1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2012, 2019 SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 // According to the AIX OS doc #pragma alloca must be used
  27 // with C++ compiler before referencing the function alloca()
  28 #pragma alloca
  29 
  30 // no precompiled headers
  31 #include "jvm.h"
  32 #include "classfile/classLoader.hpp"
  33 #include "classfile/systemDictionary.hpp"
  34 #include "classfile/vmSymbols.hpp"
  35 #include "code/icBuffer.hpp"
  36 #include "code/vtableStubs.hpp"
  37 #include "compiler/compileBroker.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "libo4.hpp"
  42 #include "libperfstat_aix.hpp"
  43 #include "libodm_aix.hpp"
  44 #include "loadlib_aix.hpp"
  45 #include "memory/allocation.inline.hpp"
  46 #include "memory/filemap.hpp"
  47 #include "misc_aix.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "os_aix.inline.hpp"
  50 #include "os_share_aix.hpp"
  51 #include "porting_aix.hpp"
  52 #include "prims/jniFastGetField.hpp"
  53 #include "prims/jvm_misc.hpp"
  54 #include "runtime/arguments.hpp"
  55 #include "runtime/atomic.hpp"
  56 #include "runtime/extendedPC.hpp"
  57 #include "runtime/globals.hpp"
  58 #include "runtime/interfaceSupport.inline.hpp"
  59 #include "runtime/java.hpp"
  60 #include "runtime/javaCalls.hpp"
  61 #include "runtime/mutexLocker.hpp"
  62 #include "runtime/objectMonitor.hpp"
  63 #include "runtime/orderAccess.hpp"
  64 #include "runtime/os.hpp"
  65 #include "runtime/osThread.hpp"
  66 #include "runtime/perfMemory.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/statSampler.hpp"
  69 #include "runtime/stubRoutines.hpp"
  70 #include "runtime/thread.inline.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/timer.hpp"
  73 #include "runtime/vm_version.hpp"
  74 #include "services/attachListener.hpp"
  75 #include "services/runtimeService.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/decoder.hpp"
  78 #include "utilities/defaultStream.hpp"
  79 #include "utilities/events.hpp"
  80 #include "utilities/growableArray.hpp"
  81 #include "utilities/vmError.hpp"
  82 
  83 // put OS-includes here (sorted alphabetically)
  84 #include <errno.h>
  85 #include <fcntl.h>
  86 #include <inttypes.h>
  87 #include <poll.h>
  88 #include <procinfo.h>
  89 #include <pthread.h>
  90 #include <pwd.h>
  91 #include <semaphore.h>
  92 #include <signal.h>
  93 #include <stdint.h>
  94 #include <stdio.h>
  95 #include <string.h>
  96 #include <unistd.h>
  97 #include <sys/ioctl.h>
  98 #include <sys/ipc.h>
  99 #include <sys/mman.h>
 100 #include <sys/resource.h>
 101 #include <sys/select.h>
 102 #include <sys/shm.h>
 103 #include <sys/socket.h>
 104 #include <sys/stat.h>
 105 #include <sys/sysinfo.h>
 106 #include <sys/systemcfg.h>
 107 #include <sys/time.h>
 108 #include <sys/times.h>
 109 #include <sys/types.h>
 110 #include <sys/utsname.h>
 111 #include <sys/vminfo.h>
 112 #include <sys/wait.h>
 113 
 114 // Missing prototypes for various system APIs.
 115 extern "C"
 116 int mread_real_time(timebasestruct_t *t, size_t size_of_timebasestruct_t);
 117 
 118 #if !defined(_AIXVERSION_610)
 119 extern "C" int getthrds64(pid_t, struct thrdentry64*, int, tid64_t*, int);
 120 extern "C" int getprocs64(procentry64*, int, fdsinfo*, int, pid_t*, int);
 121 extern "C" int getargs(procsinfo*, int, char*, int);
 122 #endif
 123 
 124 #define MAX_PATH (2 * K)
 125 
 126 // for timer info max values which include all bits
 127 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 128 // for multipage initialization error analysis (in 'g_multipage_error')
 129 #define ERROR_MP_OS_TOO_OLD                          100
 130 #define ERROR_MP_EXTSHM_ACTIVE                       101
 131 #define ERROR_MP_VMGETINFO_FAILED                    102
 132 #define ERROR_MP_VMGETINFO_CLAIMS_NO_SUPPORT_FOR_64K 103
 133 
 134 // excerpts from systemcfg.h that might be missing on older os levels
 135 #ifndef PV_5_Compat
 136   #define PV_5_Compat 0x0F8000   /* Power PC 5 */
 137 #endif
 138 #ifndef PV_6
 139   #define PV_6 0x100000          /* Power PC 6 */
 140 #endif
 141 #ifndef PV_6_1
 142   #define PV_6_1 0x100001        /* Power PC 6 DD1.x */
 143 #endif
 144 #ifndef PV_6_Compat
 145   #define PV_6_Compat 0x108000   /* Power PC 6 */
 146 #endif
 147 #ifndef PV_7
 148   #define PV_7 0x200000          /* Power PC 7 */
 149 #endif
 150 #ifndef PV_7_Compat
 151   #define PV_7_Compat 0x208000   /* Power PC 7 */
 152 #endif
 153 #ifndef PV_8
 154   #define PV_8 0x300000          /* Power PC 8 */
 155 #endif
 156 #ifndef PV_8_Compat
 157   #define PV_8_Compat 0x308000   /* Power PC 8 */
 158 #endif
 159 
 160 static address resolve_function_descriptor_to_code_pointer(address p);
 161 
 162 static void vmembk_print_on(outputStream* os);
 163 
 164 ////////////////////////////////////////////////////////////////////////////////
 165 // global variables (for a description see os_aix.hpp)
 166 
 167 julong    os::Aix::_physical_memory = 0;
 168 
 169 pthread_t os::Aix::_main_thread = ((pthread_t)0);
 170 int       os::Aix::_page_size = -1;
 171 
 172 // -1 = uninitialized, 0 if AIX, 1 if OS/400 pase
 173 int       os::Aix::_on_pase = -1;
 174 
 175 // 0 = uninitialized, otherwise 32 bit number:
 176 //  0xVVRRTTSS
 177 //  VV - major version
 178 //  RR - minor version
 179 //  TT - tech level, if known, 0 otherwise
 180 //  SS - service pack, if known, 0 otherwise
 181 uint32_t  os::Aix::_os_version = 0;
 182 
 183 // -1 = uninitialized, 0 - no, 1 - yes
 184 int       os::Aix::_xpg_sus_mode = -1;
 185 
 186 // -1 = uninitialized, 0 - no, 1 - yes
 187 int       os::Aix::_extshm = -1;
 188 
 189 ////////////////////////////////////////////////////////////////////////////////
 190 // local variables
 191 
 192 static volatile jlong max_real_time = 0;
 193 static jlong    initial_time_count = 0;
 194 static int      clock_tics_per_sec = 100;
 195 static sigset_t check_signal_done;         // For diagnostics to print a message once (see run_periodic_checks)
 196 static bool     check_signals      = true;
 197 static int      SR_signum          = SIGUSR2; // Signal used to suspend/resume a thread (must be > SIGSEGV, see 4355769)
 198 static sigset_t SR_sigset;
 199 
 200 // Process break recorded at startup.
 201 static address g_brk_at_startup = NULL;
 202 
 203 // This describes the state of multipage support of the underlying
 204 // OS. Note that this is of no interest to the outsize world and
 205 // therefore should not be defined in AIX class.
 206 //
 207 // AIX supports four different page sizes - 4K, 64K, 16MB, 16GB. The
 208 // latter two (16M "large" resp. 16G "huge" pages) require special
 209 // setup and are normally not available.
 210 //
 211 // AIX supports multiple page sizes per process, for:
 212 //  - Stack (of the primordial thread, so not relevant for us)
 213 //  - Data - data, bss, heap, for us also pthread stacks
 214 //  - Text - text code
 215 //  - shared memory
 216 //
 217 // Default page sizes can be set via linker options (-bdatapsize, -bstacksize, ...)
 218 // and via environment variable LDR_CNTRL (DATAPSIZE, STACKPSIZE, ...).
 219 //
 220 // For shared memory, page size can be set dynamically via
 221 // shmctl(). Different shared memory regions can have different page
 222 // sizes.
 223 //
 224 // More information can be found at AIBM info center:
 225 //   http://publib.boulder.ibm.com/infocenter/aix/v6r1/index.jsp?topic=/com.ibm.aix.prftungd/doc/prftungd/multiple_page_size_app_support.htm
 226 //
 227 static struct {
 228   size_t pagesize;            // sysconf _SC_PAGESIZE (4K)
 229   size_t datapsize;           // default data page size (LDR_CNTRL DATAPSIZE)
 230   size_t shmpsize;            // default shared memory page size (LDR_CNTRL SHMPSIZE)
 231   size_t pthr_stack_pagesize; // stack page size of pthread threads
 232   size_t textpsize;           // default text page size (LDR_CNTRL STACKPSIZE)
 233   bool can_use_64K_pages;     // True if we can alloc 64K pages dynamically with Sys V shm.
 234   bool can_use_16M_pages;     // True if we can alloc 16M pages dynamically with Sys V shm.
 235   int error;                  // Error describing if something went wrong at multipage init.
 236 } g_multipage_support = {
 237   (size_t) -1,
 238   (size_t) -1,
 239   (size_t) -1,
 240   (size_t) -1,
 241   (size_t) -1,
 242   false, false,
 243   0
 244 };
 245 
 246 // We must not accidentally allocate memory close to the BRK - even if
 247 // that would work - because then we prevent the BRK segment from
 248 // growing which may result in a malloc OOM even though there is
 249 // enough memory. The problem only arises if we shmat() or mmap() at
 250 // a specific wish address, e.g. to place the heap in a
 251 // compressed-oops-friendly way.
 252 static bool is_close_to_brk(address a) {
 253   assert0(g_brk_at_startup != NULL);
 254   if (a >= g_brk_at_startup &&
 255       a < (g_brk_at_startup + MaxExpectedDataSegmentSize)) {
 256     return true;
 257   }
 258   return false;
 259 }
 260 
 261 julong os::available_memory() {
 262   return Aix::available_memory();
 263 }
 264 
 265 julong os::Aix::available_memory() {
 266   // Avoid expensive API call here, as returned value will always be null.
 267   if (os::Aix::on_pase()) {
 268     return 0x0LL;
 269   }
 270   os::Aix::meminfo_t mi;
 271   if (os::Aix::get_meminfo(&mi)) {
 272     return mi.real_free;
 273   } else {
 274     return ULONG_MAX;
 275   }
 276 }
 277 
 278 julong os::physical_memory() {
 279   return Aix::physical_memory();
 280 }
 281 
 282 // Return true if user is running as root.
 283 
 284 bool os::have_special_privileges() {
 285   static bool init = false;
 286   static bool privileges = false;
 287   if (!init) {
 288     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 289     init = true;
 290   }
 291   return privileges;
 292 }
 293 
 294 // Helper function, emulates disclaim64 using multiple 32bit disclaims
 295 // because we cannot use disclaim64() on AS/400 and old AIX releases.
 296 static bool my_disclaim64(char* addr, size_t size) {
 297 
 298   if (size == 0) {
 299     return true;
 300   }
 301 
 302   // Maximum size 32bit disclaim() accepts. (Theoretically 4GB, but I just do not trust that.)
 303   const unsigned int maxDisclaimSize = 0x40000000;
 304 
 305   const unsigned int numFullDisclaimsNeeded = (size / maxDisclaimSize);
 306   const unsigned int lastDisclaimSize = (size % maxDisclaimSize);
 307 
 308   char* p = addr;
 309 
 310   for (int i = 0; i < numFullDisclaimsNeeded; i ++) {
 311     if (::disclaim(p, maxDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 312       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + maxDisclaimSize, errno);
 313       return false;
 314     }
 315     p += maxDisclaimSize;
 316   }
 317 
 318   if (lastDisclaimSize > 0) {
 319     if (::disclaim(p, lastDisclaimSize, DISCLAIM_ZEROMEM) != 0) {
 320       trcVerbose("Cannot disclaim %p - %p (errno %d)\n", p, p + lastDisclaimSize, errno);
 321       return false;
 322     }
 323   }
 324 
 325   return true;
 326 }
 327 
 328 // Cpu architecture string
 329 #if defined(PPC32)
 330 static char cpu_arch[] = "ppc";
 331 #elif defined(PPC64)
 332 static char cpu_arch[] = "ppc64";
 333 #else
 334 #error Add appropriate cpu_arch setting
 335 #endif
 336 
 337 // Wrap the function "vmgetinfo" which is not available on older OS releases.
 338 static int checked_vmgetinfo(void *out, int command, int arg) {
 339   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 340     guarantee(false, "cannot call vmgetinfo on AS/400 older than V6R1");
 341   }
 342   return ::vmgetinfo(out, command, arg);
 343 }
 344 
 345 // Given an address, returns the size of the page backing that address.
 346 size_t os::Aix::query_pagesize(void* addr) {
 347 
 348   if (os::Aix::on_pase() && os::Aix::os_version_short() < 0x0601) {
 349     // AS/400 older than V6R1: no vmgetinfo here, default to 4K
 350     return 4*K;
 351   }
 352 
 353   vm_page_info pi;
 354   pi.addr = (uint64_t)addr;
 355   if (checked_vmgetinfo(&pi, VM_PAGE_INFO, sizeof(pi)) == 0) {
 356     return pi.pagesize;
 357   } else {
 358     assert(false, "vmgetinfo failed to retrieve page size");
 359     return 4*K;
 360   }
 361 }
 362 
 363 void os::Aix::initialize_system_info() {
 364 
 365   // Get the number of online(logical) cpus instead of configured.
 366   os::_processor_count = sysconf(_SC_NPROCESSORS_ONLN);
 367   assert(_processor_count > 0, "_processor_count must be > 0");
 368 
 369   // Retrieve total physical storage.
 370   os::Aix::meminfo_t mi;
 371   if (!os::Aix::get_meminfo(&mi)) {
 372     assert(false, "os::Aix::get_meminfo failed.");
 373   }
 374   _physical_memory = (julong) mi.real_total;
 375 }
 376 
 377 // Helper function for tracing page sizes.
 378 static const char* describe_pagesize(size_t pagesize) {
 379   switch (pagesize) {
 380     case 4*K : return "4K";
 381     case 64*K: return "64K";
 382     case 16*M: return "16M";
 383     case 16*G: return "16G";
 384     default:
 385       assert(false, "surprise");
 386       return "??";
 387   }
 388 }
 389 
 390 // Probe OS for multipage support.
 391 // Will fill the global g_multipage_support structure.
 392 // Must be called before calling os::large_page_init().
 393 static void query_multipage_support() {
 394 
 395   guarantee(g_multipage_support.pagesize == -1,
 396             "do not call twice");
 397 
 398   g_multipage_support.pagesize = ::sysconf(_SC_PAGESIZE);
 399 
 400   // This really would surprise me.
 401   assert(g_multipage_support.pagesize == 4*K, "surprise!");
 402 
 403   // Query default data page size (default page size for C-Heap, pthread stacks and .bss).
 404   // Default data page size is defined either by linker options (-bdatapsize)
 405   // or by environment variable LDR_CNTRL (suboption DATAPSIZE). If none is given,
 406   // default should be 4K.
 407   {
 408     void* p = ::malloc(16*M);
 409     g_multipage_support.datapsize = os::Aix::query_pagesize(p);
 410     ::free(p);
 411   }
 412 
 413   // Query default shm page size (LDR_CNTRL SHMPSIZE).
 414   // Note that this is pure curiosity. We do not rely on default page size but set
 415   // our own page size after allocated.
 416   {
 417     const int shmid = ::shmget(IPC_PRIVATE, 1, IPC_CREAT | S_IRUSR | S_IWUSR);
 418     guarantee(shmid != -1, "shmget failed");
 419     void* p = ::shmat(shmid, NULL, 0);
 420     ::shmctl(shmid, IPC_RMID, NULL);
 421     guarantee(p != (void*) -1, "shmat failed");
 422     g_multipage_support.shmpsize = os::Aix::query_pagesize(p);
 423     ::shmdt(p);
 424   }
 425 
 426   // Before querying the stack page size, make sure we are not running as primordial
 427   // thread (because primordial thread's stack may have different page size than
 428   // pthread thread stacks). Running a VM on the primordial thread won't work for a
 429   // number of reasons so we may just as well guarantee it here.
 430   guarantee0(!os::is_primordial_thread());
 431 
 432   // Query pthread stack page size. Should be the same as data page size because
 433   // pthread stacks are allocated from C-Heap.
 434   {
 435     int dummy = 0;
 436     g_multipage_support.pthr_stack_pagesize = os::Aix::query_pagesize(&dummy);
 437   }
 438 
 439   // Query default text page size (LDR_CNTRL TEXTPSIZE).
 440   {
 441     address any_function =
 442       resolve_function_descriptor_to_code_pointer((address)describe_pagesize);
 443     g_multipage_support.textpsize = os::Aix::query_pagesize(any_function);
 444   }
 445 
 446   // Now probe for support of 64K pages and 16M pages.
 447 
 448   // Before OS/400 V6R1, there is no support for pages other than 4K.
 449   if (os::Aix::on_pase_V5R4_or_older()) {
 450     trcVerbose("OS/400 < V6R1 - no large page support.");
 451     g_multipage_support.error = ERROR_MP_OS_TOO_OLD;
 452     goto query_multipage_support_end;
 453   }
 454 
 455   // Now check which page sizes the OS claims it supports, and of those, which actually can be used.
 456   {
 457     const int MAX_PAGE_SIZES = 4;
 458     psize_t sizes[MAX_PAGE_SIZES];
 459     const int num_psizes = checked_vmgetinfo(sizes, VMINFO_GETPSIZES, MAX_PAGE_SIZES);
 460     if (num_psizes == -1) {
 461       trcVerbose("vmgetinfo(VMINFO_GETPSIZES) failed (errno: %d)", errno);
 462       trcVerbose("disabling multipage support.");
 463       g_multipage_support.error = ERROR_MP_VMGETINFO_FAILED;
 464       goto query_multipage_support_end;
 465     }
 466     guarantee(num_psizes > 0, "vmgetinfo(.., VMINFO_GETPSIZES, ...) failed.");
 467     assert(num_psizes <= MAX_PAGE_SIZES, "Surprise! more than 4 page sizes?");
 468     trcVerbose("vmgetinfo(.., VMINFO_GETPSIZES, ...) returns %d supported page sizes: ", num_psizes);
 469     for (int i = 0; i < num_psizes; i ++) {
 470       trcVerbose(" %s ", describe_pagesize(sizes[i]));
 471     }
 472 
 473     // Can we use 64K, 16M pages?
 474     for (int i = 0; i < num_psizes; i ++) {
 475       const size_t pagesize = sizes[i];
 476       if (pagesize != 64*K && pagesize != 16*M) {
 477         continue;
 478       }
 479       bool can_use = false;
 480       trcVerbose("Probing support for %s pages...", describe_pagesize(pagesize));
 481       const int shmid = ::shmget(IPC_PRIVATE, pagesize,
 482         IPC_CREAT | S_IRUSR | S_IWUSR);
 483       guarantee0(shmid != -1); // Should always work.
 484       // Try to set pagesize.
 485       struct shmid_ds shm_buf = { 0 };
 486       shm_buf.shm_pagesize = pagesize;
 487       if (::shmctl(shmid, SHM_PAGESIZE, &shm_buf) != 0) {
 488         const int en = errno;
 489         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 490         trcVerbose("shmctl(SHM_PAGESIZE) failed with errno=%d", errno);
 491       } else {
 492         // Attach and double check pageisze.
 493         void* p = ::shmat(shmid, NULL, 0);
 494         ::shmctl(shmid, IPC_RMID, NULL); // As early as possible!
 495         guarantee0(p != (void*) -1); // Should always work.
