1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_VM_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_VM_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 
  32 // MacroAssembler extends Assembler by frequently used macros.
  33 //
  34 // Instructions for which a 'better' code sequence exists depending
  35 // on arguments should also go in here.
  36 
  37 class MacroAssembler: public Assembler {
  38   friend class LIR_Assembler;
  39   friend class Runtime1;      // as_Address()
  40 
  41  protected:
  42 
  43   Address as_Address(AddressLiteral adr);
  44   Address as_Address(ArrayAddress adr);
  45 
  46   // Support for VM calls
  47   //
  48   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  49   // may customize this version by overriding it for its purposes (e.g., to save/restore
  50   // additional registers when doing a VM call).
  51 
  52   virtual void call_VM_leaf_base(
  53     address entry_point,               // the entry point
  54     int     number_of_arguments        // the number of arguments to pop after the call
  55   );
  56 
  57   // This is the base routine called by the different versions of call_VM. The interpreter
  58   // may customize this version by overriding it for its purposes (e.g., to save/restore
  59   // additional registers when doing a VM call).
  60   //
  61   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  62   // returns the register which contains the thread upon return. If a thread register has been
  63   // specified, the return value will correspond to that register. If no last_java_sp is specified
  64   // (noreg) than rsp will be used instead.
  65   virtual void call_VM_base(           // returns the register containing the thread upon return
  66     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  67     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  68     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  69     address  entry_point,              // the entry point
  70     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  71     bool     check_exceptions          // whether to check for pending exceptions after return
  72   );
  73 
  74   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  75 
  76   // helpers for FPU flag access
  77   // tmp is a temporary register, if none is available use noreg
  78   void save_rax   (Register tmp);
  79   void restore_rax(Register tmp);
  80 
  81  public:
  82   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  83 
  84  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  85  // The implementation is only non-empty for the InterpreterMacroAssembler,
  86  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  87  virtual void check_and_handle_popframe(Register java_thread);
  88  virtual void check_and_handle_earlyret(Register java_thread);
  89 
  90   // Support for NULL-checks
  91   //
  92   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  93   // If the accessed location is M[reg + offset] and the offset is known, provide the
  94   // offset. No explicit code generation is needed if the offset is within a certain
  95   // range (0 <= offset <= page_size).
  96 
  97   void null_check(Register reg, int offset = -1);
  98   static bool needs_explicit_null_check(intptr_t offset);
  99 
 100   // Required platform-specific helpers for Label::patch_instructions.
 101   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 102   void pd_patch_instruction(address branch, address target) {
 103     unsigned char op = branch[0];
 104     assert(op == 0xE8 /* call */ ||
 105         op == 0xE9 /* jmp */ ||
 106         op == 0xEB /* short jmp */ ||
 107         (op & 0xF0) == 0x70 /* short jcc */ ||
 108         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 109         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 110         "Invalid opcode at patch point");
 111 
 112     if (op == 0xEB || (op & 0xF0) == 0x70) {
 113       // short offset operators (jmp and jcc)
 114       char* disp = (char*) &branch[1];
 115       int imm8 = target - (address) &disp[1];
 116       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset");
 117       *disp = imm8;
 118     } else {
 119       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 120       int imm32 = target - (address) &disp[1];
 121       *disp = imm32;
 122     }
 123   }
 124 
 125   // The following 4 methods return the offset of the appropriate move instruction
 126 
 127   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 128   int load_unsigned_byte(Register dst, Address src);
 129   int load_unsigned_short(Register dst, Address src);
 130 
 131   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 132   int load_signed_byte(Register dst, Address src);
 133   int load_signed_short(Register dst, Address src);
 134 
 135   // Support for sign-extension (hi:lo = extend_sign(lo))
 136   void extend_sign(Register hi, Register lo);
 137 
 138   // Load and store values by size and signed-ness
 139   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 140   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 141 
 142   // Support for inc/dec with optimal instruction selection depending on value
 143 
 144   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 145   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 146 
 147   void decrementl(Address dst, int value = 1);
 148   void decrementl(Register reg, int value = 1);
 149 
 150   void decrementq(Register reg, int value = 1);
 151   void decrementq(Address dst, int value = 1);
 152 
 153   void incrementl(Address dst, int value = 1);
 154   void incrementl(Register reg, int value = 1);
 155 
 156   void incrementq(Register reg, int value = 1);
 157   void incrementq(Address dst, int value = 1);
 158 
 159   // special instructions for EVEX
 160   void setvectmask(Register dst, Register src);
 161   void restorevectmask();
 162 
 163   // Support optimal SSE move instructions.
 164   void movflt(XMMRegister dst, XMMRegister src) {
 165     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 166     else                       { movss (dst, src); return; }
 167   }
 168   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 169   void movflt(XMMRegister dst, AddressLiteral src);
 170   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 171 
 172   void movdbl(XMMRegister dst, XMMRegister src) {
 173     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 174     else                       { movsd (dst, src); return; }
 175   }
 176 
 177   void movdbl(XMMRegister dst, AddressLiteral src);
 178 
 179   void movdbl(XMMRegister dst, Address src) {
 180     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 181     else                         { movlpd(dst, src); return; }
 182   }
 183   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 184 
 185   void incrementl(AddressLiteral dst);
 186   void incrementl(ArrayAddress dst);
 187 
 188   void incrementq(AddressLiteral dst);
 189 
 190   // Alignment
 191   void align(int modulus);
 192   void align(int modulus, int target);
 193 
 194   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 195   void fat_nop();
 196 
 197   // Stack frame creation/removal
 198   void enter();
 199   void leave();
 200 
 201   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 202   // The pointer will be loaded into the thread register.
 203   void get_thread(Register thread);
 204 
 205 
 206   // Support for VM calls
 207   //
 208   // It is imperative that all calls into the VM are handled via the call_VM macros.
