1 /*
   2  * Copyright (c) 2003, 2020, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package sun.font;
  27 
  28 import java.lang.ref.SoftReference;
  29 import java.lang.ref.WeakReference;
  30 import java.awt.Font;
  31 import java.awt.GraphicsEnvironment;
  32 import java.awt.Rectangle;
  33 import java.awt.geom.AffineTransform;
  34 import java.awt.geom.GeneralPath;
  35 import java.awt.geom.NoninvertibleTransformException;
  36 import java.awt.geom.Point2D;
  37 import java.awt.geom.Rectangle2D;
  38 import java.util.concurrent.ConcurrentHashMap;
  39 import static sun.awt.SunHints.*;
  40 
  41 
  42 public class FileFontStrike extends PhysicalStrike {
  43 
  44     /* fffe and ffff are values we specially interpret as meaning
  45      * invisible glyphs.
  46      */
  47     static final int INVISIBLE_GLYPHS = 0x0fffe;
  48 
  49     private FileFont fileFont;
  50 
  51     /* REMIND: replace this scheme with one that installs a cache
  52      * instance of the appropriate type. It will require changes in
  53      * FontStrikeDisposer and NativeStrike etc.
  54      */
  55     private static final int UNINITIALISED = 0;
  56     private static final int INTARRAY      = 1;
  57     private static final int LONGARRAY     = 2;
  58     private static final int SEGINTARRAY   = 3;
  59     private static final int SEGLONGARRAY  = 4;
  60 
  61     private volatile int glyphCacheFormat = UNINITIALISED;
  62 
  63     /* segmented arrays are blocks of 32 */
  64     private static final int SEGSHIFT = 5;
  65     private static final int SEGSIZE  = 1 << SEGSHIFT;
  66 
  67     private boolean segmentedCache;
  68     private int[][] segIntGlyphImages;
  69     private long[][] segLongGlyphImages;
  70 
  71     /* The "metrics" information requested by clients is usually nothing
  72      * more than the horizontal advance of the character.
  73      * In most cases this advance and other metrics information is stored
  74      * in the glyph image cache.
  75      * But in some cases we do not automatically retrieve the glyph
  76      * image when the advance is requested. In those cases we want to
  77      * cache the advances since this has been shown to be important for
  78      * performance.
  79      * The segmented cache is used in cases when the single array
  80      * would be too large.
  81      */
  82     private float[] horizontalAdvances;
  83     private float[][] segHorizontalAdvances;
  84 
  85     /* Outline bounds are used when printing and when drawing outlines
  86      * to the screen. On balance the relative rarity of these cases
  87      * and the fact that getting this requires generating a path at
  88      * the scaler level means that its probably OK to store these
  89      * in a Java-level hashmap as the trade-off between time and space.
  90      * Later can revisit whether to cache these at all, or elsewhere.
  91      * Should also profile whether subsequent to getting the bounds, the
  92      * outline itself is also requested. The 1.4 implementation doesn't
  93      * cache outlines so you could generate the path twice - once to get
  94      * the bounds and again to return the outline to the client.
  95      * If the two uses are coincident then also look into caching outlines.
  96      * One simple optimisation is that we could store the last single
  97      * outline retrieved. This assumes that bounds then outline will always
  98      * be retrieved for a glyph rather than retrieving bounds for all glyphs
  99      * then outlines for all glyphs.
 100      */
 101     ConcurrentHashMap<Integer, Rectangle2D.Float> boundsMap;
 102     SoftReference<ConcurrentHashMap<Integer, Point2D.Float>>
 103         glyphMetricsMapRef;
 104 
 105     AffineTransform invertDevTx;
 106 
 107     boolean useNatives;
 108     NativeStrike[] nativeStrikes;
 109 
 110     /* Used only for communication to native layer */
 111     private int intPtSize;
 112 
 113     /* Perform global initialisation needed for Windows native rasterizer */
 114     private static native boolean initNative();
 115     private static boolean isXPorLater = false;
 116     static {
 117         if (FontUtilities.isWindows && !FontUtilities.useJDKScaler &&
 118             !GraphicsEnvironment.isHeadless()) {
 119             isXPorLater = initNative();
 120         }
 121     }
 122 
 123     FileFontStrike(FileFont fileFont, FontStrikeDesc desc) {
 124         super(fileFont, desc);
 125         this.fileFont = fileFont;
 126 
 127         if (desc.style != fileFont.style) {
 128           /* If using algorithmic styling, the base values are
 129            * boldness = 1.0, italic = 0.0. The superclass constructor
 130            * initialises these.
 131            */
 132             if ((desc.style & Font.ITALIC) == Font.ITALIC &&
 133                 (fileFont.style & Font.ITALIC) == 0) {
 134                 algoStyle = true;
 135                 italic = 0.7f;
 136             }
 137             if ((desc.style & Font.BOLD) == Font.BOLD &&
 138                 ((fileFont.style & Font.BOLD) == 0)) {
 139                 algoStyle = true;
 140                 boldness = 1.33f;
 141             }
 142         }
 143         double[] matrix = new double[4];
 144         AffineTransform at = desc.glyphTx;
 145         at.getMatrix(matrix);
 146         if (!desc.devTx.isIdentity() &&
 147             desc.devTx.getType() != AffineTransform.TYPE_TRANSLATION) {
 148             try {
 149                 invertDevTx = desc.devTx.createInverse();
 150             } catch (NoninvertibleTransformException e) {
 151             }
 152         }
 153 
 154         /* If any of the values is NaN then substitute the null scaler context.
