1 /*
   2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.font;
  27 
  28 import java.nio.ByteBuffer;
  29 import java.nio.CharBuffer;
  30 import java.nio.IntBuffer;
  31 import java.util.Locale;
  32 import java.nio.charset.*;
  33 
  34 /*
  35  * A tt font has a CMAP table which is in turn made up of sub-tables which
  36  * describe the char to glyph mapping in (possibly) multiple ways.
  37  * CMAP subtables are described by 3 values.
  38  * 1. Platform ID (eg 3=Microsoft, which is the id we look for in JDK)
  39  * 2. Encoding (eg 0=symbol, 1=unicode)
  40  * 3. TrueType subtable format (how the char->glyph mapping for the encoding
  41  * is stored in the subtable). See the TrueType spec. Format 4 is required
  42  * by MS in fonts for windows. Its uses segmented mapping to delta values.
  43  * Most typically we see are (3,1,4) :
  44  * CMAP Platform ID=3 is what we use.
  45  * Encodings that are used in practice by JDK on Solaris are
  46  *  symbol (3,0)
  47  *  unicode (3,1)
  48  *  GBK (3,5) (note that solaris zh fonts report 3,4 but are really 3,5)
  49  * The format for almost all subtables is 4. However the solaris (3,5)
  50  * encodings are typically in format 2.
  51  */
  52 abstract class CMap {
  53 
  54 //     static char WingDings_b2c[] = {
  55 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  56 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  57 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  58 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  59 //         0xfffd, 0xfffd, 0x2702, 0x2701, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  60 //         0xfffd, 0x2706, 0x2709, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  61 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  62 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2707, 0x270d,
  63 //         0xfffd, 0x270c, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  64 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  65 //         0xfffd, 0x2708, 0xfffd, 0xfffd, 0x2744, 0xfffd, 0x271e, 0xfffd,
  66 //         0x2720, 0x2721, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  67 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  68 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  69 //         0xfffd, 0x2751, 0x2752, 0xfffd, 0xfffd, 0x2756, 0xfffd, 0xfffd,
  70 //         0xfffd, 0xfffd, 0xfffd, 0x2740, 0x273f, 0x275d, 0x275e, 0xfffd,
  71 //         0xfffd, 0x2780, 0x2781, 0x2782, 0x2783, 0x2784, 0x2785, 0x2786,
  72 //         0x2787, 0x2788, 0x2789, 0xfffd, 0x278a, 0x278b, 0x278c, 0x278d,
  73 //         0x278e, 0x278f, 0x2790, 0x2791, 0x2792, 0x2793, 0xfffd, 0xfffd,
  74 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  75 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x274d, 0xfffd,
  76 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2736, 0x2734, 0xfffd, 0x2735,
  77 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x272a, 0x2730, 0xfffd,
  78 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  79 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x27a5, 0xfffd, 0x27a6, 0xfffd,
  80 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  81 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  82 //         0x27a2, 0xfffd, 0xfffd, 0xfffd, 0x27b3, 0xfffd, 0xfffd, 0xfffd,
  83 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  84 //         0x27a1, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  85 //         0x27a9, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  86 //         0xfffd, 0xfffd, 0xfffd, 0x2717, 0x2713, 0xfffd, 0xfffd, 0xfffd,
  87 //    };
  88 
  89 //     static char Symbols_b2c[] = {
  90 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  91 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  92 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  93 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  94 //         0xfffd, 0xfffd, 0x2200, 0xfffd, 0x2203, 0xfffd, 0xfffd, 0x220d,
  95 //         0xfffd, 0xfffd, 0x2217, 0xfffd, 0xfffd, 0x2212, 0xfffd, 0xfffd,
  96 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  97 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
  98 //         0x2245, 0x0391, 0x0392, 0x03a7, 0x0394, 0x0395, 0x03a6, 0x0393,
  99 //         0x0397, 0x0399, 0x03d1, 0x039a, 0x039b, 0x039c, 0x039d, 0x039f,
 100 //         0x03a0, 0x0398, 0x03a1, 0x03a3, 0x03a4, 0x03a5, 0x03c2, 0x03a9,
 101 //         0x039e, 0x03a8, 0x0396, 0xfffd, 0x2234, 0xfffd, 0x22a5, 0xfffd,
 102 //         0xfffd, 0x03b1, 0x03b2, 0x03c7, 0x03b4, 0x03b5, 0x03c6, 0x03b3,
 103 //         0x03b7, 0x03b9, 0x03d5, 0x03ba, 0x03bb, 0x03bc, 0x03bd, 0x03bf,
 104 //         0x03c0, 0x03b8, 0x03c1, 0x03c3, 0x03c4, 0x03c5, 0x03d6, 0x03c9,
 105 //         0x03be, 0x03c8, 0x03b6, 0xfffd, 0xfffd, 0xfffd, 0x223c, 0xfffd,
 106 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 107 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 108 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 109 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 110 //         0xfffd, 0x03d2, 0xfffd, 0x2264, 0x2215, 0x221e, 0xfffd, 0xfffd,
 111 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 112 //         0x2218, 0xfffd, 0xfffd, 0x2265, 0xfffd, 0x221d, 0xfffd, 0x2219,
 113 //         0xfffd, 0x2260, 0x2261, 0x2248, 0x22ef, 0x2223, 0xfffd, 0xfffd,
 114 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2297, 0x2295, 0x2205, 0x2229,
 115 //         0x222a, 0x2283, 0x2287, 0x2284, 0x2282, 0x2286, 0x2208, 0x2209,
 116 //         0xfffd, 0x2207, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x221a, 0x22c5,
 117 //         0xfffd, 0x2227, 0x2228, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 118 //         0x22c4, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0x2211, 0xfffd, 0xfffd,
 119 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 120 //         0xfffd, 0xfffd, 0x222b, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 121 //         0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd, 0xfffd,
 122 //     };
 123 
 124     static final short ShiftJISEncoding = 2;
 125     static final short GBKEncoding      = 3;
 126     static final short Big5Encoding     = 4;
 127     static final short WansungEncoding  = 5;
 128     static final short JohabEncoding    = 6;
 129     static final short MSUnicodeSurrogateEncoding = 10;
 130 
 131     static final char noSuchChar = (char)0xfffd;
 132     static final int SHORTMASK = 0x0000ffff;
 133     static final int INTMASK   = 0x7fffffff;
 134 
 135     static final char[][] converterMaps = new char[7][];
 136 
 137     /*
 138      * Unicode->other encoding translation array. A pre-computed look up
 139      * which can be shared across all fonts using that encoding.