 496         const size_t real_pagesize = os::Aix::query_pagesize(p);
 497         if (real_pagesize != pagesize) {
 498           trcVerbose("real page size (" SIZE_FORMAT_HEX ") differs.", real_pagesize);
 499         } else {
 500           can_use = true;
 501         }
 502         ::shmdt(p);
 503       }
 504       trcVerbose("Can use: %s", (can_use ? "yes" : "no"));
 505       if (pagesize == 64*K) {
 506         g_multipage_support.can_use_64K_pages = can_use;
 507       } else if (pagesize == 16*M) {
 508         g_multipage_support.can_use_16M_pages = can_use;
 509       }
 510     }
 511 
 512   } // end: check which pages can be used for shared memory
 513 
 514 query_multipage_support_end:
 515 
 516   trcVerbose("base page size (sysconf _SC_PAGESIZE): %s",
 517       describe_pagesize(g_multipage_support.pagesize));
 518   trcVerbose("Data page size (C-Heap, bss, etc): %s",
 519       describe_pagesize(g_multipage_support.datapsize));
 520   trcVerbose("Text page size: %s",
 521       describe_pagesize(g_multipage_support.textpsize));
 522   trcVerbose("Thread stack page size (pthread): %s",
 523       describe_pagesize(g_multipage_support.pthr_stack_pagesize));
 524   trcVerbose("Default shared memory page size: %s",
 525       describe_pagesize(g_multipage_support.shmpsize));
 526   trcVerbose("Can use 64K pages dynamically with shared meory: %s",
 527       (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
 528   trcVerbose("Can use 16M pages dynamically with shared memory: %s",
 529       (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
 530   trcVerbose("Multipage error details: %d",
 531       g_multipage_support.error);
 532 
 533   // sanity checks
 534   assert0(g_multipage_support.pagesize == 4*K);
 535   assert0(g_multipage_support.datapsize == 4*K || g_multipage_support.datapsize == 64*K);
 536   assert0(g_multipage_support.textpsize == 4*K || g_multipage_support.textpsize == 64*K);
 537   assert0(g_multipage_support.pthr_stack_pagesize == g_multipage_support.datapsize);
 538   assert0(g_multipage_support.shmpsize == 4*K || g_multipage_support.shmpsize == 64*K);
 539 
 540 }
 541 
 542 void os::init_system_properties_values() {
 543 
 544 #ifndef OVERRIDE_LIBPATH
 545   #define DEFAULT_LIBPATH "/lib:/usr/lib"
 546 #else
 547   #define DEFAULT_LIBPATH OVERRIDE_LIBPATH
 548 #endif
 549 #define EXTENSIONS_DIR  "/lib/ext"
 550 
 551   // Buffer that fits several sprintfs.
 552   // Note that the space for the trailing null is provided
 553   // by the nulls included by the sizeof operator.
 554   const size_t bufsize =
 555     MAX2((size_t)MAXPATHLEN,  // For dll_dir & friends.
 556          (size_t)MAXPATHLEN + sizeof(EXTENSIONS_DIR)); // extensions dir
 557   char *buf = (char *)NEW_C_HEAP_ARRAY(char, bufsize, mtInternal);
 558 
 559   // sysclasspath, java_home, dll_dir
 560   {
 561     char *pslash;
 562     os::jvm_path(buf, bufsize);
 563 
 564     // Found the full path to libjvm.so.
 565     // Now cut the path to <java_home>/jre if we can.
 566     pslash = strrchr(buf, '/');
 567     if (pslash != NULL) {
 568       *pslash = '\0';            // Get rid of /libjvm.so.
 569     }
 570     pslash = strrchr(buf, '/');
 571     if (pslash != NULL) {
 572       *pslash = '\0';            // Get rid of /{client|server|hotspot}.
 573     }
 574     Arguments::set_dll_dir(buf);
 575 
 576     if (pslash != NULL) {
 577       pslash = strrchr(buf, '/');
 578       if (pslash != NULL) {
 579         *pslash = '\0';        // Get rid of /lib.
 580       }
 581     }
 582     Arguments::set_java_home(buf);
 583     if (!set_boot_path('/', ':')) {
 584       vm_exit_during_initialization("Failed setting boot class path.", NULL);
 585     }
 586   }
 587 
 588   // Where to look for native libraries.
 589 
 590   // On Aix we get the user setting of LIBPATH.
 591   // Eventually, all the library path setting will be done here.
 592   // Get the user setting of LIBPATH.
 593   const char *v = ::getenv("LIBPATH");
 594   const char *v_colon = ":";
 595   if (v == NULL) { v = ""; v_colon = ""; }
 596 
 597   // Concatenate user and invariant part of ld_library_path.
 598   // That's +1 for the colon and +1 for the trailing '\0'.
 599   char *ld_library_path = (char *)NEW_C_HEAP_ARRAY(char, strlen(v) + 1 + sizeof(DEFAULT_LIBPATH) + 1, mtInternal);
 600   sprintf(ld_library_path, "%s%s" DEFAULT_LIBPATH, v, v_colon);
 601   Arguments::set_library_path(ld_library_path);
 602   FREE_C_HEAP_ARRAY(char, ld_library_path);
 603 
 604   // Extensions directories.
 605   sprintf(buf, "%s" EXTENSIONS_DIR, Arguments::get_java_home());
 606   Arguments::set_ext_dirs(buf);
 607 
 608   FREE_C_HEAP_ARRAY(char, buf);
 609 
 610 #undef DEFAULT_LIBPATH
 611 #undef EXTENSIONS_DIR
 612 }
 613 
 614 ////////////////////////////////////////////////////////////////////////////////
 615 // breakpoint support
 616 
 617 void os::breakpoint() {
 618   BREAKPOINT;
 619 }
 620 
 621 extern "C" void breakpoint() {
 622   // use debugger to set breakpoint here
 623 }
 624 
 625 ////////////////////////////////////////////////////////////////////////////////
 626 // signal support
 627 
 628 debug_only(static bool signal_sets_initialized = false);
 629 static sigset_t unblocked_sigs, vm_sigs;
 630 
 631 void os::Aix::signal_sets_init() {
 632   // Should also have an assertion stating we are still single-threaded.
 633   assert(!signal_sets_initialized, "Already initialized");
 634   // Fill in signals that are necessarily unblocked for all threads in
 635   // the VM. Currently, we unblock the following signals:
 636   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 637   //                         by -Xrs (=ReduceSignalUsage));
 638   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 639   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 640   // the dispositions or masks wrt these signals.
 641   // Programs embedding the VM that want to use the above signals for their
 642   // own purposes must, at this time, use the "-Xrs" option to prevent
 643   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 644   // (See bug 4345157, and other related bugs).
 645   // In reality, though, unblocking these signals is really a nop, since
 646   // these signals are not blocked by default.
 647   sigemptyset(&unblocked_sigs);
 648   sigaddset(&unblocked_sigs, SIGILL);
 649   sigaddset(&unblocked_sigs, SIGSEGV);
 650   sigaddset(&unblocked_sigs, SIGBUS);
 651   sigaddset(&unblocked_sigs, SIGFPE);
 652   sigaddset(&unblocked_sigs, SIGTRAP);
 653   sigaddset(&unblocked_sigs, SR_signum);
 654 
 655   if (!ReduceSignalUsage) {
 656    if (!os::Posix::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 657      sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 658    }
 659    if (!os::Posix::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 660      sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 661    }
 662    if (!os::Posix::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 663      sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 664    }
 665   }
 666   // Fill in signals that are blocked by all but the VM thread.
 667   sigemptyset(&vm_sigs);
 668   if (!ReduceSignalUsage)
 669     sigaddset(&vm_sigs, BREAK_SIGNAL);
 670   debug_only(signal_sets_initialized = true);
 671 }
 672 
 673 // These are signals that are unblocked while a thread is running Java.
 674 // (For some reason, they get blocked by default.)
 675 sigset_t* os::Aix::unblocked_signals() {
 676   assert(signal_sets_initialized, "Not initialized");
 677   return &unblocked_sigs;
 678 }
 679 
 680 // These are the signals that are blocked while a (non-VM) thread is
 681 // running Java. Only the VM thread handles these signals.
 682 sigset_t* os::Aix::vm_signals() {
 683   assert(signal_sets_initialized, "Not initialized");
 684   return &vm_sigs;
 685 }
 686 
 687 void os::Aix::hotspot_sigmask(Thread* thread) {
 688 
 689   //Save caller's signal mask before setting VM signal mask
 690   sigset_t caller_sigmask;
 691   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 692 
 693   OSThread* osthread = thread->osthread();
 694   osthread->set_caller_sigmask(caller_sigmask);
 695 
 696   pthread_sigmask(SIG_UNBLOCK, os::Aix::unblocked_signals(), NULL);
 697 
 698   if (!ReduceSignalUsage) {
 699     if (thread->is_VM_thread()) {
 700       // Only the VM thread handles BREAK_SIGNAL ...
 701       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 702     } else {
 703       // ... all other threads block BREAK_SIGNAL
 704       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 705     }
 706   }
 707 }
 708 
 709 // retrieve memory information.
 710 // Returns false if something went wrong;
 711 // content of pmi undefined in this case.
 712 bool os::Aix::get_meminfo(meminfo_t* pmi) {
 713 
 714   assert(pmi, "get_meminfo: invalid parameter");
 715 
 716   memset(pmi, 0, sizeof(meminfo_t));
 717 
 718   if (os::Aix::on_pase()) {
 719     // On PASE, use the libo4 porting library.
 720 
 721     unsigned long long virt_total = 0;
 722     unsigned long long real_total = 0;
 723     unsigned long long real_free = 0;
 724     unsigned long long pgsp_total = 0;
 725     unsigned long long pgsp_free = 0;
 726     if (libo4::get_memory_info(&virt_total, &real_total, &real_free, &pgsp_total, &pgsp_free)) {
 727       pmi->virt_total = virt_total;
 728       pmi->real_total = real_total;
 729       pmi->real_free = real_free;
 730       pmi->pgsp_total = pgsp_total;
 731       pmi->pgsp_free = pgsp_free;
 732       return true;
 733     }
 734     return false;
 735 
 736   } else {
 737 
 738     // On AIX, I use the (dynamically loaded) perfstat library to retrieve memory statistics
 739     // See:
 740     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 741     //        ?topic=/com.ibm.aix.basetechref/doc/basetrf1/perfstat_memtot.htm
 742     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 743     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 744 
 745     perfstat_memory_total_t psmt;
 746     memset (&psmt, '\0', sizeof(psmt));
 747     const int rc = libperfstat::perfstat_memory_total(NULL, &psmt, sizeof(psmt), 1);
 748     if (rc == -1) {
 749       trcVerbose("perfstat_memory_total() failed (errno=%d)", errno);
 750       assert(0, "perfstat_memory_total() failed");
 751       return false;
 752     }
 753 
 754     assert(rc == 1, "perfstat_memory_total() - weird return code");
 755 
 756     // excerpt from
 757     // http://publib.boulder.ibm.com/infocenter/systems/index.jsp
 758     //        ?topic=/com.ibm.aix.files/doc/aixfiles/libperfstat.h.htm
 759     // The fields of perfstat_memory_total_t:
 760     // u_longlong_t virt_total         Total virtual memory (in 4 KB pages).
 761     // u_longlong_t real_total         Total real memory (in 4 KB pages).
 762     // u_longlong_t real_free          Free real memory (in 4 KB pages).
 763     // u_longlong_t pgsp_total         Total paging space (in 4 KB pages).
 764     // u_longlong_t pgsp_free          Free paging space (in 4 KB pages).
 765 
 766     pmi->virt_total = psmt.virt_total * 4096;
 767     pmi->real_total = psmt.real_total * 4096;
 768     pmi->real_free = psmt.real_free * 4096;
 769     pmi->pgsp_total = psmt.pgsp_total * 4096;
 770     pmi->pgsp_free = psmt.pgsp_free * 4096;
 771 
 772     return true;
 773 
 774   }
 775 } // end os::Aix::get_meminfo
 776 
 777 //////////////////////////////////////////////////////////////////////////////
 778 // create new thread
 779 
 780 // Thread start routine for all newly created threads
 781 static void *thread_native_entry(Thread *thread) {
 782 
 783   thread->record_stack_base_and_size();
 784 
 785   const pthread_t pthread_id = ::pthread_self();
 786   const tid_t kernel_thread_id = ::thread_self();
 787 
 788   LogTarget(Info, os, thread) lt;
 789   if (lt.is_enabled()) {
 790     address low_address = thread->stack_end();
 791     address high_address = thread->stack_base();
 792     lt.print("Thread is alive (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT
 793              ", stack [" PTR_FORMAT " - " PTR_FORMAT " (" SIZE_FORMAT "k using %uk pages)).",
 794              os::current_thread_id(), (uintx) kernel_thread_id, low_address, high_address,
 795              (high_address - low_address) / K, os::Aix::query_pagesize(low_address) / K);
 796   }
 797 
 798   // Normally, pthread stacks on AIX live in the data segment (are allocated with malloc()
 799   // by the pthread library). In rare cases, this may not be the case, e.g. when third-party
 800   // tools hook pthread_create(). In this case, we may run into problems establishing
 801   // guard pages on those stacks, because the stacks may reside in memory which is not
 802   // protectable (shmated).
 803   if (thread->stack_base() > ::sbrk(0)) {
 804     log_warning(os, thread)("Thread stack not in data segment.");
 805   }
 806 
 807   // Try to randomize the cache line index of hot stack frames.
 808   // This helps when threads of the same stack traces evict each other's
 809   // cache lines. The threads can be either from the same JVM instance, or
 810   // from different JVM instances. The benefit is especially true for
 811   // processors with hyperthreading technology.
 812 
 813   static int counter = 0;
 814   int pid = os::current_process_id();
 815   alloca(((pid ^ counter++) & 7) * 128);
 816 
 817   thread->initialize_thread_current();
 818 
 819   OSThread* osthread = thread->osthread();
 820 
 821   // Thread_id is pthread id.
 822   osthread->set_thread_id(pthread_id);
 823 
 824   // .. but keep kernel thread id too for diagnostics
 825   osthread->set_kernel_thread_id(kernel_thread_id);
 826 
 827   // Initialize signal mask for this thread.
 828   os::Aix::hotspot_sigmask(thread);
 829 
 830   // Initialize floating point control register.
 831   os::Aix::init_thread_fpu_state();
 832 
 833   assert(osthread->get_state() == RUNNABLE, "invalid os thread state");
 834 
 835   // Call one more level start routine.
 836   thread->call_run();
 837 
 838   // Note: at this point the thread object may already have deleted itself.
 839   // Prevent dereferencing it from here on out.
 840   thread = NULL;
 841 
 842   log_info(os, thread)("Thread finished (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 843     os::current_thread_id(), (uintx) kernel_thread_id);
 844 
 845   return 0;
 846 }
 847 
 848 bool os::create_thread(Thread* thread, ThreadType thr_type,
 849                        size_t req_stack_size) {
 850 
 851   assert(thread->osthread() == NULL, "caller responsible");
 852 
 853   // Allocate the OSThread object.
 854   OSThread* osthread = new OSThread(NULL, NULL);
 855   if (osthread == NULL) {
 856     return false;
 857   }
 858 
 859   // Set the correct thread state.
 860   osthread->set_thread_type(thr_type);
 861 
 862   // Initial state is ALLOCATED but not INITIALIZED
 863   osthread->set_state(ALLOCATED);
 864 
 865   thread->set_osthread(osthread);
 866 
 867   // Init thread attributes.
 868   pthread_attr_t attr;
 869   pthread_attr_init(&attr);
 870   guarantee(pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED) == 0, "???");
 871 
 872   // Make sure we run in 1:1 kernel-user-thread mode.
 873   if (os::Aix::on_aix()) {
 874     guarantee(pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM) == 0, "???");
 875     guarantee(pthread_attr_setinheritsched(&attr, PTHREAD_EXPLICIT_SCHED) == 0, "???");
 876   }
 877 
 878   // Start in suspended state, and in os::thread_start, wake the thread up.
 879   guarantee(pthread_attr_setsuspendstate_np(&attr, PTHREAD_CREATE_SUSPENDED_NP) == 0, "???");
 880 
 881   // Calculate stack size if it's not specified by caller.
 882   size_t stack_size = os::Posix::get_initial_stack_size(thr_type, req_stack_size);
 883 
 884   // JDK-8187028: It was observed that on some configurations (4K backed thread stacks)
 885   // the real thread stack size may be smaller than the requested stack size, by as much as 64K.
 886   // This very much looks like a pthread lib error. As a workaround, increase the stack size
 887   // by 64K for small thread stacks (arbitrarily choosen to be < 4MB)
 888   if (stack_size < 4096 * K) {
 889     stack_size += 64 * K;
 890   }
 891 
 892   // On Aix, pthread_attr_setstacksize fails with huge values and leaves the
 893   // thread size in attr unchanged. If this is the minimal stack size as set
 894   // by pthread_attr_init this leads to crashes after thread creation. E.g. the
 895   // guard pages might not fit on the tiny stack created.
 896   int ret = pthread_attr_setstacksize(&attr, stack_size);
 897   if (ret != 0) {
 898     log_warning(os, thread)("The %sthread stack size specified is invalid: " SIZE_FORMAT "k",
 899                             (thr_type == compiler_thread) ? "compiler " : ((thr_type == java_thread) ? "" : "VM "),
 900                             stack_size / K);
 901     thread->set_osthread(NULL);
 902     delete osthread;
 903     return false;
 904   }
 905 
 906   // Save some cycles and a page by disabling OS guard pages where we have our own
 907   // VM guard pages (in java threads). For other threads, keep system default guard
 908   // pages in place.
 909   if (thr_type == java_thread || thr_type == compiler_thread) {
 910     ret = pthread_attr_setguardsize(&attr, 0);
 911   }
 912 
 913   pthread_t tid = 0;
 914   if (ret == 0) {
 915     ret = pthread_create(&tid, &attr, (void* (*)(void*)) thread_native_entry, thread);
 916   }
 917 
 918   if (ret == 0) {
 919     char buf[64];
 920     log_info(os, thread)("Thread started (pthread id: " UINTX_FORMAT ", attributes: %s). ",
 921       (uintx) tid, os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 922   } else {
 923     char buf[64];
 924     log_warning(os, thread)("Failed to start thread - pthread_create failed (%d=%s) for attributes: %s.",
 925       ret, os::errno_name(ret), os::Posix::describe_pthread_attr(buf, sizeof(buf), &attr));
 926     // Log some OS information which might explain why creating the thread failed.
 927     log_info(os, thread)("Number of threads approx. running in the VM: %d", Threads::number_of_threads());
 928     LogStream st(Log(os, thread)::info());
 929     os::Posix::print_rlimit_info(&st);
 930     os::print_memory_info(&st);
 931   }
 932 
 933   pthread_attr_destroy(&attr);
 934 
 935   if (ret != 0) {
 936     // Need to clean up stuff we've allocated so far.
 937     thread->set_osthread(NULL);
 938     delete osthread;
 939     return false;
 940   }
 941 
 942   // OSThread::thread_id is the pthread id.
 943   osthread->set_thread_id(tid);
 944 
 945   return true;
 946 }
 947 
 948 /////////////////////////////////////////////////////////////////////////////
 949 // attach existing thread
 950 
 951 // bootstrap the main thread
 952 bool os::create_main_thread(JavaThread* thread) {
 953   assert(os::Aix::_main_thread == pthread_self(), "should be called inside main thread");
 954   return create_attached_thread(thread);
 955 }
 956 
 957 bool os::create_attached_thread(JavaThread* thread) {
 958 #ifdef ASSERT
 959     thread->verify_not_published();
 960 #endif
 961 
 962   // Allocate the OSThread object
 963   OSThread* osthread = new OSThread(NULL, NULL);
 964 
 965   if (osthread == NULL) {
 966     return false;
 967   }
 968 
 969   const pthread_t pthread_id = ::pthread_self();
 970   const tid_t kernel_thread_id = ::thread_self();
 971 
 972   // OSThread::thread_id is the pthread id.
 973   osthread->set_thread_id(pthread_id);
 974 
 975   // .. but keep kernel thread id too for diagnostics
 976   osthread->set_kernel_thread_id(kernel_thread_id);
 977 
 978   // initialize floating point control register
 979   os::Aix::init_thread_fpu_state();
 980 
 981   // Initial thread state is RUNNABLE
 982   osthread->set_state(RUNNABLE);
 983 
 984   thread->set_osthread(osthread);
 985 
 986   if (UseNUMA) {
 987     int lgrp_id = os::numa_get_group_id();
 988     if (lgrp_id != -1) {
 989       thread->set_lgrp_id(lgrp_id);
 990     }
 991   }
 992 
 993   // initialize signal mask for this thread
 994   // and save the caller's signal mask
 995   os::Aix::hotspot_sigmask(thread);
 996 
 997   log_info(os, thread)("Thread attached (tid: " UINTX_FORMAT ", kernel thread id: " UINTX_FORMAT ").",
 998     os::current_thread_id(), (uintx) kernel_thread_id);
 999 
1000   return true;
1001 }
1002 
1003 void os::pd_start_thread(Thread* thread) {
1004   int status = pthread_continue_np(thread->osthread()->pthread_id());
1005   assert(status == 0, "thr_continue failed");
1006 }
1007 
1008 // Free OS resources related to the OSThread
1009 void os::free_thread(OSThread* osthread) {
1010   assert(osthread != NULL, "osthread not set");
1011 
1012   // We are told to free resources of the argument thread,
1013   // but we can only really operate on the current thread.
1014   assert(Thread::current()->osthread() == osthread,
1015          "os::free_thread but not current thread");
1016 
1017   // Restore caller's signal mask
1018   sigset_t sigmask = osthread->caller_sigmask();
1019   pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1020 
1021   delete osthread;
1022 }
1023 
1024 ////////////////////////////////////////////////////////////////////////////////
1025 // time support
1026 
1027 // Time since start-up in seconds to a fine granularity.