 155          * This will return null images, zero advance, and empty outlines
 156          * as no rendering need take place in this case.
 157          * We pass in the null scaler as the singleton null context
 158          * requires it. However
 159          */
 160         if (Double.isNaN(matrix[0]) || Double.isNaN(matrix[1]) ||
 161             Double.isNaN(matrix[2]) || Double.isNaN(matrix[3]) ||
 162             fileFont.getScaler() == null) {
 163             pScalerContext = NullFontScaler.getNullScalerContext();
 164         } else {
 165             pScalerContext = fileFont.getScaler().createScalerContext(matrix,
 166                                     desc.aaHint, desc.fmHint,
 167                                     boldness, italic);
 168         }
 169 
 170         mapper = fileFont.getMapper();
 171         int numGlyphs = mapper.getNumGlyphs();
 172 
 173         /* Always segment for fonts with > 256 glyphs, but also for smaller
 174          * fonts with non-typical sizes and transforms.
 175          * Segmenting for all non-typical pt sizes helps to minimize memory
 176          * usage when very many distinct strikes are created.
 177          * The size range of 0->5 and 37->INF for segmenting is arbitrary
 178          * but the intention is that typical GUI integer point sizes (6->36)
 179          * should not segment unless there's another reason to do so.
 180          */
 181         float ptSize = (float)matrix[3]; // interpreted only when meaningful.
 182         int iSize = intPtSize = (int)ptSize;
 183         boolean isSimpleTx = (at.getType() & complexTX) == 0;
 184         segmentedCache =
 185             (numGlyphs > SEGSIZE << 3) ||
 186             ((numGlyphs > SEGSIZE << 1) &&
 187              (!isSimpleTx || ptSize != iSize || iSize < 6 || iSize > 36));
 188 
 189         /* This can only happen if we failed to allocate memory for context.
 190          * NB: in such case we may still have some memory in java heap
 191          *     but subsequent attempt to allocate null scaler context
 192          *     may fail too (cause it is allocate in the native heap).
 193          *     It is not clear how to make this more robust but on the
 194          *     other hand getting NULL here seems to be extremely unlikely.
 195          */
 196         if (pScalerContext == 0L) {
 197             /* REMIND: when the code is updated to install cache objects
 198              * rather than using a switch this will be more efficient.
 199              */
 200             this.disposer = new FontStrikeDisposer(fileFont, desc);
 201             initGlyphCache();
 202             pScalerContext = NullFontScaler.getNullScalerContext();
 203             SunFontManager.getInstance().deRegisterBadFont(fileFont);
 204             return;
 205         }
 206         /* First, see if native code should be used to create the glyph.
 207          * GDI will return the integer metrics, not fractional metrics, which
 208          * may be requested for this strike, so we would require here that :
 209          * desc.fmHint != INTVAL_FRACTIONALMETRICS_ON
 210          * except that the advance returned by GDI is always overwritten by
 211          * the JDK rasteriser supplied one (see getGlyphImageFromWindows()).
 212          */
 213         if (FontUtilities.isWindows && isXPorLater &&
 214             !FontUtilities.useJDKScaler &&
 215             !GraphicsEnvironment.isHeadless() &&
 216             !fileFont.useJavaRasterizer &&
 217             (desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HRGB ||
 218              desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HBGR) &&
 219             (matrix[1] == 0.0 && matrix[2] == 0.0 &&
 220              matrix[0] == matrix[3] &&
 221              matrix[0] >= 3.0 && matrix[0] <= 100.0) &&
 222             !((TrueTypeFont)fileFont).useEmbeddedBitmapsForSize(intPtSize)) {
 223             useNatives = true;
 224         }
 225         if (FontUtilities.isLogging() && FontUtilities.isWindows) {
 226             FontUtilities.logInfo("Strike for " + fileFont + " at size = " + intPtSize +
 227                  " use natives = " + useNatives +
 228                  " useJavaRasteriser = " + fileFont.useJavaRasterizer +
 229                  " AAHint = " + desc.aaHint +
 230                  " Has Embedded bitmaps = " +
 231                  ((TrueTypeFont)fileFont).
 232                  useEmbeddedBitmapsForSize(intPtSize));
 233         }
 234         this.disposer = new FontStrikeDisposer(fileFont, desc, pScalerContext);
 235 
 236         /* Always get the image and the advance together for smaller sizes
 237          * that are likely to be important to rendering performance.
 238          * The pixel size of 48.0 can be thought of as
 239          * "maximumSizeForGetImageWithAdvance".
 240          * This should be no greater than OutlineTextRender.THRESHOLD.
