1 /*
   2  * Copyright (c) 2016, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2016, 2019, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "c1/c1_Compilation.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_MacroAssembler.hpp"
  31 #include "c1/c1_Runtime1.hpp"
  32 #include "c1/c1_ValueStack.hpp"
  33 #include "ci/ciArrayKlass.hpp"
  34 #include "ci/ciInstance.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/cardTableBarrierSet.hpp"
  38 #include "memory/universe.hpp"
  39 #include "nativeInst_s390.hpp"
  40 #include "oops/objArrayKlass.hpp"
  41 #include "runtime/frame.inline.hpp"
  42 #include "runtime/safepointMechanism.inline.hpp"
  43 #include "runtime/sharedRuntime.hpp"
  44 #include "vmreg_s390.inline.hpp"
  45 
  46 #define __ _masm->
  47 
  48 #ifndef PRODUCT
  49 #undef __
  50 #define __ (Verbose ? (_masm->block_comment(FILE_AND_LINE),_masm) : _masm)->
  51 #endif
  52 
  53 //------------------------------------------------------------
  54 
  55 bool LIR_Assembler::is_small_constant(LIR_Opr opr) {
  56   // Not used on ZARCH_64
  57   ShouldNotCallThis();
  58   return false;
  59 }
  60 
  61 LIR_Opr LIR_Assembler::receiverOpr() {
  62   return FrameMap::Z_R2_oop_opr;
  63 }
  64 
  65 LIR_Opr LIR_Assembler::osrBufferPointer() {
  66   return FrameMap::Z_R2_opr;
  67 }
  68 
  69 int LIR_Assembler::initial_frame_size_in_bytes() const {
  70   return in_bytes(frame_map()->framesize_in_bytes());
  71 }
  72 
  73 // Inline cache check: done before the frame is built.
  74 // The inline cached class is in Z_inline_cache(Z_R9).
  75 // We fetch the class of the receiver and compare it with the cached class.
  76 // If they do not match we jump to the slow case.
  77 int LIR_Assembler::check_icache() {
  78   Register receiver = receiverOpr()->as_register();
  79   int offset = __ offset();
  80   __ inline_cache_check(receiver, Z_inline_cache);
  81   return offset;
  82 }
  83 
  84 void LIR_Assembler::clinit_barrier(ciMethod* method) {
  85   assert(!method->holder()->is_not_initialized(), "initialization should have been started");
  86 
  87   Label L_skip_barrier;
  88   Register klass = Z_R1_scratch;
  89 
  90   metadata2reg(method->holder()->constant_encoding(), klass);
  91   __ clinit_barrier(klass, Z_thread, &L_skip_barrier /*L_fast_path*/);
  92 
  93   __ load_const_optimized(klass, SharedRuntime::get_handle_wrong_method_stub());
  94   __ z_br(klass);
  95 
  96   __ bind(L_skip_barrier);
  97 }
  98 
  99 void LIR_Assembler::osr_entry() {
 100   // On-stack-replacement entry sequence (interpreter frame layout described in interpreter_sparc.cpp):
 101   //
 102   //   1. Create a new compiled activation.
 103   //   2. Initialize local variables in the compiled activation. The expression stack must be empty
 104   //      at the osr_bci; it is not initialized.
 105   //   3. Jump to the continuation address in compiled code to resume execution.
 106 
 107   // OSR entry point
 108   offsets()->set_value(CodeOffsets::OSR_Entry, code_offset());
 109   BlockBegin* osr_entry = compilation()->hir()->osr_entry();
 110   ValueStack* entry_state = osr_entry->end()->state();
 111   int number_of_locks = entry_state->locks_size();
 112 
 113   // Create a frame for the compiled activation.
 114   __ build_frame(initial_frame_size_in_bytes(), bang_size_in_bytes());
 115 
 116   // OSR buffer is
 117   //
 118   // locals[nlocals-1..0]
 119   // monitors[number_of_locks-1..0]
 120   //
 121   // Locals is a direct copy of the interpreter frame so in the osr buffer
 122   // the first slot in the local array is the last local from the interpreter
 123   // and the last slot is local[0] (receiver) from the interpreter
 124   //
 125   // Similarly with locks. The first lock slot in the osr buffer is the nth lock
 126   // from the interpreter frame, the nth lock slot in the osr buffer is 0th lock
 127   // in the interpreter frame (the method lock if a sync method)
 128 
 129   // Initialize monitors in the compiled activation.
 130   //   I0: pointer to osr buffer
 131   //
 132   // All other registers are dead at this point and the locals will be
 133   // copied into place by code emitted in the IR.
 134 
 135   Register OSR_buf = osrBufferPointer()->as_register();
 136   { assert(frame::interpreter_frame_monitor_size() == BasicObjectLock::size(), "adjust code below");
 137     int monitor_offset = BytesPerWord * method()->max_locals() +
 138       (2 * BytesPerWord) * (number_of_locks - 1);
 139     // SharedRuntime::OSR_migration_begin() packs BasicObjectLocks in
 140     // the OSR buffer using 2 word entries: first the lock and then
 141     // the oop.
 142     for (int i = 0; i < number_of_locks; i++) {
 143       int slot_offset = monitor_offset - ((i * 2) * BytesPerWord);
 144       // Verify the interpreter's monitor has a non-null object.
 145       __ asm_assert_mem8_isnot_zero(slot_offset + 1*BytesPerWord, OSR_buf, "locked object is NULL", __LINE__);
 146       // Copy the lock field into the compiled activation.
 147       __ z_lg(Z_R1_scratch, slot_offset + 0, OSR_buf);
 148       __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_lock(i));
 149       __ z_lg(Z_R1_scratch, slot_offset + 1*BytesPerWord, OSR_buf);
 150       __ z_stg(Z_R1_scratch, frame_map()->address_for_monitor_object(i));
 151     }
 152   }
 153 }
 154 
 155 // --------------------------------------------------------------------------------------------
 156 
 157 address LIR_Assembler::emit_call_c(address a) {
 158   __ align_call_far_patchable(__ pc());
 159   address call_addr = __ call_c_opt(a);
 160   if (call_addr == NULL) {
 161     bailout("const section overflow");
 162   }
 163   return call_addr;
 164 }
 165 
 166 int LIR_Assembler::emit_exception_handler() {
 167   // If the last instruction is a call (typically to do a throw which
 168   // is coming at the end after block reordering) the return address
 169   // must still point into the code area in order to avoid assertion
 170   // failures when searching for the corresponding bci. => Add a nop.
 171   // (was bug 5/14/1999 - gri)
 172   __ nop();
 173 
 174   // Generate code for exception handler.
 175   address handler_base = __ start_a_stub(exception_handler_size());
 176   if (handler_base == NULL) {
 177     // Not enough space left for the handler.
 178     bailout("exception handler overflow");
 179     return -1;
 180   }
 181 
 182   int offset = code_offset();
 183 
 184   address a = Runtime1::entry_for (Runtime1::handle_exception_from_callee_id);
 185   address call_addr = emit_call_c(a);
 186   CHECK_BAILOUT_(-1);
 187   __ should_not_reach_here();
 188   guarantee(code_offset() - offset <= exception_handler_size(), "overflow");
 189   __ end_a_stub();
 190 
 191   return offset;
 192 }
 193 
 194 // Emit the code to remove the frame from the stack in the exception
 195 // unwind path.
 196 int LIR_Assembler::emit_unwind_handler() {
 197 #ifndef PRODUCT
 198   if (CommentedAssembly) {
 199     _masm->block_comment("Unwind handler");
 200   }
 201 #endif
 202 
 203   int offset = code_offset();
 204   Register exception_oop_callee_saved = Z_R10; // Z_R10 is callee-saved.
 205   Register Rtmp1                      = Z_R11;
 206   Register Rtmp2                      = Z_R12;
 207 
 208   // Fetch the exception from TLS and clear out exception related thread state.
 209   Address exc_oop_addr = Address(Z_thread, JavaThread::exception_oop_offset());
 210   Address exc_pc_addr  = Address(Z_thread, JavaThread::exception_pc_offset());
 211   __ z_lg(Z_EXC_OOP, exc_oop_addr);
 212   __ clear_mem(exc_oop_addr, sizeof(oop));
 213   __ clear_mem(exc_pc_addr, sizeof(intptr_t));
 214 
 215   __ bind(_unwind_handler_entry);
 216   __ verify_not_null_oop(Z_EXC_OOP);
 217   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 218     __ lgr_if_needed(exception_oop_callee_saved, Z_EXC_OOP); // Preserve the exception.
 219   }
 220 
 221   // Preform needed unlocking.
 222   MonitorExitStub* stub = NULL;
 223   if (method()->is_synchronized()) {
 224     // Runtime1::monitorexit_id expects lock address in Z_R1_scratch.
 225     LIR_Opr lock = FrameMap::as_opr(Z_R1_scratch);
 226     monitor_address(0, lock);
 227     stub = new MonitorExitStub(lock, true, 0);
 228     __ unlock_object(Rtmp1, Rtmp2, lock->as_register(), *stub->entry());
 229     __ bind(*stub->continuation());
 230   }
 231 
 232   if (compilation()->env()->dtrace_method_probes()) {
 233     ShouldNotReachHere(); // Not supported.
 234 #if 0
 235     __ mov(rdi, r15_thread);
 236     __ mov_metadata(rsi, method()->constant_encoding());
 237     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit)));
 238 #endif
 239   }
 240 
 241   if (method()->is_synchronized() || compilation()->env()->dtrace_method_probes()) {
 242     __ lgr_if_needed(Z_EXC_OOP, exception_oop_callee_saved);  // Restore the exception.
 243   }
 244 
 245   // Remove the activation and dispatch to the unwind handler.
 246   __ pop_frame();
 247   __ z_lg(Z_EXC_PC, _z_abi16(return_pc), Z_SP);
 248 
 249   // Z_EXC_OOP: exception oop
 250   // Z_EXC_PC: exception pc
 251 
 252   // Dispatch to the unwind logic.
 253   __ load_const_optimized(Z_R5, Runtime1::entry_for (Runtime1::unwind_exception_id));
 254   __ z_br(Z_R5);
 255 
 256   // Emit the slow path assembly.
 257   if (stub != NULL) {
 258     stub->emit_code(this);
 259   }
 260 
 261   return offset;
 262 }
 263 
 264 int LIR_Assembler::emit_deopt_handler() {
 265   // If the last instruction is a call (typically to do a throw which
 266   // is coming at the end after block reordering) the return address
 267   // must still point into the code area in order to avoid assertion
 268   // failures when searching for the corresponding bci. => Add a nop.
 269   // (was bug 5/14/1999 - gri)
 270   __ nop();
 271 
 272   // Generate code for exception handler.
 273   address handler_base = __ start_a_stub(deopt_handler_size());
 274   if (handler_base == NULL) {
 275     // Not enough space left for the handler.
 276     bailout("deopt handler overflow");
 277     return -1;
 278   }  int offset = code_offset();
 279   // Size must be constant (see HandlerImpl::emit_deopt_handler).
 280   __ load_const(Z_R1_scratch, SharedRuntime::deopt_blob()->unpack());
 281   __ call(Z_R1_scratch);
 282   guarantee(code_offset() - offset <= deopt_handler_size(), "overflow");
 283   __ end_a_stub();
 284 
 285   return offset;
 286 }
 287 
 288 void LIR_Assembler::jobject2reg(jobject o, Register reg) {
 289   if (o == NULL) {
 290     __ clear_reg(reg, true/*64bit*/, false/*set cc*/); // Must not kill cc set by cmove.
 291   } else {
 292     AddressLiteral a = __ allocate_oop_address(o);
 293     bool success = __ load_oop_from_toc(reg, a, reg);
 294     if (!success) {
 295       bailout("const section overflow");
 296     }
 297   }
 298 }
 299 
 300 void LIR_Assembler::jobject2reg_with_patching(Register reg, CodeEmitInfo *info) {
 301   // Allocate a new index in table to hold the object once it's been patched.
 302   int oop_index = __ oop_recorder()->allocate_oop_index(NULL);
 303   PatchingStub* patch = new PatchingStub(_masm, patching_id(info), oop_index);
 304 
 305   AddressLiteral addrlit((intptr_t)0, oop_Relocation::spec(oop_index));
 306   assert(addrlit.rspec().type() == relocInfo::oop_type, "must be an oop reloc");
 307   // The NULL will be dynamically patched later so the sequence to
 308   // load the address literal must not be optimized.
 309   __ load_const(reg, addrlit);
 310 
 311   patching_epilog(patch, lir_patch_normal, reg, info);
 312 }
 313 
 314 void LIR_Assembler::metadata2reg(Metadata* md, Register reg) {
 315   bool success = __ set_metadata_constant(md, reg);
 316   if (!success) {
 317     bailout("const section overflow");
 318     return;
 319   }
 320 }
 321 
 322 void LIR_Assembler::klass2reg_with_patching(Register reg, CodeEmitInfo *info) {
 323   // Allocate a new index in table to hold the klass once it's been patched.
 324   int index = __ oop_recorder()->allocate_metadata_index(NULL);
 325   PatchingStub* patch = new PatchingStub(_masm, PatchingStub::load_klass_id, index);
 326   AddressLiteral addrlit((intptr_t)0, metadata_Relocation::spec(index));
 327   assert(addrlit.rspec().type() == relocInfo::metadata_type, "must be an metadata reloc");
 328   // The NULL will be dynamically patched later so the sequence to
 329   // load the address literal must not be optimized.
 330   __ load_const(reg, addrlit);
 331 
 332   patching_epilog(patch, lir_patch_normal, reg, info);
 333 }
 334 
 335 void LIR_Assembler::emit_op3(LIR_Op3* op) {
 336   switch (op->code()) {
 337     case lir_idiv:
 338     case lir_irem:
 339       arithmetic_idiv(op->code(),
 340                       op->in_opr1(),
 341                       op->in_opr2(),
 342                       op->in_opr3(),
 343                       op->result_opr(),
 344                       op->info());
 345       break;
 346     case lir_fmad: {
 347       const FloatRegister opr1 = op->in_opr1()->as_double_reg(),
 348                           opr2 = op->in_opr2()->as_double_reg(),
 349                           opr3 = op->in_opr3()->as_double_reg(),
 350                           res  = op->result_opr()->as_double_reg();
 351       __ z_madbr(opr3, opr1, opr2);
 352       if (res != opr3) { __ z_ldr(res, opr3); }
 353     } break;
 354     case lir_fmaf: {
 355       const FloatRegister opr1 = op->in_opr1()->as_float_reg(),
 356                           opr2 = op->in_opr2()->as_float_reg(),
 357                           opr3 = op->in_opr3()->as_float_reg(),
 358                           res  = op->result_opr()->as_float_reg();
 359       __ z_maebr(opr3, opr1, opr2);
 360       if (res != opr3) { __ z_ler(res, opr3); }
 361     } break;
 362     default: ShouldNotReachHere(); break;
 363   }
 364 }
 365 
 366 
 367 void LIR_Assembler::emit_opBranch(LIR_OpBranch* op) {
 368 #ifdef ASSERT
 369   assert(op->block() == NULL || op->block()->label() == op->label(), "wrong label");
 370   if (op->block() != NULL)  { _branch_target_blocks.append(op->block()); }
 371   if (op->ublock() != NULL) { _branch_target_blocks.append(op->ublock()); }
 372 #endif
 373 
 374   if (op->cond() == lir_cond_always) {
 375     if (op->info() != NULL) { add_debug_info_for_branch(op->info()); }
 376     __ branch_optimized(Assembler::bcondAlways, *(op->label()));
 377   } else {
 378     Assembler::branch_condition acond = Assembler::bcondZero;
 379     if (op->code() == lir_cond_float_branch) {
 380       assert(op->ublock() != NULL, "must have unordered successor");
 381       __ branch_optimized(Assembler::bcondNotOrdered, *(op->ublock()->label()));
 382     }
 383     switch (op->cond()) {
 384       case lir_cond_equal:        acond = Assembler::bcondEqual;     break;
 385       case lir_cond_notEqual:     acond = Assembler::bcondNotEqual;  break;
 386       case lir_cond_less:         acond = Assembler::bcondLow;       break;
 387       case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;   break;
 388       case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;    break;
 389       case lir_cond_greater:      acond = Assembler::bcondHigh;      break;
 390       case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;   break;
 391       case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;    break;
 392       default:                         ShouldNotReachHere();
 393     }
 394     __ branch_optimized(acond,*(op->label()));
 395   }
 396 }
 397 
 398 
 399 void LIR_Assembler::emit_opConvert(LIR_OpConvert* op) {
 400   LIR_Opr src  = op->in_opr();
 401   LIR_Opr dest = op->result_opr();
 402 
 403   switch (op->bytecode()) {
 404     case Bytecodes::_i2l:
 405       __ move_reg_if_needed(dest->as_register_lo(), T_LONG, src->as_register(), T_INT);
 406       break;
 407 
 408     case Bytecodes::_l2i:
 409       __ move_reg_if_needed(dest->as_register(), T_INT, src->as_register_lo(), T_LONG);
 410       break;
 411 
 412     case Bytecodes::_i2b:
 413       __ move_reg_if_needed(dest->as_register(), T_BYTE, src->as_register(), T_INT);
 414       break;
 415 
 416     case Bytecodes::_i2c:
 417       __ move_reg_if_needed(dest->as_register(), T_CHAR, src->as_register(), T_INT);
 418       break;
 419 
 420     case Bytecodes::_i2s:
 421       __ move_reg_if_needed(dest->as_register(), T_SHORT, src->as_register(), T_INT);
 422       break;
 423 
 424     case Bytecodes::_f2d:
 425       assert(dest->is_double_fpu(), "check");
 426       __ move_freg_if_needed(dest->as_double_reg(), T_DOUBLE, src->as_float_reg(), T_FLOAT);
 427       break;
 428 
 429     case Bytecodes::_d2f:
 430       assert(dest->is_single_fpu(), "check");
 431       __ move_freg_if_needed(dest->as_float_reg(), T_FLOAT, src->as_double_reg(), T_DOUBLE);
 432       break;
 433 
 434     case Bytecodes::_i2f:
 435       __ z_cefbr(dest->as_float_reg(), src->as_register());
 436       break;
 437 
 438     case Bytecodes::_i2d:
 439       __ z_cdfbr(dest->as_double_reg(), src->as_register());
 440       break;
 441 
 442     case Bytecodes::_l2f:
 443       __ z_cegbr(dest->as_float_reg(), src->as_register_lo());
 444       break;
 445     case Bytecodes::_l2d:
 446       __ z_cdgbr(dest->as_double_reg(), src->as_register_lo());
 447       break;
 448 
 449     case Bytecodes::_f2i:
 450     case Bytecodes::_f2l: {
 451       Label done;
 452       FloatRegister Rsrc = src->as_float_reg();
 453       Register Rdst = (op->bytecode() == Bytecodes::_f2i ? dest->as_register() : dest->as_register_lo());
 454       __ clear_reg(Rdst, true, false);
 455       __ z_cebr(Rsrc, Rsrc);
 456       __ z_brno(done); // NaN -> 0
 457       if (op->bytecode() == Bytecodes::_f2i) {
 458         __ z_cfebr(Rdst, Rsrc, Assembler::to_zero);
 459       } else { // op->bytecode() == Bytecodes::_f2l
 460         __ z_cgebr(Rdst, Rsrc, Assembler::to_zero);
 461       }
 462       __ bind(done);
 463     }
 464     break;
 465 
 466     case Bytecodes::_d2i:
 467     case Bytecodes::_d2l: {
 468       Label done;
 469       FloatRegister Rsrc = src->as_double_reg();
 470       Register Rdst = (op->bytecode() == Bytecodes::_d2i ? dest->as_register() : dest->as_register_lo());
 471       __ clear_reg(Rdst, true, false);  // Don't set CC.
