1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * Copyright (c) 2015, 2018, SAP SE. All rights reserved.
   4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   5  *
   6  * This code is free software; you can redistribute it and/or modify it
   7  * under the terms of the GNU General Public License version 2 only, as
   8  * published by the Free Software Foundation.
   9  *
  10  * This code is distributed in the hope that it will be useful, but WITHOUT
  11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  13  * version 2 for more details (a copy is included in the LICENSE file that
  14  * accompanied this code).
  15  *
  16  * You should have received a copy of the GNU General Public License version
  17  * 2 along with this work; if not, write to the Free Software Foundation,
  18  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  19  *
  20  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  21  * or visit www.oracle.com if you need additional information or have any
  22  * questions.
  23  *
  24  */
  25 
  26 #include "precompiled.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "gc/shared/barrierSetAssembler.hpp"
  29 #include "interpreter/bytecodeHistogram.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "interpreter/interpreterRuntime.hpp"
  32 #include "interpreter/interp_masm.hpp"
  33 #include "interpreter/templateInterpreterGenerator.hpp"
  34 #include "interpreter/templateTable.hpp"
  35 #include "oops/arrayOop.hpp"
  36 #include "oops/methodData.hpp"
  37 #include "oops/method.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "prims/jvmtiExport.hpp"
  40 #include "prims/jvmtiThreadState.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/deoptimization.hpp"
  43 #include "runtime/frame.inline.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/stubRoutines.hpp"
  46 #include "runtime/synchronizer.hpp"
  47 #include "runtime/timer.hpp"
  48 #include "runtime/vframeArray.hpp"
  49 #include "utilities/debug.hpp"
  50 #include "utilities/macros.hpp"
  51 
  52 #undef __
  53 #define __ _masm->
  54 
  55 // Size of interpreter code.  Increase if too small.  Interpreter will
  56 // fail with a guarantee ("not enough space for interpreter generation");
  57 // if too small.
  58 // Run with +PrintInterpreter to get the VM to print out the size.
  59 // Max size with JVMTI
  60 int TemplateInterpreter::InterpreterCodeSize = 256*K;
  61 
  62 #ifdef PRODUCT
  63 #define BLOCK_COMMENT(str) /* nothing */
  64 #else
  65 #define BLOCK_COMMENT(str) __ block_comment(str)
  66 #endif
  67 
  68 #define BIND(label)        __ bind(label); BLOCK_COMMENT(#label ":")
  69 
  70 //-----------------------------------------------------------------------------
  71 
  72 address TemplateInterpreterGenerator::generate_slow_signature_handler() {
  73   // Slow_signature handler that respects the PPC C calling conventions.
  74   //
  75   // We get called by the native entry code with our output register
  76   // area == 8. First we call InterpreterRuntime::get_result_handler
  77   // to copy the pointer to the signature string temporarily to the
  78   // first C-argument and to return the result_handler in
  79   // R3_RET. Since native_entry will copy the jni-pointer to the
  80   // first C-argument slot later on, it is OK to occupy this slot
  81   // temporarilly. Then we copy the argument list on the java
  82   // expression stack into native varargs format on the native stack
  83   // and load arguments into argument registers. Integer arguments in
  84   // the varargs vector will be sign-extended to 8 bytes.
  85   //
  86   // On entry:
  87   //   R3_ARG1        - intptr_t*     Address of java argument list in memory.
  88   //   R15_prev_state - BytecodeInterpreter* Address of interpreter state for
  89   //     this method
  90   //   R19_method
  91   //
  92   // On exit (just before return instruction):
  93   //   R3_RET            - contains the address of the result_handler.
  94   //   R4_ARG2           - is not updated for static methods and contains "this" otherwise.
  95   //   R5_ARG3-R10_ARG8: - When the (i-2)th Java argument is not of type float or double,
  96   //                       ARGi contains this argument. Otherwise, ARGi is not updated.
  97   //   F1_ARG1-F13_ARG13 - contain the first 13 arguments of type float or double.
  98 
  99   const int LogSizeOfTwoInstructions = 3;
 100 
 101   // FIXME: use Argument:: GL: Argument names different numbers!
 102   const int max_fp_register_arguments  = 13;
 103   const int max_int_register_arguments = 6;  // first 2 are reserved
 104 
 105   const Register arg_java       = R21_tmp1;
 106   const Register arg_c          = R22_tmp2;
 107   const Register signature      = R23_tmp3;  // is string
 108   const Register sig_byte       = R24_tmp4;
 109   const Register fpcnt          = R25_tmp5;
 110   const Register argcnt         = R26_tmp6;
 111   const Register intSlot        = R27_tmp7;
 112   const Register target_sp      = R28_tmp8;
 113   const FloatRegister floatSlot = F0;
 114 
 115   address entry = __ function_entry();
 116 
 117   __ save_LR_CR(R0);
 118   __ save_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 119   // We use target_sp for storing arguments in the C frame.
 120   __ mr(target_sp, R1_SP);
 121   __ push_frame_reg_args_nonvolatiles(0, R11_scratch1);
 122 
 123   __ mr(arg_java, R3_ARG1);
 124 
 125   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_signature), R16_thread, R19_method);
 126 
 127   // Signature is in R3_RET. Signature is callee saved.
 128   __ mr(signature, R3_RET);
 129 
 130   // Get the result handler.
 131   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::get_result_handler), R16_thread, R19_method);
 132 
 133   {
 134     Label L;
 135     // test if static
 136     // _access_flags._flags must be at offset 0.
 137     // TODO PPC port: requires change in shared code.
 138     //assert(in_bytes(AccessFlags::flags_offset()) == 0,
 139     //       "MethodDesc._access_flags == MethodDesc._access_flags._flags");
 140     // _access_flags must be a 32 bit value.
 141     assert(sizeof(AccessFlags) == 4, "wrong size");
 142     __ lwa(R11_scratch1/*access_flags*/, method_(access_flags));
 143     // testbit with condition register.
 144     __ testbitdi(CCR0, R0, R11_scratch1/*access_flags*/, JVM_ACC_STATIC_BIT);
 145     __ btrue(CCR0, L);
 146     // For non-static functions, pass "this" in R4_ARG2 and copy it
 147     // to 2nd C-arg slot.
 148     // We need to box the Java object here, so we use arg_java
 149     // (address of current Java stack slot) as argument and don't
 150     // dereference it as in case of ints, floats, etc.
 151     __ mr(R4_ARG2, arg_java);
 152     __ addi(arg_java, arg_java, -BytesPerWord);
 153     __ std(R4_ARG2, _abi(carg_2), target_sp);
 154     __ bind(L);
 155   }
 156 
 157   // Will be incremented directly after loop_start. argcnt=0
 158   // corresponds to 3rd C argument.
 159   __ li(argcnt, -1);
 160   // arg_c points to 3rd C argument
 161   __ addi(arg_c, target_sp, _abi(carg_3));
 162   // no floating-point args parsed so far
 163   __ li(fpcnt, 0);
 164 
 165   Label move_intSlot_to_ARG, move_floatSlot_to_FARG;
 166   Label loop_start, loop_end;
 167   Label do_int, do_long, do_float, do_double, do_dontreachhere, do_object, do_array, do_boxed;
 168 
 169   // signature points to '(' at entry
 170 #ifdef ASSERT
 171   __ lbz(sig_byte, 0, signature);
 172   __ cmplwi(CCR0, sig_byte, '(');
 173   __ bne(CCR0, do_dontreachhere);
 174 #endif
 175 
 176   __ bind(loop_start);
 177 
 178   __ addi(argcnt, argcnt, 1);
 179   __ lbzu(sig_byte, 1, signature);
 180 
 181   __ cmplwi(CCR0, sig_byte, ')'); // end of signature
 182   __ beq(CCR0, loop_end);
 183 
 184   __ cmplwi(CCR0, sig_byte, 'B'); // byte
 185   __ beq(CCR0, do_int);
 186 
 187   __ cmplwi(CCR0, sig_byte, 'C'); // char
 188   __ beq(CCR0, do_int);
 189 
 190   __ cmplwi(CCR0, sig_byte, 'D'); // double
 191   __ beq(CCR0, do_double);
 192 
 193   __ cmplwi(CCR0, sig_byte, 'F'); // float
 194   __ beq(CCR0, do_float);
 195 
 196   __ cmplwi(CCR0, sig_byte, 'I'); // int
 197   __ beq(CCR0, do_int);
 198 
 199   __ cmplwi(CCR0, sig_byte, 'J'); // long
 200   __ beq(CCR0, do_long);
 201 
 202   __ cmplwi(CCR0, sig_byte, 'S'); // short
 203   __ beq(CCR0, do_int);
 204 
 205   __ cmplwi(CCR0, sig_byte, 'Z'); // boolean
 206   __ beq(CCR0, do_int);
 207 
 208   __ cmplwi(CCR0, sig_byte, 'L'); // object
 209   __ beq(CCR0, do_object);
 210 
 211   __ cmplwi(CCR0, sig_byte, '['); // array
 212   __ beq(CCR0, do_array);
 213 
 214   //  __ cmplwi(CCR0, sig_byte, 'V'); // void cannot appear since we do not parse the return type
 215   //  __ beq(CCR0, do_void);
 216 
 217   __ bind(do_dontreachhere);
 218 
 219   __ unimplemented("ShouldNotReachHere in slow_signature_handler", 120);
 220 
 221   __ bind(do_array);
 222 
 223   {
 224     Label start_skip, end_skip;
 225 
 226     __ bind(start_skip);
 227     __ lbzu(sig_byte, 1, signature);
 228     __ cmplwi(CCR0, sig_byte, '[');
 229     __ beq(CCR0, start_skip); // skip further brackets
 230     __ cmplwi(CCR0, sig_byte, '9');
 231     __ bgt(CCR0, end_skip);   // no optional size
 232     __ cmplwi(CCR0, sig_byte, '0');
 233     __ bge(CCR0, start_skip); // skip optional size
 234     __ bind(end_skip);
 235 
 236     __ cmplwi(CCR0, sig_byte, 'L');
 237     __ beq(CCR0, do_object);  // for arrays of objects, the name of the object must be skipped
 238     __ b(do_boxed);          // otherwise, go directly to do_boxed
 239   }
 240 
 241   __ bind(do_object);
 242   {
 243     Label L;
 244     __ bind(L);
 245     __ lbzu(sig_byte, 1, signature);
 246     __ cmplwi(CCR0, sig_byte, ';');
 247     __ bne(CCR0, L);
 248    }
 249   // Need to box the Java object here, so we use arg_java (address of
 250   // current Java stack slot) as argument and don't dereference it as
 251   // in case of ints, floats, etc.
 252   Label do_null;
 253   __ bind(do_boxed);
 254   __ ld(R0,0, arg_java);
 255   __ cmpdi(CCR0, R0, 0);
 256   __ li(intSlot,0);
 257   __ beq(CCR0, do_null);
 258   __ mr(intSlot, arg_java);
 259   __ bind(do_null);
 260   __ std(intSlot, 0, arg_c);
 261   __ addi(arg_java, arg_java, -BytesPerWord);
 262   __ addi(arg_c, arg_c, BytesPerWord);
 263   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 264   __ blt(CCR0, move_intSlot_to_ARG);
 265   __ b(loop_start);
 266 
 267   __ bind(do_int);
 268   __ lwa(intSlot, 0, arg_java);
 269   __ std(intSlot, 0, arg_c);
 270   __ addi(arg_java, arg_java, -BytesPerWord);
 271   __ addi(arg_c, arg_c, BytesPerWord);
 272   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 273   __ blt(CCR0, move_intSlot_to_ARG);
 274   __ b(loop_start);
 275 
 276   __ bind(do_long);
 277   __ ld(intSlot, -BytesPerWord, arg_java);
 278   __ std(intSlot, 0, arg_c);
 279   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 280   __ addi(arg_c, arg_c, BytesPerWord);
 281   __ cmplwi(CCR0, argcnt, max_int_register_arguments);
 282   __ blt(CCR0, move_intSlot_to_ARG);
 283   __ b(loop_start);
 284 
 285   __ bind(do_float);
 286   __ lfs(floatSlot, 0, arg_java);
 287 #if defined(LINUX)
 288   // Linux uses ELF ABI. Both original ELF and ELFv2 ABIs have float
 289   // in the least significant word of an argument slot.
 290 #if defined(VM_LITTLE_ENDIAN)
 291   __ stfs(floatSlot, 0, arg_c);
 292 #else
 293   __ stfs(floatSlot, 4, arg_c);
 294 #endif
 295 #elif defined(AIX)
 296   // Although AIX runs on big endian CPU, float is in most significant
 297   // word of an argument slot.
