1 /*
   2  * Copyright (c) 2000, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "memory/allocation.inline.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/callnode.hpp"
  30 #include "opto/castnode.hpp"
  31 #include "opto/connode.hpp"
  32 #include "opto/convertnode.hpp"
  33 #include "opto/divnode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/mulnode.hpp"
  36 #include "opto/movenode.hpp"
  37 #include "opto/opaquenode.hpp"
  38 #include "opto/rootnode.hpp"
  39 #include "opto/runtime.hpp"
  40 #include "opto/subnode.hpp"
  41 #include "opto/superword.hpp"
  42 #include "opto/vectornode.hpp"
  43 
  44 //------------------------------is_loop_exit-----------------------------------
  45 // Given an IfNode, return the loop-exiting projection or NULL if both
  46 // arms remain in the loop.
  47 Node *IdealLoopTree::is_loop_exit(Node *iff) const {
  48   if( iff->outcnt() != 2 ) return NULL; // Ignore partially dead tests
  49   PhaseIdealLoop *phase = _phase;
  50   // Test is an IfNode, has 2 projections.  If BOTH are in the loop
  51   // we need loop unswitching instead of peeling.
  52   if( !is_member(phase->get_loop( iff->raw_out(0) )) )
  53     return iff->raw_out(0);
  54   if( !is_member(phase->get_loop( iff->raw_out(1) )) )
  55     return iff->raw_out(1);
  56   return NULL;
  57 }
  58 
  59 
  60 //=============================================================================
  61 
  62 
  63 //------------------------------record_for_igvn----------------------------
  64 // Put loop body on igvn work list
  65 void IdealLoopTree::record_for_igvn() {
  66   for( uint i = 0; i < _body.size(); i++ ) {
  67     Node *n = _body.at(i);
  68     _phase->_igvn._worklist.push(n);
  69   }
  70 }
  71 
  72 //------------------------------compute_exact_trip_count-----------------------
  73 // Compute loop exact trip count if possible. Do not recalculate trip count for
  74 // split loops (pre-main-post) which have their limits and inits behind Opaque node.
  75 void IdealLoopTree::compute_exact_trip_count( PhaseIdealLoop *phase ) {
  76   if (!_head->as_Loop()->is_valid_counted_loop()) {
  77     return;
  78   }
  79   CountedLoopNode* cl = _head->as_CountedLoop();
  80   // Trip count may become nonexact for iteration split loops since
  81   // RCE modifies limits. Note, _trip_count value is not reset since
  82   // it is used to limit unrolling of main loop.
  83   cl->set_nonexact_trip_count();
  84 
  85   // Loop's test should be part of loop.
  86   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
  87     return; // Infinite loop
  88 
  89 #ifdef ASSERT
  90   BoolTest::mask bt = cl->loopexit()->test_trip();
  91   assert(bt == BoolTest::lt || bt == BoolTest::gt ||
  92          bt == BoolTest::ne, "canonical test is expected");
  93 #endif
  94 
  95   Node* init_n = cl->init_trip();
  96   Node* limit_n = cl->limit();
  97   if (init_n  != NULL &&  init_n->is_Con() &&
  98       limit_n != NULL && limit_n->is_Con()) {
  99     // Use longs to avoid integer overflow.
 100     int stride_con  = cl->stride_con();
 101     jlong init_con   = cl->init_trip()->get_int();
 102     jlong limit_con  = cl->limit()->get_int();
 103     int stride_m    = stride_con - (stride_con > 0 ? 1 : -1);
 104     jlong trip_count = (limit_con - init_con + stride_m)/stride_con;
 105     if (trip_count > 0 && (julong)trip_count < (julong)max_juint) {
 106       // Set exact trip count.
 107       cl->set_exact_trip_count((uint)trip_count);
 108     }
 109   }
 110 }
 111 
 112 //------------------------------compute_profile_trip_cnt----------------------------
 113 // Compute loop trip count from profile data as
 114 //    (backedge_count + loop_exit_count) / loop_exit_count
 115 void IdealLoopTree::compute_profile_trip_cnt( PhaseIdealLoop *phase ) {
 116   if (!_head->is_CountedLoop()) {
 117     return;
 118   }
 119   CountedLoopNode* head = _head->as_CountedLoop();
 120   if (head->profile_trip_cnt() != COUNT_UNKNOWN) {
 121     return; // Already computed
 122   }
 123   float trip_cnt = (float)max_jint; // default is big
 124 
 125   Node* back = head->in(LoopNode::LoopBackControl);
 126   while (back != head) {
 127     if ((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 128         back->in(0) &&
 129         back->in(0)->is_If() &&
 130         back->in(0)->as_If()->_fcnt != COUNT_UNKNOWN &&
 131         back->in(0)->as_If()->_prob != PROB_UNKNOWN) {
 132       break;
 133     }
 134     back = phase->idom(back);
 135   }
 136   if (back != head) {
 137     assert((back->Opcode() == Op_IfTrue || back->Opcode() == Op_IfFalse) &&
 138            back->in(0), "if-projection exists");
 139     IfNode* back_if = back->in(0)->as_If();
 140     float loop_back_cnt = back_if->_fcnt * back_if->_prob;
 141 
 142     // Now compute a loop exit count
 143     float loop_exit_cnt = 0.0f;
 144     for( uint i = 0; i < _body.size(); i++ ) {
 145       Node *n = _body[i];
 146       if( n->is_If() ) {
 147         IfNode *iff = n->as_If();
 148         if( iff->_fcnt != COUNT_UNKNOWN && iff->_prob != PROB_UNKNOWN ) {
 149           Node *exit = is_loop_exit(iff);
 150           if( exit ) {
 151             float exit_prob = iff->_prob;
 152             if (exit->Opcode() == Op_IfFalse) exit_prob = 1.0 - exit_prob;
 153             if (exit_prob > PROB_MIN) {
 154               float exit_cnt = iff->_fcnt * exit_prob;
 155               loop_exit_cnt += exit_cnt;
 156             }
 157           }
 158         }
 159       }
 160     }
 161     if (loop_exit_cnt > 0.0f) {
 162       trip_cnt = (loop_back_cnt + loop_exit_cnt) / loop_exit_cnt;
 163     } else {
 164       // No exit count so use
 165       trip_cnt = loop_back_cnt;
 166     }
 167   }
 168 #ifndef PRODUCT
 169   if (TraceProfileTripCount) {
 170     tty->print_cr("compute_profile_trip_cnt  lp: %d cnt: %f\n", head->_idx, trip_cnt);
 171   }
 172 #endif
 173   head->set_profile_trip_cnt(trip_cnt);
 174 }
 175 
 176 //---------------------is_invariant_addition-----------------------------
 177 // Return nonzero index of invariant operand for an Add or Sub
 178 // of (nonconstant) invariant and variant values. Helper for reassociate_invariants.
 179 int IdealLoopTree::is_invariant_addition(Node* n, PhaseIdealLoop *phase) {
 180   int op = n->Opcode();
 181   if (op == Op_AddI || op == Op_SubI) {
 182     bool in1_invar = this->is_invariant(n->in(1));
 183     bool in2_invar = this->is_invariant(n->in(2));
 184     if (in1_invar && !in2_invar) return 1;
 185     if (!in1_invar && in2_invar) return 2;
 186   }
 187   return 0;
 188 }
 189 
 190 //---------------------reassociate_add_sub-----------------------------
 191 // Reassociate invariant add and subtract expressions:
 192 //
 193 // inv1 + (x + inv2)  =>  ( inv1 + inv2) + x
 194 // (x + inv2) + inv1  =>  ( inv1 + inv2) + x
 195 // inv1 + (x - inv2)  =>  ( inv1 - inv2) + x
 196 // inv1 - (inv2 - x)  =>  ( inv1 - inv2) + x
 197 // (x + inv2) - inv1  =>  (-inv1 + inv2) + x
 198 // (x - inv2) + inv1  =>  ( inv1 - inv2) + x
 199 // (x - inv2) - inv1  =>  (-inv1 - inv2) + x
 200 // inv1 + (inv2 - x)  =>  ( inv1 + inv2) - x
 201 // inv1 - (x - inv2)  =>  ( inv1 + inv2) - x
 202 // (inv2 - x) + inv1  =>  ( inv1 + inv2) - x
 203 // (inv2 - x) - inv1  =>  (-inv1 + inv2) - x
 204 // inv1 - (x + inv2)  =>  ( inv1 - inv2) - x
 205 //
 206 Node* IdealLoopTree::reassociate_add_sub(Node* n1, PhaseIdealLoop *phase) {
 207   if (!n1->is_Add() && !n1->is_Sub() || n1->outcnt() == 0) return NULL;
 208   if (is_invariant(n1)) return NULL;
 209   int inv1_idx = is_invariant_addition(n1, phase);
 210   if (!inv1_idx) return NULL;
 211   // Don't mess with add of constant (igvn moves them to expression tree root.)
 212   if (n1->is_Add() && n1->in(2)->is_Con()) return NULL;
 213   Node* inv1 = n1->in(inv1_idx);
 214   Node* n2 = n1->in(3 - inv1_idx);
 215   int inv2_idx = is_invariant_addition(n2, phase);
 216   if (!inv2_idx) return NULL;
 217   Node* x    = n2->in(3 - inv2_idx);
 218   Node* inv2 = n2->in(inv2_idx);
 219 
 220   bool neg_x    = n2->is_Sub() && inv2_idx == 1;
 221   bool neg_inv2 = n2->is_Sub() && inv2_idx == 2;
 222   bool neg_inv1 = n1->is_Sub() && inv1_idx == 2;
 223   if (n1->is_Sub() && inv1_idx == 1) {
 224     neg_x    = !neg_x;
 225     neg_inv2 = !neg_inv2;
 226   }
 227   Node* inv1_c = phase->get_ctrl(inv1);
 228   Node* inv2_c = phase->get_ctrl(inv2);
 229   Node* n_inv1;
 230   if (neg_inv1) {
 231     Node *zero = phase->_igvn.intcon(0);
 232     phase->set_ctrl(zero, phase->C->root());
 233     n_inv1 = new SubINode(zero, inv1);
 234     phase->register_new_node(n_inv1, inv1_c);
 235   } else {
 236     n_inv1 = inv1;
 237   }
 238   Node* inv;
 239   if (neg_inv2) {
 240     inv = new SubINode(n_inv1, inv2);
 241   } else {
 242     inv = new AddINode(n_inv1, inv2);
 243   }
 244   phase->register_new_node(inv, phase->get_early_ctrl(inv));
 245 
 246   Node* addx;
 247   if (neg_x) {
 248     addx = new SubINode(inv, x);
 249   } else {
 250     addx = new AddINode(x, inv);
 251   }
 252   phase->register_new_node(addx, phase->get_ctrl(x));
 253   phase->_igvn.replace_node(n1, addx);
 254   assert(phase->get_loop(phase->get_ctrl(n1)) == this, "");
 255   _body.yank(n1);
 256   return addx;
 257 }
 258 
 259 //---------------------reassociate_invariants-----------------------------
 260 // Reassociate invariant expressions:
 261 void IdealLoopTree::reassociate_invariants(PhaseIdealLoop *phase) {
 262   for (int i = _body.size() - 1; i >= 0; i--) {
 263     Node *n = _body.at(i);
 264     for (int j = 0; j < 5; j++) {
 265       Node* nn = reassociate_add_sub(n, phase);
 266       if (nn == NULL) break;
 267       n = nn; // again
 268     };
 269   }
 270 }
 271 
 272 //------------------------------policy_peeling---------------------------------
 273 // Return TRUE or FALSE if the loop should be peeled or not.  Peel if we can
 274 // make some loop-invariant test (usually a null-check) happen before the loop.
 275 bool IdealLoopTree::policy_peeling( PhaseIdealLoop *phase ) const {
 276   Node *test = ((IdealLoopTree*)this)->tail();
 277   int  body_size = ((IdealLoopTree*)this)->_body.size();
 278   // Peeling does loop cloning which can result in O(N^2) node construction
 279   if( body_size > 255 /* Prevent overflow for large body_size */
 280       || (body_size * body_size + phase->C->live_nodes()) > phase->C->max_node_limit() ) {
 281     return false;           // too large to safely clone
 282   }
 283   while( test != _head ) {      // Scan till run off top of loop
 284     if( test->is_If() ) {       // Test?
 285       Node *ctrl = phase->get_ctrl(test->in(1));
 286       if (ctrl->is_top())
 287         return false;           // Found dead test on live IF?  No peeling!
 288       // Standard IF only has one input value to check for loop invariance
 289       assert( test->Opcode() == Op_If || test->Opcode() == Op_CountedLoopEnd, "Check this code when new subtype is added");
 290       // Condition is not a member of this loop?
 291       if( !is_member(phase->get_loop(ctrl)) &&
 292           is_loop_exit(test) )
 293         return true;            // Found reason to peel!
 294     }
 295     // Walk up dominators to loop _head looking for test which is
 296     // executed on every path thru loop.
 297     test = phase->idom(test);
 298   }
 299   return false;
 300 }
 301 
 302 //------------------------------peeled_dom_test_elim---------------------------
 303 // If we got the effect of peeling, either by actually peeling or by making
 304 // a pre-loop which must execute at least once, we can remove all
 305 // loop-invariant dominated tests in the main body.
 306 void PhaseIdealLoop::peeled_dom_test_elim( IdealLoopTree *loop, Node_List &old_new ) {
 307   bool progress = true;
 308   while( progress ) {
 309     progress = false;           // Reset for next iteration
 310     Node *prev = loop->_head->in(LoopNode::LoopBackControl);//loop->tail();
 311     Node *test = prev->in(0);
 312     while( test != loop->_head ) { // Scan till run off top of loop
 313 
 314       int p_op = prev->Opcode();
 315       if( (p_op == Op_IfFalse || p_op == Op_IfTrue) &&
 316           test->is_If() &&      // Test?
 317           !test->in(1)->is_Con() && // And not already obvious?
 318           // Condition is not a member of this loop?
 319           !loop->is_member(get_loop(get_ctrl(test->in(1))))){
 320         // Walk loop body looking for instances of this test
 321         for( uint i = 0; i < loop->_body.size(); i++ ) {
 322           Node *n = loop->_body.at(i);
 323           if( n->is_If() && n->in(1) == test->in(1) /*&& n != loop->tail()->in(0)*/ ) {
 324             // IfNode was dominated by version in peeled loop body
 325             progress = true;
 326             dominated_by( old_new[prev->_idx], n );
 327           }
 328         }
 329       }
 330       prev = test;
 331       test = idom(test);
 332     } // End of scan tests in loop
 333 
 334   } // End of while( progress )
 335 }
 336 
 337 //------------------------------do_peeling-------------------------------------
 338 // Peel the first iteration of the given loop.
 339 // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 340 //         The pre-loop illegally has 2 control users (old & new loops).
 341 // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 342 //         Do this by making the old-loop fall-in edges act as if they came
 343 //         around the loopback from the prior iteration (follow the old-loop
 344 //         backedges) and then map to the new peeled iteration.  This leaves
 345 //         the pre-loop with only 1 user (the new peeled iteration), but the
 346 //         peeled-loop backedge has 2 users.
 347 // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 348 //         extra backedge user.