 472       __ z_cdbr(Rsrc, Rsrc);
 473       __ z_brno(done); // NaN -> 0
 474       if (op->bytecode() == Bytecodes::_d2i) {
 475         __ z_cfdbr(Rdst, Rsrc, Assembler::to_zero);
 476       } else { // Bytecodes::_d2l
 477         __ z_cgdbr(Rdst, Rsrc, Assembler::to_zero);
 478       }
 479       __ bind(done);
 480     }
 481     break;
 482 
 483     default: ShouldNotReachHere();
 484   }
 485 }
 486 
 487 void LIR_Assembler::align_call(LIR_Code code) {
 488   // End of call instruction must be 4 byte aligned.
 489   int offset = __ offset();
 490   switch (code) {
 491     case lir_icvirtual_call:
 492       offset += MacroAssembler::load_const_from_toc_size();
 493       // no break
 494     case lir_static_call:
 495     case lir_optvirtual_call:
 496     case lir_dynamic_call:
 497       offset += NativeCall::call_far_pcrelative_displacement_offset;
 498       break;
 499     case lir_virtual_call:   // currently, sparc-specific for niagara
 500     default: ShouldNotReachHere();
 501   }
 502   if ((offset & (NativeCall::call_far_pcrelative_displacement_alignment-1)) != 0) {
 503     __ nop();
 504   }
 505 }
 506 
 507 void LIR_Assembler::call(LIR_OpJavaCall* op, relocInfo::relocType rtype) {
 508   assert((__ offset() + NativeCall::call_far_pcrelative_displacement_offset) % NativeCall::call_far_pcrelative_displacement_alignment == 0,
 509          "must be aligned (offset=%d)", __ offset());
 510   assert(rtype == relocInfo::none ||
 511          rtype == relocInfo::opt_virtual_call_type ||
 512          rtype == relocInfo::static_call_type, "unexpected rtype");
 513   // Prepend each BRASL with a nop.
 514   __ relocate(rtype);
 515   __ z_nop();
 516   __ z_brasl(Z_R14, op->addr());
 517   add_call_info(code_offset(), op->info());
 518 }
 519 
 520 void LIR_Assembler::ic_call(LIR_OpJavaCall* op) {
 521   address virtual_call_oop_addr = NULL;
 522   AddressLiteral empty_ic((address) Universe::non_oop_word());
 523   virtual_call_oop_addr = __ pc();
 524   bool success = __ load_const_from_toc(Z_inline_cache, empty_ic);
 525   if (!success) {
 526     bailout("const section overflow");
 527     return;
 528   }
 529 
 530   // CALL to fixup routine. Fixup routine uses ScopeDesc info
 531   // to determine who we intended to call.
 532   __ relocate(virtual_call_Relocation::spec(virtual_call_oop_addr));
 533   call(op, relocInfo::none);
 534 }
 535 
 536 // not supported
 537 void LIR_Assembler::vtable_call(LIR_OpJavaCall* op) {
 538   ShouldNotReachHere();
 539 }
 540 
 541 void LIR_Assembler::move_regs(Register from_reg, Register to_reg) {
 542   if (from_reg != to_reg) __ z_lgr(to_reg, from_reg);
 543 }
 544 
 545 void LIR_Assembler::const2stack(LIR_Opr src, LIR_Opr dest) {
 546   assert(src->is_constant(), "should not call otherwise");
 547   assert(dest->is_stack(), "should not call otherwise");
 548   LIR_Const* c = src->as_constant_ptr();
 549 
 550   unsigned int lmem = 0;
 551   unsigned int lcon = 0;
 552   int64_t cbits = 0;
 553   Address dest_addr;
 554   switch (c->type()) {
 555     case T_INT:  // fall through
 556     case T_FLOAT:
 557       dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 558       lmem = 4; lcon = 4; cbits = c->as_jint_bits();
 559       break;
 560 
 561     case T_ADDRESS:
 562       dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 563       lmem = 8; lcon = 4; cbits = c->as_jint_bits();
 564       break;
 565 
 566     case T_OBJECT:
 567       dest_addr = frame_map()->address_for_slot(dest->single_stack_ix());
 568       if (c->as_jobject() == NULL) {
 569         __ store_const(dest_addr, (int64_t)NULL_WORD, 8, 8);
 570       } else {
 571         jobject2reg(c->as_jobject(), Z_R1_scratch);
 572         __ reg2mem_opt(Z_R1_scratch, dest_addr, true);
 573       }
 574       return;
 575 
 576     case T_LONG:  // fall through
 577     case T_DOUBLE:
 578       dest_addr = frame_map()->address_for_slot(dest->double_stack_ix());
 579       lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
 580       break;
 581 
 582     default:
 583       ShouldNotReachHere();
 584   }
 585 
 586   __ store_const(dest_addr, cbits, lmem, lcon);
 587 }
 588 
 589 void LIR_Assembler::const2mem(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info, bool wide) {
 590   assert(src->is_constant(), "should not call otherwise");
 591   assert(dest->is_address(), "should not call otherwise");
 592 
 593   LIR_Const* c = src->as_constant_ptr();
 594   Address addr = as_Address(dest->as_address_ptr());
 595 
 596   int store_offset = -1;
 597 
 598   if (dest->as_address_ptr()->index()->is_valid()) {
 599     switch (type) {
 600       case T_INT:    // fall through
 601       case T_FLOAT:
 602         __ load_const_optimized(Z_R0_scratch, c->as_jint_bits());
 603         store_offset = __ offset();
 604         if (Immediate::is_uimm12(addr.disp())) {
 605           __ z_st(Z_R0_scratch, addr);
 606         } else {
 607           __ z_sty(Z_R0_scratch, addr);
 608         }
 609         break;
 610 
 611       case T_ADDRESS:
 612         __ load_const_optimized(Z_R1_scratch, c->as_jint_bits());
 613         store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 614         break;
 615 
 616       case T_OBJECT:  // fall through
 617       case T_ARRAY:
 618         if (c->as_jobject() == NULL) {
 619           if (UseCompressedOops && !wide) {
 620             __ clear_reg(Z_R1_scratch, false);
 621             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
 622           } else {
 623             __ clear_reg(Z_R1_scratch, true);
 624             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 625           }
 626         } else {
 627           jobject2reg(c->as_jobject(), Z_R1_scratch);
 628           if (UseCompressedOops && !wide) {
 629             __ encode_heap_oop(Z_R1_scratch);
 630             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
 631           } else {
 632             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 633           }
 634         }
 635         assert(store_offset >= 0, "check");
 636         break;
 637 
 638       case T_LONG:    // fall through
 639       case T_DOUBLE:
 640         __ load_const_optimized(Z_R1_scratch, (int64_t)(c->as_jlong_bits()));
 641         store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 642         break;
 643 
 644       case T_BOOLEAN: // fall through
 645       case T_BYTE:
 646         __ load_const_optimized(Z_R0_scratch, (int8_t)(c->as_jint()));
 647         store_offset = __ offset();
 648         if (Immediate::is_uimm12(addr.disp())) {
 649           __ z_stc(Z_R0_scratch, addr);
 650         } else {
 651           __ z_stcy(Z_R0_scratch, addr);
 652         }
 653         break;
 654 
 655       case T_CHAR:    // fall through
 656       case T_SHORT:
 657         __ load_const_optimized(Z_R0_scratch, (int16_t)(c->as_jint()));
 658         store_offset = __ offset();
 659         if (Immediate::is_uimm12(addr.disp())) {
 660           __ z_sth(Z_R0_scratch, addr);
 661         } else {
 662           __ z_sthy(Z_R0_scratch, addr);
 663         }
 664         break;
 665 
 666       default:
 667         ShouldNotReachHere();
 668     }
 669 
 670   } else { // no index
 671 
 672     unsigned int lmem = 0;
 673     unsigned int lcon = 0;
 674     int64_t cbits = 0;
 675 
 676     switch (type) {
 677       case T_INT:    // fall through
 678       case T_FLOAT:
 679         lmem = 4; lcon = 4; cbits = c->as_jint_bits();
 680         break;
 681 
 682       case T_ADDRESS:
 683         lmem = 8; lcon = 4; cbits = c->as_jint_bits();
 684         break;
 685 
 686       case T_OBJECT:  // fall through
 687       case T_ARRAY:
 688         if (c->as_jobject() == NULL) {
 689           if (UseCompressedOops && !wide) {
 690             store_offset = __ store_const(addr, (int32_t)NULL_WORD, 4, 4);
 691           } else {
 692             store_offset = __ store_const(addr, (int64_t)NULL_WORD, 8, 8);
 693           }
 694         } else {
 695           jobject2reg(c->as_jobject(), Z_R1_scratch);
 696           if (UseCompressedOops && !wide) {
 697             __ encode_heap_oop(Z_R1_scratch);
 698             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, false);
 699           } else {
 700             store_offset = __ reg2mem_opt(Z_R1_scratch, addr, true);
 701           }
 702         }
 703         assert(store_offset >= 0, "check");
 704         break;
 705 
 706       case T_LONG:    // fall through
 707       case T_DOUBLE:
 708         lmem = 8; lcon = 8; cbits = (int64_t)(c->as_jlong_bits());
 709         break;
 710 
 711       case T_BOOLEAN: // fall through
 712       case T_BYTE:
 713         lmem = 1; lcon = 1; cbits = (int8_t)(c->as_jint());
 714         break;
 715 
 716       case T_CHAR:    // fall through
 717       case T_SHORT:
 718         lmem = 2; lcon = 2; cbits = (int16_t)(c->as_jint());
 719         break;
 720 
 721       default:
 722         ShouldNotReachHere();
 723     }
 724 
 725     if (store_offset == -1) {
 726       store_offset = __ store_const(addr, cbits, lmem, lcon);
 727       assert(store_offset >= 0, "check");
 728     }
 729   }
 730 
 731   if (info != NULL) {
 732     add_debug_info_for_null_check(store_offset, info);
 733   }
 734 }
 735 
 736 void LIR_Assembler::const2reg(LIR_Opr src, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
 737   assert(src->is_constant(), "should not call otherwise");
 738   assert(dest->is_register(), "should not call otherwise");
 739   LIR_Const* c = src->as_constant_ptr();
 740 
 741   switch (c->type()) {
 742     case T_INT: {
 743       assert(patch_code == lir_patch_none, "no patching handled here");
 744       __ load_const_optimized(dest->as_register(), c->as_jint());
 745       break;
 746     }
 747 
 748     case T_ADDRESS: {
 749       assert(patch_code == lir_patch_none, "no patching handled here");
 750       __ load_const_optimized(dest->as_register(), c->as_jint());
 751       break;
 752     }
 753 
 754     case T_LONG: {
 755       assert(patch_code == lir_patch_none, "no patching handled here");
 756       __ load_const_optimized(dest->as_register_lo(), (intptr_t)c->as_jlong());
 757       break;
 758     }
 759 
 760     case T_OBJECT: {
 761       if (patch_code != lir_patch_none) {
 762         jobject2reg_with_patching(dest->as_register(), info);
 763       } else {
 764         jobject2reg(c->as_jobject(), dest->as_register());
 765       }
 766       break;
 767     }
 768 
 769     case T_METADATA: {
 770       if (patch_code != lir_patch_none) {
 771         klass2reg_with_patching(dest->as_register(), info);
 772       } else {
 773         metadata2reg(c->as_metadata(), dest->as_register());
 774       }
 775       break;
 776     }
 777 
 778     case T_FLOAT: {
 779       Register toc_reg = Z_R1_scratch;
 780       __ load_toc(toc_reg);
 781       address const_addr = __ float_constant(c->as_jfloat());
 782       if (const_addr == NULL) {
 783         bailout("const section overflow");
 784         break;
 785       }
 786       int displ = const_addr - _masm->code()->consts()->start();
 787       if (dest->is_single_fpu()) {
 788         __ z_ley(dest->as_float_reg(), displ, toc_reg);
 789       } else {
 790         assert(dest->is_single_cpu(), "Must be a cpu register.");
 791         __ z_ly(dest->as_register(), displ, toc_reg);
 792       }
 793     }
 794     break;
 795 
 796     case T_DOUBLE: {
 797       Register toc_reg = Z_R1_scratch;
 798       __ load_toc(toc_reg);
 799       address const_addr = __ double_constant(c->as_jdouble());
 800       if (const_addr == NULL) {
 801         bailout("const section overflow");
 802         break;
 803       }
 804       int displ = const_addr - _masm->code()->consts()->start();
 805       if (dest->is_double_fpu()) {
 806         __ z_ldy(dest->as_double_reg(), displ, toc_reg);
 807       } else {
 808         assert(dest->is_double_cpu(), "Must be a long register.");
 809         __ z_lg(dest->as_register_lo(), displ, toc_reg);
 810       }
 811     }
 812     break;
 813 
 814     default:
 815       ShouldNotReachHere();
 816   }
 817 }
 818 
 819 Address LIR_Assembler::as_Address(LIR_Address* addr) {
 820   if (addr->base()->is_illegal()) {
 821     Unimplemented();
 822   }
 823 
 824   Register base = addr->base()->as_pointer_register();
 825 
 826   if (addr->index()->is_illegal()) {
 827     return Address(base, addr->disp());
 828   } else if (addr->index()->is_cpu_register()) {
 829     Register index = addr->index()->as_pointer_register();
 830     return Address(base, index, addr->disp());
 831   } else if (addr->index()->is_constant()) {
 832     intptr_t addr_offset = addr->index()->as_constant_ptr()->as_jint() + addr->disp();
 833     return Address(base, addr_offset);
 834   } else {
 835     ShouldNotReachHere();
 836     return Address();
 837   }
 838 }
 839 
 840 void LIR_Assembler::stack2stack(LIR_Opr src, LIR_Opr dest, BasicType type) {
 841   switch (type) {
 842     case T_INT:
 843     case T_FLOAT: {
 844       Register tmp = Z_R1_scratch;
 845       Address from = frame_map()->address_for_slot(src->single_stack_ix());
 846       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
 847       __ mem2reg_opt(tmp, from, false);
 848       __ reg2mem_opt(tmp, to, false);
 849       break;
 850     }
 851     case T_ADDRESS:
 852     case T_OBJECT: {
 853       Register tmp = Z_R1_scratch;
 854       Address from = frame_map()->address_for_slot(src->single_stack_ix());
 855       Address to   = frame_map()->address_for_slot(dest->single_stack_ix());
 856       __ mem2reg_opt(tmp, from, true);
 857       __ reg2mem_opt(tmp, to, true);
 858       break;
 859     }
 860     case T_LONG:
 861     case T_DOUBLE: {
 862       Register tmp = Z_R1_scratch;
 863       Address from = frame_map()->address_for_double_slot(src->double_stack_ix());
 864       Address to   = frame_map()->address_for_double_slot(dest->double_stack_ix());
 865       __ mem2reg_opt(tmp, from, true);
 866       __ reg2mem_opt(tmp, to, true);
 867       break;
 868     }
 869 
 870     default:
 871       ShouldNotReachHere();
 872   }
 873 }
 874 
 875 // 4-byte accesses only! Don't use it to access 8 bytes!