 298   __ stfs(floatSlot, 0, arg_c);
 299 #else
 300 #error "unknown OS"
 301 #endif
 302   __ addi(arg_java, arg_java, -BytesPerWord);
 303   __ addi(arg_c, arg_c, BytesPerWord);
 304   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 305   __ blt(CCR0, move_floatSlot_to_FARG);
 306   __ b(loop_start);
 307 
 308   __ bind(do_double);
 309   __ lfd(floatSlot, - BytesPerWord, arg_java);
 310   __ stfd(floatSlot, 0, arg_c);
 311   __ addi(arg_java, arg_java, - 2 * BytesPerWord);
 312   __ addi(arg_c, arg_c, BytesPerWord);
 313   __ cmplwi(CCR0, fpcnt, max_fp_register_arguments);
 314   __ blt(CCR0, move_floatSlot_to_FARG);
 315   __ b(loop_start);
 316 
 317   __ bind(loop_end);
 318 
 319   __ pop_frame();
 320   __ restore_nonvolatile_gprs(R1_SP, _spill_nonvolatiles_neg(r14));
 321   __ restore_LR_CR(R0);
 322 
 323   __ blr();
 324 
 325   Label move_int_arg, move_float_arg;
 326   __ bind(move_int_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 327   __ mr(R5_ARG3, intSlot);  __ b(loop_start);
 328   __ mr(R6_ARG4, intSlot);  __ b(loop_start);
 329   __ mr(R7_ARG5, intSlot);  __ b(loop_start);
 330   __ mr(R8_ARG6, intSlot);  __ b(loop_start);
 331   __ mr(R9_ARG7, intSlot);  __ b(loop_start);
 332   __ mr(R10_ARG8, intSlot); __ b(loop_start);
 333 
 334   __ bind(move_float_arg); // each case must consist of 2 instructions (otherwise adapt LogSizeOfTwoInstructions)
 335   __ fmr(F1_ARG1, floatSlot);   __ b(loop_start);
 336   __ fmr(F2_ARG2, floatSlot);   __ b(loop_start);
 337   __ fmr(F3_ARG3, floatSlot);   __ b(loop_start);
 338   __ fmr(F4_ARG4, floatSlot);   __ b(loop_start);
 339   __ fmr(F5_ARG5, floatSlot);   __ b(loop_start);
 340   __ fmr(F6_ARG6, floatSlot);   __ b(loop_start);
 341   __ fmr(F7_ARG7, floatSlot);   __ b(loop_start);
 342   __ fmr(F8_ARG8, floatSlot);   __ b(loop_start);
 343   __ fmr(F9_ARG9, floatSlot);   __ b(loop_start);
 344   __ fmr(F10_ARG10, floatSlot); __ b(loop_start);
 345   __ fmr(F11_ARG11, floatSlot); __ b(loop_start);
 346   __ fmr(F12_ARG12, floatSlot); __ b(loop_start);
 347   __ fmr(F13_ARG13, floatSlot); __ b(loop_start);
 348 
 349   __ bind(move_intSlot_to_ARG);
 350   __ sldi(R0, argcnt, LogSizeOfTwoInstructions);
 351   __ load_const(R11_scratch1, move_int_arg); // Label must be bound here.
 352   __ add(R11_scratch1, R0, R11_scratch1);
 353   __ mtctr(R11_scratch1/*branch_target*/);
 354   __ bctr();
 355   __ bind(move_floatSlot_to_FARG);
 356   __ sldi(R0, fpcnt, LogSizeOfTwoInstructions);
 357   __ addi(fpcnt, fpcnt, 1);
 358   __ load_const(R11_scratch1, move_float_arg); // Label must be bound here.
 359   __ add(R11_scratch1, R0, R11_scratch1);
 360   __ mtctr(R11_scratch1/*branch_target*/);
 361   __ bctr();
 362 
 363   return entry;
 364 }
 365 
 366 address TemplateInterpreterGenerator::generate_result_handler_for(BasicType type) {
 367   //
 368   // Registers alive
 369   //   R3_RET
 370   //   LR
 371   //
 372   // Registers updated
 373   //   R3_RET
 374   //
 375 
 376   Label done;
 377   address entry = __ pc();
 378 
 379   switch (type) {
 380   case T_BOOLEAN:
 381     // convert !=0 to 1
 382     __ neg(R0, R3_RET);
 383     __ orr(R0, R3_RET, R0);
 384     __ srwi(R3_RET, R0, 31);
 385     break;
 386   case T_BYTE:
 387      // sign extend 8 bits
 388      __ extsb(R3_RET, R3_RET);
 389      break;
 390   case T_CHAR:
 391      // zero extend 16 bits
 392      __ clrldi(R3_RET, R3_RET, 48);
 393      break;
 394   case T_SHORT:
 395      // sign extend 16 bits
 396      __ extsh(R3_RET, R3_RET);
 397      break;
 398   case T_INT:
 399      // sign extend 32 bits
 400      __ extsw(R3_RET, R3_RET);
 401      break;
 402   case T_LONG:
 403      break;
 404   case T_OBJECT:
 405     // JNIHandles::resolve result.
 406     __ resolve_jobject(R3_RET, R11_scratch1, R31, /* needs_frame */ true); // kills R31
 407     break;
 408   case T_FLOAT:
 409      break;
 410   case T_DOUBLE:
 411      break;
 412   case T_VOID:
 413      break;
 414   default: ShouldNotReachHere();
 415   }
 416 
 417   BIND(done);
 418   __ blr();
 419 
 420   return entry;
 421 }
 422 
 423 // Abstract method entry.
 424 //
 425 address TemplateInterpreterGenerator::generate_abstract_entry(void) {
 426   address entry = __ pc();
 427 
 428   //
 429   // Registers alive
 430   //   R16_thread     - JavaThread*
 431   //   R19_method     - callee's method (method to be invoked)
 432   //   R1_SP          - SP prepared such that caller's outgoing args are near top
 433   //   LR             - return address to caller
 434   //
 435   // Stack layout at this point:
 436   //
 437   //   0       [TOP_IJAVA_FRAME_ABI]         <-- R1_SP
 438   //           alignment (optional)
 439   //           [outgoing Java arguments]
 440   //           ...
 441   //   PARENT  [PARENT_IJAVA_FRAME_ABI]
 442   //            ...
 443   //
 444 
 445   // Can't use call_VM here because we have not set up a new
 446   // interpreter state. Make the call to the vm and make it look like
 447   // our caller set up the JavaFrameAnchor.
 448   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
 449 
 450   // Push a new C frame and save LR.
 451   __ save_LR_CR(R0);
 452   __ push_frame_reg_args(0, R11_scratch1);
 453 
 454   // This is not a leaf but we have a JavaFrameAnchor now and we will
 455   // check (create) exceptions afterward so this is ok.
 456   __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_AbstractMethodErrorWithMethod),
 457                   R16_thread, R19_method);
 458 
 459   // Pop the C frame and restore LR.
 460   __ pop_frame();
 461   __ restore_LR_CR(R0);
 462 
 463   // Reset JavaFrameAnchor from call_VM_leaf above.
 464   __ reset_last_Java_frame();
 465 
 466   // We don't know our caller, so jump to the general forward exception stub,
 467   // which will also pop our full frame off. Satisfy the interface of
 468   // SharedRuntime::generate_forward_exception()
 469   __ load_const_optimized(R11_scratch1, StubRoutines::forward_exception_entry(), R0);
 470   __ mtctr(R11_scratch1);
 471   __ bctr();
 472 
 473   return entry;
 474 }
 475 
 476 // Interpreter intrinsic for WeakReference.get().
 477 // 1. Don't push a full blown frame and go on dispatching, but fetch the value
 478 //    into R8 and return quickly
 479 // 2. If G1 is active we *must* execute this intrinsic for corrrectness:
 480 //    It contains a GC barrier which puts the reference into the satb buffer
 481 //    to indicate that someone holds a strong reference to the object the
 482 //    weak ref points to!
 483 address TemplateInterpreterGenerator::generate_Reference_get_entry(void) {
 484   // Code: _aload_0, _getfield, _areturn
 485   // parameter size = 1
 486   //
 487   // The code that gets generated by this routine is split into 2 parts:
 488   //    1. the "intrinsified" code for G1 (or any SATB based GC),
 489   //    2. the slow path - which is an expansion of the regular method entry.
 490   //
 491   // Notes:
 492   // * In the G1 code we do not check whether we need to block for
 493   //   a safepoint. If G1 is enabled then we must execute the specialized
 494   //   code for Reference.get (except when the Reference object is null)
 495   //   so that we can log the value in the referent field with an SATB
 496   //   update buffer.
 497   //   If the code for the getfield template is modified so that the
 498   //   G1 pre-barrier code is executed when the current method is
 499   //   Reference.get() then going through the normal method entry
 500   //   will be fine.
 501   // * The G1 code can, however, check the receiver object (the instance
 502   //   of java.lang.Reference) and jump to the slow path if null. If the
 503   //   Reference object is null then we obviously cannot fetch the referent
 504   //   and so we don't need to call the G1 pre-barrier. Thus we can use the
 505   //   regular method entry code to generate the NPE.
 506   //
 507 
 508   address entry = __ pc();
 509 
 510   const int referent_offset = java_lang_ref_Reference::referent_offset;
 511   guarantee(referent_offset > 0, "referent offset not initialized");
 512 
 513   Label slow_path;
 514 
 515   // Debugging not possible, so can't use __ skip_if_jvmti_mode(slow_path, GR31_SCRATCH);
 516 
 517   // In the G1 code we don't check if we need to reach a safepoint. We
 518   // continue and the thread will safepoint at the next bytecode dispatch.
 519 
 520   // If the receiver is null then it is OK to jump to the slow path.
 521   __ ld(R3_RET, Interpreter::stackElementSize, R15_esp); // get receiver
 522 
 523   // Check if receiver == NULL and go the slow path.
 524   __ cmpdi(CCR0, R3_RET, 0);
 525   __ beq(CCR0, slow_path);
 526 
 527   __ load_heap_oop(R3_RET, referent_offset, R3_RET,
 528                    /* non-volatile temp */ R31, R11_scratch1, true, ON_WEAK_OOP_REF);
 529 
 530   // Generate the G1 pre-barrier code to log the value of
 531   // the referent field in an SATB buffer. Note with
 532   // these parameters the pre-barrier does not generate
 533   // the load of the previous value.
 534 
 535   // Restore caller sp for c2i case.
 536 #ifdef ASSERT
 537   __ ld(R9_ARG7, 0, R1_SP);
 538   __ ld(R10_ARG8, 0, R21_sender_SP);
 539   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
 540   __ asm_assert_eq("backlink", 0x544);
 541 #endif // ASSERT
 542   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
 543 
 544   __ blr();
 545 
 546   __ bind(slow_path);
 547   __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::zerolocals), R11_scratch1);
 548   return entry;
 549 }
 550 
 551 address TemplateInterpreterGenerator::generate_StackOverflowError_handler() {
 552   address entry = __ pc();
 553 
 554   // Expression stack must be empty before entering the VM if an
 555   // exception happened.
 556   __ empty_expression_stack();
 557   // Throw exception.
 558   __ call_VM(noreg,
 559              CAST_FROM_FN_PTR(address,
 560                               InterpreterRuntime::throw_StackOverflowError));
 561   return entry;
 562 }
 563 
 564 address TemplateInterpreterGenerator::generate_ArrayIndexOutOfBounds_handler() {
 565   address entry = __ pc();
 566   __ empty_expression_stack();
 567   // R4_ARG2 already contains the array.
 568   // Index is in R17_tos.
 569   __ mr(R5_ARG3, R17_tos);
 570   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ArrayIndexOutOfBoundsException), R4_ARG2, R5_ARG3);
 571   return entry;
 572 }
 573 
 574 address TemplateInterpreterGenerator::generate_ClassCastException_handler() {
 575   address entry = __ pc();
 576   // Expression stack must be empty before entering the VM if an
 577   // exception happened.
 578   __ empty_expression_stack();
 579 
 580   // Load exception object.
 581   // Thread will be loaded to R3_ARG1.
 582   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::throw_ClassCastException), R17_tos);
 583 #ifdef ASSERT
 584   // Above call must not return here since exception pending.
 585   __ should_not_reach_here();
 586 #endif
 587   return entry;
 588 }
 589 
 590 address TemplateInterpreterGenerator::generate_exception_handler_common(const char* name, const char* message, bool pass_oop) {
 591   address entry = __ pc();
 592   //__ untested("generate_exception_handler_common");
 593   Register Rexception = R17_tos;
 594 
 595   // Expression stack must be empty before entering the VM if an exception happened.
 596   __ empty_expression_stack();
 597 
 598   __ load_const_optimized(R4_ARG2, (address) name, R11_scratch1);
 599   if (pass_oop) {
 600     __ mr(R5_ARG3, Rexception);
 601     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_klass_exception), false);
 602   } else {
 603     __ load_const_optimized(R5_ARG3, (address) message, R11_scratch1);
 604     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::create_exception), false);
 605   }
 606 
 607   // Throw exception.
 608   __ mr(R3_ARG1, Rexception);
 609   __ load_const_optimized(R11_scratch1, Interpreter::throw_exception_entry(), R12_scratch2);
 610   __ mtctr(R11_scratch1);
 611   __ bctr();
 612 
 613   return entry;
 614 }
 615 
 616 // This entry is returned to when a call returns to the interpreter.
 617 // When we arrive here, we expect that the callee stack frame is already popped.
 618 address TemplateInterpreterGenerator::generate_return_entry_for(TosState state, int step, size_t index_size) {
 619   address entry = __ pc();
 620 
 621   // Move the value out of the return register back to the TOS cache of current frame.
 622   switch (state) {
 623     case ltos:
 624     case btos:
 625     case ztos:
 626     case ctos:
 627     case stos:
 628     case atos:
 629     case itos: __ mr(R17_tos, R3_RET); break;   // RET -> TOS cache
 630     case ftos:
 631     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 632     case vtos: break;                           // Nothing to do, this was a void return.
 633     default  : ShouldNotReachHere();
 634   }
 635 
 636   __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
 637   __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
 638   __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
 639 
 640   // Compiled code destroys templateTableBase, reload.
