1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/vectornode.hpp"
  71 #include "runtime/arguments.hpp"
  72 #include "runtime/sharedRuntime.hpp"
  73 #include "runtime/signature.hpp"
  74 #include "runtime/stubRoutines.hpp"
  75 #include "runtime/timer.hpp"
  76 #include "utilities/align.hpp"
  77 #include "utilities/copy.hpp"
  78 #include "utilities/macros.hpp"
  79 #if INCLUDE_G1GC
  80 #include "gc/g1/g1ThreadLocalData.hpp"
  81 #endif // INCLUDE_G1GC
  82 #if INCLUDE_ZGC
  83 #include "gc/z/c2/zBarrierSetC2.hpp"
  84 #endif
  85 #if INCLUDE_SHENANDOAHGC
  86 #include "gc/shenandoah/c2/shenandoahBarrierSetC2.hpp"
  87 #endif
  88 
  89 
  90 // -------------------- Compile::mach_constant_base_node -----------------------
  91 // Constant table base node singleton.
  92 MachConstantBaseNode* Compile::mach_constant_base_node() {
  93   if (_mach_constant_base_node == NULL) {
  94     _mach_constant_base_node = new MachConstantBaseNode();
  95     _mach_constant_base_node->add_req(C->root());
  96   }
  97   return _mach_constant_base_node;
  98 }
  99 
 100 
 101 /// Support for intrinsics.
 102 
 103 // Return the index at which m must be inserted (or already exists).
 104 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 105 class IntrinsicDescPair {
 106  private:
 107   ciMethod* _m;
 108   bool _is_virtual;
 109  public:
 110   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 111   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 112     ciMethod* m= elt->method();
 113     ciMethod* key_m = key->_m;
 114     if (key_m < m)      return -1;
 115     else if (key_m > m) return 1;
 116     else {
 117       bool is_virtual = elt->is_virtual();
 118       bool key_virtual = key->_is_virtual;
 119       if (key_virtual < is_virtual)      return -1;
 120       else if (key_virtual > is_virtual) return 1;
 121       else                               return 0;
 122     }
 123   }
 124 };
 125 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 126 #ifdef ASSERT
 127   for (int i = 1; i < _intrinsics->length(); i++) {
 128     CallGenerator* cg1 = _intrinsics->at(i-1);
 129     CallGenerator* cg2 = _intrinsics->at(i);
 130     assert(cg1->method() != cg2->method()
 131            ? cg1->method()     < cg2->method()
 132            : cg1->is_virtual() < cg2->is_virtual(),
 133            "compiler intrinsics list must stay sorted");
 134   }
 135 #endif
 136   IntrinsicDescPair pair(m, is_virtual);
 137   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 138 }
 139 
 140 void Compile::register_intrinsic(CallGenerator* cg) {
 141   if (_intrinsics == NULL) {
 142     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 143   }
 144   int len = _intrinsics->length();
 145   bool found = false;
 146   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 147   assert(!found, "registering twice");
 148   _intrinsics->insert_before(index, cg);
 149   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 150 }
 151 
 152 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 153   assert(m->is_loaded(), "don't try this on unloaded methods");
 154   if (_intrinsics != NULL) {
 155     bool found = false;
 156     int index = intrinsic_insertion_index(m, is_virtual, found);
 157      if (found) {
 158       return _intrinsics->at(index);
 159     }
 160   }
 161   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 162   if (m->intrinsic_id() != vmIntrinsics::_none &&
 163       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 164     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 165     if (cg != NULL) {
 166       // Save it for next time:
 167       register_intrinsic(cg);
 168       return cg;
 169     } else {
 170       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 171     }
 172   }
 173   return NULL;
 174 }
 175 
 176 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 177 // in library_call.cpp.
 178 
 179 
 180 #ifndef PRODUCT
 181 // statistics gathering...
 182 
 183 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 184 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 185 
 186 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 187   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 188   int oflags = _intrinsic_hist_flags[id];
 189   assert(flags != 0, "what happened?");
 190   if (is_virtual) {
 191     flags |= _intrinsic_virtual;
 192   }
 193   bool changed = (flags != oflags);
 194   if ((flags & _intrinsic_worked) != 0) {
 195     juint count = (_intrinsic_hist_count[id] += 1);
 196     if (count == 1) {
 197       changed = true;           // first time
 198     }
 199     // increment the overall count also:
 200     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 201   }
 202   if (changed) {
 203     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 204       // Something changed about the intrinsic's virtuality.