 241          */
 242         double maxSz = 48.0;
 243         getImageWithAdvance =
 244             Math.abs(at.getScaleX()) <= maxSz &&
 245             Math.abs(at.getScaleY()) <= maxSz &&
 246             Math.abs(at.getShearX()) <= maxSz &&
 247             Math.abs(at.getShearY()) <= maxSz;
 248 
 249         /* Some applications request advance frequently during layout.
 250          * If we are not getting and caching the image with the advance,
 251          * there is a potentially significant performance penalty if the
 252          * advance is repeatedly requested before requesting the image.
 253          * We should at least cache the horizontal advance.
 254          * REMIND: could use info in the font, eg hmtx, to retrieve some
 255          * advances. But still want to cache it here.
 256          */
 257 
 258         if (!getImageWithAdvance) {
 259             if (!segmentedCache) {
 260                 horizontalAdvances = new float[numGlyphs];
 261                 /* use max float as uninitialised advance */
 262                 for (int i=0; i<numGlyphs; i++) {
 263                     horizontalAdvances[i] = Float.MAX_VALUE;
 264                 }
 265             } else {
 266                 int numSegments = (numGlyphs + SEGSIZE-1)/SEGSIZE;
 267                 segHorizontalAdvances = new float[numSegments][];
 268             }
 269         }
 270     }
 271 
 272     /* A number of methods are delegated by the strike to the scaler
 273      * context which is a shared resource on a physical font.
 274      */
 275 
 276     public int getNumGlyphs() {
 277         return fileFont.getNumGlyphs();
 278     }
 279 
 280     long getGlyphImageFromNative(int glyphCode) {
 281         if (FontUtilities.isWindows) {
 282             return getGlyphImageFromWindows(glyphCode);
 283         } else {
 284             return getGlyphImageFromX11(glyphCode);
 285         }
 286     }
 287 
 288     /* There's no global state conflicts, so this method is not
 289      * presently synchronized.
 290      */
 291     private native long _getGlyphImageFromWindows(String family,
 292                                                   int style,
 293                                                   int size,
 294                                                   int glyphCode,
 295                                                   boolean fracMetrics,
 296                                                   int fontDataSize);
 297 
 298     long getGlyphImageFromWindows(int glyphCode) {
 299         String family = fileFont.getFamilyName(null);
 300         int style = desc.style & Font.BOLD | desc.style & Font.ITALIC
 301             | fileFont.getStyle();
 302         int size = intPtSize;
 303         long ptr = _getGlyphImageFromWindows
 304             (family, style, size, glyphCode,
 305              desc.fmHint == INTVAL_FRACTIONALMETRICS_ON,
 306              ((TrueTypeFont)fileFont).fontDataSize);
 307         if (ptr != 0) {
 308             /* Get the advance from the JDK rasterizer. This is mostly
 309              * necessary for the fractional metrics case, but there are
 310              * also some very small number (<0.25%) of marginal cases where
 311              * there is some rounding difference between windows and JDK.
 312              * After these are resolved, we can restrict this extra
 313              * work to the FM case.
 314              */
 315             float advance = getGlyphAdvance(glyphCode, false);
 316             StrikeCache.unsafe.putFloat(ptr + StrikeCache.xAdvanceOffset,
 317                                         advance);
 318             return ptr;
 319         } else {
 320             if (FontUtilities.isLogging()) {
 321                 FontUtilities.logWarning("Failed to render glyph using GDI: code=" + glyphCode
 322                                     + ", fontFamily=" + family + ", style=" + style
 323                                     + ", size=" + size);
 324             }
 325             return fileFont.getGlyphImage(pScalerContext, glyphCode);
 326         }
 327     }
 328 
 329     /* Try the native strikes first, then try the fileFont strike */
 330     long getGlyphImageFromX11(int glyphCode) {
 331         long glyphPtr;
 332         char charCode = fileFont.glyphToCharMap[glyphCode];
 333         for (int i=0;i<nativeStrikes.length;i++) {
 334             CharToGlyphMapper mapper = fileFont.nativeFonts[i].getMapper();
 335             int gc = mapper.charToGlyph(charCode)&0xffff;
 336             if (gc != mapper.getMissingGlyphCode()) {
 337                 glyphPtr = nativeStrikes[i].getGlyphImagePtrNoCache(gc);
 338                 if (glyphPtr != 0L) {
 339                     return glyphPtr;
 340                 }
 341             }
 342         }
 343         return fileFont.getGlyphImage(pScalerContext, glyphCode);
 344     }
 345 
 346     long getGlyphImagePtr(int glyphCode) {
 347         if (glyphCode >= INVISIBLE_GLYPHS) {
 348             return StrikeCache.invisibleGlyphPtr;
 349         }
 350         long glyphPtr = 0L;
 351         if ((glyphPtr = getCachedGlyphPtr(glyphCode)) != 0L) {
