1 /*
   2  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   3  *
   4  * This code is free software; you can redistribute it and/or modify it
   5  * under the terms of the GNU General Public License version 2 only, as
   6  * published by the Free Software Foundation.  Oracle designates this
   7  * particular file as subject to the "Classpath" exception as provided
   8  * by Oracle in the LICENSE file that accompanied this code.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  */
  24 
  25 /*
  26  * This file is available under and governed by the GNU General Public
  27  * License version 2 only, as published by the Free Software Foundation.
  28  * However, the following notice accompanied the original version of this
  29  * file:
  30  *
  31  * Written by Doug Lea with assistance from members of JCP JSR-166
  32  * Expert Group and released to the public domain, as explained at
  33  * http://creativecommons.org/publicdomain/zero/1.0/
  34  */
  35 
  36 package java.util.concurrent;
  37 
  38 import java.lang.Thread.UncaughtExceptionHandler;
  39 import java.util.ArrayList;
  40 import java.util.Arrays;
  41 import java.util.Collection;
  42 import java.util.Collections;
  43 import java.util.List;
  44 import java.util.concurrent.AbstractExecutorService;
  45 import java.util.concurrent.Callable;
  46 import java.util.concurrent.ExecutorService;
  47 import java.util.concurrent.Future;
  48 import java.util.concurrent.RejectedExecutionException;
  49 import java.util.concurrent.RunnableFuture;
  50 import java.util.concurrent.ThreadLocalRandom;
  51 import java.util.concurrent.TimeUnit;
  52 
  53 /**
  54  * An {@link ExecutorService} for running {@link ForkJoinTask}s.
  55  * A {@code ForkJoinPool} provides the entry point for submissions
  56  * from non-{@code ForkJoinTask} clients, as well as management and
  57  * monitoring operations.
  58  *
  59  * <p>A {@code ForkJoinPool} differs from other kinds of {@link
  60  * ExecutorService} mainly by virtue of employing
  61  * <em>work-stealing</em>: all threads in the pool attempt to find and
  62  * execute tasks submitted to the pool and/or created by other active
  63  * tasks (eventually blocking waiting for work if none exist). This
  64  * enables efficient processing when most tasks spawn other subtasks
  65  * (as do most {@code ForkJoinTask}s), as well as when many small
  66  * tasks are submitted to the pool from external clients.  Especially
  67  * when setting <em>asyncMode</em> to true in constructors, {@code
  68  * ForkJoinPool}s may also be appropriate for use with event-style
  69  * tasks that are never joined.
  70  *
  71  * <p>A static {@link #commonPool()} is available and appropriate for
  72  * most applications. The common pool is used by any ForkJoinTask that
  73  * is not explicitly submitted to a specified pool. Using the common
  74  * pool normally reduces resource usage (its threads are slowly
  75  * reclaimed during periods of non-use, and reinstated upon subsequent
  76  * use).
  77  *
  78  * <p>For applications that require separate or custom pools, a {@code
  79  * ForkJoinPool} may be constructed with a given target parallelism
  80  * level; by default, equal to the number of available processors. The
  81  * pool attempts to maintain enough active (or available) threads by
  82  * dynamically adding, suspending, or resuming internal worker
  83  * threads, even if some tasks are stalled waiting to join others.
  84  * However, no such adjustments are guaranteed in the face of blocked
  85  * I/O or other unmanaged synchronization. The nested {@link
  86  * ManagedBlocker} interface enables extension of the kinds of
  87  * synchronization accommodated.
  88  *
  89  * <p>In addition to execution and lifecycle control methods, this
  90  * class provides status check methods (for example
  91  * {@link #getStealCount}) that are intended to aid in developing,
  92  * tuning, and monitoring fork/join applications. Also, method
  93  * {@link #toString} returns indications of pool state in a
  94  * convenient form for informal monitoring.
  95  *
  96  * <p>As is the case with other ExecutorServices, there are three
  97  * main task execution methods summarized in the following table.
  98  * These are designed to be used primarily by clients not already
  99  * engaged in fork/join computations in the current pool.  The main
 100  * forms of these methods accept instances of {@code ForkJoinTask},
 101  * but overloaded forms also allow mixed execution of plain {@code
 102  * Runnable}- or {@code Callable}- based activities as well.  However,
 103  * tasks that are already executing in a pool should normally instead
 104  * use the within-computation forms listed in the table unless using
 105  * async event-style tasks that are not usually joined, in which case
 106  * there is little difference among choice of methods.
 107  *
 108  * <table BORDER CELLPADDING=3 CELLSPACING=1>
 109  * <caption>Summary of task execution methods</caption>
 110  *  <tr>
 111  *    <td></td>
 112  *    <td ALIGN=CENTER> <b>Call from non-fork/join clients</b></td>
 113  *    <td ALIGN=CENTER> <b>Call from within fork/join computations</b></td>
 114  *  </tr>
 115  *  <tr>
 116  *    <td> <b>Arrange async execution</b></td>
 117  *    <td> {@link #execute(ForkJoinTask)}</td>
 118  *    <td> {@link ForkJoinTask#fork}</td>
 119  *  </tr>
 120  *  <tr>
 121  *    <td> <b>Await and obtain result</b></td>
 122  *    <td> {@link #invoke(ForkJoinTask)}</td>
 123  *    <td> {@link ForkJoinTask#invoke}</td>
 124  *  </tr>
 125  *  <tr>
 126  *    <td> <b>Arrange exec and obtain Future</b></td>
 127  *    <td> {@link #submit(ForkJoinTask)}</td>
 128  *    <td> {@link ForkJoinTask#fork} (ForkJoinTasks <em>are</em> Futures)</td>
 129  *  </tr>
 130  * </table>
 131  *
 132  * <p>The common pool is by default constructed with default
 133  * parameters, but these may be controlled by setting three
 134  * {@linkplain System#getProperty system properties}:
 135  * <ul>
 136  * <li>{@code java.util.concurrent.ForkJoinPool.common.parallelism}
 137  * - the parallelism level, a non-negative integer
 138  * <li>{@code java.util.concurrent.ForkJoinPool.common.threadFactory}
 139  * - the class name of a {@link ForkJoinWorkerThreadFactory}
 140  * <li>{@code java.util.concurrent.ForkJoinPool.common.exceptionHandler}
 141  * - the class name of a {@link UncaughtExceptionHandler}
 142  * </ul>
 143  * The system class loader is used to load these classes.
 144  * Upon any error in establishing these settings, default parameters
 145  * are used. It is possible to disable or limit the use of threads in
 146  * the common pool by setting the parallelism property to zero, and/or
 147  * using a factory that may return {@code null}. However doing so may
 148  * cause unjoined tasks to never be executed.
 149  *
 150  * <p><b>Implementation notes</b>: This implementation restricts the
 151  * maximum number of running threads to 32767. Attempts to create
 152  * pools with greater than the maximum number result in
 153  * {@code IllegalArgumentException}.
 154  *
 155  * <p>This implementation rejects submitted tasks (that is, by throwing
 156  * {@link RejectedExecutionException}) only when the pool is shut down
 157  * or internal resources have been exhausted.
 158  *
 159  * @since 1.7
 160  * @author Doug Lea
 161  */
 162 @sun.misc.Contended
 163 public class ForkJoinPool extends AbstractExecutorService {
 164 
 165     /*
 166      * Implementation Overview
 167      *
 168      * This class and its nested classes provide the main
 169      * functionality and control for a set of worker threads:
 170      * Submissions from non-FJ threads enter into submission queues.
 171      * Workers take these tasks and typically split them into subtasks
 172      * that may be stolen by other workers.  Preference rules give
 173      * first priority to processing tasks from their own queues (LIFO
 174      * or FIFO, depending on mode), then to randomized FIFO steals of
 175      * tasks in other queues.
 176      *
 177      * WorkQueues
 178      * ==========
 179      *
 180      * Most operations occur within work-stealing queues (in nested
 181      * class WorkQueue).  These are special forms of Deques that
 182      * support only three of the four possible end-operations -- push,
 183      * pop, and poll (aka steal), under the further constraints that
 184      * push and pop are called only from the owning thread (or, as
 185      * extended here, under a lock), while poll may be called from
 186      * other threads.  (If you are unfamiliar with them, you probably
 187      * want to read Herlihy and Shavit's book "The Art of
 188      * Multiprocessor programming", chapter 16 describing these in
 189      * more detail before proceeding.)  The main work-stealing queue
 190      * design is roughly similar to those in the papers "Dynamic
 191      * Circular Work-Stealing Deque" by Chase and Lev, SPAA 2005
 192      * (http://research.sun.com/scalable/pubs/index.html) and
 193      * "Idempotent work stealing" by Michael, Saraswat, and Vechev,
 194      * PPoPP 2009 (http://portal.acm.org/citation.cfm?id=1504186).
 195      * See also "Correct and Efficient Work-Stealing for Weak Memory
 196      * Models" by Le, Pop, Cohen, and Nardelli, PPoPP 2013
 197      * (http://www.di.ens.fr/~zappa/readings/ppopp13.pdf) for an
 198      * analysis of memory ordering (atomic, volatile etc) issues.  The
 199      * main differences ultimately stem from GC requirements that we
 200      * null out taken slots as soon as we can, to maintain as small a
 201      * footprint as possible even in programs generating huge numbers
 202      * of tasks. To accomplish this, we shift the CAS arbitrating pop
 203      * vs poll (steal) from being on the indices ("base" and "top") to
 204      * the slots themselves.  So, both a successful pop and poll
 205      * mainly entail a CAS of a slot from non-null to null.  Because
 206      * we rely on CASes of references, we do not need tag bits on base
 207      * or top.  They are simple ints as used in any circular
 208      * array-based queue (see for example ArrayDeque).  Updates to the
 209      * indices must still be ordered in a way that guarantees that top
 210      * == base means the queue is empty, but otherwise may err on the
 211      * side of possibly making the queue appear nonempty when a push,
 212      * pop, or poll have not fully committed. Note that this means
 213      * that the poll operation, considered individually, is not
 214      * wait-free. One thief cannot successfully continue until another
 215      * in-progress one (or, if previously empty, a push) completes.
 216      * However, in the aggregate, we ensure at least probabilistic
 217      * non-blockingness.  If an attempted steal fails, a thief always
 218      * chooses a different random victim target to try next. So, in
 219      * order for one thief to progress, it suffices for any
 220      * in-progress poll or new push on any empty queue to
 221      * complete. (This is why we normally use method pollAt and its
 222      * variants that try once at the apparent base index, else
 223      * consider alternative actions, rather than method poll.)
 224      *
 225      * This approach also enables support of a user mode in which local
 226      * task processing is in FIFO, not LIFO order, simply by using
 227      * poll rather than pop.  This can be useful in message-passing
 228      * frameworks in which tasks are never joined.  However neither
 229      * mode considers affinities, loads, cache localities, etc, so
 230      * rarely provide the best possible performance on a given
 231      * machine, but portably provide good throughput by averaging over
 232      * these factors.  (Further, even if we did try to use such
 233      * information, we do not usually have a basis for exploiting it.
 234      * For example, some sets of tasks profit from cache affinities,
 235      * but others are harmed by cache pollution effects.)
 236      *
 237      * WorkQueues are also used in a similar way for tasks submitted
 238      * to the pool. We cannot mix these tasks in the same queues used
 239      * for work-stealing (this would contaminate lifo/fifo
 240      * processing). Instead, we randomly associate submission queues
 241      * with submitting threads, using a form of hashing.  The
 242      * ThreadLocalRandom probe value serves as a hash code for
 243      * choosing existing queues, and may be randomly repositioned upon
 244      * contention with other submitters.  In essence, submitters act
 245      * like workers except that they are restricted to executing local
 246      * tasks that they submitted (or in the case of CountedCompleters,
 247      * others with the same root task).  However, because most
 248      * shared/external queue operations are more expensive than
 249      * internal, and because, at steady state, external submitters
 250      * will compete for CPU with workers, ForkJoinTask.join and
 251      * related methods disable them from repeatedly helping to process
 252      * tasks if all workers are active.  Insertion of tasks in shared
 253      * mode requires a lock (mainly to protect in the case of
 254      * resizing) but we use only a simple spinlock (using bits in
 255      * field qlock), because submitters encountering a busy queue move
 256      * on to try or create other queues -- they block only when
 257      * creating and registering new queues.
 258      *
 259      * Management
 260      * ==========
 261      *
 262      * The main throughput advantages of work-stealing stem from
 263      * decentralized control -- workers mostly take tasks from
 264      * themselves or each other. We cannot negate this in the
 265      * implementation of other management responsibilities. The main
 266      * tactic for avoiding bottlenecks is packing nearly all
 267      * essentially atomic control state into two volatile variables
 268      * that are by far most often read (not written) as status and
 269      * consistency checks.
 270      *
 271      * Field "ctl" contains 64 bits holding all the information needed
 272      * to atomically decide to add, inactivate, enqueue (on an event
 273      * queue), dequeue, and/or re-activate workers.  To enable this
 274      * packing, we restrict maximum parallelism to (1<<15)-1 (which is
 275      * far in excess of normal operating range) to allow ids, counts,
 276      * and their negations (used for thresholding) to fit into 16bit
 277      * fields.
 278      *
 279      * Field "plock" is a form of sequence lock with a saturating
 280      * shutdown bit (similarly for per-queue "qlocks"), mainly
 281      * protecting updates to the workQueues array, as well as to
 282      * enable shutdown.  When used as a lock, it is normally only very
 283      * briefly held, so is nearly always available after at most a
 284      * brief spin, but we use a monitor-based backup strategy to
 285      * block when needed.
 286      *
 287      * Recording WorkQueues.  WorkQueues are recorded in the
 288      * "workQueues" array that is created upon first use and expanded
 289      * if necessary.  Updates to the array while recording new workers
 290      * and unrecording terminated ones are protected from each other
 291      * by a lock but the array is otherwise concurrently readable, and
 292      * accessed directly.  To simplify index-based operations, the
 293      * array size is always a power of two, and all readers must
 294      * tolerate null slots. Worker queues are at odd indices. Shared
 295      * (submission) queues are at even indices, up to a maximum of 64
 296      * slots, to limit growth even if array needs to expand to add
 297      * more workers. Grouping them together in this way simplifies and
 298      * speeds up task scanning.
 299      *
 300      * All worker thread creation is on-demand, triggered by task
 301      * submissions, replacement of terminated workers, and/or
 302      * compensation for blocked workers. However, all other support
 303      * code is set up to work with other policies.  To ensure that we
 304      * do not hold on to worker references that would prevent GC, ALL
 305      * accesses to workQueues are via indices into the workQueues
 306      * array (which is one source of some of the messy code
 307      * constructions here). In essence, the workQueues array serves as
 308      * a weak reference mechanism. Thus for example the wait queue
 309      * field of ctl stores indices, not references.  Access to the
 310      * workQueues in associated methods (for example signalWork) must
 311      * both index-check and null-check the IDs. All such accesses
 312      * ignore bad IDs by returning out early from what they are doing,
 313      * since this can only be associated with termination, in which
 314      * case it is OK to give up.  All uses of the workQueues array
 315      * also check that it is non-null (even if previously
 316      * non-null). This allows nulling during termination, which is
 317      * currently not necessary, but remains an option for
 318      * resource-revocation-based shutdown schemes. It also helps
 319      * reduce JIT issuance of uncommon-trap code, which tends to
 320      * unnecessarily complicate control flow in some methods.
 321      *
 322      * Event Queuing. Unlike HPC work-stealing frameworks, we cannot
 323      * let workers spin indefinitely scanning for tasks when none can
 324      * be found immediately, and we cannot start/resume workers unless
 325      * there appear to be tasks available.  On the other hand, we must
 326      * quickly prod them into action when new tasks are submitted or
 327      * generated. In many usages, ramp-up time to activate workers is
 328      * the main limiting factor in overall performance (this is
 329      * compounded at program start-up by JIT compilation and
 330      * allocation). So we try to streamline this as much as possible.
 331      * We park/unpark workers after placing in an event wait queue
 332      * when they cannot find work. This "queue" is actually a simple
 333      * Treiber stack, headed by the "id" field of ctl, plus a 15bit
 334      * counter value (that reflects the number of times a worker has
 335      * been inactivated) to avoid ABA effects (we need only as many
 336      * version numbers as worker threads). Successors are held in
 337      * field WorkQueue.nextWait.  Queuing deals with several intrinsic
 338      * races, mainly that a task-producing thread can miss seeing (and
 339      * signalling) another thread that gave up looking for work but
 340      * has not yet entered the wait queue. We solve this by requiring
 341      * a full sweep of all workers (via repeated calls to method
 342      * scan()) both before and after a newly waiting worker is added
 343      * to the wait queue.  Because enqueued workers may actually be
 344      * rescanning rather than waiting, we set and clear the "parker"
 345      * field of WorkQueues to reduce unnecessary calls to unpark.
 346      * (This requires a secondary recheck to avoid missed signals.)
 347      * Note the unusual conventions about Thread.interrupts
 348      * surrounding parking and other blocking: Because interrupts are
 349      * used solely to alert threads to check termination, which is
 350      * checked anyway upon blocking, we clear status (using
 351      * Thread.interrupted) before any call to park, so that park does
 352      * not immediately return due to status being set via some other
 353      * unrelated call to interrupt in user code.