 876 Address LIR_Assembler::as_Address_hi(LIR_Address* addr) {
 877   ShouldNotCallThis();
 878   return 0; // unused
 879 }
 880 
 881 // 4-byte accesses only! Don't use it to access 8 bytes!
 882 Address LIR_Assembler::as_Address_lo(LIR_Address* addr) {
 883   ShouldNotCallThis();
 884   return 0; // unused
 885 }
 886 
 887 void LIR_Assembler::mem2reg(LIR_Opr src_opr, LIR_Opr dest, BasicType type, LIR_PatchCode patch_code,
 888                             CodeEmitInfo* info, bool wide, bool unaligned) {
 889 
 890   assert(type != T_METADATA, "load of metadata ptr not supported");
 891   LIR_Address* addr = src_opr->as_address_ptr();
 892   LIR_Opr to_reg = dest;
 893 
 894   Register src = addr->base()->as_pointer_register();
 895   Register disp_reg = Z_R0;
 896   int disp_value = addr->disp();
 897   bool needs_patching = (patch_code != lir_patch_none);
 898 
 899   if (addr->base()->type() == T_OBJECT) {
 900     __ verify_oop(src);
 901   }
 902 
 903   PatchingStub* patch = NULL;
 904   if (needs_patching) {
 905     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
 906     assert(!to_reg->is_double_cpu() ||
 907            patch_code == lir_patch_none ||
 908            patch_code == lir_patch_normal, "patching doesn't match register");
 909   }
 910 
 911   if (addr->index()->is_illegal()) {
 912     if (!Immediate::is_simm20(disp_value)) {
 913       if (needs_patching) {
 914         __ load_const(Z_R1_scratch, (intptr_t)0);
 915       } else {
 916         __ load_const_optimized(Z_R1_scratch, disp_value);
 917       }
 918       disp_reg = Z_R1_scratch;
 919       disp_value = 0;
 920     }
 921   } else {
 922     if (!Immediate::is_simm20(disp_value)) {
 923       __ load_const_optimized(Z_R1_scratch, disp_value);
 924       __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
 925       disp_reg = Z_R1_scratch;
 926       disp_value = 0;
 927     }
 928     disp_reg = addr->index()->as_pointer_register();
 929   }
 930 
 931   // Remember the offset of the load. The patching_epilog must be done
 932   // before the call to add_debug_info, otherwise the PcDescs don't get
 933   // entered in increasing order.
 934   int offset = code_offset();
 935 
 936   assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
 937 
 938   bool short_disp = Immediate::is_uimm12(disp_value);
 939 
 940   switch (type) {
 941     case T_BOOLEAN: // fall through
 942     case T_BYTE  :  __ z_lb(dest->as_register(),   disp_value, disp_reg, src); break;
 943     case T_CHAR  :  __ z_llgh(dest->as_register(), disp_value, disp_reg, src); break;
 944     case T_SHORT :
 945       if (short_disp) {
 946                     __ z_lh(dest->as_register(),   disp_value, disp_reg, src);
 947       } else {
 948                     __ z_lhy(dest->as_register(),  disp_value, disp_reg, src);
 949       }
 950       break;
 951     case T_INT   :
 952       if (short_disp) {
 953                     __ z_l(dest->as_register(),    disp_value, disp_reg, src);
 954       } else {
 955                     __ z_ly(dest->as_register(),   disp_value, disp_reg, src);
 956       }
 957       break;
 958     case T_ADDRESS:
 959       if (UseCompressedClassPointers && addr->disp() == oopDesc::klass_offset_in_bytes()) {
 960         __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
 961         __ decode_klass_not_null(dest->as_register());
 962       } else {
 963         __ z_lg(dest->as_register(), disp_value, disp_reg, src);
 964       }
 965       break;
 966     case T_ARRAY : // fall through
 967     case T_OBJECT:
 968     {
 969       if (UseCompressedOops && !wide) {
 970         __ z_llgf(dest->as_register(), disp_value, disp_reg, src);
 971         __ oop_decoder(dest->as_register(), dest->as_register(), true);
 972       } else {
 973         __ z_lg(dest->as_register(), disp_value, disp_reg, src);
 974       }
 975       break;
 976     }
 977     case T_FLOAT:
 978       if (short_disp) {
 979                     __ z_le(dest->as_float_reg(),  disp_value, disp_reg, src);
 980       } else {
 981                     __ z_ley(dest->as_float_reg(), disp_value, disp_reg, src);
 982       }
 983       break;
 984     case T_DOUBLE:
 985       if (short_disp) {
 986                     __ z_ld(dest->as_double_reg(),  disp_value, disp_reg, src);
 987       } else {
 988                     __ z_ldy(dest->as_double_reg(), disp_value, disp_reg, src);
 989       }
 990       break;
 991     case T_LONG  :  __ z_lg(dest->as_register_lo(), disp_value, disp_reg, src); break;
 992     default      : ShouldNotReachHere();
 993   }
 994   if (type == T_ARRAY || type == T_OBJECT) {
 995     __ verify_oop(dest->as_register());
 996   }
 997 
 998   if (patch != NULL) {
 999     patching_epilog(patch, patch_code, src, info);
1000   }
1001   if (info != NULL) add_debug_info_for_null_check(offset, info);
1002 }
1003 
1004 void LIR_Assembler::stack2reg(LIR_Opr src, LIR_Opr dest, BasicType type) {
1005   assert(src->is_stack(), "should not call otherwise");
1006   assert(dest->is_register(), "should not call otherwise");
1007 
1008   if (dest->is_single_cpu()) {
1009     if (type == T_ARRAY || type == T_OBJECT) {
1010       __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
1011       __ verify_oop(dest->as_register());
1012     } else if (type == T_METADATA) {
1013       __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), true);
1014     } else {
1015       __ mem2reg_opt(dest->as_register(), frame_map()->address_for_slot(src->single_stack_ix()), false);
1016     }
1017   } else if (dest->is_double_cpu()) {
1018     Address src_addr_LO = frame_map()->address_for_slot(src->double_stack_ix());
1019     __ mem2reg_opt(dest->as_register_lo(), src_addr_LO, true);
1020   } else if (dest->is_single_fpu()) {
1021     Address src_addr = frame_map()->address_for_slot(src->single_stack_ix());
1022     __ mem2freg_opt(dest->as_float_reg(), src_addr, false);
1023   } else if (dest->is_double_fpu()) {
1024     Address src_addr = frame_map()->address_for_slot(src->double_stack_ix());
1025     __ mem2freg_opt(dest->as_double_reg(), src_addr, true);
1026   } else {
1027     ShouldNotReachHere();
1028   }
1029 }
1030 
1031 void LIR_Assembler::reg2stack(LIR_Opr src, LIR_Opr dest, BasicType type, bool pop_fpu_stack) {
1032   assert(src->is_register(), "should not call otherwise");
1033   assert(dest->is_stack(), "should not call otherwise");
1034 
1035   if (src->is_single_cpu()) {
1036     const Address dst = frame_map()->address_for_slot(dest->single_stack_ix());
1037     if (type == T_OBJECT || type == T_ARRAY) {
1038       __ verify_oop(src->as_register());
1039       __ reg2mem_opt(src->as_register(), dst, true);
1040     } else if (type == T_METADATA) {
1041       __ reg2mem_opt(src->as_register(), dst, true);
1042     } else {
1043       __ reg2mem_opt(src->as_register(), dst, false);
1044     }
1045   } else if (src->is_double_cpu()) {
1046     Address dstLO = frame_map()->address_for_slot(dest->double_stack_ix());
1047     __ reg2mem_opt(src->as_register_lo(), dstLO, true);
1048   } else if (src->is_single_fpu()) {
1049     Address dst_addr = frame_map()->address_for_slot(dest->single_stack_ix());
1050     __ freg2mem_opt(src->as_float_reg(), dst_addr, false);
1051   } else if (src->is_double_fpu()) {
1052     Address dst_addr = frame_map()->address_for_slot(dest->double_stack_ix());
1053     __ freg2mem_opt(src->as_double_reg(), dst_addr, true);
1054   } else {
1055     ShouldNotReachHere();
1056   }
1057 }
1058 
1059 void LIR_Assembler::reg2reg(LIR_Opr from_reg, LIR_Opr to_reg) {
1060   if (from_reg->is_float_kind() && to_reg->is_float_kind()) {
1061     if (from_reg->is_double_fpu()) {
1062       // double to double moves
1063       assert(to_reg->is_double_fpu(), "should match");
1064       __ z_ldr(to_reg->as_double_reg(), from_reg->as_double_reg());
1065     } else {
1066       // float to float moves
1067       assert(to_reg->is_single_fpu(), "should match");
1068       __ z_ler(to_reg->as_float_reg(), from_reg->as_float_reg());
1069     }
1070   } else if (!from_reg->is_float_kind() && !to_reg->is_float_kind()) {
1071     if (from_reg->is_double_cpu()) {
1072       __ z_lgr(to_reg->as_pointer_register(), from_reg->as_pointer_register());
1073     } else if (to_reg->is_double_cpu()) {
1074       // int to int moves
1075       __ z_lgr(to_reg->as_register_lo(), from_reg->as_register());
1076     } else {
1077       // int to int moves
1078       __ z_lgr(to_reg->as_register(), from_reg->as_register());
1079     }
1080   } else {
1081     ShouldNotReachHere();
1082   }
1083   if (to_reg->type() == T_OBJECT || to_reg->type() == T_ARRAY) {
1084     __ verify_oop(to_reg->as_register());
1085   }
1086 }
1087 
1088 void LIR_Assembler::reg2mem(LIR_Opr from, LIR_Opr dest_opr, BasicType type,
1089                             LIR_PatchCode patch_code, CodeEmitInfo* info, bool pop_fpu_stack,
1090                             bool wide, bool unaligned) {
1091   assert(type != T_METADATA, "store of metadata ptr not supported");
1092   LIR_Address* addr = dest_opr->as_address_ptr();
1093 
1094   Register dest = addr->base()->as_pointer_register();
1095   Register disp_reg = Z_R0;
1096   int disp_value = addr->disp();
1097   bool needs_patching = (patch_code != lir_patch_none);
1098 
1099   if (addr->base()->is_oop_register()) {
1100     __ verify_oop(dest);
1101   }
1102 
1103   PatchingStub* patch = NULL;
1104   if (needs_patching) {
1105     patch = new PatchingStub(_masm, PatchingStub::access_field_id);
1106     assert(!from->is_double_cpu() ||
1107            patch_code == lir_patch_none ||
1108            patch_code == lir_patch_normal, "patching doesn't match register");
1109   }
1110 
1111   assert(!needs_patching || (!Immediate::is_simm20(disp_value) && addr->index()->is_illegal()), "assumption");
1112   if (addr->index()->is_illegal()) {
1113     if (!Immediate::is_simm20(disp_value)) {
1114       if (needs_patching) {
1115         __ load_const(Z_R1_scratch, (intptr_t)0);
1116       } else {
1117         __ load_const_optimized(Z_R1_scratch, disp_value);
1118       }
1119       disp_reg = Z_R1_scratch;
1120       disp_value = 0;
1121     }
1122   } else {
1123     if (!Immediate::is_simm20(disp_value)) {
1124       __ load_const_optimized(Z_R1_scratch, disp_value);
1125       __ z_la(Z_R1_scratch, 0, Z_R1_scratch, addr->index()->as_register());
1126       disp_reg = Z_R1_scratch;
1127       disp_value = 0;
1128     }
1129     disp_reg = addr->index()->as_pointer_register();
1130   }
1131 
1132   assert(disp_reg != Z_R0 || Immediate::is_simm20(disp_value), "should have set this up");
1133 
1134   if (type == T_ARRAY || type == T_OBJECT) {
1135     __ verify_oop(from->as_register());
1136   }
1137 
1138   bool short_disp = Immediate::is_uimm12(disp_value);
1139 
1140   // Remember the offset of the store. The patching_epilog must be done
1141   // before the call to add_debug_info_for_null_check, otherwise the PcDescs don't get
1142   // entered in increasing order.
1143   int offset = code_offset();
1144   switch (type) {
1145     case T_BOOLEAN: // fall through
1146     case T_BYTE  :
1147       if (short_disp) {
1148                     __ z_stc(from->as_register(),  disp_value, disp_reg, dest);
1149       } else {
1150                     __ z_stcy(from->as_register(), disp_value, disp_reg, dest);
1151       }
1152       break;
1153     case T_CHAR  : // fall through
1154     case T_SHORT :
1155       if (short_disp) {
1156                     __ z_sth(from->as_register(),  disp_value, disp_reg, dest);
1157       } else {
1158                     __ z_sthy(from->as_register(), disp_value, disp_reg, dest);
1159       }
1160       break;
1161     case T_INT   :
1162       if (short_disp) {
1163                     __ z_st(from->as_register(),  disp_value, disp_reg, dest);
1164       } else {
1165                     __ z_sty(from->as_register(), disp_value, disp_reg, dest);
1166       }
1167       break;
1168     case T_LONG  :  __ z_stg(from->as_register_lo(), disp_value, disp_reg, dest); break;
1169     case T_ADDRESS: __ z_stg(from->as_register(),    disp_value, disp_reg, dest); break;
1170       break;
1171     case T_ARRAY : // fall through
1172     case T_OBJECT:
1173       {
1174         if (UseCompressedOops && !wide) {
1175           Register compressed_src = Z_R14;
1176           __ oop_encoder(compressed_src, from->as_register(), true, (disp_reg != Z_R1) ? Z_R1 : Z_R0, -1, true);
1177           offset = code_offset();
1178           if (short_disp) {
1179             __ z_st(compressed_src,  disp_value, disp_reg, dest);
1180           } else {
1181             __ z_sty(compressed_src, disp_value, disp_reg, dest);
1182           }
1183         } else {
1184           __ z_stg(from->as_register(), disp_value, disp_reg, dest);
1185         }
1186         break;
1187       }
1188     case T_FLOAT :
1189       if (short_disp) {
1190         __ z_ste(from->as_float_reg(),  disp_value, disp_reg, dest);
1191       } else {
1192         __ z_stey(from->as_float_reg(), disp_value, disp_reg, dest);
1193       }
1194       break;
1195     case T_DOUBLE:
1196       if (short_disp) {
1197         __ z_std(from->as_double_reg(),  disp_value, disp_reg, dest);
1198       } else {
1199         __ z_stdy(from->as_double_reg(), disp_value, disp_reg, dest);
1200       }
1201       break;
1202     default: ShouldNotReachHere();
1203   }
1204 
1205   if (patch != NULL) {
1206     patching_epilog(patch, patch_code, dest, info);
1207   }
1208 
1209   if (info != NULL) add_debug_info_for_null_check(offset, info);
1210 }
1211 
1212 
1213 void LIR_Assembler::return_op(LIR_Opr result) {
1214   assert(result->is_illegal() ||
1215          (result->is_single_cpu() && result->as_register() == Z_R2) ||
1216          (result->is_double_cpu() && result->as_register_lo() == Z_R2) ||
1217          (result->is_single_fpu() && result->as_float_reg() == Z_F0) ||
1218          (result->is_double_fpu() && result->as_double_reg() == Z_F0), "convention");
1219 
1220   if (SafepointMechanism::uses_thread_local_poll()) {
1221     __ z_lg(Z_R1_scratch, Address(Z_thread, Thread::polling_page_offset()));
1222   } else {
1223     AddressLiteral pp(os::get_polling_page());
1224     __ load_const_optimized(Z_R1_scratch, pp);
1225   }
1226 
1227   // Pop the frame before the safepoint code.
1228   __ pop_frame_restore_retPC(initial_frame_size_in_bytes());
1229 
1230   if (StackReservedPages > 0 && compilation()->has_reserved_stack_access()) {
1231     __ reserved_stack_check(Z_R14);
1232   }
1233 
1234   // We need to mark the code position where the load from the safepoint
1235   // polling page was emitted as relocInfo::poll_return_type here.