 641   __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R12_scratch2);
 642 
 643   if (state == atos) {
 644     __ profile_return_type(R3_RET, R11_scratch1, R12_scratch2);
 645   }
 646 
 647   const Register cache = R11_scratch1;
 648   const Register size  = R12_scratch2;
 649   __ get_cache_and_index_at_bcp(cache, 1, index_size);
 650 
 651   // Get least significant byte of 64 bit value:
 652 #if defined(VM_LITTLE_ENDIAN)
 653   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()), cache);
 654 #else
 655   __ lbz(size, in_bytes(ConstantPoolCache::base_offset() + ConstantPoolCacheEntry::flags_offset()) + 7, cache);
 656 #endif
 657   __ sldi(size, size, Interpreter::logStackElementSize);
 658   __ add(R15_esp, R15_esp, size);
 659 
 660  __ check_and_handle_popframe(R11_scratch1);
 661  __ check_and_handle_earlyret(R11_scratch1);
 662 
 663   __ dispatch_next(state, step);
 664   return entry;
 665 }
 666 
 667 address TemplateInterpreterGenerator::generate_deopt_entry_for(TosState state, int step, address continuation) {
 668   address entry = __ pc();
 669   // If state != vtos, we're returning from a native method, which put it's result
 670   // into the result register. So move the value out of the return register back
 671   // to the TOS cache of current frame.
 672 
 673   switch (state) {
 674     case ltos:
 675     case btos:
 676     case ztos:
 677     case ctos:
 678     case stos:
 679     case atos:
 680     case itos: __ mr(R17_tos, R3_RET); break;   // GR_RET -> TOS cache
 681     case ftos:
 682     case dtos: __ fmr(F15_ftos, F1_RET); break; // TOS cache -> GR_FRET
 683     case vtos: break;                           // Nothing to do, this was a void return.
 684     default  : ShouldNotReachHere();
 685   }
 686 
 687   // Load LcpoolCache @@@ should be already set!
 688   __ get_constant_pool_cache(R27_constPoolCache);
 689 
 690   // Handle a pending exception, fall through if none.
 691   __ check_and_forward_exception(R11_scratch1, R12_scratch2);
 692 
 693   // Start executing bytecodes.
 694   if (continuation == NULL) {
 695     __ dispatch_next(state, step);
 696   } else {
 697     __ jump_to_entry(continuation, R11_scratch1);
 698   }
 699 
 700   return entry;
 701 }
 702 
 703 address TemplateInterpreterGenerator::generate_safept_entry_for(TosState state, address runtime_entry) {
 704   address entry = __ pc();
 705 
 706   __ push(state);
 707   __ call_VM(noreg, runtime_entry);
 708   __ dispatch_via(vtos, Interpreter::_normal_table.table_for(vtos));
 709 
 710   return entry;
 711 }
 712 
 713 // Helpers for commoning out cases in the various type of method entries.
 714 
 715 // Increment invocation count & check for overflow.
 716 //
 717 // Note: checking for negative value instead of overflow
 718 //       so we have a 'sticky' overflow test.
 719 //
 720 void TemplateInterpreterGenerator::generate_counter_incr(Label* overflow, Label* profile_method, Label* profile_method_continue) {
 721   // Note: In tiered we increment either counters in method or in MDO depending if we're profiling or not.
 722   Register Rscratch1   = R11_scratch1;
 723   Register Rscratch2   = R12_scratch2;
 724   Register R3_counters = R3_ARG1;
 725   Label done;
 726 
 727   if (TieredCompilation) {
 728     const int increment = InvocationCounter::count_increment;
 729     Label no_mdo;
 730     if (ProfileInterpreter) {
 731       const Register Rmdo = R3_counters;
 732       // If no method data exists, go to profile_continue.
 733       __ ld(Rmdo, in_bytes(Method::method_data_offset()), R19_method);
 734       __ cmpdi(CCR0, Rmdo, 0);
 735       __ beq(CCR0, no_mdo);
 736 
 737       // Increment invocation counter in the MDO.
 738       const int mdo_ic_offs = in_bytes(MethodData::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 739       __ lwz(Rscratch2, mdo_ic_offs, Rmdo);
 740       __ lwz(Rscratch1, in_bytes(MethodData::invoke_mask_offset()), Rmdo);
 741       __ addi(Rscratch2, Rscratch2, increment);
 742       __ stw(Rscratch2, mdo_ic_offs, Rmdo);
 743       __ and_(Rscratch1, Rscratch2, Rscratch1);
 744       __ bne(CCR0, done);
 745       __ b(*overflow);
 746     }
 747 
 748     // Increment counter in MethodCounters*.
 749     const int mo_ic_offs = in_bytes(MethodCounters::invocation_counter_offset()) + in_bytes(InvocationCounter::counter_offset());
 750     __ bind(no_mdo);
 751     __ get_method_counters(R19_method, R3_counters, done);
 752     __ lwz(Rscratch2, mo_ic_offs, R3_counters);
 753     __ lwz(Rscratch1, in_bytes(MethodCounters::invoke_mask_offset()), R3_counters);
 754     __ addi(Rscratch2, Rscratch2, increment);
 755     __ stw(Rscratch2, mo_ic_offs, R3_counters);
 756     __ and_(Rscratch1, Rscratch2, Rscratch1);
 757     __ beq(CCR0, *overflow);
 758 
 759     __ bind(done);
 760 
 761   } else {
 762 
 763     // Update standard invocation counters.
 764     Register Rsum_ivc_bec = R4_ARG2;
 765     __ get_method_counters(R19_method, R3_counters, done);
 766     __ increment_invocation_counter(R3_counters, Rsum_ivc_bec, R12_scratch2);
 767     // Increment interpreter invocation counter.
 768     if (ProfileInterpreter) {  // %%% Merge this into methodDataOop.
 769       __ lwz(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 770       __ addi(R12_scratch2, R12_scratch2, 1);
 771       __ stw(R12_scratch2, in_bytes(MethodCounters::interpreter_invocation_counter_offset()), R3_counters);
 772     }
 773     // Check if we must create a method data obj.
 774     if (ProfileInterpreter && profile_method != NULL) {
 775       const Register profile_limit = Rscratch1;
 776       __ lwz(profile_limit, in_bytes(MethodCounters::interpreter_profile_limit_offset()), R3_counters);
 777       // Test to see if we should create a method data oop.
 778       __ cmpw(CCR0, Rsum_ivc_bec, profile_limit);
 779       __ blt(CCR0, *profile_method_continue);
 780       // If no method data exists, go to profile_method.
 781       __ test_method_data_pointer(*profile_method);
 782     }
 783     // Finally check for counter overflow.
 784     if (overflow) {
 785       const Register invocation_limit = Rscratch1;
 786       __ lwz(invocation_limit, in_bytes(MethodCounters::interpreter_invocation_limit_offset()), R3_counters);
 787       __ cmpw(CCR0, Rsum_ivc_bec, invocation_limit);
 788       __ bge(CCR0, *overflow);
 789     }
 790 
 791     __ bind(done);
 792   }
 793 }
 794 
 795 // Generate code to initiate compilation on invocation counter overflow.
 796 void TemplateInterpreterGenerator::generate_counter_overflow(Label& continue_entry) {
 797   // Generate code to initiate compilation on the counter overflow.
 798 
 799   // InterpreterRuntime::frequency_counter_overflow takes one arguments,
 800   // which indicates if the counter overflow occurs at a backwards branch (NULL bcp)
 801   // We pass zero in.
 802   // The call returns the address of the verified entry point for the method or NULL
 803   // if the compilation did not complete (either went background or bailed out).
 804   //
 805   // Unlike the C++ interpreter above: Check exceptions!
 806   // Assumption: Caller must set the flag "do_not_unlock_if_sychronized" if the monitor of a sync'ed
 807   // method has not yet been created. Thus, no unlocking of a non-existing monitor can occur.
 808 
 809   __ li(R4_ARG2, 0);
 810   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::frequency_counter_overflow), R4_ARG2, true);
 811 
 812   // Returns verified_entry_point or NULL.
 813   // We ignore it in any case.
 814   __ b(continue_entry);
 815 }
 816 
 817 // See if we've got enough room on the stack for locals plus overhead below
 818 // JavaThread::stack_overflow_limit(). If not, throw a StackOverflowError
 819 // without going through the signal handler, i.e., reserved and yellow zones
 820 // will not be made usable. The shadow zone must suffice to handle the
 821 // overflow.
 822 //
 823 // Kills Rmem_frame_size, Rscratch1.
 824 void TemplateInterpreterGenerator::generate_stack_overflow_check(Register Rmem_frame_size, Register Rscratch1) {
 825   Label done;
 826   assert_different_registers(Rmem_frame_size, Rscratch1);
 827 
 828   BLOCK_COMMENT("stack_overflow_check_with_compare {");
 829   __ sub(Rmem_frame_size, R1_SP, Rmem_frame_size);
 830   __ ld(Rscratch1, thread_(stack_overflow_limit));
 831   __ cmpld(CCR0/*is_stack_overflow*/, Rmem_frame_size, Rscratch1);
 832   __ bgt(CCR0/*is_stack_overflow*/, done);
 833 
 834   // The stack overflows. Load target address of the runtime stub and call it.
 835   assert(StubRoutines::throw_StackOverflowError_entry() != NULL, "generated in wrong order");
 836   __ load_const_optimized(Rscratch1, (StubRoutines::throw_StackOverflowError_entry()), R0);
 837   __ mtctr(Rscratch1);
 838   // Restore caller_sp.
 839 #ifdef ASSERT
 840   __ ld(Rscratch1, 0, R1_SP);
 841   __ ld(R0, 0, R21_sender_SP);
 842   __ cmpd(CCR0, R0, Rscratch1);
 843   __ asm_assert_eq("backlink", 0x547);
 844 #endif // ASSERT
 845   __ mr(R1_SP, R21_sender_SP);
 846   __ bctr();
 847 
 848   __ align(32, 12);
 849   __ bind(done);
 850   BLOCK_COMMENT("} stack_overflow_check_with_compare");
 851 }
 852 
 853 // Lock the current method, interpreter register window must be set up!
 854 void TemplateInterpreterGenerator::lock_method(Register Rflags, Register Rscratch1, Register Rscratch2, bool flags_preloaded) {
 855   const Register Robj_to_lock = Rscratch2;
 856 
 857   {
 858     if (!flags_preloaded) {
 859       __ lwz(Rflags, method_(access_flags));
 860     }
 861 
 862 #ifdef ASSERT
 863     // Check if methods needs synchronization.
 864     {
 865       Label Lok;
 866       __ testbitdi(CCR0, R0, Rflags, JVM_ACC_SYNCHRONIZED_BIT);
 867       __ btrue(CCR0,Lok);
 868       __ stop("method doesn't need synchronization");
 869       __ bind(Lok);
 870     }
 871 #endif // ASSERT
 872   }
 873 
 874   // Get synchronization object to Rscratch2.
 875   {
 876     Label Lstatic;
 877     Label Ldone;
 878 
 879     __ testbitdi(CCR0, R0, Rflags, JVM_ACC_STATIC_BIT);
 880     __ btrue(CCR0, Lstatic);
 881 
 882     // Non-static case: load receiver obj from stack and we're done.
 883     __ ld(Robj_to_lock, R18_locals);
 884     __ b(Ldone);
 885 
 886     __ bind(Lstatic); // Static case: Lock the java mirror
 887     // Load mirror from interpreter frame.
 888     __ ld(Robj_to_lock, _abi(callers_sp), R1_SP);
 889     __ ld(Robj_to_lock, _ijava_state_neg(mirror), Robj_to_lock);
 890 
 891     __ bind(Ldone);
 892     __ verify_oop(Robj_to_lock);
 893   }
 894 
 895   // Got the oop to lock => execute!
 896   __ add_monitor_to_stack(true, Rscratch1, R0);
 897 
 898   __ std(Robj_to_lock, BasicObjectLock::obj_offset_in_bytes(), R26_monitor);
 899   __ lock_object(R26_monitor, Robj_to_lock);
 900 }
 901 
 902 // Generate a fixed interpreter frame for pure interpreter
 903 // and I2N native transition frames.
 904 //
 905 // Before (stack grows downwards):
 906 //
 907 //         |  ...         |
 908 //         |------------- |
 909 //         |  java arg0   |
 910 //         |  ...         |
 911 //         |  java argn   |
 912 //         |              |   <-   R15_esp
 913 //         |              |
 914 //         |--------------|
 915 //         | abi_112      |
 916 //         |              |   <-   R1_SP
 917 //         |==============|
 918 //
 919 //
 920 // After:
 921 //
 922 //         |  ...         |
 923 //         |  java arg0   |<-   R18_locals
 924 //         |  ...         |
 925 //         |  java argn   |
 926 //         |--------------|
 927 //         |              |
 928 //         |  java locals |
 929 //         |              |
 930 //         |--------------|
 931 //         |  abi_48      |
 932 //         |==============|
 933 //         |              |
 934 //         |   istate     |
 935 //         |              |
 936 //         |--------------|
 937 //         |   monitor    |<-   R26_monitor
 938 //         |--------------|
 939 //         |              |<-   R15_esp
 940 //         | expression   |
 941 //         | stack        |
 942 //         |              |
 943 //         |--------------|
 944 //         |              |
 945 //         | abi_112      |<-   R1_SP
 946 //         |==============|
 947 //
 948 // The top most frame needs an abi space of 112 bytes. This space is needed,
 949 // since we call to c. The c function may spill their arguments to the caller
 950 // frame. When we call to java, we don't need these spill slots. In order to save
 951 // space on the stack, we resize the caller. However, java locals reside in
 952 // the caller frame and the frame has to be increased. The frame_size for the
 953 // current frame was calculated based on max_stack as size for the expression
 954 // stack. At the call, just a part of the expression stack might be used.