 354      *
 355      * Signalling.  We create or wake up workers only when there
 356      * appears to be at least one task they might be able to find and
 357      * execute.  When a submission is added or another worker adds a
 358      * task to a queue that has fewer than two tasks, they signal
 359      * waiting workers (or trigger creation of new ones if fewer than
 360      * the given parallelism level -- signalWork).  These primary
 361      * signals are buttressed by others whenever other threads remove
 362      * a task from a queue and notice that there are other tasks there
 363      * as well.  So in general, pools will be over-signalled. On most
 364      * platforms, signalling (unpark) overhead time is noticeably
 365      * long, and the time between signalling a thread and it actually
 366      * making progress can be very noticeably long, so it is worth
 367      * offloading these delays from critical paths as much as
 368      * possible. Additionally, workers spin-down gradually, by staying
 369      * alive so long as they see the ctl state changing.  Similar
 370      * stability-sensing techniques are also used before blocking in
 371      * awaitJoin and helpComplete.
 372      *
 373      * Trimming workers. To release resources after periods of lack of
 374      * use, a worker starting to wait when the pool is quiescent will
 375      * time out and terminate if the pool has remained quiescent for a
 376      * given period -- a short period if there are more threads than
 377      * parallelism, longer as the number of threads decreases. This
 378      * will slowly propagate, eventually terminating all workers after
 379      * periods of non-use.
 380      *
 381      * Shutdown and Termination. A call to shutdownNow atomically sets
 382      * a plock bit and then (non-atomically) sets each worker's
 383      * qlock status, cancels all unprocessed tasks, and wakes up
 384      * all waiting workers.  Detecting whether termination should
 385      * commence after a non-abrupt shutdown() call requires more work
 386      * and bookkeeping. We need consensus about quiescence (i.e., that
 387      * there is no more work). The active count provides a primary
 388      * indication but non-abrupt shutdown still requires a rechecking
 389      * scan for any workers that are inactive but not queued.
 390      *
 391      * Joining Tasks
 392      * =============
 393      *
 394      * Any of several actions may be taken when one worker is waiting
 395      * to join a task stolen (or always held) by another.  Because we
 396      * are multiplexing many tasks on to a pool of workers, we can't
 397      * just let them block (as in Thread.join).  We also cannot just
 398      * reassign the joiner's run-time stack with another and replace
 399      * it later, which would be a form of "continuation", that even if
 400      * possible is not necessarily a good idea since we sometimes need
 401      * both an unblocked task and its continuation to progress.
 402      * Instead we combine two tactics:
 403      *
 404      *   Helping: Arranging for the joiner to execute some task that it
 405      *      would be running if the steal had not occurred.
 406      *
 407      *   Compensating: Unless there are already enough live threads,
 408      *      method tryCompensate() may create or re-activate a spare
 409      *      thread to compensate for blocked joiners until they unblock.
 410      *
 411      * A third form (implemented in tryRemoveAndExec) amounts to
 412      * helping a hypothetical compensator: If we can readily tell that
 413      * a possible action of a compensator is to steal and execute the
 414      * task being joined, the joining thread can do so directly,
 415      * without the need for a compensation thread (although at the
 416      * expense of larger run-time stacks, but the tradeoff is
 417      * typically worthwhile).
 418      *
 419      * The ManagedBlocker extension API can't use helping so relies
 420      * only on compensation in method awaitBlocker.
 421      *
 422      * The algorithm in tryHelpStealer entails a form of "linear"
 423      * helping: Each worker records (in field currentSteal) the most
 424      * recent task it stole from some other worker. Plus, it records
 425      * (in field currentJoin) the task it is currently actively
 426      * joining. Method tryHelpStealer uses these markers to try to
 427      * find a worker to help (i.e., steal back a task from and execute
 428      * it) that could hasten completion of the actively joined task.
 429      * In essence, the joiner executes a task that would be on its own
 430      * local deque had the to-be-joined task not been stolen. This may
 431      * be seen as a conservative variant of the approach in Wagner &
 432      * Calder "Leapfrogging: a portable technique for implementing
 433      * efficient futures" SIGPLAN Notices, 1993
 434      * (http://portal.acm.org/citation.cfm?id=155354). It differs in
 435      * that: (1) We only maintain dependency links across workers upon
 436      * steals, rather than use per-task bookkeeping.  This sometimes
 437      * requires a linear scan of workQueues array to locate stealers,
 438      * but often doesn't because stealers leave hints (that may become
 439      * stale/wrong) of where to locate them.  It is only a hint
 440      * because a worker might have had multiple steals and the hint
 441      * records only one of them (usually the most current).  Hinting
 442      * isolates cost to when it is needed, rather than adding to
 443      * per-task overhead.  (2) It is "shallow", ignoring nesting and
 444      * potentially cyclic mutual steals.  (3) It is intentionally
 445      * racy: field currentJoin is updated only while actively joining,
 446      * which means that we miss links in the chain during long-lived
 447      * tasks, GC stalls etc (which is OK since blocking in such cases
 448      * is usually a good idea).  (4) We bound the number of attempts
 449      * to find work (see MAX_HELP) and fall back to suspending the
 450      * worker and if necessary replacing it with another.
 451      *
 452      * Helping actions for CountedCompleters are much simpler: Method
 453      * helpComplete can take and execute any task with the same root
 454      * as the task being waited on. However, this still entails some
 455      * traversal of completer chains, so is less efficient than using
 456      * CountedCompleters without explicit joins.
 457      *
 458      * It is impossible to keep exactly the target parallelism number
 459      * of threads running at any given time.  Determining the
 460      * existence of conservatively safe helping targets, the
 461      * availability of already-created spares, and the apparent need
 462      * to create new spares are all racy, so we rely on multiple
 463      * retries of each.  Compensation in the apparent absence of
 464      * helping opportunities is challenging to control on JVMs, where
 465      * GC and other activities can stall progress of tasks that in
 466      * turn stall out many other dependent tasks, without us being
 467      * able to determine whether they will ever require compensation.
 468      * Even though work-stealing otherwise encounters little
 469      * degradation in the presence of more threads than cores,
 470      * aggressively adding new threads in such cases entails risk of
 471      * unwanted positive feedback control loops in which more threads
 472      * cause more dependent stalls (as well as delayed progress of
 473      * unblocked threads to the point that we know they are available)
 474      * leading to more situations requiring more threads, and so
 475      * on. This aspect of control can be seen as an (analytically
 476      * intractable) game with an opponent that may choose the worst
 477      * (for us) active thread to stall at any time.  We take several
 478      * precautions to bound losses (and thus bound gains), mainly in
 479      * methods tryCompensate and awaitJoin.
 480      *
 481      * Common Pool
 482      * ===========
 483      *
 484      * The static common pool always exists after static
 485      * initialization.  Since it (or any other created pool) need
 486      * never be used, we minimize initial construction overhead and
 487      * footprint to the setup of about a dozen fields, with no nested
 488      * allocation. Most bootstrapping occurs within method
 489      * fullExternalPush during the first submission to the pool.
 490      *
 491      * When external threads submit to the common pool, they can
 492      * perform subtask processing (see externalHelpJoin and related
 493      * methods).  This caller-helps policy makes it sensible to set
 494      * common pool parallelism level to one (or more) less than the
 495      * total number of available cores, or even zero for pure
 496      * caller-runs.  We do not need to record whether external
 497      * submissions are to the common pool -- if not, externalHelpJoin
 498      * returns quickly (at the most helping to signal some common pool
 499      * workers). These submitters would otherwise be blocked waiting
 500      * for completion, so the extra effort (with liberally sprinkled
 501      * task status checks) in inapplicable cases amounts to an odd
 502      * form of limited spin-wait before blocking in ForkJoinTask.join.
 503      *
 504      * Style notes
 505      * ===========
 506      *
 507      * There is a lot of representation-level coupling among classes
 508      * ForkJoinPool, ForkJoinWorkerThread, and ForkJoinTask.  The
 509      * fields of WorkQueue maintain data structures managed by
 510      * ForkJoinPool, so are directly accessed.  There is little point
 511      * trying to reduce this, since any associated future changes in
 512      * representations will need to be accompanied by algorithmic
 513      * changes anyway. Several methods intrinsically sprawl because
 514      * they must accumulate sets of consistent reads of volatiles held
 515      * in local variables.  Methods signalWork() and scan() are the
 516      * main bottlenecks, so are especially heavily
 517      * micro-optimized/mangled.  There are lots of inline assignments
 518      * (of form "while ((local = field) != 0)") which are usually the
 519      * simplest way to ensure the required read orderings (which are
 520      * sometimes critical). This leads to a "C"-like style of listing
 521      * declarations of these locals at the heads of methods or blocks.
 522      * There are several occurrences of the unusual "do {} while
 523      * (!cas...)"  which is the simplest way to force an update of a
 524      * CAS'ed variable. There are also other coding oddities (including
 525      * several unnecessary-looking hoisted null checks) that help
 526      * some methods perform reasonably even when interpreted (not
 527      * compiled).
 528      *
 529      * The order of declarations in this file is:
 530      * (1) Static utility functions
 531      * (2) Nested (static) classes
 532      * (3) Static fields
 533      * (4) Fields, along with constants used when unpacking some of them
 534      * (5) Internal control methods
 535      * (6) Callbacks and other support for ForkJoinTask methods
 536      * (7) Exported methods
 537      * (8) Static block initializing statics in minimally dependent order
 538      */
 539 
 540     // Static utilities
 541 
 542     /**
 543      * If there is a security manager, makes sure caller has
 544      * permission to modify threads.
 545      */
 546     private static void checkPermission() {
 547         SecurityManager security = System.getSecurityManager();
 548         if (security != null)
 549             security.checkPermission(modifyThreadPermission);
 550     }
 551 
 552     // Nested classes
 553 
 554     /**
 555      * Factory for creating new {@link ForkJoinWorkerThread}s.
 556      * A {@code ForkJoinWorkerThreadFactory} must be defined and used
 557      * for {@code ForkJoinWorkerThread} subclasses that extend base
 558      * functionality or initialize threads with different contexts.
 559      */
 560     public static interface ForkJoinWorkerThreadFactory {
 561         /**
 562          * Returns a new worker thread operating in the given pool.
 563          *
 564          * @param pool the pool this thread works in
 565          * @return the new worker thread
 566          * @throws NullPointerException if the pool is null
 567          */
 568         public ForkJoinWorkerThread newThread(ForkJoinPool pool);
 569     }
 570 
 571     /**
 572      * Default ForkJoinWorkerThreadFactory implementation; creates a
 573      * new ForkJoinWorkerThread.
 574      */
 575     static final class DefaultForkJoinWorkerThreadFactory
 576         implements ForkJoinWorkerThreadFactory {
 577         public final ForkJoinWorkerThread newThread(ForkJoinPool pool) {
 578             return new ForkJoinWorkerThread(pool);
 579         }
 580     }
 581 
 582     /**
 583      * Class for artificial tasks that are used to replace the target
 584      * of local joins if they are removed from an interior queue slot
 585      * in WorkQueue.tryRemoveAndExec. We don't need the proxy to
 586      * actually do anything beyond having a unique identity.
 587      */
 588     static final class EmptyTask extends ForkJoinTask<Void> {
 589         private static final long serialVersionUID = -7721805057305804111L;
 590         EmptyTask() { status = ForkJoinTask.NORMAL; } // force done
 591         public final Void getRawResult() { return null; }
 592         public final void setRawResult(Void x) {}
 593         public final boolean exec() { return true; }
 594     }
 595 
 596     /**
 597      * Queues supporting work-stealing as well as external task
 598      * submission. See above for main rationale and algorithms.
 599      * Implementation relies heavily on "Unsafe" intrinsics
 600      * and selective use of "volatile":
 601      *
 602      * Field "base" is the index (mod array.length) of the least valid
 603      * queue slot, which is always the next position to steal (poll)
 604      * from if nonempty. Reads and writes require volatile orderings
 605      * but not CAS, because updates are only performed after slot
 606      * CASes.
 607      *
 608      * Field "top" is the index (mod array.length) of the next queue
 609      * slot to push to or pop from. It is written only by owner thread
 610      * for push, or under lock for external/shared push, and accessed
 611      * by other threads only after reading (volatile) base.  Both top
 612      * and base are allowed to wrap around on overflow, but (top -
 613      * base) (or more commonly -(base - top) to force volatile read of
 614      * base before top) still estimates size. The lock ("qlock") is
 615      * forced to -1 on termination, causing all further lock attempts
 616      * to fail. (Note: we don't need CAS for termination state because
 617      * upon pool shutdown, all shared-queues will stop being used
 618      * anyway.)  Nearly all lock bodies are set up so that exceptions
 619      * within lock bodies are "impossible" (modulo JVM errors that
 620      * would cause failure anyway.)
 621      *
 622      * The array slots are read and written using the emulation of
 623      * volatiles/atomics provided by Unsafe. Insertions must in
 624      * general use putOrderedObject as a form of releasing store to
 625      * ensure that all writes to the task object are ordered before
 626      * its publication in the queue.  All removals entail a CAS to
 627      * null.  The array is always a power of two. To ensure safety of
 628      * Unsafe array operations, all accesses perform explicit null
 629      * checks and implicit bounds checks via power-of-two masking.
 630      *
 631      * In addition to basic queuing support, this class contains
 632      * fields described elsewhere to control execution. It turns out
 633      * to work better memory-layout-wise to include them in this class
 634      * rather than a separate class.
 635      *
 636      * Performance on most platforms is very sensitive to placement of
 637      * instances of both WorkQueues and their arrays -- we absolutely
 638      * do not want multiple WorkQueue instances or multiple queue
 639      * arrays sharing cache lines. (It would be best for queue objects
 640      * and their arrays to share, but there is nothing available to
 641      * help arrange that). The @Contended annotation alerts JVMs to
 642      * try to keep instances apart.
 643      */
 644     @sun.misc.Contended
 645     static final class WorkQueue {
 646         /**
 647          * Capacity of work-stealing queue array upon initialization.
 648          * Must be a power of two; at least 4, but should be larger to
 649          * reduce or eliminate cacheline sharing among queues.
 650          * Currently, it is much larger, as a partial workaround for
 651          * the fact that JVMs often place arrays in locations that
 652          * share GC bookkeeping (especially cardmarks) such that
 653          * per-write accesses encounter serious memory contention.
 654          */
 655         static final int INITIAL_QUEUE_CAPACITY = 1 << 13;
 656 
 657         /**
 658          * Maximum size for queue arrays. Must be a power of two less
 659          * than or equal to 1 << (31 - width of array entry) to ensure
 660          * lack of wraparound of index calculations, but defined to a
 661          * value a bit less than this to help users trap runaway
 662          * programs before saturating systems.
 663          */
 664         static final int MAXIMUM_QUEUE_CAPACITY = 1 << 26; // 64M
 665 
 666         volatile int eventCount;   // encoded inactivation count; < 0 if inactive
 667         int nextWait;              // encoded record of next event waiter
 668         int nsteals;               // number of steals
 669         int hint;                  // steal index hint
 670         short poolIndex;           // index of this queue in pool
 671         final short mode;          // 0: lifo, > 0: fifo, < 0: shared
 672         volatile int qlock;        // 1: locked, -1: terminate; else 0
 673         volatile int base;         // index of next slot for poll
 674         int top;                   // index of next slot for push
 675         ForkJoinTask<?>[] array;   // the elements (initially unallocated)
 676         final ForkJoinPool pool;   // the containing pool (may be null)
 677         final ForkJoinWorkerThread owner; // owning thread or null if shared
 678         volatile Thread parker;    // == owner during call to park; else null
 679         volatile ForkJoinTask<?> currentJoin;  // task being joined in awaitJoin
 680         ForkJoinTask<?> currentSteal; // current non-local task being executed
 681 
 682         WorkQueue(ForkJoinPool pool, ForkJoinWorkerThread owner, int mode,
 683                   int seed) {
 684             this.pool = pool;
 685             this.owner = owner;
 686             this.mode = (short)mode;
 687             this.hint = seed; // store initial seed for runWorker
 688             // Place indices in the center of array (that is not yet allocated)
 689             base = top = INITIAL_QUEUE_CAPACITY >>> 1;
 690         }
 691 
 692         /**
 693          * Returns the approximate number of tasks in the queue.
 694          */
 695         final int queueSize() {
 696             int n = base - top;       // non-owner callers must read base first
 697             return (n >= 0) ? 0 : -n; // ignore transient negative
 698         }
 699 
 700         /**
 701          * Provides a more accurate estimate of whether this queue has
 702          * any tasks than does queueSize, by checking whether a
 703          * near-empty queue has at least one unclaimed task.
 704          */
 705         final boolean isEmpty() {
 706             ForkJoinTask<?>[] a; int m, s;
 707             int n = base - (s = top);
 708             return (n >= 0 ||
 709                     (n == -1 &&
 710                      ((a = array) == null ||
 711                       (m = a.length - 1) < 0 ||
 712                       U.getObject
 713                       (a, (long)((m & (s - 1)) << ASHIFT) + ABASE) == null)));
 714         }
 715 
 716         /**
 717          * Pushes a task. Call only by owner in unshared queues.  (The
 718          * shared-queue version is embedded in method externalPush.)