 209   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 210   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 211 
 212 
 213   void call_VM(Register oop_result,
 214                address entry_point,
 215                bool check_exceptions = true);
 216   void call_VM(Register oop_result,
 217                address entry_point,
 218                Register arg_1,
 219                bool check_exceptions = true);
 220   void call_VM(Register oop_result,
 221                address entry_point,
 222                Register arg_1, Register arg_2,
 223                bool check_exceptions = true);
 224   void call_VM(Register oop_result,
 225                address entry_point,
 226                Register arg_1, Register arg_2, Register arg_3,
 227                bool check_exceptions = true);
 228 
 229   // Overloadings with last_Java_sp
 230   void call_VM(Register oop_result,
 231                Register last_java_sp,
 232                address entry_point,
 233                int number_of_arguments = 0,
 234                bool check_exceptions = true);
 235   void call_VM(Register oop_result,
 236                Register last_java_sp,
 237                address entry_point,
 238                Register arg_1, bool
 239                check_exceptions = true);
 240   void call_VM(Register oop_result,
 241                Register last_java_sp,
 242                address entry_point,
 243                Register arg_1, Register arg_2,
 244                bool check_exceptions = true);
 245   void call_VM(Register oop_result,
 246                Register last_java_sp,
 247                address entry_point,
 248                Register arg_1, Register arg_2, Register arg_3,
 249                bool check_exceptions = true);
 250 
 251   void get_vm_result  (Register oop_result, Register thread);
 252   void get_vm_result_2(Register metadata_result, Register thread);
 253 
 254   // These always tightly bind to MacroAssembler::call_VM_base
 255   // bypassing the virtual implementation
 256   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 257   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 258   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 259   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 260   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 261 
 262   void call_VM_leaf0(address entry_point);
 263   void call_VM_leaf(address entry_point,
 264                     int number_of_arguments = 0);
 265   void call_VM_leaf(address entry_point,
 266                     Register arg_1);
 267   void call_VM_leaf(address entry_point,
 268                     Register arg_1, Register arg_2);
 269   void call_VM_leaf(address entry_point,
 270                     Register arg_1, Register arg_2, Register arg_3);
 271 
 272   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 273   // bypassing the virtual implementation
 274   void super_call_VM_leaf(address entry_point);
 275   void super_call_VM_leaf(address entry_point, Register arg_1);
 276   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 277   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 278   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 279 
 280   // last Java Frame (fills frame anchor)
 281   void set_last_Java_frame(Register thread,
 282                            Register last_java_sp,
 283                            Register last_java_fp,
 284                            address last_java_pc);
 285 
 286   // thread in the default location (r15_thread on 64bit)
 287   void set_last_Java_frame(Register last_java_sp,
 288                            Register last_java_fp,
 289                            address last_java_pc);
 290 
 291   void reset_last_Java_frame(Register thread, bool clear_fp);
 292 
 293   // thread in the default location (r15_thread on 64bit)
 294   void reset_last_Java_frame(bool clear_fp);
 295 
 296   // Stores
 297   void store_check(Register obj);                // store check for obj - register is destroyed afterwards
 298   void store_check(Register obj, Address dst);   // same as above, dst is exact store location (reg. is destroyed)
 299 
 300   void resolve_jobject(Register value, Register thread, Register tmp);
 301   void clear_jweak_tag(Register possibly_jweak);
 302 
 303 #if INCLUDE_ALL_GCS
 304 
 305   void g1_write_barrier_pre(Register obj,
 306                             Register pre_val,
 307                             Register thread,
 308                             Register tmp,
 309                             bool tosca_live,
 310                             bool expand_call);
 311 
 312   void g1_write_barrier_post(Register store_addr,
 313                              Register new_val,
 314                              Register thread,
 315                              Register tmp,
 316                              Register tmp2);
 317 
 318 #endif // INCLUDE_ALL_GCS
 319 
 320   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 321   void c2bool(Register x);
 322 
 323   // C++ bool manipulation
 324 
 325   void movbool(Register dst, Address src);
 326   void movbool(Address dst, bool boolconst);
 327   void movbool(Address dst, Register src);
 328   void testbool(Register dst);
 329 
 330   void resolve_oop_handle(Register result);
 331   void load_mirror(Register mirror, Register method);
 332 
 333   // oop manipulations
 334   void load_klass(Register dst, Register src);
 335   void store_klass(Register dst, Register src);
 336 
 337   void load_heap_oop(Register dst, Address src);
 338   void load_heap_oop_not_null(Register dst, Address src);
 339   void store_heap_oop(Address dst, Register src);
 340   void cmp_heap_oop(Register src1, Address src2, Register tmp = noreg);
 341 
 342   // Used for storing NULL. All other oop constants should be
 343   // stored using routines that take a jobject.
 344   void store_heap_oop_null(Address dst);
 345 
 346   void load_prototype_header(Register dst, Register src);
 347 
 348 #ifdef _LP64
 349   void store_klass_gap(Register dst, Register src);
 350 
 351   // This dummy is to prevent a call to store_heap_oop from
 352   // converting a zero (like NULL) into a Register by giving
 353   // the compiler two choices it can't resolve
 354 
 355   void store_heap_oop(Address dst, void* dummy);
 356 
 357   void encode_heap_oop(Register r);
 358   void decode_heap_oop(Register r);
 359   void encode_heap_oop_not_null(Register r);
 360   void decode_heap_oop_not_null(Register r);
 361   void encode_heap_oop_not_null(Register dst, Register src);
 362   void decode_heap_oop_not_null(Register dst, Register src);
 363 
 364   void set_narrow_oop(Register dst, jobject obj);
 365   void set_narrow_oop(Address dst, jobject obj);
 366   void cmp_narrow_oop(Register dst, jobject obj);
 367   void cmp_narrow_oop(Address dst, jobject obj);
 368 
 369   void encode_klass_not_null(Register r);
 370   void decode_klass_not_null(Register r);
 371   void encode_klass_not_null(Register dst, Register src);
 372   void decode_klass_not_null(Register dst, Register src);
 373   void set_narrow_klass(Register dst, Klass* k);
 374   void set_narrow_klass(Address dst, Klass* k);
 375   void cmp_narrow_klass(Register dst, Klass* k);
 376   void cmp_narrow_klass(Address dst, Klass* k);
 377 
 378   // Returns the byte size of the instructions generated by decode_klass_not_null()
 379   // when compressed klass pointers are being used.
 380   static int instr_size_for_decode_klass_not_null();
 381 
 382   // if heap base register is used - reinit it with the correct value
 383   void reinit_heapbase();
 384 
 385   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 386 
 387 #endif // _LP64
 388 
 389   // Int division/remainder for Java
 390   // (as idivl, but checks for special case as described in JVM spec.)
 391   // returns idivl instruction offset for implicit exception handling
 392   int corrected_idivl(Register reg);
 393 
 394   // Long division/remainder for Java
 395   // (as idivq, but checks for special case as described in JVM spec.)
 396   // returns idivq instruction offset for implicit exception handling
 397   int corrected_idivq(Register reg);
 398 
 399   void int3();
 400 
 401   // Long operation macros for a 32bit cpu
 402   // Long negation for Java
 403   void lneg(Register hi, Register lo);
 404 
 405   // Long multiplication for Java
 406   // (destroys contents of eax, ebx, ecx and edx)
 407   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 408 
 409   // Long shifts for Java
 410   // (semantics as described in JVM spec.)
