != 0) {
2881     // the caller wants all commit errors to exit with the specified mesg:
2882     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2883     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2884   }
2885 }
2886 
2887 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2888   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2889     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2890     // be supported or the memory may already be backed by huge pages.
2891     ::madvise(addr, bytes, MADV_HUGEPAGE);
2892   }
2893 }
2894 
2895 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2896   // This method works by doing an mmap over an existing mmaping and effectively discarding
2897   // the existing pages. However it won't work for SHM-based large pages that cannot be
2898   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2899   // small pages on top of the SHM segment. This method always works for small pages, so we
2900   // allow that in any case.
2901   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2902     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2903   }
2904 }
2905 
2906 void os::numa_make_global(char *addr, size_t bytes) {
2907   Linux::numa_interleave_memory(addr, bytes);
2908 }
2909 
2910 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2911 // bind policy to MPOL_PREFERRED for the current thread.
2912 #define USE_MPOL_PREFERRED 0
2913 
2914 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2915   // To make NUMA and large pages more robust when both enabled, we need to ease
2916   // the requirements on where the memory should be allocated. MPOL_BIND is the
2917   // default policy and it will force memory to be allocated on the specified
2918   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2919   // the specified node, but will not force it. Using this policy will prevent
2920   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2921   // free large pages.
2922   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2923   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2924 }
2925 
2926 bool os::numa_topology_changed() { return false; }
2927 
2928 size_t os::numa_get_groups_num() {
2929   // Return just the number of nodes in which it's possible to allocate memory
2930   // (in numa terminology, configured nodes).
2931   return Linux::numa_num_configured_nodes();
2932 }
2933 
2934 int os::numa_get_group_id() {
2935   int cpu_id = Linux::sched_getcpu();
2936   if (cpu_id != -1) {
2937     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2938     if (lgrp_id != -1) {
2939       return lgrp_id;
2940     }
2941   }
2942   return 0;
2943 }
2944 
2945 int os::Linux::get_existing_num_nodes() {
2946   int node;
2947   int highest_node_number = Linux::numa_max_node();
2948   int num_nodes = 0;
2949 
2950   // Get the total number of nodes in the system including nodes without memory.
2951   for (node = 0; node <= highest_node_number; node++) {
2952     if (isnode_in_existing_nodes(node)) {
2953       num_nodes++;
2954     }
2955   }
2956   return num_nodes;
2957 }
2958 
2959 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2960   int highest_node_number = Linux::numa_max_node();
2961   size_t i = 0;
2962 
2963   // Map all node ids in which it is possible to allocate memory. Also nodes are
2964   // not always consecutively available, i.e. available from 0 to the highest
2965   // node number. If the nodes have been bound explicitly using numactl membind,
2966   // then allocate memory from those nodes only.
2967   for (int node = 0; node <= highest_node_number; node++) {
2968     if (Linux::isnode_in_bound_nodes((unsigned int)node)) {
2969       ids[i++] = node;
2970     }
2971   }
2972   return i;
2973 }
2974 
2975 bool os::get_page_info(char *start, page_info* info) {
2976   return false;
2977 }
2978 
2979 char *os::scan_pages(char *start, char* end, page_info* page_expected,
2980                      page_info* page_found) {
2981   return end;
2982 }
2983 
2984 
2985 int os::Linux::sched_getcpu_syscall(void) {
2986   unsigned int cpu = 0;
2987   int retval = -1;
2988 
2989 #if defined(IA32)
2990   #ifndef SYS_getcpu
2991     #define SYS_getcpu 318
2992   #endif
2993   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2994 #elif defined(AMD64)
2995 // Unfortunately we have to bring all these macros here from vsyscall.h
2996 // to be able to compile on old linuxes.
2997   #define __NR_vgetcpu 2
2998   #define VSYSCALL_START (-10UL << 20)
2999   #define VSYSCALL_SIZE 1024
3000   #define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
3001   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
3002   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
3003   retval = vgetcpu(&cpu, NULL, NULL);
3004 #endif
3005 
3006   return (retval == -1) ? retval : cpu;
3007 }
3008 
3009 void os::Linux::sched_getcpu_init() {
3010   // sched_getcpu() should be in libc.
3011   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3012                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
3013 
3014   // If it's not, try a direct syscall.
3015   if (sched_getcpu() == -1) {
3016     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
3017                                     (void*)&sched_getcpu_syscall));
3018   }
3019 
3020   if (sched_getcpu() == -1) {
3021     vm_exit_during_initialization("getcpu(2) system call not supported by kernel");
3022   }
3023 }
3024 
3025 // Something to do with the numa-aware allocator needs these symbols
3026 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
3027 extern "C" JNIEXPORT void numa_error(char *where) { }
3028 
3029 // Handle request to load libnuma symbol version 1.1 (API v1). If it fails
3030 // load symbol from base version instead.
3031 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
3032   void *f = dlvsym(handle, name, "libnuma_1.1");
3033   if (f == NULL) {
3034     f = dlsym(handle, name);
3035   }
3036   return f;
3037 }
3038 
3039 // Handle request to load libnuma symbol version 1.2 (API v2) only.
3040 // Return NULL if the symbol is not defined in this particular version.
3041 void* os::Linux::libnuma_v2_dlsym(void* handle, const char* name) {
3042   return dlvsym(handle, name, "libnuma_1.2");
3043 }
3044 
3045 bool os::Linux::libnuma_init() {
3046   if (sched_getcpu() != -1) { // Requires sched_getcpu() support
3047     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
3048     if (handle != NULL) {
3049       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
3050                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
3051       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
3052                                        libnuma_dlsym(handle, "numa_max_node")));
3053       set_numa_num_configured_nodes(CAST_TO_FN_PTR(numa_num_configured_nodes_func_t,
3054                                                    libnuma_dlsym(handle, "numa_num_configured_nodes")));
3055       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
3056                                         libnuma_dlsym(handle, "numa_available")));
3057       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
3058                                             libnuma_dlsym(handle, "numa_tonode_memory")));
3059       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
3060                                                 libnuma_dlsym(handle, "numa_interleave_memory")));
3061       set_numa_interleave_memory_v2(CAST_TO_FN_PTR(numa_interleave_memory_v2_func_t,
3062                                                 libnuma_v2_dlsym(handle, "numa_interleave_memory")));
3063       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
3064                                               libnuma_dlsym(handle, "numa_set_bind_policy")));
3065       set_numa_bitmask_isbitset(CAST_TO_FN_PTR(numa_bitmask_isbitset_func_t,
3066                                                libnuma_dlsym(handle, "numa_bitmask_isbitset")));
3067       set_numa_distance(CAST_TO_FN_PTR(numa_distance_func_t,
3068                                        libnuma_dlsym(handle, "numa_distance")));
3069       set_numa_get_membind(CAST_TO_FN_PTR(numa_get_membind_func_t,
3070                                           libnuma_v2_dlsym(handle, "numa_get_membind")));
3071 
3072       if (numa_available() != -1) {
3073         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
3074         set_numa_all_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_all_nodes_ptr"));
3075         set_numa_nodes_ptr((struct bitmask **)libnuma_dlsym(handle, "numa_nodes_ptr"));
3076         // Create an index -> node mapping, since nodes are not always consecutive
3077         _nindex_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3078         rebuild_nindex_to_node_map();
3079         // Create a cpu -> node mapping
3080         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
3081         rebuild_cpu_to_node_map();
3082         return true;
3083       }
3084     }
3085   }
3086   return false;
3087 }
3088 
3089 size_t os::Linux::default_guard_size(os::ThreadType thr_type) {
3090   // Creating guard page is very expensive. Java thread has HotSpot
3091   // guard pages, only enable glibc guard page for non-Java threads.
3092   // (Remember: compiler thread is a Java thread, too!)
3093   return ((thr_type == java_thread || thr_type == compiler_thread) ? 0 : page_size());
3094 }
3095 
3096 void os::Linux::rebuild_nindex_to_node_map() {
3097   int highest_node_number = Linux::numa_max_node();
3098 
3099   nindex_to_node()->clear();
3100   for (int node = 0; node <= highest_node_number; node++) {
3101     if (Linux::isnode_in_existing_nodes(node)) {
3102       nindex_to_node()->append(node);
3103     }
3104   }
3105 }
3106 
3107 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
3108 // The table is later used in get_node_by_cpu().
3109 void os::Linux::rebuild_cpu_to_node_map() {
3110   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
3111                               // in libnuma (possible values are starting from 16,
3112                               // and continuing up with every other power of 2, but less
3113                               // than the maximum number of CPUs supported by kernel), and
3114                               // is a subject to change (in libnuma version 2 the requirements
3115                               // are more reasonable) we'll just hardcode the number they use
3116                               // in the library.
3117   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
3118 
3119   size_t cpu_num = processor_count();
3120   size_t cpu_map_size = NCPUS / BitsPerCLong;
3121   size_t cpu_map_valid_size =
3122     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
3123 
3124   cpu_to_node()->clear();
3125   cpu_to_node()->at_grow(cpu_num - 1);
3126 
3127   size_t node_num = get_existing_num_nodes();
3128 
3129   int distance = 0;
3130   int closest_distance = INT_MAX;
3131   int closest_node = 0;
3132   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
3133   for (size_t i = 0; i < node_num; i++) {
3134     // Check if node is configured (not a memory-less node). If it is not, find
3135     // the closest configured node. Check also if node is bound, i.e. it's allowed
3136     // to allocate memory from the node. If it's not allowed, map cpus in that node
3137     // to the closest node from which memory allocation is allowed.
3138     if (!isnode_in_configured_nodes(nindex_to_node()->at(i)) ||
3139         !isnode_in_bound_nodes(nindex_to_node()->at(i))) {
3140       closest_distance = INT_MAX;
3141       // Check distance from all remaining nodes in the system. Ignore distance
3142       // from itself, from another non-configured node, and from another non-bound
3143       // node.
3144       for (size_t m = 0; m < node_num; m++) {
3145         if (m != i &&
3146             isnode_in_configured_nodes(nindex_to_node()->at(m)) &&
3147             isnode_in_bound_nodes(nindex_to_node()->at(m))) {
3148           distance = numa_distance(nindex_to_node()->at(i), nindex_to_node()->at(m));
3149           // If a closest node is found, update. There is always at least one
3150           // configured and bound node in the system so there is always at least
3151           // one node close.
3152           if (distance != 0 && distance < closest_distance) {
3153             closest_distance = distance;
3154             closest_node = nindex_to_node()->at(m);
3155           }
3156         }
3157       }
3158      } else {
3159        // Current node is already a configured node.
3160        closest_node = nindex_to_node()->at(i);
3161      }
3162 
3163     // Get cpus from the original node and map them to the closest node. If node
3164     // is a configured node (not a memory-less node), then original node and
3165     // closest node are the same.
3166     if (numa_node_to_cpus(nindex_to_node()->at(i), cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
3167       for (size_t j = 0; j < cpu_map_valid_size; j++) {
3168         if (cpu_map[j] != 0) {
3169           for (size_t k = 0; k < BitsPerCLong; k++) {
3170             if (cpu_map[j] & (1UL << k)) {
3171               cpu_to_node()->at_put(j * BitsPerCLong + k, closest_node);
3172             }
3173           }
3174         }
3175       }
3176     }
3177   }
3178   FREE_C_HEAP_ARRAY(unsigned long, cpu_map);
3179 }
3180 
3181 int os::Linux::get_node_by_cpu(int cpu_id) {
3182   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
3183     return cpu_to_node()->at(cpu_id);
3184   }
3185   return -1;
3186 }
3187 
3188 GrowableArray<int>* os::Linux::_cpu_to_node;
3189 GrowableArray<int>* os::Linux::_nindex_to_node;
3190 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
3191 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
3192 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
3193 os::Linux::numa_num_configured_nodes_func_t os::Linux::_numa_num_configured_nodes;
3194 os::Linux::numa_available_func_t os::Linux::_numa_available;
3195 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
3196 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
3197 os::Linux::numa_interleave_memory_v2_func_t os::Linux::_numa_interleave_memory_v2;
3198 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
3199 os::Linux::numa_bitmask_isbitset_func_t os::Linux::_numa_bitmask_isbitset;
3200 os::Linux::numa_distance_func_t os::Linux::_numa_distance;
3201 os::Linux::numa_get_membind_func_t os::Linux::_numa_get_membind;
3202 unsigned long* os::Linux::_numa_all_nodes;
3203 struct bitmask* os::Linux::_numa_all_nodes_ptr;
3204 struct bitmask* os::Linux::_numa_nodes_ptr;
3205 
3206 bool os::pd_uncommit_memory(char* addr, size_t size) {
3207   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
3208                                      MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
3209   return res  != (uintptr_t) MAP_FAILED;
3210 }
3211 
3212 static address get_stack_commited_bottom(address bottom, size_t size) {
3213   address nbot = bottom;
3214   address ntop = bottom + size;
3215 
3216   size_t page_sz = os::vm_page_size();
3217   unsigned pages = size / page_sz;
3218 
3219   unsigned char vec[1];
3220   unsigned imin = 1, imax = pages + 1, imid;
3221   int mincore_return_value = 0;
3222 
3223   assert(imin <= imax, "Unexpected page size");
3224 
3225   while (imin < imax) {
3226     imid = (imax + imin) / 2;
3227     nbot = ntop - (imid * page_sz);
3228 
3229     // Use a trick with mincore to check whether the page is mapped or not.
3230     // mincore sets vec to 1 if page resides in memory and to 0 if page
3231     // is swapped output but if page we are asking for is unmapped
3232     // it returns -1,ENOMEM
3233     mincore_return_value = mincore(nbot, page_sz, vec);
3234 
3235     if (mincore_return_value == -1) {
3236       // Page is not mapped go up
3237       // to find first mapped page
3238       if (errno != EAGAIN) {
3239         assert(errno == ENOMEM, "Unexpected mincore errno");
3240         imax = imid;
3241       }
3242     } else {
3243       // Page is mapped go down
3244       // to find first not mapped page
3245       imin = imid + 1;
3246     }
3247   }
3248 
3249   nbot = nbot + page_sz;
3250 
3251   // Adjust stack bottom one page up if last checked page is not mapped
3252   if (mincore_return_value == -1) {
3253     nbot = nbot + page_sz;
3254   }
3255 
3256   return nbot;
3257 }
3258 
3259 bool os::committed_in_range(address start, size_t size, address& committed_start, size_t& committed_size) {
3260   int mincore_return_value;
3261   const size_t stripe = 1024;  // query this many pages each time
3262   unsigned char vec[stripe + 1];
3263   // set a guard
3264   vec[stripe] = 'X';
3265 
3266   const size_t page_sz = os::vm_page_size();
3267   size_t pages = size / page_sz;
3268 
3269   assert(is_aligned(start, page_sz), "Start address must be page aligned");
3270   assert(is_aligned(size, page_sz), "Size must be page aligned");
3271 
3272   committed_start = NULL;
3273 
3274   int loops = (pages + stripe - 1) / stripe;
3275   int committed_pages = 0;
3276   address loop_base = start;
3277   bool found_range = false;
3278 
3279   for (int index = 0; index < loops && !found_range; index ++) {
3280     assert(pages > 0, "Nothing to do");
3281     int pages_to_query = (pages >= stripe) ? stripe : pages;
3282     pages -= pages_to_query;
3283 
3284     // Get stable read
3285     while ((mincore_return_value = mincore(loop_base, pages_to_query * page_sz, vec)) == -1 && errno == EAGAIN);
3286 
3287     // During shutdown, some memory goes away without properly notifying NMT,
3288     // E.g. ConcurrentGCThread/WatcherThread can exit without deleting thread object.