 719          *
 720          * @param task the task. Caller must ensure non-null.
 721          * @throws RejectedExecutionException if array cannot be resized
 722          */
 723         final void push(ForkJoinTask<?> task) {
 724             ForkJoinTask<?>[] a; ForkJoinPool p;
 725             int s = top, n;
 726             if ((a = array) != null) {    // ignore if queue removed
 727                 int m = a.length - 1;
 728                 U.putOrderedObject(a, ((m & s) << ASHIFT) + ABASE, task);
 729                 if ((n = (top = s + 1) - base) <= 2)
 730                     (p = pool).signalWork(p.workQueues, this);
 731                 else if (n >= m)
 732                     growArray();
 733             }
 734         }
 735 
 736         /**
 737          * Initializes or doubles the capacity of array. Call either
 738          * by owner or with lock held -- it is OK for base, but not
 739          * top, to move while resizings are in progress.
 740          */
 741         final ForkJoinTask<?>[] growArray() {
 742             ForkJoinTask<?>[] oldA = array;
 743             int size = oldA != null ? oldA.length << 1 : INITIAL_QUEUE_CAPACITY;
 744             if (size > MAXIMUM_QUEUE_CAPACITY)
 745                 throw new RejectedExecutionException("Queue capacity exceeded");
 746             int oldMask, t, b;
 747             ForkJoinTask<?>[] a = array = new ForkJoinTask<?>[size];
 748             if (oldA != null && (oldMask = oldA.length - 1) >= 0 &&
 749                 (t = top) - (b = base) > 0) {
 750                 int mask = size - 1;
 751                 do {
 752                     ForkJoinTask<?> x;
 753                     int oldj = ((b & oldMask) << ASHIFT) + ABASE;
 754                     int j    = ((b &    mask) << ASHIFT) + ABASE;
 755                     x = (ForkJoinTask<?>)U.getObjectVolatile(oldA, oldj);
 756                     if (x != null &&
 757                         U.compareAndSwapObject(oldA, oldj, x, null))
 758                         U.putObjectVolatile(a, j, x);
 759                 } while (++b != t);
 760             }
 761             return a;
 762         }
 763 
 764         /**
 765          * Takes next task, if one exists, in LIFO order.  Call only
 766          * by owner in unshared queues.
 767          */
 768         final ForkJoinTask<?> pop() {
 769             ForkJoinTask<?>[] a; ForkJoinTask<?> t; int m;
 770             if ((a = array) != null && (m = a.length - 1) >= 0) {
 771                 for (int s; (s = top - 1) - base >= 0;) {
 772                     long j = ((m & s) << ASHIFT) + ABASE;
 773                     if ((t = (ForkJoinTask<?>)U.getObject(a, j)) == null)
 774                         break;
 775                     if (U.compareAndSwapObject(a, j, t, null)) {
 776                         top = s;
 777                         return t;
 778                     }
 779                 }
 780             }
 781             return null;
 782         }
 783 
 784         /**
 785          * Takes a task in FIFO order if b is base of queue and a task
 786          * can be claimed without contention. Specialized versions
 787          * appear in ForkJoinPool methods scan and tryHelpStealer.
 788          */
 789         final ForkJoinTask<?> pollAt(int b) {
 790             ForkJoinTask<?> t; ForkJoinTask<?>[] a;
 791             if ((a = array) != null) {
 792                 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
 793                 if ((t = (ForkJoinTask<?>)U.getObjectVolatile(a, j)) != null &&
 794                     base == b && U.compareAndSwapObject(a, j, t, null)) {
 795                     U.putOrderedInt(this, QBASE, b + 1);
 796                     return t;
 797                 }
 798             }
 799             return null;
 800         }
 801 
 802         /**
 803          * Takes next task, if one exists, in FIFO order.
 804          */
 805         final ForkJoinTask<?> poll() {
 806             ForkJoinTask<?>[] a; int b; ForkJoinTask<?> t;
 807             while ((b = base) - top < 0 && (a = array) != null) {
 808                 int j = (((a.length - 1) & b) << ASHIFT) + ABASE;
 809                 t = (ForkJoinTask<?>)U.getObjectVolatile(a, j);
 810                 if (t != null) {
 811                     if (U.compareAndSwapObject(a, j, t, null)) {
 812                         U.putOrderedInt(this, QBASE, b + 1);
 813                         return t;
 814                     }
 815                 }
 816                 else if (base == b) {
 817                     if (b + 1 == top)
 818                         break;
 819                     Thread.yield(); // wait for lagging update (very rare)
 820                 }
 821             }
 822             return null;
 823         }
 824 
 825         /**
 826          * Takes next task, if one exists, in order specified by mode.
 827          */
 828         final ForkJoinTask<?> nextLocalTask() {
 829             return mode == 0 ? pop() : poll();
 830         }
 831 
 832         /**
 833          * Returns next task, if one exists, in order specified by mode.
 834          */
 835         final ForkJoinTask<?> peek() {
 836             ForkJoinTask<?>[] a = array; int m;
 837             if (a == null || (m = a.length - 1) < 0)
 838                 return null;
 839             int i = mode == 0 ? top - 1 : base;
 840             int j = ((i & m) << ASHIFT) + ABASE;
 841             return (ForkJoinTask<?>)U.getObjectVolatile(a, j);
 842         }
 843 
 844         /**
 845          * Pops the given task only if it is at the current top.
 846          * (A shared version is available only via FJP.tryExternalUnpush)
 847          */
 848         final boolean tryUnpush(ForkJoinTask<?> t) {
 849             ForkJoinTask<?>[] a; int s;
 850             if ((a = array) != null && (s = top) != base &&
 851                 U.compareAndSwapObject
 852                 (a, (((a.length - 1) & --s) << ASHIFT) + ABASE, t, null)) {
 853                 top = s;
 854                 return true;
 855             }
 856             return false;
 857         }
 858 
 859         /**
 860          * Removes and cancels all known tasks, ignoring any exceptions.
 861          */
 862         final void cancelAll() {
 863             ForkJoinTask.cancelIgnoringExceptions(currentJoin);
 864             ForkJoinTask.cancelIgnoringExceptions(currentSteal);
 865             for (ForkJoinTask<?> t; (t = poll()) != null; )
 866                 ForkJoinTask.cancelIgnoringExceptions(t);
 867         }
 868 
 869         // Specialized execution methods
 870 
 871         /**
 872          * Polls and runs tasks until empty.
 873          */
 874         final void pollAndExecAll() {
 875             for (ForkJoinTask<?> t; (t = poll()) != null;)
 876                 t.doExec();
 877         }
 878 
 879         /**
 880          * Executes a top-level task and any local tasks remaining
 881          * after execution.
 882          */
 883         final void runTask(ForkJoinTask<?> task) {
 884             if ((currentSteal = task) != null) {
 885                 task.doExec();
 886                 ForkJoinTask<?>[] a = array;
 887                 int md = mode;
 888                 ++nsteals;
 889                 currentSteal = null;
 890                 if (md != 0)
 891                     pollAndExecAll();
 892                 else if (a != null) {
 893                     int s, m = a.length - 1;
 894                     ForkJoinTask<?> t;
 895                     while ((s = top - 1) - base >= 0 &&
 896                            (t = (ForkJoinTask<?>)U.getAndSetObject
 897                             (a, ((m & s) << ASHIFT) + ABASE, null)) != null) {
 898                         top = s;
 899                         t.doExec();
 900                     }
 901                 }
 902             }
 903         }
 904 
 905         /**
 906          * If present, removes from queue and executes the given task,
 907          * or any other cancelled task. Returns (true) on any CAS
 908          * or consistency check failure so caller can retry.
 909          *
 910          * @return false if no progress can be made, else true
 911          */
 912         final boolean tryRemoveAndExec(ForkJoinTask<?> task) {
 913             boolean stat;
 914             ForkJoinTask<?>[] a; int m, s, b, n;
 915             if (task != null && (a = array) != null && (m = a.length - 1) >= 0 &&
 916                 (n = (s = top) - (b = base)) > 0) {
 917                 boolean removed = false, empty = true;
 918                 stat = true;
 919                 for (ForkJoinTask<?> t;;) {           // traverse from s to b
 920                     long j = ((--s & m) << ASHIFT) + ABASE;
 921                     t = (ForkJoinTask<?>)U.getObject(a, j);
 922                     if (t == null)                    // inconsistent length
 923                         break;
 924                     else if (t == task) {
 925                         if (s + 1 == top) {           // pop
 926                             if (!U.compareAndSwapObject(a, j, task, null))
 927                                 break;
 928                             top = s;
 929                             removed = true;
 930                         }
 931                         else if (base == b)           // replace with proxy
 932                             removed = U.compareAndSwapObject(a, j, task,
 933                                                              new EmptyTask());
 934                         break;
 935                     }
 936                     else if (t.status >= 0)
 937                         empty = false;
 938                     else if (s + 1 == top) {          // pop and throw away
 939                         if (U.compareAndSwapObject(a, j, t, null))
 940                             top = s;
 941                         break;
 942                     }
 943                     if (--n == 0) {
 944                         if (!empty && base == b)
 945                             stat = false;
 946                         break;
 947                     }
 948                 }
 949                 if (removed)
 950                     task.doExec();
 951             }
 952             else
 953                 stat = false;
 954             return stat;
 955         }
 956 
 957         /**
 958          * Tries to poll for and execute the given task or any other
 959          * task in its CountedCompleter computation.
 960          */
 961         final boolean pollAndExecCC(CountedCompleter<?> root) {
 962             ForkJoinTask<?>[] a; int b; Object o; CountedCompleter<?> t, r;
 963             if ((b = base) - top < 0 && (a = array) != null) {
 964                 long j = (((a.length - 1) & b) << ASHIFT) + ABASE;
 965                 if ((o = U.getObjectVolatile(a, j)) == null)
 966                     return true; // retry
 967                 if (o instanceof CountedCompleter) {
 968                     for (t = (CountedCompleter<?>)o, r = t;;) {
 969                         if (r == root) {
 970                             if (base == b &&
 971                                 U.compareAndSwapObject(a, j, t, null)) {
 972                                 U.putOrderedInt(this, QBASE, b + 1);
 973                                 t.doExec();
 974                             }
 975                             return true;
 976                         }
 977                         else if ((r = r.completer) == null)
 978                             break; // not part of root computation
 979                     }
 980                 }
 981             }
 982             return false;
 983         }
 984 
 985         /**
 986          * Tries to pop and execute the given task or any other task
 987          * in its CountedCompleter computation.
 988          */
 989         final boolean externalPopAndExecCC(CountedCompleter<?> root) {
 990             ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
 991             if (base - (s = top) < 0 && (a = array) != null) {
 992                 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
 993                 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
 994                     for (t = (CountedCompleter<?>)o, r = t;;) {
 995                         if (r == root) {
 996                             if (U.compareAndSwapInt(this, QLOCK, 0, 1)) {
 997                                 if (top == s && array == a &&
 998                                     U.compareAndSwapObject(a, j, t, null)) {
 999                                     top = s - 1;
1000                                     qlock = 0;
1001                                     t.doExec();
1002                                 }
1003                                 else
1004                                     qlock = 0;
1005                             }
1006                             return true;
1007                         }
1008                         else if ((r = r.completer) == null)
1009                             break;
1010                     }
1011                 }
1012             }
1013             return false;
1014         }
1015 
1016         /**
1017          * Internal version
1018          */
1019         final boolean internalPopAndExecCC(CountedCompleter<?> root) {
1020             ForkJoinTask<?>[] a; int s; Object o; CountedCompleter<?> t, r;
1021             if (base - (s = top) < 0 && (a = array) != null) {
1022                 long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
1023                 if ((o = U.getObject(a, j)) instanceof CountedCompleter) {
1024                     for (t = (CountedCompleter<?>)o, r = t;;) {
1025                         if (r == root) {
1026                             if (U.compareAndSwapObject(a, j, t, null)) {
1027                                 top = s - 1;
1028                                 t.doExec();
1029                             }
1030                             return true;
1031                         }
1032                         else if ((r = r.completer) == null)
1033                             break;
1034                     }
1035                 }
1036             }
1037             return false;
1038         }
1039 
1040         /**
1041          * Returns true if owned and not known to be blocked.
1042          */
1043         final boolean isApparentlyUnblocked() {
1044             Thread wt; Thread.State s;
1045             return (eventCount >= 0 &&
1046                     (wt = owner) != null &&
1047                     (s = wt.getState()) != Thread.State.BLOCKED &&
1048                     s != Thread.State.WAITING &&
1049                     s != Thread.State.TIMED_WAITING);
1050         }
1051 
1052         // Unsafe mechanics
1053         private static final sun.misc.Unsafe U;
1054         private static final long QBASE;
1055         private static final long QLOCK;
1056         private static final int ABASE;
1057         private static final int ASHIFT;
1058         static {
1059             try {
1060                 U = sun.misc.Unsafe.getUnsafe();
1061                 Class<?> k = WorkQueue.class;
1062                 Class<?> ak = ForkJoinTask[].class;
1063                 QBASE = U.objectFieldOffset
1064                     (k.getDeclaredField("base"));
1065                 QLOCK = U.objectFieldOffset
1066                     (k.getDeclaredField("qlock"));
1067                 ABASE = U.arrayBaseOffset(ak);
1068                 int scale = U.arrayIndexScale(ak);
1069                 if ((scale & (scale - 1)) != 0)
1070                     throw new Error("data type scale not a power of two");
1071                 ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
1072             } catch (Exception e) {
1073                 throw new Error(e);
1074             }
1075         }
1076     }
1077 
1078     // static fields (initialized in static initializer below)
1079 
1080     /**
1081      * Creates a new ForkJoinWorkerThread. This factory is used unless
1082      * overridden in ForkJoinPool constructors.
1083      */
1084     public static final ForkJoinWorkerThreadFactory
1085         defaultForkJoinWorkerThreadFactory;
1086 
1087     /**
1088      * Permission required for callers of methods that may start or
1089      * kill threads.
1090      */
1091     private static final RuntimePermission modifyThreadPermission;
1092 
1093     /**
1094      * Common (static) pool. Non-null for public use unless a static
1095      * construction exception, but internal usages null-check on use
1096      * to paranoically avoid potential initialization circularities
1097      * as well as to simplify generated code.
1098      */
1099     static final ForkJoinPool common;
1100 
1101     /**
1102      * Common pool parallelism. To allow simpler use and management
1103      * when common pool threads are disabled, we allow the underlying
1104      * common.parallelism field to be zero, but in that case still report
1105      * parallelism as 1 to reflect resulting caller-runs mechanics.
1106      */
1107     static final int commonParallelism;
1108 
1109     /**
1110      * Sequence number for creating workerNamePrefix.
1111      */
1112     private static int poolNumberSequence;
1113 
1114     /**
1115      * Returns the next sequence number. We don't expect this to
1116      * ever contend, so use simple builtin sync.
1117      */
1118     private static final synchronized int nextPoolId() {
1119         return ++poolNumberSequence;
1120     }
1121 
1122     // static constants
1123 
1124     /**
1125      * Initial timeout value (in nanoseconds) for the thread
1126      * triggering quiescence to park waiting for new work. On timeout,
1127      * the thread will instead try to shrink the number of
1128      * workers. The value should be large enough to avoid overly
1129      * aggressive shrinkage during most transient stalls (long GCs
1130      * etc).
1131      */
1132     private static final long IDLE_TIMEOUT      = 2000L * 1000L * 1000L; // 2sec
1133 
1134     /**
1135      * Timeout value when there are more threads than parallelism level
1136      */
1137     private static final long FAST_IDLE_TIMEOUT =  200L * 1000L * 1000L;
1138 
1139     /**
1140      * Tolerance for idle timeouts, to cope with timer undershoots
1141      */
1142     private static final long TIMEOUT_SLOP = 2000000L;
1143 
1144     /**
1145      * The maximum stolen->joining link depth allowed in method
1146      * tryHelpStealer.  Must be a power of two.  Depths for legitimate
1147      * chains are unbounded, but we use a fixed constant to avoid
1148      * (otherwise unchecked) cycles and to bound staleness of
1149      * traversal parameters at the expense of sometimes blocking when
1150      * we could be helping.
1151      */
1152     private static final int MAX_HELP = 64;
1153 
1154     /**
1155      * Increment for seed generators. See class ThreadLocal for
1156      * explanation.
1157      */
1158     private static final int SEED_INCREMENT = 0x61c88647;
1159 
1160     /*
1161      * Bits and masks for control variables
1162      *
1163      * Field ctl is a long packed with:
1164      * AC: Number of active running workers minus target parallelism (16 bits)
1165      * TC: Number of total workers minus target parallelism (16 bits)
1166      * ST: true if pool is terminating (1 bit)
1167      * EC: the wait count of top waiting thread (15 bits)
1168      * ID: poolIndex of top of Treiber stack of waiters (16 bits)
1169      *
1170      * When convenient, we can extract the upper 32 bits of counts and
1171      * the lower 32 bits of queue state, u = (int)(ctl >>> 32) and e =
1172      * (int)ctl.  The ec field is never accessed alone, but always
1173      * together with id and st. The offsets of counts by the target
1174      * parallelism and the positionings of fields makes it possible to
1175      * perform the most common checks via sign tests of fields: When
1176      * ac is negative, there are not enough active workers, when tc is
1177      * negative, there are not enough total workers, and when e is
1178      * negative, the pool is terminating.  To deal with these possibly
1179      * negative fields, we use casts in and out of "short" and/or
1180      * signed shifts to maintain signedness.