 140      * Using this saves running character coverters repeatedly.
 141      */
 142     char[] xlat;
 143     UVS uvs = null;
 144 
 145     static CMap initialize(TrueTypeFont font) {
 146 
 147         CMap cmap = null;
 148 
 149         int offset, platformID, encodingID=-1;
 150 
 151         int three0=0, three1=0, three2=0, three3=0, three4=0, three5=0,
 152             three6=0, three10=0;
 153         int zero5 = 0; // for Unicode Variation Sequences
 154         boolean threeStar = false;
 155 
 156         ByteBuffer cmapBuffer = font.getTableBuffer(TrueTypeFont.cmapTag);
 157         int cmapTableOffset = font.getTableSize(TrueTypeFont.cmapTag);
 158         short numberSubTables = cmapBuffer.getShort(2);
 159 
 160         /* locate the offsets of all 3,*  (ie Microsoft platform) encodings */
 161         for (int i=0; i<numberSubTables; i++) {
 162             cmapBuffer.position(i * 8 + 4);
 163             platformID = cmapBuffer.getShort();
 164             if (platformID == 3) {
 165                 threeStar = true;
 166                 encodingID = cmapBuffer.getShort();
 167                 offset     = cmapBuffer.getInt();
 168                 switch (encodingID) {
 169                 case 0:  three0  = offset; break; // MS Symbol encoding
 170                 case 1:  three1  = offset; break; // MS Unicode cmap
 171                 case 2:  three2  = offset; break; // ShiftJIS cmap.
 172                 case 3:  three3  = offset; break; // GBK cmap
 173                 case 4:  three4  = offset; break; // Big 5 cmap
 174                 case 5:  three5  = offset; break; // Wansung
 175                 case 6:  three6  = offset; break; // Johab
 176                 case 10: three10 = offset; break; // MS Unicode surrogates
 177                 }
 178             } else if (platformID == 0) {
 179                 encodingID = cmapBuffer.getShort();
 180                 offset     = cmapBuffer.getInt();
 181                 if (encodingID == 5) {
 182                     zero5 = offset;
 183                 }
 184             }
 185         }
 186 
 187         /* This defines the preference order for cmap subtables */
 188         if (threeStar) {
 189             if (three10 != 0) {
 190                 cmap = createCMap(cmapBuffer, three10, null);
 191             }
 192             else if  (three0 != 0) {
 193                 /* The special case treatment of these fonts leads to
 194                  * anomalies where a user can view "wingdings" and "wingdings2"
 195                  * and the latter shows all its code points in the unicode
 196                  * private use area at 0xF000->0XF0FF and the former shows
 197                  * a scattered subset of its glyphs that are known mappings to
 198                  * unicode code points.
 199                  * The primary purpose of these mappings was to facilitate
 200                  * display of symbol chars etc in composite fonts, however
 201                  * this is not needed as all these code points are covered
 202                  * by some other platform symbol font.
 203                  * Commenting this out reduces the role of these two files
 204                  * (assuming that they continue to be used in font.properties)
 205                  * to just one of contributing to the overall composite
 206                  * font metrics, and also AWT can still access the fonts.
 207                  * Clients which explicitly accessed these fonts as names
 208                  * "Symbol" and "Wingdings" (ie as physical fonts) and
 209                  * expected to see a scattering of these characters will
 210                  * see them now as missing. How much of a problem is this?
 211                  * Perhaps we could still support this mapping just for
 212                  * "Symbol.ttf" but I suspect some users would prefer it
 213                  * to be mapped in to the Latin range as that is how
 214                  * the "symbol" font is used in native apps.
 215                  */
 216 //              String name = font.platName.toLowerCase(Locale.ENGLISH);
 217 //              if (name.endsWith("symbol.ttf")) {
 218 //                  cmap = createSymbolCMap(cmapBuffer, three0, Symbols_b2c);
 219 //              } else if (name.endsWith("wingding.ttf")) {
 220 //                  cmap = createSymbolCMap(cmapBuffer, three0, WingDings_b2c);
 221 //              } else {
 222                     cmap = createCMap(cmapBuffer, three0, null);
 223 //              }
 224             }
 225             else if (three1 != 0) {
 226                 cmap = createCMap(cmapBuffer, three1, null);
 227             }
 228             else if (three2 != 0) {
 229                 cmap = createCMap(cmapBuffer, three2,
 230                                   getConverterMap(ShiftJISEncoding));
 231             }
 232             else if (three3 != 0) {
 233                 cmap = createCMap(cmapBuffer, three3,
 234                                   getConverterMap(GBKEncoding));
 235             }
 236             else if (three4 != 0) {
 237                 cmap = createCMap(cmapBuffer, three4,
 238                                   getConverterMap(Big5Encoding));
 239             }
 240             else if (three5 != 0) {
 241                 cmap = createCMap(cmapBuffer, three5,
 242                                   getConverterMap(WansungEncoding));
 243             }
 244             else if (three6 != 0) {
 245                 cmap = createCMap(cmapBuffer, three6,
 246                                   getConverterMap(JohabEncoding));
 247             }
 248         } else {
 249             /* No 3,* subtable was found. Just use whatever is the first
 250              * table listed. Not very useful but maybe better than
 251              * rejecting the font entirely?