1028 // Used by VMSelfDestructTimer and the MemProfiler.
1029 double os::elapsedTime() {
1030   return (double)(os::elapsed_counter()) * 0.000001;
1031 }
1032 
1033 jlong os::elapsed_counter() {
1034   timeval time;
1035   int status = gettimeofday(&time, NULL);
1036   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1037 }
1038 
1039 jlong os::elapsed_frequency() {
1040   return (1000 * 1000);
1041 }
1042 
1043 bool os::supports_vtime() { return true; }
1044 bool os::enable_vtime()   { return false; }
1045 bool os::vtime_enabled()  { return false; }
1046 
1047 double os::elapsedVTime() {
1048   struct rusage usage;
1049   int retval = getrusage(RUSAGE_THREAD, &usage);
1050   if (retval == 0) {
1051     return usage.ru_utime.tv_sec + usage.ru_stime.tv_sec + (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000.0 * 1000);
1052   } else {
1053     // better than nothing, but not much
1054     return elapsedTime();
1055   }
1056 }
1057 
1058 jlong os::javaTimeMillis() {
1059   timeval time;
1060   int status = gettimeofday(&time, NULL);
1061   assert(status != -1, "aix error at gettimeofday()");
1062   return jlong(time.tv_sec) * 1000 + jlong(time.tv_usec / 1000);
1063 }
1064 
1065 void os::javaTimeSystemUTC(jlong &seconds, jlong &nanos) {
1066   timeval time;
1067   int status = gettimeofday(&time, NULL);
1068   assert(status != -1, "aix error at gettimeofday()");
1069   seconds = jlong(time.tv_sec);
1070   nanos = jlong(time.tv_usec) * 1000;
1071 }
1072 
1073 // We use mread_real_time here.
1074 // On AIX: If the CPU has a time register, the result will be RTC_POWER and
1075 // it has to be converted to real time. AIX documentations suggests to do
1076 // this unconditionally, so we do it.
1077 //
1078 // See: https://www.ibm.com/support/knowledgecenter/ssw_aix_61/com.ibm.aix.basetrf2/read_real_time.htm
1079 //
1080 // On PASE: mread_real_time will always return RTC_POWER_PC data, so no
1081 // conversion is necessary. However, mread_real_time will not return
1082 // monotonic results but merely matches read_real_time. So we need a tweak
1083 // to ensure monotonic results.
1084 //
1085 // For PASE no public documentation exists, just word by IBM
1086 jlong os::javaTimeNanos() {
1087   timebasestruct_t time;
1088   int rc = mread_real_time(&time, TIMEBASE_SZ);
1089   if (os::Aix::on_pase()) {
1090     assert(rc == RTC_POWER, "expected time format RTC_POWER from mread_real_time in PASE");
1091     jlong now = jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1092     jlong prev = max_real_time;
1093     if (now <= prev) {
1094       return prev;   // same or retrograde time;
1095     }
1096     jlong obsv = Atomic::cmpxchg(now, &max_real_time, prev);
1097     assert(obsv >= prev, "invariant");   // Monotonicity
1098     // If the CAS succeeded then we're done and return "now".
1099     // If the CAS failed and the observed value "obsv" is >= now then
1100     // we should return "obsv".  If the CAS failed and now > obsv > prv then
1101     // some other thread raced this thread and installed a new value, in which case
1102     // we could either (a) retry the entire operation, (b) retry trying to install now
1103     // or (c) just return obsv.  We use (c).   No loop is required although in some cases
1104     // we might discard a higher "now" value in deference to a slightly lower but freshly
1105     // installed obsv value.   That's entirely benign -- it admits no new orderings compared
1106     // to (a) or (b) -- and greatly reduces coherence traffic.
1107     // We might also condition (c) on the magnitude of the delta between obsv and now.
1108     // Avoiding excessive CAS operations to hot RW locations is critical.
1109     // See https://blogs.oracle.com/dave/entry/cas_and_cache_trivia_invalidate
1110     return (prev == obsv) ? now : obsv;
1111   } else {
1112     if (rc != RTC_POWER) {
1113       rc = time_base_to_time(&time, TIMEBASE_SZ);
1114       assert(rc != -1, "error calling time_base_to_time()");
1115     }
1116     return jlong(time.tb_high) * NANOSECS_PER_SEC + jlong(time.tb_low);
1117   }
1118 }
1119 
1120 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1121   info_ptr->max_value = ALL_64_BITS;
1122   // mread_real_time() is monotonic (see 'os::javaTimeNanos()')
1123   info_ptr->may_skip_backward = false;
1124   info_ptr->may_skip_forward = false;
1125   info_ptr->kind = JVMTI_TIMER_ELAPSED;    // elapsed not CPU time
1126 }
1127 
1128 // Return the real, user, and system times in seconds from an
1129 // arbitrary fixed point in the past.
1130 bool os::getTimesSecs(double* process_real_time,
1131                       double* process_user_time,
1132                       double* process_system_time) {
1133   struct tms ticks;
1134   clock_t real_ticks = times(&ticks);
1135 
1136   if (real_ticks == (clock_t) (-1)) {
1137     return false;
1138   } else {
1139     double ticks_per_second = (double) clock_tics_per_sec;
1140     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1141     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1142     *process_real_time = ((double) real_ticks) / ticks_per_second;
1143 
1144     return true;
1145   }
1146 }
1147 
1148 char * os::local_time_string(char *buf, size_t buflen) {
1149   struct tm t;
1150   time_t long_time;
1151   time(&long_time);
1152   localtime_r(&long_time, &t);
1153   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1154                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1155                t.tm_hour, t.tm_min, t.tm_sec);
1156   return buf;
1157 }
1158 
1159 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
1160   return localtime_r(clock, res);
1161 }
1162 
1163 ////////////////////////////////////////////////////////////////////////////////
1164 // runtime exit support
1165 
1166 // Note: os::shutdown() might be called very early during initialization, or
1167 // called from signal handler. Before adding something to os::shutdown(), make
1168 // sure it is async-safe and can handle partially initialized VM.
1169 void os::shutdown() {
1170 
1171   // allow PerfMemory to attempt cleanup of any persistent resources
1172   perfMemory_exit();
1173 
1174   // needs to remove object in file system
1175   AttachListener::abort();
1176 
1177   // flush buffered output, finish log files
1178   ostream_abort();
1179 
1180   // Check for abort hook
1181   abort_hook_t abort_hook = Arguments::abort_hook();
1182   if (abort_hook != NULL) {
1183     abort_hook();
1184   }
1185 }
1186 
1187 // Note: os::abort() might be called very early during initialization, or
1188 // called from signal handler. Before adding something to os::abort(), make
1189 // sure it is async-safe and can handle partially initialized VM.
1190 void os::abort(bool dump_core, void* siginfo, const void* context) {
1191   os::shutdown();
1192   if (dump_core) {
1193 #ifndef PRODUCT
1194     fdStream out(defaultStream::output_fd());
1195     out.print_raw("Current thread is ");
1196     char buf[16];
1197     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1198     out.print_raw_cr(buf);
1199     out.print_raw_cr("Dumping core ...");
1200 #endif
1201     ::abort(); // dump core
1202   }
1203 
1204   ::exit(1);
1205 }
1206 
1207 // Die immediately, no exit hook, no abort hook, no cleanup.
1208 // Dump a core file, if possible, for debugging.
1209 void os::die() {
1210   if (TestUnresponsiveErrorHandler && !CreateCoredumpOnCrash) {
1211     // For TimeoutInErrorHandlingTest.java, we just kill the VM
1212     // and don't take the time to generate a core file.
1213     os::signal_raise(SIGKILL);
1214   } else {
1215     ::abort();
1216   }
1217 }
1218 
1219 intx os::current_thread_id() {
1220   return (intx)pthread_self();
1221 }
1222 
1223 int os::current_process_id() {
1224   return getpid();
1225 }
1226 
1227 // DLL functions
1228 
1229 const char* os::dll_file_extension() { return ".so"; }
1230 
1231 // This must be hard coded because it's the system's temporary
1232 // directory not the java application's temp directory, ala java.io.tmpdir.
1233 const char* os::get_temp_directory() { return "/tmp"; }
1234 
1235 // Check if addr is inside libjvm.so.
1236 bool os::address_is_in_vm(address addr) {
1237 
1238   // Input could be a real pc or a function pointer literal. The latter
1239   // would be a function descriptor residing in the data segment of a module.
1240   loaded_module_t lm;
1241   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL) {
1242     return lm.is_in_vm;
1243   } else if (LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
1244     return lm.is_in_vm;
1245   } else {
1246     return false;
1247   }
1248 
1249 }
1250 
1251 // Resolve an AIX function descriptor literal to a code pointer.
1252 // If the input is a valid code pointer to a text segment of a loaded module,
1253 //   it is returned unchanged.
1254 // If the input is a valid AIX function descriptor, it is resolved to the
1255 //   code entry point.
1256 // If the input is neither a valid function descriptor nor a valid code pointer,
1257 //   NULL is returned.
1258 static address resolve_function_descriptor_to_code_pointer(address p) {
1259 
1260   if (LoadedLibraries::find_for_text_address(p, NULL) != NULL) {
1261     // It is a real code pointer.
1262     return p;
1263   } else if (LoadedLibraries::find_for_data_address(p, NULL) != NULL) {
1264     // Pointer to data segment, potential function descriptor.
1265     address code_entry = (address)(((FunctionDescriptor*)p)->entry());
1266     if (LoadedLibraries::find_for_text_address(code_entry, NULL) != NULL) {
1267       // It is a function descriptor.
1268       return code_entry;
1269     }
1270   }
1271 
1272   return NULL;
1273 }
1274 
1275 bool os::dll_address_to_function_name(address addr, char *buf,
1276                                       int buflen, int *offset,
1277                                       bool demangle) {
1278   if (offset) {
1279     *offset = -1;
1280   }
1281   // Buf is not optional, but offset is optional.
1282   assert(buf != NULL, "sanity check");
1283   buf[0] = '\0';
1284 
1285   // Resolve function ptr literals first.
1286   addr = resolve_function_descriptor_to_code_pointer(addr);
1287   if (!addr) {
1288     return false;
1289   }
1290 
1291   return AixSymbols::get_function_name(addr, buf, buflen, offset, NULL, demangle);
1292 }
1293 
1294 bool os::dll_address_to_library_name(address addr, char* buf,
1295                                      int buflen, int* offset) {
1296   if (offset) {
1297     *offset = -1;
1298   }
1299   // Buf is not optional, but offset is optional.
1300   assert(buf != NULL, "sanity check");
1301   buf[0] = '\0';
1302 
1303   // Resolve function ptr literals first.
1304   addr = resolve_function_descriptor_to_code_pointer(addr);
1305   if (!addr) {
1306     return false;
1307   }
1308 
1309   return AixSymbols::get_module_name(addr, buf, buflen);
1310 }
1311 
1312 // Loads .dll/.so and in case of error it checks if .dll/.so was built
1313 // for the same architecture as Hotspot is running on.
1314 void *os::dll_load(const char *filename, char *ebuf, int ebuflen) {
1315 
1316   if (ebuf && ebuflen > 0) {
1317     ebuf[0] = '\0';
1318     ebuf[ebuflen - 1] = '\0';
1319   }
1320 
1321   if (!filename || strlen(filename) == 0) {
1322     ::strncpy(ebuf, "dll_load: empty filename specified", ebuflen - 1);
1323     return NULL;
1324   }
1325 
1326   // RTLD_LAZY is currently not implemented. The dl is loaded immediately with all its dependants.
1327   void * result= ::dlopen(filename, RTLD_LAZY);
1328   if (result != NULL) {
1329     Events::log(NULL, "Loaded shared library %s", filename);
1330     // Reload dll cache. Don't do this in signal handling.
1331     LoadedLibraries::reload();
1332     return result;
1333   } else {
1334     // error analysis when dlopen fails
1335     const char* error_report = ::dlerror();
1336     if (error_report == NULL) {
1337       error_report = "dlerror returned no error description";
1338     }
1339     if (ebuf != NULL && ebuflen > 0) {
1340       snprintf(ebuf, ebuflen - 1, "%s, LIBPATH=%s, LD_LIBRARY_PATH=%s : %s",
1341                filename, ::getenv("LIBPATH"), ::getenv("LD_LIBRARY_PATH"), error_report);
1342     }
1343     Events::log(NULL, "Loading shared library %s failed, %s", filename, error_report);
1344   }
1345   return NULL;
1346 }
1347 
1348 void* os::dll_lookup(void* handle, const char* name) {
1349   void* res = dlsym(handle, name);
1350   return res;
1351 }
1352 
1353 void* os::get_default_process_handle() {
1354   return (void*)::dlopen(NULL, RTLD_LAZY);
1355 }
1356 
1357 void os::print_dll_info(outputStream *st) {
1358   st->print_cr("Dynamic libraries:");
1359   LoadedLibraries::print(st);
1360 }
1361 
1362 void os::get_summary_os_info(char* buf, size_t buflen) {
1363   // There might be something more readable than uname results for AIX.
1364   struct utsname name;
1365   uname(&name);
1366   snprintf(buf, buflen, "%s %s", name.release, name.version);
1367 }
1368 
1369 int os::get_loaded_modules_info(os::LoadedModulesCallbackFunc callback, void *param) {
1370   // Not yet implemented.
1371   return 0;
1372 }
1373 
1374 void os::print_os_info_brief(outputStream* st) {
1375   uint32_t ver = os::Aix::os_version();
1376   st->print_cr("AIX kernel version %u.%u.%u.%u",
1377                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1378 
1379   os::Posix::print_uname_info(st);
1380 
1381   // Linux uses print_libversion_info(st); here.
1382 }
1383 
1384 void os::print_os_info(outputStream* st) {
1385   st->print("OS:");
1386 
1387   st->print("uname:");
1388   struct utsname name;
1389   uname(&name);
1390   st->print(name.sysname); st->print(" ");
1391   st->print(name.nodename); st->print(" ");
1392   st->print(name.release); st->print(" ");
1393   st->print(name.version); st->print(" ");
1394   st->print(name.machine);
1395   st->cr();
1396 
1397   uint32_t ver = os::Aix::os_version();
1398   st->print_cr("AIX kernel version %u.%u.%u.%u",
1399                (ver >> 24) & 0xFF, (ver >> 16) & 0xFF, (ver >> 8) & 0xFF, ver & 0xFF);
1400 
1401   os::Posix::print_rlimit_info(st);
1402 
1403   // _SC_THREAD_THREADS_MAX is the maximum number of threads within a process.
1404   long tmax = sysconf(_SC_THREAD_THREADS_MAX);
1405   st->print_cr("maximum #threads within a process:%ld", tmax);
1406 
1407   // load average
1408   st->print("load average:");
1409   double loadavg[3] = {-1.L, -1.L, -1.L};
1410   os::loadavg(loadavg, 3);
1411   st->print_cr("%0.02f %0.02f %0.02f", loadavg[0], loadavg[1], loadavg[2]);
1412 
1413   // print wpar info
1414   libperfstat::wparinfo_t wi;
1415   if (libperfstat::get_wparinfo(&wi)) {
1416     st->print_cr("wpar info");
1417     st->print_cr("name: %s", wi.name);
1418     st->print_cr("id:   %d", wi.wpar_id);
1419     st->print_cr("type: %s", (wi.app_wpar ? "application" : "system"));
1420   }
1421 
1422   VM_Version::print_platform_virtualization_info(st);
1423 }
1424 
1425 void os::print_memory_info(outputStream* st) {
1426 
1427   st->print_cr("Memory:");
1428 
1429   st->print_cr("  Base page size (sysconf _SC_PAGESIZE):  %s",
1430     describe_pagesize(g_multipage_support.pagesize));
1431   st->print_cr("  Data page size (C-Heap, bss, etc):      %s",
1432     describe_pagesize(g_multipage_support.datapsize));
1433   st->print_cr("  Text page size:                         %s",
1434     describe_pagesize(g_multipage_support.textpsize));
1435   st->print_cr("  Thread stack page size (pthread):       %s",
1436     describe_pagesize(g_multipage_support.pthr_stack_pagesize));
1437   st->print_cr("  Default shared memory page size:        %s",
1438     describe_pagesize(g_multipage_support.shmpsize));
1439   st->print_cr("  Can use 64K pages dynamically with shared meory:  %s",
1440     (g_multipage_support.can_use_64K_pages ? "yes" :"no"));
1441   st->print_cr("  Can use 16M pages dynamically with shared memory: %s",
1442     (g_multipage_support.can_use_16M_pages ? "yes" :"no"));
1443   st->print_cr("  Multipage error: %d",
1444     g_multipage_support.error);
1445   st->cr();
1446   st->print_cr("  os::vm_page_size:       %s", describe_pagesize(os::vm_page_size()));
1447 
1448   // print out LDR_CNTRL because it affects the default page sizes
1449   const char* const ldr_cntrl = ::getenv("LDR_CNTRL");
1450   st->print_cr("  LDR_CNTRL=%s.", ldr_cntrl ? ldr_cntrl : "<unset>");
1451 
1452   // Print out EXTSHM because it is an unsupported setting.
1453   const char* const extshm = ::getenv("EXTSHM");
1454   st->print_cr("  EXTSHM=%s.", extshm ? extshm : "<unset>");
1455   if ( (strcmp(extshm, "on") == 0) || (strcmp(extshm, "ON") == 0) ) {
1456     st->print_cr("  *** Unsupported! Please remove EXTSHM from your environment! ***");
1457   }
1458 
1459   // Print out AIXTHREAD_GUARDPAGES because it affects the size of pthread stacks.
1460   const char* const aixthread_guardpages = ::getenv("AIXTHREAD_GUARDPAGES");
1461   st->print_cr("  AIXTHREAD_GUARDPAGES=%s.",
1462       aixthread_guardpages ? aixthread_guardpages : "<unset>");
1463   st->cr();
1464 
1465   os::Aix::meminfo_t mi;
1466   if (os::Aix::get_meminfo(&mi)) {
1467     if (os::Aix::on_aix()) {
1468       st->print_cr("physical total : " SIZE_FORMAT, mi.real_total);
1469       st->print_cr("physical free  : " SIZE_FORMAT, mi.real_free);
1470       st->print_cr("swap total     : " SIZE_FORMAT, mi.pgsp_total);
1471       st->print_cr("swap free      : " SIZE_FORMAT, mi.pgsp_free);
1472     } else {
1473       // PASE - Numbers are result of QWCRSSTS; they mean:
1474       // real_total: Sum of all system pools
1475       // real_free: always 0
1476       // pgsp_total: we take the size of the system ASP
1477       // pgsp_free: size of system ASP times percentage of system ASP unused
1478       st->print_cr("physical total     : " SIZE_FORMAT, mi.real_total);
1479       st->print_cr("system asp total   : " SIZE_FORMAT, mi.pgsp_total);
1480       st->print_cr("%% system asp used : %.2f",
1481         mi.pgsp_total ? (100.0f * (mi.pgsp_total - mi.pgsp_free) / mi.pgsp_total) : -1.0f);
1482     }
1483   }
1484   st->cr();
1485 
1486   // Print program break.
1487   st->print_cr("Program break at VM startup: " PTR_FORMAT ".", p2i(g_brk_at_startup));
1488   address brk_now = (address)::sbrk(0);
1489   if (brk_now != (address)-1) {
1490     st->print_cr("Program break now          : " PTR_FORMAT " (distance: " SIZE_FORMAT "k).",
1491                  p2i(brk_now), (size_t)((brk_now - g_brk_at_startup) / K));
1492   }
1493   st->print_cr("MaxExpectedDataSegmentSize    : " SIZE_FORMAT "k.", MaxExpectedDataSegmentSize / K);
1494   st->cr();
1495 
1496   // Print segments allocated with os::reserve_memory.
1497   st->print_cr("internal virtual memory regions used by vm:");
1498   vmembk_print_on(st);
1499 }
1500 
1501 // Get a string for the cpuinfo that is a summary of the cpu type
1502 void os::get_summary_cpu_info(char* buf, size_t buflen) {
1503   // read _system_configuration.version
1504   switch (_system_configuration.version) {
1505   case PV_8:
1506     strncpy(buf, "Power PC 8", buflen);
1507     break;
1508   case PV_7:
1509     strncpy(buf, "Power PC 7", buflen);
1510     break;
1511   case PV_6_1:
1512     strncpy(buf, "Power PC 6 DD1.x", buflen);
1513     break;
1514   case PV_6:
1515     strncpy(buf, "Power PC 6", buflen);
1516     break;
1517   case PV_5:
1518     strncpy(buf, "Power PC 5", buflen);
1519     break;
1520   case PV_5_2:
1521     strncpy(buf, "Power PC 5_2", buflen);
1522     break;
1523   case PV_5_3:
1524     strncpy(buf, "Power PC 5_3", buflen);
1525     break;
1526   case PV_5_Compat:
1527     strncpy(buf, "PV_5_Compat", buflen);
1528     break;
1529   case PV_6_Compat:
1530     strncpy(buf, "PV_6_Compat", buflen);
1531     break;
1532   case PV_7_Compat:
1533     strncpy(buf, "PV_7_Compat", buflen);
1534     break;
1535   case PV_8_Compat:
1536     strncpy(buf, "PV_8_Compat", buflen);
1537     break;
1538   default:
1539     strncpy(buf, "unknown", buflen);
1540   }
1541 }
1542 
1543 void os::pd_print_cpu_info(outputStream* st, char* buf, size_t buflen) {
1544   // Nothing to do beyond of what os::print_cpu_info() does.