 205       if ((flags & _intrinsic_virtual) != 0) {
 206         // This is the first use of this intrinsic as a virtual call.
 207         if (oflags != 0) {
 208           // We already saw it as a non-virtual, so note both cases.
 209           flags |= _intrinsic_both;
 210         }
 211       } else if ((oflags & _intrinsic_both) == 0) {
 212         // This is the first use of this intrinsic as a non-virtual
 213         flags |= _intrinsic_both;
 214       }
 215     }
 216     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 217   }
 218   // update the overall flags also:
 219   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 220   return changed;
 221 }
 222 
 223 static char* format_flags(int flags, char* buf) {
 224   buf[0] = 0;
 225   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 226   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 227   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 228   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 229   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 230   if (buf[0] == 0)  strcat(buf, ",");
 231   assert(buf[0] == ',', "must be");
 232   return &buf[1];
 233 }
 234 
 235 void Compile::print_intrinsic_statistics() {
 236   char flagsbuf[100];
 237   ttyLocker ttyl;
 238   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 239   tty->print_cr("Compiler intrinsic usage:");
 240   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 241   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 242   #define PRINT_STAT_LINE(name, c, f) \
 243     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 244   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 245     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 246     int   flags = _intrinsic_hist_flags[id];
 247     juint count = _intrinsic_hist_count[id];
 248     if ((flags | count) != 0) {
 249       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 250     }
 251   }
 252   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 253   if (xtty != NULL)  xtty->tail("statistics");
 254 }
 255 
 256 void Compile::print_statistics() {
 257   { ttyLocker ttyl;
 258     if (xtty != NULL)  xtty->head("statistics type='opto'");
 259     Parse::print_statistics();
 260     PhaseCCP::print_statistics();
 261     PhaseRegAlloc::print_statistics();
 262     Scheduling::print_statistics();
 263     PhasePeephole::print_statistics();
 264     PhaseIdealLoop::print_statistics();
 265     if (xtty != NULL)  xtty->tail("statistics");
 266   }
 267   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 268     // put this under its own <statistics> element.
 269     print_intrinsic_statistics();
 270   }
 271 }
 272 #endif //PRODUCT
 273 
 274 // Support for bundling info
 275 Bundle* Compile::node_bundling(const Node *n) {
 276   assert(valid_bundle_info(n), "oob");
 277   return &_node_bundling_base[n->_idx];
 278 }
 279 
 280 bool Compile::valid_bundle_info(const Node *n) {
 281   return (_node_bundling_limit > n->_idx);
 282 }
 283 
 284 
 285 void Compile::gvn_replace_by(Node* n, Node* nn) {
 286   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 287     Node* use = n->last_out(i);
 288     bool is_in_table = initial_gvn()->hash_delete(use);
 289     uint uses_found = 0;
 290     for (uint j = 0; j < use->len(); j++) {
 291       if (use->in(j) == n) {
 292         if (j < use->req())
 293           use->set_req(j, nn);
 294         else
 295           use->set_prec(j, nn);
 296         uses_found++;
 297       }
 298     }
 299     if (is_in_table) {
 300       // reinsert into table
 301       initial_gvn()->hash_find_insert(use);
 302     }
 303     record_for_igvn(use);
 304     i -= uses_found;    // we deleted 1 or more copies of this edge
 305   }
 306 }
 307 
 308 
 309 static inline bool not_a_node(const Node* n) {
 310   if (n == NULL)                   return true;
 311   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 312   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 313   return false;
 314 }
 315 
 316 // Identify all nodes that are reachable from below, useful.
 317 // Use breadth-first pass that records state in a Unique_Node_List,
 318 // recursive traversal is slower.