 252              */
 253             cmap = createCMap(cmapBuffer, cmapBuffer.getInt(8), null);
 254         }
 255         // For Unicode Variation Sequences
 256         if (cmap != null && zero5 != 0) {
 257             cmap.createUVS(cmapBuffer, zero5);
 258         }
 259         return cmap;
 260     }
 261 
 262     /* speed up the converting by setting the range for double
 263      * byte characters;
 264      */
 265     static char[] getConverter(short encodingID) {
 266         int dBegin = 0x8000;
 267         int dEnd   = 0xffff;
 268         String encoding;
 269 
 270         switch (encodingID) {
 271         case ShiftJISEncoding:
 272             dBegin = 0x8140;
 273             dEnd   = 0xfcfc;
 274             encoding = "SJIS";
 275             break;
 276         case GBKEncoding:
 277             dBegin = 0x8140;
 278             dEnd   = 0xfea0;
 279             encoding = "GBK";
 280             break;
 281         case Big5Encoding:
 282             dBegin = 0xa140;
 283             dEnd   = 0xfefe;
 284             encoding = "Big5";
 285             break;
 286         case WansungEncoding:
 287             dBegin = 0xa1a1;
 288             dEnd   = 0xfede;
 289             encoding = "EUC_KR";
 290             break;
 291         case JohabEncoding:
 292             dBegin = 0x8141;
 293             dEnd   = 0xfdfe;
 294             encoding = "Johab";
 295             break;
 296         default:
 297             return null;
 298         }
 299 
 300         try {
 301             char[] convertedChars = new char[65536];
 302             for (int i=0; i<65536; i++) {
 303                 convertedChars[i] = noSuchChar;
 304             }
 305 
 306             byte[] inputBytes = new byte[(dEnd-dBegin+1)*2];
 307             char[] outputChars = new char[(dEnd-dBegin+1)];
 308 
 309             int j = 0;
 310             int firstByte;
 311             if (encodingID == ShiftJISEncoding) {
 312                 for (int i = dBegin; i <= dEnd; i++) {
 313                     firstByte = (i >> 8 & 0xff);
 314                     if (firstByte >= 0xa1 && firstByte <= 0xdf) {
 315                         //sjis halfwidth katakana
 316                         inputBytes[j++] = (byte)0xff;
 317                         inputBytes[j++] = (byte)0xff;
 318                     } else {
 319                         inputBytes[j++] = (byte)firstByte;
 320                         inputBytes[j++] = (byte)(i & 0xff);
 321                     }
 322                 }
 323             } else {
 324                 for (int i = dBegin; i <= dEnd; i++) {
 325                     inputBytes[j++] = (byte)(i>>8 & 0xff);
 326                     inputBytes[j++] = (byte)(i & 0xff);
 327                 }
 328             }
 329 
 330             Charset.forName(encoding).newDecoder()
 331             .onMalformedInput(CodingErrorAction.REPLACE)
 332             .onUnmappableCharacter(CodingErrorAction.REPLACE)
 333             .replaceWith("\u0000")
 334             .decode(ByteBuffer.wrap(inputBytes, 0, inputBytes.length),
 335                     CharBuffer.wrap(outputChars, 0, outputChars.length),
 336                     true);
 337 
 338             // ensure single byte ascii
 339             for (int i = 0x20; i <= 0x7e; i++) {
 340                 convertedChars[i] = (char)i;
 341             }
 342 
 343             //sjis halfwidth katakana
 344             if (encodingID == ShiftJISEncoding) {
 345                 for (int i = 0xa1; i <= 0xdf; i++) {
 346                     convertedChars[i] = (char)(i - 0xa1 + 0xff61);
 347                 }
 348             }
 349 
 350             /* It would save heap space (approx 60Kbytes for each of these
 351              * converters) if stored only valid ranges (ie returned
 352              * outputChars directly. But this is tricky since want to
 353              * include the ASCII range too.
 354              */
 355 //          System.err.println("oc.len="+outputChars.length);
 356 //          System.err.println("cc.len="+convertedChars.length);
 357 //          System.err.println("dbegin="+dBegin);
 358             System.arraycopy(outputChars, 0, convertedChars, dBegin,
 359                              outputChars.length);
 360 
 361             //return convertedChars;
 362             /* invert this map as now want it to map from Unicode
 363              * to other encoding.
 364              */
 365             char [] invertedChars = new char[65536];
 366             for (int i=0;i<65536;i++) {
 367                 if (convertedChars[i] != noSuchChar) {
 368                     invertedChars[convertedChars[i]] = (char)i;
 369                 }
 370             }
 371             return invertedChars;
 372 
 373         } catch (Exception e) {
 374             e.printStackTrace();
 375         }
 376         return null;
 377     }
 378 
 379     /*
 380      * The returned array maps to unicode from some other 2 byte encoding
 381      * eg for a 2byte index which represents a SJIS char, the indexed
 382      * value is the corresponding unicode char.
 383      */
 384     static char[] getConverterMap(short encodingID) {
 385         if (converterMaps[encodingID] == null) {
 386            converterMaps[encodingID] = getConverter(encodingID);
 387         }
 388         return converterMaps[encodingID];
 389     }
 390 
 391 
 392     static CMap createCMap(ByteBuffer buffer, int offset, char[] xlat) {
 393         /* First do a sanity check that this cmap subtable is contained
 394          * within the cmap table.