 349 //
 350 //                   orig
 351 //
 352 //                  stmt1
 353 //                    |
 354 //                    v
 355 //              loop predicate
 356 //                    |
 357 //                    v
 358 //                   loop<----+
 359 //                     |      |
 360 //                   stmt2    |
 361 //                     |      |
 362 //                     v      |
 363 //                    if      ^
 364 //                   / \      |
 365 //                  /   \     |
 366 //                 v     v    |
 367 //               false true   |
 368 //               /       \    |
 369 //              /         ----+
 370 //             |
 371 //             v
 372 //           exit
 373 //
 374 //
 375 //            after clone loop
 376 //
 377 //                   stmt1
 378 //                     |
 379 //                     v
 380 //               loop predicate
 381 //                 /       \
 382 //        clone   /         \   orig
 383 //               /           \
 384 //              /             \
 385 //             v               v
 386 //   +---->loop clone          loop<----+
 387 //   |      |                    |      |
 388 //   |    stmt2 clone          stmt2    |
 389 //   |      |                    |      |
 390 //   |      v                    v      |
 391 //   ^      if clone            If      ^
 392 //   |      / \                / \      |
 393 //   |     /   \              /   \     |
 394 //   |    v     v            v     v    |
 395 //   |    true  false      false true   |
 396 //   |    /         \      /       \    |
 397 //   +----           \    /         ----+
 398 //                    \  /
 399 //                    1v v2
 400 //                  region
 401 //                     |
 402 //                     v
 403 //                   exit
 404 //
 405 //
 406 //         after peel and predicate move
 407 //
 408 //                   stmt1
 409 //                    /
 410 //                   /
 411 //        clone     /            orig
 412 //                 /
 413 //                /              +----------+
 414 //               /               |          |
 415 //              /          loop predicate   |
 416 //             /                 |          |
 417 //            v                  v          |
 418 //   TOP-->loop clone          loop<----+   |
 419 //          |                    |      |   |
 420 //        stmt2 clone          stmt2    |   |
 421 //          |                    |      |   ^
 422 //          v                    v      |   |
 423 //          if clone            If      ^   |
 424 //          / \                / \      |   |
 425 //         /   \              /   \     |   |
 426 //        v     v            v     v    |   |
 427 //      true   false      false  true   |   |
 428 //        |         \      /       \    |   |
 429 //        |          \    /         ----+   ^
 430 //        |           \  /                  |
 431 //        |           1v v2                 |
 432 //        v         region                  |
 433 //        |            |                    |
 434 //        |            v                    |
 435 //        |          exit                   |
 436 //        |                                 |
 437 //        +--------------->-----------------+
 438 //
 439 //
 440 //              final graph
 441 //
 442 //                  stmt1
 443 //                    |
 444 //                    v
 445 //                  stmt2 clone
 446 //                    |
 447 //                    v
 448 //                   if clone
 449 //                  / |
 450 //                 /  |
 451 //                v   v
 452 //            false  true
 453 //             |      |
 454 //             |      v
 455 //             | loop predicate
 456 //             |      |
 457 //             |      v
 458 //             |     loop<----+
 459 //             |      |       |
 460 //             |    stmt2     |
 461 //             |      |       |
 462 //             |      v       |
 463 //             v      if      ^
 464 //             |     /  \     |
 465 //             |    /    \    |
 466 //             |   v     v    |
 467 //             | false  true  |
 468 //             |  |        \  |
 469 //             v  v         --+
 470 //            region
 471 //              |
 472 //              v
 473 //             exit
 474 //
 475 void PhaseIdealLoop::do_peeling( IdealLoopTree *loop, Node_List &old_new ) {
 476 
 477   C->set_major_progress();
 478   // Peeling a 'main' loop in a pre/main/post situation obfuscates the
 479   // 'pre' loop from the main and the 'pre' can no longer have its
 480   // iterations adjusted.  Therefore, we need to declare this loop as
 481   // no longer a 'main' loop; it will need new pre and post loops before
 482   // we can do further RCE.
 483 #ifndef PRODUCT
 484   if (TraceLoopOpts) {
 485     tty->print("Peel         ");
 486     loop->dump_head();
 487   }
 488 #endif
 489   Node* head = loop->_head;
 490   bool counted_loop = head->is_CountedLoop();
 491   if (counted_loop) {
 492     CountedLoopNode *cl = head->as_CountedLoop();
 493     assert(cl->trip_count() > 0, "peeling a fully unrolled loop");
 494     cl->set_trip_count(cl->trip_count() - 1);
 495     if (cl->is_main_loop()) {
 496       cl->set_normal_loop();
 497 #ifndef PRODUCT
 498       if (PrintOpto && VerifyLoopOptimizations) {
 499         tty->print("Peeling a 'main' loop; resetting to 'normal' ");
 500         loop->dump_head();
 501       }
 502 #endif
 503     }
 504   }
 505   Node* entry = head->in(LoopNode::EntryControl);
 506 
 507   // Step 1: Clone the loop body.  The clone becomes the peeled iteration.
 508   //         The pre-loop illegally has 2 control users (old & new loops).
 509   clone_loop( loop, old_new, dom_depth(head) );
 510 
 511   // Step 2: Make the old-loop fall-in edges point to the peeled iteration.
 512   //         Do this by making the old-loop fall-in edges act as if they came
 513   //         around the loopback from the prior iteration (follow the old-loop
 514   //         backedges) and then map to the new peeled iteration.  This leaves
 515   //         the pre-loop with only 1 user (the new peeled iteration), but the
 516   //         peeled-loop backedge has 2 users.
 517   Node* new_entry = old_new[head->in(LoopNode::LoopBackControl)->_idx];
 518   _igvn.hash_delete(head);
 519   head->set_req(LoopNode::EntryControl, new_entry);
 520   for (DUIterator_Fast jmax, j = head->fast_outs(jmax); j < jmax; j++) {
 521     Node* old = head->fast_out(j);
 522     if (old->in(0) == loop->_head && old->req() == 3 && old->is_Phi()) {
 523       Node* new_exit_value = old_new[old->in(LoopNode::LoopBackControl)->_idx];
 524       if (!new_exit_value )     // Backedge value is ALSO loop invariant?
 525         // Then loop body backedge value remains the same.
 526         new_exit_value = old->in(LoopNode::LoopBackControl);
 527       _igvn.hash_delete(old);
 528       old->set_req(LoopNode::EntryControl, new_exit_value);
 529     }
 530   }
 531 
 532 
 533   // Step 3: Cut the backedge on the clone (so its not a loop) and remove the
 534   //         extra backedge user.
 535   Node* new_head = old_new[head->_idx];
 536   _igvn.hash_delete(new_head);
 537   new_head->set_req(LoopNode::LoopBackControl, C->top());
 538   for (DUIterator_Fast j2max, j2 = new_head->fast_outs(j2max); j2 < j2max; j2++) {
 539     Node* use = new_head->fast_out(j2);
 540     if (use->in(0) == new_head && use->req() == 3 && use->is_Phi()) {
 541       _igvn.hash_delete(use);
 542       use->set_req(LoopNode::LoopBackControl, C->top());
 543     }
 544   }
 545 
 546 
 547   // Step 4: Correct dom-depth info.  Set to loop-head depth.
 548   int dd = dom_depth(head);
 549   set_idom(head, head->in(1), dd);
 550   for (uint j3 = 0; j3 < loop->_body.size(); j3++) {
 551     Node *old = loop->_body.at(j3);
 552     Node *nnn = old_new[old->_idx];
 553     if (!has_ctrl(nnn))
 554       set_idom(nnn, idom(nnn), dd-1);
 555   }
 556 
 557   // Now force out all loop-invariant dominating tests.  The optimizer
 558   // finds some, but we _know_ they are all useless.
 559   peeled_dom_test_elim(loop,old_new);
 560 
 561   loop->record_for_igvn();
 562 }
 563 
 564 #define EMPTY_LOOP_SIZE 7 // number of nodes in an empty loop
 565 
 566 //------------------------------policy_maximally_unroll------------------------
 567 // Calculate exact loop trip count and return true if loop can be maximally
 568 // unrolled.
 569 bool IdealLoopTree::policy_maximally_unroll( PhaseIdealLoop *phase ) const {
 570   CountedLoopNode *cl = _head->as_CountedLoop();
 571   assert(cl->is_normal_loop(), "");
 572   if (!cl->is_valid_counted_loop())
 573     return false; // Malformed counted loop
 574 
 575   if (!cl->has_exact_trip_count()) {
 576     // Trip count is not exact.
 577     return false;
 578   }
 579 
 580   uint trip_count = cl->trip_count();
 581   // Note, max_juint is used to indicate unknown trip count.
 582   assert(trip_count > 1, "one iteration loop should be optimized out already");
 583   assert(trip_count < max_juint, "exact trip_count should be less than max_uint.");
 584 
 585   // Real policy: if we maximally unroll, does it get too big?
 586   // Allow the unrolled mess to get larger than standard loop
 587   // size.  After all, it will no longer be a loop.
 588   uint body_size    = _body.size();
 589   uint unroll_limit = (uint)LoopUnrollLimit * 4;
 590   assert( (intx)unroll_limit == LoopUnrollLimit * 4, "LoopUnrollLimit must fit in 32bits");
 591   if (trip_count > unroll_limit || body_size > unroll_limit) {
 592     return false;
 593   }
 594 
 595   // Fully unroll a loop with few iterations regardless next
 596   // conditions since following loop optimizations will split
 597   // such loop anyway (pre-main-post).
 598   if (trip_count <= 3)
 599     return true;
 600 
 601   // Take into account that after unroll conjoined heads and tails will fold,
 602   // otherwise policy_unroll() may allow more unrolling than max unrolling.
 603   uint new_body_size = EMPTY_LOOP_SIZE + (body_size - EMPTY_LOOP_SIZE) * trip_count;
 604   uint tst_body_size = (new_body_size - EMPTY_LOOP_SIZE) / trip_count + EMPTY_LOOP_SIZE;
 605   if (body_size != tst_body_size) // Check for int overflow
 606     return false;
 607   if (new_body_size > unroll_limit ||
 608       // Unrolling can result in a large amount of node construction
 609       new_body_size >= phase->C->max_node_limit() - phase->C->live_nodes()) {
 610     return false;
 611   }
 612 
 613   // Do not unroll a loop with String intrinsics code.
 614   // String intrinsics are large and have loops.
 615   for (uint k = 0; k < _body.size(); k++) {
 616     Node* n = _body.at(k);
 617     switch (n->Opcode()) {
 618       case Op_StrComp:
 619       case Op_StrEquals:
 620       case Op_StrIndexOf:
 621       case Op_EncodeISOArray:
 622       case Op_AryEq: {
 623         return false;
 624       }
 625 #if INCLUDE_RTM_OPT
 626       case Op_FastLock:
 627       case Op_FastUnlock: {
 628         // Don't unroll RTM locking code because it is large.
 629         if (UseRTMLocking) {
 630           return false;
 631         }
 632       }
 633 #endif
 634     } // switch
 635   }
 636 
 637   return true; // Do maximally unroll
 638 }
 639 
 640 
 641 //------------------------------policy_unroll----------------------------------
 642 // Return TRUE or FALSE if the loop should be unrolled or not.  Unroll if
 643 // the loop is a CountedLoop and the body is small enough.
 644 bool IdealLoopTree::policy_unroll(PhaseIdealLoop *phase) {
 645 
 646   CountedLoopNode *cl = _head->as_CountedLoop();
 647   assert(cl->is_normal_loop() || cl->is_main_loop(), "");
 648 
 649   if (!cl->is_valid_counted_loop())
 650     return false; // Malformed counted loop
 651 
 652   // Protect against over-unrolling.
 653   // After split at least one iteration will be executed in pre-loop.
 654   if (cl->trip_count() <= (uint)(cl->is_normal_loop() ? 2 : 1)) return false;
 655 
 656   _local_loop_unroll_limit = LoopUnrollLimit;
 657   _local_loop_unroll_factor = 4;
 658   int future_unroll_ct = cl->unrolled_count() * 2;
 659   if (future_unroll_ct > LoopMaxUnroll) return false;
 660 
 661   // Check for initial stride being a small enough constant
 662   if (abs(cl->stride_con()) > (1<<2)*future_unroll_ct) return false;
 663 
 664   // Don't unroll if the next round of unrolling would push us
 665   // over the expected trip count of the loop.  One is subtracted
 666   // from the expected trip count because the pre-loop normally
 667   // executes 1 iteration.
 668   if (UnrollLimitForProfileCheck > 0 &&
 669       cl->profile_trip_cnt() != COUNT_UNKNOWN &&
 670       future_unroll_ct        > UnrollLimitForProfileCheck &&
 671       (float)future_unroll_ct > cl->profile_trip_cnt() - 1.0) {
 672     return false;
 673   }
 674 
 675   // When unroll count is greater than LoopUnrollMin, don't unroll if:
 676   //   the residual iterations are more than 10% of the trip count
 677   //   and rounds of "unroll,optimize" are not making significant progress
 678   //   Progress defined as current size less than 20% larger than previous size.
 679   if (UseSuperWord && cl->node_count_before_unroll() > 0 &&
 680       future_unroll_ct > LoopUnrollMin &&
 681       (future_unroll_ct - 1) * 10.0 > cl->profile_trip_cnt() &&
 682       1.2 * cl->node_count_before_unroll() < (double)_body.size()) {
 683     return false;
 684   }
 685 
 686   Node *init_n = cl->init_trip();
 687   Node *limit_n = cl->limit();
 688   int stride_con = cl->stride_con();
 689   // Non-constant bounds.
 690   // Protect against over-unrolling when init or/and limit are not constant
 691   // (so that trip_count's init value is maxint) but iv range is known.
 692   if (init_n   == NULL || !init_n->is_Con()  ||
 693       limit_n  == NULL || !limit_n->is_Con()) {
 694     Node* phi = cl->phi();
 695     if (phi != NULL) {
 696       assert(phi->is_Phi() && phi->in(0) == _head, "Counted loop should have iv phi.");
 697       const TypeInt* iv_type = phase->_igvn.type(phi)->is_int();
 698       int next_stride = stride_con * 2; // stride after this unroll
 699       if (next_stride > 0) {
 700         if (iv_type->_lo + next_stride <= iv_type->_lo || // overflow
 701             iv_type->_lo + next_stride >  iv_type->_hi) {
 702           return false;  // over-unrolling
 703         }
 704       } else if (next_stride < 0) {
 705         if (iv_type->_hi + next_stride >= iv_type->_hi || // overflow
 706             iv_type->_hi + next_stride <  iv_type->_lo) {
 707           return false;  // over-unrolling
 708         }
 709       }
 710     }
 711   }
 712 
 713   // After unroll limit will be adjusted: new_limit = limit-stride.
 714   // Bailout if adjustment overflow.
 715   const TypeInt* limit_type = phase->_igvn.type(limit_n)->is_int();
 716   if (stride_con > 0 && ((limit_type->_hi - stride_con) >= limit_type->_hi) ||
 717       stride_con < 0 && ((limit_type->_lo - stride_con) <= limit_type->_lo))
 718     return false;  // overflow
 719 
 720   // Adjust body_size to determine if we unroll or not
 721   uint body_size = _body.size();
 722   // Key test to unroll loop in CRC32 java code
 723   int xors_in_loop = 0;
 724   // Also count ModL, DivL and MulL which expand mightly
 725   for (uint k = 0; k < _body.size(); k++) {
 726     Node* n = _body.at(k);
 727     switch (n->Opcode()) {
 728       case Op_XorI: xors_in_loop++; break; // CRC32 java code
 729       case Op_ModL: body_size += 30; break;
 730       case Op_DivL: body_size += 30; break;
 731       case Op_MulL: body_size += 10; break;
 732       case Op_StrComp:
 733       case Op_StrEquals:
 734       case Op_StrIndexOf:
 735       case Op_EncodeISOArray:
 736       case Op_AryEq: {
 737         // Do not unroll a loop with String intrinsics code.
 738         // String intrinsics are large and have loops.
 739         return false;
 740       }
 741 #if INCLUDE_RTM_OPT
 742       case Op_FastLock:
 743       case Op_FastUnlock: {
 744         // Don't unroll RTM locking code because it is large.
 745         if (UseRTMLocking) {
 746           return false;
 747         }
 748       }
 749 #endif
 750     } // switch
 751   }
 752 
 753   if (UseSuperWord) {
 754     if (!cl->is_reduction_loop()) {
 755       phase->mark_reductions(this);
 756     }
 757 
 758     // Only attempt slp analysis when user controls do not prohibit it
 759     if (LoopMaxUnroll > _local_loop_unroll_factor) {
 760       // Once policy_slp_analysis succeeds, mark the loop with the
 761       // maximal unroll factor so that we minimize analysis passes
 762       if ((future_unroll_ct > _local_loop_unroll_factor) ||
 763           (body_size > (uint)_local_loop_unroll_limit)) {
 764         policy_unroll_slp_analysis(cl, phase, future_unroll_ct);
 765       }
 766     }
 767   }
 768 
 769   // Check for being too big
 770   if (body_size > (uint)_local_loop_unroll_limit) {
 771     if (xors_in_loop >= 4 && body_size < (uint)LoopUnrollLimit*4) return true;
 772     // Normal case: loop too big
 773     return false;
 774   }
 775 
 776   // Unroll once!  (Each trip will soon do double iterations)
 777   return true;
 778 }
 779 
 780 void IdealLoopTree::policy_unroll_slp_analysis(CountedLoopNode *cl, PhaseIdealLoop *phase, int future_unroll_ct) {
 781   // Enable this functionality target by target as needed
 782   if (SuperWordLoopUnrollAnalysis) {
 783     if (!cl->has_passed_slp()) {
 784       SuperWord sw(phase);
 785       sw.transform_loop(this, false);
 786 
 787       // If the loop is slp canonical analyze it
 788       if (sw.early_return() == false) {
 789         sw.unrolling_analysis(cl, _local_loop_unroll_factor);
 790       }
 791     }
 792 
 793     int slp_max_unroll_factor = cl->slp_max_unroll();
 794     if ((slp_max_unroll_factor > 4) &&
 795         (slp_max_unroll_factor >= future_unroll_ct)) {
 796       int new_limit = cl->node_count_before_unroll() * slp_max_unroll_factor;
 797       if (new_limit > LoopUnrollLimit) {
 798 #ifndef PRODUCT
 799         if (TraceSuperWordLoopUnrollAnalysis) {
 800           tty->print_cr("slp analysis is applying unroll limit  %d, the original limit was %d\n",
 801             new_limit, _local_loop_unroll_limit);
 802         }
 803 #endif
 804         _local_loop_unroll_limit = new_limit;
 805       }
 806     }
 807   }
 808 }
 809 
 810 //------------------------------policy_align-----------------------------------
 811 // Return TRUE or FALSE if the loop should be cache-line aligned.  Gather the
 812 // expression that does the alignment.  Note that only one array base can be
 813 // aligned in a loop (unless the VM guarantees mutual alignment).  Note that
 814 // if we vectorize short memory ops into longer memory ops, we may want to
 815 // increase alignment.