 955 // We don't want to waste this space and cut the frame back accordingly.
 956 // The resulting amount for resizing is calculated as follows:
 957 // resize =   (number_of_locals - number_of_arguments) * slot_size
 958 //          + (R1_SP - R15_esp) + 48
 959 //
 960 // The size for the callee frame is calculated:
 961 // framesize = 112 + max_stack + monitor + state_size
 962 //
 963 // maxstack:   Max number of slots on the expression stack, loaded from the method.
 964 // monitor:    We statically reserve room for one monitor object.
 965 // state_size: We save the current state of the interpreter to this area.
 966 //
 967 void TemplateInterpreterGenerator::generate_fixed_frame(bool native_call, Register Rsize_of_parameters, Register Rsize_of_locals) {
 968   Register parent_frame_resize = R6_ARG4, // Frame will grow by this number of bytes.
 969            top_frame_size      = R7_ARG5,
 970            Rconst_method       = R8_ARG6;
 971 
 972   assert_different_registers(Rsize_of_parameters, Rsize_of_locals, parent_frame_resize, top_frame_size);
 973 
 974   __ ld(Rconst_method, method_(const));
 975   __ lhz(Rsize_of_parameters /* number of params */,
 976          in_bytes(ConstMethod::size_of_parameters_offset()), Rconst_method);
 977   if (native_call) {
 978     // If we're calling a native method, we reserve space for the worst-case signature
 979     // handler varargs vector, which is max(Argument::n_register_parameters, parameter_count+2).
 980     // We add two slots to the parameter_count, one for the jni
 981     // environment and one for a possible native mirror.
 982     Label skip_native_calculate_max_stack;
 983     __ addi(top_frame_size, Rsize_of_parameters, 2);
 984     __ cmpwi(CCR0, top_frame_size, Argument::n_register_parameters);
 985     __ bge(CCR0, skip_native_calculate_max_stack);
 986     __ li(top_frame_size, Argument::n_register_parameters);
 987     __ bind(skip_native_calculate_max_stack);
 988     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 989     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
 990     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 991     assert(Rsize_of_locals == noreg, "Rsize_of_locals not initialized"); // Only relevant value is Rsize_of_parameters.
 992   } else {
 993     __ lhz(Rsize_of_locals /* number of params */, in_bytes(ConstMethod::size_of_locals_offset()), Rconst_method);
 994     __ sldi(Rsize_of_parameters, Rsize_of_parameters, Interpreter::logStackElementSize);
 995     __ sldi(Rsize_of_locals, Rsize_of_locals, Interpreter::logStackElementSize);
 996     __ lhz(top_frame_size, in_bytes(ConstMethod::max_stack_offset()), Rconst_method);
 997     __ sub(R11_scratch1, Rsize_of_locals, Rsize_of_parameters); // >=0
 998     __ sub(parent_frame_resize, R1_SP, R15_esp); // <0, off by Interpreter::stackElementSize!
 999     __ sldi(top_frame_size, top_frame_size, Interpreter::logStackElementSize);
1000     __ add(parent_frame_resize, parent_frame_resize, R11_scratch1);
1001   }
1002 
1003   // Compute top frame size.
1004   __ addi(top_frame_size, top_frame_size, frame::abi_reg_args_size + frame::ijava_state_size);
1005 
1006   // Cut back area between esp and max_stack.
1007   __ addi(parent_frame_resize, parent_frame_resize, frame::abi_minframe_size - Interpreter::stackElementSize);
1008 
1009   __ round_to(top_frame_size, frame::alignment_in_bytes);
1010   __ round_to(parent_frame_resize, frame::alignment_in_bytes);
1011   // parent_frame_resize = (locals-parameters) - (ESP-SP-ABI48) Rounded to frame alignment size.
1012   // Enlarge by locals-parameters (not in case of native_call), shrink by ESP-SP-ABI48.
1013 
1014   if (!native_call) {
1015     // Stack overflow check.
1016     // Native calls don't need the stack size check since they have no
1017     // expression stack and the arguments are already on the stack and
1018     // we only add a handful of words to the stack.
1019     __ add(R11_scratch1, parent_frame_resize, top_frame_size);
1020     generate_stack_overflow_check(R11_scratch1, R12_scratch2);
1021   }
1022 
1023   // Set up interpreter state registers.
1024 
1025   __ add(R18_locals, R15_esp, Rsize_of_parameters);
1026   __ ld(R27_constPoolCache, in_bytes(ConstMethod::constants_offset()), Rconst_method);
1027   __ ld(R27_constPoolCache, ConstantPool::cache_offset_in_bytes(), R27_constPoolCache);
1028 
1029   // Set method data pointer.
1030   if (ProfileInterpreter) {
1031     Label zero_continue;
1032     __ ld(R28_mdx, method_(method_data));
1033     __ cmpdi(CCR0, R28_mdx, 0);
1034     __ beq(CCR0, zero_continue);
1035     __ addi(R28_mdx, R28_mdx, in_bytes(MethodData::data_offset()));
1036     __ bind(zero_continue);
1037   }
1038 
1039   if (native_call) {
1040     __ li(R14_bcp, 0); // Must initialize.
1041   } else {
1042     __ add(R14_bcp, in_bytes(ConstMethod::codes_offset()), Rconst_method);
1043   }
1044 
1045   // Resize parent frame.
1046   __ mflr(R12_scratch2);
1047   __ neg(parent_frame_resize, parent_frame_resize);
1048   __ resize_frame(parent_frame_resize, R11_scratch1);
1049   __ std(R12_scratch2, _abi(lr), R1_SP);
1050 
1051   // Get mirror and store it in the frame as GC root for this Method*.
1052   __ load_mirror_from_const_method(R12_scratch2, Rconst_method);
1053 
1054   __ addi(R26_monitor, R1_SP, - frame::ijava_state_size);
1055   __ addi(R15_esp, R26_monitor, - Interpreter::stackElementSize);
1056 
1057   // Store values.
1058   // R15_esp, R14_bcp, R26_monitor, R28_mdx are saved at java calls
1059   // in InterpreterMacroAssembler::call_from_interpreter.
1060   __ std(R19_method, _ijava_state_neg(method), R1_SP);
1061   __ std(R12_scratch2, _ijava_state_neg(mirror), R1_SP);
1062   __ std(R21_sender_SP, _ijava_state_neg(sender_sp), R1_SP);
1063   __ std(R27_constPoolCache, _ijava_state_neg(cpoolCache), R1_SP);
1064   __ std(R18_locals, _ijava_state_neg(locals), R1_SP);
1065 
1066   // Note: esp, bcp, monitor, mdx live in registers. Hence, the correct version can only
1067   // be found in the frame after save_interpreter_state is done. This is always true
1068   // for non-top frames. But when a signal occurs, dumping the top frame can go wrong,
1069   // because e.g. frame::interpreter_frame_bcp() will not access the correct value
1070   // (Enhanced Stack Trace).
1071   // The signal handler does not save the interpreter state into the frame.
1072   __ li(R0, 0);
1073 #ifdef ASSERT
1074   // Fill remaining slots with constants.
1075   __ load_const_optimized(R11_scratch1, 0x5afe);
1076   __ load_const_optimized(R12_scratch2, 0xdead);
1077 #endif
1078   // We have to initialize some frame slots for native calls (accessed by GC).
1079   if (native_call) {
1080     __ std(R26_monitor, _ijava_state_neg(monitors), R1_SP);
1081     __ std(R14_bcp, _ijava_state_neg(bcp), R1_SP);
1082     if (ProfileInterpreter) { __ std(R28_mdx, _ijava_state_neg(mdx), R1_SP); }
1083   }
1084 #ifdef ASSERT
1085   else {
1086     __ std(R12_scratch2, _ijava_state_neg(monitors), R1_SP);
1087     __ std(R12_scratch2, _ijava_state_neg(bcp), R1_SP);
1088     __ std(R12_scratch2, _ijava_state_neg(mdx), R1_SP);
1089   }
1090   __ std(R11_scratch1, _ijava_state_neg(ijava_reserved), R1_SP);
1091   __ std(R12_scratch2, _ijava_state_neg(esp), R1_SP);
1092   __ std(R12_scratch2, _ijava_state_neg(lresult), R1_SP);
1093   __ std(R12_scratch2, _ijava_state_neg(fresult), R1_SP);
1094 #endif
1095   __ subf(R12_scratch2, top_frame_size, R1_SP);
1096   __ std(R0, _ijava_state_neg(oop_tmp), R1_SP);
1097   __ std(R12_scratch2, _ijava_state_neg(top_frame_sp), R1_SP);
1098 
1099   // Push top frame.
1100   __ push_frame(top_frame_size, R11_scratch1);
1101 }
1102 
1103 // End of helpers
1104 
1105 address TemplateInterpreterGenerator::generate_math_entry(AbstractInterpreter::MethodKind kind) {
1106 
1107   // Decide what to do: Use same platform specific instructions and runtime calls as compilers.
1108   bool use_instruction = false;
1109   address runtime_entry = NULL;
1110   int num_args = 1;
1111   bool double_precision = true;
1112 
1113   // PPC64 specific:
1114   switch (kind) {
1115     case Interpreter::java_lang_math_sqrt: use_instruction = VM_Version::has_fsqrt(); break;
1116     case Interpreter::java_lang_math_abs:  use_instruction = true; break;
1117     case Interpreter::java_lang_math_fmaF:
1118     case Interpreter::java_lang_math_fmaD: use_instruction = UseFMA; break;
1119     default: break; // Fall back to runtime call.
1120   }
1121 
1122   switch (kind) {
1123     case Interpreter::java_lang_math_sin  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsin);   break;
1124     case Interpreter::java_lang_math_cos  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dcos);   break;
1125     case Interpreter::java_lang_math_tan  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dtan);   break;
1126     case Interpreter::java_lang_math_abs  : /* run interpreted */ break;
1127     case Interpreter::java_lang_math_sqrt : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dsqrt);  break;
1128     case Interpreter::java_lang_math_log  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog);   break;
1129     case Interpreter::java_lang_math_log10: runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dlog10); break;
1130     case Interpreter::java_lang_math_pow  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dpow); num_args = 2; break;
1131     case Interpreter::java_lang_math_exp  : runtime_entry = CAST_FROM_FN_PTR(address, SharedRuntime::dexp);   break;
1132     case Interpreter::java_lang_math_fmaF : /* run interpreted */ num_args = 3; double_precision = false; break;
1133     case Interpreter::java_lang_math_fmaD : /* run interpreted */ num_args = 3; break;
1134     default: ShouldNotReachHere();
1135   }
1136 
1137   // Use normal entry if neither instruction nor runtime call is used.
1138   if (!use_instruction && runtime_entry == NULL) return NULL;
1139 
1140   address entry = __ pc();
1141 
1142   // Load arguments
1143   assert(num_args <= 13, "passed in registers");
1144   if (double_precision) {
1145     int offset = (2 * num_args - 1) * Interpreter::stackElementSize;
1146     for (int i = 0; i < num_args; ++i) {
1147       __ lfd(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1148       offset -= 2 * Interpreter::stackElementSize;
1149     }
1150   } else {
1151     int offset = num_args * Interpreter::stackElementSize;
1152     for (int i = 0; i < num_args; ++i) {
1153       __ lfs(as_FloatRegister(F1_ARG1->encoding() + i), offset, R15_esp);
1154       offset -= Interpreter::stackElementSize;
1155     }
1156   }
1157 
1158   // Pop c2i arguments (if any) off when we return.
1159 #ifdef ASSERT
1160   __ ld(R9_ARG7, 0, R1_SP);
1161   __ ld(R10_ARG8, 0, R21_sender_SP);
1162   __ cmpd(CCR0, R9_ARG7, R10_ARG8);
1163   __ asm_assert_eq("backlink", 0x545);
1164 #endif // ASSERT
1165   __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1166 
1167   if (use_instruction) {
1168     switch (kind) {
1169       case Interpreter::java_lang_math_sqrt: __ fsqrt(F1_RET, F1);          break;
1170       case Interpreter::java_lang_math_abs:  __ fabs(F1_RET, F1);           break;
1171       case Interpreter::java_lang_math_fmaF: __ fmadds(F1_RET, F1, F2, F3); break;
1172       case Interpreter::java_lang_math_fmaD: __ fmadd(F1_RET, F1, F2, F3);  break;
1173       default: ShouldNotReachHere();
1174     }
1175   } else {
1176     // Comment: Can use tail call if the unextended frame is always C ABI compliant:
1177     //__ load_const_optimized(R12_scratch2, runtime_entry, R0);
1178     //__ call_c_and_return_to_caller(R12_scratch2);
1179 
1180     // Push a new C frame and save LR.
1181     __ save_LR_CR(R0);
1182     __ push_frame_reg_args(0, R11_scratch1);
1183 
1184     __ call_VM_leaf(runtime_entry);
1185 
1186     // Pop the C frame and restore LR.
1187     __ pop_frame();
1188     __ restore_LR_CR(R0);
1189   }
1190 
1191   __ blr();
1192 
1193   __ flush();
1194 
1195   return entry;
1196 }
1197 
1198 void TemplateInterpreterGenerator::bang_stack_shadow_pages(bool native_call) {
1199   // Quick & dirty stack overflow checking: bang the stack & handle trap.
1200   // Note that we do the banging after the frame is setup, since the exception
1201   // handling code expects to find a valid interpreter frame on the stack.
1202   // Doing the banging earlier fails if the caller frame is not an interpreter
1203   // frame.