 395          */
 396         int subtableFormat = buffer.getChar(offset);
 397         long subtableLength;
 398         if (subtableFormat < 8) {
 399             subtableLength = buffer.getChar(offset+2);
 400         } else {
 401             subtableLength = buffer.getInt(offset+4) & INTMASK;
 402         }
 403         if (FontUtilities.isLogging() && offset + subtableLength > buffer.capacity()) {
 404             FontUtilities.logWarning("Cmap subtable overflows buffer.");
 405         }
 406         switch (subtableFormat) {
 407         case 0:  return new CMapFormat0(buffer, offset);
 408         case 2:  return new CMapFormat2(buffer, offset, xlat);
 409         case 4:  return new CMapFormat4(buffer, offset, xlat);
 410         case 6:  return new CMapFormat6(buffer, offset, xlat);
 411         case 8:  return new CMapFormat8(buffer, offset, xlat);
 412         case 10: return new CMapFormat10(buffer, offset, xlat);
 413         case 12: return new CMapFormat12(buffer, offset, xlat);
 414         default: throw new RuntimeException("Cmap format unimplemented: " +
 415                                             (int)buffer.getChar(offset));
 416         }
 417     }
 418 
 419     private void createUVS(ByteBuffer buffer, int offset) {
 420         int subtableFormat = buffer.getChar(offset);
 421         if (subtableFormat == 14) {
 422             long subtableLength = buffer.getInt(offset + 2) & INTMASK;
 423             if (FontUtilities.isLogging() && offset + subtableLength > buffer.capacity()) {
 424                 FontUtilities.logWarning("Cmap UVS subtable overflows buffer.");
 425             }
 426             try {
 427                 this.uvs = new UVS(buffer, offset);
 428             } catch (Throwable t) {
 429                 t.printStackTrace();
 430             }
 431         }
 432         return;
 433     }
 434 
 435 /*
 436     final char charVal(byte[] cmap, int index) {
 437         return (char)(((0xff & cmap[index]) << 8)+(0xff & cmap[index+1]));
 438     }
 439 
 440     final short shortVal(byte[] cmap, int index) {
 441         return (short)(((0xff & cmap[index]) << 8)+(0xff & cmap[index+1]));
 442     }
 443 */
 444     abstract char getGlyph(int charCode);
 445 
 446     /* Format 4 Header is
 447      * ushort format (off=0)
 448      * ushort length (off=2)
 449      * ushort language (off=4)
 450      * ushort segCountX2 (off=6)
 451      * ushort searchRange (off=8)
 452      * ushort entrySelector (off=10)
 453      * ushort rangeShift (off=12)
 454      * ushort endCount[segCount] (off=14)
 455      * ushort reservedPad
 456      * ushort startCount[segCount]
 457      * short idDelta[segCount]
 458      * idRangeOFfset[segCount]
 459      * ushort glyphIdArray[]
 460      */
 461     static class CMapFormat4 extends CMap {
 462         int segCount;
 463         int entrySelector;
 464         int rangeShift;
 465         char[] endCount;
 466         char[] startCount;
 467         short[] idDelta;
 468         char[] idRangeOffset;
 469         char[] glyphIds;
 470 
 471         CMapFormat4(ByteBuffer bbuffer, int offset, char[] xlat) {
 472 
 473             this.xlat = xlat;
 474 
 475             bbuffer.position(offset);
 476             CharBuffer buffer = bbuffer.asCharBuffer();
 477             buffer.get(); // skip, we already know format=4
 478             int subtableLength = buffer.get();
 479             /* Try to recover from some bad fonts which specify a subtable
 480              * length that would overflow the byte buffer holding the whole
 481              * cmap table. If this isn't a recoverable situation an exception
 482              * may be thrown which is caught higher up the call stack.
 483              * Whilst this may seem lenient, in practice, unless the "bad"
 484              * subtable we are using is the last one in the cmap table we
 485              * would have no way of knowing about this problem anyway.
 486              */
 487             if (offset+subtableLength > bbuffer.capacity()) {
 488                 subtableLength = bbuffer.capacity() - offset;
 489             }
 490             buffer.get(); // skip language
 491             segCount = buffer.get()/2;
 492             int searchRange = buffer.get();
 493             entrySelector = buffer.get();
 494             rangeShift    = buffer.get()/2;
 495             startCount = new char[segCount];
 496             endCount = new char[segCount];
 497             idDelta = new short[segCount];
 498             idRangeOffset = new char[segCount];
 499 
 500             for (int i=0; i<segCount; i++) {
 501                 endCount[i] = buffer.get();
 502             }
 503             buffer.get(); // 2 bytes for reserved pad
 504             for (int i=0; i<segCount; i++) {
 505                 startCount[i] = buffer.get();
 506             }
 507 
 508             for (int i=0; i<segCount; i++) {
 509                 idDelta[i] = (short)buffer.get();
 510             }
 511 
 512             for (int i=0; i<segCount; i++) {
 513                 char ctmp = buffer.get();
 514                 idRangeOffset[i] = (char)((ctmp>>1)&0xffff);
 515             }
 516             /* Can calculate the number of glyph IDs by subtracting
 517              * "pos" from the length of the cmap
 518              */
 519             int pos = (segCount*8+16)/2;
 520             buffer.position(pos);
 521             int numGlyphIds = (subtableLength/2 - pos);
 522             glyphIds = new char[numGlyphIds];
 523             for (int i=0;i<numGlyphIds;i++) {
 524                 glyphIds[i] = buffer.get();
 525             }
 526 /*
 527             System.err.println("segcount="+segCount);
 528             System.err.println("entrySelector="+entrySelector);
 529             System.err.println("rangeShift="+rangeShift);
 530             for (int j=0;j<segCount;j++) {
 531               System.err.println("j="+j+ " sc="+(int)(startCount[j]&0xffff)+
 532                                  " ec="+(int)(endCount[j]&0xffff)+
 533                                  " delta="+idDelta[j] +
 534                                  " ro="+(int)idRangeOffset[j]);
 535             }
 536 
 537             //System.err.println("numglyphs="+glyphIds.length);
 538             for (int i=0;i<numGlyphIds;i++) {
 539                   System.err.println("gid["+i+"]="+(int)glyphIds[i]);
 540             }
 541 */
 542         }
 543 
 544         char getGlyph(int charCode) {
 545 
 546             final int origCharCode = charCode;
 547             int index = 0;
 548             char glyphCode = 0;
 549 
 550             int controlGlyph = getControlCodeGlyph(charCode, true);
 551             if (controlGlyph >= 0) {
 552                 return (char)controlGlyph;
 553             }
 554 
 555             /* presence of translation array indicates that this
 556              * cmap is in some other (non-unicode encoding).