 411   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 412   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 413 
 414   // Long compare for Java
 415   // (semantics as described in JVM spec.)
 416   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 417 
 418 
 419   // misc
 420 
 421   // Sign extension
 422   void sign_extend_short(Register reg);
 423   void sign_extend_byte(Register reg);
 424 
 425   // Division by power of 2, rounding towards 0
 426   void division_with_shift(Register reg, int shift_value);
 427 
 428   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 429   //
 430   // CF (corresponds to C0) if x < y
 431   // PF (corresponds to C2) if unordered
 432   // ZF (corresponds to C3) if x = y
 433   //
 434   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 435   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 436   void fcmp(Register tmp);
 437   // Variant of the above which allows y to be further down the stack
 438   // and which only pops x and y if specified. If pop_right is
 439   // specified then pop_left must also be specified.
 440   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 441 
 442   // Floating-point comparison for Java
 443   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 444   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 445   // (semantics as described in JVM spec.)
 446   void fcmp2int(Register dst, bool unordered_is_less);
 447   // Variant of the above which allows y to be further down the stack
 448   // and which only pops x and y if specified. If pop_right is
 449   // specified then pop_left must also be specified.
 450   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 451 
 452   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 453   // tmp is a temporary register, if none is available use noreg
 454   void fremr(Register tmp);
 455 
 456   // dst = c = a * b + c
 457   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 458   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 459 
 460   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 461   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 462   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 463   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 464 
 465 
 466   // same as fcmp2int, but using SSE2
 467   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 468   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 469 
 470   // branch to L if FPU flag C2 is set/not set
 471   // tmp is a temporary register, if none is available use noreg
 472   void jC2 (Register tmp, Label& L);
 473   void jnC2(Register tmp, Label& L);
 474 
 475   // Pop ST (ffree & fincstp combined)
 476   void fpop();
 477 
 478   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 479   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 480   void load_float(Address src);
 481 
 482   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 483   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 484   void store_float(Address dst);
 485 
 486   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 487   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 488   void load_double(Address src);
 489 
 490   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 491   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 492   void store_double(Address dst);
 493 
 494   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 495   void push_fTOS();
 496 
 497   // pops double TOS element from CPU stack and pushes on FPU stack
 498   void pop_fTOS();
 499 
 500   void empty_FPU_stack();
 501 
 502   void push_IU_state();
 503   void pop_IU_state();
 504 
 505   void push_FPU_state();
 506   void pop_FPU_state();
 507 
 508   void push_CPU_state();
 509   void pop_CPU_state();
 510 
 511   // Round up to a power of two
 512   void round_to(Register reg, int modulus);
 513 
 514   // Callee saved registers handling
 515   void push_callee_saved_registers();
 516   void pop_callee_saved_registers();
 517 
 518   // allocation
 519   void eden_allocate(
 520     Register obj,                      // result: pointer to object after successful allocation
 521     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 522     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 523     Register t1,                       // temp register
 524     Label&   slow_case                 // continuation point if fast allocation fails
 525   );
 526   void tlab_allocate(
 527     Register obj,                      // result: pointer to object after successful allocation
 528     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 529     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 530     Register t1,                       // temp register
 531     Register t2,                       // temp register
 532     Label&   slow_case                 // continuation point if fast allocation fails
 533   );
 534   Register tlab_refill(Label& retry_tlab, Label& try_eden, Label& slow_case); // returns TLS address
 535   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 536 
 537   void incr_allocated_bytes(Register thread,
 538                             Register var_size_in_bytes, int con_size_in_bytes,
 539                             Register t1 = noreg);
 540 
 541   // interface method calling
 542   void lookup_interface_method(Register recv_klass,
 543                                Register intf_klass,
 544                                RegisterOrConstant itable_index,
 545                                Register method_result,
 546                                Register scan_temp,
 547                                Label& no_such_interface);
 548 
 549   // virtual method calling
 550   void lookup_virtual_method(Register recv_klass,
 551                              RegisterOrConstant vtable_index,
 552                              Register method_result);
 553 
 554   // Test sub_klass against super_klass, with fast and slow paths.
 555 
 556   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 557   // One of the three labels can be NULL, meaning take the fall-through.
 558   // If super_check_offset is -1, the value is loaded up from super_klass.
 559   // No registers are killed, except temp_reg.
 560   void check_klass_subtype_fast_path(Register sub_klass,
 561                                      Register super_klass,
 562                                      Register temp_reg,
 563                                      Label* L_success,
 564                                      Label* L_failure,
 565                                      Label* L_slow_path,
 566                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 567 
 568   // The rest of the type check; must be wired to a corresponding fast path.
 569   // It does not repeat the fast path logic, so don't use it standalone.
 570   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 571   // Updates the sub's secondary super cache as necessary.
 572   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 573   void check_klass_subtype_slow_path(Register sub_klass,
 574                                      Register super_klass,
 575                                      Register temp_reg,
 576                                      Register temp2_reg,
 577                                      Label* L_success,
 578                                      Label* L_failure,
 579                                      bool set_cond_codes = false);
 580 
 581   // Simplified, combined version, good for typical uses.
 582   // Falls through on failure.
 583   void check_klass_subtype(Register sub_klass,
 584                            Register super_klass,
 585                            Register temp_reg,
 586                            Label& L_success);
 587 
 588   // method handles (JSR 292)
 589   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 590 
 591   //----
 592   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 593 
 594   // Debugging
 595 
 596   // only if +VerifyOops
 597   // TODO: Make these macros with file and line like sparc version!
 598   void verify_oop(Register reg, const char* s = "broken oop");
 599   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 600 
 601   // TODO: verify method and klass metadata (compare against vptr?)