3289     // Bailout and return as not committed for now.
3290     if (mincore_return_value == -1 && errno == ENOMEM) {
3291       return false;
3292     }
3293 
3294     assert(vec[stripe] == 'X', "overflow guard");
3295     assert(mincore_return_value == 0, "Range must be valid");
3296     // Process this stripe
3297     for (int vecIdx = 0; vecIdx < pages_to_query; vecIdx ++) {
3298       if ((vec[vecIdx] & 0x01) == 0) { // not committed
3299         // End of current contiguous region
3300         if (committed_start != NULL) {
3301           found_range = true;
3302           break;
3303         }
3304       } else { // committed
3305         // Start of region
3306         if (committed_start == NULL) {
3307           committed_start = loop_base + page_sz * vecIdx;
3308         }
3309         committed_pages ++;
3310       }
3311     }
3312 
3313     loop_base += pages_to_query * page_sz;
3314   }
3315 
3316   if (committed_start != NULL) {
3317     assert(committed_pages > 0, "Must have committed region");
3318     assert(committed_pages <= int(size / page_sz), "Can not commit more than it has");
3319     assert(committed_start >= start && committed_start < start + size, "Out of range");
3320     committed_size = page_sz * committed_pages;
3321     return true;
3322   } else {
3323     assert(committed_pages == 0, "Should not have committed region");
3324     return false;
3325   }
3326 }
3327 
3328 
3329 // Linux uses a growable mapping for the stack, and if the mapping for
3330 // the stack guard pages is not removed when we detach a thread the
3331 // stack cannot grow beyond the pages where the stack guard was
3332 // mapped.  If at some point later in the process the stack expands to
3333 // that point, the Linux kernel cannot expand the stack any further
3334 // because the guard pages are in the way, and a segfault occurs.
3335 //
3336 // However, it's essential not to split the stack region by unmapping
3337 // a region (leaving a hole) that's already part of the stack mapping,
3338 // so if the stack mapping has already grown beyond the guard pages at
3339 // the time we create them, we have to truncate the stack mapping.
3340 // So, we need to know the extent of the stack mapping when
3341 // create_stack_guard_pages() is called.
3342 
3343 // We only need this for stacks that are growable: at the time of
3344 // writing thread stacks don't use growable mappings (i.e. those
3345 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3346 // only applies to the main thread.
3347 
3348 // If the (growable) stack mapping already extends beyond the point
3349 // where we're going to put our guard pages, truncate the mapping at
3350 // that point by munmap()ping it.  This ensures that when we later
3351 // munmap() the guard pages we don't leave a hole in the stack
3352 // mapping. This only affects the main/primordial thread
3353 
3354 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3355   if (os::is_primordial_thread()) {
3356     // As we manually grow stack up to bottom inside create_attached_thread(),
3357     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3358     // we don't need to do anything special.
3359     // Check it first, before calling heavy function.
3360     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3361     unsigned char vec[1];
3362 
3363     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3364       // Fallback to slow path on all errors, including EAGAIN
3365       stack_extent = (uintptr_t) get_stack_commited_bottom(
3366                                                            os::Linux::initial_thread_stack_bottom(),
3367                                                            (size_t)addr - stack_extent);
3368     }
3369 
3370     if (stack_extent < (uintptr_t)addr) {
3371       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3372     }
3373   }
3374 
3375   return os::commit_memory(addr, size, !ExecMem);
3376 }
3377 
3378 // If this is a growable mapping, remove the guard pages entirely by
3379 // munmap()ping them.  If not, just call uncommit_memory(). This only
3380 // affects the main/primordial thread, but guard against future OS changes.
3381 // It's safe to always unmap guard pages for primordial thread because we
3382 // always place it right after end of the mapped region.
3383 
3384 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3385   uintptr_t stack_extent, stack_base;
3386 
3387   if (os::is_primordial_thread()) {
3388     return ::munmap(addr, size) == 0;
3389   }
3390 
3391   return os::uncommit_memory(addr, size);
3392 }
3393 
3394 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3395 // at 'requested_addr'. If there are existing memory mappings at the same
3396 // location, however, they will be overwritten. If 'fixed' is false,
3397 // 'requested_addr' is only treated as a hint, the return value may or
3398 // may not start from the requested address. Unlike Linux mmap(), this
3399 // function returns NULL to indicate failure.
3400 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3401   char * addr;
3402   int flags;
3403 
3404   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3405   if (fixed) {
3406     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3407     flags |= MAP_FIXED;
3408   }
3409 
3410   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3411   // touch an uncommitted page. Otherwise, the read/write might
3412   // succeed if we have enough swap space to back the physical page.
3413   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3414                        flags, -1, 0);
3415 
3416   return addr == MAP_FAILED ? NULL : addr;
3417 }
3418 
3419 // Allocate (using mmap, NO_RESERVE, with small pages) at either a given request address
3420 //   (req_addr != NULL) or with a given alignment.
3421 //  - bytes shall be a multiple of alignment.
3422 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3423 //  - alignment sets the alignment at which memory shall be allocated.
3424 //     It must be a multiple of allocation granularity.
3425 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3426 //  req_addr or NULL.
3427 static char* anon_mmap_aligned(size_t bytes, size_t alignment, char* req_addr) {
3428 
3429   size_t extra_size = bytes;
3430   if (req_addr == NULL && alignment > 0) {
3431     extra_size += alignment;
3432   }
3433 
3434   char* start = (char*) ::mmap(req_addr, extra_size, PROT_NONE,
3435     MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
3436     -1, 0);
3437   if (start == MAP_FAILED) {
3438     start = NULL;
3439   } else {
3440     if (req_addr != NULL) {
3441       if (start != req_addr) {
3442         ::munmap(start, extra_size);
3443         start = NULL;
3444       }
3445     } else {
3446       char* const start_aligned = align_up(start, alignment);
3447       char* const end_aligned = start_aligned + bytes;
3448       char* const end = start + extra_size;
3449       if (start_aligned > start) {
3450         ::munmap(start, start_aligned - start);
3451       }
3452       if (end_aligned < end) {
3453         ::munmap(end_aligned, end - end_aligned);
3454       }
3455       start = start_aligned;
3456     }
3457   }
3458   return start;
3459 }
3460 
3461 static int anon_munmap(char * addr, size_t size) {
3462   return ::munmap(addr, size) == 0;
3463 }
3464 
3465 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3466                             size_t alignment_hint) {
3467   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3468 }
3469 
3470 bool os::pd_release_memory(char* addr, size_t size) {
3471   return anon_munmap(addr, size);
3472 }
3473 
3474 static bool linux_mprotect(char* addr, size_t size, int prot) {
3475   // Linux wants the mprotect address argument to be page aligned.
3476   char* bottom = (char*)align_down((intptr_t)addr, os::Linux::page_size());
3477 
3478   // According to SUSv3, mprotect() should only be used with mappings
3479   // established by mmap(), and mmap() always maps whole pages. Unaligned
3480   // 'addr' likely indicates problem in the VM (e.g. trying to change
3481   // protection of malloc'ed or statically allocated memory). Check the
3482   // caller if you hit this assert.
3483   assert(addr == bottom, "sanity check");
3484 
3485   size = align_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3486   return ::mprotect(bottom, size, prot) == 0;
3487 }
3488 
3489 // Set protections specified
3490 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3491                         bool is_committed) {
3492   unsigned int p = 0;
3493   switch (prot) {
3494   case MEM_PROT_NONE: p = PROT_NONE; break;
3495   case MEM_PROT_READ: p = PROT_READ; break;
3496   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3497   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3498   default:
3499     ShouldNotReachHere();
3500   }
3501   // is_committed is unused.
3502   return linux_mprotect(addr, bytes, p);
3503 }
3504 
3505 bool os::guard_memory(char* addr, size_t size) {
3506   return linux_mprotect(addr, size, PROT_NONE);
3507 }
3508 
3509 bool os::unguard_memory(char* addr, size_t size) {
3510   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3511 }
3512 
3513 bool os::Linux::transparent_huge_pages_sanity_check(bool warn,
3514                                                     size_t page_size) {
3515   bool result = false;
3516   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3517                  MAP_ANONYMOUS|MAP_PRIVATE,
3518                  -1, 0);
3519   if (p != MAP_FAILED) {
3520     void *aligned_p = align_up(p, page_size);
3521 
3522     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3523 
3524     munmap(p, page_size * 2);
3525   }
3526 
3527   if (warn && !result) {
3528     warning("TransparentHugePages is not supported by the operating system.");
3529   }
3530 
3531   return result;
3532 }
3533 
3534 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3535   bool result = false;
3536   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3537                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3538                  -1, 0);
3539 
3540   if (p != MAP_FAILED) {
3541     // We don't know if this really is a huge page or not.
3542     FILE *fp = fopen("/proc/self/maps", "r");
3543     if (fp) {
3544       while (!feof(fp)) {
3545         char chars[257];
3546         long x = 0;
3547         if (fgets(chars, sizeof(chars), fp)) {
3548           if (sscanf(chars, "%lx-%*x", &x) == 1
3549               && x == (long)p) {
3550             if (strstr (chars, "hugepage")) {
3551               result = true;
3552               break;
3553             }
3554           }
3555         }
3556       }
3557       fclose(fp);
3558     }
3559     munmap(p, page_size);
3560   }
3561 
3562   if (warn && !result) {
3563     warning("HugeTLBFS is not supported by the operating system.");
3564   }
3565 
3566   return result;
3567 }
3568 
3569 // From the coredump_filter documentation:
3570 //
3571 // - (bit 0) anonymous private memory
3572 // - (bit 1) anonymous shared memory
3573 // - (bit 2) file-backed private memory
3574 // - (bit 3) file-backed shared memory
3575 // - (bit 4) ELF header pages in file-backed private memory areas (it is
3576 //           effective only if the bit 2 is cleared)
3577 // - (bit 5) hugetlb private memory
3578 // - (bit 6) hugetlb shared memory
3579 // - (bit 7) dax private memory
3580 // - (bit 8) dax shared memory
3581 //
3582 static void set_coredump_filter(CoredumpFilterBit bit) {
3583   FILE *f;
3584   long cdm;
3585 
3586   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3587     return;
3588   }
3589 
3590   if (fscanf(f, "%lx", &cdm) != 1) {
3591     fclose(f);
3592     return;
3593   }
3594 
3595   long saved_cdm = cdm;
3596   rewind(f);
3597   cdm |= bit;
3598 
3599   if (cdm != saved_cdm) {
3600     fprintf(f, "%#lx", cdm);
3601   }
3602 
3603   fclose(f);
3604 }
3605 
3606 // Large page support
3607 
3608 static size_t _large_page_size = 0;
3609 
3610 size_t os::Linux::find_large_page_size() {
3611   size_t large_page_size = 0;
3612 
3613   // large_page_size on Linux is used to round up heap size. x86 uses either
3614   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3615   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3616   // page as large as 256M.
3617   //
3618   // Here we try to figure out page size by parsing /proc/meminfo and looking
3619   // for a line with the following format:
3620   //    Hugepagesize:     2048 kB
3621   //
3622   // If we can't determine the value (e.g. /proc is not mounted, or the text
3623   // format has been changed), we'll use the largest page size supported by
3624   // the processor.
3625 
3626 #ifndef ZERO
3627   large_page_size =
3628     AARCH64_ONLY(2 * M)
3629     AMD64_ONLY(2 * M)
3630     ARM32_ONLY(2 * M)
3631     IA32_ONLY(4 * M)
3632     IA64_ONLY(256 * M)
3633     PPC_ONLY(4 * M)
3634     S390_ONLY(1 * M)
3635     SPARC_ONLY(4 * M);
3636 #endif // ZERO
3637 
3638   FILE *fp = fopen("/proc/meminfo", "r");
3639   if (fp) {
3640     while (!feof(fp)) {
3641       int x = 0;
3642       char buf[16];
3643       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3644         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3645           large_page_size = x * K;
3646           break;
3647         }
3648       } else {
3649         // skip to next line
3650         for (;;) {
3651           int ch = fgetc(fp);
3652           if (ch == EOF || ch == (int)'\n') break;
3653         }
3654       }
3655     }
3656     fclose(fp);
3657   }
3658 
3659   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3660     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3661             SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3662             proper_unit_for_byte_size(large_page_size));
3663   }
3664 
3665   return large_page_size;
3666 }
3667 
3668 size_t os::Linux::setup_large_page_size() {
3669   _large_page_size = Linux::find_large_page_size();
3670   const size_t default_page_size = (size_t)Linux::page_size();
3671   if (_large_page_size > default_page_size) {
3672     _page_sizes[0] = _large_page_size;
3673     _page_sizes[1] = default_page_size;
3674     _page_sizes[2] = 0;
3675   }
3676 
3677   return _large_page_size;
3678 }
3679 
3680 bool os::Linux::setup_large_page_type(size_t page_size) {
3681   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3682       FLAG_IS_DEFAULT(UseSHM) &&
3683       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3684 
3685     // The type of large pages has not been specified by the user.
3686 
3687     // Try UseHugeTLBFS and then UseSHM.
3688     UseHugeTLBFS = UseSHM = true;
3689 
3690     // Don't try UseTransparentHugePages since there are known
3691     // performance issues with it turned on. This might change in the future.