1545 }
1546 
1547 static void print_signal_handler(outputStream* st, int sig,
1548                                  char* buf, size_t buflen);
1549 
1550 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1551   st->print_cr("Signal Handlers:");
1552   print_signal_handler(st, SIGSEGV, buf, buflen);
1553   print_signal_handler(st, SIGBUS , buf, buflen);
1554   print_signal_handler(st, SIGFPE , buf, buflen);
1555   print_signal_handler(st, SIGPIPE, buf, buflen);
1556   print_signal_handler(st, SIGXFSZ, buf, buflen);
1557   print_signal_handler(st, SIGILL , buf, buflen);
1558   print_signal_handler(st, SR_signum, buf, buflen);
1559   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
1560   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
1561   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
1562   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
1563   print_signal_handler(st, SIGTRAP, buf, buflen);
1564   // We also want to know if someone else adds a SIGDANGER handler because
1565   // that will interfere with OOM killling.
1566   print_signal_handler(st, SIGDANGER, buf, buflen);
1567 }
1568 
1569 static char saved_jvm_path[MAXPATHLEN] = {0};
1570 
1571 // Find the full path to the current module, libjvm.so.
1572 void os::jvm_path(char *buf, jint buflen) {
1573   // Error checking.
1574   if (buflen < MAXPATHLEN) {
1575     assert(false, "must use a large-enough buffer");
1576     buf[0] = '\0';
1577     return;
1578   }
1579   // Lazy resolve the path to current module.
1580   if (saved_jvm_path[0] != 0) {
1581     strcpy(buf, saved_jvm_path);
1582     return;
1583   }
1584 
1585   Dl_info dlinfo;
1586   int ret = dladdr(CAST_FROM_FN_PTR(void *, os::jvm_path), &dlinfo);
1587   assert(ret != 0, "cannot locate libjvm");
1588   char* rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1589   assert(rp != NULL, "error in realpath(): maybe the 'path' argument is too long?");
1590 
1591   if (Arguments::sun_java_launcher_is_altjvm()) {
1592     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
1593     // value for buf is "<JAVA_HOME>/jre/lib/<vmtype>/libjvm.so".
1594     // If "/jre/lib/" appears at the right place in the string, then
1595     // assume we are installed in a JDK and we're done. Otherwise, check
1596     // for a JAVA_HOME environment variable and fix up the path so it
1597     // looks like libjvm.so is installed there (append a fake suffix
1598     // hotspot/libjvm.so).
1599     const char *p = buf + strlen(buf) - 1;
1600     for (int count = 0; p > buf && count < 4; ++count) {
1601       for (--p; p > buf && *p != '/'; --p)
1602         /* empty */ ;
1603     }
1604 
1605     if (strncmp(p, "/jre/lib/", 9) != 0) {
1606       // Look for JAVA_HOME in the environment.
1607       char* java_home_var = ::getenv("JAVA_HOME");
1608       if (java_home_var != NULL && java_home_var[0] != 0) {
1609         char* jrelib_p;
1610         int len;
1611 
1612         // Check the current module name "libjvm.so".
1613         p = strrchr(buf, '/');
1614         if (p == NULL) {
1615           return;
1616         }
1617         assert(strstr(p, "/libjvm") == p, "invalid library name");
1618 
1619         rp = os::Posix::realpath(java_home_var, buf, buflen);
1620         if (rp == NULL) {
1621           return;
1622         }
1623 
1624         // determine if this is a legacy image or modules image
1625         // modules image doesn't have "jre" subdirectory
1626         len = strlen(buf);
1627         assert(len < buflen, "Ran out of buffer room");
1628         jrelib_p = buf + len;
1629         snprintf(jrelib_p, buflen-len, "/jre/lib");
1630         if (0 != access(buf, F_OK)) {
1631           snprintf(jrelib_p, buflen-len, "/lib");
1632         }
1633 
1634         if (0 == access(buf, F_OK)) {
1635           // Use current module name "libjvm.so"
1636           len = strlen(buf);
1637           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
1638         } else {
1639           // Go back to path of .so
1640           rp = os::Posix::realpath((char *)dlinfo.dli_fname, buf, buflen);
1641           if (rp == NULL) {
1642             return;
1643           }
1644         }
1645       }
1646     }
1647   }
1648 
1649   strncpy(saved_jvm_path, buf, sizeof(saved_jvm_path));
1650   saved_jvm_path[sizeof(saved_jvm_path) - 1] = '\0';
1651 }
1652 
1653 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1654   // no prefix required, not even "_"
1655 }
1656 
1657 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1658   // no suffix required
1659 }
1660 
1661 ////////////////////////////////////////////////////////////////////////////////
1662 // sun.misc.Signal support
1663 
1664 static volatile jint sigint_count = 0;
1665 
1666 static void
1667 UserHandler(int sig, void *siginfo, void *context) {
1668   // 4511530 - sem_post is serialized and handled by the manager thread. When
1669   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
1670   // don't want to flood the manager thread with sem_post requests.
1671   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
1672     return;
1673 
1674   // Ctrl-C is pressed during error reporting, likely because the error
1675   // handler fails to abort. Let VM die immediately.
1676   if (sig == SIGINT && VMError::is_error_reported()) {
1677     os::die();
1678   }
1679 
1680   os::signal_notify(sig);
1681 }
1682 
1683 void* os::user_handler() {
1684   return CAST_FROM_FN_PTR(void*, UserHandler);
1685 }
1686 
1687 extern "C" {
1688   typedef void (*sa_handler_t)(int);
1689   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
1690 }
1691 
1692 void* os::signal(int signal_number, void* handler) {
1693   struct sigaction sigAct, oldSigAct;
1694 
1695   sigfillset(&(sigAct.sa_mask));
1696 
1697   // Do not block out synchronous signals in the signal handler.
1698   // Blocking synchronous signals only makes sense if you can really
1699   // be sure that those signals won't happen during signal handling,
1700   // when the blocking applies. Normal signal handlers are lean and
1701   // do not cause signals. But our signal handlers tend to be "risky"
1702   // - secondary SIGSEGV, SIGILL, SIGBUS' may and do happen.
1703   // On AIX, PASE there was a case where a SIGSEGV happened, followed
1704   // by a SIGILL, which was blocked due to the signal mask. The process
1705   // just hung forever. Better to crash from a secondary signal than to hang.
1706   sigdelset(&(sigAct.sa_mask), SIGSEGV);
1707   sigdelset(&(sigAct.sa_mask), SIGBUS);
1708   sigdelset(&(sigAct.sa_mask), SIGILL);
1709   sigdelset(&(sigAct.sa_mask), SIGFPE);
1710   sigdelset(&(sigAct.sa_mask), SIGTRAP);
1711 
1712   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
1713 
1714   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
1715 
1716   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
1717     // -1 means registration failed
1718     return (void *)-1;
1719   }
1720 
1721   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
1722 }
1723 
1724 void os::signal_raise(int signal_number) {
1725   ::raise(signal_number);
1726 }
1727 
1728 //
1729 // The following code is moved from os.cpp for making this
1730 // code platform specific, which it is by its very nature.
1731 //
1732 
1733 // Will be modified when max signal is changed to be dynamic
1734 int os::sigexitnum_pd() {
1735   return NSIG;
1736 }
1737 
1738 // a counter for each possible signal value
1739 static volatile jint pending_signals[NSIG+1] = { 0 };
1740 
1741 // Wrapper functions for: sem_init(), sem_post(), sem_wait()
1742 // On AIX, we use sem_init(), sem_post(), sem_wait()
1743 // On Pase, we need to use msem_lock() and msem_unlock(), because Posix Semaphores
1744 // do not seem to work at all on PASE (unimplemented, will cause SIGILL).
1745 // Note that just using msem_.. APIs for both PASE and AIX is not an option either, as
1746 // on AIX, msem_..() calls are suspected of causing problems.
1747 static sem_t sig_sem;
1748 static msemaphore* p_sig_msem = 0;
1749 
1750 static void local_sem_init() {
1751   if (os::Aix::on_aix()) {
1752     int rc = ::sem_init(&sig_sem, 0, 0);
1753     guarantee(rc != -1, "sem_init failed");
1754   } else {
1755     // Memory semaphores must live in shared mem.
1756     guarantee0(p_sig_msem == NULL);
1757     p_sig_msem = (msemaphore*)os::reserve_memory(sizeof(msemaphore), NULL);
1758     guarantee(p_sig_msem, "Cannot allocate memory for memory semaphore");
1759     guarantee(::msem_init(p_sig_msem, 0) == p_sig_msem, "msem_init failed");
1760   }
1761 }
1762 
1763 static void local_sem_post() {
1764   static bool warn_only_once = false;
1765   if (os::Aix::on_aix()) {
1766     int rc = ::sem_post(&sig_sem);
1767     if (rc == -1 && !warn_only_once) {
1768       trcVerbose("sem_post failed (errno = %d, %s)", errno, os::errno_name(errno));
1769       warn_only_once = true;
1770     }
1771   } else {
1772     guarantee0(p_sig_msem != NULL);
1773     int rc = ::msem_unlock(p_sig_msem, 0);
1774     if (rc == -1 && !warn_only_once) {
1775       trcVerbose("msem_unlock failed (errno = %d, %s)", errno, os::errno_name(errno));
1776       warn_only_once = true;
1777     }
1778   }
1779 }
1780 
1781 static void local_sem_wait() {
1782   static bool warn_only_once = false;
1783   if (os::Aix::on_aix()) {
1784     int rc = ::sem_wait(&sig_sem);
1785     if (rc == -1 && !warn_only_once) {
1786       trcVerbose("sem_wait failed (errno = %d, %s)", errno, os::errno_name(errno));
1787       warn_only_once = true;
1788     }
1789   } else {
1790     guarantee0(p_sig_msem != NULL); // must init before use
1791     int rc = ::msem_lock(p_sig_msem, 0);
1792     if (rc == -1 && !warn_only_once) {
1793       trcVerbose("msem_lock failed (errno = %d, %s)", errno, os::errno_name(errno));
1794       warn_only_once = true;
1795     }
1796   }
1797 }
1798 
1799 static void jdk_misc_signal_init() {
1800   // Initialize signal structures
1801   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
1802 
1803   // Initialize signal semaphore
1804   local_sem_init();
1805 }
1806 
1807 void os::signal_notify(int sig) {
1808   Atomic::inc(&pending_signals[sig]);
1809   local_sem_post();
1810 }
1811 
1812 static int check_pending_signals() {
1813   Atomic::store(0, &sigint_count);
1814   for (;;) {
1815     for (int i = 0; i < NSIG + 1; i++) {
1816       jint n = pending_signals[i];
1817       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
1818         return i;
1819       }
1820     }
1821     JavaThread *thread = JavaThread::current();
1822     ThreadBlockInVM tbivm(thread);
1823 
1824     bool threadIsSuspended;
1825     do {
1826       thread->set_suspend_equivalent();
1827       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
1828 
1829       local_sem_wait();
1830 
1831       // were we externally suspended while we were waiting?
1832       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
1833       if (threadIsSuspended) {
1834         //
1835         // The semaphore has been incremented, but while we were waiting
1836         // another thread suspended us. We don't want to continue running
1837         // while suspended because that would surprise the thread that
1838         // suspended us.
1839         //
1840 
1841         local_sem_post();
1842 
1843         thread->java_suspend_self();
1844       }
1845     } while (threadIsSuspended);
1846   }
1847 }
1848 
1849 int os::signal_wait() {
1850   return check_pending_signals();
1851 }
1852 
1853 ////////////////////////////////////////////////////////////////////////////////
1854 // Virtual Memory
1855 
1856 // We need to keep small simple bookkeeping for os::reserve_memory and friends.
1857 
1858 #define VMEM_MAPPED  1
1859 #define VMEM_SHMATED 2
1860 
1861 struct vmembk_t {
1862   int type;         // 1 - mmap, 2 - shmat
1863   char* addr;
1864   size_t size;      // Real size, may be larger than usersize.
1865   size_t pagesize;  // page size of area
1866   vmembk_t* next;
1867 
1868   bool contains_addr(char* p) const {
1869     return p >= addr && p < (addr + size);
1870   }
1871 
1872   bool contains_range(char* p, size_t s) const {
1873     return contains_addr(p) && contains_addr(p + s - 1);
1874   }
1875 
1876   void print_on(outputStream* os) const {
1877     os->print("[" PTR_FORMAT " - " PTR_FORMAT "] (" UINTX_FORMAT
1878       " bytes, %d %s pages), %s",
1879       addr, addr + size - 1, size, size / pagesize, describe_pagesize(pagesize),
1880       (type == VMEM_SHMATED ? "shmat" : "mmap")
1881     );
1882   }
1883 
1884   // Check that range is a sub range of memory block (or equal to memory block);
1885   // also check that range is fully page aligned to the page size if the block.
1886   void assert_is_valid_subrange(char* p, size_t s) const {
1887     if (!contains_range(p, s)) {
1888       trcVerbose("[" PTR_FORMAT " - " PTR_FORMAT "] is not a sub "
1889               "range of [" PTR_FORMAT " - " PTR_FORMAT "].",
1890               p2i(p), p2i(p + s), p2i(addr), p2i(addr + size));
1891       guarantee0(false);
1892     }
1893     if (!is_aligned_to(p, pagesize) || !is_aligned_to(p + s, pagesize)) {
1894       trcVerbose("range [" PTR_FORMAT " - " PTR_FORMAT "] is not"
1895               " aligned to pagesize (%lu)", p2i(p), p2i(p + s), (unsigned long) pagesize);
1896       guarantee0(false);
1897     }
1898   }
1899 };
1900 
1901 static struct {
1902   vmembk_t* first;
1903   MiscUtils::CritSect cs;
1904 } vmem;
1905 
1906 static void vmembk_add(char* addr, size_t size, size_t pagesize, int type) {
1907   vmembk_t* p = (vmembk_t*) ::malloc(sizeof(vmembk_t));
1908   assert0(p);
1909   if (p) {
1910     MiscUtils::AutoCritSect lck(&vmem.cs);
1911     p->addr = addr; p->size = size;
1912     p->pagesize = pagesize;
1913     p->type = type;
1914     p->next = vmem.first;
1915     vmem.first = p;
1916   }
1917 }
1918 
1919 static vmembk_t* vmembk_find(char* addr) {
1920   MiscUtils::AutoCritSect lck(&vmem.cs);
1921   for (vmembk_t* p = vmem.first; p; p = p->next) {
1922     if (p->addr <= addr && (p->addr + p->size) > addr) {
1923       return p;
1924     }
1925   }
1926   return NULL;
1927 }
1928 
1929 static void vmembk_remove(vmembk_t* p0) {
1930   MiscUtils::AutoCritSect lck(&vmem.cs);
1931   assert0(p0);
1932   assert0(vmem.first); // List should not be empty.
1933   for (vmembk_t** pp = &(vmem.first); *pp; pp = &((*pp)->next)) {
1934     if (*pp == p0) {
1935       *pp = p0->next;
1936       ::free(p0);
1937       return;
1938     }
1939   }
1940   assert0(false); // Not found?
1941 }
1942 
1943 static void vmembk_print_on(outputStream* os) {
1944   MiscUtils::AutoCritSect lck(&vmem.cs);
1945   for (vmembk_t* vmi = vmem.first; vmi; vmi = vmi->next) {
1946     vmi->print_on(os);
1947     os->cr();
1948   }
1949 }
1950 
1951 // Reserve and attach a section of System V memory.
1952 // If <requested_addr> is not NULL, function will attempt to attach the memory at the given
1953 // address. Failing that, it will attach the memory anywhere.
1954 // If <requested_addr> is NULL, function will attach the memory anywhere.
1955 //
1956 // <alignment_hint> is being ignored by this function. It is very probable however that the
1957 // alignment requirements are met anyway, because shmat() attaches at 256M boundaries.
1958 // Should this be not enogh, we can put more work into it.
1959 static char* reserve_shmated_memory (
1960   size_t bytes,
1961   char* requested_addr,
1962   size_t alignment_hint) {
1963 
1964   trcVerbose("reserve_shmated_memory " UINTX_FORMAT " bytes, wishaddress "
1965     PTR_FORMAT ", alignment_hint " UINTX_FORMAT "...",
1966     bytes, p2i(requested_addr), alignment_hint);
1967 
1968   // Either give me wish address or wish alignment but not both.
1969   assert0(!(requested_addr != NULL && alignment_hint != 0));
1970 
1971   // We must prevent anyone from attaching too close to the
1972   // BRK because that may cause malloc OOM.
1973   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
1974     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
1975       "Will attach anywhere.", p2i(requested_addr));
1976     // Act like the OS refused to attach there.
1977     requested_addr = NULL;
1978   }
1979 
1980   // For old AS/400's (V5R4 and older) we should not even be here - System V shared memory is not
1981   // really supported (max size 4GB), so reserve_mmapped_memory should have been used instead.
1982   if (os::Aix::on_pase_V5R4_or_older()) {
1983     ShouldNotReachHere();
1984   }
1985 
1986   // Align size of shm up to 64K to avoid errors if we later try to change the page size.
1987   const size_t size = align_up(bytes, 64*K);
1988 
1989   // Reserve the shared segment.
1990   int shmid = shmget(IPC_PRIVATE, size, IPC_CREAT | S_IRUSR | S_IWUSR);
1991   if (shmid == -1) {
1992     trcVerbose("shmget(.., " UINTX_FORMAT ", ..) failed (errno: %d).", size, errno);
1993     return NULL;
1994   }
1995 
1996   // Important note:
1997   // It is very important that we, upon leaving this function, do not leave a shm segment alive.
1998   // We must right after attaching it remove it from the system. System V shm segments are global and
1999   // survive the process.
2000   // So, from here on: Do not assert, do not return, until we have called shmctl(IPC_RMID) (A).
2001 
2002   struct shmid_ds shmbuf;
2003   memset(&shmbuf, 0, sizeof(shmbuf));
2004   shmbuf.shm_pagesize = 64*K;
2005   if (shmctl(shmid, SHM_PAGESIZE, &shmbuf) != 0) {
2006     trcVerbose("Failed to set page size (need " UINTX_FORMAT " 64K pages) - shmctl failed with %d.",
2007                size / (64*K), errno);
2008     // I want to know if this ever happens.
2009     assert(false, "failed to set page size for shmat");
2010   }
2011 
2012   // Now attach the shared segment.
2013   // Note that I attach with SHM_RND - which means that the requested address is rounded down, if
2014   // needed, to the next lowest segment boundary. Otherwise the attach would fail if the address
2015   // were not a segment boundary.
2016   char* const addr = (char*) shmat(shmid, requested_addr, SHM_RND);
2017   const int errno_shmat = errno;
2018 
2019   // (A) Right after shmat and before handing shmat errors delete the shm segment.
2020   if (::shmctl(shmid, IPC_RMID, NULL) == -1) {
2021     trcVerbose("shmctl(%u, IPC_RMID) failed (%d)\n", shmid, errno);
2022     assert(false, "failed to remove shared memory segment!");
2023   }
2024 
2025   // Handle shmat error. If we failed to attach, just return.
2026   if (addr == (char*)-1) {
2027     trcVerbose("Failed to attach segment at " PTR_FORMAT " (%d).", p2i(requested_addr), errno_shmat);
2028     return NULL;
2029   }
2030 
2031   // Just for info: query the real page size. In case setting the page size did not
2032   // work (see above), the system may have given us something other then 4K (LDR_CNTRL).
2033   const size_t real_pagesize = os::Aix::query_pagesize(addr);
2034   if (real_pagesize != shmbuf.shm_pagesize) {
2035     trcVerbose("pagesize is, surprisingly, " SIZE_FORMAT, real_pagesize);
2036   }
2037 
2038   if (addr) {
2039     trcVerbose("shm-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes, " UINTX_FORMAT " %s pages)",
2040       p2i(addr), p2i(addr + size - 1), size, size/real_pagesize, describe_pagesize(real_pagesize));
2041   } else {
2042     if (requested_addr != NULL) {
2043       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at with address " PTR_FORMAT ".", size, p2i(requested_addr));
2044     } else {
2045       trcVerbose("failed to shm-allocate " UINTX_FORMAT " bytes at any address.", size);
2046     }
2047   }
2048 
2049   // book-keeping
2050   vmembk_add(addr, size, real_pagesize, VMEM_SHMATED);
2051   assert0(is_aligned_to(addr, os::vm_page_size()));
2052 
2053   return addr;
2054 }
2055 
2056 static bool release_shmated_memory(char* addr, size_t size) {
2057 
2058   trcVerbose("release_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2059     p2i(addr), p2i(addr + size - 1));
2060 
2061   bool rc = false;
2062 
2063   // TODO: is there a way to verify shm size without doing bookkeeping?