 816 bool IdealLoopTree::policy_align( PhaseIdealLoop *phase ) const {
 817   return false;
 818 }
 819 
 820 //------------------------------policy_range_check-----------------------------
 821 // Return TRUE or FALSE if the loop should be range-check-eliminated.
 822 // Actually we do iteration-splitting, a more powerful form of RCE.
 823 bool IdealLoopTree::policy_range_check( PhaseIdealLoop *phase ) const {
 824   if (!RangeCheckElimination) return false;
 825 
 826   CountedLoopNode *cl = _head->as_CountedLoop();
 827   // If we unrolled with no intention of doing RCE and we later
 828   // changed our minds, we got no pre-loop.  Either we need to
 829   // make a new pre-loop, or we gotta disallow RCE.
 830   if (cl->is_main_no_pre_loop()) return false; // Disallowed for now.
 831   Node *trip_counter = cl->phi();
 832 
 833   // Check loop body for tests of trip-counter plus loop-invariant vs
 834   // loop-invariant.
 835   for (uint i = 0; i < _body.size(); i++) {
 836     Node *iff = _body[i];
 837     if (iff->Opcode() == Op_If) { // Test?
 838 
 839       // Comparing trip+off vs limit
 840       Node *bol = iff->in(1);
 841       if (bol->req() != 2) continue; // dead constant test
 842       if (!bol->is_Bool()) {
 843         assert(UseLoopPredicate && bol->Opcode() == Op_Conv2B, "predicate check only");
 844         continue;
 845       }
 846       if (bol->as_Bool()->_test._test == BoolTest::ne)
 847         continue; // not RC
 848 
 849       Node *cmp = bol->in(1);
 850       Node *rc_exp = cmp->in(1);
 851       Node *limit = cmp->in(2);
 852 
 853       Node *limit_c = phase->get_ctrl(limit);
 854       if( limit_c == phase->C->top() )
 855         return false;           // Found dead test on live IF?  No RCE!
 856       if( is_member(phase->get_loop(limit_c) ) ) {
 857         // Compare might have operands swapped; commute them
 858         rc_exp = cmp->in(2);
 859         limit  = cmp->in(1);
 860         limit_c = phase->get_ctrl(limit);
 861         if( is_member(phase->get_loop(limit_c) ) )
 862           continue;             // Both inputs are loop varying; cannot RCE
 863       }
 864 
 865       if (!phase->is_scaled_iv_plus_offset(rc_exp, trip_counter, NULL, NULL)) {
 866         continue;
 867       }
 868       // Yeah!  Found a test like 'trip+off vs limit'
 869       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
 870       // we need loop unswitching instead of iteration splitting.
 871       if( is_loop_exit(iff) )
 872         return true;            // Found reason to split iterations
 873     } // End of is IF
 874   }
 875 
 876   return false;
 877 }
 878 
 879 //------------------------------policy_peel_only-------------------------------
 880 // Return TRUE or FALSE if the loop should NEVER be RCE'd or aligned.  Useful
 881 // for unrolling loops with NO array accesses.
 882 bool IdealLoopTree::policy_peel_only( PhaseIdealLoop *phase ) const {
 883 
 884   for( uint i = 0; i < _body.size(); i++ )
 885     if( _body[i]->is_Mem() )
 886       return false;
 887 
 888   // No memory accesses at all!
 889   return true;
 890 }
 891 
 892 //------------------------------clone_up_backedge_goo--------------------------
 893 // If Node n lives in the back_ctrl block and cannot float, we clone a private
 894 // version of n in preheader_ctrl block and return that, otherwise return n.
 895 Node *PhaseIdealLoop::clone_up_backedge_goo( Node *back_ctrl, Node *preheader_ctrl, Node *n, VectorSet &visited, Node_Stack &clones ) {
 896   if( get_ctrl(n) != back_ctrl ) return n;
 897 
 898   // Only visit once
 899   if (visited.test_set(n->_idx)) {
 900     Node *x = clones.find(n->_idx);
 901     if (x != NULL)
 902       return x;
 903     return n;
 904   }
 905 
 906   Node *x = NULL;               // If required, a clone of 'n'
 907   // Check for 'n' being pinned in the backedge.
 908   if( n->in(0) && n->in(0) == back_ctrl ) {
 909     assert(clones.find(n->_idx) == NULL, "dead loop");
 910     x = n->clone();             // Clone a copy of 'n' to preheader
 911     clones.push(x, n->_idx);
 912     x->set_req( 0, preheader_ctrl ); // Fix x's control input to preheader
 913   }
 914 
 915   // Recursive fixup any other input edges into x.
 916   // If there are no changes we can just return 'n', otherwise
 917   // we need to clone a private copy and change it.
 918   for( uint i = 1; i < n->req(); i++ ) {
 919     Node *g = clone_up_backedge_goo( back_ctrl, preheader_ctrl, n->in(i), visited, clones );
 920     if( g != n->in(i) ) {
 921       if( !x ) {
 922         assert(clones.find(n->_idx) == NULL, "dead loop");
 923         x = n->clone();
 924         clones.push(x, n->_idx);
 925       }
 926       x->set_req(i, g);
 927     }
 928   }
 929   if( x ) {                     // x can legally float to pre-header location
 930     register_new_node( x, preheader_ctrl );
 931     return x;
 932   } else {                      // raise n to cover LCA of uses
 933     set_ctrl( n, find_non_split_ctrl(back_ctrl->in(0)) );
 934   }
 935   return n;
 936 }
 937 
 938 bool PhaseIdealLoop::cast_incr_before_loop(Node* incr, Node* ctrl, Node* loop) {
 939   Node* castii = new CastIINode(incr, TypeInt::INT, true);
 940   castii->set_req(0, ctrl);
 941   register_new_node(castii, ctrl);
 942   for (DUIterator_Fast imax, i = incr->fast_outs(imax); i < imax; i++) {
 943     Node* n = incr->fast_out(i);
 944     if (n->is_Phi() && n->in(0) == loop) {
 945       int nrep = n->replace_edge(incr, castii);
 946       return true;
 947     }
 948   }
 949   return false;
 950 }
 951 
 952 //------------------------------insert_pre_post_loops--------------------------
 953 // Insert pre and post loops.  If peel_only is set, the pre-loop can not have
 954 // more iterations added.  It acts as a 'peel' only, no lower-bound RCE, no
 955 // alignment.  Useful to unroll loops that do no array accesses.
 956 void PhaseIdealLoop::insert_pre_post_loops( IdealLoopTree *loop, Node_List &old_new, bool peel_only ) {
 957 
 958 #ifndef PRODUCT
 959   if (TraceLoopOpts) {
 960     if (peel_only)
 961       tty->print("PeelMainPost ");
 962     else
 963       tty->print("PreMainPost  ");
 964     loop->dump_head();
 965   }
 966 #endif
 967   C->set_major_progress();
 968 
 969   // Find common pieces of the loop being guarded with pre & post loops
 970   CountedLoopNode *main_head = loop->_head->as_CountedLoop();
 971   assert( main_head->is_normal_loop(), "" );
 972   CountedLoopEndNode *main_end = main_head->loopexit();
 973   guarantee(main_end != NULL, "no loop exit node");
 974   assert( main_end->outcnt() == 2, "1 true, 1 false path only" );
 975   uint dd_main_head = dom_depth(main_head);
 976   uint max = main_head->outcnt();
 977 
 978   Node *pre_header= main_head->in(LoopNode::EntryControl);
 979   Node *init      = main_head->init_trip();
 980   Node *incr      = main_end ->incr();
 981   Node *limit     = main_end ->limit();
 982   Node *stride    = main_end ->stride();
 983   Node *cmp       = main_end ->cmp_node();
 984   BoolTest::mask b_test = main_end->test_trip();
 985 
 986   // Need only 1 user of 'bol' because I will be hacking the loop bounds.
 987   Node *bol = main_end->in(CountedLoopEndNode::TestValue);
 988   if( bol->outcnt() != 1 ) {
 989     bol = bol->clone();
 990     register_new_node(bol,main_end->in(CountedLoopEndNode::TestControl));
 991     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, bol);
 992   }
 993   // Need only 1 user of 'cmp' because I will be hacking the loop bounds.
 994   if( cmp->outcnt() != 1 ) {
 995     cmp = cmp->clone();
 996     register_new_node(cmp,main_end->in(CountedLoopEndNode::TestControl));
 997     _igvn.replace_input_of(bol, 1, cmp);
 998   }
 999 
1000   //------------------------------
1001   // Step A: Create Post-Loop.
1002   Node* main_exit = main_end->proj_out(false);
1003   assert( main_exit->Opcode() == Op_IfFalse, "" );
1004   int dd_main_exit = dom_depth(main_exit);
1005 
1006   // Step A1: Clone the loop body.  The clone becomes the post-loop.  The main
1007   // loop pre-header illegally has 2 control users (old & new loops).
1008   clone_loop( loop, old_new, dd_main_exit );
1009   assert( old_new[main_end ->_idx]->Opcode() == Op_CountedLoopEnd, "" );
1010   CountedLoopNode *post_head = old_new[main_head->_idx]->as_CountedLoop();
1011   post_head->set_post_loop(main_head);
1012 
1013   // Reduce the post-loop trip count.
1014   CountedLoopEndNode* post_end = old_new[main_end ->_idx]->as_CountedLoopEnd();
1015   post_end->_prob = PROB_FAIR;
1016 
1017   // Build the main-loop normal exit.
1018   IfFalseNode *new_main_exit = new IfFalseNode(main_end);
1019   _igvn.register_new_node_with_optimizer( new_main_exit );
1020   set_idom(new_main_exit, main_end, dd_main_exit );
1021   set_loop(new_main_exit, loop->_parent);
1022 
1023   // Step A2: Build a zero-trip guard for the post-loop.  After leaving the
1024   // main-loop, the post-loop may not execute at all.  We 'opaque' the incr
1025   // (the main-loop trip-counter exit value) because we will be changing
1026   // the exit value (via unrolling) so we cannot constant-fold away the zero
1027   // trip guard until all unrolling is done.
1028   Node *zer_opaq = new Opaque1Node(C, incr);
1029   Node *zer_cmp  = new CmpINode( zer_opaq, limit );
1030   Node *zer_bol  = new BoolNode( zer_cmp, b_test );
1031   register_new_node( zer_opaq, new_main_exit );
1032   register_new_node( zer_cmp , new_main_exit );
1033   register_new_node( zer_bol , new_main_exit );
1034 
1035   // Build the IfNode
1036   IfNode *zer_iff = new IfNode( new_main_exit, zer_bol, PROB_FAIR, COUNT_UNKNOWN );
1037   _igvn.register_new_node_with_optimizer( zer_iff );
1038   set_idom(zer_iff, new_main_exit, dd_main_exit);
1039   set_loop(zer_iff, loop->_parent);
1040 
1041   // Plug in the false-path, taken if we need to skip post-loop
1042   _igvn.replace_input_of(main_exit, 0, zer_iff);
1043   set_idom(main_exit, zer_iff, dd_main_exit);
1044   set_idom(main_exit->unique_out(), zer_iff, dd_main_exit);
1045   // Make the true-path, must enter the post loop
1046   Node *zer_taken = new IfTrueNode( zer_iff );
1047   _igvn.register_new_node_with_optimizer( zer_taken );
1048   set_idom(zer_taken, zer_iff, dd_main_exit);
1049   set_loop(zer_taken, loop->_parent);
1050   // Plug in the true path
1051   _igvn.hash_delete( post_head );
1052   post_head->set_req(LoopNode::EntryControl, zer_taken);
1053   set_idom(post_head, zer_taken, dd_main_exit);
1054 
1055   Arena *a = Thread::current()->resource_area();
1056   VectorSet visited(a);
1057   Node_Stack clones(a, main_head->back_control()->outcnt());
1058   // Step A3: Make the fall-in values to the post-loop come from the
1059   // fall-out values of the main-loop.
1060   for (DUIterator_Fast imax, i = main_head->fast_outs(imax); i < imax; i++) {
1061     Node* main_phi = main_head->fast_out(i);
1062     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() >0 ) {
1063       Node *post_phi = old_new[main_phi->_idx];
1064       Node *fallmain  = clone_up_backedge_goo(main_head->back_control(),
1065                                               post_head->init_control(),
1066                                               main_phi->in(LoopNode::LoopBackControl),
1067                                               visited, clones);
1068       _igvn.hash_delete(post_phi);
1069       post_phi->set_req( LoopNode::EntryControl, fallmain );
1070     }
1071   }
1072 
1073   // Update local caches for next stanza
1074   main_exit = new_main_exit;
1075 
1076 
1077   //------------------------------
1078   // Step B: Create Pre-Loop.
1079 
1080   // Step B1: Clone the loop body.  The clone becomes the pre-loop.  The main
1081   // loop pre-header illegally has 2 control users (old & new loops).
1082   clone_loop( loop, old_new, dd_main_head );
1083   CountedLoopNode*    pre_head = old_new[main_head->_idx]->as_CountedLoop();
1084   CountedLoopEndNode* pre_end  = old_new[main_end ->_idx]->as_CountedLoopEnd();
1085   pre_head->set_pre_loop(main_head);
1086   Node *pre_incr = old_new[incr->_idx];
1087 
1088   // Reduce the pre-loop trip count.
1089   pre_end->_prob = PROB_FAIR;
1090 
1091   // Find the pre-loop normal exit.
1092   Node* pre_exit = pre_end->proj_out(false);
1093   assert( pre_exit->Opcode() == Op_IfFalse, "" );
1094   IfFalseNode *new_pre_exit = new IfFalseNode(pre_end);
1095   _igvn.register_new_node_with_optimizer( new_pre_exit );
1096   set_idom(new_pre_exit, pre_end, dd_main_head);
1097   set_loop(new_pre_exit, loop->_parent);
1098 
1099   // Step B2: Build a zero-trip guard for the main-loop.  After leaving the
1100   // pre-loop, the main-loop may not execute at all.  Later in life this
1101   // zero-trip guard will become the minimum-trip guard when we unroll
1102   // the main-loop.
1103   Node *min_opaq = new Opaque1Node(C, limit);
1104   Node *min_cmp  = new CmpINode( pre_incr, min_opaq );
1105   Node *min_bol  = new BoolNode( min_cmp, b_test );
1106   register_new_node( min_opaq, new_pre_exit );
1107   register_new_node( min_cmp , new_pre_exit );
1108   register_new_node( min_bol , new_pre_exit );
1109 
1110   // Build the IfNode (assume the main-loop is executed always).
1111   IfNode *min_iff = new IfNode( new_pre_exit, min_bol, PROB_ALWAYS, COUNT_UNKNOWN );
1112   _igvn.register_new_node_with_optimizer( min_iff );
1113   set_idom(min_iff, new_pre_exit, dd_main_head);
1114   set_loop(min_iff, loop->_parent);
1115 
1116   // Plug in the false-path, taken if we need to skip main-loop
1117   _igvn.hash_delete( pre_exit );
1118   pre_exit->set_req(0, min_iff);
1119   set_idom(pre_exit, min_iff, dd_main_head);
1120   set_idom(pre_exit->unique_out(), min_iff, dd_main_head);
1121   // Make the true-path, must enter the main loop
1122   Node *min_taken = new IfTrueNode( min_iff );
1123   _igvn.register_new_node_with_optimizer( min_taken );
1124   set_idom(min_taken, min_iff, dd_main_head);
1125   set_loop(min_taken, loop->_parent);
1126   // Plug in the true path
1127   _igvn.hash_delete( main_head );
1128   main_head->set_req(LoopNode::EntryControl, min_taken);
1129   set_idom(main_head, min_taken, dd_main_head);
1130 
1131   visited.Clear();
1132   clones.clear();
1133   // Step B3: Make the fall-in values to the main-loop come from the
1134   // fall-out values of the pre-loop.
1135   for (DUIterator_Fast i2max, i2 = main_head->fast_outs(i2max); i2 < i2max; i2++) {
1136     Node* main_phi = main_head->fast_out(i2);
1137     if( main_phi->is_Phi() && main_phi->in(0) == main_head && main_phi->outcnt() > 0 ) {
1138       Node *pre_phi = old_new[main_phi->_idx];
1139       Node *fallpre  = clone_up_backedge_goo(pre_head->back_control(),
1140                                              main_head->init_control(),
1141                                              pre_phi->in(LoopNode::LoopBackControl),
1142                                              visited, clones);
1143       _igvn.hash_delete(main_phi);
1144       main_phi->set_req( LoopNode::EntryControl, fallpre );
1145     }
1146   }
1147 
1148   // Nodes inside the loop may be control dependent on a predicate
1149   // that was moved before the preloop. If the back branch of the main
1150   // or post loops becomes dead, those nodes won't be dependent on the
1151   // test that guards that loop nest anymore which could lead to an
1152   // incorrect array access because it executes independently of the
1153   // test that was guarding the loop nest. We add a special CastII on
1154   // the if branch that enters the loop, between the input induction
1155   // variable value and the induction variable Phi to preserve correct
1156   // dependencies.