1204   // (Also, the exception throwing code expects to unlock any synchronized
1205   // method receiever, so do the banging after locking the receiver.)
1206 
1207   // Bang each page in the shadow zone. We can't assume it's been done for
1208   // an interpreter frame with greater than a page of locals, so each page
1209   // needs to be checked.  Only true for non-native.
1210   if (UseStackBanging) {
1211     const int page_size = os::vm_page_size();
1212     const int n_shadow_pages = ((int)JavaThread::stack_shadow_zone_size()) / page_size;
1213     const int start_page = native_call ? n_shadow_pages : 1;
1214     BLOCK_COMMENT("bang_stack_shadow_pages:");
1215     for (int pages = start_page; pages <= n_shadow_pages; pages++) {
1216       __ bang_stack_with_offset(pages*page_size);
1217     }
1218   }
1219 }
1220 
1221 // Interpreter stub for calling a native method. (asm interpreter)
1222 // This sets up a somewhat different looking stack for calling the
1223 // native method than the typical interpreter frame setup.
1224 //
1225 // On entry:
1226 //   R19_method    - method
1227 //   R16_thread    - JavaThread*
1228 //   R15_esp       - intptr_t* sender tos
1229 //
1230 //   abstract stack (grows up)
1231 //     [  IJava (caller of JNI callee)  ]  <-- ASP
1232 //        ...
1233 address TemplateInterpreterGenerator::generate_native_entry(bool synchronized) {
1234 
1235   address entry = __ pc();
1236 
1237   const bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1238 
1239   // -----------------------------------------------------------------------------
1240   // Allocate a new frame that represents the native callee (i2n frame).
1241   // This is not a full-blown interpreter frame, but in particular, the
1242   // following registers are valid after this:
1243   // - R19_method
1244   // - R18_local (points to start of arguments to native function)
1245   //
1246   //   abstract stack (grows up)
1247   //     [  IJava (caller of JNI callee)  ]  <-- ASP
1248   //        ...
1249 
1250   const Register signature_handler_fd = R11_scratch1;
1251   const Register pending_exception    = R0;
1252   const Register result_handler_addr  = R31;
1253   const Register native_method_fd     = R11_scratch1;
1254   const Register access_flags         = R22_tmp2;
1255   const Register active_handles       = R11_scratch1; // R26_monitor saved to state.
1256   const Register sync_state           = R12_scratch2;
1257   const Register sync_state_addr      = sync_state;   // Address is dead after use.
1258   const Register suspend_flags        = R11_scratch1;
1259 
1260   //=============================================================================
1261   // Allocate new frame and initialize interpreter state.
1262 
1263   Label exception_return;
1264   Label exception_return_sync_check;
1265   Label stack_overflow_return;
1266 
1267   // Generate new interpreter state and jump to stack_overflow_return in case of
1268   // a stack overflow.
1269   //generate_compute_interpreter_state(stack_overflow_return);
1270 
1271   Register size_of_parameters = R22_tmp2;
1272 
1273   generate_fixed_frame(true, size_of_parameters, noreg /* unused */);
1274 
1275   //=============================================================================
1276   // Increment invocation counter. On overflow, entry to JNI method
1277   // will be compiled.
1278   Label invocation_counter_overflow, continue_after_compile;
1279   if (inc_counter) {
1280     if (synchronized) {
1281       // Since at this point in the method invocation the exception handler
1282       // would try to exit the monitor of synchronized methods which hasn't
1283       // been entered yet, we set the thread local variable
1284       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1285       // runtime, exception handling i.e. unlock_if_synchronized_method will
1286       // check this thread local flag.
1287       // This flag has two effects, one is to force an unwind in the topmost
1288       // interpreter frame and not perform an unlock while doing so.
1289       __ li(R0, 1);
1290       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1291     }
1292     generate_counter_incr(&invocation_counter_overflow, NULL, NULL);
1293 
1294     BIND(continue_after_compile);
1295   }
1296 
1297   bang_stack_shadow_pages(true);
1298 
1299   if (inc_counter) {
1300     // Reset the _do_not_unlock_if_synchronized flag.
1301     if (synchronized) {
1302       __ li(R0, 0);
1303       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1304     }
1305   }
1306 
1307   // access_flags = method->access_flags();
1308   // Load access flags.
1309   assert(access_flags->is_nonvolatile(),
1310          "access_flags must be in a non-volatile register");
1311   // Type check.
1312   assert(4 == sizeof(AccessFlags), "unexpected field size");
1313   __ lwz(access_flags, method_(access_flags));
1314 
1315   // We don't want to reload R19_method and access_flags after calls
1316   // to some helper functions.
1317   assert(R19_method->is_nonvolatile(),
1318          "R19_method must be a non-volatile register");
1319 
1320   // Check for synchronized methods. Must happen AFTER invocation counter
1321   // check, so method is not locked if counter overflows.
1322 
1323   if (synchronized) {
1324     lock_method(access_flags, R11_scratch1, R12_scratch2, true);
1325 
1326     // Update monitor in state.
1327     __ ld(R11_scratch1, 0, R1_SP);
1328     __ std(R26_monitor, _ijava_state_neg(monitors), R11_scratch1);
1329   }
1330 
1331   // jvmti/jvmpi support
1332   __ notify_method_entry();
1333 
1334   //=============================================================================
1335   // Get and call the signature handler.
1336 
1337   __ ld(signature_handler_fd, method_(signature_handler));
1338   Label call_signature_handler;
1339 
1340   __ cmpdi(CCR0, signature_handler_fd, 0);
1341   __ bne(CCR0, call_signature_handler);
1342 
1343   // Method has never been called. Either generate a specialized
1344   // handler or point to the slow one.
1345   //
1346   // Pass parameter 'false' to avoid exception check in call_VM.
1347   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::prepare_native_call), R19_method, false);
1348 
1349   // Check for an exception while looking up the target method. If we
1350   // incurred one, bail.
1351   __ ld(pending_exception, thread_(pending_exception));
1352   __ cmpdi(CCR0, pending_exception, 0);
1353   __ bne(CCR0, exception_return_sync_check); // Has pending exception.
1354 
1355   // Reload signature handler, it may have been created/assigned in the meanwhile.
1356   __ ld(signature_handler_fd, method_(signature_handler));
1357   __ twi_0(signature_handler_fd); // Order wrt. load of klass mirror and entry point (isync is below).
1358 
1359   BIND(call_signature_handler);
1360 
1361   // Before we call the signature handler we push a new frame to
1362   // protect the interpreter frame volatile registers when we return
1363   // from jni but before we can get back to Java.
1364 
1365   // First set the frame anchor while the SP/FP registers are
1366   // convenient and the slow signature handler can use this same frame
1367   // anchor.
1368 
1369   // We have a TOP_IJAVA_FRAME here, which belongs to us.
1370   __ set_top_ijava_frame_at_SP_as_last_Java_frame(R1_SP, R12_scratch2/*tmp*/);
1371 
1372   // Now the interpreter frame (and its call chain) have been
1373   // invalidated and flushed. We are now protected against eager
1374   // being enabled in native code. Even if it goes eager the
1375   // registers will be reloaded as clean and we will invalidate after
1376   // the call so no spurious flush should be possible.
1377 
1378   // Call signature handler and pass locals address.
1379   //
1380   // Our signature handlers copy required arguments to the C stack
1381   // (outgoing C args), R3_ARG1 to R10_ARG8, and FARG1 to FARG13.
1382   __ mr(R3_ARG1, R18_locals);
1383 #if !defined(ABI_ELFv2)
1384   __ ld(signature_handler_fd, 0, signature_handler_fd);
1385 #endif
1386 
1387   __ call_stub(signature_handler_fd);
1388 
1389   // Remove the register parameter varargs slots we allocated in
1390   // compute_interpreter_state. SP+16 ends up pointing to the ABI
1391   // outgoing argument area.
1392   //
1393   // Not needed on PPC64.
1394   //__ add(SP, SP, Argument::n_register_parameters*BytesPerWord);
1395 
1396   assert(result_handler_addr->is_nonvolatile(), "result_handler_addr must be in a non-volatile register");
1397   // Save across call to native method.
1398   __ mr(result_handler_addr, R3_RET);
1399 
1400   __ isync(); // Acquire signature handler before trying to fetch the native entry point and klass mirror.
1401 
1402   // Set up fixed parameters and call the native method.
1403   // If the method is static, get mirror into R4_ARG2.
1404   {
1405     Label method_is_not_static;
1406     // Access_flags is non-volatile and still, no need to restore it.
1407 
1408     // Restore access flags.
1409     __ testbitdi(CCR0, R0, access_flags, JVM_ACC_STATIC_BIT);
1410     __ bfalse(CCR0, method_is_not_static);
1411 
1412     __ ld(R11_scratch1, _abi(callers_sp), R1_SP);
1413     // Load mirror from interpreter frame.
1414     __ ld(R12_scratch2, _ijava_state_neg(mirror), R11_scratch1);
1415     // R4_ARG2 = &state->_oop_temp;
1416     __ addi(R4_ARG2, R11_scratch1, _ijava_state_neg(oop_tmp));
1417     __ std(R12_scratch2/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1);
1418     BIND(method_is_not_static);
1419   }
1420 
1421   // At this point, arguments have been copied off the stack into
1422   // their JNI positions. Oops are boxed in-place on the stack, with
1423   // handles copied to arguments. The result handler address is in a
1424   // register.
1425 
1426   // Pass JNIEnv address as first parameter.
1427   __ addir(R3_ARG1, thread_(jni_environment));
1428 
1429   // Load the native_method entry before we change the thread state.
1430   __ ld(native_method_fd, method_(native_function));
1431 
1432   //=============================================================================
1433   // Transition from _thread_in_Java to _thread_in_native. As soon as
1434   // we make this change the safepoint code needs to be certain that
1435   // the last Java frame we established is good. The pc in that frame
1436   // just needs to be near here not an actual return address.
1437 
1438   // We use release_store_fence to update values like the thread state, where
1439   // we don't want the current thread to continue until all our prior memory
1440   // accesses (including the new thread state) are visible to other threads.
1441   __ li(R0, _thread_in_native);
1442   __ release();
1443 
1444   // TODO PPC port assert(4 == JavaThread::sz_thread_state(), "unexpected field size");
1445   __ stw(R0, thread_(thread_state));
1446 
1447   //=============================================================================
1448   // Call the native method. Argument registers must not have been
1449   // overwritten since "__ call_stub(signature_handler);" (except for
1450   // ARG1 and ARG2 for static methods).
1451   __ call_c(native_method_fd);
1452 
1453   __ li(R0, 0);
1454   __ ld(R11_scratch1, 0, R1_SP);
1455   __ std(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1456   __ stfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1457   __ std(R0/*mirror*/, _ijava_state_neg(oop_tmp), R11_scratch1); // reset
1458 
1459   // Note: C++ interpreter needs the following here:
1460   // The frame_manager_lr field, which we use for setting the last
1461   // java frame, gets overwritten by the signature handler. Restore
1462   // it now.
1463   //__ get_PC_trash_LR(R11_scratch1);
1464   //__ std(R11_scratch1, _top_ijava_frame_abi(frame_manager_lr), R1_SP);
1465 
1466   // Because of GC R19_method may no longer be valid.
1467 
1468   // Block, if necessary, before resuming in _thread_in_Java state.
1469   // In order for GC to work, don't clear the last_Java_sp until after
1470   // blocking.
1471 
1472   //=============================================================================
1473   // Switch thread to "native transition" state before reading the
1474   // synchronization state. This additional state is necessary
1475   // because reading and testing the synchronization state is not
1476   // atomic w.r.t. GC, as this scenario demonstrates: Java thread A,
1477   // in _thread_in_native state, loads _not_synchronized and is
1478   // preempted. VM thread changes sync state to synchronizing and
1479   // suspends threads for GC. Thread A is resumed to finish this
1480   // native method, but doesn't block here since it didn't see any
1481   // synchronization in progress, and escapes.
1482 
1483   // We use release_store_fence to update values like the thread state, where
1484   // we don't want the current thread to continue until all our prior memory
1485   // accesses (including the new thread state) are visible to other threads.
1486   __ li(R0/*thread_state*/, _thread_in_native_trans);
1487   __ release();
1488   __ stw(R0/*thread_state*/, thread_(thread_state));
1489   __ fence();
1490 
1491   // Now before we return to java we must look for a current safepoint
1492   // (a new safepoint can not start since we entered native_trans).
1493   // We must check here because a current safepoint could be modifying
1494   // the callers registers right this moment.
1495 
1496   // Acquire isn't strictly necessary here because of the fence, but
1497   // sync_state is declared to be volatile, so we do it anyway
1498   // (cmp-br-isync on one path, release (same as acquire on PPC64) on the other path).
1499 
1500   Label do_safepoint, sync_check_done;
1501   // No synchronization in progress nor yet synchronized.
1502   __ safepoint_poll(do_safepoint, sync_state);
1503 
1504   // Not suspended.
1505   // TODO PPC port assert(4 == Thread::sz_suspend_flags(), "unexpected field size");
1506   __ lwz(suspend_flags, thread_(suspend_flags));
1507   __ cmpwi(CCR1, suspend_flags, 0);
1508   __ beq(CCR1, sync_check_done);
1509 
1510   __ bind(do_safepoint);
1511   __ isync();
1512   // Block. We do the call directly and leave the current
1513   // last_Java_frame setup undisturbed. We must save any possible
1514   // native result across the call. No oop is present.