 319 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 320   int estimated_worklist_size = live_nodes();
 321   useful.map( estimated_worklist_size, NULL );  // preallocate space
 322 
 323   // Initialize worklist
 324   if (root() != NULL)     { useful.push(root()); }
 325   // If 'top' is cached, declare it useful to preserve cached node
 326   if( cached_top_node() ) { useful.push(cached_top_node()); }
 327 
 328   // Push all useful nodes onto the list, breadthfirst
 329   for( uint next = 0; next < useful.size(); ++next ) {
 330     assert( next < unique(), "Unique useful nodes < total nodes");
 331     Node *n  = useful.at(next);
 332     uint max = n->len();
 333     for( uint i = 0; i < max; ++i ) {
 334       Node *m = n->in(i);
 335       if (not_a_node(m))  continue;
 336       useful.push(m);
 337     }
 338   }
 339 }
 340 
 341 // Update dead_node_list with any missing dead nodes using useful
 342 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 343 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 344   uint max_idx = unique();
 345   VectorSet& useful_node_set = useful.member_set();
 346 
 347   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 348     // If node with index node_idx is not in useful set,
 349     // mark it as dead in dead node list.
 350     if (! useful_node_set.test(node_idx) ) {
 351       record_dead_node(node_idx);
 352     }
 353   }
 354 }
 355 
 356 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 357   int shift = 0;
 358   for (int i = 0; i < inlines->length(); i++) {
 359     CallGenerator* cg = inlines->at(i);
 360     CallNode* call = cg->call_node();
 361     if (shift > 0) {
 362       inlines->at_put(i-shift, cg);
 363     }
 364     if (!useful.member(call)) {
 365       shift++;
 366     }
 367   }
 368   inlines->trunc_to(inlines->length()-shift);
 369 }
 370 
 371 // Disconnect all useless nodes by disconnecting those at the boundary.
 372 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 373   uint next = 0;
 374   while (next < useful.size()) {
 375     Node *n = useful.at(next++);
 376     if (n->is_SafePoint()) {
 377       // We're done with a parsing phase. Replaced nodes are not valid
 378       // beyond that point.
 379       n->as_SafePoint()->delete_replaced_nodes();
 380     }
 381     // Use raw traversal of out edges since this code removes out edges
 382     int max = n->outcnt();
 383     for (int j = 0; j < max; ++j) {
 384       Node* child = n->raw_out(j);
 385       if (! useful.member(child)) {
 386         assert(!child->is_top() || child != top(),
 387                "If top is cached in Compile object it is in useful list");
 388         // Only need to remove this out-edge to the useless node
 389         n->raw_del_out(j);
 390         --j;
 391         --max;
 392       }
 393     }
 394     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 395       record_for_igvn(n->unique_out());
 396     }
 397   }
 398   // Remove useless macro and predicate opaq nodes
 399   for (int i = C->macro_count()-1; i >= 0; i--) {
 400     Node* n = C->macro_node(i);
 401     if (!useful.member(n)) {
 402       remove_macro_node(n);
 403     }
 404   }
 405   // Remove useless CastII nodes with range check dependency
 406   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 407     Node* cast = range_check_cast_node(i);
 408     if (!useful.member(cast)) {
 409       remove_range_check_cast(cast);
 410     }
 411   }
 412   // Remove useless expensive nodes
 413   for (int i = C->expensive_count()-1; i >= 0; i--) {
 414     Node* n = C->expensive_node(i);
 415     if (!useful.member(n)) {
 416       remove_expensive_node(n);
 417     }
 418   }
 419   // Remove useless Opaque4 nodes
 420   for (int i = opaque4_count() - 1; i >= 0; i--) {
 421     Node* opaq = opaque4_node(i);
 422     if (!useful.member(opaq)) {
 423       remove_opaque4_node(opaq);
 424     }
 425   }
 426   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 427   bs->eliminate_useless_gc_barriers(useful);
 428   // clean up the late inline lists
 429   remove_useless_late_inlines(&_string_late_inlines, useful);
 430   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 431   remove_useless_late_inlines(&_late_inlines, useful);
 432   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 433 }
 434 
 435 //------------------------------frame_size_in_words-----------------------------
 436 // frame_slots in units of words
 437 int Compile::frame_size_in_words() const {
 438   // shift is 0 in LP32 and 1 in LP64
 439   const int shift = (LogBytesPerWord - LogBytesPerInt);
 440   int words = _frame_slots >> shift;
 441   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 442   return words;
 443 }
 444 
 445 // To bang the stack of this compiled method we use the stack size
 446 // that the interpreter would need in case of a deoptimization. This
 447 // removes the need to bang the stack in the deoptimization blob which
 448 // in turn simplifies stack overflow handling.