 352             return glyphPtr;
 353         } else {
 354             if (useNatives) {
 355                 glyphPtr = getGlyphImageFromNative(glyphCode);
 356                 if (glyphPtr == 0L && FontUtilities.isLogging()) {
 357                     FontUtilities.logInfo("Strike for " + fileFont +
 358                          " at size = " + intPtSize +
 359                          " couldn't get native glyph for code = " + glyphCode);
 360                 }
 361             }
 362             if (glyphPtr == 0L) {
 363                 glyphPtr = fileFont.getGlyphImage(pScalerContext, glyphCode);
 364             }
 365             return setCachedGlyphPtr(glyphCode, glyphPtr);
 366         }
 367     }
 368 
 369     void getGlyphImagePtrs(int[] glyphCodes, long[] images, int  len) {
 370 
 371         for (int i=0; i<len; i++) {
 372             int glyphCode = glyphCodes[i];
 373             if (glyphCode >= INVISIBLE_GLYPHS) {
 374                 images[i] = StrikeCache.invisibleGlyphPtr;
 375                 continue;
 376             } else if ((images[i] = getCachedGlyphPtr(glyphCode)) != 0L) {
 377                 continue;
 378             } else {
 379                 long glyphPtr = 0L;
 380                 if (useNatives) {
 381                     glyphPtr = getGlyphImageFromNative(glyphCode);
 382                 } if (glyphPtr == 0L) {
 383                     glyphPtr = fileFont.getGlyphImage(pScalerContext,
 384                                                       glyphCode);
 385                 }
 386                 images[i] = setCachedGlyphPtr(glyphCode, glyphPtr);
 387             }
 388         }
 389     }
 390 
 391     /* The following method is called from CompositeStrike as a special case.
 392      */
 393     int getSlot0GlyphImagePtrs(int[] glyphCodes, long[] images, int len) {
 394 
 395         int convertedCnt = 0;
 396 
 397         for (int i=0; i<len; i++) {
 398             int glyphCode = glyphCodes[i];
 399             if (glyphCode >>> 24 != 0) {
 400                 return convertedCnt;
 401             } else {
 402                 convertedCnt++;
 403             }
 404             if (glyphCode >= INVISIBLE_GLYPHS) {
 405                 images[i] = StrikeCache.invisibleGlyphPtr;
 406                 continue;
 407             } else if ((images[i] = getCachedGlyphPtr(glyphCode)) != 0L) {
 408                 continue;
 409             } else {
 410                 long glyphPtr = 0L;
 411                 if (useNatives) {
 412                     glyphPtr = getGlyphImageFromNative(glyphCode);
 413                 }
 414                 if (glyphPtr == 0L) {
 415                     glyphPtr = fileFont.getGlyphImage(pScalerContext,
 416                                                       glyphCode);
 417                 }
 418                 images[i] = setCachedGlyphPtr(glyphCode, glyphPtr);
 419             }
 420         }
 421         return convertedCnt;
 422     }
 423 
 424     /* Only look in the cache */
 425     long getCachedGlyphPtr(int glyphCode) {
 426         try {
 427             return getCachedGlyphPtrInternal(glyphCode);
 428         } catch (Exception e) {
 429           NullFontScaler nullScaler =
 430              (NullFontScaler)FontScaler.getNullScaler();
 431           long nullSC = NullFontScaler.getNullScalerContext();
 432           return nullScaler.getGlyphImage(nullSC, glyphCode);
 433         }
 434     }
 435 
 436     private long getCachedGlyphPtrInternal(int glyphCode) {
 437         switch (glyphCacheFormat) {
 438             case INTARRAY:
 439                 return intGlyphImages[glyphCode] & INTMASK;
 440             case SEGINTARRAY:
 441                 int segIndex = glyphCode >> SEGSHIFT;
 442                 if (segIntGlyphImages[segIndex] != null) {
 443                     int subIndex = glyphCode % SEGSIZE;
 444                     return segIntGlyphImages[segIndex][subIndex] & INTMASK;
 445                 } else {
 446                     return 0L;
 447                 }
 448             case LONGARRAY:
 449                 return longGlyphImages[glyphCode];
 450             case SEGLONGARRAY:
 451                 segIndex = glyphCode >> SEGSHIFT;
 452                 if (segLongGlyphImages[segIndex] != null) {
 453                     int subIndex = glyphCode % SEGSIZE;
 454                     return segLongGlyphImages[segIndex][subIndex];
 455                 } else {
 456                     return 0L;
 457                 }
 458         }
 459         /* If reach here cache is UNINITIALISED. */
 460         return 0L;
 461     }
 462 
 463     private synchronized long setCachedGlyphPtr(int glyphCode, long glyphPtr) {
 464         try {
 465             return setCachedGlyphPtrInternal(glyphCode, glyphPtr);
 466         } catch (Exception e) {
 467             switch (glyphCacheFormat) {
 468                 case INTARRAY:
 469                 case SEGINTARRAY:
 470                     StrikeCache.freeIntPointer((int)glyphPtr);
 471                     break;
 472                 case LONGARRAY:
 473                 case SEGLONGARRAY:
 474                     StrikeCache.freeLongPointer(glyphPtr);
 475                     break;
 476              }
 477              NullFontScaler nullScaler =
 478                  (NullFontScaler)FontScaler.getNullScaler();
 479              long nullSC = NullFontScaler.getNullScalerContext();
 480              return nullScaler.getGlyphImage(nullSC, glyphCode);
 481         }
 482     }
 483 
 484     private long setCachedGlyphPtrInternal(int glyphCode, long glyphPtr) {
 485         switch (glyphCacheFormat) {
 486             case INTARRAY:
 487                 if (intGlyphImages[glyphCode] == 0) {
 488                     intGlyphImages[glyphCode] = (int)glyphPtr;
 489                     return glyphPtr;
 490                 } else {
 491                     StrikeCache.freeIntPointer((int)glyphPtr);
 492                     return intGlyphImages[glyphCode] & INTMASK;
 493                 }
 494 
 495             case SEGINTARRAY:
 496                 int segIndex = glyphCode >> SEGSHIFT;
 497                 int subIndex = glyphCode % SEGSIZE;
 498                 if (segIntGlyphImages[segIndex] == null) {
 499                     segIntGlyphImages[segIndex] = new int[SEGSIZE];
 500                 }
 501                 if (segIntGlyphImages[segIndex][subIndex] == 0) {
 502                     segIntGlyphImages[segIndex][subIndex] = (int)glyphPtr;
 503                     return glyphPtr;
 504                 } else {
 505                     StrikeCache.freeIntPointer((int)glyphPtr);
 506                     return segIntGlyphImages[segIndex][subIndex] & INTMASK;
 507                 }
 508 
 509             case LONGARRAY:
 510                 if (longGlyphImages[glyphCode] == 0L) {
 511                     longGlyphImages[glyphCode] = glyphPtr;
 512                     return glyphPtr;
 513                 } else {
 514                     StrikeCache.freeLongPointer(glyphPtr);
 515                     return longGlyphImages[glyphCode];
 516                 }
 517 
 518            case SEGLONGARRAY:
 519                 segIndex = glyphCode >> SEGSHIFT;
 520                 subIndex = glyphCode % SEGSIZE;
 521                 if (segLongGlyphImages[segIndex] == null) {
 522                     segLongGlyphImages[segIndex] = new long[SEGSIZE];
 523                 }
 524                 if (segLongGlyphImages[segIndex][subIndex] == 0L) {
 525                     segLongGlyphImages[segIndex][subIndex] = glyphPtr;
 526                     return glyphPtr;
 527                 } else {
 528                     StrikeCache.freeLongPointer(glyphPtr);
 529                     return segLongGlyphImages[segIndex][subIndex];
 530                 }
 531         }
 532 
 533         /* Reach here only when the cache is not initialised which is only
 534          * for the first glyph to be initialised in the strike.
 535          * Initialise it and recurse. Note that we are already synchronized.
 536          */
 537         initGlyphCache();
 538         return setCachedGlyphPtr(glyphCode, glyphPtr);
 539     }
 540 
 541     /* Called only from synchronized code or constructor */
 542     private synchronized void initGlyphCache() {
 543 
 544         int numGlyphs = mapper.getNumGlyphs();
 545         int tmpFormat = UNINITIALISED;
 546         if (segmentedCache) {
 547             int numSegments = (numGlyphs + SEGSIZE-1)/SEGSIZE;
 548             if (longAddresses) {
 549                 tmpFormat = SEGLONGARRAY;
 550                 segLongGlyphImages = new long[numSegments][];
 551                 this.disposer.segLongGlyphImages = segLongGlyphImages;
 552              } else {
 553                  tmpFormat = SEGINTARRAY;
 554                  segIntGlyphImages = new int[numSegments][];
 555                  this.disposer.segIntGlyphImages = segIntGlyphImages;
 556              }
 557         } else {
 558             if (longAddresses) {
 559                 tmpFormat = LONGARRAY;
 560                 longGlyphImages = new long[numGlyphs];
 561                 this.disposer.longGlyphImages = longGlyphImages;
 562             } else {
 563                 tmpFormat = INTARRAY;
 564                 intGlyphImages = new int[numGlyphs];
 565                 this.disposer.intGlyphImages = intGlyphImages;
 566             }
 567         }
 568         glyphCacheFormat = tmpFormat;
 569     }
 570 
 571     float getGlyphAdvance(int glyphCode) {
 572         return getGlyphAdvance(glyphCode, true);
 573     }
 574 
 575     /* Metrics info is always retrieved. If the GlyphInfo address is non-zero
 576      * then metrics info there is valid and can just be copied.
 577      * This is in user space coordinates unless getUserAdv == false.
 578      * Device space advance should not be propagated out of this class.
 579      */
 580     private float getGlyphAdvance(int glyphCode, boolean getUserAdv) {
 581         float advance;
 582 
 583         if (glyphCode >= INVISIBLE_GLYPHS) {
 584             return 0f;
 585         }
 586 
 587         /* Notes on the (getUserAdv == false) case.
 588          *
 589          * Setting getUserAdv == false is internal to this class.