1157 
1158   // CastII for the post loop:
1159   bool inserted = cast_incr_before_loop(zer_opaq->in(1), zer_taken, post_head);
1160   assert(inserted, "no castII inserted");
1161 
1162   // CastII for the main loop:
1163   inserted = cast_incr_before_loop(pre_incr, min_taken, main_head);
1164   assert(inserted, "no castII inserted");
1165 
1166   // Step B4: Shorten the pre-loop to run only 1 iteration (for now).
1167   // RCE and alignment may change this later.
1168   Node *cmp_end = pre_end->cmp_node();
1169   assert( cmp_end->in(2) == limit, "" );
1170   Node *pre_limit = new AddINode( init, stride );
1171 
1172   // Save the original loop limit in this Opaque1 node for
1173   // use by range check elimination.
1174   Node *pre_opaq  = new Opaque1Node(C, pre_limit, limit);
1175 
1176   register_new_node( pre_limit, pre_head->in(0) );
1177   register_new_node( pre_opaq , pre_head->in(0) );
1178 
1179   // Since no other users of pre-loop compare, I can hack limit directly
1180   assert( cmp_end->outcnt() == 1, "no other users" );
1181   _igvn.hash_delete(cmp_end);
1182   cmp_end->set_req(2, peel_only ? pre_limit : pre_opaq);
1183 
1184   // Special case for not-equal loop bounds:
1185   // Change pre loop test, main loop test, and the
1186   // main loop guard test to use lt or gt depending on stride
1187   // direction:
1188   // positive stride use <
1189   // negative stride use >
1190   //
1191   // not-equal test is kept for post loop to handle case
1192   // when init > limit when stride > 0 (and reverse).
1193 
1194   if (pre_end->in(CountedLoopEndNode::TestValue)->as_Bool()->_test._test == BoolTest::ne) {
1195 
1196     BoolTest::mask new_test = (main_end->stride_con() > 0) ? BoolTest::lt : BoolTest::gt;
1197     // Modify pre loop end condition
1198     Node* pre_bol = pre_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1199     BoolNode* new_bol0 = new BoolNode(pre_bol->in(1), new_test);
1200     register_new_node( new_bol0, pre_head->in(0) );
1201     _igvn.replace_input_of(pre_end, CountedLoopEndNode::TestValue, new_bol0);
1202     // Modify main loop guard condition
1203     assert(min_iff->in(CountedLoopEndNode::TestValue) == min_bol, "guard okay");
1204     BoolNode* new_bol1 = new BoolNode(min_bol->in(1), new_test);
1205     register_new_node( new_bol1, new_pre_exit );
1206     _igvn.hash_delete(min_iff);
1207     min_iff->set_req(CountedLoopEndNode::TestValue, new_bol1);
1208     // Modify main loop end condition
1209     BoolNode* main_bol = main_end->in(CountedLoopEndNode::TestValue)->as_Bool();
1210     BoolNode* new_bol2 = new BoolNode(main_bol->in(1), new_test);
1211     register_new_node( new_bol2, main_end->in(CountedLoopEndNode::TestControl) );
1212     _igvn.replace_input_of(main_end, CountedLoopEndNode::TestValue, new_bol2);
1213   }
1214 
1215   // Flag main loop
1216   main_head->set_main_loop();
1217   if( peel_only ) main_head->set_main_no_pre_loop();
1218 
1219   // Subtract a trip count for the pre-loop.
1220   main_head->set_trip_count(main_head->trip_count() - 1);
1221 
1222   // It's difficult to be precise about the trip-counts
1223   // for the pre/post loops.  They are usually very short,
1224   // so guess that 4 trips is a reasonable value.
1225   post_head->set_profile_trip_cnt(4.0);
1226   pre_head->set_profile_trip_cnt(4.0);
1227 
1228   // Now force out all loop-invariant dominating tests.  The optimizer
1229   // finds some, but we _know_ they are all useless.
1230   peeled_dom_test_elim(loop,old_new);
1231   loop->record_for_igvn();
1232 }
1233 
1234 //------------------------------is_invariant-----------------------------
1235 // Return true if n is invariant
1236 bool IdealLoopTree::is_invariant(Node* n) const {
1237   Node *n_c = _phase->has_ctrl(n) ? _phase->get_ctrl(n) : n;
1238   if (n_c->is_top()) return false;
1239   return !is_member(_phase->get_loop(n_c));
1240 }
1241 
1242 
1243 //------------------------------do_unroll--------------------------------------
1244 // Unroll the loop body one step - make each trip do 2 iterations.
1245 void PhaseIdealLoop::do_unroll( IdealLoopTree *loop, Node_List &old_new, bool adjust_min_trip ) {
1246   assert(LoopUnrollLimit, "");
1247   CountedLoopNode *loop_head = loop->_head->as_CountedLoop();
1248   CountedLoopEndNode *loop_end = loop_head->loopexit();
1249   assert(loop_end, "");
1250 #ifndef PRODUCT
1251   if (PrintOpto && VerifyLoopOptimizations) {
1252     tty->print("Unrolling ");
1253     loop->dump_head();
1254   } else if (TraceLoopOpts) {
1255     if (loop_head->trip_count() < (uint)LoopUnrollLimit) {
1256       tty->print("Unroll %d(%2d) ", loop_head->unrolled_count()*2, loop_head->trip_count());
1257     } else {
1258       tty->print("Unroll %d     ", loop_head->unrolled_count()*2);
1259     }
1260     loop->dump_head();
1261   }
1262 
1263   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1264     Arena* arena = Thread::current()->resource_area();
1265     Node_Stack stack(arena, C->unique() >> 2);
1266     Node_List rpo_list;
1267     VectorSet visited(arena);
1268     visited.set(loop_head->_idx);
1269     rpo( loop_head, stack, visited, rpo_list );
1270     dump(loop, rpo_list.size(), rpo_list );
1271   }
1272 #endif
1273 
1274   // Remember loop node count before unrolling to detect
1275   // if rounds of unroll,optimize are making progress
1276   loop_head->set_node_count_before_unroll(loop->_body.size());
1277 
1278   Node *ctrl  = loop_head->in(LoopNode::EntryControl);
1279   Node *limit = loop_head->limit();
1280   Node *init  = loop_head->init_trip();
1281   Node *stride = loop_head->stride();
1282 
1283   Node *opaq = NULL;
1284   if (adjust_min_trip) {       // If not maximally unrolling, need adjustment
1285     // Search for zero-trip guard.
1286     assert( loop_head->is_main_loop(), "" );
1287     assert( ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "" );
1288     Node *iff = ctrl->in(0);
1289     assert( iff->Opcode() == Op_If, "" );
1290     Node *bol = iff->in(1);
1291     assert( bol->Opcode() == Op_Bool, "" );
1292     Node *cmp = bol->in(1);
1293     assert( cmp->Opcode() == Op_CmpI, "" );
1294     opaq = cmp->in(2);
1295     // Occasionally it's possible for a zero-trip guard Opaque1 node to be
1296     // optimized away and then another round of loop opts attempted.
1297     // We can not optimize this particular loop in that case.
1298     if (opaq->Opcode() != Op_Opaque1)
1299       return; // Cannot find zero-trip guard!  Bail out!
1300     // Zero-trip test uses an 'opaque' node which is not shared.
1301     assert(opaq->outcnt() == 1 && opaq->in(1) == limit, "");
1302   }
1303 
1304   C->set_major_progress();
1305 
1306   Node* new_limit = NULL;
1307   if (UnrollLimitCheck) {
1308     int stride_con = stride->get_int();
1309     int stride_p = (stride_con > 0) ? stride_con : -stride_con;
1310     uint old_trip_count = loop_head->trip_count();
1311     // Verify that unroll policy result is still valid.
1312     assert(old_trip_count > 1 &&
1313            (!adjust_min_trip || stride_p <= (1<<3)*loop_head->unrolled_count()), "sanity");
1314 
1315     // Adjust loop limit to keep valid iterations number after unroll.
1316     // Use (limit - stride) instead of (((limit - init)/stride) & (-2))*stride
1317     // which may overflow.
1318     if (!adjust_min_trip) {
1319       assert(old_trip_count > 1 && (old_trip_count & 1) == 0,
1320              "odd trip count for maximally unroll");
1321       // Don't need to adjust limit for maximally unroll since trip count is even.
1322     } else if (loop_head->has_exact_trip_count() && init->is_Con()) {
1323       // Loop's limit is constant. Loop's init could be constant when pre-loop
1324       // become peeled iteration.
1325       jlong init_con = init->get_int();
1326       // We can keep old loop limit if iterations count stays the same:
1327       //   old_trip_count == new_trip_count * 2
1328       // Note: since old_trip_count >= 2 then new_trip_count >= 1
1329       // so we also don't need to adjust zero trip test.
1330       jlong limit_con  = limit->get_int();
1331       // (stride_con*2) not overflow since stride_con <= 8.
1332       int new_stride_con = stride_con * 2;
1333       int stride_m    = new_stride_con - (stride_con > 0 ? 1 : -1);
1334       jlong trip_count = (limit_con - init_con + stride_m)/new_stride_con;
1335       // New trip count should satisfy next conditions.
1336       assert(trip_count > 0 && (julong)trip_count < (julong)max_juint/2, "sanity");
1337       uint new_trip_count = (uint)trip_count;
1338       adjust_min_trip = (old_trip_count != new_trip_count*2);
1339     }
1340 
1341     if (adjust_min_trip) {
1342       // Step 2: Adjust the trip limit if it is called for.
1343       // The adjustment amount is -stride. Need to make sure if the
1344       // adjustment underflows or overflows, then the main loop is skipped.
1345       Node* cmp = loop_end->cmp_node();
1346       assert(cmp->in(2) == limit, "sanity");
1347       assert(opaq != NULL && opaq->in(1) == limit, "sanity");
1348 
1349       // Verify that policy_unroll result is still valid.
1350       const TypeInt* limit_type = _igvn.type(limit)->is_int();
1351       assert(stride_con > 0 && ((limit_type->_hi - stride_con) < limit_type->_hi) ||
1352              stride_con < 0 && ((limit_type->_lo - stride_con) > limit_type->_lo), "sanity");
1353 
1354       if (limit->is_Con()) {
1355         // The check in policy_unroll and the assert above guarantee
1356         // no underflow if limit is constant.
1357         new_limit = _igvn.intcon(limit->get_int() - stride_con);
1358         set_ctrl(new_limit, C->root());
1359       } else {
1360         // Limit is not constant.
1361         if (loop_head->unrolled_count() == 1) { // only for first unroll
1362           // Separate limit by Opaque node in case it is an incremented
1363           // variable from previous loop to avoid using pre-incremented
1364           // value which could increase register pressure.
1365           // Otherwise reorg_offsets() optimization will create a separate
1366           // Opaque node for each use of trip-counter and as result
1367           // zero trip guard limit will be different from loop limit.
1368           assert(has_ctrl(opaq), "should have it");
1369           Node* opaq_ctrl = get_ctrl(opaq);
1370           limit = new Opaque2Node( C, limit );
1371           register_new_node( limit, opaq_ctrl );
1372         }
1373         if (stride_con > 0 && ((limit_type->_lo - stride_con) < limit_type->_lo) ||
1374                    stride_con < 0 && ((limit_type->_hi - stride_con) > limit_type->_hi)) {
1375           // No underflow.
1376           new_limit = new SubINode(limit, stride);
1377         } else {
1378           // (limit - stride) may underflow.
1379           // Clamp the adjustment value with MININT or MAXINT:
1380           //
1381           //   new_limit = limit-stride
1382           //   if (stride > 0)
1383           //     new_limit = (limit < new_limit) ? MININT : new_limit;
1384           //   else
1385           //     new_limit = (limit > new_limit) ? MAXINT : new_limit;
1386           //
1387           BoolTest::mask bt = loop_end->test_trip();
1388           assert(bt == BoolTest::lt || bt == BoolTest::gt, "canonical test is expected");
1389           Node* adj_max = _igvn.intcon((stride_con > 0) ? min_jint : max_jint);
1390           set_ctrl(adj_max, C->root());
1391           Node* old_limit = NULL;
1392           Node* adj_limit = NULL;
1393           Node* bol = limit->is_CMove() ? limit->in(CMoveNode::Condition) : NULL;
1394           if (loop_head->unrolled_count() > 1 &&
1395               limit->is_CMove() && limit->Opcode() == Op_CMoveI &&
1396               limit->in(CMoveNode::IfTrue) == adj_max &&
1397               bol->as_Bool()->_test._test == bt &&
1398               bol->in(1)->Opcode() == Op_CmpI &&
1399               bol->in(1)->in(2) == limit->in(CMoveNode::IfFalse)) {
1400             // Loop was unrolled before.
1401             // Optimize the limit to avoid nested CMove:
1402             // use original limit as old limit.
1403             old_limit = bol->in(1)->in(1);
1404             // Adjust previous adjusted limit.
1405             adj_limit = limit->in(CMoveNode::IfFalse);
1406             adj_limit = new SubINode(adj_limit, stride);
1407           } else {
1408             old_limit = limit;
1409             adj_limit = new SubINode(limit, stride);
1410           }
1411           assert(old_limit != NULL && adj_limit != NULL, "");
1412           register_new_node( adj_limit, ctrl ); // adjust amount
1413           Node* adj_cmp = new CmpINode(old_limit, adj_limit);
1414           register_new_node( adj_cmp, ctrl );
1415           Node* adj_bool = new BoolNode(adj_cmp, bt);
1416           register_new_node( adj_bool, ctrl );
1417           new_limit = new CMoveINode(adj_bool, adj_limit, adj_max, TypeInt::INT);
1418         }
1419         register_new_node(new_limit, ctrl);
1420       }
1421       assert(new_limit != NULL, "");
1422       // Replace in loop test.
1423       assert(loop_end->in(1)->in(1) == cmp, "sanity");
1424       if (cmp->outcnt() == 1 && loop_end->in(1)->outcnt() == 1) {
1425         // Don't need to create new test since only one user.
1426         _igvn.hash_delete(cmp);
1427         cmp->set_req(2, new_limit);
1428       } else {
1429         // Create new test since it is shared.
1430         Node* ctrl2 = loop_end->in(0);
1431         Node* cmp2  = cmp->clone();
1432         cmp2->set_req(2, new_limit);
1433         register_new_node(cmp2, ctrl2);
1434         Node* bol2 = loop_end->in(1)->clone();
1435         bol2->set_req(1, cmp2);
1436         register_new_node(bol2, ctrl2);
1437         _igvn.replace_input_of(loop_end, 1, bol2);
1438       }
1439       // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1440       // Make it a 1-trip test (means at least 2 trips).
1441 
1442       // Guard test uses an 'opaque' node which is not shared.  Hence I
1443       // can edit it's inputs directly.  Hammer in the new limit for the
1444       // minimum-trip guard.
1445       assert(opaq->outcnt() == 1, "");
1446       _igvn.replace_input_of(opaq, 1, new_limit);
1447     }
1448 
1449     // Adjust max trip count. The trip count is intentionally rounded
1450     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1451     // the main, unrolled, part of the loop will never execute as it is protected
1452     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1453     // and later determined that part of the unrolled loop was dead.
1454     loop_head->set_trip_count(old_trip_count / 2);
1455 
1456     // Double the count of original iterations in the unrolled loop body.
1457     loop_head->double_unrolled_count();
1458 
1459   } else { // LoopLimitCheck
1460 
1461     // Adjust max trip count. The trip count is intentionally rounded
1462     // down here (e.g. 15-> 7-> 3-> 1) because if we unwittingly over-unroll,
1463     // the main, unrolled, part of the loop will never execute as it is protected
1464     // by the min-trip test.  See bug 4834191 for a case where we over-unrolled
1465     // and later determined that part of the unrolled loop was dead.
1466     loop_head->set_trip_count(loop_head->trip_count() / 2);
1467 
1468     // Double the count of original iterations in the unrolled loop body.
1469     loop_head->double_unrolled_count();
1470 
1471     // -----------
1472     // Step 2: Cut back the trip counter for an unroll amount of 2.
1473     // Loop will normally trip (limit - init)/stride_con.  Since it's a
1474     // CountedLoop this is exact (stride divides limit-init exactly).
1475     // We are going to double the loop body, so we want to knock off any
1476     // odd iteration: (trip_cnt & ~1).  Then back compute a new limit.