 557              * In order to look-up a char->glyph mapping we need to
 558              * translate the unicode code point to the encoding of
 559              * the cmap.
 560              * REMIND: VALID CHARCODES??
 561              */
 562             if (xlat != null) {
 563                 charCode = xlat[charCode];
 564             }
 565 
 566             /*
 567              * Citation from the TrueType (and OpenType) spec:
 568              *   The segments are sorted in order of increasing endCode
 569              *   values, and the segment values are specified in four parallel
 570              *   arrays. You search for the first endCode that is greater than
 571              *   or equal to the character code you want to map. If the
 572              *   corresponding startCode is less than or equal to the
 573              *   character code, then you use the corresponding idDelta and
 574              *   idRangeOffset to map the character code to a glyph index
 575              *   (otherwise, the missingGlyph is returned).
 576              */
 577 
 578             /*
 579              * CMAP format4 defines several fields for optimized search of
 580              * the segment list (entrySelector, searchRange, rangeShift).
 581              * However, benefits are neglible and some fonts have incorrect
 582              * data - so we use straightforward binary search (see bug 6247425)
 583              */
 584             int left = 0, right = startCount.length;
 585             index = startCount.length >> 1;
 586             while (left < right) {
 587                 if (endCount[index] < charCode) {
 588                     left = index + 1;
 589                 } else {
 590                     right = index;
 591                 }
 592                 index = (left + right) >> 1;
 593             }
 594 
 595             if (charCode >= startCount[index] && charCode <= endCount[index]) {
 596                 int rangeOffset = idRangeOffset[index];
 597 
 598                 if (rangeOffset == 0) {
 599                     glyphCode = (char)(charCode + idDelta[index]);
 600                 } else {
 601                     /* Calculate an index into the glyphIds array */
 602 
 603 /*
 604                     System.err.println("rangeoffset="+rangeOffset+
 605                                        " charCode=" + charCode +
 606                                        " scnt["+index+"]="+(int)startCount[index] +
 607                                        " segCnt="+segCount);
 608 */
 609 
 610                     int glyphIDIndex = rangeOffset - segCount + index
 611                                          + (charCode - startCount[index]);
 612                     glyphCode = glyphIds[glyphIDIndex];
 613                     if (glyphCode != 0) {
 614                         glyphCode = (char)(glyphCode + idDelta[index]);
 615                     }
 616                 }
 617             }
 618             if (glyphCode == 0) {
 619               glyphCode = getFormatCharGlyph(origCharCode);
 620             }
 621             return glyphCode;
 622         }
 623     }
 624 
 625     // Format 0: Byte Encoding table
 626     static class CMapFormat0 extends CMap {
 627         byte [] cmap;
 628 
 629         CMapFormat0(ByteBuffer buffer, int offset) {
 630 
 631             /* skip 6 bytes of format, length, and version */
 632             int len = buffer.getChar(offset+2);
 633             cmap = new byte[len-6];
 634             buffer.position(offset+6);
 635             buffer.get(cmap);
 636         }
 637 
 638         char getGlyph(int charCode) {
 639             if (charCode < 256) {
 640                 if (charCode < 0x0010) {
 641                     switch (charCode) {
 642                     case 0x0009:
 643                     case 0x000a:
 644                     case 0x000d: return CharToGlyphMapper.INVISIBLE_GLYPH_ID;
 645                     }
 646                 }
 647                 return (char)(0xff & cmap[charCode]);
 648             } else {
 649                 return 0;
 650             }
 651         }
 652     }
 653 
 654 //     static CMap createSymbolCMap(ByteBuffer buffer, int offset, char[] syms) {
 655 
 656 //      CMap cmap = createCMap(buffer, offset, null);
 657 //      if (cmap == null) {
 658 //          return null;
 659 //      } else {
 660 //          return new CMapFormatSymbol(cmap, syms);
 661 //      }
 662 //     }
 663 
 664 //     static class CMapFormatSymbol extends CMap {
 665 
 666 //      CMap cmap;
 667 //      static final int NUM_BUCKETS = 128;
 668 //      Bucket[] buckets = new Bucket[NUM_BUCKETS];
 669 
 670 //      class Bucket {
 671 //          char unicode;
 672 //          char glyph;
 673 //          Bucket next;
 674 
 675 //          Bucket(char u, char g) {
 676 //              unicode = u;
 677 //              glyph = g;
 678 //          }
 679 //      }
 680 
 681 //      CMapFormatSymbol(CMap cmap, char[] syms) {
 682 
 683 //          this.cmap = cmap;
 684 
 685 //          for (int i=0;i<syms.length;i++) {
 686 //              char unicode = syms[i];
 687 //              if (unicode != noSuchChar) {
 688 //                  char glyph = cmap.getGlyph(i + 0xf000);
 689 //                  int hash = unicode % NUM_BUCKETS;
 690 //                  Bucket bucket = new Bucket(unicode, glyph);
 691 //                  if (buckets[hash] == null) {
 692 //                      buckets[hash] = bucket;
 693 //                  } else {
 694 //                      Bucket b = buckets[hash];
 695 //                      while (b.next != null) {
 696 //                          b = b.next;
 697 //                      }
 698 //                      b.next = bucket;
 699 //                  }
 700 //              }
 701 //          }
 702 //      }
 703 
 704 //      char getGlyph(int unicode) {
 705 //          if (unicode >= 0x1000) {
 706 //              return 0;
 707 //          }
 708 //          else if (unicode >=0xf000 && unicode < 0xf100) {
 709 //              return cmap.getGlyph(unicode);
 710 //          } else {
 711 //              Bucket b = buckets[unicode % NUM_BUCKETS];
 712 //              while (b != null) {
 713 //                  if (b.unicode == unicode) {
 714 //                      return b.glyph;
 715 //                  } else {
 716 //                      b = b.next;
 717 //                  }
 718 //              }
 719 //              return 0;
 720 //          }
 721 //      }
 722 //     }
 723 
 724     // Format 2: High-byte mapping through table
 725     static class CMapFormat2 extends CMap {
 726 
 727         char[] subHeaderKey = new char[256];
 728          /* Store subheaders in individual arrays
 729           * A SubHeader entry theortically looks like {
 730           *   char firstCode;
 731           *   char entryCount;
 732           *   short idDelta;
 733           *   char idRangeOffset;
 734           * }
 735           */
 736         char[] firstCodeArray;
 737         char[] entryCountArray;
 738         short[] idDeltaArray;
 739         char[] idRangeOffSetArray;
 740 
 741         char[] glyphIndexArray;
 742 
 743         CMapFormat2(ByteBuffer buffer, int offset, char[] xlat) {
 744 
 745             this.xlat = xlat;
 746 
 747             int tableLen = buffer.getChar(offset+2);
 748             buffer.position(offset+6);
 749             CharBuffer cBuffer = buffer.asCharBuffer();
 750             char maxSubHeader = 0;
 751             for (int i=0;i<256;i++) {
 752                 subHeaderKey[i] = cBuffer.get();
 753                 if (subHeaderKey[i] > maxSubHeader) {
 754                     maxSubHeader = subHeaderKey[i];
 755                 }
 756             }
 757             /* The value of the subHeaderKey is 8 * the subHeader index,
 758              * so the number of subHeaders can be obtained by dividing
 759              * this value bv 8 and adding 1.