2064   if (::shmdt(addr) != 0) {
2065     trcVerbose("error (%d).", errno);
2066   } else {
2067     trcVerbose("ok.");
2068     rc = true;
2069   }
2070   return rc;
2071 }
2072 
2073 static bool uncommit_shmated_memory(char* addr, size_t size) {
2074   trcVerbose("uncommit_shmated_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2075     p2i(addr), p2i(addr + size - 1));
2076 
2077   const bool rc = my_disclaim64(addr, size);
2078 
2079   if (!rc) {
2080     trcVerbose("my_disclaim64(" PTR_FORMAT ", " UINTX_FORMAT ") failed.\n", p2i(addr), size);
2081     return false;
2082   }
2083   return true;
2084 }
2085 
2086 ////////////////////////////////  mmap-based routines /////////////////////////////////
2087 
2088 // Reserve memory via mmap.
2089 // If <requested_addr> is given, an attempt is made to attach at the given address.
2090 // Failing that, memory is allocated at any address.
2091 // If <alignment_hint> is given and <requested_addr> is NULL, an attempt is made to
2092 // allocate at an address aligned with the given alignment. Failing that, memory
2093 // is aligned anywhere.
2094 static char* reserve_mmaped_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2095   trcVerbose("reserve_mmaped_memory " UINTX_FORMAT " bytes, wishaddress " PTR_FORMAT ", "
2096     "alignment_hint " UINTX_FORMAT "...",
2097     bytes, p2i(requested_addr), alignment_hint);
2098 
2099   // If a wish address is given, but not aligned to 4K page boundary, mmap will fail.
2100   if (requested_addr && !is_aligned_to(requested_addr, os::vm_page_size()) != 0) {
2101     trcVerbose("Wish address " PTR_FORMAT " not aligned to page boundary.", p2i(requested_addr));
2102     return NULL;
2103   }
2104 
2105   // We must prevent anyone from attaching too close to the
2106   // BRK because that may cause malloc OOM.
2107   if (requested_addr != NULL && is_close_to_brk((address)requested_addr)) {
2108     trcVerbose("Wish address " PTR_FORMAT " is too close to the BRK segment. "
2109       "Will attach anywhere.", p2i(requested_addr));
2110     // Act like the OS refused to attach there.
2111     requested_addr = NULL;
2112   }
2113 
2114   // Specify one or the other but not both.
2115   assert0(!(requested_addr != NULL && alignment_hint > 0));
2116 
2117   // In 64K mode, we claim the global page size (os::vm_page_size())
2118   // is 64K. This is one of the few points where that illusion may
2119   // break, because mmap() will always return memory aligned to 4K. So
2120   // we must ensure we only ever return memory aligned to 64k.
2121   if (alignment_hint) {
2122     alignment_hint = lcm(alignment_hint, os::vm_page_size());
2123   } else {
2124     alignment_hint = os::vm_page_size();
2125   }
2126 
2127   // Size shall always be a multiple of os::vm_page_size (esp. in 64K mode).
2128   const size_t size = align_up(bytes, os::vm_page_size());
2129 
2130   // alignment: Allocate memory large enough to include an aligned range of the right size and
2131   // cut off the leading and trailing waste pages.
2132   assert0(alignment_hint != 0 && is_aligned_to(alignment_hint, os::vm_page_size())); // see above
2133   const size_t extra_size = size + alignment_hint;
2134 
2135   // Note: MAP_SHARED (instead of MAP_PRIVATE) needed to be able to
2136   // later use msync(MS_INVALIDATE) (see os::uncommit_memory).
2137   int flags = MAP_ANONYMOUS | MAP_SHARED;
2138 
2139   // MAP_FIXED is needed to enforce requested_addr - manpage is vague about what
2140   // it means if wishaddress is given but MAP_FIXED is not set.
2141   //
2142   // Important! Behaviour differs depending on whether SPEC1170 mode is active or not.
2143   // SPEC1170 mode active: behaviour like POSIX, MAP_FIXED will clobber existing mappings.
2144   // SPEC1170 mode not active: behaviour, unlike POSIX, is that no existing mappings will
2145   // get clobbered.
2146   if (requested_addr != NULL) {
2147     if (!os::Aix::xpg_sus_mode()) {  // not SPEC1170 Behaviour
2148       flags |= MAP_FIXED;
2149     }
2150   }
2151 
2152   char* addr = (char*)::mmap(requested_addr, extra_size,
2153       PROT_READ|PROT_WRITE|PROT_EXEC, flags, -1, 0);
2154 
2155   if (addr == MAP_FAILED) {
2156     trcVerbose("mmap(" PTR_FORMAT ", " UINTX_FORMAT ", ..) failed (%d)", p2i(requested_addr), size, errno);
2157     return NULL;
2158   }
2159 
2160   // Handle alignment.
2161   char* const addr_aligned = align_up(addr, alignment_hint);
2162   const size_t waste_pre = addr_aligned - addr;
2163   char* const addr_aligned_end = addr_aligned + size;
2164   const size_t waste_post = extra_size - waste_pre - size;
2165   if (waste_pre > 0) {
2166     ::munmap(addr, waste_pre);
2167   }
2168   if (waste_post > 0) {
2169     ::munmap(addr_aligned_end, waste_post);
2170   }
2171   addr = addr_aligned;
2172 
2173   if (addr) {
2174     trcVerbose("mmap-allocated " PTR_FORMAT " .. " PTR_FORMAT " (" UINTX_FORMAT " bytes)",
2175       p2i(addr), p2i(addr + bytes), bytes);
2176   } else {
2177     if (requested_addr != NULL) {
2178       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at wish address " PTR_FORMAT ".", bytes, p2i(requested_addr));
2179     } else {
2180       trcVerbose("failed to mmap-allocate " UINTX_FORMAT " bytes at any address.", bytes);
2181     }
2182   }
2183 
2184   // bookkeeping
2185   vmembk_add(addr, size, 4*K, VMEM_MAPPED);
2186 
2187   // Test alignment, see above.
2188   assert0(is_aligned_to(addr, os::vm_page_size()));
2189 
2190   return addr;
2191 }
2192 
2193 static bool release_mmaped_memory(char* addr, size_t size) {
2194   assert0(is_aligned_to(addr, os::vm_page_size()));
2195   assert0(is_aligned_to(size, os::vm_page_size()));
2196 
2197   trcVerbose("release_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2198     p2i(addr), p2i(addr + size - 1));
2199   bool rc = false;
2200 
2201   if (::munmap(addr, size) != 0) {
2202     trcVerbose("failed (%d)\n", errno);
2203     rc = false;
2204   } else {
2205     trcVerbose("ok.");
2206     rc = true;
2207   }
2208 
2209   return rc;
2210 }
2211 
2212 static bool uncommit_mmaped_memory(char* addr, size_t size) {
2213 
2214   assert0(is_aligned_to(addr, os::vm_page_size()));
2215   assert0(is_aligned_to(size, os::vm_page_size()));
2216 
2217   trcVerbose("uncommit_mmaped_memory [" PTR_FORMAT " - " PTR_FORMAT "].",
2218     p2i(addr), p2i(addr + size - 1));
2219   bool rc = false;
2220 
2221   // Uncommit mmap memory with msync MS_INVALIDATE.
2222   if (::msync(addr, size, MS_INVALIDATE) != 0) {
2223     trcVerbose("failed (%d)\n", errno);
2224     rc = false;
2225   } else {
2226     trcVerbose("ok.");
2227     rc = true;
2228   }
2229 
2230   return rc;
2231 }
2232 
2233 int os::vm_page_size() {
2234   // Seems redundant as all get out.
2235   assert(os::Aix::page_size() != -1, "must call os::init");
2236   return os::Aix::page_size();
2237 }
2238 
2239 // Aix allocates memory by pages.
2240 int os::vm_allocation_granularity() {
2241   assert(os::Aix::page_size() != -1, "must call os::init");
2242   return os::Aix::page_size();
2243 }
2244 
2245 #ifdef PRODUCT
2246 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2247                                     int err) {
2248   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2249           ", %d) failed; error='%s' (errno=%d)", p2i(addr), size, exec,
2250           os::errno_name(err), err);
2251 }
2252 #endif
2253 
2254 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2255                                   const char* mesg) {
2256   assert(mesg != NULL, "mesg must be specified");
2257   if (!pd_commit_memory(addr, size, exec)) {
2258     // Add extra info in product mode for vm_exit_out_of_memory():
2259     PRODUCT_ONLY(warn_fail_commit_memory(addr, size, exec, errno);)
2260     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "%s", mesg);
2261   }
2262 }
2263 
2264 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2265 
2266   assert(is_aligned_to(addr, os::vm_page_size()),
2267     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2268     p2i(addr), os::vm_page_size());
2269   assert(is_aligned_to(size, os::vm_page_size()),
2270     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2271     size, os::vm_page_size());
2272 
2273   vmembk_t* const vmi = vmembk_find(addr);
2274   guarantee0(vmi);
2275   vmi->assert_is_valid_subrange(addr, size);
2276 
2277   trcVerbose("commit_memory [" PTR_FORMAT " - " PTR_FORMAT "].", p2i(addr), p2i(addr + size - 1));
2278 
2279   if (UseExplicitCommit) {
2280     // AIX commits memory on touch. So, touch all pages to be committed.
2281     for (char* p = addr; p < (addr + size); p += 4*K) {
2282       *p = '\0';
2283     }
2284   }
2285 
2286   return true;
2287 }
2288 
2289 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint, bool exec) {
2290   return pd_commit_memory(addr, size, exec);
2291 }
2292 
2293 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2294                                   size_t alignment_hint, bool exec,
2295                                   const char* mesg) {
2296   // Alignment_hint is ignored on this OS.
2297   pd_commit_memory_or_exit(addr, size, exec, mesg);
2298 }
2299 
2300 bool os::pd_uncommit_memory(char* addr, size_t size) {
2301   assert(is_aligned_to(addr, os::vm_page_size()),
2302     "addr " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2303     p2i(addr), os::vm_page_size());
2304   assert(is_aligned_to(size, os::vm_page_size()),
2305     "size " PTR_FORMAT " not aligned to vm_page_size (" PTR_FORMAT ")",
2306     size, os::vm_page_size());
2307 
2308   // Dynamically do different things for mmap/shmat.
2309   const vmembk_t* const vmi = vmembk_find(addr);
2310   guarantee0(vmi);
2311   vmi->assert_is_valid_subrange(addr, size);
2312 
2313   if (vmi->type == VMEM_SHMATED) {
2314     return uncommit_shmated_memory(addr, size);
2315   } else {
2316     return uncommit_mmaped_memory(addr, size);
2317   }
2318 }
2319 
2320 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2321   // Do not call this; no need to commit stack pages on AIX.
2322   ShouldNotReachHere();
2323   return true;
2324 }
2325 
2326 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2327   // Do not call this; no need to commit stack pages on AIX.
2328   ShouldNotReachHere();
2329   return true;
2330 }
2331 
2332 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2333 }
2334 
2335 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2336 }
2337 
2338 void os::numa_make_global(char *addr, size_t bytes) {
2339 }
2340 
2341 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2342 }
2343 
2344 bool os::numa_topology_changed() {
2345   return false;
2346 }
2347 
2348 size_t os::numa_get_groups_num() {
2349   return 1;
2350 }
2351 
2352 int os::numa_get_group_id() {
2353   return 0;
2354 }
2355 
2356 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2357   if (size > 0) {
2358     ids[0] = 0;
2359     return 1;
2360   }
2361   return 0;
2362 }
2363 
2364 bool os::get_page_info(char *start, page_info* info) {
2365   return false;
2366 }
2367 
2368 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2369   return end;
2370 }
2371 
2372 // Reserves and attaches a shared memory segment.
2373 // Will assert if a wish address is given and could not be obtained.
2374 char* os::pd_reserve_memory(size_t bytes, char* requested_addr, size_t alignment_hint) {
2375 
2376   // All other Unices do a mmap(MAP_FIXED) if the addr is given,
2377   // thereby clobbering old mappings at that place. That is probably
2378   // not intended, never used and almost certainly an error were it
2379   // ever be used this way (to try attaching at a specified address
2380   // without clobbering old mappings an alternate API exists,
2381   // os::attempt_reserve_memory_at()).
2382   // Instead of mimicking the dangerous coding of the other platforms, here I
2383   // just ignore the request address (release) or assert(debug).
2384   assert0(requested_addr == NULL);
2385 
2386   // Always round to os::vm_page_size(), which may be larger than 4K.
2387   bytes = align_up(bytes, os::vm_page_size());
2388   const size_t alignment_hint0 =
2389     alignment_hint ? align_up(alignment_hint, os::vm_page_size()) : 0;
2390 
2391   // In 4K mode always use mmap.
2392   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2393   if (os::vm_page_size() == 4*K) {
2394     return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2395   } else {
2396     if (bytes >= Use64KPagesThreshold) {
2397       return reserve_shmated_memory(bytes, requested_addr, alignment_hint);
2398     } else {
2399       return reserve_mmaped_memory(bytes, requested_addr, alignment_hint);
2400     }
2401   }
2402 }
2403 
2404 bool os::pd_release_memory(char* addr, size_t size) {
2405 
2406   // Dynamically do different things for mmap/shmat.
2407   vmembk_t* const vmi = vmembk_find(addr);
2408   guarantee0(vmi);
2409 
2410   // Always round to os::vm_page_size(), which may be larger than 4K.
2411   size = align_up(size, os::vm_page_size());
2412   addr = align_up(addr, os::vm_page_size());
2413 
2414   bool rc = false;
2415   bool remove_bookkeeping = false;
2416   if (vmi->type == VMEM_SHMATED) {
2417     // For shmatted memory, we do:
2418     // - If user wants to release the whole range, release the memory (shmdt).
2419     // - If user only wants to release a partial range, uncommit (disclaim) that
2420     //   range. That way, at least, we do not use memory anymore (bust still page
2421     //   table space).
2422     vmi->assert_is_valid_subrange(addr, size);
2423     if (addr == vmi->addr && size == vmi->size) {
2424       rc = release_shmated_memory(addr, size);
2425       remove_bookkeeping = true;
2426     } else {
2427       rc = uncommit_shmated_memory(addr, size);
2428     }
2429   } else {
2430     // User may unmap partial regions but region has to be fully contained.
2431 #ifdef ASSERT
2432     vmi->assert_is_valid_subrange(addr, size);
2433 #endif
2434     rc = release_mmaped_memory(addr, size);
2435     remove_bookkeeping = true;
2436   }
2437 
2438   // update bookkeeping
2439   if (rc && remove_bookkeeping) {
2440     vmembk_remove(vmi);
2441   }
2442 
2443   return rc;
2444 }
2445 
2446 static bool checked_mprotect(char* addr, size_t size, int prot) {
2447 
2448   // Little problem here: if SPEC1170 behaviour is off, mprotect() on AIX will
2449   // not tell me if protection failed when trying to protect an un-protectable range.
2450   //
2451   // This means if the memory was allocated using shmget/shmat, protection wont work
2452   // but mprotect will still return 0:
2453   //
2454   // See http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?topic=/com.ibm.aix.basetechref/doc/basetrf1/mprotect.htm
2455 
2456   Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2457   bool rc = ::mprotect(addr, size, prot) == 0 ? true : false;
2458 
2459   if (!rc) {
2460     const char* const s_errno = os::errno_name(errno);
2461     warning("mprotect(" PTR_FORMAT "-" PTR_FORMAT ", 0x%X) failed (%s).", addr, addr + size, prot, s_errno);
2462     return false;
2463   }
2464 
2465   // mprotect success check
2466   //
2467   // Mprotect said it changed the protection but can I believe it?
2468   //
2469   // To be sure I need to check the protection afterwards. Try to
2470   // read from protected memory and check whether that causes a segfault.
2471   //
2472   if (!os::Aix::xpg_sus_mode()) {
2473 
2474     if (CanUseSafeFetch32()) {
2475 
2476       const bool read_protected =
2477         (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2478          SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2479 
2480       if (prot & PROT_READ) {
2481         rc = !read_protected;
2482       } else {
2483         rc = read_protected;
2484       }
2485 
2486       if (!rc) {
2487         if (os::Aix::on_pase()) {
2488           // There is an issue on older PASE systems where mprotect() will return success but the
2489           // memory will not be protected.
2490           // This has nothing to do with the problem of using mproect() on SPEC1170 incompatible
2491           // machines; we only see it rarely, when using mprotect() to protect the guard page of
2492           // a stack. It is an OS error.
2493           //
2494           // A valid strategy is just to try again. This usually works. :-/
2495 
2496           ::usleep(1000);
2497           Events::log(NULL, "Protecting memory [" INTPTR_FORMAT "," INTPTR_FORMAT "] with protection modes %x", p2i(addr), p2i(addr+size), prot);
2498           if (::mprotect(addr, size, prot) == 0) {
2499             const bool read_protected_2 =
2500               (SafeFetch32((int*)addr, 0x12345678) == 0x12345678 &&
2501               SafeFetch32((int*)addr, 0x76543210) == 0x76543210) ? true : false;
2502             rc = true;
2503           }
2504         }
2505       }
2506     }
2507   }
2508 
2509   assert(rc == true, "mprotect failed.");
2510 
2511   return rc;
2512 }
2513 
2514 // Set protections specified
2515 bool os::protect_memory(char* addr, size_t size, ProtType prot, bool is_committed) {
2516   unsigned int p = 0;
2517   switch (prot) {
2518   case MEM_PROT_NONE: p = PROT_NONE; break;
2519   case MEM_PROT_READ: p = PROT_READ; break;
2520   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2521   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2522   default:
2523     ShouldNotReachHere();
2524   }
2525   // is_committed is unused.
2526   return checked_mprotect(addr, size, p);
2527 }
2528 
2529 bool os::guard_memory(char* addr, size_t size) {
2530   return checked_mprotect(addr, size, PROT_NONE);
2531 }
2532 
2533 bool os::unguard_memory(char* addr, size_t size) {
2534   return checked_mprotect(addr, size, PROT_READ|PROT_WRITE|PROT_EXEC);
2535 }
2536 
2537 // Large page support
2538 
2539 static size_t _large_page_size = 0;
2540 
2541 // Enable large page support if OS allows that.
2542 void os::large_page_init() {
2543   return; // Nothing to do. See query_multipage_support and friends.
2544 }
2545 
2546 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
2547   // reserve_memory_special() is used to allocate large paged memory. On AIX, we implement
2548   // 64k paged memory reservation using the normal memory allocation paths (os::reserve_memory()),
2549   // so this is not needed.
2550   assert(false, "should not be called on AIX");
2551   return NULL;
2552 }
2553 
2554 bool os::release_memory_special(char* base, size_t bytes) {
2555   // Detaching the SHM segment will also delete it, see reserve_memory_special().
2556   Unimplemented();
2557   return false;
2558 }
2559 
2560 size_t os::large_page_size() {
2561   return _large_page_size;
2562 }
2563 
2564 bool os::can_commit_large_page_memory() {
2565   // Does not matter, we do not support huge pages.
2566   return false;
2567 }
2568 
2569 bool os::can_execute_large_page_memory() {
2570   // Does not matter, we do not support huge pages.
2571   return false;
2572 }
2573 
2574 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr, int file_desc) {
2575   assert(file_desc >= 0, "file_desc is not valid");
2576   char* result = NULL;
2577 
2578   // Always round to os::vm_page_size(), which may be larger than 4K.
2579   bytes = align_up(bytes, os::vm_page_size());
2580   result = reserve_mmaped_memory(bytes, requested_addr, 0);
2581 
2582   if (result != NULL) {
2583     if (replace_existing_mapping_with_file_mapping(result, bytes, file_desc) == NULL) {
2584       vm_exit_during_initialization(err_msg("Error in mapping Java heap at the given filesystem directory"));
2585     }
2586   }
2587   return result;
2588 }
2589 
2590 // Reserve memory at an arbitrary address, only if that area is
2591 // available (and not reserved for something else).
2592 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
2593   char* addr = NULL;
2594 
2595   // Always round to os::vm_page_size(), which may be larger than 4K.
2596   bytes = align_up(bytes, os::vm_page_size());
2597 
2598   // In 4K mode always use mmap.
2599   // In 64K mode allocate small sizes with mmap, large ones with 64K shmatted.
2600   if (os::vm_page_size() == 4*K) {
2601     return reserve_mmaped_memory(bytes, requested_addr, 0);
2602   } else {
2603     if (bytes >= Use64KPagesThreshold) {
2604       return reserve_shmated_memory(bytes, requested_addr, 0);
2605     } else {
2606       return reserve_mmaped_memory(bytes, requested_addr, 0);
2607     }
2608   }
2609 
2610   return addr;
2611 }
2612 
2613 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
2614 void os::infinite_sleep() {
2615   while (true) {    // sleep forever ...