 449 int Compile::bang_size_in_bytes() const {
 450   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 451 }
 452 
 453 // ============================================================================
 454 //------------------------------CompileWrapper---------------------------------
 455 class CompileWrapper : public StackObj {
 456   Compile *const _compile;
 457  public:
 458   CompileWrapper(Compile* compile);
 459 
 460   ~CompileWrapper();
 461 };
 462 
 463 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 464   // the Compile* pointer is stored in the current ciEnv:
 465   ciEnv* env = compile->env();
 466   assert(env == ciEnv::current(), "must already be a ciEnv active");
 467   assert(env->compiler_data() == NULL, "compile already active?");
 468   env->set_compiler_data(compile);
 469   assert(compile == Compile::current(), "sanity");
 470 
 471   compile->set_type_dict(NULL);
 472   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 473   compile->clone_map().set_clone_idx(0);
 474   compile->set_type_hwm(NULL);
 475   compile->set_type_last_size(0);
 476   compile->set_last_tf(NULL, NULL);
 477   compile->set_indexSet_arena(NULL);
 478   compile->set_indexSet_free_block_list(NULL);
 479   compile->init_type_arena();
 480   Type::Initialize(compile);
 481   _compile->set_scratch_buffer_blob(NULL);
 482   _compile->begin_method();
 483   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 484 }
 485 CompileWrapper::~CompileWrapper() {
 486   _compile->end_method();
 487   if (_compile->scratch_buffer_blob() != NULL)
 488     BufferBlob::free(_compile->scratch_buffer_blob());
 489   _compile->env()->set_compiler_data(NULL);
 490 }
 491 
 492 
 493 //----------------------------print_compile_messages---------------------------
 494 void Compile::print_compile_messages() {
 495 #ifndef PRODUCT
 496   // Check if recompiling
 497   if (_subsume_loads == false && PrintOpto) {
 498     // Recompiling without allowing machine instructions to subsume loads
 499     tty->print_cr("*********************************************************");
 500     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 501     tty->print_cr("*********************************************************");
 502   }
 503   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 504     // Recompiling without escape analysis
 505     tty->print_cr("*********************************************************");
 506     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 507     tty->print_cr("*********************************************************");
 508   }
 509   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 510     // Recompiling without boxing elimination
 511     tty->print_cr("*********************************************************");
 512     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 513     tty->print_cr("*********************************************************");
 514   }
 515   if (C->directive()->BreakAtCompileOption) {
 516     // Open the debugger when compiling this method.
 517     tty->print("### Breaking when compiling: ");
 518     method()->print_short_name();
 519     tty->cr();
 520     BREAKPOINT;
 521   }
 522 
 523   if( PrintOpto ) {
 524     if (is_osr_compilation()) {
 525       tty->print("[OSR]%3d", _compile_id);
 526     } else {
 527       tty->print("%3d", _compile_id);
 528     }
 529   }
 530 #endif
 531 }
 532 
 533 
 534 //-----------------------init_scratch_buffer_blob------------------------------
 535 // Construct a temporary BufferBlob and cache it for this compile.
 536 void Compile::init_scratch_buffer_blob(int const_size) {
 537   // If there is already a scratch buffer blob allocated and the
 538   // constant section is big enough, use it.  Otherwise free the
 539   // current and allocate a new one.
 540   BufferBlob* blob = scratch_buffer_blob();
 541   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 542     // Use the current blob.
 543   } else {
 544     if (blob != NULL) {
 545       BufferBlob::free(blob);
 546     }
 547 
 548     ResourceMark rm;
 549     _scratch_const_size = const_size;
 550     int size = C2Compiler::initial_code_buffer_size(const_size);
 551     blob = BufferBlob::create("Compile::scratch_buffer", size);
 552     // Record the buffer blob for next time.
 553     set_scratch_buffer_blob(blob);
 554     // Have we run out of code space?