 760              */
 761             int numSubHeaders = (maxSubHeader >> 3) +1;
 762             firstCodeArray = new char[numSubHeaders];
 763             entryCountArray = new char[numSubHeaders];
 764             idDeltaArray  = new short[numSubHeaders];
 765             idRangeOffSetArray  = new char[numSubHeaders];
 766             for (int i=0; i<numSubHeaders; i++) {
 767                 firstCodeArray[i] = cBuffer.get();
 768                 entryCountArray[i] = cBuffer.get();
 769                 idDeltaArray[i] = (short)cBuffer.get();
 770                 idRangeOffSetArray[i] = cBuffer.get();
 771 //              System.out.println("sh["+i+"]:fc="+(int)firstCodeArray[i]+
 772 //                                 " ec="+(int)entryCountArray[i]+
 773 //                                 " delta="+(int)idDeltaArray[i]+
 774 //                                 " offset="+(int)idRangeOffSetArray[i]);
 775             }
 776 
 777             int glyphIndexArrSize = (tableLen-518-numSubHeaders*8)/2;
 778             glyphIndexArray = new char[glyphIndexArrSize];
 779             for (int i=0; i<glyphIndexArrSize;i++) {
 780                 glyphIndexArray[i] = cBuffer.get();
 781             }
 782         }
 783 
 784         char getGlyph(int charCode) {
 785             final int origCharCode = charCode;
 786             int controlGlyph = getControlCodeGlyph(charCode, true);
 787             if (controlGlyph >= 0) {
 788                 return (char)controlGlyph;
 789             }
 790 
 791             if (xlat != null) {
 792                 charCode = xlat[charCode];
 793             }
 794 
 795             char highByte = (char)(charCode >> 8);
 796             char lowByte = (char)(charCode & 0xff);
 797             int key = subHeaderKey[highByte]>>3; // index into subHeaders
 798             char mapMe;
 799 
 800             if (key != 0) {
 801                 mapMe = lowByte;
 802             } else {
 803                 mapMe = highByte;
 804                 if (mapMe == 0) {
 805                     mapMe = lowByte;
 806                 }
 807             }
 808 
 809 //          System.err.println("charCode="+Integer.toHexString(charCode)+
 810 //                             " key="+key+ " mapMe="+Integer.toHexString(mapMe));
 811             char firstCode = firstCodeArray[key];
 812             if (mapMe < firstCode) {
 813                 return 0;
 814             } else {
 815                 mapMe -= firstCode;
 816             }
 817 
 818             if (mapMe < entryCountArray[key]) {
 819                 /* "address" arithmetic is needed to calculate the offset
 820                  * into glyphIndexArray. "idRangeOffSetArray[key]" specifies
 821                  * the number of bytes from that location in the table where
 822                  * the subarray of glyphIndexes starting at "firstCode" begins.
 823                  * Each entry in the subHeader table is 8 bytes, and the
 824                  * idRangeOffSetArray field is at offset 6 in the entry.
 825                  * The glyphIndexArray immediately follows the subHeaders.
 826                  * So if there are "N" entries then the number of bytes to the
 827                  * start of glyphIndexArray is (N-key)*8-6.
 828                  * Subtract this from the idRangeOffSetArray value to get
 829                  * the number of bytes into glyphIndexArray and divide by 2 to
 830                  * get the (char) array index.