1477     Node *span = new SubINode( limit, init );
1478     register_new_node( span, ctrl );
1479     Node *trip = new DivINode( 0, span, stride );
1480     register_new_node( trip, ctrl );
1481     Node *mtwo = _igvn.intcon(-2);
1482     set_ctrl(mtwo, C->root());
1483     Node *rond = new AndINode( trip, mtwo );
1484     register_new_node( rond, ctrl );
1485     Node *spn2 = new MulINode( rond, stride );
1486     register_new_node( spn2, ctrl );
1487     new_limit = new AddINode( spn2, init );
1488     register_new_node( new_limit, ctrl );
1489 
1490     // Hammer in the new limit
1491     Node *ctrl2 = loop_end->in(0);
1492     Node *cmp2 = new CmpINode( loop_head->incr(), new_limit );
1493     register_new_node( cmp2, ctrl2 );
1494     Node *bol2 = new BoolNode( cmp2, loop_end->test_trip() );
1495     register_new_node( bol2, ctrl2 );
1496     _igvn.replace_input_of(loop_end, CountedLoopEndNode::TestValue, bol2);
1497 
1498     // Step 3: Find the min-trip test guaranteed before a 'main' loop.
1499     // Make it a 1-trip test (means at least 2 trips).
1500     if( adjust_min_trip ) {
1501       assert( new_limit != NULL, "" );
1502       // Guard test uses an 'opaque' node which is not shared.  Hence I
1503       // can edit it's inputs directly.  Hammer in the new limit for the
1504       // minimum-trip guard.
1505       assert( opaq->outcnt() == 1, "" );
1506       _igvn.hash_delete(opaq);
1507       opaq->set_req(1, new_limit);
1508     }
1509   } // LoopLimitCheck
1510 
1511   // ---------
1512   // Step 4: Clone the loop body.  Move it inside the loop.  This loop body
1513   // represents the odd iterations; since the loop trips an even number of
1514   // times its backedge is never taken.  Kill the backedge.
1515   uint dd = dom_depth(loop_head);
1516   clone_loop( loop, old_new, dd );
1517 
1518   // Make backedges of the clone equal to backedges of the original.
1519   // Make the fall-in from the original come from the fall-out of the clone.
1520   for (DUIterator_Fast jmax, j = loop_head->fast_outs(jmax); j < jmax; j++) {
1521     Node* phi = loop_head->fast_out(j);
1522     if( phi->is_Phi() && phi->in(0) == loop_head && phi->outcnt() > 0 ) {
1523       Node *newphi = old_new[phi->_idx];
1524       _igvn.hash_delete( phi );
1525       _igvn.hash_delete( newphi );
1526 
1527       phi   ->set_req(LoopNode::   EntryControl, newphi->in(LoopNode::LoopBackControl));
1528       newphi->set_req(LoopNode::LoopBackControl, phi   ->in(LoopNode::LoopBackControl));
1529       phi   ->set_req(LoopNode::LoopBackControl, C->top());
1530     }
1531   }
1532   Node *clone_head = old_new[loop_head->_idx];
1533   _igvn.hash_delete( clone_head );
1534   loop_head ->set_req(LoopNode::   EntryControl, clone_head->in(LoopNode::LoopBackControl));
1535   clone_head->set_req(LoopNode::LoopBackControl, loop_head ->in(LoopNode::LoopBackControl));
1536   loop_head ->set_req(LoopNode::LoopBackControl, C->top());
1537   loop->_head = clone_head;     // New loop header
1538 
1539   set_idom(loop_head,  loop_head ->in(LoopNode::EntryControl), dd);
1540   set_idom(clone_head, clone_head->in(LoopNode::EntryControl), dd);
1541 
1542   // Kill the clone's backedge
1543   Node *newcle = old_new[loop_end->_idx];
1544   _igvn.hash_delete( newcle );
1545   Node *one = _igvn.intcon(1);
1546   set_ctrl(one, C->root());
1547   newcle->set_req(1, one);
1548   // Force clone into same loop body
1549   uint max = loop->_body.size();
1550   for( uint k = 0; k < max; k++ ) {
1551     Node *old = loop->_body.at(k);
1552     Node *nnn = old_new[old->_idx];
1553     loop->_body.push(nnn);
1554     if (!has_ctrl(old))
1555       set_loop(nnn, loop);
1556   }
1557 
1558   loop->record_for_igvn();
1559 
1560 #ifndef PRODUCT
1561   if (C->do_vector_loop() && (PrintOpto && VerifyLoopOptimizations || TraceLoopOpts)) {
1562     tty->print("\nnew loop after unroll\n");       loop->dump_head();
1563     for (uint i = 0; i < loop->_body.size(); i++) {
1564       loop->_body.at(i)->dump();
1565     }
1566     if(C->clone_map().is_debug()) {
1567       tty->print("\nCloneMap\n");
1568       Dict* dict = C->clone_map().dict();
1569       DictI i(dict);
1570       tty->print_cr("Dict@%p[%d] = ", dict, dict->Size());
1571       for (int ii = 0; i.test(); ++i, ++ii) {
1572         NodeCloneInfo cl((uint64_t)dict->operator[]((void*)i._key));
1573         tty->print("%d->%d:%d,", (int)(intptr_t)i._key, cl.idx(), cl.gen());
1574         if (ii % 10 == 9) {
1575           tty->print_cr(" ");
1576         }
1577       }
1578       tty->print_cr(" ");
1579     }
1580   }
1581 #endif
1582 
1583 }
1584 
1585 //------------------------------do_maximally_unroll----------------------------
1586 
1587 void PhaseIdealLoop::do_maximally_unroll( IdealLoopTree *loop, Node_List &old_new ) {
1588   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1589   assert(cl->has_exact_trip_count(), "trip count is not exact");
1590   assert(cl->trip_count() > 0, "");
1591 #ifndef PRODUCT
1592   if (TraceLoopOpts) {
1593     tty->print("MaxUnroll  %d ", cl->trip_count());
1594     loop->dump_head();
1595   }
1596 #endif
1597 
1598   // If loop is tripping an odd number of times, peel odd iteration
1599   if ((cl->trip_count() & 1) == 1) {
1600     do_peeling(loop, old_new);
1601   }
1602 
1603   // Now its tripping an even number of times remaining.  Double loop body.
1604   // Do not adjust pre-guards; they are not needed and do not exist.
1605   if (cl->trip_count() > 0) {
1606     assert((cl->trip_count() & 1) == 0, "missed peeling");
1607     do_unroll(loop, old_new, false);
1608   }
1609 }
1610 
1611 void PhaseIdealLoop::mark_reductions(IdealLoopTree *loop) {
1612   if (SuperWordReductions == false) return;
1613 
1614   CountedLoopNode* loop_head = loop->_head->as_CountedLoop();
1615   if (loop_head->unrolled_count() > 1) {
1616     return;
1617   }
1618 
1619   Node* trip_phi = loop_head->phi();
1620   for (DUIterator_Fast imax, i = loop_head->fast_outs(imax); i < imax; i++) {
1621     Node* phi = loop_head->fast_out(i);
1622     if (phi->is_Phi() && phi->outcnt() > 0 && phi != trip_phi) {
1623       // For definitions which are loop inclusive and not tripcounts.
1624       Node* def_node = phi->in(LoopNode::LoopBackControl);
1625 
1626       if (def_node != NULL) {
1627         Node* n_ctrl = get_ctrl(def_node);
1628         if (n_ctrl != NULL && loop->is_member(get_loop(n_ctrl))) {
1629           // Now test it to see if it fits the standard pattern for a reduction operator.
1630           int opc = def_node->Opcode();
1631           if (opc != ReductionNode::opcode(opc, def_node->bottom_type()->basic_type())) {
1632             if (!def_node->is_reduction()) { // Not marked yet
1633               // To be a reduction, the arithmetic node must have the phi as input and provide a def to it
1634               bool ok = false;
1635               for (unsigned j = 1; j < def_node->req(); j++) {
1636                 Node* in = def_node->in(j);
1637                 if (in == phi) {
1638                   ok = true;
1639                   break;
1640                 }
1641               }
1642 
1643               // do nothing if we did not match the initial criteria
1644               if (ok == false) {
1645                 continue;
1646               }
1647 
1648               // The result of the reduction must not be used in the loop
1649               for (DUIterator_Fast imax, i = def_node->fast_outs(imax); i < imax && ok; i++) {
1650                 Node* u = def_node->fast_out(i);
1651                 if (has_ctrl(u) && !loop->is_member(get_loop(get_ctrl(u)))) {
1652                   continue;
1653                 }
1654                 if (u == phi) {
1655                   continue;
1656                 }
1657                 ok = false;
1658               }
1659 
1660               // iff the uses conform
1661               if (ok) {
1662                 def_node->add_flag(Node::Flag_is_reduction);
1663                 loop_head->mark_has_reductions();
1664               }
1665             }
1666           }
1667         }
1668       }
1669     }
1670   }
1671 }
1672 
1673 //------------------------------dominates_backedge---------------------------------
1674 // Returns true if ctrl is executed on every complete iteration
1675 bool IdealLoopTree::dominates_backedge(Node* ctrl) {
1676   assert(ctrl->is_CFG(), "must be control");
1677   Node* backedge = _head->as_Loop()->in(LoopNode::LoopBackControl);
1678   return _phase->dom_lca_internal(ctrl, backedge) == ctrl;
1679 }
1680 
1681 //------------------------------adjust_limit-----------------------------------
1682 // Helper function for add_constraint().
1683 Node* PhaseIdealLoop::adjust_limit(int stride_con, Node * scale, Node *offset, Node *rc_limit, Node *loop_limit, Node *pre_ctrl) {
1684   // Compute "I :: (limit-offset)/scale"
1685   Node *con = new SubINode(rc_limit, offset);
1686   register_new_node(con, pre_ctrl);
1687   Node *X = new DivINode(0, con, scale);
1688   register_new_node(X, pre_ctrl);
1689 
1690   // Adjust loop limit
1691   loop_limit = (stride_con > 0)
1692                ? (Node*)(new MinINode(loop_limit, X))
1693                : (Node*)(new MaxINode(loop_limit, X));
1694   register_new_node(loop_limit, pre_ctrl);
1695   return loop_limit;
1696 }
1697 
1698 //------------------------------add_constraint---------------------------------
1699 // Constrain the main loop iterations so the conditions:
1700 //    low_limit <= scale_con * I + offset  <  upper_limit
1701 // always holds true.  That is, either increase the number of iterations in
1702 // the pre-loop or the post-loop until the condition holds true in the main
1703 // loop.  Stride, scale, offset and limit are all loop invariant.  Further,
1704 // stride and scale are constants (offset and limit often are).
1705 void PhaseIdealLoop::add_constraint( int stride_con, int scale_con, Node *offset, Node *low_limit, Node *upper_limit, Node *pre_ctrl, Node **pre_limit, Node **main_limit ) {
1706   // For positive stride, the pre-loop limit always uses a MAX function
1707   // and the main loop a MIN function.  For negative stride these are
1708   // reversed.
1709 
1710   // Also for positive stride*scale the affine function is increasing, so the
1711   // pre-loop must check for underflow and the post-loop for overflow.
1712   // Negative stride*scale reverses this; pre-loop checks for overflow and
1713   // post-loop for underflow.
1714 
1715   Node *scale = _igvn.intcon(scale_con);
1716   set_ctrl(scale, C->root());
1717 
1718   if ((stride_con^scale_con) >= 0) { // Use XOR to avoid overflow
1719     // The overflow limit: scale*I+offset < upper_limit
1720     // For main-loop compute
1721     //   ( if (scale > 0) /* and stride > 0 */
1722     //       I < (upper_limit-offset)/scale
1723     //     else /* scale < 0 and stride < 0 */
1724     //       I > (upper_limit-offset)/scale
1725     //   )
1726     //
1727     // (upper_limit-offset) may overflow or underflow.
1728     // But it is fine since main loop will either have
1729     // less iterations or will be skipped in such case.
1730     *main_limit = adjust_limit(stride_con, scale, offset, upper_limit, *main_limit, pre_ctrl);
1731 
1732     // The underflow limit: low_limit <= scale*I+offset.
1733     // For pre-loop compute
1734     //   NOT(scale*I+offset >= low_limit)
1735     //   scale*I+offset < low_limit
1736     //   ( if (scale > 0) /* and stride > 0 */
1737     //       I < (low_limit-offset)/scale
1738     //     else /* scale < 0 and stride < 0 */
1739     //       I > (low_limit-offset)/scale
1740     //   )
1741 
1742     if (low_limit->get_int() == -max_jint) {
1743       if (!RangeLimitCheck) return;
1744       // We need this guard when scale*pre_limit+offset >= limit
1745       // due to underflow. So we need execute pre-loop until
1746       // scale*I+offset >= min_int. But (min_int-offset) will
1747       // underflow when offset > 0 and X will be > original_limit
1748       // when stride > 0. To avoid it we replace positive offset with 0.
1749       //
1750       // Also (min_int+1 == -max_int) is used instead of min_int here
1751       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1752       Node* shift = _igvn.intcon(31);
1753       set_ctrl(shift, C->root());
1754       Node* sign = new RShiftINode(offset, shift);
1755       register_new_node(sign, pre_ctrl);
1756       offset = new AndINode(offset, sign);
1757       register_new_node(offset, pre_ctrl);
1758     } else {
1759       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1760       // The only problem we have here when offset == min_int
1761       // since (0-min_int) == min_int. It may be fine for stride > 0
1762       // but for stride < 0 X will be < original_limit. To avoid it
1763       // max(pre_limit, original_limit) is used in do_range_check().
1764     }
1765     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1766     *pre_limit = adjust_limit((-stride_con), scale, offset, low_limit, *pre_limit, pre_ctrl);
1767 
1768   } else { // stride_con*scale_con < 0
1769     // For negative stride*scale pre-loop checks for overflow and
1770     // post-loop for underflow.
1771     //
1772     // The overflow limit: scale*I+offset < upper_limit
1773     // For pre-loop compute
1774     //   NOT(scale*I+offset < upper_limit)
1775     //   scale*I+offset >= upper_limit
1776     //   scale*I+offset+1 > upper_limit
1777     //   ( if (scale < 0) /* and stride > 0 */
1778     //       I < (upper_limit-(offset+1))/scale
1779     //     else /* scale > 0 and stride < 0 */
1780     //       I > (upper_limit-(offset+1))/scale
1781     //   )
1782     //
1783     // (upper_limit-offset-1) may underflow or overflow.
1784     // To avoid it min(pre_limit, original_limit) is used
1785     // in do_range_check() for stride > 0 and max() for < 0.
1786     Node *one  = _igvn.intcon(1);
1787     set_ctrl(one, C->root());
1788 
1789     Node *plus_one = new AddINode(offset, one);
1790     register_new_node( plus_one, pre_ctrl );
1791     // Pass (-stride) to indicate pre_loop_cond = NOT(main_loop_cond);
1792     *pre_limit = adjust_limit((-stride_con), scale, plus_one, upper_limit, *pre_limit, pre_ctrl);
1793 
1794     if (low_limit->get_int() == -max_jint) {
1795       if (!RangeLimitCheck) return;
1796       // We need this guard when scale*main_limit+offset >= limit
1797       // due to underflow. So we need execute main-loop while
1798       // scale*I+offset+1 > min_int. But (min_int-offset-1) will
1799       // underflow when (offset+1) > 0 and X will be < main_limit
1800       // when scale < 0 (and stride > 0). To avoid it we replace
1801       // positive (offset+1) with 0.
1802       //
1803       // Also (min_int+1 == -max_int) is used instead of min_int here
1804       // to avoid problem with scale == -1 (min_int/(-1) == min_int).
1805       Node* shift = _igvn.intcon(31);
1806       set_ctrl(shift, C->root());
1807       Node* sign = new RShiftINode(plus_one, shift);
1808       register_new_node(sign, pre_ctrl);
1809       plus_one = new AndINode(plus_one, sign);
1810       register_new_node(plus_one, pre_ctrl);
1811     } else {
1812       assert(low_limit->get_int() == 0, "wrong low limit for range check");
1813       // The only problem we have here when offset == max_int
1814       // since (max_int+1) == min_int and (0-min_int) == min_int.
1815       // But it is fine since main loop will either have
1816       // less iterations or will be skipped in such case.
1817     }
1818     // The underflow limit: low_limit <= scale*I+offset.