1236   __ relocate(relocInfo::poll_return_type);
1237   __ load_from_polling_page(Z_R1_scratch);
1238 
1239   __ z_br(Z_R14); // Return to caller.
1240 }
1241 
1242 int LIR_Assembler::safepoint_poll(LIR_Opr tmp, CodeEmitInfo* info) {
1243   const Register poll_addr = tmp->as_register_lo();
1244   if (SafepointMechanism::uses_thread_local_poll()) {
1245     __ z_lg(poll_addr, Address(Z_thread, Thread::polling_page_offset()));
1246   } else {
1247     AddressLiteral pp(os::get_polling_page());
1248     __ load_const_optimized(poll_addr, pp);
1249   }
1250   guarantee(info != NULL, "Shouldn't be NULL");
1251   add_debug_info_for_branch(info);
1252   int offset = __ offset();
1253   __ relocate(relocInfo::poll_type);
1254   __ load_from_polling_page(poll_addr);
1255   return offset;
1256 }
1257 
1258 void LIR_Assembler::emit_static_call_stub() {
1259 
1260   // Stub is fixed up when the corresponding call is converted from calling
1261   // compiled code to calling interpreted code.
1262 
1263   address call_pc = __ pc();
1264   address stub = __ start_a_stub(call_stub_size());
1265   if (stub == NULL) {
1266     bailout("static call stub overflow");
1267     return;
1268   }
1269 
1270   int start = __ offset();
1271 
1272   __ relocate(static_stub_Relocation::spec(call_pc));
1273 
1274   // See also Matcher::interpreter_method_oop_reg().
1275   AddressLiteral meta = __ allocate_metadata_address(NULL);
1276   bool success = __ load_const_from_toc(Z_method, meta);
1277 
1278   __ set_inst_mark();
1279   AddressLiteral a((address)-1);
1280   success = success && __ load_const_from_toc(Z_R1, a);
1281   if (!success) {
1282     bailout("const section overflow");
1283     return;
1284   }
1285 
1286   __ z_br(Z_R1);
1287   assert(__ offset() - start <= call_stub_size(), "stub too big");
1288   __ end_a_stub(); // Update current stubs pointer and restore insts_end.
1289 }
1290 
1291 void LIR_Assembler::comp_op(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Op2* op) {
1292   bool unsigned_comp = condition == lir_cond_belowEqual || condition == lir_cond_aboveEqual;
1293   if (opr1->is_single_cpu()) {
1294     Register reg1 = opr1->as_register();
1295     if (opr2->is_single_cpu()) {
1296       // cpu register - cpu register
1297       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1298         __ z_clgr(reg1, opr2->as_register());
1299       } else {
1300         assert(opr2->type() != T_OBJECT && opr2->type() != T_ARRAY, "cmp int, oop?");
1301         if (unsigned_comp) {
1302           __ z_clr(reg1, opr2->as_register());
1303         } else {
1304           __ z_cr(reg1, opr2->as_register());
1305         }
1306       }
1307     } else if (opr2->is_stack()) {
1308       // cpu register - stack
1309       if (opr1->type() == T_OBJECT || opr1->type() == T_ARRAY) {
1310         __ z_cg(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1311       } else {
1312         if (unsigned_comp) {
1313           __ z_cly(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1314         } else {
1315           __ z_cy(reg1, frame_map()->address_for_slot(opr2->single_stack_ix()));
1316         }
1317       }
1318     } else if (opr2->is_constant()) {
1319       // cpu register - constant
1320       LIR_Const* c = opr2->as_constant_ptr();
1321       if (c->type() == T_INT) {
1322         if (unsigned_comp) {
1323           __ z_clfi(reg1, c->as_jint());
1324         } else {
1325           __ z_cfi(reg1, c->as_jint());
1326         }
1327       } else if (c->type() == T_OBJECT || c->type() == T_ARRAY) {
1328         // In 64bit oops are single register.
1329         jobject o = c->as_jobject();
1330         if (o == NULL) {
1331           __ z_ltgr(reg1, reg1);
1332         } else {
1333           jobject2reg(o, Z_R1_scratch);
1334           __ z_cgr(reg1, Z_R1_scratch);
1335         }
1336       } else {
1337         fatal("unexpected type: %s", basictype_to_str(c->type()));
1338       }
1339       // cpu register - address
1340     } else if (opr2->is_address()) {
1341       if (op->info() != NULL) {
1342         add_debug_info_for_null_check_here(op->info());
1343       }
1344       if (unsigned_comp) {
1345         __ z_cly(reg1, as_Address(opr2->as_address_ptr()));
1346       } else {
1347         __ z_cy(reg1, as_Address(opr2->as_address_ptr()));
1348       }
1349     } else {
1350       ShouldNotReachHere();
1351     }
1352 
1353   } else if (opr1->is_double_cpu()) {
1354     assert(!unsigned_comp, "unexpected");
1355     Register xlo = opr1->as_register_lo();
1356     Register xhi = opr1->as_register_hi();
1357     if (opr2->is_double_cpu()) {
1358       __ z_cgr(xlo, opr2->as_register_lo());
1359     } else if (opr2->is_constant()) {
1360       // cpu register - constant 0
1361       assert(opr2->as_jlong() == (jlong)0, "only handles zero");
1362       __ z_ltgr(xlo, xlo);
1363     } else {
1364       ShouldNotReachHere();
1365     }
1366 
1367   } else if (opr1->is_single_fpu()) {
1368     if (opr2->is_single_fpu()) {
1369       __ z_cebr(opr1->as_float_reg(), opr2->as_float_reg());
1370     } else {
1371       // stack slot
1372       Address addr = frame_map()->address_for_slot(opr2->single_stack_ix());
1373       if (Immediate::is_uimm12(addr.disp())) {
1374         __ z_ceb(opr1->as_float_reg(), addr);
1375       } else {
1376         __ z_ley(Z_fscratch_1, addr);
1377         __ z_cebr(opr1->as_float_reg(), Z_fscratch_1);
1378       }
1379     }
1380   } else if (opr1->is_double_fpu()) {
1381     if (opr2->is_double_fpu()) {
1382     __ z_cdbr(opr1->as_double_reg(), opr2->as_double_reg());
1383     } else {
1384       // stack slot
1385       Address addr = frame_map()->address_for_slot(opr2->double_stack_ix());
1386       if (Immediate::is_uimm12(addr.disp())) {
1387         __ z_cdb(opr1->as_double_reg(), addr);
1388       } else {
1389         __ z_ldy(Z_fscratch_1, addr);
1390         __ z_cdbr(opr1->as_double_reg(), Z_fscratch_1);
1391       }
1392     }
1393   } else {
1394     ShouldNotReachHere();
1395   }
1396 }
1397 
1398 void LIR_Assembler::comp_fl2i(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst, LIR_Op2* op) {
1399   Label    done;
1400   Register dreg = dst->as_register();
1401 
1402   if (code == lir_cmp_fd2i || code == lir_ucmp_fd2i) {
1403     assert((left->is_single_fpu() && right->is_single_fpu()) ||
1404            (left->is_double_fpu() && right->is_double_fpu()), "unexpected operand types");
1405     bool is_single = left->is_single_fpu();
1406     bool is_unordered_less = (code == lir_ucmp_fd2i);
1407     FloatRegister lreg = is_single ? left->as_float_reg() : left->as_double_reg();
1408     FloatRegister rreg = is_single ? right->as_float_reg() : right->as_double_reg();
1409     if (is_single) {
1410       __ z_cebr(lreg, rreg);
1411     } else {
1412       __ z_cdbr(lreg, rreg);
1413     }
1414     if (VM_Version::has_LoadStoreConditional()) {
1415       Register one       = Z_R0_scratch;
1416       Register minus_one = Z_R1_scratch;
1417       __ z_lghi(minus_one, -1);
1418       __ z_lghi(one,  1);
1419       __ z_lghi(dreg, 0);
1420       __ z_locgr(dreg, one,       is_unordered_less ? Assembler::bcondHigh            : Assembler::bcondHighOrNotOrdered);
1421       __ z_locgr(dreg, minus_one, is_unordered_less ? Assembler::bcondLowOrNotOrdered : Assembler::bcondLow);
1422     } else {
1423       __ clear_reg(dreg, true, false);
1424       __ z_bre(done); // if (left == right) dst = 0
1425 
1426       // if (left > right || ((code ~= cmpg) && (left <> right)) dst := 1
1427       __ z_lhi(dreg, 1);
1428       __ z_brc(is_unordered_less ? Assembler::bcondHigh : Assembler::bcondHighOrNotOrdered, done);
1429 
1430       // if (left < right || ((code ~= cmpl) && (left <> right)) dst := -1
1431       __ z_lhi(dreg, -1);
1432     }
1433   } else {
1434     assert(code == lir_cmp_l2i, "check");
1435     if (VM_Version::has_LoadStoreConditional()) {
1436       Register one       = Z_R0_scratch;
1437       Register minus_one = Z_R1_scratch;
1438       __ z_cgr(left->as_register_lo(), right->as_register_lo());
1439       __ z_lghi(minus_one, -1);
1440       __ z_lghi(one,  1);
1441       __ z_lghi(dreg, 0);
1442       __ z_locgr(dreg, one, Assembler::bcondHigh);
1443       __ z_locgr(dreg, minus_one, Assembler::bcondLow);
1444     } else {
1445       __ z_cgr(left->as_register_lo(), right->as_register_lo());
1446       __ z_lghi(dreg,  0);     // eq value
1447       __ z_bre(done);
1448       __ z_lghi(dreg,  1);     // gt value
1449       __ z_brh(done);
1450       __ z_lghi(dreg, -1);     // lt value
1451     }
1452   }
1453   __ bind(done);
1454 }
1455 
1456 // result = condition ? opr1 : opr2
1457 void LIR_Assembler::cmove(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type) {
1458   Assembler::branch_condition acond = Assembler::bcondEqual, ncond = Assembler::bcondNotEqual;
1459   switch (condition) {
1460     case lir_cond_equal:        acond = Assembler::bcondEqual;    ncond = Assembler::bcondNotEqual; break;
1461     case lir_cond_notEqual:     acond = Assembler::bcondNotEqual; ncond = Assembler::bcondEqual;    break;
1462     case lir_cond_less:         acond = Assembler::bcondLow;      ncond = Assembler::bcondNotLow;   break;
1463     case lir_cond_lessEqual:    acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1464     case lir_cond_greaterEqual: acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1465     case lir_cond_greater:      acond = Assembler::bcondHigh;     ncond = Assembler::bcondNotHigh;  break;
1466     case lir_cond_belowEqual:   acond = Assembler::bcondNotHigh;  ncond = Assembler::bcondHigh;     break;
1467     case lir_cond_aboveEqual:   acond = Assembler::bcondNotLow;   ncond = Assembler::bcondLow;      break;
1468     default:                    ShouldNotReachHere();
1469   }
1470 
1471   if (opr1->is_cpu_register()) {
1472     reg2reg(opr1, result);
1473   } else if (opr1->is_stack()) {
1474     stack2reg(opr1, result, result->type());
1475   } else if (opr1->is_constant()) {
1476     const2reg(opr1, result, lir_patch_none, NULL);
1477   } else {
1478     ShouldNotReachHere();
1479   }
1480 
1481   if (VM_Version::has_LoadStoreConditional() && !opr2->is_constant()) {
1482     // Optimized version that does not require a branch.
1483     if (opr2->is_single_cpu()) {
1484       assert(opr2->cpu_regnr() != result->cpu_regnr(), "opr2 already overwritten by previous move");
1485       __ z_locgr(result->as_register(), opr2->as_register(), ncond);
1486     } else if (opr2->is_double_cpu()) {
1487       assert(opr2->cpu_regnrLo() != result->cpu_regnrLo() && opr2->cpu_regnrLo() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1488       assert(opr2->cpu_regnrHi() != result->cpu_regnrLo() && opr2->cpu_regnrHi() != result->cpu_regnrHi(), "opr2 already overwritten by previous move");
1489       __ z_locgr(result->as_register_lo(), opr2->as_register_lo(), ncond);
1490     } else if (opr2->is_single_stack()) {
1491       __ z_loc(result->as_register(), frame_map()->address_for_slot(opr2->single_stack_ix()), ncond);
1492     } else if (opr2->is_double_stack()) {
1493       __ z_locg(result->as_register_lo(), frame_map()->address_for_slot(opr2->double_stack_ix()), ncond);
1494     } else {
1495       ShouldNotReachHere();
1496     }
1497   } else {
1498     Label skip;
1499     __ z_brc(acond, skip);
1500     if (opr2->is_cpu_register()) {
1501       reg2reg(opr2, result);
1502     } else if (opr2->is_stack()) {
1503       stack2reg(opr2, result, result->type());
1504     } else if (opr2->is_constant()) {
1505       const2reg(opr2, result, lir_patch_none, NULL);
1506     } else {
1507       ShouldNotReachHere();
1508     }
1509     __ bind(skip);
1510   }
1511 }
1512 
1513 void LIR_Assembler::arith_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dest,
1514                              CodeEmitInfo* info, bool pop_fpu_stack) {
1515   assert(info == NULL, "should never be used, idiv/irem and ldiv/lrem not handled by this method");
1516 
1517   if (left->is_single_cpu()) {
1518     assert(left == dest, "left and dest must be equal");
1519     Register lreg = left->as_register();
1520 
1521     if (right->is_single_cpu()) {
1522       // cpu register - cpu register
1523       Register rreg = right->as_register();
1524       switch (code) {
1525         case lir_add: __ z_ar (lreg, rreg); break;
1526         case lir_sub: __ z_sr (lreg, rreg); break;
1527         case lir_mul: __ z_msr(lreg, rreg); break;
1528         default: ShouldNotReachHere();
1529       }
1530 
1531     } else if (right->is_stack()) {
1532       // cpu register - stack
1533       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1534       switch (code) {
1535         case lir_add: __ z_ay(lreg, raddr); break;
1536         case lir_sub: __ z_sy(lreg, raddr); break;
1537         default: ShouldNotReachHere();
1538       }
1539 
1540     } else if (right->is_constant()) {
1541       // cpu register - constant
1542       jint c = right->as_constant_ptr()->as_jint();
1543       switch (code) {
1544         case lir_add: __ z_agfi(lreg, c);  break;
1545         case lir_sub: __ z_agfi(lreg, -c); break; // note: -min_jint == min_jint
1546         case lir_mul: __ z_msfi(lreg, c);  break;
1547         default: ShouldNotReachHere();
1548       }
1549 
1550     } else {
1551       ShouldNotReachHere();
1552     }
1553 
1554   } else if (left->is_double_cpu()) {
1555     assert(left == dest, "left and dest must be equal");
1556     Register lreg_lo = left->as_register_lo();
1557     Register lreg_hi = left->as_register_hi();
1558 
1559     if (right->is_double_cpu()) {
1560       // cpu register - cpu register
1561       Register rreg_lo = right->as_register_lo();
1562       Register rreg_hi = right->as_register_hi();
1563       assert_different_registers(lreg_lo, rreg_lo);
1564       switch (code) {
1565         case lir_add:
1566           __ z_agr(lreg_lo, rreg_lo);
1567           break;
1568         case lir_sub:
1569           __ z_sgr(lreg_lo, rreg_lo);
1570           break;
1571         case lir_mul:
1572           __ z_msgr(lreg_lo, rreg_lo);
1573           break;
1574         default:
1575           ShouldNotReachHere();
1576       }
1577 
1578     } else if (right->is_constant()) {
1579       // cpu register - constant
1580       jlong c = right->as_constant_ptr()->as_jlong_bits();
1581       switch (code) {
1582         case lir_add: __ z_agfi(lreg_lo, c); break;
1583         case lir_sub:
1584           if (c != min_jint) {
1585                       __ z_agfi(lreg_lo, -c);
1586           } else {
1587             // -min_jint cannot be represented as simm32 in z_agfi
1588             // min_jint sign extended:      0xffffffff80000000
1589             // -min_jint as 64 bit integer: 0x0000000080000000
1590             // 0x80000000 can be represented as uimm32 in z_algfi
1591             // lreg_lo := lreg_lo + -min_jint == lreg_lo + 0x80000000
1592                       __ z_algfi(lreg_lo, UCONST64(0x80000000));
1593           }
1594           break;
1595         case lir_mul: __ z_msgfi(lreg_lo, c); break;
1596         default:
1597           ShouldNotReachHere();
1598       }
1599 
1600     } else {
1601       ShouldNotReachHere();
1602     }
1603 
1604   } else if (left->is_single_fpu()) {
1605     assert(left == dest, "left and dest must be equal");
1606     FloatRegister lreg = left->as_float_reg();
1607     FloatRegister rreg = right->is_single_fpu() ? right->as_float_reg() : fnoreg;
1608     Address raddr;
1609 
1610     if (rreg == fnoreg) {
1611       assert(right->is_single_stack(), "constants should be loaded into register");
1612       raddr = frame_map()->address_for_slot(right->single_stack_ix());
1613       if (!Immediate::is_uimm12(raddr.disp())) {
1614         __ mem2freg_opt(rreg = Z_fscratch_1, raddr, false);