 555     if (scratch_buffer_blob() == NULL) {
 556       // Let CompilerBroker disable further compilations.
 557       record_failure("Not enough space for scratch buffer in CodeCache");
 558       return;
 559     }
 560   }
 561 
 562   // Initialize the relocation buffers
 563   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 564   set_scratch_locs_memory(locs_buf);
 565 }
 566 
 567 
 568 //-----------------------scratch_emit_size-------------------------------------
 569 // Helper function that computes size by emitting code
 570 uint Compile::scratch_emit_size(const Node* n) {
 571   // Start scratch_emit_size section.
 572   set_in_scratch_emit_size(true);
 573 
 574   // Emit into a trash buffer and count bytes emitted.
 575   // This is a pretty expensive way to compute a size,
 576   // but it works well enough if seldom used.
 577   // All common fixed-size instructions are given a size
 578   // method by the AD file.
 579   // Note that the scratch buffer blob and locs memory are
 580   // allocated at the beginning of the compile task, and
 581   // may be shared by several calls to scratch_emit_size.
 582   // The allocation of the scratch buffer blob is particularly
 583   // expensive, since it has to grab the code cache lock.
 584   BufferBlob* blob = this->scratch_buffer_blob();
 585   assert(blob != NULL, "Initialize BufferBlob at start");
 586   assert(blob->size() > MAX_inst_size, "sanity");
 587   relocInfo* locs_buf = scratch_locs_memory();
 588   address blob_begin = blob->content_begin();
 589   address blob_end   = (address)locs_buf;
 590   assert(blob->contains(blob_end), "sanity");
 591   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 592   buf.initialize_consts_size(_scratch_const_size);
 593   buf.initialize_stubs_size(MAX_stubs_size);
 594   assert(locs_buf != NULL, "sanity");
 595   int lsize = MAX_locs_size / 3;
 596   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 597   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 598   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 599   // Mark as scratch buffer.
 600   buf.consts()->set_scratch_emit();
 601   buf.insts()->set_scratch_emit();
 602   buf.stubs()->set_scratch_emit();
 603 
 604   // Do the emission.
 605 
 606   Label fakeL; // Fake label for branch instructions.
 607   Label*   saveL = NULL;
 608   uint save_bnum = 0;
 609   bool is_branch = n->is_MachBranch();
 610   if (is_branch) {
 611     MacroAssembler masm(&buf);
 612     masm.bind(fakeL);
 613     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 614     n->as_MachBranch()->label_set(&fakeL, 0);
 615   }
 616   n->emit(buf, this->regalloc());
 617 
 618   // Emitting into the scratch buffer should not fail
 619   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 620 
 621   if (is_branch) // Restore label.
 622     n->as_MachBranch()->label_set(saveL, save_bnum);
 623 
 624   // End scratch_emit_size section.
 625   set_in_scratch_emit_size(false);
 626 
 627   return buf.insts_size();
 628 }
 629 
 630 
 631 // ============================================================================
 632 //------------------------------Compile standard-------------------------------
 633 debug_only( int Compile::_debug_idx = 100000; )
 634 
 635 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 636 // the continuation bci for on stack replacement.