 602   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 603   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 604 
 605 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 606 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 607 
 608   // only if +VerifyFPU
 609   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 610 
 611   // Verify or restore cpu control state after JNI call
 612   void restore_cpu_control_state_after_jni();
 613 
 614   // prints msg, dumps registers and stops execution
 615   void stop(const char* msg);
 616 
 617   // prints msg and continues
 618   void warn(const char* msg);
 619 
 620   // dumps registers and other state
 621   void print_state();
 622 
 623   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 624   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 625   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 626   static void print_state64(int64_t pc, int64_t regs[]);
 627 
 628   void os_breakpoint();
 629 
 630   void untested()                                { stop("untested"); }
 631 
 632   void unimplemented(const char* what = "");
 633 
 634   void should_not_reach_here()                   { stop("should not reach here"); }
 635 
 636   void print_CPU_state();
 637 
 638   // Stack overflow checking
 639   void bang_stack_with_offset(int offset) {
 640     // stack grows down, caller passes positive offset
 641     assert(offset > 0, "must bang with negative offset");
 642     movl(Address(rsp, (-offset)), rax);
 643   }
 644 
 645   // Writes to stack successive pages until offset reached to check for
 646   // stack overflow + shadow pages.  Also, clobbers tmp
 647   void bang_stack_size(Register size, Register tmp);
 648 
 649   // Check for reserved stack access in method being exited (for JIT)
 650   void reserved_stack_check();
 651 
 652   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 653                                                 Register tmp,
 654                                                 int offset);
 655 
 656   // Support for serializing memory accesses between threads
 657   void serialize_memory(Register thread, Register tmp);
 658 
 659   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 660 
 661   void verify_tlab();
 662 
 663   // Biased locking support
 664   // lock_reg and obj_reg must be loaded up with the appropriate values.
 665   // swap_reg must be rax, and is killed.
 666   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 667   // be killed; if not supplied, push/pop will be used internally to
 668   // allocate a temporary (inefficient, avoid if possible).
 669   // Optional slow case is for implementations (interpreter and C1) which branch to
 670   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 671   // Returns offset of first potentially-faulting instruction for null
 672   // check info (currently consumed only by C1). If
 673   // swap_reg_contains_mark is true then returns -1 as it is assumed
 674   // the calling code has already passed any potential faults.
 675   int biased_locking_enter(Register lock_reg, Register obj_reg,
 676                            Register swap_reg, Register tmp_reg,
 677                            bool swap_reg_contains_mark,
 678                            Label& done, Label* slow_case = NULL,
 679                            BiasedLockingCounters* counters = NULL);
 680   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 681 #ifdef COMPILER2
 682   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 683   // See full desription in macroAssembler_x86.cpp.
 684   void fast_lock(Register obj, Register box, Register tmp,
 685                  Register scr, Register cx1, Register cx2,
 686                  BiasedLockingCounters* counters,
 687                  RTMLockingCounters* rtm_counters,
 688                  RTMLockingCounters* stack_rtm_counters,
 689                  Metadata* method_data,
 690                  bool use_rtm, bool profile_rtm);
 691   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 692 #if INCLUDE_RTM_OPT
 693   void rtm_counters_update(Register abort_status, Register rtm_counters);
 694   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 695   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 696                                    RTMLockingCounters* rtm_counters,
 697                                    Metadata* method_data);
 698   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 699                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 700   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 701   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 702   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 703                          Register retry_on_abort_count,
 704                          RTMLockingCounters* stack_rtm_counters,
 705                          Metadata* method_data, bool profile_rtm,
 706                          Label& DONE_LABEL, Label& IsInflated);
 707   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 708                             Register scr, Register retry_on_busy_count,
 709                             Register retry_on_abort_count,
 710                             RTMLockingCounters* rtm_counters,
 711                             Metadata* method_data, bool profile_rtm,
 712                             Label& DONE_LABEL);
 713 #endif
 714 #endif
 715 
 716   Condition negate_condition(Condition cond);
 717 
 718   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 719   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 720   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 721   // here in MacroAssembler. The major exception to this rule is call
 722 
 723   // Arithmetics
 724 
 725 
 726   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 727   void addptr(Address dst, Register src);
 728 
 729   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 730   void addptr(Register dst, int32_t src);
 731   void addptr(Register dst, Register src);
 732   void addptr(Register dst, RegisterOrConstant src) {
 733     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 734     else                   addptr(dst,       src.as_register());
 735   }
 736 
 737   void andptr(Register dst, int32_t src);
 738   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 739 
 740   void cmp8(AddressLiteral src1, int imm);
 741 
 742   // renamed to drag out the casting of address to int32_t/intptr_t
 743   void cmp32(Register src1, int32_t imm);
 744 
 745   void cmp32(AddressLiteral src1, int32_t imm);
 746   // compare reg - mem, or reg - &mem
 747   void cmp32(Register src1, AddressLiteral src2);
 748 
 749   void cmp32(Register src1, Address src2);
 750 
 751 #ifndef _LP64
 752   void cmpklass(Address dst, Metadata* obj);
 753   void cmpklass(Register dst, Metadata* obj);
 754   void cmpoop(Address dst, jobject obj);
 755 #endif // _LP64
 756 
 757   void cmpoop(Register src1, Register src2);
 758   void cmpoop(Register src1, Address src2);
 759   void cmpoop(Register dst, jobject obj);
 760 
 761   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 762   void cmpptr(Address src1, AddressLiteral src2);
 763 
 764   void cmpptr(Register src1, AddressLiteral src2);
 765 
 766   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 767   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 768   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 769 
 770   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 771   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 772 
 773   // cmp64 to avoild hiding cmpq
 774   void cmp64(Register src1, AddressLiteral src);
 775 
 776   void cmpxchgptr(Register reg, Address adr);
 777 
 778   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 779 
 780 
 781   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 782   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 783 
 784 
 785   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 786 
 787   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 788 
 789   void shlptr(Register dst, int32_t shift);
 790   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 791 
 792   void shrptr(Register dst, int32_t shift);
 793   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 794 
 795   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 796   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 797 
 798   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 799 
 800   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 801   void subptr(Register dst, int32_t src);
 802   // Force generation of a 4 byte immediate value even if it fits into 8bit
 803   void subptr_imm32(Register dst, int32_t src);
 804   void subptr(Register dst, Register src);
 805   void subptr(Register dst, RegisterOrConstant src) {
 806     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 807     else                   subptr(dst,       src.as_register());
 808   }
 809 
 810   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 811   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 812 
 813   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 814   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 815 
 816   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 817 
 818 
 819 
 820   // Helper functions for statistics gathering.
 821   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 822   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 823   // Unconditional atomic increment.
 824   void atomic_incl(Address counter_addr);
 825   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 826 #ifdef _LP64
 827   void atomic_incq(Address counter_addr);
 828   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 829 #endif
 830   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 831   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 832 
 833   void lea(Register dst, AddressLiteral adr);
 834   void lea(Address dst, AddressLiteral adr);
 835   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 836 
 837   void leal32(Register dst, Address src) { leal(dst, src); }
 838 
 839   // Import other testl() methods from the parent class or else
 840   // they will be hidden by the following overriding declaration.