1615       }
1616     }
1617 
1618     if (rreg != fnoreg) {
1619       switch (code) {
1620         case lir_add: __ z_aebr(lreg, rreg);  break;
1621         case lir_sub: __ z_sebr(lreg, rreg);  break;
1622         case lir_mul_strictfp: // fall through
1623         case lir_mul: __ z_meebr(lreg, rreg); break;
1624         case lir_div_strictfp: // fall through
1625         case lir_div: __ z_debr(lreg, rreg);  break;
1626         default: ShouldNotReachHere();
1627       }
1628     } else {
1629       switch (code) {
1630         case lir_add: __ z_aeb(lreg, raddr);  break;
1631         case lir_sub: __ z_seb(lreg, raddr);  break;
1632         case lir_mul_strictfp: // fall through
1633         case lir_mul: __ z_meeb(lreg, raddr);  break;
1634         case lir_div_strictfp: // fall through
1635         case lir_div: __ z_deb(lreg, raddr);  break;
1636         default: ShouldNotReachHere();
1637       }
1638     }
1639   } else if (left->is_double_fpu()) {
1640     assert(left == dest, "left and dest must be equal");
1641     FloatRegister lreg = left->as_double_reg();
1642     FloatRegister rreg = right->is_double_fpu() ? right->as_double_reg() : fnoreg;
1643     Address raddr;
1644 
1645     if (rreg == fnoreg) {
1646       assert(right->is_double_stack(), "constants should be loaded into register");
1647       raddr = frame_map()->address_for_slot(right->double_stack_ix());
1648       if (!Immediate::is_uimm12(raddr.disp())) {
1649         __ mem2freg_opt(rreg = Z_fscratch_1, raddr, true);
1650       }
1651     }
1652 
1653     if (rreg != fnoreg) {
1654       switch (code) {
1655         case lir_add: __ z_adbr(lreg, rreg); break;
1656         case lir_sub: __ z_sdbr(lreg, rreg); break;
1657         case lir_mul_strictfp: // fall through
1658         case lir_mul: __ z_mdbr(lreg, rreg); break;
1659         case lir_div_strictfp: // fall through
1660         case lir_div: __ z_ddbr(lreg, rreg); break;
1661         default: ShouldNotReachHere();
1662       }
1663     } else {
1664       switch (code) {
1665         case lir_add: __ z_adb(lreg, raddr); break;
1666         case lir_sub: __ z_sdb(lreg, raddr); break;
1667         case lir_mul_strictfp: // fall through
1668         case lir_mul: __ z_mdb(lreg, raddr); break;
1669         case lir_div_strictfp: // fall through
1670         case lir_div: __ z_ddb(lreg, raddr); break;
1671         default: ShouldNotReachHere();
1672       }
1673     }
1674   } else if (left->is_address()) {
1675     assert(left == dest, "left and dest must be equal");
1676     assert(code == lir_add, "unsupported operation");
1677     assert(right->is_constant(), "unsupported operand");
1678     jint c = right->as_constant_ptr()->as_jint();
1679     LIR_Address* lir_addr = left->as_address_ptr();
1680     Address addr = as_Address(lir_addr);
1681     switch (lir_addr->type()) {
1682       case T_INT:
1683         __ add2mem_32(addr, c, Z_R1_scratch);
1684         break;
1685       case T_LONG:
1686         __ add2mem_64(addr, c, Z_R1_scratch);
1687         break;
1688       default:
1689         ShouldNotReachHere();
1690     }
1691   } else {
1692     ShouldNotReachHere();
1693   }
1694 }
1695 
1696 void LIR_Assembler::fpop() {
1697   // do nothing
1698 }
1699 
1700 void LIR_Assembler::intrinsic_op(LIR_Code code, LIR_Opr value, LIR_Opr thread, LIR_Opr dest, LIR_Op* op) {
1701   switch (code) {
1702     case lir_sqrt: {
1703       assert(!thread->is_valid(), "there is no need for a thread_reg for dsqrt");
1704       FloatRegister src_reg = value->as_double_reg();
1705       FloatRegister dst_reg = dest->as_double_reg();
1706       __ z_sqdbr(dst_reg, src_reg);
1707       break;
1708     }
1709     case lir_abs: {
1710       assert(!thread->is_valid(), "there is no need for a thread_reg for fabs");
1711       FloatRegister src_reg = value->as_double_reg();
1712       FloatRegister dst_reg = dest->as_double_reg();
1713       __ z_lpdbr(dst_reg, src_reg);
1714       break;
1715     }
1716     default: {
1717       ShouldNotReachHere();
1718       break;
1719     }
1720   }
1721 }
1722 
1723 void LIR_Assembler::logic_op(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr dst) {
1724   if (left->is_single_cpu()) {
1725     Register reg = left->as_register();
1726     if (right->is_constant()) {
1727       int val = right->as_constant_ptr()->as_jint();
1728       switch (code) {
1729         case lir_logic_and: __ z_nilf(reg, val); break;
1730         case lir_logic_or:  __ z_oilf(reg, val); break;
1731         case lir_logic_xor: __ z_xilf(reg, val); break;
1732         default: ShouldNotReachHere();
1733       }
1734     } else if (right->is_stack()) {
1735       Address raddr = frame_map()->address_for_slot(right->single_stack_ix());
1736       switch (code) {
1737         case lir_logic_and: __ z_ny(reg, raddr); break;
1738         case lir_logic_or:  __ z_oy(reg, raddr); break;
1739         case lir_logic_xor: __ z_xy(reg, raddr); break;
1740         default: ShouldNotReachHere();
1741       }
1742     } else {
1743       Register rright = right->as_register();
1744       switch (code) {
1745         case lir_logic_and: __ z_nr(reg, rright); break;
1746         case lir_logic_or : __ z_or(reg, rright); break;
1747         case lir_logic_xor: __ z_xr(reg, rright); break;
1748         default: ShouldNotReachHere();
1749       }
1750     }
1751     move_regs(reg, dst->as_register());
1752   } else {
1753     Register l_lo = left->as_register_lo();
1754     if (right->is_constant()) {
1755       __ load_const_optimized(Z_R1_scratch, right->as_constant_ptr()->as_jlong());
1756       switch (code) {
1757         case lir_logic_and:
1758           __ z_ngr(l_lo, Z_R1_scratch);
1759           break;
1760         case lir_logic_or:
1761           __ z_ogr(l_lo, Z_R1_scratch);
1762           break;
1763         case lir_logic_xor:
1764           __ z_xgr(l_lo, Z_R1_scratch);
1765           break;
1766         default: ShouldNotReachHere();
1767       }
1768     } else {
1769       Register r_lo;
1770       if (right->type() == T_OBJECT || right->type() == T_ARRAY) {
1771         r_lo = right->as_register();
1772       } else {
1773         r_lo = right->as_register_lo();
1774       }
1775       switch (code) {
1776         case lir_logic_and:
1777           __ z_ngr(l_lo, r_lo);
1778           break;
1779         case lir_logic_or:
1780           __ z_ogr(l_lo, r_lo);
1781           break;
1782         case lir_logic_xor:
1783           __ z_xgr(l_lo, r_lo);
1784           break;
1785         default: ShouldNotReachHere();
1786       }
1787     }
1788 
1789     Register dst_lo = dst->as_register_lo();
1790 
1791     move_regs(l_lo, dst_lo);
1792   }
1793 }
1794 
1795 // See operand selection in LIRGenerator::do_ArithmeticOp_Int().
1796 void LIR_Assembler::arithmetic_idiv(LIR_Code code, LIR_Opr left, LIR_Opr right, LIR_Opr temp, LIR_Opr result, CodeEmitInfo* info) {
1797   if (left->is_double_cpu()) {
1798     // 64 bit integer case
1799     assert(left->is_double_cpu(), "left must be register");
1800     assert(right->is_double_cpu() || is_power_of_2_long(right->as_jlong()),
1801            "right must be register or power of 2 constant");
1802     assert(result->is_double_cpu(), "result must be register");
1803 
1804     Register lreg = left->as_register_lo();
1805     Register dreg = result->as_register_lo();
1806 
1807     if (right->is_constant()) {
1808       // Convert division by a power of two into some shifts and logical operations.
1809       Register treg1 = Z_R0_scratch;
1810       Register treg2 = Z_R1_scratch;
1811       jlong divisor = right->as_jlong();
1812       jlong log_divisor = log2_long(right->as_jlong());
1813 
1814       if (divisor == min_jlong) {
1815         // Min_jlong is special. Result is '0' except for min_jlong/min_jlong = 1.
1816         if (dreg == lreg) {
1817           NearLabel done;
1818           __ load_const_optimized(treg2, min_jlong);
1819           __ z_cgr(lreg, treg2);
1820           __ z_lghi(dreg, 0);           // Preserves condition code.
1821           __ z_brne(done);
1822           __ z_lghi(dreg, 1);           // min_jlong / min_jlong = 1
1823           __ bind(done);
1824         } else {
1825           assert_different_registers(dreg, lreg);
1826           NearLabel done;
1827           __ z_lghi(dreg, 0);
1828           __ compare64_and_branch(lreg, min_jlong, Assembler::bcondNotEqual, done);
1829           __ z_lghi(dreg, 1);
1830           __ bind(done);
1831         }
1832         return;
1833       }
1834       __ move_reg_if_needed(dreg, T_LONG, lreg, T_LONG);
1835       if (divisor == 2) {
1836         __ z_srlg(treg2, dreg, 63);     // dividend < 0 ? 1 : 0
1837       } else {
1838         __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1839         __ and_imm(treg2, divisor - 1, treg1, true);
1840       }
1841       if (code == lir_idiv) {
1842         __ z_agr(dreg, treg2);
1843         __ z_srag(dreg, dreg, log_divisor);
1844       } else {
1845         assert(code == lir_irem, "check");
1846         __ z_agr(treg2, dreg);
1847         __ and_imm(treg2, ~(divisor - 1), treg1, true);
1848         __ z_sgr(dreg, treg2);
1849       }
1850       return;
1851     }
1852 
1853     // Divisor is not a power of 2 constant.
1854     Register rreg = right->as_register_lo();
1855     Register treg = temp->as_register_lo();
1856     assert(right->is_double_cpu(), "right must be register");
1857     assert(lreg == Z_R11, "see ldivInOpr()");
1858     assert(rreg != lreg, "right register must not be same as left register");
1859     assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10) ||
1860            (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see ldivInOpr(), ldivOutOpr(), lremOutOpr()");
1861 
1862     Register R1 = lreg->predecessor();
1863     Register R2 = rreg;
1864     assert(code != lir_idiv || lreg==dreg, "see code below");
1865     if (code == lir_idiv) {
1866       __ z_lcgr(lreg, lreg);
1867     } else {
1868       __ clear_reg(dreg, true, false);
1869     }
1870     NearLabel done;
1871     __ compare64_and_branch(R2, -1, Assembler::bcondEqual, done);
1872     if (code == lir_idiv) {
1873       __ z_lcgr(lreg, lreg); // Revert lcgr above.
1874     }
1875     if (ImplicitDiv0Checks) {
1876       // No debug info because the idiv won't trap.
1877       // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1878       // which is unnecessary, too.
1879       add_debug_info_for_div0(__ offset(), info);
1880     }
1881     __ z_dsgr(R1, R2);
1882     __ bind(done);
1883     return;
1884   }
1885 
1886   // 32 bit integer case
1887 
1888   assert(left->is_single_cpu(), "left must be register");
1889   assert(right->is_single_cpu() || is_power_of_2(right->as_jint()), "right must be register or power of 2 constant");
1890   assert(result->is_single_cpu(), "result must be register");
1891 
1892   Register lreg = left->as_register();
1893   Register dreg = result->as_register();
1894 
1895   if (right->is_constant()) {
1896     // Convert division by a power of two into some shifts and logical operations.
1897     Register treg1 = Z_R0_scratch;
1898     Register treg2 = Z_R1_scratch;
1899     jlong divisor = right->as_jint();
1900     jlong log_divisor = log2_long(right->as_jint());
1901     __ move_reg_if_needed(dreg, T_LONG, lreg, T_INT); // sign extend
1902     if (divisor == 2) {
1903       __ z_srlg(treg2, dreg, 63);     // dividend < 0 ?  1 : 0
1904     } else {
1905       __ z_srag(treg2, dreg, 63);     // dividend < 0 ? -1 : 0
1906       __ and_imm(treg2, divisor - 1, treg1, true);
1907     }
1908     if (code == lir_idiv) {
1909       __ z_agr(dreg, treg2);
1910       __ z_srag(dreg, dreg, log_divisor);
1911     } else {
1912       assert(code == lir_irem, "check");
1913       __ z_agr(treg2, dreg);
1914       __ and_imm(treg2, ~(divisor - 1), treg1, true);
1915       __ z_sgr(dreg, treg2);
1916     }
1917     return;
1918   }
1919 
1920   // Divisor is not a power of 2 constant.
1921   Register rreg = right->as_register();
1922   Register treg = temp->as_register();
1923   assert(right->is_single_cpu(), "right must be register");
1924   assert(lreg == Z_R11, "left register must be rax,");
1925   assert(rreg != lreg, "right register must not be same as left register");
1926   assert((code == lir_idiv && dreg == Z_R11 && treg == Z_R10)
1927       || (code == lir_irem && dreg == Z_R10 && treg == Z_R11), "see divInOpr(), divOutOpr(), remOutOpr()");
1928 
1929   Register R1 = lreg->predecessor();
1930   Register R2 = rreg;
1931   __ move_reg_if_needed(lreg, T_LONG, lreg, T_INT); // sign extend
1932   if (ImplicitDiv0Checks) {
1933     // No debug info because the idiv won't trap.
1934     // Add_debug_info_for_div0 would instantiate another DivByZeroStub,
1935     // which is unnecessary, too.
1936     add_debug_info_for_div0(__ offset(), info);
1937   }
1938   __ z_dsgfr(R1, R2);
1939 }
1940 
1941 void LIR_Assembler::throw_op(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
1942   assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1943   assert(exceptionPC->as_register() == Z_EXC_PC, "should match");
1944 
1945   // Exception object is not added to oop map by LinearScan
1946   // (LinearScan assumes that no oops are in fixed registers).
1947   info->add_register_oop(exceptionOop);
1948 
1949   // Reuse the debug info from the safepoint poll for the throw op itself.
1950   __ get_PC(Z_EXC_PC);
1951   add_call_info(__ offset(), info); // for exception handler
1952   address stub = Runtime1::entry_for (compilation()->has_fpu_code() ? Runtime1::handle_exception_id
1953                                                                     : Runtime1::handle_exception_nofpu_id);
1954   emit_call_c(stub);
1955 }
1956 
1957 void LIR_Assembler::unwind_op(LIR_Opr exceptionOop) {
1958   assert(exceptionOop->as_register() == Z_EXC_OOP, "should match");
1959 
1960   __ branch_optimized(Assembler::bcondAlways, _unwind_handler_entry);
1961 }
1962 
1963 void LIR_Assembler::emit_arraycopy(LIR_OpArrayCopy* op) {
1964   ciArrayKlass* default_type = op->expected_type();
1965   Register src = op->src()->as_register();
1966   Register dst = op->dst()->as_register();
1967   Register src_pos = op->src_pos()->as_register();
1968   Register dst_pos = op->dst_pos()->as_register();
1969   Register length  = op->length()->as_register();
1970   Register tmp = op->tmp()->as_register();
1971 
1972   CodeStub* stub = op->stub();
1973   int flags = op->flags();
1974   BasicType basic_type = default_type != NULL ? default_type->element_type()->basic_type() : T_ILLEGAL;
1975   if (basic_type == T_ARRAY) basic_type = T_OBJECT;
1976 
1977   // If we don't know anything, just go through the generic arraycopy.
1978   if (default_type == NULL) {
1979     address copyfunc_addr = StubRoutines::generic_arraycopy();
1980 
1981     if (copyfunc_addr == NULL) {
1982       // Take a slow path for generic arraycopy.
1983       __ branch_optimized(Assembler::bcondAlways, *stub->entry());
1984       __ bind(*stub->continuation());
1985       return;
1986     }
1987 
1988     // Save outgoing arguments in callee saved registers (C convention) in case
1989     // a call to System.arraycopy is needed.
1990     Register callee_saved_src     = Z_R10;
1991     Register callee_saved_src_pos = Z_R11;
1992     Register callee_saved_dst     = Z_R12;
1993     Register callee_saved_dst_pos = Z_R13;
1994     Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
1995 
1996     __ lgr_if_needed(callee_saved_src, src);
1997     __ lgr_if_needed(callee_saved_src_pos, src_pos);
1998     __ lgr_if_needed(callee_saved_dst, dst);
1999     __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
2000     __ lgr_if_needed(callee_saved_length, length);
2001 
2002     // C function requires 64 bit values.