3692     UseTransparentHugePages = false;
3693   }
3694 
3695   if (UseTransparentHugePages) {
3696     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3697     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3698       UseHugeTLBFS = false;
3699       UseSHM = false;
3700       return true;
3701     }
3702     UseTransparentHugePages = false;
3703   }
3704 
3705   if (UseHugeTLBFS) {
3706     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3707     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3708       UseSHM = false;
3709       return true;
3710     }
3711     UseHugeTLBFS = false;
3712   }
3713 
3714   return UseSHM;
3715 }
3716 
3717 void os::large_page_init() {
3718   if (!UseLargePages &&
3719       !UseTransparentHugePages &&
3720       !UseHugeTLBFS &&
3721       !UseSHM) {
3722     // Not using large pages.
3723     return;
3724   }
3725 
3726   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3727     // The user explicitly turned off large pages.
3728     // Ignore the rest of the large pages flags.
3729     UseTransparentHugePages = false;
3730     UseHugeTLBFS = false;
3731     UseSHM = false;
3732     return;
3733   }
3734 
3735   size_t large_page_size = Linux::setup_large_page_size();
3736   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3737 
3738   set_coredump_filter(LARGEPAGES_BIT);
3739 }
3740 
3741 #ifndef SHM_HUGETLB
3742   #define SHM_HUGETLB 04000
3743 #endif
3744 
3745 #define shm_warning_format(format, ...)              \
3746   do {                                               \
3747     if (UseLargePages &&                             \
3748         (!FLAG_IS_DEFAULT(UseLargePages) ||          \
3749          !FLAG_IS_DEFAULT(UseSHM) ||                 \
3750          !FLAG_IS_DEFAULT(LargePageSizeInBytes))) {  \
3751       warning(format, __VA_ARGS__);                  \
3752     }                                                \
3753   } while (0)
3754 
3755 #define shm_warning(str) shm_warning_format("%s", str)
3756 
3757 #define shm_warning_with_errno(str)                \
3758   do {                                             \
3759     int err = errno;                               \
3760     shm_warning_format(str " (error = %d)", err);  \
3761   } while (0)
3762 
3763 static char* shmat_with_alignment(int shmid, size_t bytes, size_t alignment) {
3764   assert(is_aligned(bytes, alignment), "Must be divisible by the alignment");
3765 
3766   if (!is_aligned(alignment, SHMLBA)) {
3767     assert(false, "Code below assumes that alignment is at least SHMLBA aligned");
3768     return NULL;
3769   }
3770 
3771   // To ensure that we get 'alignment' aligned memory from shmat,
3772   // we pre-reserve aligned virtual memory and then attach to that.
3773 
3774   char* pre_reserved_addr = anon_mmap_aligned(bytes, alignment, NULL);
3775   if (pre_reserved_addr == NULL) {
3776     // Couldn't pre-reserve aligned memory.
3777     shm_warning("Failed to pre-reserve aligned memory for shmat.");
3778     return NULL;
3779   }
3780 
3781   // SHM_REMAP is needed to allow shmat to map over an existing mapping.
3782   char* addr = (char*)shmat(shmid, pre_reserved_addr, SHM_REMAP);
3783 
3784   if ((intptr_t)addr == -1) {
3785     int err = errno;
3786     shm_warning_with_errno("Failed to attach shared memory.");
3787 
3788     assert(err != EACCES, "Unexpected error");
3789     assert(err != EIDRM,  "Unexpected error");
3790     assert(err != EINVAL, "Unexpected error");
3791 
3792     // Since we don't know if the kernel unmapped the pre-reserved memory area
3793     // we can't unmap it, since that would potentially unmap memory that was
3794     // mapped from other threads.
3795     return NULL;
3796   }
3797 
3798   return addr;
3799 }
3800 
3801 static char* shmat_at_address(int shmid, char* req_addr) {
3802   if (!is_aligned(req_addr, SHMLBA)) {
3803     assert(false, "Requested address needs to be SHMLBA aligned");
3804     return NULL;
3805   }
3806 
3807   char* addr = (char*)shmat(shmid, req_addr, 0);
3808 
3809   if ((intptr_t)addr == -1) {
3810     shm_warning_with_errno("Failed to attach shared memory.");
3811     return NULL;
3812   }
3813 
3814   return addr;
3815 }
3816 
3817 static char* shmat_large_pages(int shmid, size_t bytes, size_t alignment, char* req_addr) {
3818   // If a req_addr has been provided, we assume that the caller has already aligned the address.
3819   if (req_addr != NULL) {
3820     assert(is_aligned(req_addr, os::large_page_size()), "Must be divisible by the large page size");
3821     assert(is_aligned(req_addr, alignment), "Must be divisible by given alignment");
3822     return shmat_at_address(shmid, req_addr);
3823   }
3824 
3825   // Since shmid has been setup with SHM_HUGETLB, shmat will automatically
3826   // return large page size aligned memory addresses when req_addr == NULL.
3827   // However, if the alignment is larger than the large page size, we have
3828   // to manually ensure that the memory returned is 'alignment' aligned.
3829   if (alignment > os::large_page_size()) {
3830     assert(is_aligned(alignment, os::large_page_size()), "Must be divisible by the large page size");
3831     return shmat_with_alignment(shmid, bytes, alignment);
3832   } else {
3833     return shmat_at_address(shmid, NULL);
3834   }
3835 }
3836 
3837 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment,
3838                                             char* req_addr, bool exec) {
3839   // "exec" is passed in but not used.  Creating the shared image for
3840   // the code cache doesn't have an SHM_X executable permission to check.
3841   assert(UseLargePages && UseSHM, "only for SHM large pages");
3842   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3843   assert(is_aligned(req_addr, alignment), "Unaligned address");
3844 
3845   if (!is_aligned(bytes, os::large_page_size())) {
3846     return NULL; // Fallback to small pages.
3847   }
3848 
3849   // Create a large shared memory region to attach to based on size.
3850   // Currently, size is the total size of the heap.
3851   int shmid = shmget(IPC_PRIVATE, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3852   if (shmid == -1) {
3853     // Possible reasons for shmget failure:
3854     // 1. shmmax is too small for Java heap.
3855     //    > check shmmax value: cat /proc/sys/kernel/shmmax
3856     //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3857     // 2. not enough large page memory.
3858     //    > check available large pages: cat /proc/meminfo
3859     //    > increase amount of large pages:
3860     //          echo new_value > /proc/sys/vm/nr_hugepages
3861     //      Note 1: different Linux may use different name for this property,
3862     //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3863     //      Note 2: it's possible there's enough physical memory available but
3864     //            they are so fragmented after a long run that they can't
3865     //            coalesce into large pages. Try to reserve large pages when
3866     //            the system is still "fresh".
3867     shm_warning_with_errno("Failed to reserve shared memory.");
3868     return NULL;
3869   }
3870 
3871   // Attach to the region.
3872   char* addr = shmat_large_pages(shmid, bytes, alignment, req_addr);
3873 
3874   // Remove shmid. If shmat() is successful, the actual shared memory segment
3875   // will be deleted when it's detached by shmdt() or when the process
3876   // terminates. If shmat() is not successful this will remove the shared
3877   // segment immediately.
3878   shmctl(shmid, IPC_RMID, NULL);
3879 
3880   return addr;
3881 }
3882 
3883 static void warn_on_large_pages_failure(char* req_addr, size_t bytes,
3884                                         int error) {
3885   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3886 
3887   bool warn_on_failure = UseLargePages &&
3888       (!FLAG_IS_DEFAULT(UseLargePages) ||
3889        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3890        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3891 
3892   if (warn_on_failure) {
3893     char msg[128];
3894     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3895                  PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3896     warning("%s", msg);
3897   }
3898 }
3899 
3900 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes,
3901                                                         char* req_addr,
3902                                                         bool exec) {
3903   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3904   assert(is_aligned(bytes, os::large_page_size()), "Unaligned size");
3905   assert(is_aligned(req_addr, os::large_page_size()), "Unaligned address");
3906 
3907   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3908   char* addr = (char*)::mmap(req_addr, bytes, prot,
3909                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3910                              -1, 0);
3911 
3912   if (addr == MAP_FAILED) {
3913     warn_on_large_pages_failure(req_addr, bytes, errno);
3914     return NULL;
3915   }
3916 
3917   assert(is_aligned(addr, os::large_page_size()), "Must be");
3918 
3919   return addr;
3920 }
3921 
3922 // Reserve memory using mmap(MAP_HUGETLB).
3923 //  - bytes shall be a multiple of alignment.
3924 //  - req_addr can be NULL. If not NULL, it must be a multiple of alignment.
3925 //  - alignment sets the alignment at which memory shall be allocated.
3926 //     It must be a multiple of allocation granularity.
3927 // Returns address of memory or NULL. If req_addr was not NULL, will only return
3928 //  req_addr or NULL.
3929 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes,
3930                                                          size_t alignment,
3931                                                          char* req_addr,
3932                                                          bool exec) {
3933   size_t large_page_size = os::large_page_size();
3934   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3935 
3936   assert(is_aligned(req_addr, alignment), "Must be");
3937   assert(is_aligned(bytes, alignment), "Must be");
3938 
3939   // First reserve - but not commit - the address range in small pages.
3940   char* const start = anon_mmap_aligned(bytes, alignment, req_addr);
3941 
3942   if (start == NULL) {
3943     return NULL;
3944   }
3945 
3946   assert(is_aligned(start, alignment), "Must be");
3947 
3948   char* end = start + bytes;
3949 
3950   // Find the regions of the allocated chunk that can be promoted to large pages.
3951   char* lp_start = align_up(start, large_page_size);
3952   char* lp_end   = align_down(end, large_page_size);
3953 
3954   size_t lp_bytes = lp_end - lp_start;
3955 
3956   assert(is_aligned(lp_bytes, large_page_size), "Must be");
3957 
3958   if (lp_bytes == 0) {
3959     // The mapped region doesn't even span the start and the end of a large page.
3960     // Fall back to allocate a non-special area.
3961     ::munmap(start, end - start);
3962     return NULL;
3963   }
3964 
3965   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3966 
3967   void* result;
3968 
3969   // Commit small-paged leading area.
3970   if (start != lp_start) {
3971     result = ::mmap(start, lp_start - start, prot,
3972                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3973                     -1, 0);
3974     if (result == MAP_FAILED) {
3975       ::munmap(lp_start, end - lp_start);
3976       return NULL;
3977     }
3978   }
3979 
3980   // Commit large-paged area.
3981   result = ::mmap(lp_start, lp_bytes, prot,
3982                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3983                   -1, 0);
3984   if (result == MAP_FAILED) {
3985     warn_on_large_pages_failure(lp_start, lp_bytes, errno);
3986     // If the mmap above fails, the large pages region will be unmapped and we
3987     // have regions before and after with small pages. Release these regions.
3988     //
3989     // |  mapped  |  unmapped  |  mapped  |
3990     // ^          ^            ^          ^
3991     // start      lp_start     lp_end     end
3992     //
3993     ::munmap(start, lp_start - start);
3994     ::munmap(lp_end, end - lp_end);
3995     return NULL;
3996   }
3997 
3998   // Commit small-paged trailing area.
3999   if (lp_end != end) {
4000     result = ::mmap(lp_end, end - lp_end, prot,
4001                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
4002                     -1, 0);
4003     if (result == MAP_FAILED) {
4004       ::munmap(start, lp_end - start);
4005       return NULL;
4006     }
4007   }
4008 
4009   return start;
4010 }
4011 
4012 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes,
4013                                                    size_t alignment,
4014                                                    char* req_addr,
4015                                                    bool exec) {
4016   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
4017   assert(is_aligned(req_addr, alignment), "Must be");
4018   assert(is_aligned(alignment, os::vm_allocation_granularity()), "Must be");
4019   assert(is_power_of_2(os::large_page_size()), "Must be");
4020   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
4021 
4022   if (is_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
4023     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
4024   } else {
4025     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
4026   }
4027 }
4028 
4029 char* os::reserve_memory_special(size_t bytes, size_t alignment,
4030                                  char* req_addr, bool exec) {
4031   assert(UseLargePages, "only for large pages");
4032 
4033   char* addr;
4034   if (UseSHM) {
4035     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
4036   } else {
4037     assert(UseHugeTLBFS, "must be");
4038     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
4039   }
4040 
4041   if (addr != NULL) {
4042     if (UseNUMAInterleaving) {
4043       numa_make_global(addr, bytes);
4044     }
4045 
4046     // The memory is committed
4047     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, CALLER_PC);
4048   }
4049 
4050   return addr;
4051 }
4052 
4053 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
4054   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
4055   return shmdt(base) == 0;
4056 }
4057 
4058 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
4059   return pd_release_memory(base, bytes);
4060 }
4061 
4062 bool os::release_memory_special(char* base, size_t bytes) {
4063   bool res;
4064   if (MemTracker::tracking_level() > NMT_minimal) {
4065     Tracker tkr(Tracker::release);
4066     res = os::Linux::release_memory_special_impl(base, bytes);
4067     if (res) {
4068       tkr.record((address)base, bytes);
4069     }
4070 
4071   } else {
4072     res = os::Linux::release_memory_special_impl(base, bytes);
4073   }
4074   return res;
4075 }
4076 
4077 bool os::Linux::release_memory_special_impl(char* base, size_t bytes) {
4078   assert(UseLargePages, "only for large pages");
4079   bool res;
4080 
4081   if (UseSHM) {
4082     res = os::Linux::release_memory_special_shm(base, bytes);
4083   } else {
4084     assert(UseHugeTLBFS, "must be");
4085     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
4086   }
4087   return res;
4088 }
4089 
4090 size_t os::large_page_size() {
4091   return _large_page_size;
4092 }
4093 
4094 // With SysV SHM the entire memory region must be allocated as shared
4095 // memory.
4096 // HugeTLBFS allows application to commit large page memory on demand.
4097 // However, when committing memory with HugeTLBFS fails, the region
4098 // that was supposed to be committed will lose the old reservation
4099 // and allow other threads to steal that memory region. Because of this
4100 // behavior we can't commit HugeTLBFS memory.
4101 bool os::can_commit_large_page_memory() {
4102   return UseTransparentHugePages;
4103 }
4104 
4105 bool os::can_execute_large_page_memory() {
4106   return UseTransparentHugePages || UseHugeTLBFS;
4107 }
4108 
4109 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
4110   assert(file_desc >= 0, "file_desc is not valid");
4111   char* result = pd_attempt_reserve_memory_at(bytes, requested_addr);
4112   if (result != NULL) {
4113     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
4114       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
4115     }
4116   }
4117   return result;
4118 }
4119 
4120 // Reserve memory at an arbitrary address, only if that area is
4121 // available (and not reserved for something else).