 841   using Assembler::testl;
 842   void testl(Register dst, AddressLiteral src);
 843 
 844   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 845   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 846   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 847   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 848 
 849   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 850   void testptr(Register src1, Register src2);
 851 
 852   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 853   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 854 
 855   // Calls
 856 
 857   void call(Label& L, relocInfo::relocType rtype);
 858   void call(Register entry);
 859 
 860   // NOTE: this call transfers to the effective address of entry NOT
 861   // the address contained by entry. This is because this is more natural
 862   // for jumps/calls.
 863   void call(AddressLiteral entry);
 864 
 865   // Emit the CompiledIC call idiom
 866   void ic_call(address entry, jint method_index = 0);
 867 
 868   // Jumps
 869 
 870   // NOTE: these jumps tranfer to the effective address of dst NOT
 871   // the address contained by dst. This is because this is more natural
 872   // for jumps/calls.
 873   void jump(AddressLiteral dst);
 874   void jump_cc(Condition cc, AddressLiteral dst);
 875 
 876   // 32bit can do a case table jump in one instruction but we no longer allow the base
 877   // to be installed in the Address class. This jump will tranfers to the address
 878   // contained in the location described by entry (not the address of entry)
 879   void jump(ArrayAddress entry);
 880 
 881   // Floating
 882 
 883   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 884   void andpd(XMMRegister dst, AddressLiteral src);
 885   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 886 
 887   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 888   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 889   void andps(XMMRegister dst, AddressLiteral src);
 890 
 891   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 892   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 893   void comiss(XMMRegister dst, AddressLiteral src);
 894 
 895   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 896   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 897   void comisd(XMMRegister dst, AddressLiteral src);
 898 
 899   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 900   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 901 
 902   void fldcw(Address src) { Assembler::fldcw(src); }
 903   void fldcw(AddressLiteral src);
 904 
 905   void fld_s(int index)   { Assembler::fld_s(index); }
 906   void fld_s(Address src) { Assembler::fld_s(src); }
 907   void fld_s(AddressLiteral src);
 908 
 909   void fld_d(Address src) { Assembler::fld_d(src); }
 910   void fld_d(AddressLiteral src);
 911 
 912   void fld_x(Address src) { Assembler::fld_x(src); }
 913   void fld_x(AddressLiteral src);
 914 
 915   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 916   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 917 
 918   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 919   void ldmxcsr(AddressLiteral src);
 920 
 921 #ifdef _LP64
 922  private:
 923   void sha256_AVX2_one_round_compute(
 924     Register  reg_old_h,
 925     Register  reg_a,
 926     Register  reg_b,
 927     Register  reg_c,
 928     Register  reg_d,
 929     Register  reg_e,
 930     Register  reg_f,
 931     Register  reg_g,
 932     Register  reg_h,
 933     int iter);
 934   void sha256_AVX2_four_rounds_compute_first(int start);
 935   void sha256_AVX2_four_rounds_compute_last(int start);
 936   void sha256_AVX2_one_round_and_sched(
 937         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 938         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 939         XMMRegister xmm_2,     /* ymm6 */
 940         XMMRegister xmm_3,     /* ymm7 */
 941         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 942         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 943         Register    reg_c,      /* edi */
 944         Register    reg_d,      /* esi */
 945         Register    reg_e,      /* r8d */
 946         Register    reg_f,      /* r9d */
 947         Register    reg_g,      /* r10d */
 948         Register    reg_h,      /* r11d */
 949         int iter);
 950 
 951   void addm(int disp, Register r1, Register r2);
 952 
 953  public:
 954   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 955                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 956                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 957                    bool multi_block, XMMRegister shuf_mask);
 958 #endif
 959 
 960 #ifdef _LP64
 961  private:
 962   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 963                                      Register e, Register f, Register g, Register h, int iteration);
 964 
 965   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 966                                           Register a, Register b, Register c, Register d, Register e, Register f,
 967                                           Register g, Register h, int iteration);
 968 
 969   void addmq(int disp, Register r1, Register r2);
 970  public:
 971   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 972                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 973                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 974                    XMMRegister shuf_mask);
 975 #endif
 976 
 977   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 978                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 979                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 980                  bool multi_block);
 981 
 982 #ifdef _LP64
 983   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 984                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 985                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 986                    bool multi_block, XMMRegister shuf_mask);
 987 #else
 988   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 989                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 990                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 991                    bool multi_block);
 992 #endif
 993 
 994   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
 995                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 996                 Register rax, Register rcx, Register rdx, Register tmp);
 997 
 998 #ifdef _LP64
 999   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1000                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1001                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1002 
1003   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1004                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1005                   Register rax, Register rcx, Register rdx, Register r11);
1006 
1007   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1008                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1009                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1010 
1011   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1012                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1013                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1014                 Register tmp3, Register tmp4);
1015 
1016   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1017                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1018                 Register rax, Register rcx, Register rdx, Register tmp1,
1019                 Register tmp2, Register tmp3, Register tmp4);
1020   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1021                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1022                 Register rax, Register rcx, Register rdx, Register tmp1,
1023                 Register tmp2, Register tmp3, Register tmp4);
1024 #else
1025   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1026                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1027                 Register rax, Register rcx, Register rdx, Register tmp1);
1028 
1029   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1030                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1031                 Register rax, Register rcx, Register rdx, Register tmp);
1032 
1033   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1034                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1035                 Register rdx, Register tmp);
1036 
1037   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1038                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1039                 Register rax, Register rbx, Register rdx);
1040 
1041   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1042                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1043                 Register rax, Register rcx, Register rdx, Register tmp);
1044 
1045   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1046                         Register edx, Register ebx, Register esi, Register edi,
1047                         Register ebp, Register esp);
1048 
1049   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1050                          Register esi, Register edi, Register ebp, Register esp);
1051 
1052   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1053                         Register edx, Register ebx, Register esi, Register edi,
