/* * Copyright (c) 2001, 2008, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. Oracle designates this * particular file as subject to the "Classpath" exception as provided * by Oracle in the LICENSE file that accompanied this code. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ #ifdef WIN32_LEAN_AND_MEAN typedef signed char byte ; #endif struct bytes { byte* ptr; size_t len; byte* limit() { return ptr+len; } void set(byte* ptr_, size_t len_) { ptr = ptr_; len = len_; } void set(const char* str) { ptr = (byte*)str; len = strlen(str); } bool inBounds(const void* p); // p in [ptr, limit) void malloc(size_t len_); void realloc(size_t len_); void free(); void copyFrom(const void* ptr_, size_t len_, size_t offset = 0); void saveFrom(const void* ptr_, size_t len_); void saveFrom(const char* str) { saveFrom(str, strlen(str)); } void copyFrom(bytes& other, size_t offset = 0) { copyFrom(other.ptr, other.len, offset); } void saveFrom(bytes& other) { saveFrom(other.ptr, other.len); } void clear(int fill_byte = 0) { memset(ptr, fill_byte, len); } byte* writeTo(byte* bp); bool equals(bytes& other) { return 0 == compareTo(other); } int compareTo(bytes& other); bool contains(byte c) { return indexOf(c) >= 0; } int indexOf(byte c); // substrings: static bytes of(byte* ptr, size_t len) { bytes res; res.set(ptr, len); return res; } bytes slice(size_t beg, size_t end) { bytes res; res.ptr = ptr + beg; res.len = end - beg; assert(res.len == 0 || (inBounds(res.ptr) && inBounds(res.limit()-1))); return res; } // building C strings inside byte buffers: bytes& strcat(const char* str) { ::strcat((char*)ptr, str); return *this; } bytes& strcat(bytes& other) { ::strncat((char*)ptr, (char*)other.ptr, other.len); return *this; } char* strval() { assert(strlen((char*)ptr) == len); return (char*) ptr; } #ifdef PRODUCT const char* string() { return 0; } #else const char* string(); #endif }; #define BYTES_OF(var) (bytes::of((byte*)&(var), sizeof(var))) struct fillbytes { bytes b; size_t allocated; byte* base() { return b.ptr; } size_t size() { return b.len; } byte* limit() { return b.limit(); } // logical limit void setLimit(byte* lp) { assert(isAllocated(lp)); b.len = lp - b.ptr; } byte* end() { return b.ptr + allocated; } // physical limit byte* loc(size_t o) { assert(o < b.len); return b.ptr + o; } void init() { allocated = 0; b.set(null, 0); } void init(size_t s) { init(); ensureSize(s); } void free() { if (allocated != 0) b.free(); allocated = 0; } void empty() { b.len = 0; } byte* grow(size_t s); // grow so that limit() += s int getByte(uint i) { return *loc(i) & 0xFF; } void addByte(byte x) { *grow(1) = x; } void ensureSize(size_t s); // make sure allocated >= s void trimToSize() { if (allocated > size()) b.realloc(allocated = size()); } bool canAppend(size_t s) { return allocated > b.len+s; } bool isAllocated(byte* p) { return p >= base() && p <= end(); } //asserts void set(bytes& src) { set(src.ptr, src.len); } void set(byte* ptr, size_t len) { b.set(ptr, len); allocated = 0; // mark as not reallocatable } // block operations on resizing byte buffer: fillbytes& append(const void* ptr_, size_t len_) { memcpy(grow(len_), ptr_, len_); return (*this); } fillbytes& append(bytes& other) { return append(other.ptr, other.len); } fillbytes& append(const char* str) { return append(str, strlen(str)); } }; struct ptrlist : fillbytes { typedef const void* cvptr; int length() { return (int)(size() / sizeof(cvptr)); } cvptr* base() { return (cvptr*) fillbytes::base(); } cvptr& get(int i) { return *(cvptr*)loc(i * sizeof(cvptr)); } cvptr* limit() { return (cvptr*) fillbytes::limit(); } void add(cvptr x) { *(cvptr*)grow(sizeof(x)) = x; } void popTo(int l) { assert(l <= length()); b.len = l * sizeof(cvptr); } int indexOf(cvptr x); bool contains(cvptr x) { return indexOf(x) >= 0; } void freeAll(); // frees every ptr on the list, plus the list itself }; // Use a macro rather than mess with subtle mismatches // between member and non-member function pointers. #define PTRLIST_QSORT(ptrls, fn) \ ::qsort((ptrls).base(), (ptrls).length(), sizeof(void*), fn) struct intlist : fillbytes { int length() { return (int)(size() / sizeof(int)); } int* base() { return (int*) fillbytes::base(); } int& get(int i) { return *(int*)loc(i * sizeof(int)); } int* limit() { return (int*) fillbytes::limit(); } void add(int x) { *(int*)grow(sizeof(x)) = x; } void popTo(int l) { assert(l <= length()); b.len = l * sizeof(int); } int indexOf(int x); bool contains(int x) { return indexOf(x) >= 0; } };