1181      *
1182      * When a thread is queued (inactivated), its eventCount field is
1183      * set negative, which is the only way to tell if a worker is
1184      * prevented from executing tasks, even though it must continue to
1185      * scan for them to avoid queuing races. Note however that
1186      * eventCount updates lag releases so usage requires care.
1187      *
1188      * Field plock is an int packed with:
1189      * SHUTDOWN: true if shutdown is enabled (1 bit)
1190      * SEQ:  a sequence lock, with PL_LOCK bit set if locked (30 bits)
1191      * SIGNAL: set when threads may be waiting on the lock (1 bit)
1192      *
1193      * The sequence number enables simple consistency checks:
1194      * Staleness of read-only operations on the workQueues array can
1195      * be checked by comparing plock before vs after the reads.
1196      */
1197 
1198     // bit positions/shifts for fields
1199     private static final int  AC_SHIFT   = 48;
1200     private static final int  TC_SHIFT   = 32;
1201     private static final int  ST_SHIFT   = 31;
1202     private static final int  EC_SHIFT   = 16;
1203 
1204     // bounds
1205     private static final int  SMASK      = 0xffff;  // short bits
1206     private static final int  MAX_CAP    = 0x7fff;  // max #workers - 1
1207     private static final int  EVENMASK   = 0xfffe;  // even short bits
1208     private static final int  SQMASK     = 0x007e;  // max 64 (even) slots
1209     private static final int  SHORT_SIGN = 1 << 15;
1210     private static final int  INT_SIGN   = 1 << 31;
1211 
1212     // masks
1213     private static final long STOP_BIT   = 0x0001L << ST_SHIFT;
1214     private static final long AC_MASK    = ((long)SMASK) << AC_SHIFT;
1215     private static final long TC_MASK    = ((long)SMASK) << TC_SHIFT;
1216 
1217     // units for incrementing and decrementing
1218     private static final long TC_UNIT    = 1L << TC_SHIFT;
1219     private static final long AC_UNIT    = 1L << AC_SHIFT;
1220 
1221     // masks and units for dealing with u = (int)(ctl >>> 32)
1222     private static final int  UAC_SHIFT  = AC_SHIFT - 32;
1223     private static final int  UTC_SHIFT  = TC_SHIFT - 32;
1224     private static final int  UAC_MASK   = SMASK << UAC_SHIFT;
1225     private static final int  UTC_MASK   = SMASK << UTC_SHIFT;
1226     private static final int  UAC_UNIT   = 1 << UAC_SHIFT;
1227     private static final int  UTC_UNIT   = 1 << UTC_SHIFT;
1228 
1229     // masks and units for dealing with e = (int)ctl
1230     private static final int E_MASK      = 0x7fffffff; // no STOP_BIT
1231     private static final int E_SEQ       = 1 << EC_SHIFT;
1232 
1233     // plock bits
1234     private static final int SHUTDOWN    = 1 << 31;
1235     private static final int PL_LOCK     = 2;
1236     private static final int PL_SIGNAL   = 1;
1237     private static final int PL_SPINS    = 1 << 8;
1238 
1239     // access mode for WorkQueue
1240     static final int LIFO_QUEUE          =  0;
1241     static final int FIFO_QUEUE          =  1;
1242     static final int SHARED_QUEUE        = -1;
1243 
1244     // Instance fields
1245     volatile long stealCount;                  // collects worker counts
1246     volatile long ctl;                         // main pool control
1247     volatile int plock;                        // shutdown status and seqLock
1248     volatile int indexSeed;                    // worker/submitter index seed
1249     final short parallelism;                   // parallelism level
1250     final short mode;                          // LIFO/FIFO
1251     WorkQueue[] workQueues;                    // main registry
1252     final ForkJoinWorkerThreadFactory factory;
1253     final UncaughtExceptionHandler ueh;        // per-worker UEH
1254     final String workerNamePrefix;             // to create worker name string
1255 
1256     /**
1257      * Acquires the plock lock to protect worker array and related
1258      * updates. This method is called only if an initial CAS on plock
1259      * fails. This acts as a spinlock for normal cases, but falls back
1260      * to builtin monitor to block when (rarely) needed. This would be
1261      * a terrible idea for a highly contended lock, but works fine as
1262      * a more conservative alternative to a pure spinlock.
1263      */
1264     private int acquirePlock() {
1265         int spins = PL_SPINS, ps, nps;
1266         for (;;) {
1267             if (((ps = plock) & PL_LOCK) == 0 &&
1268                 U.compareAndSwapInt(this, PLOCK, ps, nps = ps + PL_LOCK))
1269                 return nps;
1270             else if (spins >= 0) {
1271                 if (ThreadLocalRandom.nextSecondarySeed() >= 0)
1272                     --spins;
1273             }
1274             else if (U.compareAndSwapInt(this, PLOCK, ps, ps | PL_SIGNAL)) {
1275                 synchronized (this) {
1276                     if ((plock & PL_SIGNAL) != 0) {
1277                         try {
1278                             wait();
1279                         } catch (InterruptedException ie) {
1280                             try {
1281                                 Thread.currentThread().interrupt();
1282                             } catch (SecurityException ignore) {
1283                             }
1284                         }
1285                     }
1286                     else
1287                         notifyAll();
1288                 }
1289             }
1290         }
1291     }
1292 
1293     /**
1294      * Unlocks and signals any thread waiting for plock. Called only
1295      * when CAS of seq value for unlock fails.
1296      */
1297     private void releasePlock(int ps) {
1298         plock = ps;
1299         synchronized (this) { notifyAll(); }
1300     }
1301 
1302     /**
1303      * Tries to create and start one worker if fewer than target
1304      * parallelism level exist. Adjusts counts etc on failure.
1305      */
1306     private void tryAddWorker() {
1307         long c; int u, e;
1308         while ((u = (int)((c = ctl) >>> 32)) < 0 &&
1309                (u & SHORT_SIGN) != 0 && (e = (int)c) >= 0) {
1310             long nc = ((long)(((u + UTC_UNIT) & UTC_MASK) |
1311                               ((u + UAC_UNIT) & UAC_MASK)) << 32) | (long)e;
1312             if (U.compareAndSwapLong(this, CTL, c, nc)) {
1313                 ForkJoinWorkerThreadFactory fac;
1314                 Throwable ex = null;
1315                 ForkJoinWorkerThread wt = null;
1316                 try {
1317                     if ((fac = factory) != null &&
1318                         (wt = fac.newThread(this)) != null) {
1319                         wt.start();
1320                         break;
1321                     }
1322                 } catch (Throwable rex) {
1323                     ex = rex;
1324                 }
1325                 deregisterWorker(wt, ex);
1326                 break;
1327             }
1328         }
1329     }
1330 
1331     //  Registering and deregistering workers
1332 
1333     /**
1334      * Callback from ForkJoinWorkerThread to establish and record its
1335      * WorkQueue. To avoid scanning bias due to packing entries in
1336      * front of the workQueues array, we treat the array as a simple
1337      * power-of-two hash table using per-thread seed as hash,
1338      * expanding as needed.
1339      *
1340      * @param wt the worker thread
1341      * @return the worker's queue
1342      */
1343     final WorkQueue registerWorker(ForkJoinWorkerThread wt) {
1344         UncaughtExceptionHandler handler; WorkQueue[] ws; int s, ps;
1345         wt.setDaemon(true);
1346         if ((handler = ueh) != null)
1347             wt.setUncaughtExceptionHandler(handler);
1348         do {} while (!U.compareAndSwapInt(this, INDEXSEED, s = indexSeed,
1349                                           s += SEED_INCREMENT) ||
1350                      s == 0); // skip 0
1351         WorkQueue w = new WorkQueue(this, wt, mode, s);
1352         if (((ps = plock) & PL_LOCK) != 0 ||
1353             !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1354             ps = acquirePlock();
1355         int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1356         try {
1357             if ((ws = workQueues) != null) {    // skip if shutting down
1358                 int n = ws.length, m = n - 1;
1359                 int r = (s << 1) | 1;           // use odd-numbered indices
1360                 if (ws[r &= m] != null) {       // collision
1361                     int probes = 0;             // step by approx half size
1362                     int step = (n <= 4) ? 2 : ((n >>> 1) & EVENMASK) + 2;
1363                     while (ws[r = (r + step) & m] != null) {
1364                         if (++probes >= n) {
1365                             workQueues = ws = Arrays.copyOf(ws, n <<= 1);
1366                             m = n - 1;
1367                             probes = 0;
1368                         }
1369                     }
1370                 }
1371                 w.poolIndex = (short)r;
1372                 w.eventCount = r; // volatile write orders
1373                 ws[r] = w;
1374             }
1375         } finally {
1376             if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1377                 releasePlock(nps);
1378         }
1379         wt.setName(workerNamePrefix.concat(Integer.toString(w.poolIndex >>> 1)));
1380         return w;
1381     }
1382 
1383     /**
1384      * Final callback from terminating worker, as well as upon failure
1385      * to construct or start a worker.  Removes record of worker from
1386      * array, and adjusts counts. If pool is shutting down, tries to
1387      * complete termination.
1388      *
1389      * @param wt the worker thread, or null if construction failed
1390      * @param ex the exception causing failure, or null if none
1391      */
1392     final void deregisterWorker(ForkJoinWorkerThread wt, Throwable ex) {
1393         WorkQueue w = null;
1394         if (wt != null && (w = wt.workQueue) != null) {
1395             int ps;
1396             w.qlock = -1;                // ensure set
1397             U.getAndAddLong(this, STEALCOUNT, w.nsteals); // collect steals
1398             if (((ps = plock) & PL_LOCK) != 0 ||
1399                 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1400                 ps = acquirePlock();
1401             int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1402             try {
1403                 int idx = w.poolIndex;
1404                 WorkQueue[] ws = workQueues;
1405                 if (ws != null && idx >= 0 && idx < ws.length && ws[idx] == w)
1406                     ws[idx] = null;
1407             } finally {
1408                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1409                     releasePlock(nps);
1410             }
1411         }
1412 
1413         long c;                          // adjust ctl counts
1414         do {} while (!U.compareAndSwapLong
1415                      (this, CTL, c = ctl, (((c - AC_UNIT) & AC_MASK) |
1416                                            ((c - TC_UNIT) & TC_MASK) |
1417                                            (c & ~(AC_MASK|TC_MASK)))));
1418 
1419         if (!tryTerminate(false, false) && w != null && w.array != null) {
1420             w.cancelAll();               // cancel remaining tasks
1421             WorkQueue[] ws; WorkQueue v; Thread p; int u, i, e;
1422             while ((u = (int)((c = ctl) >>> 32)) < 0 && (e = (int)c) >= 0) {
1423                 if (e > 0) {             // activate or create replacement
1424                     if ((ws = workQueues) == null ||
1425                         (i = e & SMASK) >= ws.length ||
1426                         (v = ws[i]) == null)
1427                         break;
1428                     long nc = (((long)(v.nextWait & E_MASK)) |
1429                                ((long)(u + UAC_UNIT) << 32));
1430                     if (v.eventCount != (e | INT_SIGN))
1431                         break;
1432                     if (U.compareAndSwapLong(this, CTL, c, nc)) {
1433                         v.eventCount = (e + E_SEQ) & E_MASK;
1434                         if ((p = v.parker) != null)
1435                             U.unpark(p);
1436                         break;
1437                     }
1438                 }
1439                 else {
1440                     if ((short)u < 0)
1441                         tryAddWorker();
1442                     break;
1443                 }
1444             }
1445         }
1446         if (ex == null)                     // help clean refs on way out
1447             ForkJoinTask.helpExpungeStaleExceptions();
1448         else                                // rethrow
1449             ForkJoinTask.rethrow(ex);
1450     }
1451 
1452     // Submissions
1453 
1454     /**
1455      * Unless shutting down, adds the given task to a submission queue
1456      * at submitter's current queue index (modulo submission
1457      * range). Only the most common path is directly handled in this
1458      * method. All others are relayed to fullExternalPush.
1459      *
1460      * @param task the task. Caller must ensure non-null.
1461      */
1462     final void externalPush(ForkJoinTask<?> task) {
1463         WorkQueue q; int m, s, n, am; ForkJoinTask<?>[] a;
1464         int r = ThreadLocalRandom.getProbe();
1465         int ps = plock;
1466         WorkQueue[] ws = workQueues;
1467         if (ps > 0 && ws != null && (m = (ws.length - 1)) >= 0 &&
1468             (q = ws[m & r & SQMASK]) != null && r != 0 &&
1469             U.compareAndSwapInt(q, QLOCK, 0, 1)) { // lock
1470             if ((a = q.array) != null &&
1471                 (am = a.length - 1) > (n = (s = q.top) - q.base)) {
1472                 int j = ((am & s) << ASHIFT) + ABASE;
1473                 U.putOrderedObject(a, j, task);
1474                 q.top = s + 1;                     // push on to deque
1475                 q.qlock = 0;
1476                 if (n <= 1)
1477                     signalWork(ws, q);
1478                 return;
1479             }
1480             q.qlock = 0;
1481         }
1482         fullExternalPush(task);
1483     }
1484 
1485     /**
1486      * Full version of externalPush. This method is called, among
1487      * other times, upon the first submission of the first task to the
1488      * pool, so must perform secondary initialization.  It also
1489      * detects first submission by an external thread by looking up
1490      * its ThreadLocal, and creates a new shared queue if the one at
1491      * index if empty or contended. The plock lock body must be
1492      * exception-free (so no try/finally) so we optimistically
1493      * allocate new queues outside the lock and throw them away if
1494      * (very rarely) not needed.
1495      *
1496      * Secondary initialization occurs when plock is zero, to create
1497      * workQueue array and set plock to a valid value.  This lock body
1498      * must also be exception-free. Because the plock seq value can
1499      * eventually wrap around zero, this method harmlessly fails to
1500      * reinitialize if workQueues exists, while still advancing plock.
1501      */
1502     private void fullExternalPush(ForkJoinTask<?> task) {
1503         int r;
1504         if ((r = ThreadLocalRandom.getProbe()) == 0) {
1505             ThreadLocalRandom.localInit();
1506             r = ThreadLocalRandom.getProbe();
1507         }
1508         for (;;) {
1509             WorkQueue[] ws; WorkQueue q; int ps, m, k;
1510             boolean move = false;
1511             if ((ps = plock) < 0)
1512                 throw new RejectedExecutionException();
1513             else if (ps == 0 || (ws = workQueues) == null ||
1514                      (m = ws.length - 1) < 0) { // initialize workQueues
1515                 int p = parallelism;            // find power of two table size
1516                 int n = (p > 1) ? p - 1 : 1;    // ensure at least 2 slots
1517                 n |= n >>> 1; n |= n >>> 2;  n |= n >>> 4;
1518                 n |= n >>> 8; n |= n >>> 16; n = (n + 1) << 1;
1519                 WorkQueue[] nws = ((ws = workQueues) == null || ws.length == 0 ?
1520                                    new WorkQueue[n] : null);
1521                 if (((ps = plock) & PL_LOCK) != 0 ||
1522                     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1523                     ps = acquirePlock();
1524                 if (((ws = workQueues) == null || ws.length == 0) && nws != null)
1525                     workQueues = nws;
1526                 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1527                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1528                     releasePlock(nps);
1529             }
1530             else if ((q = ws[k = r & m & SQMASK]) != null) {
1531                 if (q.qlock == 0 && U.compareAndSwapInt(q, QLOCK, 0, 1)) {
1532                     ForkJoinTask<?>[] a = q.array;
1533                     int s = q.top;
1534                     boolean submitted = false;
1535                     try {                      // locked version of push
1536                         if ((a != null && a.length > s + 1 - q.base) ||
1537                             (a = q.growArray()) != null) {   // must presize
1538                             int j = (((a.length - 1) & s) << ASHIFT) + ABASE;
1539                             U.putOrderedObject(a, j, task);
1540                             q.top = s + 1;
1541                             submitted = true;
1542                         }
1543                     } finally {
1544                         q.qlock = 0;  // unlock
1545                     }
1546                     if (submitted) {
1547                         signalWork(ws, q);
1548                         return;
1549                     }
1550                 }
1551                 move = true; // move on failure
1552             }
1553             else if (((ps = plock) & PL_LOCK) == 0) { // create new queue
1554                 q = new WorkQueue(this, null, SHARED_QUEUE, r);
1555                 q.poolIndex = (short)k;
1556                 if (((ps = plock) & PL_LOCK) != 0 ||
1557                     !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
1558                     ps = acquirePlock();
1559                 if ((ws = workQueues) != null && k < ws.length && ws[k] == null)
1560                     ws[k] = q;
1561                 int nps = (ps & SHUTDOWN) | ((ps + PL_LOCK) & ~SHUTDOWN);
1562                 if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
1563                     releasePlock(nps);
1564             }
1565             else
1566                 move = true; // move if busy
1567             if (move)
1568                 r = ThreadLocalRandom.advanceProbe(r);
1569         }
1570     }
1571 
1572     // Maintaining ctl counts
1573 
1574     /**
1575      * Increments active count; mainly called upon return from blocking.