 831                  */
 832                 int glyphArrayOffset = ((idRangeOffSetArray.length-key)*8)-6;
 833                 int glyphSubArrayStart =
 834                         (idRangeOffSetArray[key] - glyphArrayOffset)/2;
 835                 char glyphCode = glyphIndexArray[glyphSubArrayStart+mapMe];
 836                 if (glyphCode != 0) {
 837                     glyphCode += idDeltaArray[key]; //idDelta
 838                     return glyphCode;
 839                 }
 840             }
 841             return getFormatCharGlyph(origCharCode);
 842         }
 843     }
 844 
 845     // Format 6: Trimmed table mapping
 846     static class CMapFormat6 extends CMap {
 847 
 848         char firstCode;
 849         char entryCount;
 850         char[] glyphIdArray;
 851 
 852         CMapFormat6(ByteBuffer bbuffer, int offset, char[] xlat) {
 853 
 854              bbuffer.position(offset+6);
 855              CharBuffer buffer = bbuffer.asCharBuffer();
 856              firstCode = buffer.get();
 857              entryCount = buffer.get();
 858              glyphIdArray = new char[entryCount];
 859              for (int i=0; i< entryCount; i++) {
 860                  glyphIdArray[i] = buffer.get();
 861              }
 862          }
 863 
 864          char getGlyph(int charCode) {
 865             final int origCharCode = charCode;
 866             int controlGlyph = getControlCodeGlyph(charCode, true);
 867             if (controlGlyph >= 0) {
 868                 return (char)controlGlyph;
 869             }
 870 
 871              if (xlat != null) {
 872                  charCode = xlat[charCode];
 873              }
 874 
 875              charCode -= firstCode;
 876              if (charCode < 0 || charCode >= entryCount) {
 877                   return getFormatCharGlyph(origCharCode);
 878              } else {
 879                   return glyphIdArray[charCode];
 880              }
 881          }
 882     }
 883 
 884     // Format 8: mixed 16-bit and 32-bit coverage
 885     // Seems unlikely this code will ever get tested as we look for
 886     // MS platform Cmaps and MS states (in the Opentype spec on their website)
 887     // that MS doesn't support this format
 888     static class CMapFormat8 extends CMap {
 889          byte[] is32 = new byte[8192];
 890          int nGroups;
 891          int[] startCharCode;
 892          int[] endCharCode;
 893          int[] startGlyphID;
 894 
 895          CMapFormat8(ByteBuffer bbuffer, int offset, char[] xlat) {
 896 
 897              bbuffer.position(12);
 898              bbuffer.get(is32);
 899              nGroups = bbuffer.getInt() & INTMASK;
 900              // A map group record is three uint32's making for 12 bytes total
 901              if (bbuffer.remaining() < (12 * (long)nGroups)) {
 902                  throw new RuntimeException("Format 8 table exceeded");
 903              }
 904              startCharCode = new int[nGroups];
 905              endCharCode   = new int[nGroups];
 906              startGlyphID  = new int[nGroups];
 907          }
 908 
 909         char getGlyph(int charCode) {
 910             if (xlat != null) {
 911                 throw new RuntimeException("xlat array for cmap fmt=8");
 912             }
 913             return 0;
 914         }
 915 
 916     }
 917 
 918 
 919     // Format 4-byte 10: Trimmed table mapping
 920     // Seems unlikely this code will ever get tested as we look for
 921     // MS platform Cmaps and MS states (in the Opentype spec on their website)
 922     // that MS doesn't support this format
 923     static class CMapFormat10 extends CMap {
 924 
 925          long firstCode;
 926          int entryCount;
 927          char[] glyphIdArray;
 928 
 929          CMapFormat10(ByteBuffer bbuffer, int offset, char[] xlat) {
 930 
 931              bbuffer.position(offset+12);
 932              firstCode = bbuffer.getInt() & INTMASK;
 933              entryCount = bbuffer.getInt() & INTMASK;
 934              // each glyph is a uint16, so 2 bytes per value.
 935              if (bbuffer.remaining() < (2 * (long)entryCount)) {
 936                  throw new RuntimeException("Format 10 table exceeded");
 937              }
 938              CharBuffer buffer = bbuffer.asCharBuffer();
 939              glyphIdArray = new char[entryCount];
 940              for (int i=0; i< entryCount; i++) {
 941                  glyphIdArray[i] = buffer.get();
 942              }
 943          }
 944 
 945          char getGlyph(int charCode) {
 946 
 947              if (xlat != null) {
 948                  throw new RuntimeException("xlat array for cmap fmt=10");
 949              }
 950 
 951              int code = (int)(charCode - firstCode);
 952              if (code < 0 || code >= entryCount) {
 953                  return 0;
 954              } else {
 955                  return glyphIdArray[code];
 956              }
 957          }
 958     }
 959 
 960     // Format 12: Segmented coverage for UCS-4 (fonts supporting
 961     // surrogate pairs)
 962     static class CMapFormat12 extends CMap {
 963 
 964         int numGroups;
 965         int highBit =0;
 966         int power;
 967         int extra;
 968         long[] startCharCode;
 969         long[] endCharCode;
 970         int[] startGlyphID;
 971 
 972         CMapFormat12(ByteBuffer buffer, int offset, char[] xlat) {
 973             if (xlat != null) {
 974                 throw new RuntimeException("xlat array for cmap fmt=12");
 975             }
 976 
 977             buffer.position(offset+12);
 978             numGroups = buffer.getInt() & INTMASK;
 979             // A map group record is three uint32's making for 12 bytes total
 980             if (buffer.remaining() < (12 * (long)numGroups)) {
 981                 throw new RuntimeException("Format 12 table exceeded");
 982             }
 983             startCharCode = new long[numGroups];
 984             endCharCode = new long[numGroups];
 985             startGlyphID = new int[numGroups];
 986             buffer = buffer.slice();
 987             IntBuffer ibuffer = buffer.asIntBuffer();
 988             for (int i=0; i<numGroups; i++) {
 989                 startCharCode[i] = ibuffer.get() & INTMASK;
 990                 endCharCode[i] = ibuffer.get() & INTMASK;
 991                 startGlyphID[i] = ibuffer.get() & INTMASK;
 992             }
 993 
 994             /* Finds the high bit by binary searching through the bits */
 995             int value = numGroups;
 996 
 997             if (value >= 1 << 16) {
 998                 value >>= 16;
 999                 highBit += 16;
1000             }
1001 
1002             if (value >= 1 << 8) {
1003                 value >>= 8;
1004                 highBit += 8;