4122 
4123 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
4124   const int max_tries = 10;
4125   char* base[max_tries];
4126   size_t size[max_tries];
4127   const size_t gap = 0x000000;
4128 
4129   // Assert only that the size is a multiple of the page size, since
4130   // that's all that mmap requires, and since that's all we really know
4131   // about at this low abstraction level.  If we need higher alignment,
4132   // we can either pass an alignment to this method or verify alignment
4133   // in one of the methods further up the call chain.  See bug 5044738.
4134   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
4135 
4136   // Repeatedly allocate blocks until the block is allocated at the
4137   // right spot.
4138 
4139   // Linux mmap allows caller to pass an address as hint; give it a try first,
4140   // if kernel honors the hint then we can return immediately.
4141   char * addr = anon_mmap(requested_addr, bytes, false);
4142   if (addr == requested_addr) {
4143     return requested_addr;
4144   }
4145 
4146   if (addr != NULL) {
4147     // mmap() is successful but it fails to reserve at the requested address
4148     anon_munmap(addr, bytes);
4149   }
4150 
4151   int i;
4152   for (i = 0; i < max_tries; ++i) {
4153     base[i] = reserve_memory(bytes);
4154 
4155     if (base[i] != NULL) {
4156       // Is this the block we wanted?
4157       if (base[i] == requested_addr) {
4158         size[i] = bytes;
4159         break;
4160       }
4161 
4162       // Does this overlap the block we wanted? Give back the overlapped
4163       // parts and try again.
4164 
4165       ptrdiff_t top_overlap = requested_addr + (bytes + gap) - base[i];
4166       if (top_overlap >= 0 && (size_t)top_overlap < bytes) {
4167         unmap_memory(base[i], top_overlap);
4168         base[i] += top_overlap;
4169         size[i] = bytes - top_overlap;
4170       } else {
4171         ptrdiff_t bottom_overlap = base[i] + bytes - requested_addr;
4172         if (bottom_overlap >= 0 && (size_t)bottom_overlap < bytes) {
4173           unmap_memory(requested_addr, bottom_overlap);
4174           size[i] = bytes - bottom_overlap;
4175         } else {
4176           size[i] = bytes;
4177         }
4178       }
4179     }
4180   }
4181 
4182   // Give back the unused reserved pieces.
4183 
4184   for (int j = 0; j < i; ++j) {
4185     if (base[j] != NULL) {
4186       unmap_memory(base[j], size[j]);
4187     }
4188   }
4189 
4190   if (i < max_tries) {
4191     return requested_addr;
4192   } else {
4193     return NULL;
4194   }
4195 }
4196 
4197 size_t os::read(int fd, void *buf, unsigned int nBytes) {
4198   return ::read(fd, buf, nBytes);
4199 }
4200 
4201 size_t os::read_at(int fd, void *buf, unsigned int nBytes, jlong offset) {
4202   return ::pread(fd, buf, nBytes, offset);
4203 }
4204 
4205 // Short sleep, direct OS call.
4206 //
4207 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
4208 // sched_yield(2) will actually give up the CPU:
4209 //
4210 //   * Alone on this pariticular CPU, keeps running.
4211 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
4212 //     (pre 2.6.39).
4213 //
4214 // So calling this with 0 is an alternative.
4215 //
4216 void os::naked_short_sleep(jlong ms) {
4217   struct timespec req;
4218 
4219   assert(ms < 1000, "Un-interruptable sleep, short time use only");
4220   req.tv_sec = 0;
4221   if (ms > 0) {
4222     req.tv_nsec = (ms % 1000) * 1000000;
4223   } else {
4224     req.tv_nsec = 1;
4225   }
4226 
4227   nanosleep(&req, NULL);
4228 
4229   return;
4230 }
4231 
4232 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
4233 void os::infinite_sleep() {
4234   while (true) {    // sleep forever ...
4235     ::sleep(100);   // ... 100 seconds at a time
4236   }
4237 }
4238 
4239 // Used to convert frequent JVM_Yield() to nops
4240 bool os::dont_yield() {
4241   return DontYieldALot;
4242 }
4243 
4244 void os::naked_yield() {
4245   sched_yield();
4246 }
4247 
4248 ////////////////////////////////////////////////////////////////////////////////
4249 // thread priority support
4250 
4251 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
4252 // only supports dynamic priority, static priority must be zero. For real-time
4253 // applications, Linux supports SCHED_RR which allows static priority (1-99).
4254 // However, for large multi-threaded applications, SCHED_RR is not only slower
4255 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
4256 // of 5 runs - Sep 2005).
4257 //
4258 // The following code actually changes the niceness of kernel-thread/LWP. It
4259 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
4260 // not the entire user process, and user level threads are 1:1 mapped to kernel
4261 // threads. It has always been the case, but could change in the future. For
4262 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
4263 // It is only used when ThreadPriorityPolicy=1 and may require system level permission
4264 // (e.g., root privilege or CAP_SYS_NICE capability).
4265 
4266 int os::java_to_os_priority[CriticalPriority + 1] = {
4267   19,              // 0 Entry should never be used
4268 
4269    4,              // 1 MinPriority
4270    3,              // 2
4271    2,              // 3
4272 
4273    1,              // 4
4274    0,              // 5 NormPriority
4275   -1,              // 6
4276 
4277   -2,              // 7
4278   -3,              // 8
4279   -4,              // 9 NearMaxPriority
4280 
4281   -5,              // 10 MaxPriority
4282 
4283   -5               // 11 CriticalPriority
4284 };
4285 
4286 static int prio_init() {
4287   if (ThreadPriorityPolicy == 1) {
4288     if (geteuid() != 0) {
4289       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
4290         warning("-XX:ThreadPriorityPolicy=1 may require system level permission, " \
4291                 "e.g., being the root user. If the necessary permission is not " \
4292                 "possessed, changes to priority will be silently ignored.");
4293       }
4294     }
4295   }
4296   if (UseCriticalJavaThreadPriority) {
4297     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
4298   }
4299   return 0;
4300 }
4301 
4302 OSReturn os::set_native_priority(Thread* thread, int newpri) {
4303   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) return OS_OK;
4304 
4305   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
4306   return (ret == 0) ? OS_OK : OS_ERR;
4307 }
4308 
4309 OSReturn os::get_native_priority(const Thread* const thread,
4310                                  int *priority_ptr) {
4311   if (!UseThreadPriorities || ThreadPriorityPolicy == 0) {
4312     *priority_ptr = java_to_os_priority[NormPriority];
4313     return OS_OK;
4314   }
4315 
4316   errno = 0;
4317   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
4318   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
4319 }
4320 
4321 // Hint to the underlying OS that a task switch would not be good.
4322 // Void return because it's a hint and can fail.
4323 void os::hint_no_preempt() {}
4324 
4325 ////////////////////////////////////////////////////////////////////////////////
4326 // suspend/resume support
4327 
4328 //  The low-level signal-based suspend/resume support is a remnant from the
4329 //  old VM-suspension that used to be for java-suspension, safepoints etc,
4330 //  within hotspot. Currently used by JFR's OSThreadSampler
4331 //
4332 //  The remaining code is greatly simplified from the more general suspension
4333 //  code that used to be used.
4334 //
4335 //  The protocol is quite simple:
4336 //  - suspend:
4337 //      - sends a signal to the target thread
4338 //      - polls the suspend state of the osthread using a yield loop
4339 //      - target thread signal handler (SR_handler) sets suspend state
4340 //        and blocks in sigsuspend until continued
4341 //  - resume:
4342 //      - sets target osthread state to continue
4343 //      - sends signal to end the sigsuspend loop in the SR_handler
4344 //
4345 //  Note that the SR_lock plays no role in this suspend/resume protocol,
4346 //  but is checked for NULL in SR_handler as a thread termination indicator.
4347 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
4348 //
4349 //  Note that resume_clear_context() and suspend_save_context() are needed
4350 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
4351 //  which in part is used by:
4352 //    - Forte Analyzer: AsyncGetCallTrace()
4353 //    - StackBanging: get_frame_at_stack_banging_point()
4354 
4355 static void resume_clear_context(OSThread *osthread) {
4356   osthread->set_ucontext(NULL);
4357   osthread->set_siginfo(NULL);
4358 }
4359 
4360 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo,
4361                                  ucontext_t* context) {
4362   osthread->set_ucontext(context);
4363   osthread->set_siginfo(siginfo);
4364 }
4365 
4366 // Handler function invoked when a thread's execution is suspended or
4367 // resumed. We have to be careful that only async-safe functions are
4368 // called here (Note: most pthread functions are not async safe and
4369 // should be avoided.)
4370 //
4371 // Note: sigwait() is a more natural fit than sigsuspend() from an
4372 // interface point of view, but sigwait() prevents the signal hander
4373 // from being run. libpthread would get very confused by not having
4374 // its signal handlers run and prevents sigwait()'s use with the
4375 // mutex granting granting signal.
4376 //
4377 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
4378 //
4379 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
4380   // Save and restore errno to avoid confusing native code with EINTR
4381   // after sigsuspend.
4382   int old_errno = errno;
4383 
4384   Thread* thread = Thread::current_or_null_safe();
4385   assert(thread != NULL, "Missing current thread in SR_handler");
4386 
4387   // On some systems we have seen signal delivery get "stuck" until the signal
4388   // mask is changed as part of thread termination. Check that the current thread
4389   // has not already terminated (via SR_lock()) - else the following assertion
4390   // will fail because the thread is no longer a JavaThread as the ~JavaThread
4391   // destructor has completed.
4392 
4393   if (thread->SR_lock() == NULL) {
4394     return;
4395   }
4396 
4397   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
4398 
4399   OSThread* osthread = thread->osthread();
4400 
4401   os::SuspendResume::State current = osthread->sr.state();
4402   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
4403     suspend_save_context(osthread, siginfo, context);
4404 
4405     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
4406     os::SuspendResume::State state = osthread->sr.suspended();
4407     if (state == os::SuspendResume::SR_SUSPENDED) {
4408       sigset_t suspend_set;  // signals for sigsuspend()
4409       sigemptyset(&suspend_set);
4410       // get current set of blocked signals and unblock resume signal
4411       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
4412       sigdelset(&suspend_set, SR_signum);
4413 
4414       sr_semaphore.signal();
4415       // wait here until we are resumed
4416       while (1) {
4417         sigsuspend(&suspend_set);
4418 
4419         os::SuspendResume::State result = osthread->sr.running();
4420         if (result == os::SuspendResume::SR_RUNNING) {
4421           sr_semaphore.signal();
4422           break;
4423         }
4424       }
4425 
4426     } else if (state == os::SuspendResume::SR_RUNNING) {
4427       // request was cancelled, continue
4428     } else {
4429       ShouldNotReachHere();
4430     }
4431 
4432     resume_clear_context(osthread);
4433   } else if (current == os::SuspendResume::SR_RUNNING) {
4434     // request was cancelled, continue
4435   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
4436     // ignore
4437   } else {
4438     // ignore
4439   }
4440 
4441   errno = old_errno;
4442 }
4443 
4444 static int SR_initialize() {
4445   struct sigaction act;
4446   char *s;
4447 
4448   // Get signal number to use for suspend/resume
4449   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4450     int sig = ::strtol(s, 0, 10);
4451     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
4452         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
4453       SR_signum = sig;
4454     } else {
4455       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
4456               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
4457     }
4458   }
4459 
4460   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4461          "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4462 
4463   sigemptyset(&SR_sigset);
4464   sigaddset(&SR_sigset, SR_signum);
4465 
4466   // Set up signal handler for suspend/resume
4467   act.sa_flags = SA_RESTART|SA_SIGINFO;
4468   act.sa_handler = (void (*)(int)) SR_handler;
4469 
4470   // SR_signum is blocked by default.
4471   // 4528190 - We also need to block pthread restart signal (32 on all
4472   // supported Linux platforms). Note that LinuxThreads need to block
4473   // this signal for all threads to work properly. So we don't have
4474   // to use hard-coded signal number when setting up the mask.
4475   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4476 
4477   if (sigaction(SR_signum, &act, 0) == -1) {
4478     return -1;
4479   }
4480 
4481   // Save signal flag
4482   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4483   return 0;
4484 }
4485 
4486 static int sr_notify(OSThread* osthread) {
4487   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4488   assert_status(status == 0, status, "pthread_kill");
4489   return status;
4490 }
4491 
4492 // "Randomly" selected value for how long we want to spin
4493 // before bailing out on suspending a thread, also how often
4494 // we send a signal to a thread we want to resume
4495 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4496 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4497 
4498 // returns true on success and false on error - really an error is fatal
4499 // but this seems the normal response to library errors
4500 static bool do_suspend(OSThread* osthread) {
4501   assert(osthread->sr.is_running(), "thread should be running");
4502   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4503 
4504   // mark as suspended and send signal
4505   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4506     // failed to switch, state wasn't running?
4507     ShouldNotReachHere();
4508     return false;
4509   }
4510 
4511   if (sr_notify(osthread) != 0) {
4512     ShouldNotReachHere();
4513   }
4514 
4515   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4516   while (true) {
4517     if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4518       break;
4519     } else {
4520       // timeout
4521       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4522       if (cancelled == os::SuspendResume::SR_RUNNING) {
4523         return false;
4524       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4525         // make sure that we consume the signal on the semaphore as well
4526         sr_semaphore.wait();
4527         break;
4528       } else {
4529         ShouldNotReachHere();
4530         return false;
4531       }
4532     }
4533   }
4534 
4535   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4536   return true;
4537 }
4538 
4539 static void do_resume(OSThread* osthread) {
4540   assert(osthread->sr.is_suspended(), "thread should be suspended");
4541   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4542 
4543   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4544     // failed to switch to WAKEUP_REQUEST
4545     ShouldNotReachHere();
4546     return;
4547   }
4548 
4549   while (true) {
4550     if (sr_notify(osthread) == 0) {
4551       if (sr_semaphore.timedwait(create_semaphore_timespec(0, 2 * NANOSECS_PER_MILLISEC))) {
4552         if (osthread->sr.is_running()) {
4553           return;
4554         }
4555       }
4556     } else {
4557       ShouldNotReachHere();
4558     }
4559   }
4560 
4561   guarantee(osthread->sr.is_running(), "Must be running!");
4562 }
4563 
4564 ///////////////////////////////////////////////////////////////////////////////////
4565 // signal handling (except suspend/resume)
4566 
4567 // This routine may be used by user applications as a "hook" to catch signals.
4568 // The user-defined signal handler must pass unrecognized signals to this
4569 // routine, and if it returns true (non-zero), then the signal handler must
4570 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4571 // routine will never retun false (zero), but instead will execute a VM panic
4572 // routine kill the process.