1576      */
1577     final void incrementActiveCount() {
1578         long c;
1579         do {} while (!U.compareAndSwapLong
1580                      (this, CTL, c = ctl, ((c & ~AC_MASK) |
1581                                            ((c & AC_MASK) + AC_UNIT))));
1582     }
1583 
1584     /**
1585      * Tries to create or activate a worker if too few are active.
1586      *
1587      * @param ws the worker array to use to find signallees
1588      * @param q if non-null, the queue holding tasks to be processed
1589      */
1590     final void signalWork(WorkQueue[] ws, WorkQueue q) {
1591         for (;;) {
1592             long c; int e, u, i; WorkQueue w; Thread p;
1593             if ((u = (int)((c = ctl) >>> 32)) >= 0)
1594                 break;
1595             if ((e = (int)c) <= 0) {
1596                 if ((short)u < 0)
1597                     tryAddWorker();
1598                 break;
1599             }
1600             if (ws == null || ws.length <= (i = e & SMASK) ||
1601                 (w = ws[i]) == null)
1602                 break;
1603             long nc = (((long)(w.nextWait & E_MASK)) |
1604                        ((long)(u + UAC_UNIT)) << 32);
1605             int ne = (e + E_SEQ) & E_MASK;
1606             if (w.eventCount == (e | INT_SIGN) &&
1607                 U.compareAndSwapLong(this, CTL, c, nc)) {
1608                 w.eventCount = ne;
1609                 if ((p = w.parker) != null)
1610                     U.unpark(p);
1611                 break;
1612             }
1613             if (q != null && q.base >= q.top)
1614                 break;
1615         }
1616     }
1617 
1618     // Scanning for tasks
1619 
1620     /**
1621      * Top-level runloop for workers, called by ForkJoinWorkerThread.run.
1622      */
1623     final void runWorker(WorkQueue w) {
1624         w.growArray(); // allocate queue
1625         for (int r = w.hint; scan(w, r) == 0; ) {
1626             r ^= r << 13; r ^= r >>> 17; r ^= r << 5; // xorshift
1627         }
1628     }
1629 
1630     /**
1631      * Scans for and, if found, runs one task, else possibly
1632      * inactivates the worker. This method operates on single reads of
1633      * volatile state and is designed to be re-invoked continuously,
1634      * in part because it returns upon detecting inconsistencies,
1635      * contention, or state changes that indicate possible success on
1636      * re-invocation.
1637      *
1638      * The scan searches for tasks across queues starting at a random
1639      * index, checking each at least twice.  The scan terminates upon
1640      * either finding a non-empty queue, or completing the sweep. If
1641      * the worker is not inactivated, it takes and runs a task from
1642      * this queue. Otherwise, if not activated, it tries to activate
1643      * itself or some other worker by signalling. On failure to find a
1644      * task, returns (for retry) if pool state may have changed during
1645      * an empty scan, or tries to inactivate if active, else possibly
1646      * blocks or terminates via method awaitWork.
1647      *
1648      * @param w the worker (via its WorkQueue)
1649      * @param r a random seed
1650      * @return worker qlock status if would have waited, else 0
1651      */
1652     private final int scan(WorkQueue w, int r) {
1653         WorkQueue[] ws; int m;
1654         long c = ctl;                            // for consistency check
1655         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 && w != null) {
1656             for (int j = m + m + 1, ec = w.eventCount;;) {
1657                 WorkQueue q; int b, e; ForkJoinTask<?>[] a; ForkJoinTask<?> t;
1658                 if ((q = ws[(r - j) & m]) != null &&
1659                     (b = q.base) - q.top < 0 && (a = q.array) != null) {
1660                     long i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1661                     if ((t = ((ForkJoinTask<?>)
1662                               U.getObjectVolatile(a, i))) != null) {
1663                         if (ec < 0)
1664                             helpRelease(c, ws, w, q, b);
1665                         else if (q.base == b &&
1666                                  U.compareAndSwapObject(a, i, t, null)) {
1667                             U.putOrderedInt(q, QBASE, b + 1);
1668                             if ((b + 1) - q.top < 0)
1669                                 signalWork(ws, q);
1670                             w.runTask(t);
1671                         }
1672                     }
1673                     break;
1674                 }
1675                 else if (--j < 0) {
1676                     if ((ec | (e = (int)c)) < 0) // inactive or terminating
1677                         return awaitWork(w, c, ec);
1678                     else if (ctl == c) {         // try to inactivate and enqueue
1679                         long nc = (long)ec | ((c - AC_UNIT) & (AC_MASK|TC_MASK));
1680                         w.nextWait = e;
1681                         w.eventCount = ec | INT_SIGN;
1682                         if (!U.compareAndSwapLong(this, CTL, c, nc))
1683                             w.eventCount = ec;   // back out
1684                     }
1685                     break;
1686                 }
1687             }
1688         }
1689         return 0;
1690     }
1691 
1692     /**
1693      * A continuation of scan(), possibly blocking or terminating
1694      * worker w. Returns without blocking if pool state has apparently
1695      * changed since last invocation.  Also, if inactivating w has
1696      * caused the pool to become quiescent, checks for pool
1697      * termination, and, so long as this is not the only worker, waits
1698      * for event for up to a given duration.  On timeout, if ctl has
1699      * not changed, terminates the worker, which will in turn wake up
1700      * another worker to possibly repeat this process.
1701      *
1702      * @param w the calling worker
1703      * @param c the ctl value on entry to scan
1704      * @param ec the worker's eventCount on entry to scan
1705      */
1706     private final int awaitWork(WorkQueue w, long c, int ec) {
1707         int stat, ns; long parkTime, deadline;
1708         if ((stat = w.qlock) >= 0 && w.eventCount == ec && ctl == c &&
1709             !Thread.interrupted()) {
1710             int e = (int)c;
1711             int u = (int)(c >>> 32);
1712             int d = (u >> UAC_SHIFT) + parallelism; // active count
1713 
1714             if (e < 0 || (d <= 0 && tryTerminate(false, false)))
1715                 stat = w.qlock = -1;          // pool is terminating
1716             else if ((ns = w.nsteals) != 0) { // collect steals and retry
1717                 w.nsteals = 0;
1718                 U.getAndAddLong(this, STEALCOUNT, (long)ns);
1719             }
1720             else {
1721                 long pc = ((d > 0 || ec != (e | INT_SIGN)) ? 0L :
1722                            ((long)(w.nextWait & E_MASK)) | // ctl to restore
1723                            ((long)(u + UAC_UNIT)) << 32);
1724                 if (pc != 0L) {               // timed wait if last waiter
1725                     int dc = -(short)(c >>> TC_SHIFT);
1726                     parkTime = (dc < 0 ? FAST_IDLE_TIMEOUT:
1727                                 (dc + 1) * IDLE_TIMEOUT);
1728                     deadline = System.nanoTime() + parkTime - TIMEOUT_SLOP;
1729                 }
1730                 else
1731                     parkTime = deadline = 0L;
1732                 if (w.eventCount == ec && ctl == c) {
1733                     Thread wt = Thread.currentThread();
1734                     U.putObject(wt, PARKBLOCKER, this);
1735                     w.parker = wt;            // emulate LockSupport.park
1736                     if (w.eventCount == ec && ctl == c)
1737                         U.park(false, parkTime);  // must recheck before park
1738                     w.parker = null;
1739                     U.putObject(wt, PARKBLOCKER, null);
1740                     if (parkTime != 0L && ctl == c &&
1741                         deadline - System.nanoTime() <= 0L &&
1742                         U.compareAndSwapLong(this, CTL, c, pc))
1743                         stat = w.qlock = -1;  // shrink pool
1744                 }
1745             }
1746         }
1747         return stat;
1748     }
1749 
1750     /**
1751      * Possibly releases (signals) a worker. Called only from scan()
1752      * when a worker with apparently inactive status finds a non-empty
1753      * queue. This requires revalidating all of the associated state
1754      * from caller.
1755      */
1756     private final void helpRelease(long c, WorkQueue[] ws, WorkQueue w,
1757                                    WorkQueue q, int b) {
1758         WorkQueue v; int e, i; Thread p;
1759         if (w != null && w.eventCount < 0 && (e = (int)c) > 0 &&
1760             ws != null && ws.length > (i = e & SMASK) &&
1761             (v = ws[i]) != null && ctl == c) {
1762             long nc = (((long)(v.nextWait & E_MASK)) |
1763                        ((long)((int)(c >>> 32) + UAC_UNIT)) << 32);
1764             int ne = (e + E_SEQ) & E_MASK;
1765             if (q != null && q.base == b && w.eventCount < 0 &&
1766                 v.eventCount == (e | INT_SIGN) &&
1767                 U.compareAndSwapLong(this, CTL, c, nc)) {
1768                 v.eventCount = ne;
1769                 if ((p = v.parker) != null)
1770                     U.unpark(p);
1771             }
1772         }
1773     }
1774 
1775     /**
1776      * Tries to locate and execute tasks for a stealer of the given
1777      * task, or in turn one of its stealers, Traces currentSteal ->
1778      * currentJoin links looking for a thread working on a descendant
1779      * of the given task and with a non-empty queue to steal back and
1780      * execute tasks from. The first call to this method upon a
1781      * waiting join will often entail scanning/search, (which is OK
1782      * because the joiner has nothing better to do), but this method
1783      * leaves hints in workers to speed up subsequent calls. The
1784      * implementation is very branchy to cope with potential
1785      * inconsistencies or loops encountering chains that are stale,
1786      * unknown, or so long that they are likely cyclic.
1787      *
1788      * @param joiner the joining worker
1789      * @param task the task to join
1790      * @return 0 if no progress can be made, negative if task
1791      * known complete, else positive
1792      */
1793     private int tryHelpStealer(WorkQueue joiner, ForkJoinTask<?> task) {
1794         int stat = 0, steps = 0;                    // bound to avoid cycles
1795         if (task != null && joiner != null &&
1796             joiner.base - joiner.top >= 0) {        // hoist checks
1797             restart: for (;;) {
1798                 ForkJoinTask<?> subtask = task;     // current target
1799                 for (WorkQueue j = joiner, v;;) {   // v is stealer of subtask
1800                     WorkQueue[] ws; int m, s, h;
1801                     if ((s = task.status) < 0) {
1802                         stat = s;
1803                         break restart;
1804                     }
1805                     if ((ws = workQueues) == null || (m = ws.length - 1) <= 0)
1806                         break restart;              // shutting down
1807                     if ((v = ws[h = (j.hint | 1) & m]) == null ||
1808                         v.currentSteal != subtask) {
1809                         for (int origin = h;;) {    // find stealer
1810                             if (((h = (h + 2) & m) & 15) == 1 &&
1811                                 (subtask.status < 0 || j.currentJoin != subtask))
1812                                 continue restart;   // occasional staleness check
1813                             if ((v = ws[h]) != null &&
1814                                 v.currentSteal == subtask) {
1815                                 j.hint = h;        // save hint
1816                                 break;
1817                             }
1818                             if (h == origin)
1819                                 break restart;      // cannot find stealer
1820                         }
1821                     }
1822                     for (;;) { // help stealer or descend to its stealer
1823                         ForkJoinTask[] a; int b;
1824                         if (subtask.status < 0)     // surround probes with
1825                             continue restart;       //   consistency checks
1826                         if ((b = v.base) - v.top < 0 && (a = v.array) != null) {
1827                             int i = (((a.length - 1) & b) << ASHIFT) + ABASE;
1828                             ForkJoinTask<?> t =
1829                                 (ForkJoinTask<?>)U.getObjectVolatile(a, i);
1830                             if (subtask.status < 0 || j.currentJoin != subtask ||
1831                                 v.currentSteal != subtask)
1832                                 continue restart;   // stale
1833                             stat = 1;               // apparent progress
1834                             if (v.base == b) {
1835                                 if (t == null)
1836                                     break restart;
1837                                 if (U.compareAndSwapObject(a, i, t, null)) {
1838                                     U.putOrderedInt(v, QBASE, b + 1);
1839                                     ForkJoinTask<?> ps = joiner.currentSteal;
1840                                     int jt = joiner.top;
1841                                     do {
1842                                         joiner.currentSteal = t;
1843                                         t.doExec(); // clear local tasks too
1844                                     } while (task.status >= 0 &&
1845                                              joiner.top != jt &&
1846                                              (t = joiner.pop()) != null);
1847                                     joiner.currentSteal = ps;
1848                                     break restart;
1849                                 }
1850                             }
1851                         }
1852                         else {                      // empty -- try to descend
1853                             ForkJoinTask<?> next = v.currentJoin;
1854                             if (subtask.status < 0 || j.currentJoin != subtask ||
1855                                 v.currentSteal != subtask)
1856                                 continue restart;   // stale
1857                             else if (next == null || ++steps == MAX_HELP)
1858                                 break restart;      // dead-end or maybe cyclic
1859                             else {
1860                                 subtask = next;
1861                                 j = v;
1862                                 break;
1863                             }
1864                         }
1865                     }
1866                 }
1867             }
1868         }
1869         return stat;
1870     }
1871 
1872     /**
1873      * Analog of tryHelpStealer for CountedCompleters. Tries to steal
1874      * and run tasks within the target's computation.
1875      *
1876      * @param task the task to join
1877      * @param maxTasks the maximum number of other tasks to run
1878      */
1879     final int helpComplete(WorkQueue joiner, CountedCompleter<?> task,
1880                            int maxTasks) {
1881         WorkQueue[] ws; int m;
1882         int s = 0;
1883         if ((ws = workQueues) != null && (m = ws.length - 1) >= 0 &&
1884             joiner != null && task != null) {
1885             int j = joiner.poolIndex;
1886             int scans = m + m + 1;
1887             long c = 0L;              // for stability check
1888             for (int k = scans; ; j += 2) {
1889                 WorkQueue q;
1890                 if ((s = task.status) < 0)
1891                     break;
1892                 else if (joiner.internalPopAndExecCC(task)) {
1893                     if (--maxTasks <= 0) {
1894                         s = task.status;
1895                         break;
1896                     }
1897                     k = scans;
1898                 }
1899                 else if ((s = task.status) < 0)
1900                     break;
1901                 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
1902                     if (--maxTasks <= 0) {
1903                         s = task.status;
1904                         break;
1905                     }
1906                     k = scans;
1907                 }
1908                 else if (--k < 0) {
1909                     if (c == (c = ctl))
1910                         break;
1911                     k = scans;
1912                 }
1913             }
1914         }
1915         return s;
1916     }
1917 
1918     /**
1919      * Tries to decrement active count (sometimes implicitly) and
1920      * possibly release or create a compensating worker in preparation
1921      * for blocking. Fails on contention or termination. Otherwise,
1922      * adds a new thread if no idle workers are available and pool
1923      * may become starved.
1924      *
1925      * @param c the assumed ctl value
1926      */
1927     final boolean tryCompensate(long c) {
1928         WorkQueue[] ws = workQueues;
1929         int pc = parallelism, e = (int)c, m, tc;
1930         if (ws != null && (m = ws.length - 1) >= 0 && e >= 0 && ctl == c) {
1931             WorkQueue w = ws[e & m];
1932             if (e != 0 && w != null) {
1933                 Thread p;
1934                 long nc = ((long)(w.nextWait & E_MASK) |
1935                            (c & (AC_MASK|TC_MASK)));
1936                 int ne = (e + E_SEQ) & E_MASK;
1937                 if (w.eventCount == (e | INT_SIGN) &&
1938                     U.compareAndSwapLong(this, CTL, c, nc)) {
1939                     w.eventCount = ne;
1940                     if ((p = w.parker) != null)
1941                         U.unpark(p);
1942                     return true;   // replace with idle worker
1943                 }
1944             }
1945             else if ((tc = (short)(c >>> TC_SHIFT)) >= 0 &&
1946                      (int)(c >> AC_SHIFT) + pc > 1) {
1947                 long nc = ((c - AC_UNIT) & AC_MASK) | (c & ~AC_MASK);
1948                 if (U.compareAndSwapLong(this, CTL, c, nc))
1949                     return true;   // no compensation
1950             }
1951             else if (tc + pc < MAX_CAP) {
1952                 long nc = ((c + TC_UNIT) & TC_MASK) | (c & ~TC_MASK);
1953                 if (U.compareAndSwapLong(this, CTL, c, nc)) {
1954                     ForkJoinWorkerThreadFactory fac;
1955                     Throwable ex = null;
1956                     ForkJoinWorkerThread wt = null;
1957                     try {
1958                         if ((fac = factory) != null &&
1959                             (wt = fac.newThread(this)) != null) {
1960                             wt.start();
1961                             return true;
1962                         }
1963                     } catch (Throwable rex) {
1964                         ex = rex;
1965                     }
1966                     deregisterWorker(wt, ex); // clean up and return false
1967                 }
1968             }
1969         }
1970         return false;
1971     }
1972 
1973     /**
1974      * Helps and/or blocks until the given task is done.