1515 
1516   __ mr(R3_ARG1, R16_thread);
1517 #if defined(ABI_ELFv2)
1518   __ call_c(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans),
1519             relocInfo::none);
1520 #else
1521   __ call_c(CAST_FROM_FN_PTR(FunctionDescriptor*, JavaThread::check_special_condition_for_native_trans),
1522             relocInfo::none);
1523 #endif
1524 
1525   __ bind(sync_check_done);
1526 
1527   //=============================================================================
1528   // <<<<<< Back in Interpreter Frame >>>>>
1529 
1530   // We are in thread_in_native_trans here and back in the normal
1531   // interpreter frame. We don't have to do anything special about
1532   // safepoints and we can switch to Java mode anytime we are ready.
1533 
1534   // Note: frame::interpreter_frame_result has a dependency on how the
1535   // method result is saved across the call to post_method_exit. For
1536   // native methods it assumes that the non-FPU/non-void result is
1537   // saved in _native_lresult and a FPU result in _native_fresult. If
1538   // this changes then the interpreter_frame_result implementation
1539   // will need to be updated too.
1540 
1541   // On PPC64, we have stored the result directly after the native call.
1542 
1543   //=============================================================================
1544   // Back in Java
1545 
1546   // We use release_store_fence to update values like the thread state, where
1547   // we don't want the current thread to continue until all our prior memory
1548   // accesses (including the new thread state) are visible to other threads.
1549   __ li(R0/*thread_state*/, _thread_in_Java);
1550   __ lwsync(); // Acquire safepoint and suspend state, release thread state.
1551   __ stw(R0/*thread_state*/, thread_(thread_state));
1552 
1553   if (CheckJNICalls) {
1554     // clear_pending_jni_exception_check
1555     __ load_const_optimized(R0, 0L);
1556     __ st_ptr(R0, JavaThread::pending_jni_exception_check_fn_offset(), R16_thread);
1557   }
1558 
1559   __ reset_last_Java_frame();
1560 
1561   // Jvmdi/jvmpi support. Whether we've got an exception pending or
1562   // not, and whether unlocking throws an exception or not, we notify
1563   // on native method exit. If we do have an exception, we'll end up
1564   // in the caller's context to handle it, so if we don't do the
1565   // notify here, we'll drop it on the floor.
1566   __ notify_method_exit(true/*native method*/,
1567                         ilgl /*illegal state (not used for native methods)*/,
1568                         InterpreterMacroAssembler::NotifyJVMTI,
1569                         false /*check_exceptions*/);
1570 
1571   //=============================================================================
1572   // Handle exceptions
1573 
1574   if (synchronized) {
1575     // Don't check for exceptions since we're still in the i2n frame. Do that
1576     // manually afterwards.
1577     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1578   }
1579 
1580   // Reset active handles after returning from native.
1581   // thread->active_handles()->clear();
1582   __ ld(active_handles, thread_(active_handles));
1583   // TODO PPC port assert(4 == JNIHandleBlock::top_size_in_bytes(), "unexpected field size");
1584   __ li(R0, 0);
1585   __ stw(R0, JNIHandleBlock::top_offset_in_bytes(), active_handles);
1586 
1587   Label exception_return_sync_check_already_unlocked;
1588   __ ld(R0/*pending_exception*/, thread_(pending_exception));
1589   __ cmpdi(CCR0, R0/*pending_exception*/, 0);
1590   __ bne(CCR0, exception_return_sync_check_already_unlocked);
1591 
1592   //-----------------------------------------------------------------------------
1593   // No exception pending.
1594 
1595   // Move native method result back into proper registers and return.
1596   // Invoke result handler (may unbox/promote).
1597   __ ld(R11_scratch1, 0, R1_SP);
1598   __ ld(R3_RET, _ijava_state_neg(lresult), R11_scratch1);
1599   __ lfd(F1_RET, _ijava_state_neg(fresult), R11_scratch1);
1600   __ call_stub(result_handler_addr);
1601 
1602   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ R0, R11_scratch1, R12_scratch2);
1603 
1604   // Must use the return pc which was loaded from the caller's frame
1605   // as the VM uses return-pc-patching for deoptimization.
1606   __ mtlr(R0);
1607   __ blr();
1608 
1609   //-----------------------------------------------------------------------------
1610   // An exception is pending. We call into the runtime only if the
1611   // caller was not interpreted. If it was interpreted the
1612   // interpreter will do the correct thing. If it isn't interpreted
1613   // (call stub/compiled code) we will change our return and continue.
1614 
1615   BIND(exception_return_sync_check);
1616 
1617   if (synchronized) {
1618     // Don't check for exceptions since we're still in the i2n frame. Do that
1619     // manually afterwards.
1620     __ unlock_object(R26_monitor, false); // Can also unlock methods.
1621   }
1622   BIND(exception_return_sync_check_already_unlocked);
1623 
1624   const Register return_pc = R31;
1625 
1626   __ ld(return_pc, 0, R1_SP);
1627   __ ld(return_pc, _abi(lr), return_pc);
1628 
1629   // Get the address of the exception handler.
1630   __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address),
1631                   R16_thread,
1632                   return_pc /* return pc */);
1633   __ merge_frames(/*top_frame_sp*/ R21_sender_SP, noreg, R11_scratch1, R12_scratch2);
1634 
1635   // Load the PC of the the exception handler into LR.
1636   __ mtlr(R3_RET);
1637 
1638   // Load exception into R3_ARG1 and clear pending exception in thread.
1639   __ ld(R3_ARG1/*exception*/, thread_(pending_exception));
1640   __ li(R4_ARG2, 0);
1641   __ std(R4_ARG2, thread_(pending_exception));
1642 
1643   // Load the original return pc into R4_ARG2.
1644   __ mr(R4_ARG2/*issuing_pc*/, return_pc);
1645 
1646   // Return to exception handler.
1647   __ blr();
1648 
1649   //=============================================================================
1650   // Counter overflow.
1651 
1652   if (inc_counter) {
1653     // Handle invocation counter overflow.
1654     __ bind(invocation_counter_overflow);
1655 
1656     generate_counter_overflow(continue_after_compile);
1657   }
1658 
1659   return entry;
1660 }
1661 
1662 // Generic interpreted method entry to (asm) interpreter.
1663 //
1664 address TemplateInterpreterGenerator::generate_normal_entry(bool synchronized) {
1665   bool inc_counter = UseCompiler || CountCompiledCalls || LogTouchedMethods;
1666   address entry = __ pc();
1667   // Generate the code to allocate the interpreter stack frame.
1668   Register Rsize_of_parameters = R4_ARG2, // Written by generate_fixed_frame.
1669            Rsize_of_locals     = R5_ARG3; // Written by generate_fixed_frame.
1670 
1671   // Does also a stack check to assure this frame fits on the stack.
1672   generate_fixed_frame(false, Rsize_of_parameters, Rsize_of_locals);
1673 
1674   // --------------------------------------------------------------------------
1675   // Zero out non-parameter locals.
1676   // Note: *Always* zero out non-parameter locals as Sparc does. It's not
1677   // worth to ask the flag, just do it.
1678   Register Rslot_addr = R6_ARG4,
1679            Rnum       = R7_ARG5;
1680   Label Lno_locals, Lzero_loop;
1681 
1682   // Set up the zeroing loop.
1683   __ subf(Rnum, Rsize_of_parameters, Rsize_of_locals);
1684   __ subf(Rslot_addr, Rsize_of_parameters, R18_locals);
1685   __ srdi_(Rnum, Rnum, Interpreter::logStackElementSize);
1686   __ beq(CCR0, Lno_locals);
1687   __ li(R0, 0);
1688   __ mtctr(Rnum);
1689 
1690   // The zero locals loop.
1691   __ bind(Lzero_loop);
1692   __ std(R0, 0, Rslot_addr);
1693   __ addi(Rslot_addr, Rslot_addr, -Interpreter::stackElementSize);
1694   __ bdnz(Lzero_loop);
1695 
1696   __ bind(Lno_locals);
1697 
1698   // --------------------------------------------------------------------------
1699   // Counter increment and overflow check.
1700   Label invocation_counter_overflow,
1701         profile_method,
1702         profile_method_continue;
1703   if (inc_counter || ProfileInterpreter) {
1704 
1705     Register Rdo_not_unlock_if_synchronized_addr = R11_scratch1;
1706     if (synchronized) {
1707       // Since at this point in the method invocation the exception handler
1708       // would try to exit the monitor of synchronized methods which hasn't
1709       // been entered yet, we set the thread local variable
1710       // _do_not_unlock_if_synchronized to true. If any exception was thrown by
1711       // runtime, exception handling i.e. unlock_if_synchronized_method will
1712       // check this thread local flag.
1713       // This flag has two effects, one is to force an unwind in the topmost
1714       // interpreter frame and not perform an unlock while doing so.
1715       __ li(R0, 1);
1716       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1717     }
1718 
1719     // Argument and return type profiling.
1720     __ profile_parameters_type(R3_ARG1, R4_ARG2, R5_ARG3, R6_ARG4);
1721 
1722     // Increment invocation counter and check for overflow.
1723     if (inc_counter) {
1724       generate_counter_incr(&invocation_counter_overflow, &profile_method, &profile_method_continue);
1725     }
1726 
1727     __ bind(profile_method_continue);
1728   }
1729 
1730   bang_stack_shadow_pages(false);
1731 
1732   if (inc_counter || ProfileInterpreter) {
1733     // Reset the _do_not_unlock_if_synchronized flag.
1734     if (synchronized) {
1735       __ li(R0, 0);
1736       __ stb(R0, in_bytes(JavaThread::do_not_unlock_if_synchronized_offset()), R16_thread);
1737     }
1738   }
1739 
1740   // --------------------------------------------------------------------------
1741   // Locking of synchronized methods. Must happen AFTER invocation_counter
1742   // check and stack overflow check, so method is not locked if overflows.
1743   if (synchronized) {
1744     lock_method(R3_ARG1, R4_ARG2, R5_ARG3);
1745   }
1746 #ifdef ASSERT
1747   else {
1748     Label Lok;
1749     __ lwz(R0, in_bytes(Method::access_flags_offset()), R19_method);
1750     __ andi_(R0, R0, JVM_ACC_SYNCHRONIZED);
1751     __ asm_assert_eq("method needs synchronization", 0x8521);
1752     __ bind(Lok);
1753   }
1754 #endif // ASSERT
1755 
1756   __ verify_thread();
1757 
1758   // --------------------------------------------------------------------------
1759   // JVMTI support
1760   __ notify_method_entry();
1761 
1762   // --------------------------------------------------------------------------
1763   // Start executing instructions.
1764   __ dispatch_next(vtos);
1765 
1766   // --------------------------------------------------------------------------
1767   // Out of line counter overflow and MDO creation code.
1768   if (ProfileInterpreter) {
1769     // We have decided to profile this method in the interpreter.
1770     __ bind(profile_method);
1771     __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::profile_method));
1772     __ set_method_data_pointer_for_bcp();
1773     __ b(profile_method_continue);
1774   }
1775 
1776   if (inc_counter) {
1777     // Handle invocation counter overflow.
1778     __ bind(invocation_counter_overflow);
1779     generate_counter_overflow(profile_method_continue);
1780   }
1781   return entry;
1782 }
1783 
1784 // CRC32 Intrinsics.
1785 //
1786 // Contract on scratch and work registers.
1787 // =======================================
1788 //
1789 // On ppc, the register set {R2..R12} is available in the interpreter as scratch/work registers.
1790 // You should, however, keep in mind that {R3_ARG1..R10_ARG8} is the C-ABI argument register set.
1791 // You can't rely on these registers across calls.
1792 //
1793 // The generators for CRC32_update and for CRC32_updateBytes use the
1794 // scratch/work register set internally, passing the work registers
1795 // as arguments to the MacroAssembler emitters as required.
1796 //
1797 // R3_ARG1..R6_ARG4 are preset to hold the incoming java arguments.
1798 // Their contents is not constant but may change according to the requirements
1799 // of the emitted code.
1800 //
1801 // All other registers from the scratch/work register set are used "internally"
1802 // and contain garbage (i.e. unpredictable values) once blr() is reached.
1803 // Basically, only R3_RET contains a defined value which is the function result.
1804 //
1805 /**
1806  * Method entry for static native methods:
1807  *   int java.util.zip.CRC32.update(int crc, int b)
1808  */
1809 address TemplateInterpreterGenerator::generate_CRC32_update_entry() {
1810   if (UseCRC32Intrinsics) {
1811     address start = __ pc();  // Remember stub start address (is rtn value).
1812     Label slow_path;
1813 
1814     // Safepoint check
1815     const Register sync_state = R11_scratch1;
1816     __ safepoint_poll(slow_path, sync_state);
1817 
1818     // We don't generate local frame and don't align stack because
1819     // we not even call stub code (we generate the code inline)
1820     // and there is no safepoint on this path.
1821 
1822     // Load java parameters.
1823     // R15_esp is callers operand stack pointer, i.e. it points to the parameters.
1824     const Register argP    = R15_esp;
1825     const Register crc     = R3_ARG1;  // crc value
1826     const Register data    = R4_ARG2;  // address of java byte value (kernel_crc32 needs address)
1827     const Register dataLen = R5_ARG3;  // source data len (1 byte). Not used because calling the single-byte emitter.
1828     const Register table   = R6_ARG4;  // address of crc32 table
1829     const Register tmp     = dataLen;  // Reuse unused len register to show we don't actually need a separate tmp here.