4573 //
4574 // If this routine returns false, it is OK to call it again.  This allows
4575 // the user-defined signal handler to perform checks either before or after
4576 // the VM performs its own checks.  Naturally, the user code would be making
4577 // a serious error if it tried to handle an exception (such as a null check
4578 // or breakpoint) that the VM was generating for its own correct operation.
4579 //
4580 // This routine may recognize any of the following kinds of signals:
4581 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4582 // It should be consulted by handlers for any of those signals.
4583 //
4584 // The caller of this routine must pass in the three arguments supplied
4585 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4586 // field of the structure passed to sigaction().  This routine assumes that
4587 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4588 //
4589 // Note that the VM will print warnings if it detects conflicting signal
4590 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4591 //
4592 extern "C" JNIEXPORT int JVM_handle_linux_signal(int signo,
4593                                                  siginfo_t* siginfo,
4594                                                  void* ucontext,
4595                                                  int abort_if_unrecognized);
4596 
4597 static void signalHandler(int sig, siginfo_t* info, void* uc) {
4598   assert(info != NULL && uc != NULL, "it must be old kernel");
4599   int orig_errno = errno;  // Preserve errno value over signal handler.
4600   JVM_handle_linux_signal(sig, info, uc, true);
4601   errno = orig_errno;
4602 }
4603 
4604 
4605 // This boolean allows users to forward their own non-matching signals
4606 // to JVM_handle_linux_signal, harmlessly.
4607 bool os::Linux::signal_handlers_are_installed = false;
4608 
4609 // For signal-chaining
4610 bool os::Linux::libjsig_is_loaded = false;
4611 typedef struct sigaction *(*get_signal_t)(int);
4612 get_signal_t os::Linux::get_signal_action = NULL;
4613 
4614 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4615   struct sigaction *actp = NULL;
4616 
4617   if (libjsig_is_loaded) {
4618     // Retrieve the old signal handler from libjsig
4619     actp = (*get_signal_action)(sig);
4620   }
4621   if (actp == NULL) {
4622     // Retrieve the preinstalled signal handler from jvm
4623     actp = os::Posix::get_preinstalled_handler(sig);
4624   }
4625 
4626   return actp;
4627 }
4628 
4629 static bool call_chained_handler(struct sigaction *actp, int sig,
4630                                  siginfo_t *siginfo, void *context) {
4631   // Call the old signal handler
4632   if (actp->sa_handler == SIG_DFL) {
4633     // It's more reasonable to let jvm treat it as an unexpected exception
4634     // instead of taking the default action.
4635     return false;
4636   } else if (actp->sa_handler != SIG_IGN) {
4637     if ((actp->sa_flags & SA_NODEFER) == 0) {
4638       // automaticlly block the signal
4639       sigaddset(&(actp->sa_mask), sig);
4640     }
4641 
4642     sa_handler_t hand = NULL;
4643     sa_sigaction_t sa = NULL;
4644     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4645     // retrieve the chained handler
4646     if (siginfo_flag_set) {
4647       sa = actp->sa_sigaction;
4648     } else {
4649       hand = actp->sa_handler;
4650     }
4651 
4652     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4653       actp->sa_handler = SIG_DFL;
4654     }
4655 
4656     // try to honor the signal mask
4657     sigset_t oset;
4658     sigemptyset(&oset);
4659     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4660 
4661     // call into the chained handler
4662     if (siginfo_flag_set) {
4663       (*sa)(sig, siginfo, context);
4664     } else {
4665       (*hand)(sig);
4666     }
4667 
4668     // restore the signal mask
4669     pthread_sigmask(SIG_SETMASK, &oset, NULL);
4670   }
4671   // Tell jvm's signal handler the signal is taken care of.
4672   return true;
4673 }
4674 
4675 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4676   bool chained = false;
4677   // signal-chaining
4678   if (UseSignalChaining) {
4679     struct sigaction *actp = get_chained_signal_action(sig);
4680     if (actp != NULL) {
4681       chained = call_chained_handler(actp, sig, siginfo, context);
4682     }
4683   }
4684   return chained;
4685 }
4686 
4687 // for diagnostic
4688 int sigflags[NSIG];
4689 
4690 int os::Linux::get_our_sigflags(int sig) {
4691   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4692   return sigflags[sig];
4693 }
4694 
4695 void os::Linux::set_our_sigflags(int sig, int flags) {
4696   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4697   if (sig > 0 && sig < NSIG) {
4698     sigflags[sig] = flags;
4699   }
4700 }
4701 
4702 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4703   // Check for overwrite.
4704   struct sigaction oldAct;
4705   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4706 
4707   void* oldhand = oldAct.sa_sigaction
4708                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4709                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4710   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4711       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4712       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4713     if (AllowUserSignalHandlers || !set_installed) {
4714       // Do not overwrite; user takes responsibility to forward to us.
4715       return;
4716     } else if (UseSignalChaining) {
4717       // save the old handler in jvm
4718       os::Posix::save_preinstalled_handler(sig, oldAct);
4719       // libjsig also interposes the sigaction() call below and saves the
4720       // old sigaction on it own.
4721     } else {
4722       fatal("Encountered unexpected pre-existing sigaction handler "
4723             "%#lx for signal %d.", (long)oldhand, sig);
4724     }
4725   }
4726 
4727   struct sigaction sigAct;
4728   sigfillset(&(sigAct.sa_mask));
4729   sigAct.sa_handler = SIG_DFL;
4730   if (!set_installed) {
4731     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4732   } else {
4733     sigAct.sa_sigaction = signalHandler;
4734     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4735   }
4736   // Save flags, which are set by ours
4737   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
4738   sigflags[sig] = sigAct.sa_flags;
4739 
4740   int ret = sigaction(sig, &sigAct, &oldAct);
4741   assert(ret == 0, "check");
4742 
4743   void* oldhand2  = oldAct.sa_sigaction
4744                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4745                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4746   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4747 }
4748 
4749 // install signal handlers for signals that HotSpot needs to
4750 // handle in order to support Java-level exception handling.
4751 
4752 void os::Linux::install_signal_handlers() {
4753   if (!signal_handlers_are_installed) {
4754     signal_handlers_are_installed = true;
4755 
4756     // signal-chaining
4757     typedef void (*signal_setting_t)();
4758     signal_setting_t begin_signal_setting = NULL;
4759     signal_setting_t end_signal_setting = NULL;
4760     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4761                                           dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4762     if (begin_signal_setting != NULL) {
4763       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4764                                           dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4765       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4766                                          dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4767       libjsig_is_loaded = true;
4768       assert(UseSignalChaining, "should enable signal-chaining");
4769     }
4770     if (libjsig_is_loaded) {
4771       // Tell libjsig jvm is setting signal handlers
4772       (*begin_signal_setting)();
4773     }
4774 
4775     set_signal_handler(SIGSEGV, true);
4776     set_signal_handler(SIGPIPE, true);
4777     set_signal_handler(SIGBUS, true);
4778     set_signal_handler(SIGILL, true);
4779     set_signal_handler(SIGFPE, true);
4780 #if defined(PPC64)
4781     set_signal_handler(SIGTRAP, true);
4782 #endif
4783     set_signal_handler(SIGXFSZ, true);
4784 
4785     if (libjsig_is_loaded) {
4786       // Tell libjsig jvm finishes setting signal handlers
4787       (*end_signal_setting)();
4788     }
4789 
4790     // We don't activate signal checker if libjsig is in place, we trust ourselves
4791     // and if UserSignalHandler is installed all bets are off.
4792     // Log that signal checking is off only if -verbose:jni is specified.
4793     if (CheckJNICalls) {
4794       if (libjsig_is_loaded) {
4795         if (PrintJNIResolving) {
4796           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4797         }
4798         check_signals = false;
4799       }
4800       if (AllowUserSignalHandlers) {
4801         if (PrintJNIResolving) {
4802           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4803         }
4804         check_signals = false;
4805       }
4806     }
4807   }
4808 }
4809 
4810 // This is the fastest way to get thread cpu time on Linux.
4811 // Returns cpu time (user+sys) for any thread, not only for current.
4812 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4813 // It might work on 2.6.10+ with a special kernel/glibc patch.
4814 // For reference, please, see IEEE Std 1003.1-2004:
4815 //   http://www.unix.org/single_unix_specification
4816 
4817 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4818   struct timespec tp;
4819   int rc = os::Linux::clock_gettime(clockid, &tp);
4820   assert(rc == 0, "clock_gettime is expected to return 0 code");
4821 
4822   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4823 }
4824 
4825 void os::Linux::initialize_os_info() {
4826   assert(_os_version == 0, "OS info already initialized");
4827 
4828   struct utsname _uname;
4829 
4830   uint32_t major;
4831   uint32_t minor;
4832   uint32_t fix;
4833 
4834   int rc;
4835 
4836   // Kernel version is unknown if
4837   // verification below fails.
4838   _os_version = 0x01000000;
4839 
4840   rc = uname(&_uname);
4841   if (rc != -1) {
4842 
4843     rc = sscanf(_uname.release,"%d.%d.%d", &major, &minor, &fix);
4844     if (rc == 3) {
4845 
4846       if (major < 256 && minor < 256 && fix < 256) {
4847         // Kernel version format is as expected,
4848         // set it overriding unknown state.
4849         _os_version = (major << 16) |
4850                       (minor << 8 ) |
4851                       (fix   << 0 ) ;
4852       }
4853     }
4854   }
4855 }
4856 
4857 uint32_t os::Linux::os_version() {
4858   assert(_os_version != 0, "not initialized");
4859   return _os_version & 0x00FFFFFF;
4860 }
4861 
4862 bool os::Linux::os_version_is_known() {
4863   assert(_os_version != 0, "not initialized");
4864   return _os_version & 0x01000000 ? false : true;
4865 }
4866 
4867 /////
4868 // glibc on Linux platform uses non-documented flag
4869 // to indicate, that some special sort of signal
4870 // trampoline is used.
4871 // We will never set this flag, and we should
4872 // ignore this flag in our diagnostic
4873 #ifdef SIGNIFICANT_SIGNAL_MASK
4874   #undef SIGNIFICANT_SIGNAL_MASK
4875 #endif
4876 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4877 
4878 static const char* get_signal_handler_name(address handler,
4879                                            char* buf, int buflen) {
4880   int offset = 0;
4881   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4882   if (found) {
4883     // skip directory names
4884     const char *p1, *p2;
4885     p1 = buf;
4886     size_t len = strlen(os::file_separator());
4887     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4888     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4889   } else {
4890     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4891   }
4892   return buf;
4893 }
4894 
4895 static void print_signal_handler(outputStream* st, int sig,
4896                                  char* buf, size_t buflen) {
4897   struct sigaction sa;
4898 
4899   sigaction(sig, NULL, &sa);
4900 
4901   // See comment for SIGNIFICANT_SIGNAL_MASK define
4902   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4903 
4904   st->print("%s: ", os::exception_name(sig, buf, buflen));
4905 
4906   address handler = (sa.sa_flags & SA_SIGINFO)
4907     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4908     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4909 
4910   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4911     st->print("SIG_DFL");
4912   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4913     st->print("SIG_IGN");
4914   } else {
4915     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4916   }
4917 
4918   st->print(", sa_mask[0]=");
4919   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4920 
4921   address rh = VMError::get_resetted_sighandler(sig);
4922   // May be, handler was resetted by VMError?
4923   if (rh != NULL) {
4924     handler = rh;
4925     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4926   }
4927 
4928   st->print(", sa_flags=");
4929   os::Posix::print_sa_flags(st, sa.sa_flags);
4930 
4931   // Check: is it our handler?
4932   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4933       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4934     // It is our signal handler
4935     // check for flags, reset system-used one!
4936     if ((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4937       st->print(
4938                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4939                 os::Linux::get_our_sigflags(sig));
4940     }
4941   }
4942   st->cr();
4943 }
4944 
4945 
4946 #define DO_SIGNAL_CHECK(sig)                      \
4947   do {                                            \
4948     if (!sigismember(&check_signal_done, sig)) {  \
4949       os::Linux::check_signal_handler(sig);       \
4950     }                                             \
4951   } while (0)
4952 
4953 // This method is a periodic task to check for misbehaving JNI applications
4954 // under CheckJNI, we can add any periodic checks here
4955 
4956 void os::run_periodic_checks() {
4957   if (check_signals == false) return;
4958 
4959   // SEGV and BUS if overridden could potentially prevent
4960   // generation of hs*.log in the event of a crash, debugging
4961   // such a case can be very challenging, so we absolutely
4962   // check the following for a good measure:
4963   DO_SIGNAL_CHECK(SIGSEGV);
4964   DO_SIGNAL_CHECK(SIGILL);
4965   DO_SIGNAL_CHECK(SIGFPE);
4966   DO_SIGNAL_CHECK(SIGBUS);
4967   DO_SIGNAL_CHECK(SIGPIPE);
4968   DO_SIGNAL_CHECK(SIGXFSZ);
4969 #if defined(PPC64)
4970   DO_SIGNAL_CHECK(SIGTRAP);
4971 #endif
4972 
4973   // ReduceSignalUsage allows the user to override these handlers
4974   // see comments at the very top and jvm_md.h
4975   if (!ReduceSignalUsage) {
4976     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4977     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4978     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4979     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4980   }
4981 
4982   DO_SIGNAL_CHECK(SR_signum);
4983 }
4984 
4985 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4986 
4987 static os_sigaction_t os_sigaction = NULL;
4988 
4989 void os::Linux::check_signal_handler(int sig) {
4990   char buf[O_BUFLEN];
4991   address jvmHandler = NULL;
4992 
4993 
4994   struct sigaction act;
4995   if (os_sigaction == NULL) {
4996     // only trust the default sigaction, in case it has been interposed
4997     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4998     if (os_sigaction == NULL) return;
4999   }
5000 
5001   os_sigaction(sig, (struct sigaction*)NULL, &act);
5002 
5003 
5004   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
5005 
5006   address thisHandler = (act.sa_flags & SA_SIGINFO)
5007     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
5008     : CAST_FROM_FN_PTR(address, act.sa_handler);
5009 
5010 
5011   switch (sig) {
5012   case SIGSEGV:
5013   case SIGBUS:
5014   case SIGFPE:
5015   case SIGPIPE:
5016   case SIGILL:
5017   case SIGXFSZ:
5018     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
5019     break;
5020 
5021   case SHUTDOWN1_SIGNAL:
5022   case SHUTDOWN2_SIGNAL:
5023   case SHUTDOWN3_SIGNAL:
5024   case BREAK_SIGNAL:
5025     jvmHandler = (address)user_handler();
5026     break;
5027 
5028   default:
5029     if (sig == SR_signum) {
5030       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
5031     } else {
5032       return;
5033     }
5034     break;
5035   }
5036 
5037   if (thisHandler != jvmHandler) {
5038     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
5039     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
5040     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
5041     // No need to check this sig any longer
5042     sigaddset(&check_signal_done, sig);
5043     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
5044     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
5045       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
5046                     exception_name(sig, buf, O_BUFLEN));
5047     }
5048   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
5049     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
5050     tty->print("expected:");
5051     os::Posix::print_sa_flags(tty, os::Linux::get_our_sigflags(sig));
5052     tty->cr();
5053     tty->print("  found:");
5054     os::Posix::print_sa_flags(tty, act.sa_flags);
5055     tty->cr();
5056     // No need to check this sig any longer
5057     sigaddset(&check_signal_done, sig);
5058   }
5059 
5060   // Dump all the signal
5061   if (sigismember(&check_signal_done, sig)) {
5062     print_signal_handlers(tty, buf, O_BUFLEN);
5063   }
5064 }
5065 
5066 extern void report_error(char* file_name, int line_no, char* title,
5067                          char* format, ...);
5068 
5069 // this is called _before_ most of the global arguments have been parsed
5070 void os::init(void) {
5071   char dummy;   // used to get a guess on initial stack address
5072 
5073   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
5074 
5075   init_random(1234567);
5076 
5077   Linux::set_page_size(sysconf(_SC_PAGESIZE));
5078   if (Linux::page_size() == -1) {
5079     fatal("os_linux.cpp: os::init: sysconf failed (%s)",
5080           os::strerror(errno));
5081   }
5082   init_page_sizes((size_t) Linux::page_size());
5083 
5084   Linux::initialize_system_info();
5085 
5086   Linux::initialize_os_info();
5087 
5088   os::Linux::CPUPerfTicks pticks;
5089   bool res = os::Linux::get_tick_information(&pticks, -1);
5090 
5091   if (res && pticks.has_steal_ticks) {
5092     has_initial_tick_info = true;
5093     initial_total_ticks = pticks.total;
5094     initial_steal_ticks = pticks.steal;
5095   }
5096 
5097   // _main_thread points to the thread that created/loaded the JVM.