 590          * If there's no graphics transform we can let
 591          * getGlyphAdvance take its course, and potentially caching in
 592          * advances arrays, except for signalling that
 593          * getUserAdv == false means there is no need to create an image.
 594          * It is possible that code already calculated the user advance,
 595          * and it is desirable to take advantage of that work.
 596          * But, if there's a transform and we want device advance, we
 597          * can't use any values cached in the advances arrays - unless
 598          * first re-transform them into device space using 'desc.devTx'.
 599          * invertDevTx is null if the graphics transform is identity,
 600          * a translate, or non-invertible. The latter case should
 601          * not ever occur in the getUserAdv == false path.
 602          * In other words its either null, or the inversion of a
 603          * simple uniform scale. If its null, we can populate and
 604          * use the advance caches as normal.
 605          *
 606          * If we don't find a cached value, obtain the device advance and
 607          * return it. This will get stashed on the image by the caller and any
 608          * subsequent metrics calls will be able to use it as is the case
 609          * whenever an image is what is initially requested.
 610          *
 611          * Don't query if there's a value cached on the image, since this
 612          * getUserAdv==false code path is entered solely when none exists.
 613          */
 614         if (horizontalAdvances != null) {
 615             advance = horizontalAdvances[glyphCode];
 616             if (advance != Float.MAX_VALUE) {
 617                 if (!getUserAdv && invertDevTx != null) {
 618                     Point2D.Float metrics = new Point2D.Float(advance, 0f);
 619                     desc.devTx.deltaTransform(metrics, metrics);
 620                     return metrics.x;
 621                 } else {
 622                     return advance;
 623                 }
 624             }
 625         } else if (segmentedCache && segHorizontalAdvances != null) {
 626             int segIndex = glyphCode >> SEGSHIFT;
 627             float[] subArray = segHorizontalAdvances[segIndex];
 628             if (subArray != null) {
 629                 advance = subArray[glyphCode % SEGSIZE];
 630                 if (advance != Float.MAX_VALUE) {
 631                     if (!getUserAdv && invertDevTx != null) {
 632                         Point2D.Float metrics = new Point2D.Float(advance, 0f);
 633                         desc.devTx.deltaTransform(metrics, metrics);
 634                         return metrics.x;
 635                     } else {
 636                         return advance;
 637                     }
 638                 }
 639             }
 640         }
 641 
 642         if (!getUserAdv && invertDevTx != null) {
 643             Point2D.Float metrics = new Point2D.Float();
 644             fileFont.getGlyphMetrics(pScalerContext, glyphCode, metrics);
 645             return metrics.x;
 646         }
 647 
 648         if (invertDevTx != null || !getUserAdv) {
 649             /* If there is a device transform need x & y advance to
 650              * transform back into user space.
 651              */
 652             advance = getGlyphMetrics(glyphCode, getUserAdv).x;
 653         } else {
 654             long glyphPtr;
 655             if (getImageWithAdvance) {
 656                 /* A heuristic optimisation says that for most cases its
 657                  * worthwhile retrieving the image at the same time as the
 658                  * advance. So here we get the image data even if its not
 659                  * already cached.
 660                  */
 661                 glyphPtr = getGlyphImagePtr(glyphCode);
 662             } else {
 663                 glyphPtr = getCachedGlyphPtr(glyphCode);
 664             }
 665             if (glyphPtr != 0L) {
 666                 advance = StrikeCache.unsafe.getFloat
 667                     (glyphPtr + StrikeCache.xAdvanceOffset);
 668 
 669             } else {
 670                 advance = fileFont.getGlyphAdvance(pScalerContext, glyphCode);
 671             }
 672         }
 673 
 674         if (horizontalAdvances != null) {
 675             horizontalAdvances[glyphCode] = advance;
 676         } else if (segmentedCache && segHorizontalAdvances != null) {
 677             int segIndex = glyphCode >> SEGSHIFT;
 678             int subIndex = glyphCode % SEGSIZE;
 679             if (segHorizontalAdvances[segIndex] == null) {
 680                 segHorizontalAdvances[segIndex] = new float[SEGSIZE];
 681                 for (int i=0; i<SEGSIZE; i++) {
 682                      segHorizontalAdvances[segIndex][i] = Float.MAX_VALUE;
 683                 }
 684             }
 685             segHorizontalAdvances[segIndex][subIndex] = advance;
 686         }
 687         return advance;
 688     }
 689 
 690     float getCodePointAdvance(int cp) {
 691         return getGlyphAdvance(mapper.charToGlyph(cp));
 692     }
 693 
 694     /**
 695      * Result and pt are both in device space.