1975      *
1976      * @param joiner the joining worker
1977      * @param task the task
1978      * @return task status on exit
1979      */
1980     final int awaitJoin(WorkQueue joiner, ForkJoinTask<?> task) {
1981         int s = 0;
1982         if (task != null && (s = task.status) >= 0 && joiner != null) {
1983             ForkJoinTask<?> prevJoin = joiner.currentJoin;
1984             joiner.currentJoin = task;
1985             do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
1986                          (s = task.status) >= 0);
1987             if (s >= 0 && (task instanceof CountedCompleter))
1988                 s = helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
1989             long cc = 0;        // for stability checks
1990             while (s >= 0 && (s = task.status) >= 0) {
1991                 if ((s = tryHelpStealer(joiner, task)) == 0 &&
1992                     (s = task.status) >= 0) {
1993                     if (!tryCompensate(cc))
1994                         cc = ctl;
1995                     else {
1996                         if (task.trySetSignal() && (s = task.status) >= 0) {
1997                             synchronized (task) {
1998                                 if (task.status >= 0) {
1999                                     try {                // see ForkJoinTask
2000                                         task.wait();     //  for explanation
2001                                     } catch (InterruptedException ie) {
2002                                     }
2003                                 }
2004                                 else
2005                                     task.notifyAll();
2006                             }
2007                         }
2008                         long c; // reactivate
2009                         do {} while (!U.compareAndSwapLong
2010                                      (this, CTL, c = ctl,
2011                                       ((c & ~AC_MASK) |
2012                                        ((c & AC_MASK) + AC_UNIT))));
2013                     }
2014                 }
2015             }
2016             joiner.currentJoin = prevJoin;
2017         }
2018         return s;
2019     }
2020 
2021     /**
2022      * Stripped-down variant of awaitJoin used by timed joins. Tries
2023      * to help join only while there is continuous progress. (Caller
2024      * will then enter a timed wait.)
2025      *
2026      * @param joiner the joining worker
2027      * @param task the task
2028      */
2029     final void helpJoinOnce(WorkQueue joiner, ForkJoinTask<?> task) {
2030         int s;
2031         if (joiner != null && task != null && (s = task.status) >= 0) {
2032             ForkJoinTask<?> prevJoin = joiner.currentJoin;
2033             joiner.currentJoin = task;
2034             do {} while (joiner.tryRemoveAndExec(task) && // process local tasks
2035                          (s = task.status) >= 0);
2036             if (s >= 0) {
2037                 if (task instanceof CountedCompleter)
2038                     helpComplete(joiner, (CountedCompleter<?>)task, Integer.MAX_VALUE);
2039                 do {} while (task.status >= 0 &&
2040                              tryHelpStealer(joiner, task) > 0);
2041             }
2042             joiner.currentJoin = prevJoin;
2043         }
2044     }
2045 
2046     /**
2047      * Returns a (probably) non-empty steal queue, if one is found
2048      * during a scan, else null.  This method must be retried by
2049      * caller if, by the time it tries to use the queue, it is empty.
2050      */
2051     private WorkQueue findNonEmptyStealQueue() {
2052         int r = ThreadLocalRandom.nextSecondarySeed();
2053         for (;;) {
2054             int ps = plock, m; WorkQueue[] ws; WorkQueue q;
2055             if ((ws = workQueues) != null && (m = ws.length - 1) >= 0) {
2056                 for (int j = (m + 1) << 2; j >= 0; --j) {
2057                     if ((q = ws[(((r - j) << 1) | 1) & m]) != null &&
2058                         q.base - q.top < 0)
2059                         return q;
2060                 }
2061             }
2062             if (plock == ps)
2063                 return null;
2064         }
2065     }
2066 
2067     /**
2068      * Runs tasks until {@code isQuiescent()}. We piggyback on
2069      * active count ctl maintenance, but rather than blocking
2070      * when tasks cannot be found, we rescan until all others cannot
2071      * find tasks either.
2072      */
2073     final void helpQuiescePool(WorkQueue w) {
2074         ForkJoinTask<?> ps = w.currentSteal;
2075         for (boolean active = true;;) {
2076             long c; WorkQueue q; ForkJoinTask<?> t; int b;
2077             while ((t = w.nextLocalTask()) != null)
2078                 t.doExec();
2079             if ((q = findNonEmptyStealQueue()) != null) {
2080                 if (!active) {      // re-establish active count
2081                     active = true;
2082                     do {} while (!U.compareAndSwapLong
2083                                  (this, CTL, c = ctl,
2084                                   ((c & ~AC_MASK) |
2085                                    ((c & AC_MASK) + AC_UNIT))));
2086                 }
2087                 if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null) {
2088                     (w.currentSteal = t).doExec();
2089                     w.currentSteal = ps;
2090                 }
2091             }
2092             else if (active) {       // decrement active count without queuing
2093                 long nc = ((c = ctl) & ~AC_MASK) | ((c & AC_MASK) - AC_UNIT);
2094                 if ((int)(nc >> AC_SHIFT) + parallelism == 0)
2095                     break;          // bypass decrement-then-increment
2096                 if (U.compareAndSwapLong(this, CTL, c, nc))
2097                     active = false;
2098             }
2099             else if ((int)((c = ctl) >> AC_SHIFT) + parallelism <= 0 &&
2100                      U.compareAndSwapLong
2101                      (this, CTL, c, ((c & ~AC_MASK) |
2102                                      ((c & AC_MASK) + AC_UNIT))))
2103                 break;
2104         }
2105     }
2106 
2107     /**
2108      * Gets and removes a local or stolen task for the given worker.
2109      *
2110      * @return a task, if available
2111      */
2112     final ForkJoinTask<?> nextTaskFor(WorkQueue w) {
2113         for (ForkJoinTask<?> t;;) {
2114             WorkQueue q; int b;
2115             if ((t = w.nextLocalTask()) != null)
2116                 return t;
2117             if ((q = findNonEmptyStealQueue()) == null)
2118                 return null;
2119             if ((b = q.base) - q.top < 0 && (t = q.pollAt(b)) != null)
2120                 return t;
2121         }
2122     }
2123 
2124     /**
2125      * Returns a cheap heuristic guide for task partitioning when
2126      * programmers, frameworks, tools, or languages have little or no
2127      * idea about task granularity.  In essence by offering this
2128      * method, we ask users only about tradeoffs in overhead vs
2129      * expected throughput and its variance, rather than how finely to
2130      * partition tasks.
2131      *
2132      * In a steady state strict (tree-structured) computation, each
2133      * thread makes available for stealing enough tasks for other
2134      * threads to remain active. Inductively, if all threads play by
2135      * the same rules, each thread should make available only a
2136      * constant number of tasks.
2137      *
2138      * The minimum useful constant is just 1. But using a value of 1
2139      * would require immediate replenishment upon each steal to
2140      * maintain enough tasks, which is infeasible.  Further,
2141      * partitionings/granularities of offered tasks should minimize
2142      * steal rates, which in general means that threads nearer the top
2143      * of computation tree should generate more than those nearer the
2144      * bottom. In perfect steady state, each thread is at
2145      * approximately the same level of computation tree. However,
2146      * producing extra tasks amortizes the uncertainty of progress and
2147      * diffusion assumptions.
2148      *
2149      * So, users will want to use values larger (but not much larger)
2150      * than 1 to both smooth over transient shortages and hedge
2151      * against uneven progress; as traded off against the cost of
2152      * extra task overhead. We leave the user to pick a threshold
2153      * value to compare with the results of this call to guide
2154      * decisions, but recommend values such as 3.
2155      *
2156      * When all threads are active, it is on average OK to estimate
2157      * surplus strictly locally. In steady-state, if one thread is
2158      * maintaining say 2 surplus tasks, then so are others. So we can
2159      * just use estimated queue length.  However, this strategy alone
2160      * leads to serious mis-estimates in some non-steady-state
2161      * conditions (ramp-up, ramp-down, other stalls). We can detect
2162      * many of these by further considering the number of "idle"
2163      * threads, that are known to have zero queued tasks, so
2164      * compensate by a factor of (#idle/#active) threads.
2165      *
2166      * Note: The approximation of #busy workers as #active workers is
2167      * not very good under current signalling scheme, and should be
2168      * improved.
2169      */
2170     static int getSurplusQueuedTaskCount() {
2171         Thread t; ForkJoinWorkerThread wt; ForkJoinPool pool; WorkQueue q;
2172         if (((t = Thread.currentThread()) instanceof ForkJoinWorkerThread)) {
2173             int p = (pool = (wt = (ForkJoinWorkerThread)t).pool).parallelism;
2174             int n = (q = wt.workQueue).top - q.base;
2175             int a = (int)(pool.ctl >> AC_SHIFT) + p;
2176             return n - (a > (p >>>= 1) ? 0 :
2177                         a > (p >>>= 1) ? 1 :
2178                         a > (p >>>= 1) ? 2 :
2179                         a > (p >>>= 1) ? 4 :
2180                         8);
2181         }
2182         return 0;
2183     }
2184 
2185     //  Termination
2186 
2187     /**
2188      * Possibly initiates and/or completes termination.  The caller
2189      * triggering termination runs three passes through workQueues:
2190      * (0) Setting termination status, followed by wakeups of queued
2191      * workers; (1) cancelling all tasks; (2) interrupting lagging
2192      * threads (likely in external tasks, but possibly also blocked in
2193      * joins).  Each pass repeats previous steps because of potential
2194      * lagging thread creation.
2195      *
2196      * @param now if true, unconditionally terminate, else only
2197      * if no work and no active workers
2198      * @param enable if true, enable shutdown when next possible
2199      * @return true if now terminating or terminated
2200      */
2201     private boolean tryTerminate(boolean now, boolean enable) {
2202         int ps;
2203         if (this == common)                        // cannot shut down
2204             return false;
2205         if ((ps = plock) >= 0) {                   // enable by setting plock
2206             if (!enable)
2207                 return false;
2208             if ((ps & PL_LOCK) != 0 ||
2209                 !U.compareAndSwapInt(this, PLOCK, ps, ps += PL_LOCK))
2210                 ps = acquirePlock();
2211             int nps = ((ps + PL_LOCK) & ~SHUTDOWN) | SHUTDOWN;
2212             if (!U.compareAndSwapInt(this, PLOCK, ps, nps))
2213                 releasePlock(nps);
2214         }
2215         for (long c;;) {
2216             if (((c = ctl) & STOP_BIT) != 0) {     // already terminating
2217                 if ((short)(c >>> TC_SHIFT) + parallelism <= 0) {
2218                     synchronized (this) {
2219                         notifyAll();               // signal when 0 workers
2220                     }
2221                 }
2222                 return true;
2223             }
2224             if (!now) {                            // check if idle & no tasks
2225                 WorkQueue[] ws; WorkQueue w;
2226                 if ((int)(c >> AC_SHIFT) + parallelism > 0)
2227                     return false;
2228                 if ((ws = workQueues) != null) {
2229                     for (int i = 0; i < ws.length; ++i) {
2230                         if ((w = ws[i]) != null &&
2231                             (!w.isEmpty() ||
2232                              ((i & 1) != 0 && w.eventCount >= 0))) {
2233                             signalWork(ws, w);
2234                             return false;
2235                         }
2236                     }
2237                 }
2238             }
2239             if (U.compareAndSwapLong(this, CTL, c, c | STOP_BIT)) {
2240                 for (int pass = 0; pass < 3; ++pass) {
2241                     WorkQueue[] ws; WorkQueue w; Thread wt;
2242                     if ((ws = workQueues) != null) {
2243                         int n = ws.length;
2244                         for (int i = 0; i < n; ++i) {
2245                             if ((w = ws[i]) != null) {
2246                                 w.qlock = -1;
2247                                 if (pass > 0) {
2248                                     w.cancelAll();
2249                                     if (pass > 1 && (wt = w.owner) != null) {
2250                                         if (!wt.isInterrupted()) {
2251                                             try {
2252                                                 wt.interrupt();
2253                                             } catch (Throwable ignore) {
2254                                             }
2255                                         }
2256                                         U.unpark(wt);
2257                                     }
2258                                 }
2259                             }
2260                         }
2261                         // Wake up workers parked on event queue
2262                         int i, e; long cc; Thread p;
2263                         while ((e = (int)(cc = ctl) & E_MASK) != 0 &&
2264                                (i = e & SMASK) < n && i >= 0 &&
2265                                (w = ws[i]) != null) {
2266                             long nc = ((long)(w.nextWait & E_MASK) |
2267                                        ((cc + AC_UNIT) & AC_MASK) |
2268                                        (cc & (TC_MASK|STOP_BIT)));
2269                             if (w.eventCount == (e | INT_SIGN) &&
2270                                 U.compareAndSwapLong(this, CTL, cc, nc)) {
2271                                 w.eventCount = (e + E_SEQ) & E_MASK;
2272                                 w.qlock = -1;
2273                                 if ((p = w.parker) != null)
2274                                     U.unpark(p);
2275                             }
2276                         }
2277                     }
2278                 }
2279             }
2280         }
2281     }
2282 
2283     // external operations on common pool
2284 
2285     /**
2286      * Returns common pool queue for a thread that has submitted at
2287      * least one task.
2288      */
2289     static WorkQueue commonSubmitterQueue() {
2290         ForkJoinPool p; WorkQueue[] ws; int m, z;
2291         return ((z = ThreadLocalRandom.getProbe()) != 0 &&
2292                 (p = common) != null &&
2293                 (ws = p.workQueues) != null &&
2294                 (m = ws.length - 1) >= 0) ?
2295             ws[m & z & SQMASK] : null;
2296     }
2297 
2298     /**
2299      * Tries to pop the given task from submitter's queue in common pool.
2300      */
2301     final boolean tryExternalUnpush(ForkJoinTask<?> task) {
2302         WorkQueue joiner; ForkJoinTask<?>[] a; int m, s;
2303         WorkQueue[] ws = workQueues;
2304         int z = ThreadLocalRandom.getProbe();
2305         boolean popped = false;
2306         if (ws != null && (m = ws.length - 1) >= 0 &&
2307             (joiner = ws[z & m & SQMASK]) != null &&
2308             joiner.base != (s = joiner.top) &&
2309             (a = joiner.array) != null) {
2310             long j = (((a.length - 1) & (s - 1)) << ASHIFT) + ABASE;
2311             if (U.getObject(a, j) == task &&
2312                 U.compareAndSwapInt(joiner, QLOCK, 0, 1)) {
2313                 if (joiner.top == s && joiner.array == a &&
2314                     U.compareAndSwapObject(a, j, task, null)) {
2315                     joiner.top = s - 1;
2316                     popped = true;
2317                 }
2318                 joiner.qlock = 0;
2319             }
2320         }
2321         return popped;
2322     }
2323 
2324     final int externalHelpComplete(CountedCompleter<?> task, int maxTasks) {
2325         WorkQueue joiner; int m;
2326         WorkQueue[] ws = workQueues;
2327         int j = ThreadLocalRandom.getProbe();
2328         int s = 0;
2329         if (ws != null && (m = ws.length - 1) >= 0 &&
2330             (joiner = ws[j & m & SQMASK]) != null && task != null) {
2331             int scans = m + m + 1;
2332             long c = 0L;             // for stability check
2333             j |= 1;                  // poll odd queues
2334             for (int k = scans; ; j += 2) {
2335                 WorkQueue q;
2336                 if ((s = task.status) < 0)
2337                     break;
2338                 else if (joiner.externalPopAndExecCC(task)) {
2339                     if (--maxTasks <= 0) {
2340                         s = task.status;
2341                         break;
2342                     }
2343                     k = scans;
2344                 }
2345                 else if ((s = task.status) < 0)
2346                     break;
2347                 else if ((q = ws[j & m]) != null && q.pollAndExecCC(task)) {
2348                     if (--maxTasks <= 0) {
2349                         s = task.status;
2350                         break;
2351                     }
2352                     k = scans;
2353                 }
2354                 else if (--k < 0) {
2355                     if (c == (c = ctl))
2356                         break;
2357                     k = scans;
2358                 }
2359             }
2360         }
2361         return s;
2362     }
2363 
2364     // Exported methods
2365 
2366     // Constructors
2367 
2368     /**
2369      * Creates a {@code ForkJoinPool} with parallelism equal to {@link
2370      * java.lang.Runtime#availableProcessors}, using the {@linkplain
2371      * #defaultForkJoinWorkerThreadFactory default thread factory},
2372      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2373      *
2374      * @throws SecurityException if a security manager exists and
2375      *         the caller is not permitted to modify threads
2376      *         because it does not hold {@link
2377      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2378      */
2379     public ForkJoinPool() {
2380         this(Math.min(MAX_CAP, Runtime.getRuntime().availableProcessors()),
2381              defaultForkJoinWorkerThreadFactory, null, false);
2382     }
2383 
2384     /**
2385      * Creates a {@code ForkJoinPool} with the indicated parallelism
2386      * level, the {@linkplain
2387      * #defaultForkJoinWorkerThreadFactory default thread factory},
2388      * no UncaughtExceptionHandler, and non-async LIFO processing mode.
2389      *
2390      * @param parallelism the parallelism level
2391      * @throws IllegalArgumentException if parallelism less than or
2392      *         equal to zero, or greater than implementation limit
2393      * @throws SecurityException if a security manager exists and
2394      *         the caller is not permitted to modify threads
2395      *         because it does not hold {@link
2396      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2397      */
2398     public ForkJoinPool(int parallelism) {
2399         this(parallelism, defaultForkJoinWorkerThreadFactory, null, false);
2400     }
2401 
2402     /**
2403      * Creates a {@code ForkJoinPool} with the given parameters.