2003     __ z_lgfr(src_pos, src_pos);
2004     __ z_lgfr(dst_pos, dst_pos);
2005     __ z_lgfr(length, length);
2006 
2007     // Pass arguments: may push as this is not a safepoint; SP must be fix at each safepoint.
2008 
2009     // The arguments are in the corresponding registers.
2010     assert(Z_ARG1 == src,     "assumption");
2011     assert(Z_ARG2 == src_pos, "assumption");
2012     assert(Z_ARG3 == dst,     "assumption");
2013     assert(Z_ARG4 == dst_pos, "assumption");
2014     assert(Z_ARG5 == length,  "assumption");
2015 #ifndef PRODUCT
2016     if (PrintC1Statistics) {
2017       __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_generic_arraycopystub_cnt);
2018       __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2019     }
2020 #endif
2021     emit_call_c(copyfunc_addr);
2022     CHECK_BAILOUT();
2023 
2024     __ compare32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2025 
2026     __ z_lgr(tmp, Z_RET);
2027     __ z_xilf(tmp, -1);
2028 
2029     // Restore values from callee saved registers so they are where the stub
2030     // expects them.
2031     __ lgr_if_needed(src, callee_saved_src);
2032     __ lgr_if_needed(src_pos, callee_saved_src_pos);
2033     __ lgr_if_needed(dst, callee_saved_dst);
2034     __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2035     __ lgr_if_needed(length, callee_saved_length);
2036 
2037     __ z_sr(length, tmp);
2038     __ z_ar(src_pos, tmp);
2039     __ z_ar(dst_pos, tmp);
2040     __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2041 
2042     __ bind(*stub->continuation());
2043     return;
2044   }
2045 
2046   assert(default_type != NULL && default_type->is_array_klass() && default_type->is_loaded(), "must be true at this point");
2047 
2048   int elem_size = type2aelembytes(basic_type);
2049   int shift_amount;
2050 
2051   switch (elem_size) {
2052     case 1 :
2053       shift_amount = 0;
2054       break;
2055     case 2 :
2056       shift_amount = 1;
2057       break;
2058     case 4 :
2059       shift_amount = 2;
2060       break;
2061     case 8 :
2062       shift_amount = 3;
2063       break;
2064     default:
2065       shift_amount = -1;
2066       ShouldNotReachHere();
2067   }
2068 
2069   Address src_length_addr = Address(src, arrayOopDesc::length_offset_in_bytes());
2070   Address dst_length_addr = Address(dst, arrayOopDesc::length_offset_in_bytes());
2071   Address src_klass_addr = Address(src, oopDesc::klass_offset_in_bytes());
2072   Address dst_klass_addr = Address(dst, oopDesc::klass_offset_in_bytes());
2073 
2074   // Length and pos's are all sign extended at this point on 64bit.
2075 
2076   // test for NULL
2077   if (flags & LIR_OpArrayCopy::src_null_check) {
2078     __ compareU64_and_branch(src, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2079   }
2080   if (flags & LIR_OpArrayCopy::dst_null_check) {
2081     __ compareU64_and_branch(dst, (intptr_t)0, Assembler::bcondZero, *stub->entry());
2082   }
2083 
2084   // Check if negative.
2085   if (flags & LIR_OpArrayCopy::src_pos_positive_check) {
2086     __ compare32_and_branch(src_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2087   }
2088   if (flags & LIR_OpArrayCopy::dst_pos_positive_check) {
2089     __ compare32_and_branch(dst_pos, (intptr_t)0, Assembler::bcondLow, *stub->entry());
2090   }
2091 
2092   // If the compiler was not able to prove that exact type of the source or the destination
2093   // of the arraycopy is an array type, check at runtime if the source or the destination is
2094   // an instance type.
2095   if (flags & LIR_OpArrayCopy::type_check) {
2096     assert(Klass::_lh_neutral_value == 0, "or replace z_lt instructions");
2097 
2098     if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2099       __ load_klass(tmp, dst);
2100       __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2101       __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2102     }
2103 
2104     if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2105       __ load_klass(tmp, src);
2106       __ z_lt(tmp, Address(tmp, in_bytes(Klass::layout_helper_offset())));
2107       __ branch_optimized(Assembler::bcondNotLow, *stub->entry());
2108     }
2109   }
2110 
2111   if (flags & LIR_OpArrayCopy::src_range_check) {
2112     __ z_la(tmp, Address(src_pos, length));
2113     __ z_cl(tmp, src_length_addr);
2114     __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2115   }
2116   if (flags & LIR_OpArrayCopy::dst_range_check) {
2117     __ z_la(tmp, Address(dst_pos, length));
2118     __ z_cl(tmp, dst_length_addr);
2119     __ branch_optimized(Assembler::bcondHigh, *stub->entry());
2120   }
2121 
2122   if (flags & LIR_OpArrayCopy::length_positive_check) {
2123     __ z_ltr(length, length);
2124     __ branch_optimized(Assembler::bcondNegative, *stub->entry());
2125   }
2126 
2127   // Stubs require 64 bit values.
2128   __ z_lgfr(src_pos, src_pos); // int -> long
2129   __ z_lgfr(dst_pos, dst_pos); // int -> long
2130   __ z_lgfr(length, length);   // int -> long
2131 
2132   if (flags & LIR_OpArrayCopy::type_check) {
2133     // We don't know the array types are compatible.
2134     if (basic_type != T_OBJECT) {
2135       // Simple test for basic type arrays.
2136       if (UseCompressedClassPointers) {
2137         __ z_l(tmp, src_klass_addr);
2138         __ z_c(tmp, dst_klass_addr);
2139       } else {
2140         __ z_lg(tmp, src_klass_addr);
2141         __ z_cg(tmp, dst_klass_addr);
2142       }
2143       __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2144     } else {
2145       // For object arrays, if src is a sub class of dst then we can
2146       // safely do the copy.
2147       NearLabel cont, slow;
2148       Register src_klass = Z_R1_scratch;
2149       Register dst_klass = Z_R10;
2150 
2151       __ load_klass(src_klass, src);
2152       __ load_klass(dst_klass, dst);
2153 
2154       __ check_klass_subtype_fast_path(src_klass, dst_klass, tmp, &cont, &slow, NULL);
2155 
2156       store_parameter(src_klass, 0); // sub
2157       store_parameter(dst_klass, 1); // super
2158       emit_call_c(Runtime1::entry_for (Runtime1::slow_subtype_check_id));
2159       CHECK_BAILOUT2(cont, slow);
2160       // Sets condition code 0 for match (2 otherwise).
2161       __ branch_optimized(Assembler::bcondEqual, cont);
2162 
2163       __ bind(slow);
2164 
2165       address copyfunc_addr = StubRoutines::checkcast_arraycopy();
2166       if (copyfunc_addr != NULL) { // use stub if available
2167         // Src is not a sub class of dst so we have to do a
2168         // per-element check.
2169 
2170         int mask = LIR_OpArrayCopy::src_objarray|LIR_OpArrayCopy::dst_objarray;
2171         if ((flags & mask) != mask) {
2172           // Check that at least both of them object arrays.
2173           assert(flags & mask, "one of the two should be known to be an object array");
2174 
2175           if (!(flags & LIR_OpArrayCopy::src_objarray)) {
2176             __ load_klass(tmp, src);
2177           } else if (!(flags & LIR_OpArrayCopy::dst_objarray)) {
2178             __ load_klass(tmp, dst);
2179           }
2180           Address klass_lh_addr(tmp, Klass::layout_helper_offset());
2181           jint objArray_lh = Klass::array_layout_helper(T_OBJECT);
2182           __ load_const_optimized(Z_R1_scratch, objArray_lh);
2183           __ z_c(Z_R1_scratch, klass_lh_addr);
2184           __ branch_optimized(Assembler::bcondNotEqual, *stub->entry());
2185         }
2186 
2187         // Save outgoing arguments in callee saved registers (C convention) in case
2188         // a call to System.arraycopy is needed.
2189         Register callee_saved_src     = Z_R10;
2190         Register callee_saved_src_pos = Z_R11;
2191         Register callee_saved_dst     = Z_R12;
2192         Register callee_saved_dst_pos = Z_R13;
2193         Register callee_saved_length  = Z_ARG5; // Z_ARG5 == Z_R6 is callee saved.
2194 
2195         __ lgr_if_needed(callee_saved_src, src);
2196         __ lgr_if_needed(callee_saved_src_pos, src_pos);
2197         __ lgr_if_needed(callee_saved_dst, dst);
2198         __ lgr_if_needed(callee_saved_dst_pos, dst_pos);
2199         __ lgr_if_needed(callee_saved_length, length);
2200 
2201         __ z_llgfr(length, length); // Higher 32bits must be null.
2202 
2203         __ z_sllg(Z_ARG1, src_pos, shift_amount); // index -> byte offset
2204         __ z_sllg(Z_ARG2, dst_pos, shift_amount); // index -> byte offset
2205 
2206         __ z_la(Z_ARG1, Address(src, Z_ARG1, arrayOopDesc::base_offset_in_bytes(basic_type)));
2207         assert_different_registers(Z_ARG1, dst, dst_pos, length);
2208         __ z_la(Z_ARG2, Address(dst, Z_ARG2, arrayOopDesc::base_offset_in_bytes(basic_type)));
2209         assert_different_registers(Z_ARG2, dst, length);
2210 
2211         __ z_lgr(Z_ARG3, length);
2212         assert_different_registers(Z_ARG3, dst);
2213 
2214         __ load_klass(Z_ARG5, dst);
2215         __ z_lg(Z_ARG5, Address(Z_ARG5, ObjArrayKlass::element_klass_offset()));
2216         __ z_lg(Z_ARG4, Address(Z_ARG5, Klass::super_check_offset_offset()));
2217         emit_call_c(copyfunc_addr);
2218         CHECK_BAILOUT2(cont, slow);
2219 
2220 #ifndef PRODUCT
2221         if (PrintC1Statistics) {
2222           NearLabel failed;
2223           __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondNotEqual, failed);
2224           __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_cnt);
2225           __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2226           __ bind(failed);
2227         }
2228 #endif
2229 
2230         __ compareU32_and_branch(Z_RET, (intptr_t)0, Assembler::bcondEqual, *stub->continuation());
2231 
2232 #ifndef PRODUCT
2233         if (PrintC1Statistics) {
2234           __ load_const_optimized(Z_R1_scratch, (address)&Runtime1::_arraycopy_checkcast_attempt_cnt);
2235           __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2236         }
2237 #endif
2238 
2239         __ z_lgr(tmp, Z_RET);
2240         __ z_xilf(tmp, -1);
2241 
2242         // Restore previously spilled arguments
2243         __ lgr_if_needed(src, callee_saved_src);
2244         __ lgr_if_needed(src_pos, callee_saved_src_pos);
2245         __ lgr_if_needed(dst, callee_saved_dst);
2246         __ lgr_if_needed(dst_pos, callee_saved_dst_pos);
2247         __ lgr_if_needed(length, callee_saved_length);
2248 
2249         __ z_sr(length, tmp);
2250         __ z_ar(src_pos, tmp);
2251         __ z_ar(dst_pos, tmp);
2252       }
2253 
2254       __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2255 
2256       __ bind(cont);
2257     }
2258   }
2259 
2260 #ifdef ASSERT
2261   if (basic_type != T_OBJECT || !(flags & LIR_OpArrayCopy::type_check)) {
2262     // Sanity check the known type with the incoming class. For the
2263     // primitive case the types must match exactly with src.klass and
2264     // dst.klass each exactly matching the default type. For the
2265     // object array case, if no type check is needed then either the
2266     // dst type is exactly the expected type and the src type is a
2267     // subtype which we can't check or src is the same array as dst
2268     // but not necessarily exactly of type default_type.
2269     NearLabel known_ok, halt;
2270     metadata2reg(default_type->constant_encoding(), tmp);
2271     if (UseCompressedClassPointers) {
2272       __ encode_klass_not_null(tmp);
2273     }
2274 
2275     if (basic_type != T_OBJECT) {
2276       if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2277       else                                    { __ z_cg(tmp, dst_klass_addr); }
2278       __ branch_optimized(Assembler::bcondNotEqual, halt);
2279       if (UseCompressedClassPointers)         { __ z_c (tmp, src_klass_addr); }
2280       else                                    { __ z_cg(tmp, src_klass_addr); }
2281       __ branch_optimized(Assembler::bcondEqual, known_ok);
2282     } else {
2283       if (UseCompressedClassPointers)         { __ z_c (tmp, dst_klass_addr); }
2284       else                                    { __ z_cg(tmp, dst_klass_addr); }
2285       __ branch_optimized(Assembler::bcondEqual, known_ok);
2286       __ compareU64_and_branch(src, dst, Assembler::bcondEqual, known_ok);
2287     }
2288     __ bind(halt);
2289     __ stop("incorrect type information in arraycopy");
2290     __ bind(known_ok);
2291   }
2292 #endif
2293 
2294 #ifndef PRODUCT
2295   if (PrintC1Statistics) {
2296     __ load_const_optimized(Z_R1_scratch, Runtime1::arraycopy_count_address(basic_type));
2297     __ add2mem_32(Address(Z_R1_scratch), 1, Z_R0_scratch);
2298   }
2299 #endif
2300 
2301   __ z_sllg(tmp, src_pos, shift_amount); // index -> byte offset
2302   __ z_sllg(Z_R1_scratch, dst_pos, shift_amount); // index -> byte offset
2303 
2304   assert_different_registers(Z_ARG1, dst, dst_pos, length);
2305   __ z_la(Z_ARG1, Address(src, tmp, arrayOopDesc::base_offset_in_bytes(basic_type)));
2306   assert_different_registers(Z_ARG2, length);
2307   __ z_la(Z_ARG2, Address(dst, Z_R1_scratch, arrayOopDesc::base_offset_in_bytes(basic_type)));
2308   __ lgr_if_needed(Z_ARG3, length);
2309 
2310   bool disjoint = (flags & LIR_OpArrayCopy::overlapping) == 0;
2311   bool aligned = (flags & LIR_OpArrayCopy::unaligned) == 0;
2312   const char *name;
2313   address entry = StubRoutines::select_arraycopy_function(basic_type, aligned, disjoint, name, false);
2314   __ call_VM_leaf(entry);
2315 
2316   __ bind(*stub->continuation());
2317 }
2318 
2319 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, LIR_Opr count, LIR_Opr dest, LIR_Opr tmp) {
2320   if (dest->is_single_cpu()) {
2321     if (left->type() == T_OBJECT) {
2322       switch (code) {
2323         case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2324         case lir_shr:  __ z_srag (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2325         case lir_ushr: __ z_srlg (dest->as_register(), left->as_register(), 0, count->as_register()); break;
2326         default: ShouldNotReachHere();
2327       }
2328     } else {
2329       assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2330       Register masked_count = Z_R1_scratch;
2331       __ z_lr(masked_count, count->as_register());
2332       __ z_nill(masked_count, 31);
2333       switch (code) {
2334         case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), 0, masked_count); break;
2335         case lir_shr:  __ z_sra  (dest->as_register(), 0, masked_count); break;
2336         case lir_ushr: __ z_srl  (dest->as_register(), 0, masked_count); break;
2337         default: ShouldNotReachHere();
2338       }
2339     }
2340   } else {
2341     switch (code) {
2342       case lir_shl:  __ z_sllg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2343       case lir_shr:  __ z_srag (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2344       case lir_ushr: __ z_srlg (dest->as_register_lo(), left->as_register_lo(), 0, count->as_register()); break;
2345       default: ShouldNotReachHere();
2346     }
2347   }
2348 }
2349 
2350 void LIR_Assembler::shift_op(LIR_Code code, LIR_Opr left, jint count, LIR_Opr dest) {
2351   if (left->type() == T_OBJECT) {
2352     count = count & 63;  // Shouldn't shift by more than sizeof(intptr_t).
2353     Register l = left->as_register();
2354     Register d = dest->as_register_lo();
2355     switch (code) {
2356       case lir_shl:  __ z_sllg (d, l, count); break;
2357       case lir_shr:  __ z_srag (d, l, count); break;
2358       case lir_ushr: __ z_srlg (d, l, count); break;
2359       default: ShouldNotReachHere();
2360     }
2361     return;
2362   }
2363   if (dest->is_single_cpu()) {
2364     assert(code == lir_shl || left == dest, "left and dest must be equal for 2 operand form right shifts");
2365     count = count & 0x1F; // Java spec
2366     switch (code) {
2367       case lir_shl:  __ z_sllg (dest->as_register(), left->as_register(), count); break;
2368       case lir_shr:  __ z_sra  (dest->as_register(), count); break;
2369       case lir_ushr: __ z_srl  (dest->as_register(), count); break;
2370       default: ShouldNotReachHere();
2371     }
2372   } else if (dest->is_double_cpu()) {
2373     count = count & 63; // Java spec
2374     Register l = left->as_pointer_register();
2375     Register d = dest->as_pointer_register();
2376     switch (code) {
2377       case lir_shl:  __ z_sllg (d, l, count); break;
2378       case lir_shr:  __ z_srag (d, l, count); break;
2379       case lir_ushr: __ z_srlg (d, l, count); break;
2380       default: ShouldNotReachHere();
2381     }
2382   } else {
2383     ShouldNotReachHere();
2384   }
2385 }
2386 
2387 void LIR_Assembler::emit_alloc_obj(LIR_OpAllocObj* op) {
2388   if (op->init_check()) {
2389     // Make sure klass is initialized & doesn't have finalizer.