5098   Linux::_main_thread = pthread_self();
5099 
5100   Linux::clock_init();
5101   initial_time_count = javaTimeNanos();
5102 
5103   // retrieve entry point for pthread_setname_np
5104   Linux::_pthread_setname_np =
5105     (int(*)(pthread_t, const char*))dlsym(RTLD_DEFAULT, "pthread_setname_np");
5106 
5107   os::Posix::init();
5108 }
5109 
5110 // To install functions for atexit system call
5111 extern "C" {
5112   static void perfMemory_exit_helper() {
5113     perfMemory_exit();
5114   }
5115 }
5116 
5117 void os::pd_init_container_support() {
5118   OSContainer::init();
5119 }
5120 
5121 // this is called _after_ the global arguments have been parsed
5122 jint os::init_2(void) {
5123 
5124   os::Posix::init_2();
5125 
5126   Linux::fast_thread_clock_init();
5127 
5128   // initialize suspend/resume support - must do this before signal_sets_init()
5129   if (SR_initialize() != 0) {
5130     perror("SR_initialize failed");
5131     return JNI_ERR;
5132   }
5133 
5134   Linux::signal_sets_init();
5135   Linux::install_signal_handlers();
5136   // Initialize data for jdk.internal.misc.Signal
5137   if (!ReduceSignalUsage) {
5138     jdk_misc_signal_init();
5139   }
5140 
5141   // Check and sets minimum stack sizes against command line options
5142   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
5143     return JNI_ERR;
5144   }
5145 
5146 #if defined(IA32)
5147   // Need to ensure we've determined the process's initial stack to
5148   // perform the workaround
5149   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5150   workaround_expand_exec_shield_cs_limit();
5151 #else
5152   suppress_primordial_thread_resolution = Arguments::created_by_java_launcher();
5153   if (!suppress_primordial_thread_resolution) {
5154     Linux::capture_initial_stack(JavaThread::stack_size_at_create());
5155   }
5156 #endif
5157 
5158   Linux::libpthread_init();
5159   Linux::sched_getcpu_init();
5160   log_info(os)("HotSpot is running with %s, %s",
5161                Linux::glibc_version(), Linux::libpthread_version());
5162 
5163   if (UseNUMA) {
5164     if (!Linux::libnuma_init()) {
5165       UseNUMA = false;
5166     } else {
5167       if ((Linux::numa_max_node() < 1) || Linux::isbound_to_single_node()) {
5168         // If there's only one node (they start from 0) or if the process
5169         // is bound explicitly to a single node using membind, disable NUMA.
5170         UseNUMA = false;
5171       }
5172     }
5173 
5174     if (UseParallelGC && UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
5175       // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
5176       // we can make the adaptive lgrp chunk resizing work. If the user specified both
5177       // UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn
5178       // and disable adaptive resizing.
5179       if (UseAdaptiveSizePolicy || UseAdaptiveNUMAChunkSizing) {
5180         warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, "
5181                 "disabling adaptive resizing (-XX:-UseAdaptiveSizePolicy -XX:-UseAdaptiveNUMAChunkSizing)");
5182         UseAdaptiveSizePolicy = false;
5183         UseAdaptiveNUMAChunkSizing = false;
5184       }
5185     }
5186 
5187     if (!UseNUMA && ForceNUMA) {
5188       UseNUMA = true;
5189     }
5190   }
5191 
5192   if (MaxFDLimit) {
5193     // set the number of file descriptors to max. print out error
5194     // if getrlimit/setrlimit fails but continue regardless.
5195     struct rlimit nbr_files;
5196     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
5197     if (status != 0) {
5198       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
5199     } else {
5200       nbr_files.rlim_cur = nbr_files.rlim_max;
5201       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
5202       if (status != 0) {
5203         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
5204       }
5205     }
5206   }
5207 
5208   // Initialize lock used to serialize thread creation (see os::create_thread)
5209   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
5210 
5211   // at-exit methods are called in the reverse order of their registration.
5212   // atexit functions are called on return from main or as a result of a
5213   // call to exit(3C). There can be only 32 of these functions registered
5214   // and atexit() does not set errno.
5215 
5216   if (PerfAllowAtExitRegistration) {
5217     // only register atexit functions if PerfAllowAtExitRegistration is set.
5218     // atexit functions can be delayed until process exit time, which
5219     // can be problematic for embedded VM situations. Embedded VMs should
5220     // call DestroyJavaVM() to assure that VM resources are released.
5221 
5222     // note: perfMemory_exit_helper atexit function may be removed in
5223     // the future if the appropriate cleanup code can be added to the
5224     // VM_Exit VMOperation's doit method.
5225     if (atexit(perfMemory_exit_helper) != 0) {
5226       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
5227     }
5228   }
5229 
5230   // initialize thread priority policy
5231   prio_init();
5232 
5233   if (!FLAG_IS_DEFAULT(AllocateHeapAt)) {
5234     set_coredump_filter(DAX_SHARED_BIT);
5235   }
5236 
5237   if (DumpPrivateMappingsInCore) {
5238     set_coredump_filter(FILE_BACKED_PVT_BIT);
5239   }
5240 
5241   if (DumpSharedMappingsInCore) {
5242     set_coredump_filter(FILE_BACKED_SHARED_BIT);
5243   }
5244 
5245   return JNI_OK;
5246 }
5247 
5248 // Mark the polling page as unreadable
5249 void os::make_polling_page_unreadable(void) {
5250   if (!guard_memory((char*)_polling_page, Linux::page_size())) {
5251     fatal("Could not disable polling page");
5252   }
5253 }
5254 
5255 // Mark the polling page as readable
5256 void os::make_polling_page_readable(void) {
5257   if (!linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
5258     fatal("Could not enable polling page");
5259   }
5260 }
5261 
5262 // older glibc versions don't have this macro (which expands to
5263 // an optimized bit-counting function) so we have to roll our own
5264 #ifndef CPU_COUNT
5265 
5266 static int _cpu_count(const cpu_set_t* cpus) {
5267   int count = 0;
5268   // only look up to the number of configured processors
5269   for (int i = 0; i < os::processor_count(); i++) {
5270     if (CPU_ISSET(i, cpus)) {
5271       count++;
5272     }
5273   }
5274   return count;
5275 }
5276 
5277 #define CPU_COUNT(cpus) _cpu_count(cpus)
5278 
5279 #endif // CPU_COUNT
5280 
5281 // Get the current number of available processors for this process.
5282 // This value can change at any time during a process's lifetime.
5283 // sched_getaffinity gives an accurate answer as it accounts for cpusets.
5284 // If it appears there may be more than 1024 processors then we do a
5285 // dynamic check - see 6515172 for details.
5286 // If anything goes wrong we fallback to returning the number of online
5287 // processors - which can be greater than the number available to the process.
5288 int os::Linux::active_processor_count() {
5289   cpu_set_t cpus;  // can represent at most 1024 (CPU_SETSIZE) processors
5290   cpu_set_t* cpus_p = &cpus;
5291   int cpus_size = sizeof(cpu_set_t);
5292 
5293   int configured_cpus = os::processor_count();  // upper bound on available cpus
5294   int cpu_count = 0;
5295 
5296 // old build platforms may not support dynamic cpu sets
5297 #ifdef CPU_ALLOC
5298 
5299   // To enable easy testing of the dynamic path on different platforms we
5300   // introduce a diagnostic flag: UseCpuAllocPath
5301   if (configured_cpus >= CPU_SETSIZE || UseCpuAllocPath) {
5302     // kernel may use a mask bigger than cpu_set_t
5303     log_trace(os)("active_processor_count: using dynamic path %s"
5304                   "- configured processors: %d",
5305                   UseCpuAllocPath ? "(forced) " : "",
5306                   configured_cpus);
5307     cpus_p = CPU_ALLOC(configured_cpus);
5308     if (cpus_p != NULL) {
5309       cpus_size = CPU_ALLOC_SIZE(configured_cpus);
5310       // zero it just to be safe
5311       CPU_ZERO_S(cpus_size, cpus_p);
5312     }
5313     else {
5314        // failed to allocate so fallback to online cpus
5315        int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
5316        log_trace(os)("active_processor_count: "
5317                      "CPU_ALLOC failed (%s) - using "
5318                      "online processor count: %d",
5319                      os::strerror(errno), online_cpus);
5320        return online_cpus;
5321     }
5322   }
5323   else {
5324     log_trace(os)("active_processor_count: using static path - configured processors: %d",
5325                   configured_cpus);
5326   }
5327 #else // CPU_ALLOC
5328 // these stubs won't be executed
5329 #define CPU_COUNT_S(size, cpus) -1
5330 #define CPU_FREE(cpus)
5331 
5332   log_trace(os)("active_processor_count: only static path available - configured processors: %d",
5333                 configured_cpus);
5334 #endif // CPU_ALLOC
5335 
5336   // pid 0 means the current thread - which we have to assume represents the process
5337   if (sched_getaffinity(0, cpus_size, cpus_p) == 0) {
5338     if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5339       cpu_count = CPU_COUNT_S(cpus_size, cpus_p);
5340     }
5341     else {
5342       cpu_count = CPU_COUNT(cpus_p);
5343     }
5344     log_trace(os)("active_processor_count: sched_getaffinity processor count: %d", cpu_count);
5345   }
5346   else {
5347     cpu_count = ::sysconf(_SC_NPROCESSORS_ONLN);
5348     warning("sched_getaffinity failed (%s)- using online processor count (%d) "
5349             "which may exceed available processors", os::strerror(errno), cpu_count);
5350   }
5351 
5352   if (cpus_p != &cpus) { // can only be true when CPU_ALLOC used
5353     CPU_FREE(cpus_p);
5354   }
5355 
5356   assert(cpu_count > 0 && cpu_count <= os::processor_count(), "sanity check");
5357   return cpu_count;
5358 }
5359 
5360 // Determine the active processor count from one of
5361 // three different sources:
5362 //
5363 // 1. User option -XX:ActiveProcessorCount
5364 // 2. kernel os calls (sched_getaffinity or sysconf(_SC_NPROCESSORS_ONLN)
5365 // 3. extracted from cgroup cpu subsystem (shares and quotas)
5366 //
5367 // Option 1, if specified, will always override.
5368 // If the cgroup subsystem is active and configured, we
5369 // will return the min of the cgroup and option 2 results.
5370 // This is required since tools, such as numactl, that
5371 // alter cpu affinity do not update cgroup subsystem
5372 // cpuset configuration files.
5373 int os::active_processor_count() {
5374   // User has overridden the number of active processors
5375   if (ActiveProcessorCount > 0) {
5376     log_trace(os)("active_processor_count: "
5377                   "active processor count set by user : %d",
5378                   ActiveProcessorCount);
5379     return ActiveProcessorCount;
5380   }
5381 
5382   int active_cpus;
5383   if (OSContainer::is_containerized()) {
5384     active_cpus = OSContainer::active_processor_count();
5385     log_trace(os)("active_processor_count: determined by OSContainer: %d",
5386                    active_cpus);
5387   } else {
5388     active_cpus = os::Linux::active_processor_count();
5389   }
5390 
5391   return active_cpus;
5392 }
5393 
5394 uint os::processor_id() {
5395   const int id = Linux::sched_getcpu();
5396   assert(id >= 0 && id < _processor_count, "Invalid processor id");
5397   return (uint)id;
5398 }
5399 
5400 void os::set_native_thread_name(const char *name) {
5401   if (Linux::_pthread_setname_np) {
5402     char buf [16]; // according to glibc manpage, 16 chars incl. '/0'
5403     snprintf(buf, sizeof(buf), "%s", name);
5404     buf[sizeof(buf) - 1] = '\0';
5405     const int rc = Linux::_pthread_setname_np(pthread_self(), buf);
5406     // ERANGE should not happen; all other errors should just be ignored.
5407     assert(rc != ERANGE, "pthread_setname_np failed");
5408   }
5409 }
5410 
5411 bool os::distribute_processes(uint length, uint* distribution) {
5412   // Not yet implemented.
5413   return false;
5414 }
5415 
5416 bool os::bind_to_processor(uint processor_id) {
5417   // Not yet implemented.