1819     // For main-loop compute
1820     //   scale*I+offset+1 > low_limit
1821     //   ( if (scale < 0) /* and stride > 0 */
1822     //       I < (low_limit-(offset+1))/scale
1823     //     else /* scale > 0 and stride < 0 */
1824     //       I > (low_limit-(offset+1))/scale
1825     //   )
1826 
1827     *main_limit = adjust_limit(stride_con, scale, plus_one, low_limit, *main_limit, pre_ctrl);
1828   }
1829 }
1830 
1831 
1832 //------------------------------is_scaled_iv---------------------------------
1833 // Return true if exp is a constant times an induction var
1834 bool PhaseIdealLoop::is_scaled_iv(Node* exp, Node* iv, int* p_scale) {
1835   if (exp == iv) {
1836     if (p_scale != NULL) {
1837       *p_scale = 1;
1838     }
1839     return true;
1840   }
1841   int opc = exp->Opcode();
1842   if (opc == Op_MulI) {
1843     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1844       if (p_scale != NULL) {
1845         *p_scale = exp->in(2)->get_int();
1846       }
1847       return true;
1848     }
1849     if (exp->in(2) == iv && exp->in(1)->is_Con()) {
1850       if (p_scale != NULL) {
1851         *p_scale = exp->in(1)->get_int();
1852       }
1853       return true;
1854     }
1855   } else if (opc == Op_LShiftI) {
1856     if (exp->in(1) == iv && exp->in(2)->is_Con()) {
1857       if (p_scale != NULL) {
1858         *p_scale = 1 << exp->in(2)->get_int();
1859       }
1860       return true;
1861     }
1862   }
1863   return false;
1864 }
1865 
1866 //-----------------------------is_scaled_iv_plus_offset------------------------------
1867 // Return true if exp is a simple induction variable expression: k1*iv + (invar + k2)
1868 bool PhaseIdealLoop::is_scaled_iv_plus_offset(Node* exp, Node* iv, int* p_scale, Node** p_offset, int depth) {
1869   if (is_scaled_iv(exp, iv, p_scale)) {
1870     if (p_offset != NULL) {
1871       Node *zero = _igvn.intcon(0);
1872       set_ctrl(zero, C->root());
1873       *p_offset = zero;
1874     }
1875     return true;
1876   }
1877   int opc = exp->Opcode();
1878   if (opc == Op_AddI) {
1879     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1880       if (p_offset != NULL) {
1881         *p_offset = exp->in(2);
1882       }
1883       return true;
1884     }
1885     if (exp->in(2)->is_Con()) {
1886       Node* offset2 = NULL;
1887       if (depth < 2 &&
1888           is_scaled_iv_plus_offset(exp->in(1), iv, p_scale,
1889                                    p_offset != NULL ? &offset2 : NULL, depth+1)) {
1890         if (p_offset != NULL) {
1891           Node *ctrl_off2 = get_ctrl(offset2);
1892           Node* offset = new AddINode(offset2, exp->in(2));
1893           register_new_node(offset, ctrl_off2);
1894           *p_offset = offset;
1895         }
1896         return true;
1897       }
1898     }
1899   } else if (opc == Op_SubI) {
1900     if (is_scaled_iv(exp->in(1), iv, p_scale)) {
1901       if (p_offset != NULL) {
1902         Node *zero = _igvn.intcon(0);
1903         set_ctrl(zero, C->root());
1904         Node *ctrl_off = get_ctrl(exp->in(2));
1905         Node* offset = new SubINode(zero, exp->in(2));
1906         register_new_node(offset, ctrl_off);
1907         *p_offset = offset;
1908       }
1909       return true;
1910     }
1911     if (is_scaled_iv(exp->in(2), iv, p_scale)) {
1912       if (p_offset != NULL) {
1913         *p_scale *= -1;
1914         *p_offset = exp->in(1);
1915       }
1916       return true;
1917     }
1918   }
1919   return false;
1920 }
1921 
1922 //------------------------------do_range_check---------------------------------
1923 // Eliminate range-checks and other trip-counter vs loop-invariant tests.
1924 void PhaseIdealLoop::do_range_check( IdealLoopTree *loop, Node_List &old_new ) {
1925 #ifndef PRODUCT
1926   if (PrintOpto && VerifyLoopOptimizations) {
1927     tty->print("Range Check Elimination ");
1928     loop->dump_head();
1929   } else if (TraceLoopOpts) {
1930     tty->print("RangeCheck   ");
1931     loop->dump_head();
1932   }
1933 #endif
1934   assert(RangeCheckElimination, "");
1935   CountedLoopNode *cl = loop->_head->as_CountedLoop();
1936   assert(cl->is_main_loop(), "");
1937 
1938   // protect against stride not being a constant
1939   if (!cl->stride_is_con())
1940     return;
1941 
1942   // Find the trip counter; we are iteration splitting based on it
1943   Node *trip_counter = cl->phi();
1944   // Find the main loop limit; we will trim it's iterations
1945   // to not ever trip end tests
1946   Node *main_limit = cl->limit();
1947 
1948   // Need to find the main-loop zero-trip guard
1949   Node *ctrl  = cl->in(LoopNode::EntryControl);
1950   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
1951   Node *iffm = ctrl->in(0);
1952   assert(iffm->Opcode() == Op_If, "");
1953   Node *bolzm = iffm->in(1);
1954   assert(bolzm->Opcode() == Op_Bool, "");
1955   Node *cmpzm = bolzm->in(1);
1956   assert(cmpzm->is_Cmp(), "");
1957   Node *opqzm = cmpzm->in(2);
1958   // Can not optimize a loop if zero-trip Opaque1 node is optimized
1959   // away and then another round of loop opts attempted.
1960   if (opqzm->Opcode() != Op_Opaque1)
1961     return;
1962   assert(opqzm->in(1) == main_limit, "do not understand situation");
1963 
1964   // Find the pre-loop limit; we will expand its iterations to
1965   // not ever trip low tests.
1966   Node *p_f = iffm->in(0);
1967   // pre loop may have been optimized out
1968   if (p_f->Opcode() != Op_IfFalse) {
1969     return;
1970   }
1971   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
1972   assert(pre_end->loopnode()->is_pre_loop(), "");
1973   Node *pre_opaq1 = pre_end->limit();
1974   // Occasionally it's possible for a pre-loop Opaque1 node to be
1975   // optimized away and then another round of loop opts attempted.
1976   // We can not optimize this particular loop in that case.
1977   if (pre_opaq1->Opcode() != Op_Opaque1)
1978     return;
1979   Opaque1Node *pre_opaq = (Opaque1Node*)pre_opaq1;
1980   Node *pre_limit = pre_opaq->in(1);
1981 
1982   // Where do we put new limit calculations
1983   Node *pre_ctrl = pre_end->loopnode()->in(LoopNode::EntryControl);
1984 
1985   // Ensure the original loop limit is available from the
1986   // pre-loop Opaque1 node.
1987   Node *orig_limit = pre_opaq->original_loop_limit();
1988   if (orig_limit == NULL || _igvn.type(orig_limit) == Type::TOP)
1989     return;
1990 
1991   // Must know if its a count-up or count-down loop
1992 
1993   int stride_con = cl->stride_con();
1994   Node *zero = _igvn.intcon(0);
1995   Node *one  = _igvn.intcon(1);
1996   // Use symmetrical int range [-max_jint,max_jint]
1997   Node *mini = _igvn.intcon(-max_jint);
1998   set_ctrl(zero, C->root());
1999   set_ctrl(one,  C->root());
2000   set_ctrl(mini, C->root());
2001 
2002   // Range checks that do not dominate the loop backedge (ie.
2003   // conditionally executed) can lengthen the pre loop limit beyond
2004   // the original loop limit. To prevent this, the pre limit is
2005   // (for stride > 0) MINed with the original loop limit (MAXed
2006   // stride < 0) when some range_check (rc) is conditionally
2007   // executed.
2008   bool conditional_rc = false;
2009 
2010   // Check loop body for tests of trip-counter plus loop-invariant vs
2011   // loop-invariant.
2012   for( uint i = 0; i < loop->_body.size(); i++ ) {
2013     Node *iff = loop->_body[i];
2014     if( iff->Opcode() == Op_If ) { // Test?
2015 
2016       // Test is an IfNode, has 2 projections.  If BOTH are in the loop
2017       // we need loop unswitching instead of iteration splitting.
2018       Node *exit = loop->is_loop_exit(iff);
2019       if( !exit ) continue;
2020       int flip = (exit->Opcode() == Op_IfTrue) ? 1 : 0;
2021 
2022       // Get boolean condition to test
2023       Node *i1 = iff->in(1);
2024       if( !i1->is_Bool() ) continue;
2025       BoolNode *bol = i1->as_Bool();
2026       BoolTest b_test = bol->_test;
2027       // Flip sense of test if exit condition is flipped
2028       if( flip )
2029         b_test = b_test.negate();
2030 
2031       // Get compare
2032       Node *cmp = bol->in(1);
2033 
2034       // Look for trip_counter + offset vs limit
2035       Node *rc_exp = cmp->in(1);
2036       Node *limit  = cmp->in(2);
2037       jint scale_con= 1;        // Assume trip counter not scaled
2038 
2039       Node *limit_c = get_ctrl(limit);
2040       if( loop->is_member(get_loop(limit_c) ) ) {
2041         // Compare might have operands swapped; commute them
2042         b_test = b_test.commute();
2043         rc_exp = cmp->in(2);
2044         limit  = cmp->in(1);
2045         limit_c = get_ctrl(limit);
2046         if( loop->is_member(get_loop(limit_c) ) )
2047           continue;             // Both inputs are loop varying; cannot RCE
2048       }
2049       // Here we know 'limit' is loop invariant
2050 
2051       // 'limit' maybe pinned below the zero trip test (probably from a
2052       // previous round of rce), in which case, it can't be used in the
2053       // zero trip test expression which must occur before the zero test's if.
2054       if( limit_c == ctrl ) {
2055         continue;  // Don't rce this check but continue looking for other candidates.
2056       }
2057 
2058       // Check for scaled induction variable plus an offset
2059       Node *offset = NULL;
2060 
2061       if (!is_scaled_iv_plus_offset(rc_exp, trip_counter, &scale_con, &offset)) {
2062         continue;
2063       }
2064 
2065       Node *offset_c = get_ctrl(offset);
2066       if( loop->is_member( get_loop(offset_c) ) )
2067         continue;               // Offset is not really loop invariant
2068       // Here we know 'offset' is loop invariant.
2069 
2070       // As above for the 'limit', the 'offset' maybe pinned below the
2071       // zero trip test.
2072       if( offset_c == ctrl ) {
2073         continue; // Don't rce this check but continue looking for other candidates.
2074       }
2075 #ifdef ASSERT
2076       if (TraceRangeLimitCheck) {
2077         tty->print_cr("RC bool node%s", flip ? " flipped:" : ":");
2078         bol->dump(2);
2079       }
2080 #endif
2081       // At this point we have the expression as:
2082       //   scale_con * trip_counter + offset :: limit
2083       // where scale_con, offset and limit are loop invariant.  Trip_counter
2084       // monotonically increases by stride_con, a constant.  Both (or either)
2085       // stride_con and scale_con can be negative which will flip about the
2086       // sense of the test.
2087 
2088       // Adjust pre and main loop limits to guard the correct iteration set
2089       if( cmp->Opcode() == Op_CmpU ) {// Unsigned compare is really 2 tests
2090         if( b_test._test == BoolTest::lt ) { // Range checks always use lt
2091           // The underflow and overflow limits: 0 <= scale*I+offset < limit
2092           add_constraint( stride_con, scale_con, offset, zero, limit, pre_ctrl, &pre_limit, &main_limit );
2093           if (!conditional_rc) {
2094             // (0-offset)/scale could be outside of loop iterations range.
2095             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2096           }
2097         } else {
2098 #ifndef PRODUCT
2099           if( PrintOpto )
2100             tty->print_cr("missed RCE opportunity");
2101 #endif
2102           continue;             // In release mode, ignore it
2103         }
2104       } else {                  // Otherwise work on normal compares
2105         switch( b_test._test ) {
2106         case BoolTest::gt:
2107           // Fall into GE case
2108         case BoolTest::ge:
2109           // Convert (I*scale+offset) >= Limit to (I*(-scale)+(-offset)) <= -Limit
2110           scale_con = -scale_con;
2111           offset = new SubINode( zero, offset );
2112           register_new_node( offset, pre_ctrl );
2113           limit  = new SubINode( zero, limit  );
2114           register_new_node( limit, pre_ctrl );
2115           // Fall into LE case
2116         case BoolTest::le:
2117           if (b_test._test != BoolTest::gt) {
2118             // Convert X <= Y to X < Y+1
2119             limit = new AddINode( limit, one );
2120             register_new_node( limit, pre_ctrl );
2121           }
2122           // Fall into LT case
2123         case BoolTest::lt:
2124           // The underflow and overflow limits: MIN_INT <= scale*I+offset < limit
2125           // Note: (MIN_INT+1 == -MAX_INT) is used instead of MIN_INT here
2126           // to avoid problem with scale == -1: MIN_INT/(-1) == MIN_INT.
2127           add_constraint( stride_con, scale_con, offset, mini, limit, pre_ctrl, &pre_limit, &main_limit );
2128           if (!conditional_rc) {
2129             // ((MIN_INT+1)-offset)/scale could be outside of loop iterations range.
2130             // Note: negative offset is replaced with 0 but (MIN_INT+1)/scale could
2131             // still be outside of loop range.
2132             conditional_rc = !loop->dominates_backedge(iff) || RangeLimitCheck;
2133           }
2134           break;
2135         default:
2136 #ifndef PRODUCT
2137           if( PrintOpto )
2138             tty->print_cr("missed RCE opportunity");
2139 #endif
2140           continue;             // Unhandled case
2141         }
2142       }
2143 
2144       // Kill the eliminated test
2145       C->set_major_progress();
2146       Node *kill_con = _igvn.intcon( 1-flip );
2147       set_ctrl(kill_con, C->root());
2148       _igvn.replace_input_of(iff, 1, kill_con);
2149       // Find surviving projection
2150       assert(iff->is_If(), "");
2151       ProjNode* dp = ((IfNode*)iff)->proj_out(1-flip);
2152       // Find loads off the surviving projection; remove their control edge
2153       for (DUIterator_Fast imax, i = dp->fast_outs(imax); i < imax; i++) {
2154         Node* cd = dp->fast_out(i); // Control-dependent node
2155         if (cd->is_Load() && cd->depends_only_on_test()) {   // Loads can now float around in the loop
2156           // Allow the load to float around in the loop, or before it
2157           // but NOT before the pre-loop.
2158           _igvn.replace_input_of(cd, 0, ctrl); // ctrl, not NULL
2159           --i;
2160           --imax;
2161         }
2162       }
2163 
2164     } // End of is IF
2165 
2166   }
2167 
2168   // Update loop limits
2169   if (conditional_rc) {
2170     pre_limit = (stride_con > 0) ? (Node*)new MinINode(pre_limit, orig_limit)
2171                                  : (Node*)new MaxINode(pre_limit, orig_limit);
2172     register_new_node(pre_limit, pre_ctrl);
2173   }
2174   _igvn.replace_input_of(pre_opaq, 1, pre_limit);
2175 
2176   // Note:: we are making the main loop limit no longer precise;
2177   // need to round up based on stride.
2178   cl->set_nonexact_trip_count();
2179   if (!LoopLimitCheck && stride_con != 1 && stride_con != -1) { // Cutout for common case
2180     // "Standard" round-up logic:  ([main_limit-init+(y-1)]/y)*y+init
2181     // Hopefully, compiler will optimize for powers of 2.
2182     Node *ctrl = get_ctrl(main_limit);
2183     Node *stride = cl->stride();
2184     Node *init = cl->init_trip()->uncast();
2185     Node *span = new SubINode(main_limit,init);
2186     register_new_node(span,ctrl);
2187     Node *rndup = _igvn.intcon(stride_con + ((stride_con>0)?-1:1));
2188     Node *add = new AddINode(span,rndup);
2189     register_new_node(add,ctrl);
2190     Node *div = new DivINode(0,add,stride);
2191     register_new_node(div,ctrl);
2192     Node *mul = new MulINode(div,stride);
2193     register_new_node(mul,ctrl);
2194     Node *newlim = new AddINode(mul,init);
2195     register_new_node(newlim,ctrl);
2196     main_limit = newlim;
2197   }
2198 
2199   Node *main_cle = cl->loopexit();
2200   Node *main_bol = main_cle->in(1);
2201   // Hacking loop bounds; need private copies of exit test
2202   if( main_bol->outcnt() > 1 ) {// BoolNode shared?
2203     main_bol = main_bol->clone();// Clone a private BoolNode
2204     register_new_node( main_bol, main_cle->in(0) );
2205     _igvn.replace_input_of(main_cle, 1, main_bol);
2206   }
2207   Node *main_cmp = main_bol->in(1);
2208   if( main_cmp->outcnt() > 1 ) { // CmpNode shared?
2209     main_cmp = main_cmp->clone();// Clone a private CmpNode
2210     register_new_node( main_cmp, main_cle->in(0) );
2211     _igvn.replace_input_of(main_bol, 1, main_cmp);
2212   }
2213   // Hack the now-private loop bounds
2214   _igvn.replace_input_of(main_cmp, 2, main_limit);
2215   // The OpaqueNode is unshared by design
2216   assert( opqzm->outcnt() == 1, "cannot hack shared node" );
2217   _igvn.replace_input_of(opqzm, 1, main_limit);
2218 }
2219 
2220 //------------------------------DCE_loop_body----------------------------------
2221 // Remove simplistic dead code from loop body
2222 void IdealLoopTree::DCE_loop_body() {
2223   for( uint i = 0; i < _body.size(); i++ )
2224     if( _body.at(i)->outcnt() == 0 )
2225       _body.map( i--, _body.pop() );
2226 }
2227 
2228 
2229 //------------------------------adjust_loop_exit_prob--------------------------
2230 // Look for loop-exit tests with the 50/50 (or worse) guesses from the parsing stage.