2616     ::sleep(100);   // ... 100 seconds at a time
2617   }
2618 }
2619 
2620 // Used to convert frequent JVM_Yield() to nops
2621 bool os::dont_yield() {
2622   return DontYieldALot;
2623 }
2624 
2625 void os::naked_yield() {
2626   sched_yield();
2627 }
2628 
2629 ////////////////////////////////////////////////////////////////////////////////
2630 // thread priority support
2631 
2632 // From AIX manpage to pthread_setschedparam
2633 // (see: http://publib.boulder.ibm.com/infocenter/pseries/v5r3/index.jsp?
2634 //    topic=/com.ibm.aix.basetechref/doc/basetrf1/pthread_setschedparam.htm):
2635 //
2636 // "If schedpolicy is SCHED_OTHER, then sched_priority must be in the
2637 // range from 40 to 80, where 40 is the least favored priority and 80
2638 // is the most favored."
2639 //
2640 // (Actually, I doubt this even has an impact on AIX, as we do kernel
2641 // scheduling there; however, this still leaves iSeries.)
2642 //
2643 // We use the same values for AIX and PASE.
2644 int os::java_to_os_priority[CriticalPriority + 1] = {
2645   54,             // 0 Entry should never be used
2646 
2647   55,             // 1 MinPriority
2648   55,             // 2
2649   56,             // 3
2650 
2651   56,             // 4
2652   57,             // 5 NormPriority
2653   57,             // 6
2654 
2655   58,             // 7
2656   58,             // 8
2657   59,             // 9 NearMaxPriority
2658 
2659   60,             // 10 MaxPriority
2660 
2661   60              // 11 CriticalPriority
2662 };
2663 
2664 OSReturn os::set_native_priority(Thread* thread, int newpri) {
2665   if (!UseThreadPriorities) return OS_OK;
2666   pthread_t thr = thread->osthread()->pthread_id();
2667   int policy = SCHED_OTHER;
2668   struct sched_param param;
2669   param.sched_priority = newpri;
2670   int ret = pthread_setschedparam(thr, policy, &param);
2671 
2672   if (ret != 0) {
2673     trcVerbose("Could not change priority for thread %d to %d (error %d, %s)",
2674         (int)thr, newpri, ret, os::errno_name(ret));
2675   }
2676   return (ret == 0) ? OS_OK : OS_ERR;
2677 }
2678 
2679 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
2680   if (!UseThreadPriorities) {
2681     *priority_ptr = java_to_os_priority[NormPriority];
2682     return OS_OK;
2683   }
2684   pthread_t thr = thread->osthread()->pthread_id();
2685   int policy = SCHED_OTHER;
2686   struct sched_param param;
2687   int ret = pthread_getschedparam(thr, &policy, &param);
2688   *priority_ptr = param.sched_priority;
2689 
2690   return (ret == 0) ? OS_OK : OS_ERR;
2691 }
2692 
2693 ////////////////////////////////////////////////////////////////////////////////
2694 // suspend/resume support
2695 
2696 //  The low-level signal-based suspend/resume support is a remnant from the
2697 //  old VM-suspension that used to be for java-suspension, safepoints etc,
2698 //  within hotspot. Currently used by JFR's OSThreadSampler
2699 //
2700 //  The remaining code is greatly simplified from the more general suspension
2701 //  code that used to be used.
2702 //
2703 //  The protocol is quite simple:
2704 //  - suspend:
2705 //      - sends a signal to the target thread
2706 //      - polls the suspend state of the osthread using a yield loop
2707 //      - target thread signal handler (SR_handler) sets suspend state
2708 //        and blocks in sigsuspend until continued
2709 //  - resume:
2710 //      - sets target osthread state to continue
2711 //      - sends signal to end the sigsuspend loop in the SR_handler
2712 //
2713 //  Note that the SR_lock plays no role in this suspend/resume protocol,
2714 //  but is checked for NULL in SR_handler as a thread termination indicator.
2715 //  The SR_lock is, however, used by JavaThread::java_suspend()/java_resume() APIs.
2716 //
2717 //  Note that resume_clear_context() and suspend_save_context() are needed
2718 //  by SR_handler(), so that fetch_frame_from_ucontext() works,
2719 //  which in part is used by:
2720 //    - Forte Analyzer: AsyncGetCallTrace()
2721 //    - StackBanging: get_frame_at_stack_banging_point()
2722 
2723 static void resume_clear_context(OSThread *osthread) {
2724   osthread->set_ucontext(NULL);
2725   osthread->set_siginfo(NULL);
2726 }
2727 
2728 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
2729   osthread->set_ucontext(context);
2730   osthread->set_siginfo(siginfo);
2731 }
2732 
2733 //
2734 // Handler function invoked when a thread's execution is suspended or
2735 // resumed. We have to be careful that only async-safe functions are
2736 // called here (Note: most pthread functions are not async safe and
2737 // should be avoided.)
2738 //
2739 // Note: sigwait() is a more natural fit than sigsuspend() from an
2740 // interface point of view, but sigwait() prevents the signal hander
2741 // from being run. libpthread would get very confused by not having
2742 // its signal handlers run and prevents sigwait()'s use with the
2743 // mutex granting granting signal.
2744 //
2745 // Currently only ever called on the VMThread and JavaThreads (PC sampling).
2746 //
2747 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
2748   // Save and restore errno to avoid confusing native code with EINTR
2749   // after sigsuspend.
2750   int old_errno = errno;
2751 
2752   Thread* thread = Thread::current_or_null_safe();
2753   assert(thread != NULL, "Missing current thread in SR_handler");
2754 
2755   // On some systems we have seen signal delivery get "stuck" until the signal
2756   // mask is changed as part of thread termination. Check that the current thread
2757   // has not already terminated (via SR_lock()) - else the following assertion
2758   // will fail because the thread is no longer a JavaThread as the ~JavaThread
2759   // destructor has completed.
2760 
2761   if (thread->SR_lock() == NULL) {
2762     return;
2763   }
2764 
2765   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
2766 
2767   OSThread* osthread = thread->osthread();
2768 
2769   os::SuspendResume::State current = osthread->sr.state();
2770   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
2771     suspend_save_context(osthread, siginfo, context);
2772 
2773     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
2774     os::SuspendResume::State state = osthread->sr.suspended();
2775     if (state == os::SuspendResume::SR_SUSPENDED) {
2776       sigset_t suspend_set;  // signals for sigsuspend()
2777 
2778       // get current set of blocked signals and unblock resume signal
2779       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
2780       sigdelset(&suspend_set, SR_signum);
2781 
2782       // wait here until we are resumed
2783       while (1) {
2784         sigsuspend(&suspend_set);
2785 
2786         os::SuspendResume::State result = osthread->sr.running();
2787         if (result == os::SuspendResume::SR_RUNNING) {
2788           break;
2789         }
2790       }
2791 
2792     } else if (state == os::SuspendResume::SR_RUNNING) {
2793       // request was cancelled, continue
2794     } else {
2795       ShouldNotReachHere();
2796     }
2797 
2798     resume_clear_context(osthread);
2799   } else if (current == os::SuspendResume::SR_RUNNING) {
2800     // request was cancelled, continue
2801   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
2802     // ignore
2803   } else {
2804     ShouldNotReachHere();
2805   }
2806 
2807   errno = old_errno;
2808 }
2809 
2810 static int SR_initialize() {
2811   struct sigaction act;
2812   char *s;
2813   // Get signal number to use for suspend/resume
2814   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
2815     int sig = ::strtol(s, 0, 10);
2816     if (sig > MAX2(SIGSEGV, SIGBUS) &&  // See 4355769.
2817         sig < NSIG) {                   // Must be legal signal and fit into sigflags[].
2818       SR_signum = sig;
2819     } else {
2820       warning("You set _JAVA_SR_SIGNUM=%d. It must be in range [%d, %d]. Using %d instead.",
2821               sig, MAX2(SIGSEGV, SIGBUS)+1, NSIG-1, SR_signum);
2822     }
2823   }
2824 
2825   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
2826         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
2827 
2828   sigemptyset(&SR_sigset);
2829   sigaddset(&SR_sigset, SR_signum);
2830 
2831   // Set up signal handler for suspend/resume.
2832   act.sa_flags = SA_RESTART|SA_SIGINFO;
2833   act.sa_handler = (void (*)(int)) SR_handler;
2834 
2835   // SR_signum is blocked by default.
2836   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
2837 
2838   if (sigaction(SR_signum, &act, 0) == -1) {
2839     return -1;
2840   }
2841 
2842   // Save signal flag
2843   os::Aix::set_our_sigflags(SR_signum, act.sa_flags);
2844   return 0;
2845 }
2846 
2847 static int SR_finalize() {
2848   return 0;
2849 }
2850 
2851 static int sr_notify(OSThread* osthread) {
2852   int status = pthread_kill(osthread->pthread_id(), SR_signum);
2853   assert_status(status == 0, status, "pthread_kill");
2854   return status;
2855 }
2856 
2857 // "Randomly" selected value for how long we want to spin
2858 // before bailing out on suspending a thread, also how often
2859 // we send a signal to a thread we want to resume
2860 static const int RANDOMLY_LARGE_INTEGER = 1000000;
2861 static const int RANDOMLY_LARGE_INTEGER2 = 100;
2862 
2863 // returns true on success and false on error - really an error is fatal
2864 // but this seems the normal response to library errors
2865 static bool do_suspend(OSThread* osthread) {
2866   assert(osthread->sr.is_running(), "thread should be running");
2867   // mark as suspended and send signal
2868 
2869   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
2870     // failed to switch, state wasn't running?
2871     ShouldNotReachHere();
2872     return false;
2873   }
2874 
2875   if (sr_notify(osthread) != 0) {
2876     // try to cancel, switch to running
2877 
2878     os::SuspendResume::State result = osthread->sr.cancel_suspend();
2879     if (result == os::SuspendResume::SR_RUNNING) {
2880       // cancelled
2881       return false;
2882     } else if (result == os::SuspendResume::SR_SUSPENDED) {
2883       // somehow managed to suspend
2884       return true;
2885     } else {
2886       ShouldNotReachHere();
2887       return false;
2888     }
2889   }
2890 
2891   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
2892 
2893   for (int n = 0; !osthread->sr.is_suspended(); n++) {
2894     for (int i = 0; i < RANDOMLY_LARGE_INTEGER2 && !osthread->sr.is_suspended(); i++) {
2895       os::naked_yield();
2896     }
2897 
2898     // timeout, try to cancel the request
2899     if (n >= RANDOMLY_LARGE_INTEGER) {
2900       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
2901       if (cancelled == os::SuspendResume::SR_RUNNING) {
2902         return false;
2903       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
2904         return true;
2905       } else {
2906         ShouldNotReachHere();
2907         return false;
2908       }
2909     }
2910   }
2911 
2912   guarantee(osthread->sr.is_suspended(), "Must be suspended");
2913   return true;
2914 }
2915 
2916 static void do_resume(OSThread* osthread) {
2917   //assert(osthread->sr.is_suspended(), "thread should be suspended");
2918 
2919   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
2920     // failed to switch to WAKEUP_REQUEST
2921     ShouldNotReachHere();
2922     return;
2923   }
2924 
2925   while (!osthread->sr.is_running()) {
2926     if (sr_notify(osthread) == 0) {
2927       for (int n = 0; n < RANDOMLY_LARGE_INTEGER && !osthread->sr.is_running(); n++) {
2928         for (int i = 0; i < 100 && !osthread->sr.is_running(); i++) {
2929           os::naked_yield();
2930         }
2931       }
2932     } else {
2933       ShouldNotReachHere();
2934     }
2935   }
2936 
2937   guarantee(osthread->sr.is_running(), "Must be running!");
2938 }
2939 
2940 ///////////////////////////////////////////////////////////////////////////////////
2941 // signal handling (except suspend/resume)
2942 
2943 // This routine may be used by user applications as a "hook" to catch signals.
2944 // The user-defined signal handler must pass unrecognized signals to this
2945 // routine, and if it returns true (non-zero), then the signal handler must
2946 // return immediately. If the flag "abort_if_unrecognized" is true, then this
2947 // routine will never retun false (zero), but instead will execute a VM panic
2948 // routine kill the process.
2949 //
2950 // If this routine returns false, it is OK to call it again. This allows
2951 // the user-defined signal handler to perform checks either before or after
2952 // the VM performs its own checks. Naturally, the user code would be making
2953 // a serious error if it tried to handle an exception (such as a null check
2954 // or breakpoint) that the VM was generating for its own correct operation.
2955 //
2956 // This routine may recognize any of the following kinds of signals:
2957 //   SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
2958 // It should be consulted by handlers for any of those signals.
2959 //
2960 // The caller of this routine must pass in the three arguments supplied
2961 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
2962 // field of the structure passed to sigaction(). This routine assumes that
2963 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
2964 //
2965 // Note that the VM will print warnings if it detects conflicting signal
2966 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
2967 //
2968 extern "C" JNIEXPORT int
2969 JVM_handle_aix_signal(int signo, siginfo_t* siginfo, void* ucontext, int abort_if_unrecognized);
2970 
2971 // Set thread signal mask (for some reason on AIX sigthreadmask() seems
2972 // to be the thing to call; documentation is not terribly clear about whether
2973 // pthread_sigmask also works, and if it does, whether it does the same.
2974 bool set_thread_signal_mask(int how, const sigset_t* set, sigset_t* oset) {
2975   const int rc = ::pthread_sigmask(how, set, oset);
2976   // return value semantics differ slightly for error case:
2977   // pthread_sigmask returns error number, sigthreadmask -1 and sets global errno
2978   // (so, pthread_sigmask is more theadsafe for error handling)
2979   // But success is always 0.
2980   return rc == 0 ? true : false;
2981 }
2982 
2983 // Function to unblock all signals which are, according
2984 // to POSIX, typical program error signals. If they happen while being blocked,
2985 // they typically will bring down the process immediately.
2986 bool unblock_program_error_signals() {
2987   sigset_t set;
2988   ::sigemptyset(&set);
2989   ::sigaddset(&set, SIGILL);
2990   ::sigaddset(&set, SIGBUS);
2991   ::sigaddset(&set, SIGFPE);
2992   ::sigaddset(&set, SIGSEGV);
2993   return set_thread_signal_mask(SIG_UNBLOCK, &set, NULL);
2994 }
2995 
2996 // Renamed from 'signalHandler' to avoid collision with other shared libs.
2997 static void javaSignalHandler(int sig, siginfo_t* info, void* uc) {
2998   assert(info != NULL && uc != NULL, "it must be old kernel");
2999 
3000   // Never leave program error signals blocked;
3001   // on all our platforms they would bring down the process immediately when
3002   // getting raised while being blocked.
3003   unblock_program_error_signals();
3004 
3005   int orig_errno = errno;  // Preserve errno value over signal handler.
3006   JVM_handle_aix_signal(sig, info, uc, true);
3007   errno = orig_errno;
3008 }
3009 
3010 // This boolean allows users to forward their own non-matching signals
3011 // to JVM_handle_aix_signal, harmlessly.
3012 bool os::Aix::signal_handlers_are_installed = false;
3013 
3014 // For signal-chaining
3015 bool os::Aix::libjsig_is_loaded = false;
3016 typedef struct sigaction *(*get_signal_t)(int);
3017 get_signal_t os::Aix::get_signal_action = NULL;
3018 
3019 struct sigaction* os::Aix::get_chained_signal_action(int sig) {
3020   struct sigaction *actp = NULL;
3021 
3022   if (libjsig_is_loaded) {
3023     // Retrieve the old signal handler from libjsig
3024     actp = (*get_signal_action)(sig);
3025   }
3026   if (actp == NULL) {
3027     // Retrieve the preinstalled signal handler from jvm
3028     actp = os::Posix::get_preinstalled_handler(sig);
3029   }
3030 
3031   return actp;
3032 }
3033 
3034 static bool call_chained_handler(struct sigaction *actp, int sig,
3035                                  siginfo_t *siginfo, void *context) {
3036   // Call the old signal handler
3037   if (actp->sa_handler == SIG_DFL) {
3038     // It's more reasonable to let jvm treat it as an unexpected exception
3039     // instead of taking the default action.
3040     return false;
3041   } else if (actp->sa_handler != SIG_IGN) {
3042     if ((actp->sa_flags & SA_NODEFER) == 0) {
3043       // automaticlly block the signal
3044       sigaddset(&(actp->sa_mask), sig);
3045     }
3046 
3047     sa_handler_t hand = NULL;
3048     sa_sigaction_t sa = NULL;
3049     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3050     // retrieve the chained handler
3051     if (siginfo_flag_set) {
3052       sa = actp->sa_sigaction;
3053     } else {
3054       hand = actp->sa_handler;
3055     }
3056 
3057     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3058       actp->sa_handler = SIG_DFL;
3059     }
3060 
3061     // try to honor the signal mask
3062     sigset_t oset;
3063     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3064 
3065     // call into the chained handler
3066     if (siginfo_flag_set) {
3067       (*sa)(sig, siginfo, context);
3068     } else {
3069       (*hand)(sig);
3070     }
3071 
3072     // restore the signal mask
3073     pthread_sigmask(SIG_SETMASK, &oset, 0);
3074   }
3075   // Tell jvm's signal handler the signal is taken care of.
3076   return true;
3077 }
3078 
3079 bool os::Aix::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3080   bool chained = false;
3081   // signal-chaining
3082   if (UseSignalChaining) {
3083     struct sigaction *actp = get_chained_signal_action(sig);
3084     if (actp != NULL) {
3085       chained = call_chained_handler(actp, sig, siginfo, context);
3086     }
3087   }
3088   return chained;
3089 }
3090 
3091 // for diagnostic
3092 int sigflags[NSIG];
3093 
3094 int os::Aix::get_our_sigflags(int sig) {
3095   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3096   return sigflags[sig];
3097 }
3098 
3099 void os::Aix::set_our_sigflags(int sig, int flags) {
3100   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3101   if (sig > 0 && sig < NSIG) {
3102     sigflags[sig] = flags;
3103   }
3104 }
3105 
3106 void os::Aix::set_signal_handler(int sig, bool set_installed) {
3107   // Check for overwrite.
3108   struct sigaction oldAct;
3109   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3110 
3111   void* oldhand = oldAct.sa_sigaction
3112     ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3113     : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3114   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3115       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3116       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)javaSignalHandler)) {
3117     if (AllowUserSignalHandlers || !set_installed) {
3118       // Do not overwrite; user takes responsibility to forward to us.
3119       return;
3120     } else if (UseSignalChaining) {
3121       // save the old handler in jvm
3122       os::Posix::save_preinstalled_handler(sig, oldAct);
3123       // libjsig also interposes the sigaction() call below and saves the
3124       // old sigaction on it own.
3125     } else {
3126       fatal("Encountered unexpected pre-existing sigaction handler "
3127             "%#lx for signal %d.", (long)oldhand, sig);
3128     }
3129   }
3130 
3131   struct sigaction sigAct;
3132   sigfillset(&(sigAct.sa_mask));
3133   if (!set_installed) {
3134     sigAct.sa_handler = SIG_DFL;
3135     sigAct.sa_flags = SA_RESTART;
3136   } else {
3137     sigAct.sa_sigaction = javaSignalHandler;
3138     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3139   }
3140   // Save flags, which are set by ours
3141   assert(sig > 0 && sig < NSIG, "vm signal out of expected range");
3142   sigflags[sig] = sigAct.sa_flags;
3143 
3144   int ret = sigaction(sig, &sigAct, &oldAct);
3145   assert(ret == 0, "check");
3146 
3147   void* oldhand2 = oldAct.sa_sigaction
3148                  ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3149                  : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3150   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3151 }
3152 
3153 // install signal handlers for signals that HotSpot needs to
3154 // handle in order to support Java-level exception handling.
3155 void os::Aix::install_signal_handlers() {
3156   if (!signal_handlers_are_installed) {
3157     signal_handlers_are_installed = true;
3158 
3159     // signal-chaining
3160     typedef void (*signal_setting_t)();
3161     signal_setting_t begin_signal_setting = NULL;
3162     signal_setting_t end_signal_setting = NULL;
3163     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3164                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3165     if (begin_signal_setting != NULL) {
3166       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3167                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3168       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3169                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3170       libjsig_is_loaded = true;
3171       assert(UseSignalChaining, "should enable signal-chaining");
3172     }
3173     if (libjsig_is_loaded) {
3174       // Tell libjsig jvm is setting signal handlers.
3175       (*begin_signal_setting)();
3176     }
3177 
3178     set_signal_handler(SIGSEGV, true);
3179     set_signal_handler(SIGPIPE, true);
3180     set_signal_handler(SIGBUS, true);
3181     set_signal_handler(SIGILL, true);
3182     set_signal_handler(SIGFPE, true);
3183     set_signal_handler(SIGTRAP, true);
3184     set_signal_handler(SIGXFSZ, true);
3185 
3186     if (libjsig_is_loaded) {
3187       // Tell libjsig jvm finishes setting signal handlers.