2404      *
2405      * @param parallelism the parallelism level. For default value,
2406      * use {@link java.lang.Runtime#availableProcessors}.
2407      * @param factory the factory for creating new threads. For default value,
2408      * use {@link #defaultForkJoinWorkerThreadFactory}.
2409      * @param handler the handler for internal worker threads that
2410      * terminate due to unrecoverable errors encountered while executing
2411      * tasks. For default value, use {@code null}.
2412      * @param asyncMode if true,
2413      * establishes local first-in-first-out scheduling mode for forked
2414      * tasks that are never joined. This mode may be more appropriate
2415      * than default locally stack-based mode in applications in which
2416      * worker threads only process event-style asynchronous tasks.
2417      * For default value, use {@code false}.
2418      * @throws IllegalArgumentException if parallelism less than or
2419      *         equal to zero, or greater than implementation limit
2420      * @throws NullPointerException if the factory is null
2421      * @throws SecurityException if a security manager exists and
2422      *         the caller is not permitted to modify threads
2423      *         because it does not hold {@link
2424      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2425      */
2426     public ForkJoinPool(int parallelism,
2427                         ForkJoinWorkerThreadFactory factory,
2428                         UncaughtExceptionHandler handler,
2429                         boolean asyncMode) {
2430         this(checkParallelism(parallelism),
2431              checkFactory(factory),
2432              handler,
2433              (asyncMode ? FIFO_QUEUE : LIFO_QUEUE),
2434              "ForkJoinPool-" + nextPoolId() + "-worker-");
2435         checkPermission();
2436     }
2437 
2438     private static int checkParallelism(int parallelism) {
2439         if (parallelism <= 0 || parallelism > MAX_CAP)
2440             throw new IllegalArgumentException();
2441         return parallelism;
2442     }
2443 
2444     private static ForkJoinWorkerThreadFactory checkFactory
2445         (ForkJoinWorkerThreadFactory factory) {
2446         if (factory == null)
2447             throw new NullPointerException();
2448         return factory;
2449     }
2450 
2451     /**
2452      * Creates a {@code ForkJoinPool} with the given parameters, without
2453      * any security checks or parameter validation.  Invoked directly by
2454      * makeCommonPool.
2455      */
2456     private ForkJoinPool(int parallelism,
2457                          ForkJoinWorkerThreadFactory factory,
2458                          UncaughtExceptionHandler handler,
2459                          int mode,
2460                          String workerNamePrefix) {
2461         this.workerNamePrefix = workerNamePrefix;
2462         this.factory = factory;
2463         this.ueh = handler;
2464         this.mode = (short)mode;
2465         this.parallelism = (short)parallelism;
2466         long np = (long)(-parallelism); // offset ctl counts
2467         this.ctl = ((np << AC_SHIFT) & AC_MASK) | ((np << TC_SHIFT) & TC_MASK);
2468     }
2469 
2470     /**
2471      * Returns the common pool instance. This pool is statically
2472      * constructed; its run state is unaffected by attempts to {@link
2473      * #shutdown} or {@link #shutdownNow}. However this pool and any
2474      * ongoing processing are automatically terminated upon program
2475      * {@link System#exit}.  Any program that relies on asynchronous
2476      * task processing to complete before program termination should
2477      * invoke {@code commonPool().}{@link #awaitQuiescence awaitQuiescence},
2478      * before exit.
2479      *
2480      * @return the common pool instance
2481      * @since 1.8
2482      */
2483     public static ForkJoinPool commonPool() {
2484         // assert common != null : "static init error";
2485         return common;
2486     }
2487 
2488     // Execution methods
2489 
2490     /**
2491      * Performs the given task, returning its result upon completion.
2492      * If the computation encounters an unchecked Exception or Error,
2493      * it is rethrown as the outcome of this invocation.  Rethrown
2494      * exceptions behave in the same way as regular exceptions, but,
2495      * when possible, contain stack traces (as displayed for example
2496      * using {@code ex.printStackTrace()}) of both the current thread
2497      * as well as the thread actually encountering the exception;
2498      * minimally only the latter.
2499      *
2500      * @param task the task
2501      * @param <T> the type of the task's result
2502      * @return the task's result
2503      * @throws NullPointerException if the task is null
2504      * @throws RejectedExecutionException if the task cannot be
2505      *         scheduled for execution
2506      */
2507     public <T> T invoke(ForkJoinTask<T> task) {
2508         if (task == null)
2509             throw new NullPointerException();
2510         externalPush(task);
2511         return task.join();
2512     }
2513 
2514     /**
2515      * Arranges for (asynchronous) execution of the given task.
2516      *
2517      * @param task the task
2518      * @throws NullPointerException if the task is null
2519      * @throws RejectedExecutionException if the task cannot be
2520      *         scheduled for execution
2521      */
2522     public void execute(ForkJoinTask<?> task) {
2523         if (task == null)
2524             throw new NullPointerException();
2525         externalPush(task);
2526     }
2527 
2528     // AbstractExecutorService methods
2529 
2530     /**
2531      * @throws NullPointerException if the task is null
2532      * @throws RejectedExecutionException if the task cannot be
2533      *         scheduled for execution
2534      */
2535     public void execute(Runnable task) {
2536         if (task == null)
2537             throw new NullPointerException();
2538         ForkJoinTask<?> job;
2539         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2540             job = (ForkJoinTask<?>) task;
2541         else
2542             job = new ForkJoinTask.RunnableExecuteAction(task);
2543         externalPush(job);
2544     }
2545 
2546     /**
2547      * Submits a ForkJoinTask for execution.
2548      *
2549      * @param task the task to submit
2550      * @param <T> the type of the task's result
2551      * @return the task
2552      * @throws NullPointerException if the task is null
2553      * @throws RejectedExecutionException if the task cannot be
2554      *         scheduled for execution
2555      */
2556     public <T> ForkJoinTask<T> submit(ForkJoinTask<T> task) {
2557         if (task == null)
2558             throw new NullPointerException();
2559         externalPush(task);
2560         return task;
2561     }
2562 
2563     /**
2564      * @throws NullPointerException if the task is null
2565      * @throws RejectedExecutionException if the task cannot be
2566      *         scheduled for execution
2567      */
2568     public <T> ForkJoinTask<T> submit(Callable<T> task) {
2569         ForkJoinTask<T> job = new ForkJoinTask.AdaptedCallable<T>(task);
2570         externalPush(job);
2571         return job;
2572     }
2573 
2574     /**
2575      * @throws NullPointerException if the task is null
2576      * @throws RejectedExecutionException if the task cannot be
2577      *         scheduled for execution
2578      */
2579     public <T> ForkJoinTask<T> submit(Runnable task, T result) {
2580         ForkJoinTask<T> job = new ForkJoinTask.AdaptedRunnable<T>(task, result);
2581         externalPush(job);
2582         return job;
2583     }
2584 
2585     /**
2586      * @throws NullPointerException if the task is null
2587      * @throws RejectedExecutionException if the task cannot be
2588      *         scheduled for execution
2589      */
2590     public ForkJoinTask<?> submit(Runnable task) {
2591         if (task == null)
2592             throw new NullPointerException();
2593         ForkJoinTask<?> job;
2594         if (task instanceof ForkJoinTask<?>) // avoid re-wrap
2595             job = (ForkJoinTask<?>) task;
2596         else
2597             job = new ForkJoinTask.AdaptedRunnableAction(task);
2598         externalPush(job);
2599         return job;
2600     }
2601 
2602     /**
2603      * @throws NullPointerException       {@inheritDoc}
2604      * @throws RejectedExecutionException {@inheritDoc}
2605      */
2606     public <T> List<Future<T>> invokeAll(Collection<? extends Callable<T>> tasks) {
2607         // In previous versions of this class, this method constructed
2608         // a task to run ForkJoinTask.invokeAll, but now external
2609         // invocation of multiple tasks is at least as efficient.
2610         ArrayList<Future<T>> futures = new ArrayList<Future<T>>(tasks.size());
2611 
2612         boolean done = false;
2613         try {
2614             for (Callable<T> t : tasks) {
2615                 ForkJoinTask<T> f = new ForkJoinTask.AdaptedCallable<T>(t);
2616                 futures.add(f);
2617                 externalPush(f);
2618             }
2619             for (int i = 0, size = futures.size(); i < size; i++)
2620                 ((ForkJoinTask<?>)futures.get(i)).quietlyJoin();
2621             done = true;
2622             return futures;
2623         } finally {
2624             if (!done)
2625                 for (int i = 0, size = futures.size(); i < size; i++)
2626                     futures.get(i).cancel(false);
2627         }
2628     }
2629 
2630     /**
2631      * Returns the factory used for constructing new workers.
2632      *
2633      * @return the factory used for constructing new workers
2634      */
2635     public ForkJoinWorkerThreadFactory getFactory() {
2636         return factory;
2637     }
2638 
2639     /**
2640      * Returns the handler for internal worker threads that terminate
2641      * due to unrecoverable errors encountered while executing tasks.
2642      *
2643      * @return the handler, or {@code null} if none
2644      */
2645     public UncaughtExceptionHandler getUncaughtExceptionHandler() {
2646         return ueh;
2647     }
2648 
2649     /**
2650      * Returns the targeted parallelism level of this pool.
2651      *
2652      * @return the targeted parallelism level of this pool
2653      */
2654     public int getParallelism() {
2655         int par;
2656         return ((par = parallelism) > 0) ? par : 1;
2657     }
2658 
2659     /**
2660      * Returns the targeted parallelism level of the common pool.
2661      *
2662      * @return the targeted parallelism level of the common pool
2663      * @since 1.8
2664      */
2665     public static int getCommonPoolParallelism() {
2666         return commonParallelism;
2667     }
2668 
2669     /**
2670      * Returns the number of worker threads that have started but not
2671      * yet terminated.  The result returned by this method may differ
2672      * from {@link #getParallelism} when threads are created to
2673      * maintain parallelism when others are cooperatively blocked.
2674      *
2675      * @return the number of worker threads
2676      */
2677     public int getPoolSize() {
2678         return parallelism + (short)(ctl >>> TC_SHIFT);
2679     }
2680 
2681     /**
2682      * Returns {@code true} if this pool uses local first-in-first-out
2683      * scheduling mode for forked tasks that are never joined.
2684      *
2685      * @return {@code true} if this pool uses async mode
2686      */
2687     public boolean getAsyncMode() {
2688         return mode == FIFO_QUEUE;
2689     }
2690 
2691     /**
2692      * Returns an estimate of the number of worker threads that are
2693      * not blocked waiting to join tasks or for other managed
2694      * synchronization. This method may overestimate the
2695      * number of running threads.
2696      *
2697      * @return the number of worker threads
2698      */
2699     public int getRunningThreadCount() {
2700         int rc = 0;
2701         WorkQueue[] ws; WorkQueue w;
2702         if ((ws = workQueues) != null) {
2703             for (int i = 1; i < ws.length; i += 2) {
2704                 if ((w = ws[i]) != null && w.isApparentlyUnblocked())
2705                     ++rc;
2706             }
2707         }
2708         return rc;
2709     }
2710 
2711     /**
2712      * Returns an estimate of the number of threads that are currently
2713      * stealing or executing tasks. This method may overestimate the
2714      * number of active threads.
2715      *
2716      * @return the number of active threads
2717      */
2718     public int getActiveThreadCount() {
2719         int r = parallelism + (int)(ctl >> AC_SHIFT);
2720         return (r <= 0) ? 0 : r; // suppress momentarily negative values
2721     }
2722 
2723     /**
2724      * Returns {@code true} if all worker threads are currently idle.
2725      * An idle worker is one that cannot obtain a task to execute
2726      * because none are available to steal from other threads, and
2727      * there are no pending submissions to the pool. This method is
2728      * conservative; it might not return {@code true} immediately upon
2729      * idleness of all threads, but will eventually become true if
2730      * threads remain inactive.
2731      *
2732      * @return {@code true} if all threads are currently idle
2733      */
2734     public boolean isQuiescent() {
2735         return parallelism + (int)(ctl >> AC_SHIFT) <= 0;
2736     }
2737 
2738     /**
2739      * Returns an estimate of the total number of tasks stolen from
2740      * one thread's work queue by another. The reported value
2741      * underestimates the actual total number of steals when the pool
2742      * is not quiescent. This value may be useful for monitoring and
2743      * tuning fork/join programs: in general, steal counts should be
2744      * high enough to keep threads busy, but low enough to avoid
2745      * overhead and contention across threads.
2746      *
2747      * @return the number of steals
2748      */
2749     public long getStealCount() {
2750         long count = stealCount;
2751         WorkQueue[] ws; WorkQueue w;
2752         if ((ws = workQueues) != null) {
2753             for (int i = 1; i < ws.length; i += 2) {
2754                 if ((w = ws[i]) != null)
2755                     count += w.nsteals;
2756             }
2757         }
2758         return count;
2759     }
2760 
2761     /**
2762      * Returns an estimate of the total number of tasks currently held
2763      * in queues by worker threads (but not including tasks submitted
2764      * to the pool that have not begun executing). This value is only
2765      * an approximation, obtained by iterating across all threads in
2766      * the pool. This method may be useful for tuning task
2767      * granularities.
2768      *
2769      * @return the number of queued tasks
2770      */
2771     public long getQueuedTaskCount() {
2772         long count = 0;
2773         WorkQueue[] ws; WorkQueue w;
2774         if ((ws = workQueues) != null) {
2775             for (int i = 1; i < ws.length; i += 2) {
2776                 if ((w = ws[i]) != null)
2777                     count += w.queueSize();
2778             }
2779         }
2780         return count;
2781     }
2782 
2783     /**
2784      * Returns an estimate of the number of tasks submitted to this
2785      * pool that have not yet begun executing.  This method may take
2786      * time proportional to the number of submissions.
2787      *
2788      * @return the number of queued submissions
2789      */
2790     public int getQueuedSubmissionCount() {
2791         int count = 0;
2792         WorkQueue[] ws; WorkQueue w;
2793         if ((ws = workQueues) != null) {
2794             for (int i = 0; i < ws.length; i += 2) {
2795                 if ((w = ws[i]) != null)
2796                     count += w.queueSize();
2797             }
2798         }
2799         return count;
2800     }
2801 
2802     /**
2803      * Returns {@code true} if there are any tasks submitted to this
2804      * pool that have not yet begun executing.
2805      *
2806      * @return {@code true} if there are any queued submissions
2807      */
2808     public boolean hasQueuedSubmissions() {
2809         WorkQueue[] ws; WorkQueue w;
2810         if ((ws = workQueues) != null) {
2811             for (int i = 0; i < ws.length; i += 2) {
2812                 if ((w = ws[i]) != null && !w.isEmpty())
2813                     return true;
2814             }
2815         }
2816         return false;
2817     }
2818 
2819     /**
2820      * Removes and returns the next unexecuted submission if one is
2821      * available.  This method may be useful in extensions to this
2822      * class that re-assign work in systems with multiple pools.
2823      *
2824      * @return the next submission, or {@code null} if none
2825      */
2826     protected ForkJoinTask<?> pollSubmission() {
2827         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2828         if ((ws = workQueues) != null) {
2829             for (int i = 0; i < ws.length; i += 2) {
2830                 if ((w = ws[i]) != null && (t = w.poll()) != null)
2831                     return t;
2832             }
2833         }
2834         return null;
2835     }
2836 
2837     /**
2838      * Removes all available unexecuted submitted and forked tasks
2839      * from scheduling queues and adds them to the given collection,
2840      * without altering their execution status. These may include
2841      * artificially generated or wrapped tasks. This method is
2842      * designed to be invoked only when the pool is known to be
2843      * quiescent. Invocations at other times may not remove all
2844      * tasks. A failure encountered while attempting to add elements
2845      * to collection {@code c} may result in elements being in
2846      * neither, either or both collections when the associated
2847      * exception is thrown.  The behavior of this operation is
2848      * undefined if the specified collection is modified while the
2849      * operation is in progress.
2850      *
2851      * @param c the collection to transfer elements into
2852      * @return the number of elements transferred
2853      */
2854     protected int drainTasksTo(Collection<? super ForkJoinTask<?>> c) {
2855         int count = 0;
2856         WorkQueue[] ws; WorkQueue w; ForkJoinTask<?> t;
2857         if ((ws = workQueues) != null) {
2858             for (int i = 0; i < ws.length; ++i) {
2859                 if ((w = ws[i]) != null) {
2860                     while ((t = w.poll()) != null) {
2861                         c.add(t);
2862                         ++count;
2863                     }
2864                 }
2865             }
2866         }
2867         return count;
2868     }
2869 
2870     /**
2871      * Returns a string identifying this pool, as well as its state,
2872      * including indications of run state, parallelism level, and
2873      * worker and task counts.