2231 // Replace with a 1-in-10 exit guess.
2232 void IdealLoopTree::adjust_loop_exit_prob( PhaseIdealLoop *phase ) {
2233   Node *test = tail();
2234   while( test != _head ) {
2235     uint top = test->Opcode();
2236     if( top == Op_IfTrue || top == Op_IfFalse ) {
2237       int test_con = ((ProjNode*)test)->_con;
2238       assert(top == (uint)(test_con? Op_IfTrue: Op_IfFalse), "sanity");
2239       IfNode *iff = test->in(0)->as_If();
2240       if( iff->outcnt() == 2 ) {        // Ignore dead tests
2241         Node *bol = iff->in(1);
2242         if( bol && bol->req() > 1 && bol->in(1) &&
2243             ((bol->in(1)->Opcode() == Op_StorePConditional ) ||
2244              (bol->in(1)->Opcode() == Op_StoreIConditional ) ||
2245              (bol->in(1)->Opcode() == Op_StoreLConditional ) ||
2246              (bol->in(1)->Opcode() == Op_CompareAndSwapI ) ||
2247              (bol->in(1)->Opcode() == Op_CompareAndSwapL ) ||
2248              (bol->in(1)->Opcode() == Op_CompareAndSwapP ) ||
2249              (bol->in(1)->Opcode() == Op_CompareAndSwapN )))
2250           return;               // Allocation loops RARELY take backedge
2251         // Find the OTHER exit path from the IF
2252         Node* ex = iff->proj_out(1-test_con);
2253         float p = iff->_prob;
2254         if( !phase->is_member( this, ex ) && iff->_fcnt == COUNT_UNKNOWN ) {
2255           if( top == Op_IfTrue ) {
2256             if( p < (PROB_FAIR + PROB_UNLIKELY_MAG(3))) {
2257               iff->_prob = PROB_STATIC_FREQUENT;
2258             }
2259           } else {
2260             if( p > (PROB_FAIR - PROB_UNLIKELY_MAG(3))) {
2261               iff->_prob = PROB_STATIC_INFREQUENT;
2262             }
2263           }
2264         }
2265       }
2266     }
2267     test = phase->idom(test);
2268   }
2269 }
2270 
2271 #ifdef ASSERT
2272 static CountedLoopNode* locate_pre_from_main(CountedLoopNode *cl) {
2273   Node *ctrl  = cl->in(LoopNode::EntryControl);
2274   assert(ctrl->Opcode() == Op_IfTrue || ctrl->Opcode() == Op_IfFalse, "");
2275   Node *iffm = ctrl->in(0);
2276   assert(iffm->Opcode() == Op_If, "");
2277   Node *p_f = iffm->in(0);
2278   assert(p_f->Opcode() == Op_IfFalse, "");
2279   CountedLoopEndNode *pre_end = p_f->in(0)->as_CountedLoopEnd();
2280   assert(pre_end->loopnode()->is_pre_loop(), "");
2281   return pre_end->loopnode();
2282 }
2283 #endif
2284 
2285 // Remove the main and post loops and make the pre loop execute all
2286 // iterations. Useful when the pre loop is found empty.
2287 void IdealLoopTree::remove_main_post_loops(CountedLoopNode *cl, PhaseIdealLoop *phase) {
2288   CountedLoopEndNode* pre_end = cl->loopexit();
2289   Node* pre_cmp = pre_end->cmp_node();
2290   if (pre_cmp->in(2)->Opcode() != Op_Opaque1) {
2291     // Only safe to remove the main loop if the compiler optimized it
2292     // out based on an unknown number of iterations
2293     return;
2294   }
2295 
2296   // Can we find the main loop?
2297   if (_next == NULL) {
2298     return;
2299   }
2300 
2301   Node* next_head = _next->_head;
2302   if (!next_head->is_CountedLoop()) {
2303     return;
2304   }
2305 
2306   CountedLoopNode* main_head = next_head->as_CountedLoop();
2307   if (!main_head->is_main_loop()) {
2308     return;
2309   }
2310 
2311   assert(locate_pre_from_main(main_head) == cl, "bad main loop");
2312   Node* main_iff = main_head->in(LoopNode::EntryControl)->in(0);
2313 
2314   // Remove the Opaque1Node of the pre loop and make it execute all iterations
2315   phase->_igvn.replace_input_of(pre_cmp, 2, pre_cmp->in(2)->in(2));
2316   // Remove the Opaque1Node of the main loop so it can be optimized out
2317   Node* main_cmp = main_iff->in(1)->in(1);
2318   assert(main_cmp->in(2)->Opcode() == Op_Opaque1, "main loop has no opaque node?");
2319   phase->_igvn.replace_input_of(main_cmp, 2, main_cmp->in(2)->in(1));
2320 }
2321 
2322 //------------------------------policy_do_remove_empty_loop--------------------
2323 // Micro-benchmark spamming.  Policy is to always remove empty loops.
2324 // The 'DO' part is to replace the trip counter with the value it will
2325 // have on the last iteration.  This will break the loop.
2326 bool IdealLoopTree::policy_do_remove_empty_loop( PhaseIdealLoop *phase ) {
2327   // Minimum size must be empty loop
2328   if (_body.size() > EMPTY_LOOP_SIZE)
2329     return false;
2330 
2331   if (!_head->is_CountedLoop())
2332     return false;     // Dead loop
2333   CountedLoopNode *cl = _head->as_CountedLoop();
2334   if (!cl->is_valid_counted_loop())
2335     return false; // Malformed loop
2336   if (!phase->is_member(this, phase->get_ctrl(cl->loopexit()->in(CountedLoopEndNode::TestValue))))
2337     return false;             // Infinite loop
2338 
2339   if (cl->is_pre_loop()) {
2340     // If the loop we are removing is a pre-loop then the main and
2341     // post loop can be removed as well
2342     remove_main_post_loops(cl, phase);
2343   }
2344 
2345 #ifdef ASSERT
2346   // Ensure only one phi which is the iv.
2347   Node* iv = NULL;
2348   for (DUIterator_Fast imax, i = cl->fast_outs(imax); i < imax; i++) {
2349     Node* n = cl->fast_out(i);
2350     if (n->Opcode() == Op_Phi) {
2351       assert(iv == NULL, "Too many phis" );
2352       iv = n;
2353     }
2354   }
2355   assert(iv == cl->phi(), "Wrong phi" );
2356 #endif
2357 
2358   // main and post loops have explicitly created zero trip guard
2359   bool needs_guard = !cl->is_main_loop() && !cl->is_post_loop();
2360   if (needs_guard) {
2361     // Skip guard if values not overlap.
2362     const TypeInt* init_t = phase->_igvn.type(cl->init_trip())->is_int();
2363     const TypeInt* limit_t = phase->_igvn.type(cl->limit())->is_int();
2364     int  stride_con = cl->stride_con();
2365     if (stride_con > 0) {
2366       needs_guard = (init_t->_hi >= limit_t->_lo);
2367     } else {
2368       needs_guard = (init_t->_lo <= limit_t->_hi);
2369     }
2370   }
2371   if (needs_guard) {
2372     // Check for an obvious zero trip guard.
2373     Node* inctrl = PhaseIdealLoop::skip_loop_predicates(cl->in(LoopNode::EntryControl));
2374     if (inctrl->Opcode() == Op_IfTrue) {
2375       // The test should look like just the backedge of a CountedLoop
2376       Node* iff = inctrl->in(0);
2377       if (iff->is_If()) {
2378         Node* bol = iff->in(1);
2379         if (bol->is_Bool() && bol->as_Bool()->_test._test == cl->loopexit()->test_trip()) {
2380           Node* cmp = bol->in(1);
2381           if (cmp->is_Cmp() && cmp->in(1) == cl->init_trip() && cmp->in(2) == cl->limit()) {
2382             needs_guard = false;
2383           }
2384         }
2385       }
2386     }
2387   }
2388 
2389 #ifndef PRODUCT
2390   if (PrintOpto) {
2391     tty->print("Removing empty loop with%s zero trip guard", needs_guard ? "out" : "");
2392     this->dump_head();
2393   } else if (TraceLoopOpts) {
2394     tty->print("Empty with%s zero trip guard   ", needs_guard ? "out" : "");
2395     this->dump_head();
2396   }
2397 #endif
2398 
2399   if (needs_guard) {
2400     // Peel the loop to ensure there's a zero trip guard
2401     Node_List old_new;
2402     phase->do_peeling(this, old_new);
2403   }
2404 
2405   // Replace the phi at loop head with the final value of the last
2406   // iteration.  Then the CountedLoopEnd will collapse (backedge never
2407   // taken) and all loop-invariant uses of the exit values will be correct.
2408   Node *phi = cl->phi();
2409   Node *exact_limit = phase->exact_limit(this);
2410   if (exact_limit != cl->limit()) {
2411     // We also need to replace the original limit to collapse loop exit.
2412     Node* cmp = cl->loopexit()->cmp_node();
2413     assert(cl->limit() == cmp->in(2), "sanity");
2414     phase->_igvn._worklist.push(cmp->in(2)); // put limit on worklist
2415     phase->_igvn.replace_input_of(cmp, 2, exact_limit); // put cmp on worklist
2416   }
2417   // Note: the final value after increment should not overflow since
2418   // counted loop has limit check predicate.
2419   Node *final = new SubINode( exact_limit, cl->stride() );
2420   phase->register_new_node(final,cl->in(LoopNode::EntryControl));
2421   phase->_igvn.replace_node(phi,final);
2422   phase->C->set_major_progress();
2423   return true;
2424 }
2425 
2426 //------------------------------policy_do_one_iteration_loop-------------------
2427 // Convert one iteration loop into normal code.
2428 bool IdealLoopTree::policy_do_one_iteration_loop( PhaseIdealLoop *phase ) {
2429   if (!_head->as_Loop()->is_valid_counted_loop())
2430     return false; // Only for counted loop
2431 
2432   CountedLoopNode *cl = _head->as_CountedLoop();
2433   if (!cl->has_exact_trip_count() || cl->trip_count() != 1) {
2434     return false;
2435   }
2436 
2437 #ifndef PRODUCT
2438   if(TraceLoopOpts) {
2439     tty->print("OneIteration ");
2440     this->dump_head();
2441   }
2442 #endif
2443 
2444   Node *init_n = cl->init_trip();
2445 #ifdef ASSERT
2446   // Loop boundaries should be constant since trip count is exact.
2447   assert(init_n->get_int() + cl->stride_con() >= cl->limit()->get_int(), "should be one iteration");
2448 #endif
2449   // Replace the phi at loop head with the value of the init_trip.
2450   // Then the CountedLoopEnd will collapse (backedge will not be taken)
2451   // and all loop-invariant uses of the exit values will be correct.
2452   phase->_igvn.replace_node(cl->phi(), cl->init_trip());
2453   phase->C->set_major_progress();
2454   return true;
2455 }
2456 
2457 //=============================================================================
2458 //------------------------------iteration_split_impl---------------------------
2459 bool IdealLoopTree::iteration_split_impl( PhaseIdealLoop *phase, Node_List &old_new ) {
2460   // Compute exact loop trip count if possible.
2461   compute_exact_trip_count(phase);
2462 
2463   // Convert one iteration loop into normal code.
2464   if (policy_do_one_iteration_loop(phase))
2465     return true;
2466 
2467   // Check and remove empty loops (spam micro-benchmarks)
2468   if (policy_do_remove_empty_loop(phase))
2469     return true;  // Here we removed an empty loop
2470 
2471   bool should_peel = policy_peeling(phase); // Should we peel?
2472 
2473   bool should_unswitch = policy_unswitching(phase);
2474 
2475   // Non-counted loops may be peeled; exactly 1 iteration is peeled.
2476   // This removes loop-invariant tests (usually null checks).
2477   if (!_head->is_CountedLoop()) { // Non-counted loop
2478     if (PartialPeelLoop && phase->partial_peel(this, old_new)) {
2479       // Partial peel succeeded so terminate this round of loop opts
2480       return false;
2481     }
2482     if (should_peel) {            // Should we peel?
2483 #ifndef PRODUCT
2484       if (PrintOpto) tty->print_cr("should_peel");
2485 #endif
2486       phase->do_peeling(this,old_new);
2487     } else if (should_unswitch) {
2488       phase->do_unswitching(this, old_new);
2489     }
2490     return true;
2491   }
2492   CountedLoopNode *cl = _head->as_CountedLoop();
2493 
2494   if (!cl->is_valid_counted_loop()) return true; // Ignore various kinds of broken loops
2495 
2496   // Do nothing special to pre- and post- loops
2497   if (cl->is_pre_loop() || cl->is_post_loop()) return true;
2498 
2499   // Compute loop trip count from profile data
2500   compute_profile_trip_cnt(phase);
2501 
2502   // Before attempting fancy unrolling, RCE or alignment, see if we want
2503   // to completely unroll this loop or do loop unswitching.
2504   if (cl->is_normal_loop()) {
2505     if (should_unswitch) {
2506       phase->do_unswitching(this, old_new);
2507       return true;
2508     }
2509     bool should_maximally_unroll =  policy_maximally_unroll(phase);
2510     if (should_maximally_unroll) {
2511       // Here we did some unrolling and peeling.  Eventually we will
2512       // completely unroll this loop and it will no longer be a loop.
2513       phase->do_maximally_unroll(this,old_new);
2514       return true;
2515     }
2516   }
2517 
2518   // Skip next optimizations if running low on nodes. Note that
2519   // policy_unswitching and policy_maximally_unroll have this check.
2520   int nodes_left = phase->C->max_node_limit() - phase->C->live_nodes();
2521   if ((int)(2 * _body.size()) > nodes_left) {
2522     return true;
2523   }
2524 
2525   // Counted loops may be peeled, may need some iterations run up
2526   // front for RCE, and may want to align loop refs to a cache
2527   // line.  Thus we clone a full loop up front whose trip count is
2528   // at least 1 (if peeling), but may be several more.
2529 
2530   // The main loop will start cache-line aligned with at least 1
2531   // iteration of the unrolled body (zero-trip test required) and
2532   // will have some range checks removed.
2533 
2534   // A post-loop will finish any odd iterations (leftover after
2535   // unrolling), plus any needed for RCE purposes.
2536 
2537   bool should_unroll = policy_unroll(phase);
2538 
2539   bool should_rce = policy_range_check(phase);
2540 
2541   bool should_align = policy_align(phase);
2542 
2543   // If not RCE'ing (iteration splitting) or Aligning, then we do not
2544   // need a pre-loop.  We may still need to peel an initial iteration but
2545   // we will not be needing an unknown number of pre-iterations.
2546   //
2547   // Basically, if may_rce_align reports FALSE first time through,
2548   // we will not be able to later do RCE or Aligning on this loop.
2549   bool may_rce_align = !policy_peel_only(phase) || should_rce || should_align;
2550 
2551   // If we have any of these conditions (RCE, alignment, unrolling) met, then
2552   // we switch to the pre-/main-/post-loop model.  This model also covers
2553   // peeling.
2554   if (should_rce || should_align || should_unroll) {
2555     if (cl->is_normal_loop())  // Convert to 'pre/main/post' loops
2556       phase->insert_pre_post_loops(this,old_new, !may_rce_align);
2557 
2558     // Adjust the pre- and main-loop limits to let the pre and post loops run
2559     // with full checks, but the main-loop with no checks.  Remove said
2560     // checks from the main body.
2561     if (should_rce)
2562       phase->do_range_check(this,old_new);
2563 
2564     // Double loop body for unrolling.  Adjust the minimum-trip test (will do
2565     // twice as many iterations as before) and the main body limit (only do
2566     // an even number of trips).  If we are peeling, we might enable some RCE
2567     // and we'd rather unroll the post-RCE'd loop SO... do not unroll if
2568     // peeling.
2569     if (should_unroll && !should_peel) {
2570       phase->do_unroll(this, old_new, true);
2571     }
2572 
2573     // Adjust the pre-loop limits to align the main body
2574     // iterations.
2575     if (should_align)
2576       Unimplemented();
2577 
2578   } else {                      // Else we have an unchanged counted loop
2579     if (should_peel)           // Might want to peel but do nothing else
2580       phase->do_peeling(this,old_new);
2581   }
2582   return true;
2583 }
2584 
2585 
2586 //=============================================================================
2587 //------------------------------iteration_split--------------------------------
2588 bool IdealLoopTree::iteration_split( PhaseIdealLoop *phase, Node_List &old_new ) {
2589   // Recursively iteration split nested loops
2590   if (_child && !_child->iteration_split(phase, old_new))
2591     return false;
2592 
2593   // Clean out prior deadwood
2594   DCE_loop_body();
2595 
2596 
2597   // Look for loop-exit tests with my 50/50 guesses from the Parsing stage.