3188       (*end_signal_setting)();
3189     }
3190 
3191     // We don't activate signal checker if libjsig is in place, we trust ourselves
3192     // and if UserSignalHandler is installed all bets are off.
3193     // Log that signal checking is off only if -verbose:jni is specified.
3194     if (CheckJNICalls) {
3195       if (libjsig_is_loaded) {
3196         tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3197         check_signals = false;
3198       }
3199       if (AllowUserSignalHandlers) {
3200         tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3201         check_signals = false;
3202       }
3203       // Need to initialize check_signal_done.
3204       ::sigemptyset(&check_signal_done);
3205     }
3206   }
3207 }
3208 
3209 static const char* get_signal_handler_name(address handler,
3210                                            char* buf, int buflen) {
3211   int offset;
3212   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3213   if (found) {
3214     // skip directory names
3215     const char *p1, *p2;
3216     p1 = buf;
3217     size_t len = strlen(os::file_separator());
3218     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3219     // The way os::dll_address_to_library_name is implemented on Aix
3220     // right now, it always returns -1 for the offset which is not
3221     // terribly informative.
3222     // Will fix that. For now, omit the offset.
3223     jio_snprintf(buf, buflen, "%s", p1);
3224   } else {
3225     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3226   }
3227   return buf;
3228 }
3229 
3230 static void print_signal_handler(outputStream* st, int sig,
3231                                  char* buf, size_t buflen) {
3232   struct sigaction sa;
3233   sigaction(sig, NULL, &sa);
3234 
3235   st->print("%s: ", os::exception_name(sig, buf, buflen));
3236 
3237   address handler = (sa.sa_flags & SA_SIGINFO)
3238     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3239     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3240 
3241   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3242     st->print("SIG_DFL");
3243   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3244     st->print("SIG_IGN");
3245   } else {
3246     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3247   }
3248 
3249   // Print readable mask.
3250   st->print(", sa_mask[0]=");
3251   os::Posix::print_signal_set_short(st, &sa.sa_mask);
3252 
3253   address rh = VMError::get_resetted_sighandler(sig);
3254   // May be, handler was resetted by VMError?
3255   if (rh != NULL) {
3256     handler = rh;
3257     sa.sa_flags = VMError::get_resetted_sigflags(sig);
3258   }
3259 
3260   // Print textual representation of sa_flags.
3261   st->print(", sa_flags=");
3262   os::Posix::print_sa_flags(st, sa.sa_flags);
3263 
3264   // Check: is it our handler?
3265   if (handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler) ||
3266       handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3267     // It is our signal handler.
3268     // Check for flags, reset system-used one!
3269     if ((int)sa.sa_flags != os::Aix::get_our_sigflags(sig)) {
3270       st->print(", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3271                 os::Aix::get_our_sigflags(sig));
3272     }
3273   }
3274   st->cr();
3275 }
3276 
3277 #define DO_SIGNAL_CHECK(sig) \
3278   if (!sigismember(&check_signal_done, sig)) \
3279     os::Aix::check_signal_handler(sig)
3280 
3281 // This method is a periodic task to check for misbehaving JNI applications
3282 // under CheckJNI, we can add any periodic checks here
3283 
3284 void os::run_periodic_checks() {
3285 
3286   if (check_signals == false) return;
3287 
3288   // SEGV and BUS if overridden could potentially prevent
3289   // generation of hs*.log in the event of a crash, debugging
3290   // such a case can be very challenging, so we absolutely
3291   // check the following for a good measure:
3292   DO_SIGNAL_CHECK(SIGSEGV);
3293   DO_SIGNAL_CHECK(SIGILL);
3294   DO_SIGNAL_CHECK(SIGFPE);
3295   DO_SIGNAL_CHECK(SIGBUS);
3296   DO_SIGNAL_CHECK(SIGPIPE);
3297   DO_SIGNAL_CHECK(SIGXFSZ);
3298   if (UseSIGTRAP) {
3299     DO_SIGNAL_CHECK(SIGTRAP);
3300   }
3301 
3302   // ReduceSignalUsage allows the user to override these handlers
3303   // see comments at the very top and jvm_md.h
3304   if (!ReduceSignalUsage) {
3305     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
3306     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
3307     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
3308     DO_SIGNAL_CHECK(BREAK_SIGNAL);
3309   }
3310 
3311   DO_SIGNAL_CHECK(SR_signum);
3312 }
3313 
3314 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
3315 
3316 static os_sigaction_t os_sigaction = NULL;
3317 
3318 void os::Aix::check_signal_handler(int sig) {
3319   char buf[O_BUFLEN];
3320   address jvmHandler = NULL;
3321 
3322   struct sigaction act;
3323   if (os_sigaction == NULL) {
3324     // only trust the default sigaction, in case it has been interposed
3325     os_sigaction = CAST_TO_FN_PTR(os_sigaction_t, dlsym(RTLD_DEFAULT, "sigaction"));
3326     if (os_sigaction == NULL) return;
3327   }
3328 
3329   os_sigaction(sig, (struct sigaction*)NULL, &act);
3330 
3331   address thisHandler = (act.sa_flags & SA_SIGINFO)
3332     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
3333     : CAST_FROM_FN_PTR(address, act.sa_handler);
3334 
3335   switch(sig) {
3336   case SIGSEGV:
3337   case SIGBUS:
3338   case SIGFPE:
3339   case SIGPIPE:
3340   case SIGILL:
3341   case SIGXFSZ:
3342     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)javaSignalHandler);
3343     break;
3344 
3345   case SHUTDOWN1_SIGNAL:
3346   case SHUTDOWN2_SIGNAL:
3347   case SHUTDOWN3_SIGNAL:
3348   case BREAK_SIGNAL:
3349     jvmHandler = (address)user_handler();
3350     break;
3351 
3352   default:
3353     if (sig == SR_signum) {
3354       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
3355     } else {
3356       return;
3357     }
3358     break;
3359   }
3360 
3361   if (thisHandler != jvmHandler) {
3362     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
3363     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
3364     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
3365     // No need to check this sig any longer
3366     sigaddset(&check_signal_done, sig);
3367     // Running under non-interactive shell, SHUTDOWN2_SIGNAL will be reassigned SIG_IGN
3368     if (sig == SHUTDOWN2_SIGNAL && !isatty(fileno(stdin))) {
3369       tty->print_cr("Running in non-interactive shell, %s handler is replaced by shell",
3370                     exception_name(sig, buf, O_BUFLEN));
3371     }
3372   } else if (os::Aix::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Aix::get_our_sigflags(sig)) {
3373     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
3374     tty->print("expected:");
3375     os::Posix::print_sa_flags(tty, os::Aix::get_our_sigflags(sig));
3376     tty->cr();
3377     tty->print("  found:");
3378     os::Posix::print_sa_flags(tty, act.sa_flags);
3379     tty->cr();
3380     // No need to check this sig any longer
3381     sigaddset(&check_signal_done, sig);
3382   }
3383 
3384   // Dump all the signal
3385   if (sigismember(&check_signal_done, sig)) {
3386     print_signal_handlers(tty, buf, O_BUFLEN);
3387   }
3388 }
3389 
3390 // To install functions for atexit system call
3391 extern "C" {
3392   static void perfMemory_exit_helper() {
3393     perfMemory_exit();
3394   }
3395 }
3396 
3397 // This is called _before_ the most of global arguments have been parsed.
3398 void os::init(void) {
3399   // This is basic, we want to know if that ever changes.
3400   // (Shared memory boundary is supposed to be a 256M aligned.)
3401   assert(SHMLBA == ((uint64_t)0x10000000ULL)/*256M*/, "unexpected");
3402 
3403   // Record process break at startup.
3404   g_brk_at_startup = (address) ::sbrk(0);
3405   assert(g_brk_at_startup != (address) -1, "sbrk failed");
3406 
3407   // First off, we need to know whether we run on AIX or PASE, and
3408   // the OS level we run on.
3409   os::Aix::initialize_os_info();
3410 
3411   // Scan environment (SPEC1170 behaviour, etc).
3412   os::Aix::scan_environment();
3413 
3414   // Probe multipage support.
3415   query_multipage_support();
3416 
3417   // Act like we only have one page size by eliminating corner cases which
3418   // we did not support very well anyway.
3419   // We have two input conditions:
3420   // 1) Data segment page size. This is controlled by linker setting (datapsize) on the
3421   //    launcher, and/or by LDR_CNTRL environment variable. The latter overrules the linker
3422   //    setting.
3423   //    Data segment page size is important for us because it defines the thread stack page
3424   //    size, which is needed for guard page handling, stack banging etc.
3425   // 2) The ability to allocate 64k pages dynamically. If this is a given, java heap can
3426   //    and should be allocated with 64k pages.
3427   //
3428   // So, we do the following:
3429   // LDR_CNTRL    can_use_64K_pages_dynamically       what we do                      remarks
3430   // 4K           no                                  4K                              old systems (aix 5.2, as/400 v5r4) or new systems with AME activated
3431   // 4k           yes                                 64k (treat 4k stacks as 64k)    different loader than java and standard settings
3432   // 64k          no              --- AIX 5.2 ? ---
3433   // 64k          yes                                 64k                             new systems and standard java loader (we set datapsize=64k when linking)
3434 
3435   // We explicitly leave no option to change page size, because only upgrading would work,
3436   // not downgrading (if stack page size is 64k you cannot pretend its 4k).
3437 
3438   if (g_multipage_support.datapsize == 4*K) {
3439     // datapsize = 4K. Data segment, thread stacks are 4K paged.
3440     if (g_multipage_support.can_use_64K_pages) {
3441       // .. but we are able to use 64K pages dynamically.
3442       // This would be typical for java launchers which are not linked
3443       // with datapsize=64K (like, any other launcher but our own).
3444       //
3445       // In this case it would be smart to allocate the java heap with 64K
3446       // to get the performance benefit, and to fake 64k pages for the
3447       // data segment (when dealing with thread stacks).
3448       //
3449       // However, leave a possibility to downgrade to 4K, using
3450       // -XX:-Use64KPages.
3451       if (Use64KPages) {
3452         trcVerbose("64K page mode (faked for data segment)");
3453         Aix::_page_size = 64*K;
3454       } else {
3455         trcVerbose("4K page mode (Use64KPages=off)");
3456         Aix::_page_size = 4*K;
3457       }
3458     } else {
3459       // .. and not able to allocate 64k pages dynamically. Here, just
3460       // fall back to 4K paged mode and use mmap for everything.
3461       trcVerbose("4K page mode");
3462       Aix::_page_size = 4*K;
3463       FLAG_SET_ERGO(Use64KPages, false);
3464     }
3465   } else {
3466     // datapsize = 64k. Data segment, thread stacks are 64k paged.
3467     // This normally means that we can allocate 64k pages dynamically.
3468     // (There is one special case where this may be false: EXTSHM=on.
3469     // but we decided to not support that mode).
3470     assert0(g_multipage_support.can_use_64K_pages);
3471     Aix::_page_size = 64*K;
3472     trcVerbose("64K page mode");
3473     FLAG_SET_ERGO(Use64KPages, true);
3474   }
3475 
3476   // For now UseLargePages is just ignored.
3477   FLAG_SET_ERGO(UseLargePages, false);
3478   _page_sizes[0] = 0;
3479 
3480   // debug trace
3481   trcVerbose("os::vm_page_size %s", describe_pagesize(os::vm_page_size()));
3482 
3483   // Next, we need to initialize libo4 and libperfstat libraries.
3484   if (os::Aix::on_pase()) {
3485     os::Aix::initialize_libo4();
3486   } else {
3487     os::Aix::initialize_libperfstat();
3488   }
3489 
3490   // Reset the perfstat information provided by ODM.
3491   if (os::Aix::on_aix()) {
3492     libperfstat::perfstat_reset();
3493   }
3494 
3495   // Now initialze basic system properties. Note that for some of the values we
3496   // need libperfstat etc.
3497   os::Aix::initialize_system_info();
3498 
3499   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
3500 
3501   init_random(1234567);
3502 
3503   // _main_thread points to the thread that created/loaded the JVM.
3504   Aix::_main_thread = pthread_self();
3505 
3506   initial_time_count = os::elapsed_counter();
3507 
3508   os::Posix::init();
3509 }
3510 
3511 // This is called _after_ the global arguments have been parsed.
3512 jint os::init_2(void) {
3513 
3514   // This could be set after os::Posix::init() but all platforms
3515   // have to set it the same so we have to mirror Solaris.
3516   DEBUG_ONLY(os::set_mutex_init_done();)
3517 
3518   os::Posix::init_2();
3519 
3520   if (os::Aix::on_pase()) {
3521     trcVerbose("Running on PASE.");
3522   } else {
3523     trcVerbose("Running on AIX (not PASE).");
3524   }
3525 
3526   trcVerbose("processor count: %d", os::_processor_count);
3527   trcVerbose("physical memory: %lu", Aix::_physical_memory);
3528 
3529   // Initially build up the loaded dll map.
3530   LoadedLibraries::reload();
3531   if (Verbose) {
3532     trcVerbose("Loaded Libraries: ");
3533     LoadedLibraries::print(tty);
3534   }
3535 
3536   // initialize suspend/resume support - must do this before signal_sets_init()
3537   if (SR_initialize() != 0) {
3538     perror("SR_initialize failed");
3539     return JNI_ERR;
3540   }
3541 
3542   Aix::signal_sets_init();
3543   Aix::install_signal_handlers();
3544   // Initialize data for jdk.internal.misc.Signal
3545   if (!ReduceSignalUsage) {
3546     jdk_misc_signal_init();
3547   }
3548 
3549   // Check and sets minimum stack sizes against command line options
3550   if (Posix::set_minimum_stack_sizes() == JNI_ERR) {
3551     return JNI_ERR;
3552   }
3553 
3554   if (UseNUMA) {
3555     UseNUMA = false;
3556     warning("NUMA optimizations are not available on this OS.");
3557   }
3558 
3559   if (MaxFDLimit) {
3560     // Set the number of file descriptors to max. print out error
3561     // if getrlimit/setrlimit fails but continue regardless.
3562     struct rlimit nbr_files;
3563     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
3564     if (status != 0) {
3565       log_info(os)("os::init_2 getrlimit failed: %s", os::strerror(errno));
3566     } else {
3567       nbr_files.rlim_cur = nbr_files.rlim_max;
3568       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
3569       if (status != 0) {
3570         log_info(os)("os::init_2 setrlimit failed: %s", os::strerror(errno));
3571       }
3572     }
3573   }
3574 
3575   if (PerfAllowAtExitRegistration) {
3576     // Only register atexit functions if PerfAllowAtExitRegistration is set.
3577     // At exit functions can be delayed until process exit time, which
3578     // can be problematic for embedded VM situations. Embedded VMs should
3579     // call DestroyJavaVM() to assure that VM resources are released.
3580 
3581     // Note: perfMemory_exit_helper atexit function may be removed in
3582     // the future if the appropriate cleanup code can be added to the
3583     // VM_Exit VMOperation's doit method.
3584     if (atexit(perfMemory_exit_helper) != 0) {
3585       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3586     }
3587   }
3588 
3589   return JNI_OK;
3590 }
3591 
3592 // Mark the polling page as unreadable
3593 void os::make_polling_page_unreadable(void) {
3594   if (!guard_memory((char*)_polling_page, Aix::page_size())) {
3595     fatal("Could not disable polling page");
3596   }
3597 };
3598 
3599 // Mark the polling page as readable
3600 void os::make_polling_page_readable(void) {
3601   // Changed according to os_linux.cpp.
3602   if (!checked_mprotect((char *)_polling_page, Aix::page_size(), PROT_READ)) {
3603     fatal("Could not enable polling page at " PTR_FORMAT, _polling_page);
3604   }
3605 };
3606 
3607 int os::active_processor_count() {
3608   // User has overridden the number of active processors
3609   if (ActiveProcessorCount > 0) {
3610     log_trace(os)("active_processor_count: "
3611                   "active processor count set by user : %d",
3612                   ActiveProcessorCount);
3613     return ActiveProcessorCount;
3614   }
3615 
3616   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
3617   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
3618   return online_cpus;
3619 }
3620 
3621 void os::set_native_thread_name(const char *name) {
3622   // Not yet implemented.
3623   return;
3624 }
3625 
3626 bool os::distribute_processes(uint length, uint* distribution) {
3627   // Not yet implemented.
3628   return false;
3629 }
3630 
3631 bool os::bind_to_processor(uint processor_id) {
3632   // Not yet implemented.
3633   return false;
3634 }
3635 
3636 void os::SuspendedThreadTask::internal_do_task() {
3637   if (do_suspend(_thread->osthread())) {
3638     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
3639     do_task(context);
3640     do_resume(_thread->osthread());
3641   }
3642 }
3643 
3644 ////////////////////////////////////////////////////////////////////////////////
3645 // debug support
3646 
3647 bool os::find(address addr, outputStream* st) {
3648 
3649   st->print(PTR_FORMAT ": ", addr);
3650 
3651   loaded_module_t lm;
3652   if (LoadedLibraries::find_for_text_address(addr, &lm) != NULL ||
3653       LoadedLibraries::find_for_data_address(addr, &lm) != NULL) {
3654     st->print_cr("%s", lm.path);
3655     return true;
3656   }
3657 
3658   return false;
3659 }
3660 
3661 ////////////////////////////////////////////////////////////////////////////////
3662 // misc
3663 
3664 // This does not do anything on Aix. This is basically a hook for being
3665 // able to use structured exception handling (thread-local exception filters)
3666 // on, e.g., Win32.
3667 void
3668 os::os_exception_wrapper(java_call_t f, JavaValue* value, const methodHandle& method,
3669                          JavaCallArguments* args, Thread* thread) {
3670   f(value, method, args, thread);
3671 }
3672 
3673 void os::print_statistics() {
3674 }
3675 
3676 bool os::message_box(const char* title, const char* message) {
3677   int i;
3678   fdStream err(defaultStream::error_fd());
3679   for (i = 0; i < 78; i++) err.print_raw("=");
3680   err.cr();
3681   err.print_raw_cr(title);
3682   for (i = 0; i < 78; i++) err.print_raw("-");
3683   err.cr();
3684   err.print_raw_cr(message);
3685   for (i = 0; i < 78; i++) err.print_raw("=");
3686   err.cr();
3687 
3688   char buf[16];
3689   // Prevent process from exiting upon "read error" without consuming all CPU
3690   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
3691 
3692   return buf[0] == 'y' || buf[0] == 'Y';
3693 }
3694 
3695 // Is a (classpath) directory empty?
3696 bool os::dir_is_empty(const char* path) {
3697   DIR *dir = NULL;
3698   struct dirent *ptr;
3699 
3700   dir = opendir(path);
3701   if (dir == NULL) return true;
3702 
3703   /* Scan the directory */
3704   bool result = true;
3705   while (result && (ptr = readdir(dir)) != NULL) {
3706     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
3707       result = false;
3708     }
3709   }
3710   closedir(dir);
3711   return result;
3712 }
3713 
3714 // This code originates from JDK's sysOpen and open64_w
3715 // from src/solaris/hpi/src/system_md.c
3716 
3717 int os::open(const char *path, int oflag, int mode) {
3718 
3719   if (strlen(path) > MAX_PATH - 1) {
3720     errno = ENAMETOOLONG;
3721     return -1;
3722   }
3723   int fd;
3724 
3725   fd = ::open64(path, oflag, mode);
3726   if (fd == -1) return -1;
3727 
3728   // If the open succeeded, the file might still be a directory.
3729   {
3730     struct stat64 buf64;
3731     int ret = ::fstat64(fd, &buf64);
3732     int st_mode = buf64.st_mode;
3733 
3734     if (ret != -1) {
3735       if ((st_mode & S_IFMT) == S_IFDIR) {
3736         errno = EISDIR;
3737         ::close(fd);
3738         return -1;
3739       }
3740     } else {
3741       ::close(fd);
3742       return -1;
3743     }
3744   }
3745 
3746   // All file descriptors that are opened in the JVM and not
3747   // specifically destined for a subprocess should have the
3748   // close-on-exec flag set. If we don't set it, then careless 3rd
3749   // party native code might fork and exec without closing all
3750   // appropriate file descriptors (e.g. as we do in closeDescriptors in
3751   // UNIXProcess.c), and this in turn might:
3752   //
3753   // - cause end-of-file to fail to be detected on some file
3754   //   descriptors, resulting in mysterious hangs, or
3755   //
3756   // - might cause an fopen in the subprocess to fail on a system
3757   //   suffering from bug 1085341.
3758   //
3759   // (Yes, the default setting of the close-on-exec flag is a Unix
3760   // design flaw.)