2874      *
2875      * @return a string identifying this pool, as well as its state
2876      */
2877     public String toString() {
2878         // Use a single pass through workQueues to collect counts
2879         long qt = 0L, qs = 0L; int rc = 0;
2880         long st = stealCount;
2881         long c = ctl;
2882         WorkQueue[] ws; WorkQueue w;
2883         if ((ws = workQueues) != null) {
2884             for (int i = 0; i < ws.length; ++i) {
2885                 if ((w = ws[i]) != null) {
2886                     int size = w.queueSize();
2887                     if ((i & 1) == 0)
2888                         qs += size;
2889                     else {
2890                         qt += size;
2891                         st += w.nsteals;
2892                         if (w.isApparentlyUnblocked())
2893                             ++rc;
2894                     }
2895                 }
2896             }
2897         }
2898         int pc = parallelism;
2899         int tc = pc + (short)(c >>> TC_SHIFT);
2900         int ac = pc + (int)(c >> AC_SHIFT);
2901         if (ac < 0) // ignore transient negative
2902             ac = 0;
2903         String level;
2904         if ((c & STOP_BIT) != 0)
2905             level = (tc == 0) ? "Terminated" : "Terminating";
2906         else
2907             level = plock < 0 ? "Shutting down" : "Running";
2908         return super.toString() +
2909             "[" + level +
2910             ", parallelism = " + pc +
2911             ", size = " + tc +
2912             ", active = " + ac +
2913             ", running = " + rc +
2914             ", steals = " + st +
2915             ", tasks = " + qt +
2916             ", submissions = " + qs +
2917             "]";
2918     }
2919 
2920     /**
2921      * Possibly initiates an orderly shutdown in which previously
2922      * submitted tasks are executed, but no new tasks will be
2923      * accepted. Invocation has no effect on execution state if this
2924      * is the {@link #commonPool()}, and no additional effect if
2925      * already shut down.  Tasks that are in the process of being
2926      * submitted concurrently during the course of this method may or
2927      * may not be rejected.
2928      *
2929      * @throws SecurityException if a security manager exists and
2930      *         the caller is not permitted to modify threads
2931      *         because it does not hold {@link
2932      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2933      */
2934     public void shutdown() {
2935         checkPermission();
2936         tryTerminate(false, true);
2937     }
2938 
2939     /**
2940      * Possibly attempts to cancel and/or stop all tasks, and reject
2941      * all subsequently submitted tasks.  Invocation has no effect on
2942      * execution state if this is the {@link #commonPool()}, and no
2943      * additional effect if already shut down. Otherwise, tasks that
2944      * are in the process of being submitted or executed concurrently
2945      * during the course of this method may or may not be
2946      * rejected. This method cancels both existing and unexecuted
2947      * tasks, in order to permit termination in the presence of task
2948      * dependencies. So the method always returns an empty list
2949      * (unlike the case for some other Executors).
2950      *
2951      * @return an empty list
2952      * @throws SecurityException if a security manager exists and
2953      *         the caller is not permitted to modify threads
2954      *         because it does not hold {@link
2955      *         java.lang.RuntimePermission}{@code ("modifyThread")}
2956      */
2957     public List<Runnable> shutdownNow() {
2958         checkPermission();
2959         tryTerminate(true, true);
2960         return Collections.emptyList();
2961     }
2962 
2963     /**
2964      * Returns {@code true} if all tasks have completed following shut down.
2965      *
2966      * @return {@code true} if all tasks have completed following shut down
2967      */
2968     public boolean isTerminated() {
2969         long c = ctl;
2970         return ((c & STOP_BIT) != 0L &&
2971                 (short)(c >>> TC_SHIFT) + parallelism <= 0);
2972     }
2973 
2974     /**
2975      * Returns {@code true} if the process of termination has
2976      * commenced but not yet completed.  This method may be useful for
2977      * debugging. A return of {@code true} reported a sufficient
2978      * period after shutdown may indicate that submitted tasks have
2979      * ignored or suppressed interruption, or are waiting for I/O,
2980      * causing this executor not to properly terminate. (See the
2981      * advisory notes for class {@link ForkJoinTask} stating that
2982      * tasks should not normally entail blocking operations.  But if
2983      * they do, they must abort them on interrupt.)
2984      *
2985      * @return {@code true} if terminating but not yet terminated
2986      */
2987     public boolean isTerminating() {
2988         long c = ctl;
2989         return ((c & STOP_BIT) != 0L &&
2990                 (short)(c >>> TC_SHIFT) + parallelism > 0);
2991     }
2992 
2993     /**
2994      * Returns {@code true} if this pool has been shut down.
2995      *
2996      * @return {@code true} if this pool has been shut down
2997      */
2998     public boolean isShutdown() {
2999         return plock < 0;
3000     }
3001 
3002     /**
3003      * Blocks until all tasks have completed execution after a
3004      * shutdown request, or the timeout occurs, or the current thread
3005      * is interrupted, whichever happens first. Because the {@link
3006      * #commonPool()} never terminates until program shutdown, when
3007      * applied to the common pool, this method is equivalent to {@link
3008      * #awaitQuiescence(long, TimeUnit)} but always returns {@code false}.
3009      *
3010      * @param timeout the maximum time to wait
3011      * @param unit the time unit of the timeout argument
3012      * @return {@code true} if this executor terminated and
3013      *         {@code false} if the timeout elapsed before termination
3014      * @throws InterruptedException if interrupted while waiting
3015      */
3016     public boolean awaitTermination(long timeout, TimeUnit unit)
3017         throws InterruptedException {
3018         if (Thread.interrupted())
3019             throw new InterruptedException();
3020         if (this == common) {
3021             awaitQuiescence(timeout, unit);
3022             return false;
3023         }
3024         long nanos = unit.toNanos(timeout);
3025         if (isTerminated())
3026             return true;
3027         if (nanos <= 0L)
3028             return false;
3029         long deadline = System.nanoTime() + nanos;
3030         synchronized (this) {
3031             for (;;) {
3032                 if (isTerminated())
3033                     return true;
3034                 if (nanos <= 0L)
3035                     return false;
3036                 long millis = TimeUnit.NANOSECONDS.toMillis(nanos);
3037                 wait(millis > 0L ? millis : 1L);
3038                 nanos = deadline - System.nanoTime();
3039             }
3040         }
3041     }
3042 
3043     /**
3044      * If called by a ForkJoinTask operating in this pool, equivalent
3045      * in effect to {@link ForkJoinTask#helpQuiesce}. Otherwise,
3046      * waits and/or attempts to assist performing tasks until this
3047      * pool {@link #isQuiescent} or the indicated timeout elapses.
3048      *
3049      * @param timeout the maximum time to wait
3050      * @param unit the time unit of the timeout argument
3051      * @return {@code true} if quiescent; {@code false} if the
3052      * timeout elapsed.
3053      */
3054     public boolean awaitQuiescence(long timeout, TimeUnit unit) {
3055         long nanos = unit.toNanos(timeout);
3056         ForkJoinWorkerThread wt;
3057         Thread thread = Thread.currentThread();
3058         if ((thread instanceof ForkJoinWorkerThread) &&
3059             (wt = (ForkJoinWorkerThread)thread).pool == this) {
3060             helpQuiescePool(wt.workQueue);
3061             return true;
3062         }
3063         long startTime = System.nanoTime();
3064         WorkQueue[] ws;
3065         int r = 0, m;
3066         boolean found = true;
3067         while (!isQuiescent() && (ws = workQueues) != null &&
3068                (m = ws.length - 1) >= 0) {
3069             if (!found) {
3070                 if ((System.nanoTime() - startTime) > nanos)
3071                     return false;
3072                 Thread.yield(); // cannot block
3073             }
3074             found = false;
3075             for (int j = (m + 1) << 2; j >= 0; --j) {
3076                 ForkJoinTask<?> t; WorkQueue q; int b;
3077                 if ((q = ws[r++ & m]) != null && (b = q.base) - q.top < 0) {
3078                     found = true;
3079                     if ((t = q.pollAt(b)) != null)
3080                         t.doExec();
3081                     break;
3082                 }
3083             }
3084         }
3085         return true;
3086     }
3087 
3088     /**
3089      * Waits and/or attempts to assist performing tasks indefinitely
3090      * until the {@link #commonPool()} {@link #isQuiescent}.
3091      */
3092     static void quiesceCommonPool() {
3093         common.awaitQuiescence(Long.MAX_VALUE, TimeUnit.NANOSECONDS);
3094     }
3095 
3096     /**
3097      * Interface for extending managed parallelism for tasks running
3098      * in {@link ForkJoinPool}s.
3099      *
3100      * <p>A {@code ManagedBlocker} provides two methods.  Method
3101      * {@code isReleasable} must return {@code true} if blocking is
3102      * not necessary. Method {@code block} blocks the current thread
3103      * if necessary (perhaps internally invoking {@code isReleasable}
3104      * before actually blocking). These actions are performed by any
3105      * thread invoking {@link ForkJoinPool#managedBlock(ManagedBlocker)}.
3106      * The unusual methods in this API accommodate synchronizers that
3107      * may, but don't usually, block for long periods. Similarly, they
3108      * allow more efficient internal handling of cases in which
3109      * additional workers may be, but usually are not, needed to
3110      * ensure sufficient parallelism.  Toward this end,
3111      * implementations of method {@code isReleasable} must be amenable
3112      * to repeated invocation.
3113      *
3114      * <p>For example, here is a ManagedBlocker based on a
3115      * ReentrantLock:
3116      *  <pre> {@code
3117      * class ManagedLocker implements ManagedBlocker {
3118      *   final ReentrantLock lock;
3119      *   boolean hasLock = false;
3120      *   ManagedLocker(ReentrantLock lock) { this.lock = lock; }
3121      *   public boolean block() {
3122      *     if (!hasLock)
3123      *       lock.lock();
3124      *     return true;
3125      *   }
3126      *   public boolean isReleasable() {
3127      *     return hasLock || (hasLock = lock.tryLock());
3128      *   }
3129      * }}</pre>
3130      *
3131      * <p>Here is a class that possibly blocks waiting for an
3132      * item on a given queue:
3133      *  <pre> {@code
3134      * class QueueTaker<E> implements ManagedBlocker {
3135      *   final BlockingQueue<E> queue;
3136      *   volatile E item = null;
3137      *   QueueTaker(BlockingQueue<E> q) { this.queue = q; }
3138      *   public boolean block() throws InterruptedException {
3139      *     if (item == null)
3140      *       item = queue.take();
3141      *     return true;
3142      *   }
3143      *   public boolean isReleasable() {
3144      *     return item != null || (item = queue.poll()) != null;
3145      *   }
3146      *   public E getItem() { // call after pool.managedBlock completes
3147      *     return item;
3148      *   }
3149      * }}</pre>
3150      */
3151     public static interface ManagedBlocker {
3152         /**
3153          * Possibly blocks the current thread, for example waiting for
3154          * a lock or condition.
3155          *
3156          * @return {@code true} if no additional blocking is necessary
3157          * (i.e., if isReleasable would return true)
3158          * @throws InterruptedException if interrupted while waiting
3159          * (the method is not required to do so, but is allowed to)
3160          */
3161         boolean block() throws InterruptedException;
3162 
3163         /**
3164          * Returns {@code true} if blocking is unnecessary.
3165          * @return {@code true} if blocking is unnecessary
3166          */
3167         boolean isReleasable();
3168     }
3169 
3170     /**
3171      * Blocks in accord with the given blocker.  If the current thread
3172      * is a {@link ForkJoinWorkerThread}, this method possibly
3173      * arranges for a spare thread to be activated if necessary to
3174      * ensure sufficient parallelism while the current thread is blocked.
3175      *
3176      * <p>If the caller is not a {@link ForkJoinTask}, this method is
3177      * behaviorally equivalent to
3178      *  <pre> {@code
3179      * while (!blocker.isReleasable())
3180      *   if (blocker.block())
3181      *     return;
3182      * }</pre>
3183      *
3184      * If the caller is a {@code ForkJoinTask}, then the pool may
3185      * first be expanded to ensure parallelism, and later adjusted.
3186      *
3187      * @param blocker the blocker
3188      * @throws InterruptedException if blocker.block did so
3189      */
3190     public static void managedBlock(ManagedBlocker blocker)
3191         throws InterruptedException {
3192         Thread t = Thread.currentThread();
3193         if (t instanceof ForkJoinWorkerThread) {
3194             ForkJoinPool p = ((ForkJoinWorkerThread)t).pool;
3195             while (!blocker.isReleasable()) {
3196                 if (p.tryCompensate(p.ctl)) {
3197                     try {
3198                         do {} while (!blocker.isReleasable() &&
3199                                      !blocker.block());
3200                     } finally {
3201                         p.incrementActiveCount();
3202                     }
3203                     break;
3204                 }
3205             }
3206         }
3207         else {
3208             do {} while (!blocker.isReleasable() &&
3209                          !blocker.block());
3210         }
3211     }
3212 
3213     // AbstractExecutorService overrides.  These rely on undocumented
3214     // fact that ForkJoinTask.adapt returns ForkJoinTasks that also
3215     // implement RunnableFuture.
3216 
3217     protected <T> RunnableFuture<T> newTaskFor(Runnable runnable, T value) {
3218         return new ForkJoinTask.AdaptedRunnable<T>(runnable, value);
3219     }
3220 
3221     protected <T> RunnableFuture<T> newTaskFor(Callable<T> callable) {
3222         return new ForkJoinTask.AdaptedCallable<T>(callable);
3223     }
3224 
3225     // Unsafe mechanics
3226     private static final sun.misc.Unsafe U;
3227     private static final long CTL;
3228     private static final long PARKBLOCKER;
3229     private static final int ABASE;
3230     private static final int ASHIFT;
3231     private static final long STEALCOUNT;
3232     private static final long PLOCK;
3233     private static final long INDEXSEED;
3234     private static final long QBASE;
3235     private static final long QLOCK;
3236 
3237     static {
3238         // initialize field offsets for CAS etc
3239         try {
3240             U = sun.misc.Unsafe.getUnsafe();
3241             Class<?> k = ForkJoinPool.class;
3242             CTL = U.objectFieldOffset
3243                 (k.getDeclaredField("ctl"));
3244             STEALCOUNT = U.objectFieldOffset
3245                 (k.getDeclaredField("stealCount"));
3246             PLOCK = U.objectFieldOffset
3247                 (k.getDeclaredField("plock"));
3248             INDEXSEED = U.objectFieldOffset
3249                 (k.getDeclaredField("indexSeed"));
3250             Class<?> tk = Thread.class;
3251             PARKBLOCKER = U.objectFieldOffset
3252                 (tk.getDeclaredField("parkBlocker"));
3253             Class<?> wk = WorkQueue.class;
3254             QBASE = U.objectFieldOffset
3255                 (wk.getDeclaredField("base"));
3256             QLOCK = U.objectFieldOffset
3257                 (wk.getDeclaredField("qlock"));
3258             Class<?> ak = ForkJoinTask[].class;
3259             ABASE = U.arrayBaseOffset(ak);
3260             int scale = U.arrayIndexScale(ak);
3261             if ((scale & (scale - 1)) != 0)
3262                 throw new Error("data type scale not a power of two");
3263             ASHIFT = 31 - Integer.numberOfLeadingZeros(scale);
3264         } catch (Exception e) {
3265             throw new Error(e);
3266         }
3267 
3268         defaultForkJoinWorkerThreadFactory =
3269             new DefaultForkJoinWorkerThreadFactory();
3270         modifyThreadPermission = new RuntimePermission("modifyThread");
3271 
3272         common = java.security.AccessController.doPrivileged
3273             (new java.security.PrivilegedAction<ForkJoinPool>() {
3274                 public ForkJoinPool run() { return makeCommonPool(); }});
3275         int par = common.parallelism; // report 1 even if threads disabled
3276         commonParallelism = par > 0 ? par : 1;
3277     }
3278 
3279     /**
3280      * Creates and returns the common pool, respecting user settings
3281      * specified via system properties.
3282      */
3283     private static ForkJoinPool makeCommonPool() {
3284         int parallelism = -1;
3285         ForkJoinWorkerThreadFactory factory
3286             = defaultForkJoinWorkerThreadFactory;
3287         UncaughtExceptionHandler handler = null;
3288         try {  // ignore exceptions in accessing/parsing properties
3289             String pp = System.getProperty
3290                 ("java.util.concurrent.ForkJoinPool.common.parallelism");
3291             String fp = System.getProperty
3292                 ("java.util.concurrent.ForkJoinPool.common.threadFactory");
3293             String hp = System.getProperty
3294                 ("java.util.concurrent.ForkJoinPool.common.exceptionHandler");
3295             if (pp != null)
3296                 parallelism = Integer.parseInt(pp);
3297             if (fp != null)
3298                 factory = ((ForkJoinWorkerThreadFactory)ClassLoader.
3299                            getSystemClassLoader().loadClass(fp).newInstance());
3300             if (hp != null)
3301                 handler = ((UncaughtExceptionHandler)ClassLoader.
3302                            getSystemClassLoader().loadClass(hp).newInstance());
3303         } catch (Exception ignore) {
3304         }
3305 
3306         if (parallelism < 0 && // default 1 less than #cores
3307             (parallelism = Runtime.getRuntime().availableProcessors() - 1) <= 0)
3308             parallelism = 1;
3309         if (parallelism > MAX_CAP)
3310             parallelism = MAX_CAP;
3311         return new ForkJoinPool(parallelism, factory, handler, LIFO_QUEUE,
3312                                 "ForkJoinPool.commonPool-worker-");
3313     }
3314 
3315 }