5418   return false;
5419 }
5420 
5421 ///
5422 
5423 void os::SuspendedThreadTask::internal_do_task() {
5424   if (do_suspend(_thread->osthread())) {
5425     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
5426     do_task(context);
5427     do_resume(_thread->osthread());
5428   }
5429 }
5430 
5431 ////////////////////////////////////////////////////////////////////////////////
5432 // debug support
5433 
5434 bool os::find(address addr, outputStream* st) {
5435   Dl_info dlinfo;
5436   memset(&dlinfo, 0, sizeof(dlinfo));
5437   if (dladdr(addr, &dlinfo) != 0) {
5438     st->print(PTR_FORMAT ": ", p2i(addr));
5439     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
5440       st->print("%s+" PTR_FORMAT, dlinfo.dli_sname,
5441                 p2i(addr) - p2i(dlinfo.dli_saddr));
5442     } else if (dlinfo.dli_fbase != NULL) {
5443       st->print("<offset " PTR_FORMAT ">", p2i(addr) - p2i(dlinfo.dli_fbase));
5444     } else {
5445       st->print("<absolute address>");
5446     }
5447     if (dlinfo.dli_fname != NULL) {
5448       st->print(" in %s", dlinfo.dli_fname);
5449     }
5450     if (dlinfo.dli_fbase != NULL) {
5451       st->print(" at " PTR_FORMAT, p2i(dlinfo.dli_fbase));
5452     }
5453     st->cr();
5454 
5455     if (Verbose) {
5456       // decode some bytes around the PC
5457       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
5458       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
5459       address       lowest = (address) dlinfo.dli_sname;
5460       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
5461       if (begin < lowest)  begin = lowest;
5462       Dl_info dlinfo2;
5463       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
5464           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin) {
5465         end = (address) dlinfo2.dli_saddr;
5466       }
5467       Disassembler::decode(begin, end, st);
5468     }
5469     return true;
5470   }
5471   return false;
5472 }
5473 
5474 ////////////////////////////////////////////////////////////////////////////////
5475 // misc
5476 
5477 // This does not do anything on Linux. This is basically a hook for being
5478 // able to use structured exception handling (thread-local exception filters)
5479 // on, e.g., Win32.
5480 void
5481 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
5482                          JavaCallArguments* args, Thread* thread) {
5483   f(value, method, args, thread);
5484 }
5485 
5486 void os::print_statistics() {
5487 }
5488 
5489 bool os::message_box(const char* title, const char* message) {
5490   int i;
5491   fdStream err(defaultStream::error_fd());
5492   for (i = 0; i < 78; i++) err.print_raw("=");
5493   err.cr();
5494   err.print_raw_cr(title);
5495   for (i = 0; i < 78; i++) err.print_raw("-");
5496   err.cr();
5497   err.print_raw_cr(message);
5498   for (i = 0; i < 78; i++) err.print_raw("=");
5499   err.cr();
5500 
5501   char buf[16];
5502   // Prevent process from exiting upon "read error" without consuming all CPU
5503   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5504 
5505   return buf[0] == 'y' || buf[0] == 'Y';
5506 }
5507 
5508 // Is a (classpath) directory empty?
5509 bool os::dir_is_empty(const char* path) {
5510   DIR *dir = NULL;
5511   struct dirent *ptr;
5512 
5513   dir = opendir(path);
5514   if (dir == NULL) return true;
5515 
5516   // Scan the directory
5517   bool result = true;
5518   while (result && (ptr = readdir(dir)) != NULL) {
5519     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5520       result = false;
5521     }
5522   }
5523   closedir(dir);
5524   return result;
5525 }
5526 
5527 // This code originates from JDK's sysOpen and open64_w
5528 // from src/solaris/hpi/src/system_md.c
5529 
5530 int os::open(const char *path, int oflag, int mode) {
5531   if (strlen(path) > MAX_PATH - 1) {
5532     errno = ENAMETOOLONG;
5533     return -1;
5534   }
5535 
5536   // All file descriptors that are opened in the Java process and not
5537   // specifically destined for a subprocess should have the close-on-exec
5538   // flag set.  If we don't set it, then careless 3rd party native code
5539   // might fork and exec without closing all appropriate file descriptors
5540   // (e.g. as we do in closeDescriptors in UNIXProcess.c), and this in
5541   // turn might:
5542   //
5543   // - cause end-of-file to fail to be detected on some file
5544   //   descriptors, resulting in mysterious hangs, or
5545   //
5546   // - might cause an fopen in the subprocess to fail on a system
5547   //   suffering from bug 1085341.
5548   //
5549   // (Yes, the default setting of the close-on-exec flag is a Unix
5550   // design flaw)
5551   //
5552   // See:
5553   // 1085341: 32-bit stdio routines should support file descriptors >255
5554   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5555   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5556   //
5557   // Modern Linux kernels (after 2.6.23 2007) support O_CLOEXEC with open().
5558   // O_CLOEXEC is preferable to using FD_CLOEXEC on an open file descriptor
5559   // because it saves a system call and removes a small window where the flag
5560   // is unset.  On ancient Linux kernels the O_CLOEXEC flag will be ignored
5561   // and we fall back to using FD_CLOEXEC (see below).
5562 #ifdef O_CLOEXEC
5563   oflag |= O_CLOEXEC;
5564 #endif
5565 
5566   int fd = ::open64(path, oflag, mode);
5567   if (fd == -1) return -1;
5568 
5569   //If the open succeeded, the file might still be a directory
5570   {
5571     struct stat64 buf64;
5572     int ret = ::fstat64(fd, &buf64);
5573     int st_mode = buf64.st_mode;
5574 
5575     if (ret != -1) {
5576       if ((st_mode & S_IFMT) == S_IFDIR) {
5577         errno = EISDIR;
5578         ::close(fd);
5579         return -1;
5580       }
5581     } else {
5582       ::close(fd);
5583       return -1;
5584     }
5585   }
5586 
5587 #ifdef FD_CLOEXEC
5588   // Validate that the use of the O_CLOEXEC flag on open above worked.
5589   // With recent kernels, we will perform this check exactly once.
5590   static sig_atomic_t O_CLOEXEC_is_known_to_work = 0;
5591   if (!O_CLOEXEC_is_known_to_work) {
5592     int flags = ::fcntl(fd, F_GETFD);
5593     if (flags != -1) {
5594       if ((flags & FD_CLOEXEC) != 0)
5595         O_CLOEXEC_is_known_to_work = 1;
5596       else
5597         ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5598     }
5599   }
5600 #endif
5601 
5602   return fd;
5603 }
5604 
5605 
5606 // create binary file, rewriting existing file if required
5607 int os::create_binary_file(const char* path, bool rewrite_existing) {
5608   int oflags = O_WRONLY | O_CREAT;
5609   if (!rewrite_existing) {
5610     oflags |= O_EXCL;
5611   }
5612   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5613 }
5614 
5615 // return current position of file pointer
5616 jlong os::current_file_offset(int fd) {
5617   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5618 }
5619 
5620 // move file pointer to the specified offset
5621 jlong os::seek_to_file_offset(int fd, jlong offset) {
5622   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5623 }
5624 
5625 // This code originates from JDK's sysAvailable
5626 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5627 
5628 int os::available(int fd, jlong *bytes) {
5629   jlong cur, end;
5630   int mode;
5631   struct stat64 buf64;
5632 
5633   if (::fstat64(fd, &buf64) >= 0) {
5634     mode = buf64.st_mode;
5635     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5636       int n;
5637       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5638         *bytes = n;
5639         return 1;
5640       }
5641     }
5642   }
5643   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5644     return 0;
5645   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5646     return 0;
5647   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5648     return 0;
5649   }
5650   *bytes = end - cur;
5651   return 1;
5652 }
5653 
5654 // Map a block of memory.
5655 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5656                         char *addr, size_t bytes, bool read_only,
5657                         bool allow_exec) {
5658   int prot;
5659   int flags = MAP_PRIVATE;
5660 
5661   if (read_only) {
5662     prot = PROT_READ;
5663   } else {
5664     prot = PROT_READ | PROT_WRITE;
5665   }
5666 
5667   if (allow_exec) {
5668     prot |= PROT_EXEC;
5669   }
5670 
5671   if (addr != NULL) {
5672     flags |= MAP_FIXED;
5673   }
5674 
5675   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5676                                      fd, file_offset);
5677   if (mapped_address == MAP_FAILED) {
5678     return NULL;
5679   }
5680   return mapped_address;
5681 }
5682 
5683 
5684 // Remap a block of memory.
5685 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5686                           char *addr, size_t bytes, bool read_only,
5687                           bool allow_exec) {
5688   // same as map_memory() on this OS
5689   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5690                         allow_exec);
5691 }
5692 
5693 
5694 // Unmap a block of memory.
5695 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5696   return munmap(addr, bytes) == 0;
5697 }
5698 
5699 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5700 
5701 static jlong fast_cpu_time(Thread *thread) {
5702     clockid_t clockid;
5703     int rc = os::Linux::pthread_getcpuclockid(thread->osthread()->pthread_id(),
5704                                               &clockid);
5705     if (rc == 0) {
5706       return os::Linux::fast_thread_cpu_time(clockid);
5707     } else {
5708       // It's possible to encounter a terminated native thread that failed
5709       // to detach itself from the VM - which should result in ESRCH.
5710       assert_status(rc == ESRCH, rc, "pthread_getcpuclockid failed");
5711       return -1;
5712     }
5713 }
5714 
5715 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5716 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5717 // of a thread.
5718 //
5719 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5720 // the fast estimate available on the platform.
5721 
5722 jlong os::current_thread_cpu_time() {
5723   if (os::Linux::supports_fast_thread_cpu_time()) {
5724     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5725   } else {
5726     // return user + sys since the cost is the same
5727     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5728   }
5729 }
5730 
5731 jlong os::thread_cpu_time(Thread* thread) {
5732   // consistent with what current_thread_cpu_time() returns
5733   if (os::Linux::supports_fast_thread_cpu_time()) {
5734     return fast_cpu_time(thread);
5735   } else {
5736     return slow_thread_cpu_time(thread, true /* user + sys */);
5737   }
5738 }
5739 
5740 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5741   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5742     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5743   } else {
5744     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5745   }
5746 }
5747 
5748 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5749   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5750     return fast_cpu_time(thread);
5751   } else {
5752     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5753   }
5754 }
5755 
5756 //  -1 on error.
5757 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5758   pid_t  tid = thread->osthread()->thread_id();
5759   char *s;
5760   char stat[2048];
5761   int statlen;
5762   char proc_name[64];
5763   int count;
5764   long sys_time, user_time;
5765   char cdummy;
5766   int idummy;
5767   long ldummy;
5768   FILE *fp;
5769 
5770   snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5771   fp = fopen(proc_name, "r");
5772   if (fp == NULL) return -1;
5773   statlen = fread(stat, 1, 2047, fp);
5774   stat[statlen] = '\0';
5775   fclose(fp);
5776 
5777   // Skip pid and the command string. Note that we could be dealing with
5778   // weird command names, e.g. user could decide to rename java launcher
5779   // to "java 1.4.2 :)", then the stat file would look like
5780   //                1234 (java 1.4.2 :)) R ... ...
5781   // We don't really need to know the command string, just find the last
5782   // occurrence of ")" and then start parsing from there. See bug 4726580.
5783   s = strrchr(stat, ')');
5784   if (s == NULL) return -1;
5785 
5786   // Skip blank chars
5787   do { s++; } while (s && isspace(*s));
5788 
5789   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5790                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5791                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5792                  &user_time, &sys_time);
5793   if (count != 13) return -1;
5794   if (user_sys_cpu_time) {
5795     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5796   } else {
5797     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5798   }
5799 }
5800 
5801 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5802   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5803   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5804   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5805   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5806 }
5807 
5808 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5809   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5810   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5811   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5812   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5813 }
5814 
5815 bool os::is_thread_cpu_time_supported() {
5816   return true;
5817 }
5818 
5819 // System loadavg support.  Returns -1 if load average cannot be obtained.
5820 // Linux doesn't yet have a (official) notion of processor sets,
5821 // so just return the system wide load average.
5822 int os::loadavg(double loadavg[], int nelem) {
5823   return ::getloadavg(loadavg, nelem);
5824 }
5825 
5826 void os::pause() {
5827   char filename[MAX_PATH];
5828   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5829     jio_snprintf(filename, MAX_PATH, "%s", PauseAtStartupFile);
5830   } else {
5831     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5832   }
5833 
5834   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5835   if (fd != -1) {
5836     struct stat buf;
5837     ::close(fd);
5838     while (::stat(filename, &buf) == 0) {
5839       (void)::poll(NULL, 0, 100);
5840     }
5841   } else {
5842     jio_fprintf(stderr,
5843                 "Could not open pause file '%s', continuing immediately.\n", filename);
5844   }
5845 }
5846 
5847 extern char** environ;
5848 
5849 // Run the specified command in a separate process. Return its exit value,
5850 // or -1 on failure (e.g. can't fork a new process).
5851 // Unlike system(), this function can be called from signal handler. It
5852 // doesn't block SIGINT et al.
5853 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
5854   const char * argv[4] = {"sh", "-c", cmd, NULL};
5855 
5856   pid_t pid ;
5857 
5858   if (use_vfork_if_available) {
5859     pid = vfork();
5860   } else {
5861     pid = fork();
5862   }
5863 
5864   if (pid < 0) {
5865     // fork failed
5866     return -1;
5867 
5868   } else if (pid == 0) {
5869     // child process
5870 
5871     execve("/bin/sh", (char* const*)argv, environ);
5872 
5873     // execve failed
5874     _exit(-1);
5875 
5876   } else  {
5877     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5878     // care about the actual exit code, for now.
5879 
5880     int status;
5881 
5882     // Wait for the child process to exit.  This returns immediately if
5883     // the child has already exited. */
5884     while (waitpid(pid, &status, 0) < 0) {
5885       switch (errno) {
5886       case ECHILD: return 0;
5887       case EINTR: break;
5888       default: return -1;
5889       }
5890     }
5891 
5892     if (WIFEXITED(status)) {
5893       // The child exited normally; get its exit code.
5894       return WEXITSTATUS(status);
5895     } else if (WIFSIGNALED(status)) {
5896       // The child exited because of a signal
5897       // The best value to return is 0x80 + signal number,
5898       // because that is what all Unix shells do, and because
5899       // it allows callers to distinguish between process exit and
5900       // process death by signal.
5901       return 0x80 + WTERMSIG(status);
5902     } else {
5903       // Unknown exit code; pass it through
5904       return status;
5905     }
5906   }
5907 }
5908 
5909 // Get the default path to the core file
5910 // Returns the length of the string
5911 int os::get_core_path(char* buffer, size_t bufferSize) {
5912   /*
5913    * Max length of /proc/sys/kernel/core_pattern is 128 characters.