 696      */
 697     void getGlyphImageBounds(int glyphCode, Point2D.Float pt,
 698                              Rectangle result) {
 699 
 700         long ptr = getGlyphImagePtr(glyphCode);
 701         float topLeftX, topLeftY;
 702 
 703         /* With our current design NULL ptr is not possible
 704            but if we eventually allow scalers to return NULL pointers
 705            this check might be actually useful. */
 706         if (ptr == 0L) {
 707             result.x = (int) Math.floor(pt.x+0.5f);
 708             result.y = (int) Math.floor(pt.y+0.5f);
 709             result.width = result.height = 0;
 710             return;
 711         }
 712 
 713         topLeftX = StrikeCache.unsafe.getFloat(ptr+StrikeCache.topLeftXOffset);
 714         topLeftY = StrikeCache.unsafe.getFloat(ptr+StrikeCache.topLeftYOffset);
 715 
 716         result.x = (int)Math.floor(pt.x + topLeftX + 0.5f);
 717         result.y = (int)Math.floor(pt.y + topLeftY + 0.5f);
 718         result.width =
 719             StrikeCache.unsafe.getShort(ptr+StrikeCache.widthOffset)  &0x0ffff;
 720         result.height =
 721             StrikeCache.unsafe.getShort(ptr+StrikeCache.heightOffset) &0x0ffff;
 722 
 723         /* HRGB LCD text may have padding that is empty. This is almost always
 724          * going to be when topLeftX is -2 or less.
 725          * Try to return a tighter bounding box in that case.
 726          * If the first three bytes of every row are all zero, then
 727          * add 1 to "x" and reduce "width" by 1.
 728          */
 729         if ((desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HRGB ||
 730              desc.aaHint == INTVAL_TEXT_ANTIALIAS_LCD_HBGR)
 731             && topLeftX <= -2.0f) {
 732             int minx = getGlyphImageMinX(ptr, result.x);
 733             if (minx > result.x) {
 734                 result.x += 1;
 735                 result.width -=1;
 736             }
 737         }
 738     }
 739 
 740     private int getGlyphImageMinX(long ptr, int origMinX) {
 741 
 742         int width = StrikeCache.unsafe.getChar(ptr+StrikeCache.widthOffset);
 743         int height = StrikeCache.unsafe.getChar(ptr+StrikeCache.heightOffset);
 744         int rowBytes =
 745             StrikeCache.unsafe.getChar(ptr+StrikeCache.rowBytesOffset);
 746 
 747         if (rowBytes == width) {
 748             return origMinX;
 749         }
 750 
 751         long pixelData =
 752             StrikeCache.unsafe.getAddress(ptr + StrikeCache.pixelDataOffset);
 753 
 754         if (pixelData == 0L) {
 755             return origMinX;
 756         }
 757 
 758         for (int y=0;y<height;y++) {
 759             for (int x=0;x<3;x++) {
 760                 if (StrikeCache.unsafe.getByte(pixelData+y*rowBytes+x) != 0) {
 761                     return origMinX;
 762                 }
 763             }
 764         }
 765         return origMinX+1;
 766     }
 767 
 768     /* These 3 metrics methods below should be implemented to return
 769      * values in user space.
 770      */
 771     StrikeMetrics getFontMetrics() {
 772         if (strikeMetrics == null) {
 773             strikeMetrics =
 774                 fileFont.getFontMetrics(pScalerContext);
 775             if (invertDevTx != null) {
 776                 strikeMetrics.convertToUserSpace(invertDevTx);
 777             }
 778         }
 779         return strikeMetrics;
 780     }
 781 
 782     Point2D.Float getGlyphMetrics(int glyphCode) {
 783         return getGlyphMetrics(glyphCode, true);
 784     }
 785 
 786     private Point2D.Float getGlyphMetrics(int glyphCode, boolean getImage) {
 787         Point2D.Float metrics = new Point2D.Float();
 788 
 789         // !!! or do we force sgv user glyphs?
 790         if (glyphCode >= INVISIBLE_GLYPHS) {
 791             return metrics;
 792         }
 793         long glyphPtr;
 794         if (getImageWithAdvance && getImage) {
 795             /* A heuristic optimisation says that for most cases its
 796              * worthwhile retrieving the image at the same time as the
 797              * metrics. So here we get the image data even if its not
 798              * already cached.
 799              */
 800             glyphPtr = getGlyphImagePtr(glyphCode);
 801         } else {
 802              glyphPtr = getCachedGlyphPtr(glyphCode);
 803         }
 804         if (glyphPtr != 0L) {
 805             metrics = new Point2D.Float();
 806             metrics.x = StrikeCache.unsafe.getFloat
 807                 (glyphPtr + StrikeCache.xAdvanceOffset);
 808             metrics.y = StrikeCache.unsafe.getFloat
 809                 (glyphPtr + StrikeCache.yAdvanceOffset);
 810             /* advance is currently in device space, need to convert back
 811              * into user space.
 812              * This must not include the translation component. */
 813             if (invertDevTx != null) {
 814                 invertDevTx.deltaTransform(metrics, metrics);
 815             }
 816         } else {
 817             /* We sometimes cache these metrics as they are expensive to
 818              * generate for large glyphs.
 819              * We never reach this path if we obtain images with advances.
 820              * But if we do not obtain images with advances its possible that
 821              * we first obtain this information, then the image, and never
 822              * will access this value again.