1054                         Register ebp, Register esp);
1055 
1056   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1057                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1058                 Register rax, Register rcx, Register rdx, Register tmp);
1059 #endif
1060 
1061   void increase_precision();
1062   void restore_precision();
1063 
1064 private:
1065 
1066   // these are private because users should be doing movflt/movdbl
1067 
1068   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1069   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1070   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1071   void movss(XMMRegister dst, AddressLiteral src);
1072 
1073   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1074   void movlpd(XMMRegister dst, AddressLiteral src);
1075 
1076 public:
1077 
1078   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1079   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1080   void addsd(XMMRegister dst, AddressLiteral src);
1081 
1082   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1083   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1084   void addss(XMMRegister dst, AddressLiteral src);
1085 
1086   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1087   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1088   void addpd(XMMRegister dst, AddressLiteral src);
1089 
1090   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1091   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1092   void divsd(XMMRegister dst, AddressLiteral src);
1093 
1094   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1095   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1096   void divss(XMMRegister dst, AddressLiteral src);
1097 
1098   // Move Unaligned Double Quadword
1099   void movdqu(Address     dst, XMMRegister src);
1100   void movdqu(XMMRegister dst, Address src);
1101   void movdqu(XMMRegister dst, XMMRegister src);
1102   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1103   // AVX Unaligned forms
1104   void vmovdqu(Address     dst, XMMRegister src);
1105   void vmovdqu(XMMRegister dst, Address src);
1106   void vmovdqu(XMMRegister dst, XMMRegister src);
1107   void vmovdqu(XMMRegister dst, AddressLiteral src);
1108 
1109   // Move Aligned Double Quadword
1110   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1111   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1112   void movdqa(XMMRegister dst, AddressLiteral src);
1113 
1114   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1115   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1116   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1117   void movsd(XMMRegister dst, AddressLiteral src);
1118 
1119   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1120   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1121   void mulpd(XMMRegister dst, AddressLiteral src);
1122 
1123   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1124   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1125   void mulsd(XMMRegister dst, AddressLiteral src);
1126 
1127   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1128   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1129   void mulss(XMMRegister dst, AddressLiteral src);
1130 
1131   // Carry-Less Multiplication Quadword
1132   void pclmulldq(XMMRegister dst, XMMRegister src) {
1133     // 0x00 - multiply lower 64 bits [0:63]
1134     Assembler::pclmulqdq(dst, src, 0x00);
1135   }
1136   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1137     // 0x11 - multiply upper 64 bits [64:127]
1138     Assembler::pclmulqdq(dst, src, 0x11);
1139   }
1140 
1141   void pcmpeqb(XMMRegister dst, XMMRegister src);
1142   void pcmpeqw(XMMRegister dst, XMMRegister src);
1143 
1144   void pcmpestri(XMMRegister dst, Address src, int imm8);
1145   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1146 
1147   void pmovzxbw(XMMRegister dst, XMMRegister src);
1148   void pmovzxbw(XMMRegister dst, Address src);
1149 
1150   void pmovmskb(Register dst, XMMRegister src);
1151 
1152   void ptest(XMMRegister dst, XMMRegister src);
1153 
1154   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1155   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1156   void sqrtsd(XMMRegister dst, AddressLiteral src);
1157 
1158   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1159   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1160   void sqrtss(XMMRegister dst, AddressLiteral src);
1161 
1162   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1163   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1164   void subsd(XMMRegister dst, AddressLiteral src);
1165 
1166   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1167   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1168   void subss(XMMRegister dst, AddressLiteral src);
1169 
1170   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1171   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1172   void ucomiss(XMMRegister dst, AddressLiteral src);
1173 
1174   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1175   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1176   void ucomisd(XMMRegister dst, AddressLiteral src);
1177 
1178   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1179   void xorpd(XMMRegister dst, XMMRegister src);
1180   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1181   void xorpd(XMMRegister dst, AddressLiteral src);
1182 
1183   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1184   void xorps(XMMRegister dst, XMMRegister src);
1185   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1186   void xorps(XMMRegister dst, AddressLiteral src);
1187 
1188   // Shuffle Bytes
1189   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1190   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1191   void pshufb(XMMRegister dst, AddressLiteral src);
1192   // AVX 3-operands instructions
1193 
1194   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1195   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1196   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1197 
1198   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1199   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1200   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1201 
1202   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1203   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1204 
1205   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1206   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1207 
1208   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1209   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1210 
1211   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1212   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1213   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1214 
1215   void vpbroadcastw(XMMRegister dst, XMMRegister src);
1216 
1217   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1218   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1219 
1220   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1221   void vpmovmskb(Register dst, XMMRegister src);
1222 
1223   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1224   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1225 
1226   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1227   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1228 
1229   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1230   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1231 
1232   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1233   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1234 
1235   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1236   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1237 
1238   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1239   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1240 
1241   void vptest(XMMRegister dst, XMMRegister src);
1242 
1243   void punpcklbw(XMMRegister dst, XMMRegister src);
1244   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1245 
1246   void pshufd(XMMRegister dst, Address src, int mode);
1247   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1248 
1249   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1250   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1251 
1252   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1253   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1254   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1255 
1256   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1257   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1258   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1259 
1260   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1261   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1262   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1263 
1264   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1265   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1266   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1267 
1268   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1269   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1270   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1271 
1272   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1273   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1274   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1275 