1830 
1831     BLOCK_COMMENT("CRC32_update {");
1832 
1833     // Arguments are reversed on java expression stack
1834 #ifdef VM_LITTLE_ENDIAN
1835     __ addi(data, argP, 0+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1836                                        // Being passed as an int, the single byte is at offset +0.
1837 #else
1838     __ addi(data, argP, 3+1*wordSize); // (stack) address of byte value. Emitter expects address, not value.
1839                                        // Being passed from java as an int, the single byte is at offset +3.
1840 #endif
1841     __ lwz(crc,  2*wordSize, argP);    // Current crc state, zero extend to 64 bit to have a clean register.
1842 
1843     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1844     __ kernel_crc32_singleByte(crc, data, dataLen, table, tmp, true);
1845 
1846     // Restore caller sp for c2i case and return.
1847     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1848     __ blr();
1849 
1850     // Generate a vanilla native entry as the slow path.
1851     BLOCK_COMMENT("} CRC32_update");
1852     BIND(slow_path);
1853     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1854     return start;
1855   }
1856 
1857   return NULL;
1858 }
1859 
1860 /**
1861  * Method entry for static native methods:
1862  *   int java.util.zip.CRC32.updateBytes(     int crc, byte[] b,  int off, int len)
1863  *   int java.util.zip.CRC32.updateByteBuffer(int crc, long* buf, int off, int len)
1864  */
1865 address TemplateInterpreterGenerator::generate_CRC32_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1866   if (UseCRC32Intrinsics) {
1867     address start = __ pc();  // Remember stub start address (is rtn value).
1868     Label slow_path;
1869 
1870     // Safepoint check
1871     const Register sync_state = R11_scratch1;
1872     __ safepoint_poll(slow_path, sync_state);
1873 
1874     // We don't generate local frame and don't align stack because
1875     // we not even call stub code (we generate the code inline)
1876     // and there is no safepoint on this path.
1877 
1878     // Load parameters.
1879     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1880     const Register argP    = R15_esp;
1881     const Register crc     = R3_ARG1;  // crc value
1882     const Register data    = R4_ARG2;  // address of java byte array
1883     const Register dataLen = R5_ARG3;  // source data len
1884     const Register table   = R6_ARG4;  // address of crc32 table
1885 
1886     const Register t0      = R9;       // scratch registers for crc calculation
1887     const Register t1      = R10;
1888     const Register t2      = R11;
1889     const Register t3      = R12;
1890 
1891     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1892     const Register tc1     = R7;
1893     const Register tc2     = R8;
1894     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1895 
1896     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1897 
1898     // Arguments are reversed on java expression stack.
1899     // Calculate address of start element.
1900     if (kind == Interpreter::java_util_zip_CRC32_updateByteBuffer) { // Used for "updateByteBuffer direct".
1901       BLOCK_COMMENT("CRC32_updateByteBuffer {");
1902       // crc     @ (SP + 5W) (32bit)
1903       // buf     @ (SP + 3W) (64bit ptr to long array)
1904       // off     @ (SP + 2W) (32bit)
1905       // dataLen @ (SP + 1W) (32bit)
1906       // data = buf + off
1907       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1908       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1909       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1910       __ lwz( crc,     5*wordSize, argP);  // current crc state
1911       __ add( data, data, tmp);            // Add byte buffer offset.
1912     } else {                                                         // Used for "updateBytes update".
1913       BLOCK_COMMENT("CRC32_updateBytes {");
1914       // crc     @ (SP + 4W) (32bit)
1915       // buf     @ (SP + 3W) (64bit ptr to byte array)
1916       // off     @ (SP + 2W) (32bit)
1917       // dataLen @ (SP + 1W) (32bit)
1918       // data = buf + off + base_offset
1919       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1920       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1921       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1922       __ add( data, data, tmp);            // add byte buffer offset
1923       __ lwz( crc,     4*wordSize, argP);  // current crc state
1924       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
1925     }
1926 
1927     StubRoutines::ppc64::generate_load_crc_table_addr(_masm, table);
1928 
1929     // Performance measurements show the 1word and 2word variants to be almost equivalent,
1930     // with very light advantages for the 1word variant. We chose the 1word variant for
1931     // code compactness.
1932     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, true);
1933 
1934     // Restore caller sp for c2i case and return.
1935     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
1936     __ blr();
1937 
1938     // Generate a vanilla native entry as the slow path.
1939     BLOCK_COMMENT("} CRC32_updateBytes(Buffer)");
1940     BIND(slow_path);
1941     __ jump_to_entry(Interpreter::entry_for_kind(Interpreter::native), R11_scratch1);
1942     return start;
1943   }
1944 
1945   return NULL;
1946 }
1947 
1948 
1949 /**
1950  * Method entry for intrinsic-candidate (non-native) methods:
1951  *   int java.util.zip.CRC32C.updateBytes(           int crc, byte[] b,  int off, int end)
1952  *   int java.util.zip.CRC32C.updateDirectByteBuffer(int crc, long* buf, int off, int end)
1953  * Unlike CRC32, CRC32C does not have any methods marked as native
1954  * CRC32C also uses an "end" variable instead of the length variable CRC32 uses
1955  **/
1956 address TemplateInterpreterGenerator::generate_CRC32C_updateBytes_entry(AbstractInterpreter::MethodKind kind) {
1957   if (UseCRC32CIntrinsics) {
1958     address start = __ pc();  // Remember stub start address (is rtn value).
1959 
1960     // We don't generate local frame and don't align stack because
1961     // we not even call stub code (we generate the code inline)
1962     // and there is no safepoint on this path.
1963 
1964     // Load parameters.
1965     // Z_esp is callers operand stack pointer, i.e. it points to the parameters.
1966     const Register argP    = R15_esp;
1967     const Register crc     = R3_ARG1;  // crc value
1968     const Register data    = R4_ARG2;  // address of java byte array
1969     const Register dataLen = R5_ARG3;  // source data len
1970     const Register table   = R6_ARG4;  // address of crc32c table
1971 
1972     const Register t0      = R9;       // scratch registers for crc calculation
1973     const Register t1      = R10;
1974     const Register t2      = R11;
1975     const Register t3      = R12;
1976 
1977     const Register tc0     = R2;       // registers to hold pre-calculated column addresses
1978     const Register tc1     = R7;
1979     const Register tc2     = R8;
1980     const Register tc3     = table;    // table address is reconstructed at the end of kernel_crc32_* emitters
1981 
1982     const Register tmp     = t0;       // Only used very locally to calculate byte buffer address.
1983 
1984     // Arguments are reversed on java expression stack.
1985     // Calculate address of start element.
1986     if (kind == Interpreter::java_util_zip_CRC32C_updateDirectByteBuffer) { // Used for "updateDirectByteBuffer".
1987       BLOCK_COMMENT("CRC32C_updateDirectByteBuffer {");
1988       // crc     @ (SP + 5W) (32bit)
1989       // buf     @ (SP + 3W) (64bit ptr to long array)
1990       // off     @ (SP + 2W) (32bit)
1991       // dataLen @ (SP + 1W) (32bit)
1992       // data = buf + off
1993       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
1994       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
1995       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
1996       __ lwz( crc,     5*wordSize, argP);  // current crc state
1997       __ add( data, data, tmp);            // Add byte buffer offset.
1998       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
1999     } else {                                                         // Used for "updateBytes update".
2000       BLOCK_COMMENT("CRC32C_updateBytes {");
2001       // crc     @ (SP + 4W) (32bit)
2002       // buf     @ (SP + 3W) (64bit ptr to byte array)
2003       // off     @ (SP + 2W) (32bit)
2004       // dataLen @ (SP + 1W) (32bit)
2005       // data = buf + off + base_offset
2006       __ ld(  data,    3*wordSize, argP);  // start of byte buffer
2007       __ lwa( tmp,     2*wordSize, argP);  // byte buffer offset
2008       __ lwa( dataLen, 1*wordSize, argP);  // #bytes to process
2009       __ add( data, data, tmp);            // add byte buffer offset
2010       __ sub( dataLen, dataLen, tmp);      // (end_index - offset)
2011       __ lwz( crc,     4*wordSize, argP);  // current crc state
2012       __ addi(data, data, arrayOopDesc::base_offset_in_bytes(T_BYTE));
2013     }
2014 
2015     StubRoutines::ppc64::generate_load_crc32c_table_addr(_masm, table);
2016 
2017     // Performance measurements show the 1word and 2word variants to be almost equivalent,
2018     // with very light advantages for the 1word variant. We chose the 1word variant for
2019     // code compactness.
2020     __ kernel_crc32_1word(crc, data, dataLen, table, t0, t1, t2, t3, tc0, tc1, tc2, tc3, false);
2021 
2022     // Restore caller sp for c2i case and return.
2023     __ mr(R1_SP, R21_sender_SP); // Cut the stack back to where the caller started.
2024     __ blr();
2025 
2026     BLOCK_COMMENT("} CRC32C_update{Bytes|DirectByteBuffer}");
2027     return start;
2028   }
2029 
2030   return NULL;
2031 }
2032 
2033 // =============================================================================
2034 // Exceptions
2035 
2036 void TemplateInterpreterGenerator::generate_throw_exception() {
2037   Register Rexception    = R17_tos,
2038            Rcontinuation = R3_RET;
2039 
2040   // --------------------------------------------------------------------------
2041   // Entry point if an method returns with a pending exception (rethrow).
2042   Interpreter::_rethrow_exception_entry = __ pc();
2043   {
2044     __ restore_interpreter_state(R11_scratch1); // Sets R11_scratch1 = fp.
2045     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2046     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2047 
2048     // Compiled code destroys templateTableBase, reload.
2049     __ load_const_optimized(R25_templateTableBase, (address)Interpreter::dispatch_table((TosState)0), R11_scratch1);
2050   }
2051 
2052   // Entry point if a interpreted method throws an exception (throw).
2053   Interpreter::_throw_exception_entry = __ pc();
2054   {
2055     __ mr(Rexception, R3_RET);
2056 
2057     __ verify_thread();
2058     __ verify_oop(Rexception);
2059 
2060     // Expression stack must be empty before entering the VM in case of an exception.
2061     __ empty_expression_stack();
2062     // Find exception handler address and preserve exception oop.
2063     // Call C routine to find handler and jump to it.
2064     __ call_VM(Rexception, CAST_FROM_FN_PTR(address, InterpreterRuntime::exception_handler_for_exception), Rexception);
2065     __ mtctr(Rcontinuation);
2066     // Push exception for exception handler bytecodes.
2067     __ push_ptr(Rexception);
2068 
2069     // Jump to exception handler (may be remove activation entry!).
2070     __ bctr();
2071   }
2072 
2073   // If the exception is not handled in the current frame the frame is
2074   // removed and the exception is rethrown (i.e. exception
2075   // continuation is _rethrow_exception).
2076   //
2077   // Note: At this point the bci is still the bxi for the instruction
2078   // which caused the exception and the expression stack is
2079   // empty. Thus, for any VM calls at this point, GC will find a legal
2080   // oop map (with empty expression stack).
2081 
2082   // In current activation
2083   // tos: exception
2084   // bcp: exception bcp
2085 
2086   // --------------------------------------------------------------------------
2087   // JVMTI PopFrame support
2088 
2089   Interpreter::_remove_activation_preserving_args_entry = __ pc();
2090   {
2091     // Set the popframe_processing bit in popframe_condition indicating that we are
2092     // currently handling popframe, so that call_VMs that may happen later do not
2093     // trigger new popframe handling cycles.
2094     __ lwz(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2095     __ ori(R11_scratch1, R11_scratch1, JavaThread::popframe_processing_bit);
2096     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2097 
2098     // Empty the expression stack, as in normal exception handling.
2099     __ empty_expression_stack();
2100     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, /* install_monitor_exception */ false);
2101 
2102     // Check to see whether we are returning to a deoptimized frame.
2103     // (The PopFrame call ensures that the caller of the popped frame is
2104     // either interpreted or compiled and deoptimizes it if compiled.)
2105     // Note that we don't compare the return PC against the
2106     // deoptimization blob's unpack entry because of the presence of
2107     // adapter frames in C2.
2108     Label Lcaller_not_deoptimized;
2109     Register return_pc = R3_ARG1;
2110     __ ld(return_pc, 0, R1_SP);
2111     __ ld(return_pc, _abi(lr), return_pc);
2112     __ call_VM_leaf(CAST_FROM_FN_PTR(address, InterpreterRuntime::interpreter_contains), return_pc);
2113     __ cmpdi(CCR0, R3_RET, 0);
2114     __ bne(CCR0, Lcaller_not_deoptimized);
2115 
2116     // The deoptimized case.
2117     // In this case, we can't call dispatch_next() after the frame is
2118     // popped, but instead must save the incoming arguments and restore
2119     // them after deoptimization has occurred.
2120     __ ld(R4_ARG2, in_bytes(Method::const_offset()), R19_method);
2121     __ lhz(R4_ARG2 /* number of params */, in_bytes(ConstMethod::size_of_parameters_offset()), R4_ARG2);
2122     __ slwi(R4_ARG2, R4_ARG2, Interpreter::logStackElementSize);
2123     __ addi(R5_ARG3, R18_locals, Interpreter::stackElementSize);
2124     __ subf(R5_ARG3, R4_ARG2, R5_ARG3);
2125     // Save these arguments.
2126     __ call_VM_leaf(CAST_FROM_FN_PTR(address, Deoptimization::popframe_preserve_args), R16_thread, R4_ARG2, R5_ARG3);
2127 
2128     // Inform deoptimization that it is responsible for restoring these arguments.