2390     const int state_offset = in_bytes(InstanceKlass::init_state_offset());
2391     Register iklass = op->klass()->as_register();
2392     add_debug_info_for_null_check_here(op->stub()->info());
2393     if (Immediate::is_uimm12(state_offset)) {
2394       __ z_cli(state_offset, iklass, InstanceKlass::fully_initialized);
2395     } else {
2396       __ z_cliy(state_offset, iklass, InstanceKlass::fully_initialized);
2397     }
2398     __ branch_optimized(Assembler::bcondNotEqual, *op->stub()->entry()); // Use long branch, because slow_case might be far.
2399   }
2400   __ allocate_object(op->obj()->as_register(),
2401                      op->tmp1()->as_register(),
2402                      op->tmp2()->as_register(),
2403                      op->header_size(),
2404                      op->object_size(),
2405                      op->klass()->as_register(),
2406                      *op->stub()->entry());
2407   __ bind(*op->stub()->continuation());
2408   __ verify_oop(op->obj()->as_register());
2409 }
2410 
2411 void LIR_Assembler::emit_alloc_array(LIR_OpAllocArray* op) {
2412   Register len = op->len()->as_register();
2413   __ move_reg_if_needed(len, T_LONG, len, T_INT); // sign extend
2414 
2415   if (UseSlowPath ||
2416       (!UseFastNewObjectArray && (op->type() == T_OBJECT || op->type() == T_ARRAY)) ||
2417       (!UseFastNewTypeArray   && (op->type() != T_OBJECT && op->type() != T_ARRAY))) {
2418     __ z_brul(*op->stub()->entry());
2419   } else {
2420     __ allocate_array(op->obj()->as_register(),
2421                       op->len()->as_register(),
2422                       op->tmp1()->as_register(),
2423                       op->tmp2()->as_register(),
2424                       arrayOopDesc::header_size(op->type()),
2425                       type2aelembytes(op->type()),
2426                       op->klass()->as_register(),
2427                       *op->stub()->entry());
2428   }
2429   __ bind(*op->stub()->continuation());
2430 }
2431 
2432 void LIR_Assembler::type_profile_helper(Register mdo, ciMethodData *md, ciProfileData *data,
2433                                         Register recv, Register tmp1, Label* update_done) {
2434   uint i;
2435   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2436     Label next_test;
2437     // See if the receiver is receiver[n].
2438     Address receiver_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2439     __ z_cg(recv, receiver_addr);
2440     __ z_brne(next_test);
2441     Address data_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)));
2442     __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2443     __ branch_optimized(Assembler::bcondAlways, *update_done);
2444     __ bind(next_test);
2445   }
2446 
2447   // Didn't find receiver; find next empty slot and fill it in.
2448   for (i = 0; i < VirtualCallData::row_limit(); i++) {
2449     Label next_test;
2450     Address recv_addr(mdo, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_offset(i)));
2451     __ z_ltg(Z_R0_scratch, recv_addr);
2452     __ z_brne(next_test);
2453     __ z_stg(recv, recv_addr);
2454     __ load_const_optimized(tmp1, DataLayout::counter_increment);
2455     __ z_stg(tmp1, md->byte_offset_of_slot(data, ReceiverTypeData::receiver_count_offset(i)), mdo);
2456     __ branch_optimized(Assembler::bcondAlways, *update_done);
2457     __ bind(next_test);
2458   }
2459 }
2460 
2461 void LIR_Assembler::setup_md_access(ciMethod* method, int bci,
2462                                     ciMethodData*& md, ciProfileData*& data, int& mdo_offset_bias) {
2463   Unimplemented();
2464 }
2465 
2466 void LIR_Assembler::store_parameter(Register r, int param_num) {
2467   assert(param_num >= 0, "invalid num");
2468   int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
2469   assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2470   __ z_stg(r, offset_in_bytes, Z_SP);
2471 }
2472 
2473 void LIR_Assembler::store_parameter(jint c, int param_num) {
2474   assert(param_num >= 0, "invalid num");
2475   int offset_in_bytes = param_num * BytesPerWord + FrameMap::first_available_sp_in_frame;
2476   assert(offset_in_bytes < frame_map()->reserved_argument_area_size(), "invalid offset");
2477   __ store_const(Address(Z_SP, offset_in_bytes), c, Z_R1_scratch, true);
2478 }
2479 
2480 void LIR_Assembler::emit_typecheck_helper(LIR_OpTypeCheck *op, Label* success, Label* failure, Label* obj_is_null) {
2481   // We always need a stub for the failure case.
2482   CodeStub* stub = op->stub();
2483   Register obj = op->object()->as_register();
2484   Register k_RInfo = op->tmp1()->as_register();
2485   Register klass_RInfo = op->tmp2()->as_register();
2486   Register dst = op->result_opr()->as_register();
2487   Register Rtmp1 = Z_R1_scratch;
2488   ciKlass* k = op->klass();
2489 
2490   assert(!op->tmp3()->is_valid(), "tmp3's not needed");
2491 
2492   // Check if it needs to be profiled.
2493   ciMethodData* md = NULL;
2494   ciProfileData* data = NULL;
2495 
2496   if (op->should_profile()) {
2497     ciMethod* method = op->profiled_method();
2498     assert(method != NULL, "Should have method");
2499     int bci = op->profiled_bci();
2500     md = method->method_data_or_null();
2501     assert(md != NULL, "Sanity");
2502     data = md->bci_to_data(bci);
2503     assert(data != NULL,                "need data for type check");
2504     assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2505   }
2506 
2507   // Temp operands do not overlap with inputs, if this is their last
2508   // use (end of range is exclusive), so a register conflict is possible.
2509   if (obj == k_RInfo) {
2510     k_RInfo = dst;
2511   } else if (obj == klass_RInfo) {
2512     klass_RInfo = dst;
2513   }
2514   assert_different_registers(obj, k_RInfo, klass_RInfo);
2515 
2516   if (op->should_profile()) {
2517     NearLabel not_null;
2518     __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2519     // Object is null; update MDO and exit.
2520     Register mdo = klass_RInfo;
2521     metadata2reg(md->constant_encoding(), mdo);
2522     Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2523     int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2524     __ or2mem_8(data_addr, header_bits);
2525     __ branch_optimized(Assembler::bcondAlways, *obj_is_null);
2526     __ bind(not_null);
2527   } else {
2528     __ compareU64_and_branch(obj, (intptr_t) 0, Assembler::bcondEqual, *obj_is_null);
2529   }
2530 
2531   NearLabel profile_cast_failure, profile_cast_success;
2532   Label *failure_target = op->should_profile() ? &profile_cast_failure : failure;
2533   Label *success_target = op->should_profile() ? &profile_cast_success : success;
2534 
2535   // Patching may screw with our temporaries on sparc,
2536   // so let's do it before loading the class.
2537   if (k->is_loaded()) {
2538     metadata2reg(k->constant_encoding(), k_RInfo);
2539   } else {
2540     klass2reg_with_patching(k_RInfo, op->info_for_patch());
2541   }
2542   assert(obj != k_RInfo, "must be different");
2543 
2544   __ verify_oop(obj);
2545 
2546   // Get object class.
2547   // Not a safepoint as obj null check happens earlier.
2548   if (op->fast_check()) {
2549     if (UseCompressedClassPointers) {
2550       __ load_klass(klass_RInfo, obj);
2551       __ compareU64_and_branch(k_RInfo, klass_RInfo, Assembler::bcondNotEqual, *failure_target);
2552     } else {
2553       __ z_cg(k_RInfo, Address(obj, oopDesc::klass_offset_in_bytes()));
2554       __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2555     }
2556     // Successful cast, fall through to profile or jump.
2557   } else {
2558     bool need_slow_path = !k->is_loaded() ||
2559                           ((int) k->super_check_offset() == in_bytes(Klass::secondary_super_cache_offset()));
2560     intptr_t super_check_offset = k->is_loaded() ? k->super_check_offset() : -1L;
2561     __ load_klass(klass_RInfo, obj);
2562     // Perform the fast part of the checking logic.
2563     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1,
2564                                      (need_slow_path ? success_target : NULL),
2565                                      failure_target, NULL,
2566                                      RegisterOrConstant(super_check_offset));
2567     if (need_slow_path) {
2568       // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2569       address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2570       store_parameter(klass_RInfo, 0); // sub
2571       store_parameter(k_RInfo, 1);     // super
2572       emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2573       CHECK_BAILOUT2(profile_cast_failure, profile_cast_success);
2574       __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2575       // Fall through to success case.
2576     }
2577   }
2578 
2579   if (op->should_profile()) {
2580     Register mdo = klass_RInfo, recv = k_RInfo;
2581     assert_different_registers(obj, mdo, recv);
2582     __ bind(profile_cast_success);
2583     metadata2reg(md->constant_encoding(), mdo);
2584     __ load_klass(recv, obj);
2585     type_profile_helper(mdo, md, data, recv, Rtmp1, success);
2586     __ branch_optimized(Assembler::bcondAlways, *success);
2587 
2588     __ bind(profile_cast_failure);
2589     metadata2reg(md->constant_encoding(), mdo);
2590     __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2591     __ branch_optimized(Assembler::bcondAlways, *failure);
2592   } else {
2593     __ branch_optimized(Assembler::bcondAlways, *success);
2594   }
2595 }
2596 
2597 void LIR_Assembler::emit_opTypeCheck(LIR_OpTypeCheck* op) {
2598   LIR_Code code = op->code();
2599   if (code == lir_store_check) {
2600     Register value = op->object()->as_register();
2601     Register array = op->array()->as_register();
2602     Register k_RInfo = op->tmp1()->as_register();
2603     Register klass_RInfo = op->tmp2()->as_register();
2604     Register Rtmp1 = Z_R1_scratch;
2605 
2606     CodeStub* stub = op->stub();
2607 
2608     // Check if it needs to be profiled.
2609     ciMethodData* md = NULL;
2610     ciProfileData* data = NULL;
2611 
2612     assert_different_registers(value, k_RInfo, klass_RInfo);
2613 
2614     if (op->should_profile()) {
2615       ciMethod* method = op->profiled_method();
2616       assert(method != NULL, "Should have method");
2617       int bci = op->profiled_bci();
2618       md = method->method_data_or_null();
2619       assert(md != NULL, "Sanity");
2620       data = md->bci_to_data(bci);
2621       assert(data != NULL,                "need data for type check");
2622       assert(data->is_ReceiverTypeData(), "need ReceiverTypeData for type check");
2623     }
2624     NearLabel profile_cast_success, profile_cast_failure, done;
2625     Label *success_target = op->should_profile() ? &profile_cast_success : &done;
2626     Label *failure_target = op->should_profile() ? &profile_cast_failure : stub->entry();
2627 
2628     if (op->should_profile()) {
2629       NearLabel not_null;
2630       __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondNotEqual, not_null);
2631       // Object is null; update MDO and exit.
2632       Register mdo = klass_RInfo;
2633       metadata2reg(md->constant_encoding(), mdo);
2634       Address data_addr(mdo, md->byte_offset_of_slot(data, DataLayout::header_offset()));
2635       int header_bits = DataLayout::flag_mask_to_header_mask(BitData::null_seen_byte_constant());
2636       __ or2mem_8(data_addr, header_bits);
2637       __ branch_optimized(Assembler::bcondAlways, done);
2638       __ bind(not_null);
2639     } else {
2640       __ compareU64_and_branch(value, (intptr_t) 0, Assembler::bcondEqual, done);
2641     }
2642 
2643     add_debug_info_for_null_check_here(op->info_for_exception());
2644     __ load_klass(k_RInfo, array);
2645     __ load_klass(klass_RInfo, value);
2646 
2647     // Get instance klass (it's already uncompressed).
2648     __ z_lg(k_RInfo, Address(k_RInfo, ObjArrayKlass::element_klass_offset()));
2649     // Perform the fast part of the checking logic.
2650     __ check_klass_subtype_fast_path(klass_RInfo, k_RInfo, Rtmp1, success_target, failure_target, NULL);
2651     // Call out-of-line instance of __ check_klass_subtype_slow_path(...):
2652     address a = Runtime1::entry_for (Runtime1::slow_subtype_check_id);
2653     store_parameter(klass_RInfo, 0); // sub
2654     store_parameter(k_RInfo, 1);     // super
2655     emit_call_c(a); // Sets condition code 0 for match (2 otherwise).
2656     CHECK_BAILOUT3(profile_cast_success, profile_cast_failure, done);
2657     __ branch_optimized(Assembler::bcondNotEqual, *failure_target);
2658     // Fall through to success case.
2659 
2660     if (op->should_profile()) {
2661       Register mdo = klass_RInfo, recv = k_RInfo;
2662       assert_different_registers(value, mdo, recv);
2663       __ bind(profile_cast_success);
2664       metadata2reg(md->constant_encoding(), mdo);
2665       __ load_klass(recv, value);
2666       type_profile_helper(mdo, md, data, recv, Rtmp1, &done);
2667       __ branch_optimized(Assembler::bcondAlways, done);
2668 
2669       __ bind(profile_cast_failure);
2670       metadata2reg(md->constant_encoding(), mdo);
2671       __ add2mem_64(Address(mdo, md->byte_offset_of_slot(data, CounterData::count_offset())), -(int)DataLayout::counter_increment, Rtmp1);
2672       __ branch_optimized(Assembler::bcondAlways, *stub->entry());
2673     }
2674 
2675     __ bind(done);
2676   } else {
2677     if (code == lir_checkcast) {
2678       Register obj = op->object()->as_register();
2679       Register dst = op->result_opr()->as_register();
2680       NearLabel success;
2681       emit_typecheck_helper(op, &success, op->stub()->entry(), &success);
2682       __ bind(success);
2683       __ lgr_if_needed(dst, obj);
2684     } else {
2685       if (code == lir_instanceof) {
2686         Register obj = op->object()->as_register();
2687         Register dst = op->result_opr()->as_register();
2688         NearLabel success, failure, done;
2689         emit_typecheck_helper(op, &success, &failure, &failure);
2690         __ bind(failure);
2691         __ clear_reg(dst);
2692         __ branch_optimized(Assembler::bcondAlways, done);
2693         __ bind(success);
2694         __ load_const_optimized(dst, 1);
2695         __ bind(done);
2696       } else {
2697         ShouldNotReachHere();
2698       }
2699     }
2700   }
2701 }
2702 
2703 void LIR_Assembler::emit_compare_and_swap(LIR_OpCompareAndSwap* op) {
2704   Register addr = op->addr()->as_pointer_register();
2705   Register t1_cmp = Z_R1_scratch;
2706   if (op->code() == lir_cas_long) {
2707     assert(VM_Version::supports_cx8(), "wrong machine");
2708     Register cmp_value_lo = op->cmp_value()->as_register_lo();
2709     Register new_value_lo = op->new_value()->as_register_lo();
2710     __ z_lgr(t1_cmp, cmp_value_lo);
2711     // Perform the compare and swap operation.