5914    * See https://www.kernel.org/doc/Documentation/sysctl/kernel.txt
5915    */
5916   const int core_pattern_len = 129;
5917   char core_pattern[core_pattern_len] = {0};
5918 
5919   int core_pattern_file = ::open("/proc/sys/kernel/core_pattern", O_RDONLY);
5920   if (core_pattern_file == -1) {
5921     return -1;
5922   }
5923 
5924   ssize_t ret = ::read(core_pattern_file, core_pattern, core_pattern_len);
5925   ::close(core_pattern_file);
5926   if (ret <= 0 || ret >= core_pattern_len || core_pattern[0] == '\n') {
5927     return -1;
5928   }
5929   if (core_pattern[ret-1] == '\n') {
5930     core_pattern[ret-1] = '\0';
5931   } else {
5932     core_pattern[ret] = '\0';
5933   }
5934 
5935   char *pid_pos = strstr(core_pattern, "%p");
5936   int written;
5937 
5938   if (core_pattern[0] == '/') {
5939     written = jio_snprintf(buffer, bufferSize, "%s", core_pattern);
5940   } else {
5941     char cwd[PATH_MAX];
5942 
5943     const char* p = get_current_directory(cwd, PATH_MAX);
5944     if (p == NULL) {
5945       return -1;
5946     }
5947 
5948     if (core_pattern[0] == '|') {
5949       written = jio_snprintf(buffer, bufferSize,
5950                              "\"%s\" (or dumping to %s/core.%d)",
5951                              &core_pattern[1], p, current_process_id());
5952     } else {
5953       written = jio_snprintf(buffer, bufferSize, "%s/%s", p, core_pattern);
5954     }
5955   }
5956 
5957   if (written < 0) {
5958     return -1;
5959   }
5960 
5961   if (((size_t)written < bufferSize) && (pid_pos == NULL) && (core_pattern[0] != '|')) {
5962     int core_uses_pid_file = ::open("/proc/sys/kernel/core_uses_pid", O_RDONLY);
5963 
5964     if (core_uses_pid_file != -1) {
5965       char core_uses_pid = 0;
5966       ssize_t ret = ::read(core_uses_pid_file, &core_uses_pid, 1);
5967       ::close(core_uses_pid_file);
5968 
5969       if (core_uses_pid == '1') {
5970         jio_snprintf(buffer + written, bufferSize - written,
5971                                           ".%d", current_process_id());
5972       }
5973     }
5974   }
5975 
5976   return strlen(buffer);
5977 }
5978 
5979 bool os::start_debugging(char *buf, int buflen) {
5980   int len = (int)strlen(buf);
5981   char *p = &buf[len];
5982 
5983   jio_snprintf(p, buflen-len,
5984                "\n\n"
5985                "Do you want to debug the problem?\n\n"
5986                "To debug, run 'gdb /proc/%d/exe %d'; then switch to thread " UINTX_FORMAT " (" INTPTR_FORMAT ")\n"
5987                "Enter 'yes' to launch gdb automatically (PATH must include gdb)\n"
5988                "Otherwise, press RETURN to abort...",
5989                os::current_process_id(), os::current_process_id(),
5990                os::current_thread_id(), os::current_thread_id());
5991 
5992   bool yes = os::message_box("Unexpected Error", buf);
5993 
5994   if (yes) {
5995     // yes, user asked VM to launch debugger
5996     jio_snprintf(buf, sizeof(char)*buflen, "gdb /proc/%d/exe %d",
5997                  os::current_process_id(), os::current_process_id());
5998 
5999     os::fork_and_exec(buf);
6000     yes = false;
6001   }
6002   return yes;
6003 }
6004 
6005 
6006 // Java/Compiler thread:
6007 //
6008 //   Low memory addresses
6009 // P0 +------------------------+
6010 //    |                        |\  Java thread created by VM does not have glibc
6011 //    |    glibc guard page    | - guard page, attached Java thread usually has
6012 //    |                        |/  1 glibc guard page.
6013 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6014 //    |                        |\
6015 //    |  HotSpot Guard Pages   | - red, yellow and reserved pages
6016 //    |                        |/
6017 //    +------------------------+ JavaThread::stack_reserved_zone_base()
6018 //    |                        |\
6019 //    |      Normal Stack      | -
6020 //    |                        |/
6021 // P2 +------------------------+ Thread::stack_base()
6022 //
6023 // Non-Java thread:
6024 //
6025 //   Low memory addresses
6026 // P0 +------------------------+
6027 //    |                        |\
6028 //    |  glibc guard page      | - usually 1 page
6029 //    |                        |/
6030 // P1 +------------------------+ Thread::stack_base() - Thread::stack_size()
6031 //    |                        |\
6032 //    |      Normal Stack      | -
6033 //    |                        |/
6034 // P2 +------------------------+ Thread::stack_base()
6035 //
6036 // ** P1 (aka bottom) and size (P2 = P1 - size) are the address and stack size
6037 //    returned from pthread_attr_getstack().
6038 // ** Due to NPTL implementation error, linux takes the glibc guard page out
6039 //    of the stack size given in pthread_attr. We work around this for
6040 //    threads created by the VM. (We adapt bottom to be P1 and size accordingly.)
6041 //
6042 #ifndef ZERO
6043 static void current_stack_region(address * bottom, size_t * size) {
6044   if (os::is_primordial_thread()) {
6045     // primordial thread needs special handling because pthread_getattr_np()
6046     // may return bogus value.
6047     *bottom = os::Linux::initial_thread_stack_bottom();
6048     *size   = os::Linux::initial_thread_stack_size();
6049   } else {
6050     pthread_attr_t attr;
6051 
6052     int rslt = pthread_getattr_np(pthread_self(), &attr);
6053 
6054     // JVM needs to know exact stack location, abort if it fails
6055     if (rslt != 0) {
6056       if (rslt == ENOMEM) {
6057         vm_exit_out_of_memory(0, OOM_MMAP_ERROR, "pthread_getattr_np");
6058       } else {
6059         fatal("pthread_getattr_np failed with error = %d", rslt);
6060       }
6061     }
6062 
6063     if (pthread_attr_getstack(&attr, (void **)bottom, size) != 0) {
6064       fatal("Cannot locate current stack attributes!");
6065     }
6066 
6067     // Work around NPTL stack guard error.
6068     size_t guard_size = 0;
6069     rslt = pthread_attr_getguardsize(&attr, &guard_size);
6070     if (rslt != 0) {
6071       fatal("pthread_attr_getguardsize failed with error = %d", rslt);
6072     }
6073     *bottom += guard_size;
6074     *size   -= guard_size;
6075 
6076     pthread_attr_destroy(&attr);
6077 
6078   }
6079   assert(os::current_stack_pointer() >= *bottom &&
6080          os::current_stack_pointer() < *bottom + *size, "just checking");
6081 }
6082 
6083 address os::current_stack_base() {
6084   address bottom;
6085   size_t size;
6086   current_stack_region(&bottom, &size);
6087   return (bottom + size);
6088 }
6089 
6090 size_t os::current_stack_size() {
6091   // This stack size includes the usable stack and HotSpot guard pages
6092   // (for the threads that have Hotspot guard pages).
6093   address bottom;
6094   size_t size;
6095   current_stack_region(&bottom, &size);
6096   return size;
6097 }
6098 #endif
6099 
6100 static inline struct timespec get_mtime(const char* filename) {
6101   struct stat st;
6102   int ret = os::stat(filename, &st);
6103   assert(ret == 0, "failed to stat() file '%s': %s", filename, strerror(errno));
6104   return st.st_mtim;
6105 }
6106 
6107 int os::compare_file_modified_times(const char* file1, const char* file2) {
6108   struct timespec filetime1 = get_mtime(file1);
6109   struct timespec filetime2 = get_mtime(file2);
6110   int diff = filetime1.tv_sec - filetime2.tv_sec;
6111   if (diff == 0) {
6112     return filetime1.tv_nsec - filetime2.tv_nsec;
6113   }
6114   return diff;
6115 }
6116 
6117 /////////////// Unit tests ///////////////
6118 
6119 #ifndef PRODUCT
6120 
6121 #define test_log(...)              \
6122   do {                             \
6123     if (VerboseInternalVMTests) {  \
6124       tty->print_cr(__VA_ARGS__);  \
6125       tty->flush();                \
6126     }                              \
6127   } while (false)
6128 
6129 class TestReserveMemorySpecial : AllStatic {
6130  public:
6131   static void small_page_write(void* addr, size_t size) {
6132     size_t page_size = os::vm_page_size();
6133 
6134     char* end = (char*)addr + size;
6135     for (char* p = (char*)addr; p < end; p += page_size) {
6136       *p = 1;
6137     }
6138   }
6139 
6140   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6141     if (!UseHugeTLBFS) {
6142       return;
6143     }
6144 
6145     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6146 
6147     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6148 
6149     if (addr != NULL) {
6150       small_page_write(addr, size);
6151 
6152       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6153     }
6154   }
6155 
6156   static void test_reserve_memory_special_huge_tlbfs_only() {
6157     if (!UseHugeTLBFS) {
6158       return;
6159     }
6160 
6161     size_t lp = os::large_page_size();
6162 
6163     for (size_t size = lp; size <= lp * 10; size += lp) {
6164       test_reserve_memory_special_huge_tlbfs_only(size);
6165     }
6166   }
6167 
6168   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6169     size_t lp = os::large_page_size();
6170     size_t ag = os::vm_allocation_granularity();
6171 
6172     // sizes to test
6173     const size_t sizes[] = {
6174       lp, lp + ag, lp + lp / 2, lp * 2,
6175       lp * 2 + ag, lp * 2 - ag, lp * 2 + lp / 2,
6176       lp * 10, lp * 10 + lp / 2
6177     };
6178     const int num_sizes = sizeof(sizes) / sizeof(size_t);
6179 
6180     // For each size/alignment combination, we test three scenarios:
6181     // 1) with req_addr == NULL
6182     // 2) with a non-null req_addr at which we expect to successfully allocate
6183     // 3) with a non-null req_addr which contains a pre-existing mapping, at which we
6184     //    expect the allocation to either fail or to ignore req_addr
6185 
6186     // Pre-allocate two areas; they shall be as large as the largest allocation
6187     //  and aligned to the largest alignment we will be testing.
6188     const size_t mapping_size = sizes[num_sizes - 1] * 2;
6189     char* const mapping1 = (char*) ::mmap(NULL, mapping_size,
6190       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6191       -1, 0);
6192     assert(mapping1 != MAP_FAILED, "should work");
6193 
6194     char* const mapping2 = (char*) ::mmap(NULL, mapping_size,
6195       PROT_NONE, MAP_PRIVATE|MAP_ANONYMOUS|MAP_NORESERVE,
6196       -1, 0);
6197     assert(mapping2 != MAP_FAILED, "should work");
6198 
6199     // Unmap the first mapping, but leave the second mapping intact: the first
6200     // mapping will serve as a value for a "good" req_addr (case 2). The second
6201     // mapping, still intact, as "bad" req_addr (case 3).
6202     ::munmap(mapping1, mapping_size);
6203 
6204     // Case 1
6205     test_log("%s, req_addr NULL:", __FUNCTION__);
6206     test_log("size            align           result");
6207 
6208     for (int i = 0; i < num_sizes; i++) {
6209       const size_t size = sizes[i];
6210       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6211         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6212         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " ->  " PTR_FORMAT " %s",
6213                  size, alignment, p2i(p), (p != NULL ? "" : "(failed)"));
6214         if (p != NULL) {
6215           assert(is_aligned(p, alignment), "must be");
6216           small_page_write(p, size);
6217           os::Linux::release_memory_special_huge_tlbfs(p, size);
6218         }
6219       }
6220     }
6221 
6222     // Case 2
6223     test_log("%s, req_addr non-NULL:", __FUNCTION__);
6224     test_log("size            align           req_addr         result");
6225 
6226     for (int i = 0; i < num_sizes; i++) {
6227       const size_t size = sizes[i];
6228       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6229         char* const req_addr = align_up(mapping1, alignment);
6230         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6231         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6232                  size, alignment, p2i(req_addr), p2i(p),
6233                  ((p != NULL ? (p == req_addr ? "(exact match)" : "") : "(failed)")));
6234         if (p != NULL) {
6235           assert(p == req_addr, "must be");
6236           small_page_write(p, size);
6237           os::Linux::release_memory_special_huge_tlbfs(p, size);
6238         }
6239       }
6240     }
6241 
6242     // Case 3
6243     test_log("%s, req_addr non-NULL with preexisting mapping:", __FUNCTION__);
6244     test_log("size            align           req_addr         result");
6245 
6246     for (int i = 0; i < num_sizes; i++) {
6247       const size_t size = sizes[i];
6248       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6249         char* const req_addr = align_up(mapping2, alignment);
6250         char* p = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, req_addr, false);
6251         test_log(SIZE_FORMAT_HEX " " SIZE_FORMAT_HEX " " PTR_FORMAT " ->  " PTR_FORMAT " %s",
6252                  size, alignment, p2i(req_addr), p2i(p), ((p != NULL ? "" : "(failed)")));
6253         // as the area around req_addr contains already existing mappings, the API should always
6254         // return NULL (as per contract, it cannot return another address)
6255         assert(p == NULL, "must be");
6256       }
6257     }
6258 
6259     ::munmap(mapping2, mapping_size);
6260 
6261   }
6262 
6263   static void test_reserve_memory_special_huge_tlbfs() {
6264     if (!UseHugeTLBFS) {
6265       return;
6266     }
6267 
6268     test_reserve_memory_special_huge_tlbfs_only();
6269     test_reserve_memory_special_huge_tlbfs_mixed();
6270   }
6271 
6272   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6273     if (!UseSHM) {
6274       return;
6275     }
6276 
6277     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6278 
6279     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6280 
6281     if (addr != NULL) {
6282       assert(is_aligned(addr, alignment), "Check");
6283       assert(is_aligned(addr, os::large_page_size()), "Check");
6284 
6285       small_page_write(addr, size);
6286 
6287       os::Linux::release_memory_special_shm(addr, size);
6288     }
6289   }
6290 
6291   static void test_reserve_memory_special_shm() {
6292     size_t lp = os::large_page_size();
6293     size_t ag = os::vm_allocation_granularity();
6294 
6295     for (size_t size = ag; size < lp * 3; size += ag) {
6296       for (size_t alignment = ag; is_aligned(size, alignment); alignment *= 2) {
6297         test_reserve_memory_special_shm(size, alignment);
6298       }
6299     }
6300   }
6301 
6302   static void test() {
6303     test_reserve_memory_special_huge_tlbfs();
6304     test_reserve_memory_special_shm();
6305   }
6306 };
6307 
6308 void TestReserveMemorySpecial_test() {
6309   TestReserveMemorySpecial::test();
6310 }
6311 
6312 #endif