2598   // Replace with a 1-in-10 exit guess.
2599   if (_parent /*not the root loop*/ &&
2600       !_irreducible &&
2601       // Also ignore the occasional dead backedge
2602       !tail()->is_top()) {
2603     adjust_loop_exit_prob(phase);
2604   }
2605 
2606   // Gate unrolling, RCE and peeling efforts.
2607   if (!_child &&                // If not an inner loop, do not split
2608       !_irreducible &&
2609       _allow_optimizations &&
2610       !tail()->is_top()) {     // Also ignore the occasional dead backedge
2611     if (!_has_call) {
2612         if (!iteration_split_impl(phase, old_new)) {
2613           return false;
2614         }
2615     } else if (policy_unswitching(phase)) {
2616       phase->do_unswitching(this, old_new);
2617     }
2618   }
2619 
2620   // Minor offset re-organization to remove loop-fallout uses of
2621   // trip counter when there was no major reshaping.
2622   phase->reorg_offsets(this);
2623 
2624   if (_next && !_next->iteration_split(phase, old_new))
2625     return false;
2626   return true;
2627 }
2628 
2629 
2630 //=============================================================================
2631 // Process all the loops in the loop tree and replace any fill
2632 // patterns with an intrisc version.
2633 bool PhaseIdealLoop::do_intrinsify_fill() {
2634   bool changed = false;
2635   for (LoopTreeIterator iter(_ltree_root); !iter.done(); iter.next()) {
2636     IdealLoopTree* lpt = iter.current();
2637     changed |= intrinsify_fill(lpt);
2638   }
2639   return changed;
2640 }
2641 
2642 
2643 // Examine an inner loop looking for a a single store of an invariant
2644 // value in a unit stride loop,
2645 bool PhaseIdealLoop::match_fill_loop(IdealLoopTree* lpt, Node*& store, Node*& store_value,
2646                                      Node*& shift, Node*& con) {
2647   const char* msg = NULL;
2648   Node* msg_node = NULL;
2649 
2650   store_value = NULL;
2651   con = NULL;
2652   shift = NULL;
2653 
2654   // Process the loop looking for stores.  If there are multiple
2655   // stores or extra control flow give at this point.
2656   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2657   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2658     Node* n = lpt->_body.at(i);
2659     if (n->outcnt() == 0) continue; // Ignore dead
2660     if (n->is_Store()) {
2661       if (store != NULL) {
2662         msg = "multiple stores";
2663         break;
2664       }
2665       int opc = n->Opcode();
2666       if (opc == Op_StoreP || opc == Op_StoreN || opc == Op_StoreNKlass || opc == Op_StoreCM) {
2667         msg = "oop fills not handled";
2668         break;
2669       }
2670       Node* value = n->in(MemNode::ValueIn);
2671       if (!lpt->is_invariant(value)) {
2672         msg  = "variant store value";
2673       } else if (!_igvn.type(n->in(MemNode::Address))->isa_aryptr()) {
2674         msg = "not array address";
2675       }
2676       store = n;
2677       store_value = value;
2678     } else if (n->is_If() && n != head->loopexit()) {
2679       msg = "extra control flow";
2680       msg_node = n;
2681     }
2682   }
2683 
2684   if (store == NULL) {
2685     // No store in loop
2686     return false;
2687   }
2688 
2689   if (msg == NULL && head->stride_con() != 1) {
2690     // could handle negative strides too
2691     if (head->stride_con() < 0) {
2692       msg = "negative stride";
2693     } else {
2694       msg = "non-unit stride";
2695     }
2696   }
2697 
2698   if (msg == NULL && !store->in(MemNode::Address)->is_AddP()) {
2699     msg = "can't handle store address";
2700     msg_node = store->in(MemNode::Address);
2701   }
2702 
2703   if (msg == NULL &&
2704       (!store->in(MemNode::Memory)->is_Phi() ||
2705        store->in(MemNode::Memory)->in(LoopNode::LoopBackControl) != store)) {
2706     msg = "store memory isn't proper phi";
2707     msg_node = store->in(MemNode::Memory);
2708   }
2709 
2710   // Make sure there is an appropriate fill routine
2711   BasicType t = store->as_Mem()->memory_type();
2712   const char* fill_name;
2713   if (msg == NULL &&
2714       StubRoutines::select_fill_function(t, false, fill_name) == NULL) {
2715     msg = "unsupported store";
2716     msg_node = store;
2717   }
2718 
2719   if (msg != NULL) {
2720 #ifndef PRODUCT
2721     if (TraceOptimizeFill) {
2722       tty->print_cr("not fill intrinsic candidate: %s", msg);
2723       if (msg_node != NULL) msg_node->dump();
2724     }
2725 #endif
2726     return false;
2727   }
2728 
2729   // Make sure the address expression can be handled.  It should be
2730   // head->phi * elsize + con.  head->phi might have a ConvI2L.
2731   Node* elements[4];
2732   Node* conv = NULL;
2733   bool found_index = false;
2734   int count = store->in(MemNode::Address)->as_AddP()->unpack_offsets(elements, ARRAY_SIZE(elements));
2735   for (int e = 0; e < count; e++) {
2736     Node* n = elements[e];
2737     if (n->is_Con() && con == NULL) {
2738       con = n;
2739     } else if (n->Opcode() == Op_LShiftX && shift == NULL) {
2740       Node* value = n->in(1);
2741 #ifdef _LP64
2742       if (value->Opcode() == Op_ConvI2L) {
2743         conv = value;
2744         value = value->in(1);
2745       }
2746 #endif
2747       if (value != head->phi()) {
2748         msg = "unhandled shift in address";
2749       } else {
2750         if (type2aelembytes(store->as_Mem()->memory_type(), true) != (1 << n->in(2)->get_int())) {
2751           msg = "scale doesn't match";
2752         } else {
2753           found_index = true;
2754           shift = n;
2755         }
2756       }
2757     } else if (n->Opcode() == Op_ConvI2L && conv == NULL) {
2758       if (n->in(1) == head->phi()) {
2759         found_index = true;
2760         conv = n;
2761       } else {
2762         msg = "unhandled input to ConvI2L";
2763       }
2764     } else if (n == head->phi()) {
2765       // no shift, check below for allowed cases
2766       found_index = true;
2767     } else {
2768       msg = "unhandled node in address";
2769       msg_node = n;
2770     }
2771   }
2772 
2773   if (count == -1) {
2774     msg = "malformed address expression";
2775     msg_node = store;
2776   }
2777 
2778   if (!found_index) {
2779     msg = "missing use of index";
2780   }
2781 
2782   // byte sized items won't have a shift
2783   if (msg == NULL && shift == NULL && t != T_BYTE && t != T_BOOLEAN) {
2784     msg = "can't find shift";
2785     msg_node = store;
2786   }
2787 
2788   if (msg != NULL) {
2789 #ifndef PRODUCT
2790     if (TraceOptimizeFill) {
2791       tty->print_cr("not fill intrinsic: %s", msg);
2792       if (msg_node != NULL) msg_node->dump();
2793     }
2794 #endif
2795     return false;
2796   }
2797 
2798   // No make sure all the other nodes in the loop can be handled
2799   VectorSet ok(Thread::current()->resource_area());
2800 
2801   // store related values are ok
2802   ok.set(store->_idx);
2803   ok.set(store->in(MemNode::Memory)->_idx);
2804 
2805   CountedLoopEndNode* loop_exit = head->loopexit();
2806   guarantee(loop_exit != NULL, "no loop exit node");
2807 
2808   // Loop structure is ok
2809   ok.set(head->_idx);
2810   ok.set(loop_exit->_idx);
2811   ok.set(head->phi()->_idx);
2812   ok.set(head->incr()->_idx);
2813   ok.set(loop_exit->cmp_node()->_idx);
2814   ok.set(loop_exit->in(1)->_idx);
2815 
2816   // Address elements are ok
2817   if (con)   ok.set(con->_idx);
2818   if (shift) ok.set(shift->_idx);
2819   if (conv)  ok.set(conv->_idx);
2820 
2821   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2822     Node* n = lpt->_body.at(i);
2823     if (n->outcnt() == 0) continue; // Ignore dead
2824     if (ok.test(n->_idx)) continue;
2825     // Backedge projection is ok
2826     if (n->is_IfTrue() && n->in(0) == loop_exit) continue;
2827     if (!n->is_AddP()) {
2828       msg = "unhandled node";
2829       msg_node = n;
2830       break;
2831     }
2832   }
2833 
2834   // Make sure no unexpected values are used outside the loop
2835   for (uint i = 0; msg == NULL && i < lpt->_body.size(); i++) {
2836     Node* n = lpt->_body.at(i);
2837     // These values can be replaced with other nodes if they are used
2838     // outside the loop.
2839     if (n == store || n == loop_exit || n == head->incr() || n == store->in(MemNode::Memory)) continue;
2840     for (SimpleDUIterator iter(n); iter.has_next(); iter.next()) {
2841       Node* use = iter.get();
2842       if (!lpt->_body.contains(use)) {
2843         msg = "node is used outside loop";
2844         // lpt->_body.dump();
2845         msg_node = n;
2846         break;
2847       }
2848     }
2849   }
2850 
2851 #ifdef ASSERT
2852   if (TraceOptimizeFill) {
2853     if (msg != NULL) {
2854       tty->print_cr("no fill intrinsic: %s", msg);
2855       if (msg_node != NULL) msg_node->dump();
2856     } else {
2857       tty->print_cr("fill intrinsic for:");
2858     }
2859     store->dump();
2860     if (Verbose) {
2861       lpt->_body.dump();
2862     }
2863   }
2864 #endif
2865 
2866   return msg == NULL;
2867 }
2868 
2869 
2870 
2871 bool PhaseIdealLoop::intrinsify_fill(IdealLoopTree* lpt) {
2872   // Only for counted inner loops
2873   if (!lpt->is_counted() || !lpt->is_inner()) {
2874     return false;
2875   }
2876 
2877   // Must have constant stride
2878   CountedLoopNode* head = lpt->_head->as_CountedLoop();
2879   if (!head->is_valid_counted_loop() || !head->is_normal_loop()) {
2880     return false;
2881   }
2882 
2883   // Check that the body only contains a store of a loop invariant
2884   // value that is indexed by the loop phi.
2885   Node* store = NULL;
2886   Node* store_value = NULL;
2887   Node* shift = NULL;
2888   Node* offset = NULL;
2889   if (!match_fill_loop(lpt, store, store_value, shift, offset)) {
2890     return false;
2891   }
2892 
2893 #ifndef PRODUCT
2894   if (TraceLoopOpts) {
2895     tty->print("ArrayFill    ");
2896     lpt->dump_head();
2897   }
2898 #endif
2899 
2900   // Now replace the whole loop body by a call to a fill routine that
2901   // covers the same region as the loop.
2902   Node* base = store->in(MemNode::Address)->as_AddP()->in(AddPNode::Base);
2903 
2904   // Build an expression for the beginning of the copy region
2905   Node* index = head->init_trip();
2906 #ifdef _LP64
2907   index = new ConvI2LNode(index);
2908   _igvn.register_new_node_with_optimizer(index);
2909 #endif
2910   if (shift != NULL) {
2911     // byte arrays don't require a shift but others do.
2912     index = new LShiftXNode(index, shift->in(2));
2913     _igvn.register_new_node_with_optimizer(index);
2914   }
2915   index = new AddPNode(base, base, index);
2916   _igvn.register_new_node_with_optimizer(index);
2917   Node* from = new AddPNode(base, index, offset);
2918   _igvn.register_new_node_with_optimizer(from);
2919   // Compute the number of elements to copy
2920   Node* len = new SubINode(head->limit(), head->init_trip());
2921   _igvn.register_new_node_with_optimizer(len);
2922 
2923   BasicType t = store->as_Mem()->memory_type();
2924   bool aligned = false;
2925   if (offset != NULL && head->init_trip()->is_Con()) {
2926     int element_size = type2aelembytes(t);
2927     aligned = (offset->find_intptr_t_type()->get_con() + head->init_trip()->get_int() * element_size) % HeapWordSize == 0;
2928   }
2929 
2930   // Build a call to the fill routine
2931   const char* fill_name;
2932   address fill = StubRoutines::select_fill_function(t, aligned, fill_name);
2933   assert(fill != NULL, "what?");
2934 
2935   // Convert float/double to int/long for fill routines
2936   if (t == T_FLOAT) {
2937     store_value = new MoveF2INode(store_value);
2938     _igvn.register_new_node_with_optimizer(store_value);
2939   } else if (t == T_DOUBLE) {
2940     store_value = new MoveD2LNode(store_value);
2941     _igvn.register_new_node_with_optimizer(store_value);
2942   }
2943 
2944   if (CCallingConventionRequiresIntsAsLongs &&
2945       // See StubRoutines::select_fill_function for types. FLOAT has been converted to INT.
2946       (t == T_FLOAT || t == T_INT ||  is_subword_type(t))) {
2947     store_value = new ConvI2LNode(store_value);
2948     _igvn.register_new_node_with_optimizer(store_value);
2949   }
2950 
2951   Node* mem_phi = store->in(MemNode::Memory);
2952   Node* result_ctrl;
2953   Node* result_mem;
2954   const TypeFunc* call_type = OptoRuntime::array_fill_Type();
2955   CallLeafNode *call = new CallLeafNoFPNode(call_type, fill,
2956                                             fill_name, TypeAryPtr::get_array_body_type(t));
2957   uint cnt = 0;
2958   call->init_req(TypeFunc::Parms + cnt++, from);
2959   call->init_req(TypeFunc::Parms + cnt++, store_value);
2960   if (CCallingConventionRequiresIntsAsLongs) {
2961     call->init_req(TypeFunc::Parms + cnt++, C->top());
2962   }
2963 #ifdef _LP64
2964   len = new ConvI2LNode(len);
2965   _igvn.register_new_node_with_optimizer(len);
2966 #endif
2967   call->init_req(TypeFunc::Parms + cnt++, len);
2968 #ifdef _LP64
2969   call->init_req(TypeFunc::Parms + cnt++, C->top());
2970 #endif
2971   call->init_req(TypeFunc::Control,   head->init_control());
2972   call->init_req(TypeFunc::I_O,       C->top());       // Does no I/O.
2973   call->init_req(TypeFunc::Memory,    mem_phi->in(LoopNode::EntryControl));
2974   call->init_req(TypeFunc::ReturnAdr, C->start()->proj_out(TypeFunc::ReturnAdr));
2975   call->init_req(TypeFunc::FramePtr,  C->start()->proj_out(TypeFunc::FramePtr));
2976   _igvn.register_new_node_with_optimizer(call);
2977   result_ctrl = new ProjNode(call,TypeFunc::Control);
2978   _igvn.register_new_node_with_optimizer(result_ctrl);
2979   result_mem = new ProjNode(call,TypeFunc::Memory);
2980   _igvn.register_new_node_with_optimizer(result_mem);
2981 
2982 /* Disable following optimization until proper fix (add missing checks).
2983 
2984   // If this fill is tightly coupled to an allocation and overwrites
2985   // the whole body, allow it to take over the zeroing.
2986   AllocateNode* alloc = AllocateNode::Ideal_allocation(base, this);
2987   if (alloc != NULL && alloc->is_AllocateArray()) {
2988     Node* length = alloc->as_AllocateArray()->Ideal_length();
2989     if (head->limit() == length &&
2990         head->init_trip() == _igvn.intcon(0)) {
2991       if (TraceOptimizeFill) {
2992         tty->print_cr("Eliminated zeroing in allocation");
2993       }
2994       alloc->maybe_set_complete(&_igvn);
2995     } else {
2996 #ifdef ASSERT
2997       if (TraceOptimizeFill) {
2998         tty->print_cr("filling array but bounds don't match");
2999         alloc->dump();
3000         head->init_trip()->dump();
3001         head->limit()->dump();
3002         length->dump();
3003       }
3004 #endif
3005     }
3006   }
3007 */
3008 
3009   // Redirect the old control and memory edges that are outside the loop.
3010   Node* exit = head->loopexit()->proj_out(0);
3011   // Sometimes the memory phi of the head is used as the outgoing
3012   // state of the loop.  It's safe in this case to replace it with the
3013   // result_mem.
3014   _igvn.replace_node(store->in(MemNode::Memory), result_mem);
3015   _igvn.replace_node(exit, result_ctrl);
3016   _igvn.replace_node(store, result_mem);
3017   // Any uses the increment outside of the loop become the loop limit.
3018   _igvn.replace_node(head->incr(), head->limit());
3019 
3020   // Disconnect the head from the loop.
3021   for (uint i = 0; i < lpt->_body.size(); i++) {
3022     Node* n = lpt->_body.at(i);
3023     _igvn.replace_node(n, C->top());
3024   }
3025 
3026   return true;
3027 }