 823              */
 824             Integer key = Integer.valueOf(glyphCode);
 825             Point2D.Float value = null;
 826             ConcurrentHashMap<Integer, Point2D.Float> glyphMetricsMap = null;
 827             if (glyphMetricsMapRef != null) {
 828                 glyphMetricsMap = glyphMetricsMapRef.get();
 829             }
 830             if (glyphMetricsMap != null) {
 831                 value = glyphMetricsMap.get(key);
 832                 if (value != null) {
 833                     metrics.x = value.x;
 834                     metrics.y = value.y;
 835                     /* already in user space */
 836                     return metrics;
 837                 }
 838             }
 839             if (value == null) {
 840                 fileFont.getGlyphMetrics(pScalerContext, glyphCode, metrics);
 841                 /* advance is currently in device space, need to convert back
 842                  * into user space.
 843                  */
 844                 if (invertDevTx != null) {
 845                     invertDevTx.deltaTransform(metrics, metrics);
 846                 }
 847                 value = new Point2D.Float(metrics.x, metrics.y);
 848                 /* We aren't synchronizing here so it is possible to
 849                  * overwrite the map with another one but this is harmless.
 850                  */
 851                 if (glyphMetricsMap == null) {
 852                     glyphMetricsMap =
 853                         new ConcurrentHashMap<Integer, Point2D.Float>();
 854                     glyphMetricsMapRef =
 855                         new SoftReference<ConcurrentHashMap<Integer,
 856                         Point2D.Float>>(glyphMetricsMap);
 857                 }
 858                 glyphMetricsMap.put(key, value);
 859             }
 860         }
 861         return metrics;
 862     }
 863 
 864     Point2D.Float getCharMetrics(char ch) {
 865         return getGlyphMetrics(mapper.charToGlyph(ch));
 866     }
 867 
 868     /* The caller of this can be trusted to return a copy of this
 869      * return value rectangle to public API. In fact frequently it
 870      * can't use this return value directly anyway.
 871      * This returns bounds in device space. Currently the only
 872      * caller is SGV and it converts back to user space.
 873      * We could change things so that this code does the conversion so
 874      * that all coords coming out of the font system are converted back
 875      * into user space even if they were measured in device space.
 876      * The same applies to the other methods that return outlines (below)
 877      * But it may make particular sense for this method that caches its
 878      * results.
 879      * There'd be plenty of exceptions, to this too, eg getGlyphPoint needs
 880      * device coords as its called from native layout and getGlyphImageBounds
 881      * is used by GlyphVector.getGlyphPixelBounds which is specified to
 882      * return device coordinates, the image pointers aren't really used
 883      * up in Java code either.
 884      */
 885     Rectangle2D.Float getGlyphOutlineBounds(int glyphCode) {
 886 
 887         if (boundsMap == null) {
 888             boundsMap = new ConcurrentHashMap<Integer, Rectangle2D.Float>();
 889         }
 890 
 891         Integer key = Integer.valueOf(glyphCode);
 892         Rectangle2D.Float bounds = boundsMap.get(key);
 893 
 894         if (bounds == null) {
 895             bounds = fileFont.getGlyphOutlineBounds(pScalerContext, glyphCode);
 896             boundsMap.put(key, bounds);
 897         }
 898         return bounds;
 899     }
 900 
 901     public Rectangle2D getOutlineBounds(int glyphCode) {
 902         return fileFont.getGlyphOutlineBounds(pScalerContext, glyphCode);
 903     }
 904 
 905     private
 906         WeakReference<ConcurrentHashMap<Integer,GeneralPath>> outlineMapRef;
 907 
 908     GeneralPath getGlyphOutline(int glyphCode, float x, float y) {
 909 
 910         GeneralPath gp = null;
 911         ConcurrentHashMap<Integer, GeneralPath> outlineMap = null;
 912 
 913         if (outlineMapRef != null) {
 914             outlineMap = outlineMapRef.get();
 915             if (outlineMap != null) {
 916                 gp = outlineMap.get(glyphCode);
 917             }
 918         }
 919 
 920         if (gp == null) {
 921             gp = fileFont.getGlyphOutline(pScalerContext, glyphCode, 0, 0);
 922             if (outlineMap == null) {
 923                 outlineMap = new ConcurrentHashMap<Integer, GeneralPath>();
 924                 outlineMapRef =
 925                    new WeakReference
 926                        <ConcurrentHashMap<Integer,GeneralPath>>(outlineMap);
 927             }
 928             outlineMap.put(glyphCode, gp);
 929         }
 930         gp = (GeneralPath)gp.clone(); // mutable!
 931         if (x != 0f || y != 0f) {
 932             gp.transform(AffineTransform.getTranslateInstance(x, y));
 933         }
 934         return gp;
 935     }
 936 
 937     GeneralPath getGlyphVectorOutline(int[] glyphs, float x, float y) {
 938         return fileFont.getGlyphVectorOutline(pScalerContext,
 939                                               glyphs, glyphs.length, x, y);
 940     }
 941 
 942     protected void adjustPoint(Point2D.Float pt) {
 943         if (invertDevTx != null) {
 944             invertDevTx.deltaTransform(pt, pt);
 945         }
 946     }
 947 }