1276   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1277   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1278   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1279 
1280   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1281   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1282   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1283 
1284   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1285   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1286 
1287   // AVX Vector instructions
1288 
1289   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1290   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1291   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1292 
1293   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1294   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1295   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1296 
1297   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1298     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1299       Assembler::vpxor(dst, nds, src, vector_len);
1300     else
1301       Assembler::vxorpd(dst, nds, src, vector_len);
1302   }
1303   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1304     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1305       Assembler::vpxor(dst, nds, src, vector_len);
1306     else
1307       Assembler::vxorpd(dst, nds, src, vector_len);
1308   }
1309 
1310   // Simple version for AVX2 256bit vectors
1311   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1312   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1313 
1314   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1315     if (UseAVX > 2) {
1316       Assembler::vinserti32x4(dst, dst, src, imm8);
1317     } else if (UseAVX > 1) {
1318       // vinserti128 is available only in AVX2
1319       Assembler::vinserti128(dst, nds, src, imm8);
1320     } else {
1321       Assembler::vinsertf128(dst, nds, src, imm8);
1322     }
1323   }
1324 
1325   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1326     if (UseAVX > 2) {
1327       Assembler::vinserti32x4(dst, dst, src, imm8);
1328     } else if (UseAVX > 1) {
1329       // vinserti128 is available only in AVX2
1330       Assembler::vinserti128(dst, nds, src, imm8);
1331     } else {
1332       Assembler::vinsertf128(dst, nds, src, imm8);
1333     }
1334   }
1335 
1336   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1337     if (UseAVX > 2) {
1338       Assembler::vextracti32x4(dst, src, imm8);
1339     } else if (UseAVX > 1) {
1340       // vextracti128 is available only in AVX2
1341       Assembler::vextracti128(dst, src, imm8);
1342     } else {
1343       Assembler::vextractf128(dst, src, imm8);
1344     }
1345   }
1346 
1347   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1348     if (UseAVX > 2) {
1349       Assembler::vextracti32x4(dst, src, imm8);
1350     } else if (UseAVX > 1) {
1351       // vextracti128 is available only in AVX2
1352       Assembler::vextracti128(dst, src, imm8);
1353     } else {
1354       Assembler::vextractf128(dst, src, imm8);
1355     }
1356   }
1357 
1358   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1359   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1360     vinserti128(dst, dst, src, 1);
1361   }
1362   void vinserti128_high(XMMRegister dst, Address src) {
1363     vinserti128(dst, dst, src, 1);
1364   }
1365   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1366     vextracti128(dst, src, 1);
1367   }
1368   void vextracti128_high(Address dst, XMMRegister src) {
1369     vextracti128(dst, src, 1);
1370   }
1371 
1372   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1373     if (UseAVX > 2) {
1374       Assembler::vinsertf32x4(dst, dst, src, 1);
1375     } else {
1376       Assembler::vinsertf128(dst, dst, src, 1);
1377     }
1378   }
1379 
1380   void vinsertf128_high(XMMRegister dst, Address src) {
1381     if (UseAVX > 2) {
1382       Assembler::vinsertf32x4(dst, dst, src, 1);
1383     } else {
1384       Assembler::vinsertf128(dst, dst, src, 1);
1385     }
1386   }
1387 
1388   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1389     if (UseAVX > 2) {
1390       Assembler::vextractf32x4(dst, src, 1);
1391     } else {
1392       Assembler::vextractf128(dst, src, 1);
1393     }
1394   }
1395 
1396   void vextractf128_high(Address dst, XMMRegister src) {
1397     if (UseAVX > 2) {
1398       Assembler::vextractf32x4(dst, src, 1);
1399     } else {
1400       Assembler::vextractf128(dst, src, 1);
1401     }
1402   }
1403 
1404   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1405   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1406     Assembler::vinserti64x4(dst, dst, src, 1);
1407   }
1408   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1409     Assembler::vinsertf64x4(dst, dst, src, 1);
1410   }
1411   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1412     Assembler::vextracti64x4(dst, src, 1);
1413   }
1414   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1415     Assembler::vextractf64x4(dst, src, 1);
1416   }
1417   void vextractf64x4_high(Address dst, XMMRegister src) {
1418     Assembler::vextractf64x4(dst, src, 1);
1419   }
1420   void vinsertf64x4_high(XMMRegister dst, Address src) {
1421     Assembler::vinsertf64x4(dst, dst, src, 1);
1422   }
1423 
1424   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1425   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1426     vinserti128(dst, dst, src, 0);
1427   }
1428   void vinserti128_low(XMMRegister dst, Address src) {
1429     vinserti128(dst, dst, src, 0);
1430   }
1431   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1432     vextracti128(dst, src, 0);
1433   }
1434   void vextracti128_low(Address dst, XMMRegister src) {
1435     vextracti128(dst, src, 0);
1436   }
1437 
1438   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1439     if (UseAVX > 2) {
1440       Assembler::vinsertf32x4(dst, dst, src, 0);
1441     } else {
1442       Assembler::vinsertf128(dst, dst, src, 0);
1443     }
1444   }
1445 
1446   void vinsertf128_low(XMMRegister dst, Address src) {
1447     if (UseAVX > 2) {
1448       Assembler::vinsertf32x4(dst, dst, src, 0);
1449     } else {
1450       Assembler::vinsertf128(dst, dst, src, 0);
1451     }
1452   }
1453 
1454   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1455     if (UseAVX > 2) {
1456       Assembler::vextractf32x4(dst, src, 0);
1457     } else {
1458       Assembler::vextractf128(dst, src, 0);
1459     }
1460   }
1461 
1462   void vextractf128_low(Address dst, XMMRegister src) {
1463     if (UseAVX > 2) {
1464       Assembler::vextractf32x4(dst, src, 0);
1465     } else {
1466       Assembler::vextractf128(dst, src, 0);
1467     }
1468   }
1469 
1470   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1471   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1472     Assembler::vinserti64x4(dst, dst, src, 0);
1473   }
1474   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1475     Assembler::vinsertf64x4(dst, dst, src, 0);
1476   }
1477   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1478     Assembler::vextracti64x4(dst, src, 0);
1479   }
1480   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1481     Assembler::vextractf64x4(dst, src, 0);
1482   }
1483   void vextractf64x4_low(Address dst, XMMRegister src) {
1484     Assembler::vextractf64x4(dst, src, 0);
1485   }
1486   void vinsertf64x4_low(XMMRegister dst, Address src) {
1487     Assembler::vinsertf64x4(dst, dst, src, 0);
1488   }
1489 
1490   // Carry-Less Multiplication Quadword
1491   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1492     // 0x00 - multiply lower 64 bits [0:63]
1493     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1494   }
1495   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1496     // 0x11 - multiply upper 64 bits [64:127]
1497     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1498   }
1499 
1500   // Data
1501 
1502   void cmov32( Condition cc, Register dst, Address  src);
1503   void cmov32( Condition cc, Register dst, Register src);
1504 
1505   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1506 
1507   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1508   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1509 
1510   void movoop(Register dst, jobject obj);
1511   void movoop(Address dst, jobject obj);
1512 
1513   void mov_metadata(Register dst, Metadata* obj);
1514   void mov_metadata(Address dst, Metadata* obj);
1515 
1516   void movptr(ArrayAddress dst, Register src);
1517   // can this do an lea?
1518   void movptr(Register dst, ArrayAddress src);
1519 
1520   void movptr(Register dst, Address src);
1521 
1522 #ifdef _LP64
1523   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1524 #else
1525   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1526 #endif
1527 
1528   void movptr(Register dst, intptr_t src);
1529   void movptr(Register dst, Register src);
1530   void movptr(Address dst, intptr_t src);
1531 
1532   void movptr(Address dst, Register src);
1533 
1534   void movptr(Register dst, RegisterOrConstant src) {
1535     if (src.is_constant()) movptr(dst, src.as_constant());
1536     else                   movptr(dst, src.as_register());
1537   }
1538 
1539 #ifdef _LP64
1540   // Generally the next two are only used for moving NULL
1541   // Although there are situations in initializing the mark word where
1542   // they could be used. They are dangerous.
1543 
1544   // They only exist on LP64 so that int32_t and intptr_t are not the same
1545   // and we have ambiguous declarations.