2129     __ load_const_optimized(R11_scratch1, JavaThread::popframe_force_deopt_reexecution_bit);
2130     __ stw(R11_scratch1, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2131 
2132     // Return from the current method into the deoptimization blob. Will eventually
2133     // end up in the deopt interpeter entry, deoptimization prepared everything that
2134     // we will reexecute the call that called us.
2135     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*reload return_pc*/ return_pc, R11_scratch1, R12_scratch2);
2136     __ mtlr(return_pc);
2137     __ blr();
2138 
2139     // The non-deoptimized case.
2140     __ bind(Lcaller_not_deoptimized);
2141 
2142     // Clear the popframe condition flag.
2143     __ li(R0, 0);
2144     __ stw(R0, in_bytes(JavaThread::popframe_condition_offset()), R16_thread);
2145 
2146     // Get out of the current method and re-execute the call that called us.
2147     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2148     __ restore_interpreter_state(R11_scratch1);
2149     __ ld(R12_scratch2, _ijava_state_neg(top_frame_sp), R11_scratch1);
2150     __ resize_frame_absolute(R12_scratch2, R11_scratch1, R0);
2151     if (ProfileInterpreter) {
2152       __ set_method_data_pointer_for_bcp();
2153       __ ld(R11_scratch1, 0, R1_SP);
2154       __ std(R28_mdx, _ijava_state_neg(mdx), R11_scratch1);
2155     }
2156 #if INCLUDE_JVMTI
2157     Label L_done;
2158 
2159     __ lbz(R11_scratch1, 0, R14_bcp);
2160     __ cmpwi(CCR0, R11_scratch1, Bytecodes::_invokestatic);
2161     __ bne(CCR0, L_done);
2162 
2163     // The member name argument must be restored if _invokestatic is re-executed after a PopFrame call.
2164     // Detect such a case in the InterpreterRuntime function and return the member name argument, or NULL.
2165     __ ld(R4_ARG2, 0, R18_locals);
2166     __ MacroAssembler::call_VM(R4_ARG2, CAST_FROM_FN_PTR(address, InterpreterRuntime::member_name_arg_or_null), R4_ARG2, R19_method, R14_bcp, false);
2167     __ restore_interpreter_state(R11_scratch1, /*bcp_and_mdx_only*/ true);
2168     __ cmpdi(CCR0, R4_ARG2, 0);
2169     __ beq(CCR0, L_done);
2170     __ std(R4_ARG2, wordSize, R15_esp);
2171     __ bind(L_done);
2172 #endif // INCLUDE_JVMTI
2173     __ dispatch_next(vtos);
2174   }
2175   // end of JVMTI PopFrame support
2176 
2177   // --------------------------------------------------------------------------
2178   // Remove activation exception entry.
2179   // This is jumped to if an interpreted method can't handle an exception itself
2180   // (we come from the throw/rethrow exception entry above). We're going to call
2181   // into the VM to find the exception handler in the caller, pop the current
2182   // frame and return the handler we calculated.
2183   Interpreter::_remove_activation_entry = __ pc();
2184   {
2185     __ pop_ptr(Rexception);
2186     __ verify_thread();
2187     __ verify_oop(Rexception);
2188     __ std(Rexception, in_bytes(JavaThread::vm_result_offset()), R16_thread);
2189 
2190     __ unlock_if_synchronized_method(vtos, /* throw_monitor_exception */ false, true);
2191     __ notify_method_exit(false, vtos, InterpreterMacroAssembler::SkipNotifyJVMTI, false);
2192 
2193     __ get_vm_result(Rexception);
2194 
2195     // We are done with this activation frame; find out where to go next.
2196     // The continuation point will be an exception handler, which expects
2197     // the following registers set up:
2198     //
2199     // RET:  exception oop
2200     // ARG2: Issuing PC (see generate_exception_blob()), only used if the caller is compiled.
2201 
2202     Register return_pc = R31; // Needs to survive the runtime call.
2203     __ ld(return_pc, 0, R1_SP);
2204     __ ld(return_pc, _abi(lr), return_pc);
2205     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::exception_handler_for_return_address), R16_thread, return_pc);
2206 
2207     // Remove the current activation.
2208     __ merge_frames(/*top_frame_sp*/ R21_sender_SP, /*return_pc*/ noreg, R11_scratch1, R12_scratch2);
2209 
2210     __ mr(R4_ARG2, return_pc);
2211     __ mtlr(R3_RET);
2212     __ mr(R3_RET, Rexception);
2213     __ blr();
2214   }
2215 }
2216 
2217 // JVMTI ForceEarlyReturn support.
2218 // Returns "in the middle" of a method with a "fake" return value.
2219 address TemplateInterpreterGenerator::generate_earlyret_entry_for(TosState state) {
2220 
2221   Register Rscratch1 = R11_scratch1,
2222            Rscratch2 = R12_scratch2;
2223 
2224   address entry = __ pc();
2225   __ empty_expression_stack();
2226 
2227   __ load_earlyret_value(state, Rscratch1);
2228 
2229   __ ld(Rscratch1, in_bytes(JavaThread::jvmti_thread_state_offset()), R16_thread);
2230   // Clear the earlyret state.
2231   __ li(R0, 0);
2232   __ stw(R0, in_bytes(JvmtiThreadState::earlyret_state_offset()), Rscratch1);
2233 
2234   __ remove_activation(state, false, false);
2235   // Copied from TemplateTable::_return.
2236   // Restoration of lr done by remove_activation.
2237   switch (state) {
2238     // Narrow result if state is itos but result type is smaller.
2239     case btos:
2240     case ztos:
2241     case ctos:
2242     case stos:
2243     case itos: __ narrow(R17_tos); /* fall through */
2244     case ltos:
2245     case atos: __ mr(R3_RET, R17_tos); break;
2246     case ftos:
2247     case dtos: __ fmr(F1_RET, F15_ftos); break;
2248     case vtos: // This might be a constructor. Final fields (and volatile fields on PPC64) need
2249                // to get visible before the reference to the object gets stored anywhere.
2250                __ membar(Assembler::StoreStore); break;
2251     default  : ShouldNotReachHere();
2252   }
2253   __ blr();
2254 
2255   return entry;
2256 } // end of ForceEarlyReturn support
2257 
2258 //-----------------------------------------------------------------------------
2259 // Helper for vtos entry point generation
2260 
2261 void TemplateInterpreterGenerator::set_vtos_entry_points(Template* t,
2262                                                          address& bep,
2263                                                          address& cep,
2264                                                          address& sep,
2265                                                          address& aep,
2266                                                          address& iep,
2267                                                          address& lep,
2268                                                          address& fep,
2269                                                          address& dep,
2270                                                          address& vep) {
2271   assert(t->is_valid() && t->tos_in() == vtos, "illegal template");
2272   Label L;
2273 
2274   aep = __ pc();  __ push_ptr();  __ b(L);
2275   fep = __ pc();  __ push_f();    __ b(L);
2276   dep = __ pc();  __ push_d();    __ b(L);
2277   lep = __ pc();  __ push_l();    __ b(L);
2278   __ align(32, 12, 24); // align L
2279   bep = cep = sep =
2280   iep = __ pc();  __ push_i();
2281   vep = __ pc();
2282   __ bind(L);
2283   generate_and_dispatch(t);
2284 }
2285 
2286 //-----------------------------------------------------------------------------
2287 
2288 // Non-product code
2289 #ifndef PRODUCT
2290 address TemplateInterpreterGenerator::generate_trace_code(TosState state) {
2291   //__ flush_bundle();
2292   address entry = __ pc();
2293 
2294   const char *bname = NULL;
2295   uint tsize = 0;
2296   switch(state) {
2297   case ftos:
2298     bname = "trace_code_ftos {";
2299     tsize = 2;
2300     break;
2301   case btos:
2302     bname = "trace_code_btos {";
2303     tsize = 2;
2304     break;
2305   case ztos:
2306     bname = "trace_code_ztos {";
2307     tsize = 2;
2308     break;
2309   case ctos:
2310     bname = "trace_code_ctos {";
2311     tsize = 2;
2312     break;
2313   case stos:
2314     bname = "trace_code_stos {";
2315     tsize = 2;
2316     break;
2317   case itos:
2318     bname = "trace_code_itos {";
2319     tsize = 2;
2320     break;
2321   case ltos:
2322     bname = "trace_code_ltos {";
2323     tsize = 3;
2324     break;
2325   case atos:
2326     bname = "trace_code_atos {";
2327     tsize = 2;
2328     break;
2329   case vtos:
2330     // Note: In case of vtos, the topmost of stack value could be a int or doubl
2331     // In case of a double (2 slots) we won't see the 2nd stack value.
2332     // Maybe we simply should print the topmost 3 stack slots to cope with the problem.
2333     bname = "trace_code_vtos {";
2334     tsize = 2;
2335 
2336     break;
2337   case dtos:
2338     bname = "trace_code_dtos {";
2339     tsize = 3;
2340     break;
2341   default:
2342     ShouldNotReachHere();
2343   }
2344   BLOCK_COMMENT(bname);
2345 
2346   // Support short-cut for TraceBytecodesAt.
2347   // Don't call into the VM if we don't want to trace to speed up things.
2348   Label Lskip_vm_call;
2349   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2350     int offs1 = __ load_const_optimized(R11_scratch1, (address) &TraceBytecodesAt, R0, true);
2351     int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2352     __ ld(R11_scratch1, offs1, R11_scratch1);
2353     __ lwa(R12_scratch2, offs2, R12_scratch2);
2354     __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2355     __ blt(CCR0, Lskip_vm_call);
2356   }
2357 
2358   __ push(state);
2359   // Load 2 topmost expression stack values.
2360   __ ld(R6_ARG4, tsize*Interpreter::stackElementSize, R15_esp);
2361   __ ld(R5_ARG3, Interpreter::stackElementSize, R15_esp);
2362   __ mflr(R31);
2363   __ call_VM(noreg, CAST_FROM_FN_PTR(address, InterpreterRuntime::trace_bytecode), /* unused */ R4_ARG2, R5_ARG3, R6_ARG4, false);
2364   __ mtlr(R31);
2365   __ pop(state);
2366 
2367   if (TraceBytecodesAt > 0 && TraceBytecodesAt < max_intx) {
2368     __ bind(Lskip_vm_call);
2369   }
2370   __ blr();
2371   BLOCK_COMMENT("} trace_code");
2372   return entry;
2373 }
2374 
2375 void TemplateInterpreterGenerator::count_bytecode() {
2376   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeCounter::_counter_value, R12_scratch2, true);
2377   __ lwz(R12_scratch2, offs, R11_scratch1);
2378   __ addi(R12_scratch2, R12_scratch2, 1);
2379   __ stw(R12_scratch2, offs, R11_scratch1);
2380 }
2381 
2382 void TemplateInterpreterGenerator::histogram_bytecode(Template* t) {
2383   int offs = __ load_const_optimized(R11_scratch1, (address) &BytecodeHistogram::_counters[t->bytecode()], R12_scratch2, true);
2384   __ lwz(R12_scratch2, offs, R11_scratch1);
2385   __ addi(R12_scratch2, R12_scratch2, 1);
2386   __ stw(R12_scratch2, offs, R11_scratch1);
2387 }
2388 
2389 void TemplateInterpreterGenerator::histogram_bytecode_pair(Template* t) {
2390   const Register addr = R11_scratch1,
2391                  tmp  = R12_scratch2;
2392   // Get index, shift out old bytecode, bring in new bytecode, and store it.
2393   // _index = (_index >> log2_number_of_codes) |
2394   //          (bytecode << log2_number_of_codes);
2395   int offs1 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_index, tmp, true);
2396   __ lwz(tmp, offs1, addr);
2397   __ srwi(tmp, tmp, BytecodePairHistogram::log2_number_of_codes);
2398   __ ori(tmp, tmp, ((int) t->bytecode()) << BytecodePairHistogram::log2_number_of_codes);
2399   __ stw(tmp, offs1, addr);
2400 
2401   // Bump bucket contents.
2402   // _counters[_index] ++;
2403   int offs2 = __ load_const_optimized(addr, (address)&BytecodePairHistogram::_counters, R0, true);
2404   __ sldi(tmp, tmp, LogBytesPerInt);
2405   __ add(addr, tmp, addr);
2406   __ lwz(tmp, offs2, addr);
2407   __ addi(tmp, tmp, 1);
2408   __ stw(tmp, offs2, addr);
2409 }
2410 
2411 void TemplateInterpreterGenerator::trace_bytecode(Template* t) {
2412   // Call a little run-time stub to avoid blow-up for each bytecode.
2413   // The run-time runtime saves the right registers, depending on
2414   // the tosca in-state for the given template.
2415 
2416   assert(Interpreter::trace_code(t->tos_in()) != NULL,
2417          "entry must have been generated");
2418 
2419   // Note: we destroy LR here.
2420   __ bl(Interpreter::trace_code(t->tos_in()));
2421 }
2422 
2423 void TemplateInterpreterGenerator::stop_interpreter_at() {
2424   Label L;
2425   int offs1 = __ load_const_optimized(R11_scratch1, (address) &StopInterpreterAt, R0, true);
2426   int offs2 = __ load_const_optimized(R12_scratch2, (address) &BytecodeCounter::_counter_value, R0, true);
2427   __ ld(R11_scratch1, offs1, R11_scratch1);
2428   __ lwa(R12_scratch2, offs2, R12_scratch2);
2429   __ cmpd(CCR0, R12_scratch2, R11_scratch1);
2430   __ bne(CCR0, L);
2431   __ illtrap();
2432   __ bind(L);
2433 }
2434 
2435 #endif // !PRODUCT