3761   //
3762   // See:
3763   // 1085341: 32-bit stdio routines should support file descriptors >255
3764   // 4843136: (process) pipe file descriptor from Runtime.exec not being closed
3765   // 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
3766 #ifdef FD_CLOEXEC
3767   {
3768     int flags = ::fcntl(fd, F_GETFD);
3769     if (flags != -1)
3770       ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
3771   }
3772 #endif
3773 
3774   return fd;
3775 }
3776 
3777 // create binary file, rewriting existing file if required
3778 int os::create_binary_file(const char* path, bool rewrite_existing) {
3779   int oflags = O_WRONLY | O_CREAT;
3780   if (!rewrite_existing) {
3781     oflags |= O_EXCL;
3782   }
3783   return ::open64(path, oflags, S_IREAD | S_IWRITE);
3784 }
3785 
3786 // return current position of file pointer
3787 jlong os::current_file_offset(int fd) {
3788   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
3789 }
3790 
3791 // move file pointer to the specified offset
3792 jlong os::seek_to_file_offset(int fd, jlong offset) {
3793   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
3794 }
3795 
3796 // This code originates from JDK's sysAvailable
3797 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
3798 
3799 int os::available(int fd, jlong *bytes) {
3800   jlong cur, end;
3801   int mode;
3802   struct stat64 buf64;
3803 
3804   if (::fstat64(fd, &buf64) >= 0) {
3805     mode = buf64.st_mode;
3806     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
3807       int n;
3808       if (::ioctl(fd, FIONREAD, &n) >= 0) {
3809         *bytes = n;
3810         return 1;
3811       }
3812     }
3813   }
3814   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
3815     return 0;
3816   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
3817     return 0;
3818   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
3819     return 0;
3820   }
3821   *bytes = end - cur;
3822   return 1;
3823 }
3824 
3825 // Map a block of memory.
3826 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
3827                         char *addr, size_t bytes, bool read_only,
3828                         bool allow_exec) {
3829   int prot;
3830   int flags = MAP_PRIVATE;
3831 
3832   if (read_only) {
3833     prot = PROT_READ;
3834     flags = MAP_SHARED;
3835   } else {
3836     prot = PROT_READ | PROT_WRITE;
3837     flags = MAP_PRIVATE;
3838   }
3839 
3840   if (allow_exec) {
3841     prot |= PROT_EXEC;
3842   }
3843 
3844   if (addr != NULL) {
3845     flags |= MAP_FIXED;
3846   }
3847 
3848   // Allow anonymous mappings if 'fd' is -1.
3849   if (fd == -1) {
3850     flags |= MAP_ANONYMOUS;
3851   }
3852 
3853   char* mapped_address = (char*)::mmap(addr, (size_t)bytes, prot, flags,
3854                                      fd, file_offset);
3855   if (mapped_address == MAP_FAILED) {
3856     return NULL;
3857   }
3858   return mapped_address;
3859 }
3860 
3861 // Remap a block of memory.
3862 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
3863                           char *addr, size_t bytes, bool read_only,
3864                           bool allow_exec) {
3865   // same as map_memory() on this OS
3866   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
3867                         allow_exec);
3868 }
3869 
3870 // Unmap a block of memory.
3871 bool os::pd_unmap_memory(char* addr, size_t bytes) {
3872   return munmap(addr, bytes) == 0;
3873 }
3874 
3875 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
3876 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
3877 // of a thread.
3878 //
3879 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
3880 // the fast estimate available on the platform.
3881 
3882 jlong os::current_thread_cpu_time() {
3883   // return user + sys since the cost is the same
3884   const jlong n = os::thread_cpu_time(Thread::current(), true /* user + sys */);
3885   assert(n >= 0, "negative CPU time");
3886   return n;
3887 }
3888 
3889 jlong os::thread_cpu_time(Thread* thread) {
3890   // consistent with what current_thread_cpu_time() returns
3891   const jlong n = os::thread_cpu_time(thread, true /* user + sys */);
3892   assert(n >= 0, "negative CPU time");
3893   return n;
3894 }
3895 
3896 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
3897   const jlong n = os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
3898   assert(n >= 0, "negative CPU time");
3899   return n;
3900 }
3901 
3902 static bool thread_cpu_time_unchecked(Thread* thread, jlong* p_sys_time, jlong* p_user_time) {
3903   bool error = false;
3904 
3905   jlong sys_time = 0;
3906   jlong user_time = 0;
3907 
3908   // Reimplemented using getthrds64().
3909   //
3910   // Works like this:
3911   // For the thread in question, get the kernel thread id. Then get the
3912   // kernel thread statistics using that id.
3913   //
3914   // This only works of course when no pthread scheduling is used,
3915   // i.e. there is a 1:1 relationship to kernel threads.
3916   // On AIX, see AIXTHREAD_SCOPE variable.
3917 
3918   pthread_t pthtid = thread->osthread()->pthread_id();
3919 
3920   // retrieve kernel thread id for the pthread:
3921   tid64_t tid = 0;
3922   struct __pthrdsinfo pinfo;
3923   // I just love those otherworldly IBM APIs which force me to hand down
3924   // dummy buffers for stuff I dont care for...
3925   char dummy[1];
3926   int dummy_size = sizeof(dummy);
3927   if (pthread_getthrds_np(&pthtid, PTHRDSINFO_QUERY_TID, &pinfo, sizeof(pinfo),
3928                           dummy, &dummy_size) == 0) {
3929     tid = pinfo.__pi_tid;
3930   } else {
3931     tty->print_cr("pthread_getthrds_np failed.");
3932     error = true;
3933   }
3934 
3935   // retrieve kernel timing info for that kernel thread
3936   if (!error) {
3937     struct thrdentry64 thrdentry;
3938     if (getthrds64(getpid(), &thrdentry, sizeof(thrdentry), &tid, 1) == 1) {
3939       sys_time = thrdentry.ti_ru.ru_stime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_stime.tv_usec * 1000LL;
3940       user_time = thrdentry.ti_ru.ru_utime.tv_sec * 1000000000LL + thrdentry.ti_ru.ru_utime.tv_usec * 1000LL;
3941     } else {
3942       tty->print_cr("pthread_getthrds_np failed.");
3943       error = true;
3944     }
3945   }
3946 
3947   if (p_sys_time) {
3948     *p_sys_time = sys_time;
3949   }
3950 
3951   if (p_user_time) {
3952     *p_user_time = user_time;
3953   }
3954 
3955   if (error) {
3956     return false;
3957   }
3958 
3959   return true;
3960 }
3961 
3962 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
3963   jlong sys_time;
3964   jlong user_time;
3965 
3966   if (!thread_cpu_time_unchecked(thread, &sys_time, &user_time)) {
3967     return -1;
3968   }
3969 
3970   return user_sys_cpu_time ? sys_time + user_time : user_time;
3971 }
3972 
3973 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3974   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3975   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3976   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3977   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3978 }
3979 
3980 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
3981   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
3982   info_ptr->may_skip_backward = false;     // elapsed time not wall time
3983   info_ptr->may_skip_forward = false;      // elapsed time not wall time
3984   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
3985 }
3986 
3987 bool os::is_thread_cpu_time_supported() {
3988   return true;
3989 }
3990 
3991 // System loadavg support. Returns -1 if load average cannot be obtained.
3992 // For now just return the system wide load average (no processor sets).
3993 int os::loadavg(double values[], int nelem) {
3994 
3995   guarantee(nelem >= 0 && nelem <= 3, "argument error");
3996   guarantee(values, "argument error");
3997 
3998   if (os::Aix::on_pase()) {
3999 
4000     // AS/400 PASE: use libo4 porting library
4001     double v[3] = { 0.0, 0.0, 0.0 };
4002 
4003     if (libo4::get_load_avg(v, v + 1, v + 2)) {
4004       for (int i = 0; i < nelem; i ++) {
4005         values[i] = v[i];
4006       }
4007       return nelem;
4008     } else {
4009       return -1;
4010     }
4011 
4012   } else {
4013 
4014     // AIX: use libperfstat
4015     libperfstat::cpuinfo_t ci;
4016     if (libperfstat::get_cpuinfo(&ci)) {
4017       for (int i = 0; i < nelem; i++) {
4018         values[i] = ci.loadavg[i];
4019       }
4020     } else {
4021       return -1;
4022     }
4023     return nelem;
4024   }
4025 }
4026 
4027 void os::pause() {
4028   char filename[MAX_PATH];
4029   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4030     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4031   } else {
4032     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4033   }
4034 
4035   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4036   if (fd != -1) {
4037     struct stat buf;
4038     ::close(fd);
4039     while (::stat(filename, &buf) == 0) {
4040       (void)::poll(NULL, 0, 100);
4041     }
4042   } else {
4043     trcVerbose("Could not open pause file '%s', continuing immediately.", filename);
4044   }
4045 }
4046 
4047 bool os::is_primordial_thread(void) {
4048   if (pthread_self() == (pthread_t)1) {
4049     return true;
4050   } else {
4051     return false;
4052   }
4053 }
4054 
4055 // OS recognitions (PASE/AIX, OS level) call this before calling any
4056 // one of Aix::on_pase(), Aix::os_version() static
4057 void os::Aix::initialize_os_info() {
4058 
4059   assert(_on_pase == -1 && _os_version == 0, "already called.");
4060 
4061   struct utsname uts;
4062   memset(&uts, 0, sizeof(uts));
4063   strcpy(uts.sysname, "?");
4064   if (::uname(&uts) == -1) {
4065     trcVerbose("uname failed (%d)", errno);
4066     guarantee(0, "Could not determine whether we run on AIX or PASE");
4067   } else {
4068     trcVerbose("uname says: sysname \"%s\" version \"%s\" release \"%s\" "
4069                "node \"%s\" machine \"%s\"\n",
4070                uts.sysname, uts.version, uts.release, uts.nodename, uts.machine);
4071     const int major = atoi(uts.version);
4072     assert(major > 0, "invalid OS version");
4073     const int minor = atoi(uts.release);
4074     assert(minor > 0, "invalid OS release");
4075     _os_version = (major << 24) | (minor << 16);
4076     char ver_str[20] = {0};
4077     const char* name_str = "unknown OS";
4078     if (strcmp(uts.sysname, "OS400") == 0) {
4079       // We run on AS/400 PASE. We do not support versions older than V5R4M0.
4080       _on_pase = 1;
4081       if (os_version_short() < 0x0504) {
4082         trcVerbose("OS/400 releases older than V5R4M0 not supported.");
4083         assert(false, "OS/400 release too old.");
4084       }
4085       name_str = "OS/400 (pase)";
4086       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u", major, minor);
4087     } else if (strcmp(uts.sysname, "AIX") == 0) {
4088       // We run on AIX. We do not support versions older than AIX 7.1.
4089       _on_pase = 0;
4090       // Determine detailed AIX version: Version, Release, Modification, Fix Level.
4091       odmWrapper::determine_os_kernel_version(&_os_version);
4092       if (os_version_short() < 0x0701) {
4093         trcVerbose("AIX releases older than AIX 7.1 are not supported.");
4094         assert(false, "AIX release too old.");
4095       }
4096       name_str = "AIX";
4097       jio_snprintf(ver_str, sizeof(ver_str), "%u.%u.%u.%u",
4098                    major, minor, (_os_version >> 8) & 0xFF, _os_version & 0xFF);
4099     } else {
4100       assert(false, "%s", name_str);
4101     }
4102     trcVerbose("We run on %s %s", name_str, ver_str);
4103   }
4104 
4105   guarantee(_on_pase != -1 && _os_version, "Could not determine AIX/OS400 release");
4106 } // end: os::Aix::initialize_os_info()
4107 
4108 // Scan environment for important settings which might effect the VM.
4109 // Trace out settings. Warn about invalid settings and/or correct them.
4110 //
4111 // Must run after os::Aix::initialue_os_info().
4112 void os::Aix::scan_environment() {
4113 
4114   char* p;
4115   int rc;
4116 
4117   // Warn explicity if EXTSHM=ON is used. That switch changes how
4118   // System V shared memory behaves. One effect is that page size of
4119   // shared memory cannot be change dynamically, effectivly preventing
4120   // large pages from working.
4121   // This switch was needed on AIX 32bit, but on AIX 64bit the general
4122   // recommendation is (in OSS notes) to switch it off.
4123   p = ::getenv("EXTSHM");
4124   trcVerbose("EXTSHM=%s.", p ? p : "<unset>");
4125   if (p && strcasecmp(p, "ON") == 0) {
4126     _extshm = 1;
4127     trcVerbose("*** Unsupported mode! Please remove EXTSHM from your environment! ***");
4128     if (!AllowExtshm) {
4129       // We allow under certain conditions the user to continue. However, we want this
4130       // to be a fatal error by default. On certain AIX systems, leaving EXTSHM=ON means
4131       // that the VM is not able to allocate 64k pages for the heap.
4132       // We do not want to run with reduced performance.
4133       vm_exit_during_initialization("EXTSHM is ON. Please remove EXTSHM from your environment.");
4134     }
4135   } else {
4136     _extshm = 0;
4137   }
4138 
4139   // SPEC1170 behaviour: will change the behaviour of a number of POSIX APIs.
4140   // Not tested, not supported.
4141   //
4142   // Note that it might be worth the trouble to test and to require it, if only to
4143   // get useful return codes for mprotect.
4144   //
4145   // Note: Setting XPG_SUS_ENV in the process is too late. Must be set earlier (before
4146   // exec() ? before loading the libjvm ? ....)
4147   p = ::getenv("XPG_SUS_ENV");
4148   trcVerbose("XPG_SUS_ENV=%s.", p ? p : "<unset>");
4149   if (p && strcmp(p, "ON") == 0) {
4150     _xpg_sus_mode = 1;
4151     trcVerbose("Unsupported setting: XPG_SUS_ENV=ON");
4152     // This is not supported. Worst of all, it changes behaviour of mmap MAP_FIXED to
4153     // clobber address ranges. If we ever want to support that, we have to do some
4154     // testing first.
4155     guarantee(false, "XPG_SUS_ENV=ON not supported");
4156   } else {
4157     _xpg_sus_mode = 0;
4158   }
4159 
4160   if (os::Aix::on_pase()) {
4161     p = ::getenv("QIBM_MULTI_THREADED");
4162     trcVerbose("QIBM_MULTI_THREADED=%s.", p ? p : "<unset>");
4163   }
4164 
4165   p = ::getenv("LDR_CNTRL");
4166   trcVerbose("LDR_CNTRL=%s.", p ? p : "<unset>");
4167   if (os::Aix::on_pase() && os::Aix::os_version_short() == 0x0701) {
4168     if (p && ::strstr(p, "TEXTPSIZE")) {
4169       trcVerbose("*** WARNING - LDR_CNTRL contains TEXTPSIZE. "
4170         "you may experience hangs or crashes on OS/400 V7R1.");
4171     }
4172   }
4173 
4174   p = ::getenv("AIXTHREAD_GUARDPAGES");
4175   trcVerbose("AIXTHREAD_GUARDPAGES=%s.", p ? p : "<unset>");
4176 
4177 } // end: os::Aix::scan_environment()
4178 
4179 // PASE: initialize the libo4 library (PASE porting library).
4180 void os::Aix::initialize_libo4() {
4181   guarantee(os::Aix::on_pase(), "OS/400 only.");
4182   if (!libo4::init()) {
4183     trcVerbose("libo4 initialization failed.");
4184     assert(false, "libo4 initialization failed");
4185   } else {
4186     trcVerbose("libo4 initialized.");
4187   }
4188 }
4189 
4190 // AIX: initialize the libperfstat library.
4191 void os::Aix::initialize_libperfstat() {
4192   assert(os::Aix::on_aix(), "AIX only");
4193   if (!libperfstat::init()) {
4194     trcVerbose("libperfstat initialization failed.");
4195     assert(false, "libperfstat initialization failed");
4196   } else {
4197     trcVerbose("libperfstat initialized.");
4198   }
4199 }
4200 
4201 /////////////////////////////////////////////////////////////////////////////
4202 // thread stack
4203 
4204 // Get the current stack base from the OS (actually, the pthread library).
4205 // Note: usually not page aligned.
4206 address os::current_stack_base() {
4207   AixMisc::stackbounds_t bounds;
4208   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4209   guarantee(rc, "Unable to retrieve stack bounds.");
4210   return bounds.base;
4211 }
4212 
4213 // Get the current stack size from the OS (actually, the pthread library).
4214 // Returned size is such that (base - size) is always aligned to page size.
4215 size_t os::current_stack_size() {
4216   AixMisc::stackbounds_t bounds;
4217   bool rc = AixMisc::query_stack_bounds_for_current_thread(&bounds);
4218   guarantee(rc, "Unable to retrieve stack bounds.");
4219   // Align the returned stack size such that the stack low address
4220   // is aligned to page size (Note: base is usually not and we do not care).
4221   // We need to do this because caller code will assume stack low address is
4222   // page aligned and will place guard pages without checking.
4223   address low = bounds.base - bounds.size;
4224   address low_aligned = (address)align_up(low, os::vm_page_size());
4225   size_t s = bounds.base - low_aligned;
4226   return s;
4227 }
4228 
4229 extern char** environ;
4230 
4231 // Run the specified command in a separate process. Return its exit value,
4232 // or -1 on failure (e.g. can't fork a new process).
4233 // Unlike system(), this function can be called from signal handler. It
4234 // doesn't block SIGINT et al.
4235 int os::fork_and_exec(char* cmd, bool use_vfork_if_available) {
4236   char* argv[4] = { (char*)"sh", (char*)"-c", cmd, NULL};
4237 
4238   pid_t pid = fork();
4239 
4240   if (pid < 0) {
4241     // fork failed
4242     return -1;
4243 
4244   } else if (pid == 0) {
4245     // child process
4246 
4247     // Try to be consistent with system(), which uses "/usr/bin/sh" on AIX.
4248     execve("/usr/bin/sh", argv, environ);
4249 
4250     // execve failed
4251     _exit(-1);
4252 
4253   } else {
4254     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
4255     // care about the actual exit code, for now.
4256 
4257     int status;
4258 
4259     // Wait for the child process to exit. This returns immediately if
4260     // the child has already exited. */
4261     while (waitpid(pid, &status, 0) < 0) {
4262       switch (errno) {
4263         case ECHILD: return 0;
4264         case EINTR: break;
4265         default: return -1;
4266       }
4267     }
4268 
4269     if (WIFEXITED(status)) {
4270       // The child exited normally; get its exit code.
4271       return WEXITSTATUS(status);
4272     } else if (WIFSIGNALED(status)) {
4273       // The child exited because of a signal.
4274       // The best value to return is 0x80 + signal number,
4275       // because that is what all Unix shells do, and because
4276       // it allows callers to distinguish between process exit and
4277       // process death by signal.
4278       return 0x80 + WTERMSIG(status);
4279     } else {
4280       // Unknown exit code; pass it through.
4281       return status;
4282     }
4283   }
4284   return -1;
4285 }
4286 
4287 // Get the default path to the core file
4288 // Returns the length of the string
4289 int os::get_core_path(char* buffer, size_t bufferSize) {
4290   const char* p = get_current_directory(buffer, bufferSize);
4291 
4292   if (p == NULL) {
4293     assert(p != NULL, "failed to get current directory");
4294     return 0;
4295   }
4296 
4297   jio_snprintf(buffer, bufferSize, "%s/core or core.%d",
4298                                                p, current_process_id());
4299 
4300   return strlen(buffer);
4301 }
4302 
4303 #ifndef PRODUCT
4304 void TestReserveMemorySpecial_test() {
4305   // No tests available for this platform
4306 }
4307 #endif
4308 
4309 bool os::start_debugging(char *buf, int buflen) {
4310   int len = (int)strlen(buf);
4311   char *p = &buf[len];
4312 
4313   jio_snprintf(p, buflen -len,
4314                  "\n\n"
4315                  "Do you want to debug the problem?\n\n"
4316                  "To debug, run 'dbx -a %d'; then switch to thread tid " INTX_FORMAT ", k-tid " INTX_FORMAT "\n"
4317                  "Enter 'yes' to launch dbx automatically (PATH must include dbx)\n"
4318                  "Otherwise, press RETURN to abort...",
4319                  os::current_process_id(),
4320                  os::current_thread_id(), thread_self());
4321 
4322   bool yes = os::message_box("Unexpected Error", buf);
4323 
4324   if (yes) {
4325     // yes, user asked VM to launch debugger
4326     jio_snprintf(buf, buflen, "dbx -a %d", os::current_process_id());
4327 
4328     os::fork_and_exec(buf);
4329     yes = false;
4330   }
4331   return yes;
4332 }
4333 
4334 static inline time_t get_mtime(const char* filename) {
4335   struct stat st;
4336   int ret = os::stat(filename, &st);
4337   assert(ret == 0, "failed to stat() file '%s': %s", filename, os::strerror(errno));
4338   return st.st_mtime;
4339 }
4340 
4341 int os::compare_file_modified_times(const char* file1, const char* file2) {
4342   time_t t1 = get_mtime(file1);
4343   time_t t2 = get_mtime(file2);
4344   return t1 - t2;
4345 }