1546 
1547   void movptr(Address dst, int32_t imm32);
1548   void movptr(Register dst, int32_t imm32);
1549 #endif // _LP64
1550 
1551   // to avoid hiding movl
1552   void mov32(AddressLiteral dst, Register src);
1553   void mov32(Register dst, AddressLiteral src);
1554 
1555   // to avoid hiding movb
1556   void movbyte(ArrayAddress dst, int src);
1557 
1558   // Import other mov() methods from the parent class or else
1559   // they will be hidden by the following overriding declaration.
1560   using Assembler::movdl;
1561   using Assembler::movq;
1562   void movdl(XMMRegister dst, AddressLiteral src);
1563   void movq(XMMRegister dst, AddressLiteral src);
1564 
1565   // Can push value or effective address
1566   void pushptr(AddressLiteral src);
1567 
1568   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1569   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1570 
1571   void pushoop(jobject obj);
1572   void pushklass(Metadata* obj);
1573 
1574   // sign extend as need a l to ptr sized element
1575   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1576   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1577 
1578   // C2 compiled method's prolog code.
1579   void verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b);
1580 
1581   // clear memory of size 'cnt' qwords, starting at 'base';
1582   // if 'is_large' is set, do not try to produce short loop
1583   void clear_mem(Register base, Register cnt, Register rtmp, bool is_large);
1584 
1585 #ifdef COMPILER2
1586   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1587                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1588 
1589   // IndexOf strings.
1590   // Small strings are loaded through stack if they cross page boundary.
1591   void string_indexof(Register str1, Register str2,
1592                       Register cnt1, Register cnt2,
1593                       int int_cnt2,  Register result,
1594                       XMMRegister vec, Register tmp,
1595                       int ae);
1596 
1597   // IndexOf for constant substrings with size >= 8 elements
1598   // which don't need to be loaded through stack.
1599   void string_indexofC8(Register str1, Register str2,
1600                       Register cnt1, Register cnt2,
1601                       int int_cnt2,  Register result,
1602                       XMMRegister vec, Register tmp,
1603                       int ae);
1604 
1605     // Smallest code: we don't need to load through stack,
1606     // check string tail.
1607 
1608   // helper function for string_compare
1609   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1610                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1611                           Address::ScaleFactor scale2, Register index, int ae);
1612   // Compare strings.
1613   void string_compare(Register str1, Register str2,
1614                       Register cnt1, Register cnt2, Register result,
1615                       XMMRegister vec1, int ae);
1616 
1617   // Search for Non-ASCII character (Negative byte value) in a byte array,
1618   // return true if it has any and false otherwise.
1619   void has_negatives(Register ary1, Register len,
1620                      Register result, Register tmp1,
1621                      XMMRegister vec1, XMMRegister vec2);
1622 
1623   // Compare char[] or byte[] arrays.
1624   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1625                      Register limit, Register result, Register chr,
1626                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1627 
1628 #endif
1629 
1630   // Fill primitive arrays
1631   void generate_fill(BasicType t, bool aligned,
1632                      Register to, Register value, Register count,
1633                      Register rtmp, XMMRegister xtmp);
1634 
1635   void encode_iso_array(Register src, Register dst, Register len,
1636                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1637                         XMMRegister tmp4, Register tmp5, Register result);
1638 
1639 #ifdef _LP64
1640   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1641   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1642                              Register y, Register y_idx, Register z,
1643                              Register carry, Register product,
1644                              Register idx, Register kdx);
1645   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1646                               Register yz_idx, Register idx,
1647                               Register carry, Register product, int offset);
1648   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1649                                     Register carry, Register carry2,
1650                                     Register idx, Register jdx,
1651                                     Register yz_idx1, Register yz_idx2,
1652                                     Register tmp, Register tmp3, Register tmp4);
1653   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1654                                Register yz_idx, Register idx, Register jdx,
1655                                Register carry, Register product,
1656                                Register carry2);
1657   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1658                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1659   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1660                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1661   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1662                             Register tmp2);
1663   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1664                        Register rdxReg, Register raxReg);
1665   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1666   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1667                        Register tmp3, Register tmp4);
1668   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1669                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1670 
1671   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1672                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1673                Register raxReg);
1674   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1675                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1676                Register raxReg);
1677   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1678                            Register result, Register tmp1, Register tmp2,
1679                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1680 #endif
1681 
1682   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1683   void update_byte_crc32(Register crc, Register val, Register table);
1684   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1685   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1686   // Note on a naming convention:
1687   // Prefix w = register only used on a Westmere+ architecture
1688   // Prefix n = register only used on a Nehalem architecture
1689 #ifdef _LP64
1690   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1691                        Register tmp1, Register tmp2, Register tmp3);
1692 #else
1693   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1694                        Register tmp1, Register tmp2, Register tmp3,
1695                        XMMRegister xtmp1, XMMRegister xtmp2);
1696 #endif
1697   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1698                         Register in_out,
1699                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1700                         XMMRegister w_xtmp2,
1701                         Register tmp1,
1702                         Register n_tmp2, Register n_tmp3);
1703   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1704                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1705                        Register tmp1, Register tmp2,
1706                        Register n_tmp3);
1707   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1708                          Register in_out1, Register in_out2, Register in_out3,
1709                          Register tmp1, Register tmp2, Register tmp3,
1710                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1711                          Register tmp4, Register tmp5,
1712                          Register n_tmp6);
1713   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1714                             Register tmp1, Register tmp2, Register tmp3,
1715                             Register tmp4, Register tmp5, Register tmp6,
1716                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1717                             bool is_pclmulqdq_supported);
1718   // Fold 128-bit data chunk
1719   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1720   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1721   // Fold 8-bit data
1722   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1723   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1724 
1725   // Compress char[] array to byte[].
1726   void char_array_compress(Register src, Register dst, Register len,
1727                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1728                            XMMRegister tmp4, Register tmp5, Register result);
1729 
1730   // Inflate byte[] array to char[].
1731   void byte_array_inflate(Register src, Register dst, Register len,
1732                           XMMRegister tmp1, Register tmp2);
1733 
1734 };
1735 
1736 /**
1737  * class SkipIfEqual:
1738  *
1739  * Instantiating this class will result in assembly code being output that will
1740  * jump around any code emitted between the creation of the instance and it's
1741  * automatic destruction at the end of a scope block, depending on the value of
1742  * the flag passed to the constructor, which will be checked at run-time.
1743  */
1744 class SkipIfEqual {
1745  private:
1746   MacroAssembler* _masm;
1747   Label _label;
1748 
1749  public:
1750    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1751    ~SkipIfEqual();
1752 };
1753 
1754 #endif // CPU_X86_VM_MACROASSEMBLER_X86_HPP