2712     __ z_csg(t1_cmp, new_value_lo, 0, addr);
2713   } else if (op->code() == lir_cas_int || op->code() == lir_cas_obj) {
2714     Register cmp_value = op->cmp_value()->as_register();
2715     Register new_value = op->new_value()->as_register();
2716     if (op->code() == lir_cas_obj) {
2717       if (UseCompressedOops) {
2718                  t1_cmp = op->tmp1()->as_register();
2719         Register t2_new = op->tmp2()->as_register();
2720         assert_different_registers(cmp_value, new_value, addr, t1_cmp, t2_new);
2721         __ oop_encoder(t1_cmp, cmp_value, true /*maybe null*/);
2722         __ oop_encoder(t2_new, new_value, true /*maybe null*/);
2723         __ z_cs(t1_cmp, t2_new, 0, addr);
2724       } else {
2725         __ z_lgr(t1_cmp, cmp_value);
2726         __ z_csg(t1_cmp, new_value, 0, addr);
2727       }
2728     } else {
2729       __ z_lr(t1_cmp, cmp_value);
2730       __ z_cs(t1_cmp, new_value, 0, addr);
2731     }
2732   } else {
2733     ShouldNotReachHere(); // new lir_cas_??
2734   }
2735 }
2736 
2737 void LIR_Assembler::set_24bit_FPU() {
2738   ShouldNotCallThis(); // x86 only
2739 }
2740 
2741 void LIR_Assembler::reset_FPU() {
2742   ShouldNotCallThis(); // x86 only
2743 }
2744 
2745 void LIR_Assembler::breakpoint() {
2746   Unimplemented();
2747   //  __ breakpoint_trap();
2748 }
2749 
2750 void LIR_Assembler::push(LIR_Opr opr) {
2751   ShouldNotCallThis(); // unused
2752 }
2753 
2754 void LIR_Assembler::pop(LIR_Opr opr) {
2755   ShouldNotCallThis(); // unused
2756 }
2757 
2758 void LIR_Assembler::monitor_address(int monitor_no, LIR_Opr dst_opr) {
2759   Address addr = frame_map()->address_for_monitor_lock(monitor_no);
2760   __ add2reg(dst_opr->as_register(), addr.disp(), addr.base());
2761 }
2762 
2763 void LIR_Assembler::emit_lock(LIR_OpLock* op) {
2764   Register obj = op->obj_opr()->as_register();  // May not be an oop.
2765   Register hdr = op->hdr_opr()->as_register();
2766   Register lock = op->lock_opr()->as_register();
2767   if (!UseFastLocking) {
2768     __ branch_optimized(Assembler::bcondAlways, *op->stub()->entry());
2769   } else if (op->code() == lir_lock) {
2770     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2771     // Add debug info for NullPointerException only if one is possible.
2772     if (op->info() != NULL) {
2773       add_debug_info_for_null_check_here(op->info());
2774     }
2775     __ lock_object(hdr, obj, lock, *op->stub()->entry());
2776     // done
2777   } else if (op->code() == lir_unlock) {
2778     assert(BasicLock::displaced_header_offset_in_bytes() == 0, "lock_reg must point to the displaced header");
2779     __ unlock_object(hdr, obj, lock, *op->stub()->entry());
2780   } else {
2781     ShouldNotReachHere();
2782   }
2783   __ bind(*op->stub()->continuation());
2784 }
2785 
2786 void LIR_Assembler::emit_profile_call(LIR_OpProfileCall* op) {
2787   ciMethod* method = op->profiled_method();
2788   int bci          = op->profiled_bci();
2789   ciMethod* callee = op->profiled_callee();
2790 
2791   // Update counter for all call types.
2792   ciMethodData* md = method->method_data_or_null();
2793   assert(md != NULL, "Sanity");
2794   ciProfileData* data = md->bci_to_data(bci);
2795   assert(data != NULL && data->is_CounterData(), "need CounterData for calls");
2796   assert(op->mdo()->is_single_cpu(),  "mdo must be allocated");
2797   Register mdo  = op->mdo()->as_register();
2798   assert(op->tmp1()->is_double_cpu(), "tmp1 must be allocated");
2799   Register tmp1 = op->tmp1()->as_register_lo();
2800   metadata2reg(md->constant_encoding(), mdo);
2801 
2802   Address counter_addr(mdo, md->byte_offset_of_slot(data, CounterData::count_offset()));
2803   // Perform additional virtual call profiling for invokevirtual and
2804   // invokeinterface bytecodes
2805   if (op->should_profile_receiver_type()) {
2806     assert(op->recv()->is_single_cpu(), "recv must be allocated");
2807     Register recv = op->recv()->as_register();
2808     assert_different_registers(mdo, tmp1, recv);
2809     assert(data->is_VirtualCallData(), "need VirtualCallData for virtual calls");
2810     ciKlass* known_klass = op->known_holder();
2811     if (C1OptimizeVirtualCallProfiling && known_klass != NULL) {
2812       // We know the type that will be seen at this call site; we can
2813       // statically update the MethodData* rather than needing to do
2814       // dynamic tests on the receiver type.
2815 
2816       // NOTE: we should probably put a lock around this search to
2817       // avoid collisions by concurrent compilations.
2818       ciVirtualCallData* vc_data = (ciVirtualCallData*) data;
2819       uint i;
2820       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2821         ciKlass* receiver = vc_data->receiver(i);
2822         if (known_klass->equals(receiver)) {
2823           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2824           __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2825           return;
2826         }
2827       }
2828 
2829       // Receiver type not found in profile data. Select an empty slot.
2830 
2831       // Note that this is less efficient than it should be because it
2832       // always does a write to the receiver part of the
2833       // VirtualCallData rather than just the first time.
2834       for (i = 0; i < VirtualCallData::row_limit(); i++) {
2835         ciKlass* receiver = vc_data->receiver(i);
2836         if (receiver == NULL) {
2837           Address recv_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_offset(i)));
2838           metadata2reg(known_klass->constant_encoding(), tmp1);
2839           __ z_stg(tmp1, recv_addr);
2840           Address data_addr(mdo, md->byte_offset_of_slot(data, VirtualCallData::receiver_count_offset(i)));
2841           __ add2mem_64(data_addr, DataLayout::counter_increment, tmp1);
2842           return;
2843         }
2844       }
2845     } else {
2846       __ load_klass(recv, recv);
2847       NearLabel update_done;
2848       type_profile_helper(mdo, md, data, recv, tmp1, &update_done);
2849       // Receiver did not match any saved receiver and there is no empty row for it.
2850       // Increment total counter to indicate polymorphic case.
2851       __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2852       __ bind(update_done);
2853     }
2854   } else {
2855     // static call
2856     __ add2mem_64(counter_addr, DataLayout::counter_increment, tmp1);
2857   }
2858 }
2859 
2860 void LIR_Assembler::align_backward_branch_target() {
2861   __ align(OptoLoopAlignment);
2862 }
2863 
2864 void LIR_Assembler::emit_delay(LIR_OpDelay* op) {
2865   ShouldNotCallThis(); // There are no delay slots on ZARCH_64.
2866 }
2867 
2868 void LIR_Assembler::negate(LIR_Opr left, LIR_Opr dest, LIR_Opr tmp) {
2869   // tmp must be unused
2870   assert(tmp->is_illegal(), "wasting a register if tmp is allocated");
2871   assert(left->is_register(), "can only handle registers");
2872 
2873   if (left->is_single_cpu()) {
2874     __ z_lcr(dest->as_register(), left->as_register());
2875   } else if (left->is_single_fpu()) {
2876     __ z_lcebr(dest->as_float_reg(), left->as_float_reg());
2877   } else if (left->is_double_fpu()) {
2878     __ z_lcdbr(dest->as_double_reg(), left->as_double_reg());
2879   } else {
2880     assert(left->is_double_cpu(), "Must be a long");
2881     __ z_lcgr(dest->as_register_lo(), left->as_register_lo());
2882   }
2883 }
2884 
2885 void LIR_Assembler::fxch(int i) {
2886   ShouldNotCallThis(); // x86 only
2887 }
2888 
2889 void LIR_Assembler::fld(int i) {
2890   ShouldNotCallThis(); // x86 only
2891 }
2892 
2893 void LIR_Assembler::ffree(int i) {
2894   ShouldNotCallThis(); // x86 only
2895 }
2896 
2897 void LIR_Assembler::rt_call(LIR_Opr result, address dest,
2898                             const LIR_OprList* args, LIR_Opr tmp, CodeEmitInfo* info) {
2899   assert(!tmp->is_valid(), "don't need temporary");
2900   emit_call_c(dest);
2901   CHECK_BAILOUT();
2902   if (info != NULL) {
2903     add_call_info_here(info);
2904   }
2905 }
2906 
2907 void LIR_Assembler::volatile_move_op(LIR_Opr src, LIR_Opr dest, BasicType type, CodeEmitInfo* info) {
2908   ShouldNotCallThis(); // not needed on ZARCH_64
2909 }
2910 
2911 void LIR_Assembler::membar() {
2912   __ z_fence();
2913 }
2914 
2915 void LIR_Assembler::membar_acquire() {
2916   __ z_acquire();
2917 }
2918 
2919 void LIR_Assembler::membar_release() {
2920   __ z_release();
2921 }
2922 
2923 void LIR_Assembler::membar_loadload() {
2924   __ z_acquire();
2925 }
2926 
2927 void LIR_Assembler::membar_storestore() {
2928   __ z_release();
2929 }
2930 
2931 void LIR_Assembler::membar_loadstore() {
2932   __ z_acquire();
2933 }
2934 
2935 void LIR_Assembler::membar_storeload() {
2936   __ z_fence();
2937 }
2938 
2939 void LIR_Assembler::on_spin_wait() {
2940   Unimplemented();
2941 }
2942 
2943 void LIR_Assembler::leal(LIR_Opr addr_opr, LIR_Opr dest, LIR_PatchCode patch_code, CodeEmitInfo* info) {
2944   assert(patch_code == lir_patch_none, "Patch code not supported");
2945   LIR_Address* addr = addr_opr->as_address_ptr();
2946   assert(addr->scale() == LIR_Address::times_1, "scaling unsupported");
2947   __ load_address(dest->as_pointer_register(), as_Address(addr));
2948 }
2949 
2950 void LIR_Assembler::get_thread(LIR_Opr result_reg) {
2951   ShouldNotCallThis(); // unused
2952 }
2953 
2954 #ifdef ASSERT
2955 // Emit run-time assertion.
2956 void LIR_Assembler::emit_assert(LIR_OpAssert* op) {
2957   Unimplemented();
2958 }
2959 #endif
2960 
2961 void LIR_Assembler::peephole(LIR_List*) {
2962   // Do nothing for now.
2963 }
2964 
2965 void LIR_Assembler::atomic_op(LIR_Code code, LIR_Opr src, LIR_Opr data, LIR_Opr dest, LIR_Opr tmp) {
2966   assert(code == lir_xadd, "lir_xchg not supported");
2967   Address src_addr = as_Address(src->as_address_ptr());
2968   Register base = src_addr.base();
2969   intptr_t disp = src_addr.disp();
2970   if (src_addr.index()->is_valid()) {
2971     // LAA and LAAG do not support index register.
2972     __ load_address(Z_R1_scratch, src_addr);
2973     base = Z_R1_scratch;
2974     disp = 0;
2975   }
2976   if (data->type() == T_INT) {
2977     __ z_laa(dest->as_register(), data->as_register(), disp, base);
2978   } else if (data->type() == T_LONG) {
2979     assert(data->as_register_lo() == data->as_register_hi(), "should be a single register");
2980     __ z_laag(dest->as_register_lo(), data->as_register_lo(), disp, base);
2981   } else {
2982     ShouldNotReachHere();
2983   }
2984 }
2985 
2986 void LIR_Assembler::emit_profile_type(LIR_OpProfileType* op) {
2987   Register obj = op->obj()->as_register();
2988   Register tmp1 = op->tmp()->as_pointer_register();
2989   Register tmp2 = Z_R1_scratch;
2990   Address mdo_addr = as_Address(op->mdp()->as_address_ptr());
2991   ciKlass* exact_klass = op->exact_klass();
2992   intptr_t current_klass = op->current_klass();
2993   bool not_null = op->not_null();
2994   bool no_conflict = op->no_conflict();
2995 
2996   Label update, next, none, null_seen, init_klass;
2997 
2998   bool do_null = !not_null;
2999   bool exact_klass_set = exact_klass != NULL && ciTypeEntries::valid_ciklass(current_klass) == exact_klass;
3000   bool do_update = !TypeEntries::is_type_unknown(current_klass) && !exact_klass_set;
3001 
3002   assert(do_null || do_update, "why are we here?");
3003   assert(!TypeEntries::was_null_seen(current_klass) || do_update, "why are we here?");
3004 
3005   __ verify_oop(obj);
3006 
3007   if (do_null || tmp1 != obj DEBUG_ONLY(|| true)) {
3008     __ z_ltgr(tmp1, obj);
3009   }
3010   if (do_null) {
3011     __ z_brnz(update);
3012     if (!TypeEntries::was_null_seen(current_klass)) {
3013       __ z_lg(tmp1, mdo_addr);
3014       __ z_oill(tmp1, TypeEntries::null_seen);
3015       __ z_stg(tmp1, mdo_addr);
3016     }
3017     if (do_update) {
3018       __ z_bru(next);
3019     }
3020   } else {
3021     __ asm_assert_ne("unexpect null obj", __LINE__);
3022   }
3023 
3024   __ bind(update);
3025 
3026   if (do_update) {
3027 #ifdef ASSERT
3028     if (exact_klass != NULL) {
3029       __ load_klass(tmp1, tmp1);
3030       metadata2reg(exact_klass->constant_encoding(), tmp2);
3031       __ z_cgr(tmp1, tmp2);
3032       __ asm_assert_eq("exact klass and actual klass differ", __LINE__);
3033     }
3034 #endif
3035 
3036     Label do_update;
3037     __ z_lg(tmp2, mdo_addr);
3038 
3039     if (!no_conflict) {
3040       if (exact_klass == NULL || TypeEntries::is_type_none(current_klass)) {
3041         if (exact_klass != NULL) {
3042           metadata2reg(exact_klass->constant_encoding(), tmp1);
3043         } else {
3044           __ load_klass(tmp1, tmp1);
3045         }
3046 
3047         // Klass seen before: nothing to do (regardless of unknown bit).
3048         __ z_lgr(Z_R0_scratch, tmp2);
3049         assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3050         __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3051         __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3052 
3053         // Already unknown: Nothing to do anymore.
3054         __ z_tmll(tmp2, TypeEntries::type_unknown);
3055         __ z_brc(Assembler::bcondAllOne, next);
3056 
3057         if (TypeEntries::is_type_none(current_klass)) {
3058           __ z_lgr(Z_R0_scratch, tmp2);
3059           assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3060           __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3061           __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, init_klass);
3062         }
3063       } else {
3064         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3065                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "conflict only");
3066 
3067         // Already unknown: Nothing to do anymore.
3068         __ z_tmll(tmp2, TypeEntries::type_unknown);
3069         __ z_brc(Assembler::bcondAllOne, next);
3070       }
3071 
3072       // Different than before. Cannot keep accurate profile.
3073       __ z_oill(tmp2, TypeEntries::type_unknown);
3074       __ z_bru(do_update);
3075     } else {
3076       // There's a single possible klass at this profile point.
3077       assert(exact_klass != NULL, "should be");
3078       if (TypeEntries::is_type_none(current_klass)) {
3079         metadata2reg(exact_klass->constant_encoding(), tmp1);
3080         __ z_lgr(Z_R0_scratch, tmp2);
3081         assert(Immediate::is_uimm(~TypeEntries::type_klass_mask, 16), "or change following instruction");
3082         __ z_nill(Z_R0_scratch, TypeEntries::type_klass_mask & 0xFFFF);
3083         __ compareU64_and_branch(Z_R0_scratch, tmp1, Assembler::bcondEqual, next);
3084 #ifdef ASSERT
3085         {
3086           Label ok;
3087           __ z_lgr(Z_R0_scratch, tmp2);
3088           assert(Immediate::is_uimm(~TypeEntries::type_mask, 16), "or change following instruction");
3089           __ z_nill(Z_R0_scratch, TypeEntries::type_mask & 0xFFFF);
3090           __ compareU64_and_branch(Z_R0_scratch, (intptr_t)0, Assembler::bcondEqual, ok);
3091           __ stop("unexpected profiling mismatch");
3092           __ bind(ok);
3093         }
3094 #endif
3095 
3096       } else {
3097         assert(ciTypeEntries::valid_ciklass(current_klass) != NULL &&
3098                ciTypeEntries::valid_ciklass(current_klass) != exact_klass, "inconsistent");
3099 
3100         // Already unknown: Nothing to do anymore.
3101         __ z_tmll(tmp2, TypeEntries::type_unknown);
3102         __ z_brc(Assembler::bcondAllOne, next);
3103         __ z_oill(tmp2, TypeEntries::type_unknown);
3104         __ z_bru(do_update);
3105       }
3106     }
3107 
3108     __ bind(init_klass);
3109     // Combine klass and null_seen bit (only used if (tmp & type_mask)==0).
3110     __ z_ogr(tmp2, tmp1);
3111 
3112     __ bind(do_update);
3113     __ z_stg(tmp2, mdo_addr);
3114 
3115     __ bind(next);
3116   }
3117 }
3118 
3119 void LIR_Assembler::emit_updatecrc32(LIR_OpUpdateCRC32* op) {
3120   assert(op->crc()->is_single_cpu(), "crc must be register");
3121   assert(op->val()->is_single_cpu(), "byte value must be register");
3122   assert(op->result_opr()->is_single_cpu(), "result must be register");
3123   Register crc = op->crc()->as_register();
3124   Register val = op->val()->as_register();
3125   Register res = op->result_opr()->as_register();
3126 
3127   assert_different_registers(val, crc, res);
3128 
3129   __ load_const_optimized(res, StubRoutines::crc_table_addr());
3130   __ kernel_crc32_singleByteReg(crc, val, res, true);
3131   __ z_lgfr(res, crc);
3132 }
3133 
3134 #undef __