1005             }
1006 
1007             if (value >= 1 << 4) {
1008                 value >>= 4;
1009                 highBit += 4;
1010             }
1011 
1012             if (value >= 1 << 2) {
1013                 value >>= 2;
1014                 highBit += 2;
1015             }
1016 
1017             if (value >= 1 << 1) {
1018                 value >>= 1;
1019                 highBit += 1;
1020             }
1021 
1022             power = 1 << highBit;
1023             extra = numGroups - power;
1024         }
1025 
1026         char getGlyph(int charCode) {
1027             final int origCharCode = charCode;
1028             int controlGlyph = getControlCodeGlyph(charCode, false);
1029             if (controlGlyph >= 0) {
1030                 return (char)controlGlyph;
1031             }
1032             int probe = power;
1033             int range = 0;
1034 
1035             if (startCharCode[extra] <= charCode) {
1036                 range = extra;
1037             }
1038 
1039             while (probe > 1) {
1040                 probe >>= 1;
1041 
1042                 if (startCharCode[range+probe] <= charCode) {
1043                     range += probe;
1044                 }
1045             }
1046 
1047             if (startCharCode[range] <= charCode &&
1048                   endCharCode[range] >= charCode) {
1049                 return (char)
1050                     (startGlyphID[range] + (charCode - startCharCode[range]));
1051             }
1052 
1053             return getFormatCharGlyph(origCharCode);
1054         }
1055 
1056     }
1057 
1058     /* Used to substitute for bad Cmaps. */
1059     static class NullCMapClass extends CMap {
1060 
1061         char getGlyph(int charCode) {
1062             return 0;
1063         }
1064     }
1065 
1066     public static final NullCMapClass theNullCmap = new NullCMapClass();
1067 
1068     final int getControlCodeGlyph(int charCode, boolean noSurrogates) {
1069         if (charCode < 0x0010) {
1070             switch (charCode) {
1071             case 0x0009:
1072             case 0x000a:
1073             case 0x000d: return CharToGlyphMapper.INVISIBLE_GLYPH_ID;
1074             }
1075          } else if (noSurrogates && charCode >= 0xFFFF) {
1076             return 0;
1077         }
1078         return -1;
1079     }
1080 
1081     final char getFormatCharGlyph(int charCode) {
1082         if (charCode >= 0x200c) {
1083             if ((charCode <= 0x200f) ||
1084                 (charCode >= 0x2028 && charCode <= 0x202e) ||
1085                 (charCode >= 0x206a && charCode <= 0x206f)) {
1086                 return (char)CharToGlyphMapper.INVISIBLE_GLYPH_ID;
1087             }
1088         }
1089         return 0;
1090     }
1091 
1092     static class UVS {
1093         int numSelectors;
1094         int[] selector;
1095 
1096         //for Non-Default UVS Table
1097         int[] numUVSMapping;
1098         int[][] unicodeValue;
1099         char[][] glyphID;
1100 
1101         UVS(ByteBuffer buffer, int offset) {
1102             buffer.position(offset+6);
1103             numSelectors = buffer.getInt() & INTMASK;
1104             // A variation selector record is one 3 byte int + two int32's
1105             // making for 11 bytes per record.
1106             if (buffer.remaining() < (11 * (long)numSelectors)) {
1107                 throw new RuntimeException("Variations exceed buffer");
1108             }
1109             selector = new int[numSelectors];
1110             numUVSMapping = new int[numSelectors];
1111             unicodeValue = new int[numSelectors][];
1112             glyphID = new char[numSelectors][];
1113 
1114             for (int i = 0; i < numSelectors; i++) {
1115                 buffer.position(offset + 10 + i * 11);
1116                 selector[i] = (buffer.get() & 0xff) << 16; //UINT24
1117                 selector[i] += (buffer.get() & 0xff) << 8;
1118                 selector[i] += buffer.get() & 0xff;
1119 
1120                 //skip Default UVS Table
1121 
1122                 //for Non-Default UVS Table
1123                 int tableOffset = buffer.getInt(offset + 10 + i * 11 + 7);
1124                 if (tableOffset == 0) {
1125                     numUVSMapping[i] = 0;
1126                 } else if (tableOffset > 0) {
1127                     buffer.position(offset+tableOffset);
1128                     numUVSMapping[i] = buffer.getInt() & INTMASK;
1129                     // a UVS mapping record is one 3 byte int + uint16
1130                     // making for 5 bytes per record.
1131                     if (buffer.remaining() < (5 * (long)numUVSMapping[i])) {
1132                         throw new RuntimeException("Variations exceed buffer");
1133                     }
1134                     unicodeValue[i] = new int[numUVSMapping[i]];
1135                     glyphID[i] = new char[numUVSMapping[i]];
1136 
1137                     for (int j = 0; j < numUVSMapping[i]; j++) {
1138                         int temp = (buffer.get() & 0xff) << 16; //UINT24
1139                         temp += (buffer.get() & 0xff) << 8;
1140                         temp += buffer.get() & 0xff;
1141                         unicodeValue[i][j] = temp;
1142                         glyphID[i][j] = buffer.getChar();
1143                     }
1144                 }
1145             }
1146         }
1147 
1148         static final int VS_NOGLYPH = 0;
1149         private int getGlyph(int charCode, int variationSelector) {
1150             int targetSelector = -1;
1151             for (int i = 0; i < numSelectors; i++) {
1152                 if (selector[i] == variationSelector) {
1153                     targetSelector = i;
1154                     break;
1155                 }
1156             }
1157             if (targetSelector == -1) {
1158                 return VS_NOGLYPH;
1159             }
1160             if (numUVSMapping[targetSelector] > 0) {
1161                 int index = java.util.Arrays.binarySearch(
1162                                 unicodeValue[targetSelector], charCode);
1163                 if (index >= 0) {
1164                     return glyphID[targetSelector][index];
1165                 }
1166             }
1167             return VS_NOGLYPH;
1168         }
1169     }
1170 
1171     char getVariationGlyph(int charCode, int variationSelector) {
1172         char glyph = 0;
1173         if (uvs == null) {
1174             glyph = getGlyph(charCode);
1175         } else {
1176             int result = uvs.getGlyph(charCode, variationSelector);
1177             if (result > 0) {
1178                 glyph = (char)(result & 0xFFFF);
1179             } else {
1180                 glyph = getGlyph(charCode);
1181             }
1182         }
1183         return glyph;
1184     }
1185 }