 637 
 638 
 639 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 640                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 641                 : Phase(Compiler),
 642                   _env(ci_env),
 643                   _directive(directive),
 644                   _log(ci_env->log()),
 645                   _compile_id(ci_env->compile_id()),
 646                   _save_argument_registers(false),
 647                   _stub_name(NULL),
 648                   _stub_function(NULL),
 649                   _stub_entry_point(NULL),
 650                   _method(target),
 651                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 652                   _entry_bci(osr_bci),
 653                   _initial_gvn(NULL),
 654                   _for_igvn(NULL),
 655                   _warm_calls(NULL),
 656                   _subsume_loads(subsume_loads),
 657                   _do_escape_analysis(do_escape_analysis),
 658                   _eliminate_boxing(eliminate_boxing),
 659                   _failure_reason(NULL),
 660                   _code_buffer("Compile::Fill_buffer"),
 661                   _orig_pc_slot(0),
 662                   _orig_pc_slot_offset_in_bytes(0),
 663                   _has_method_handle_invokes(false),
 664                   _mach_constant_base_node(NULL),
 665                   _node_bundling_limit(0),
 666                   _node_bundling_base(NULL),
 667                   _java_calls(0),
 668                   _inner_loops(0),
 669                   _scratch_const_size(-1),
 670                   _in_scratch_emit_size(false),
 671                   _dead_node_list(comp_arena()),
 672                   _dead_node_count(0),
 673 #ifndef PRODUCT
 674                   _trace_opto_output(directive->TraceOptoOutputOption),
 675                   _in_dump_cnt(0),
 676                   _printer(IdealGraphPrinter::printer()),
 677 #endif
 678                   _congraph(NULL),
 679                   _comp_arena(mtCompiler),
 680                   _node_arena(mtCompiler),
 681                   _old_arena(mtCompiler),
 682                   _Compile_types(mtCompiler),
 683                   _replay_inline_data(NULL),
 684                   _late_inlines(comp_arena(), 2, 0, NULL),
 685                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 686                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 687                   _late_inlines_pos(0),
 688                   _number_of_mh_late_inlines(0),
 689                   _inlining_progress(false),
 690                   _inlining_incrementally(false),
 691                   _print_inlining_list(NULL),
 692                   _print_inlining_stream(NULL),
 693                   _print_inlining_idx(0),
 694                   _print_inlining_output(NULL),
 695                   _interpreter_frame_size(0),
 696                   _max_node_limit(MaxNodeLimit),
 697                   _has_reserved_stack_access(target->has_reserved_stack_access()) {
 698   C = this;
 699 #ifndef PRODUCT
 700   if (_printer != NULL) {
 701     _printer->set_compile(this);
 702   }
 703 #endif
 704   CompileWrapper cw(this);
 705 
 706   if (CITimeVerbose) {
 707     tty->print(" ");
 708     target->holder()->name()->print();
 709     tty->print(".");
 710     target->print_short_name();
 711     tty->print("  ");
 712   }
 713   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 714   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 715 
 716 #ifndef PRODUCT
 717   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 718   if (!print_opto_assembly) {
 719     bool print_assembly = directive->PrintAssemblyOption;
 720     if (print_assembly && !Disassembler::can_decode()) {
 721       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 722       print_opto_assembly = true;
 723     }
 724   }
 725   set_print_assembly(print_opto_assembly);
 726   set_parsed_irreducible_loop(false);
 727 
 728   if (directive->ReplayInlineOption) {
 729     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 730   }
 731 #endif
 732   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 733   set_print_intrinsics(directive->PrintIntrinsicsOption);
 734   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 735 
 736   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 737     // Make sure the method being compiled gets its own MDO,
 738     // so we can at least track the decompile_count().
 739     // Need MDO to record RTM code generation state.
 740     method()->ensure_method_data();
 741   }
 742 
 743   Init(::AliasLevel);
 744 
 745 
 746   print_compile_messages();
 747 
 748   _ilt = InlineTree::build_inline_tree_root();
 749 
 750   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 751   assert(num_alias_types() >= AliasIdxRaw, "");
 752 
 753 #define MINIMUM_NODE_HASH  1023
 754   // Node list that Iterative GVN will start with
 755   Unique_Node_List for_igvn(comp_arena());
 756   set_for_igvn(&for_igvn);
 757 
 758   // GVN that will be run immediately on new nodes
 759   uint estimated_size = method()->code_size()*4+64;
 760   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 761   PhaseGVN gvn(node_arena(), estimated_size);
 762   set_initial_gvn(&gvn);
 763 
 764   print_inlining_init();
 765   { // Scope for timing the parser
 766     TracePhase tp("parse", &timers[_t_parser]);
 767 
 768     // Put top into the hash table ASAP.
 769     initial_gvn()->transform_no_reclaim(top());
 770 
 771     // Set up tf(), start(), and find a CallGenerator.
 772     CallGenerator* cg = NULL;
 773     if (is_osr_compilation()) {
 774       const TypeTuple *domain = StartOSRNode::osr_domain();
 775       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 776       init_tf(TypeFunc::make(domain, range));
 777       StartNode* s = new StartOSRNode(root(), domain);
 778       initial_gvn()->set_type_bottom(s);
 779       init_start(s);
 780       cg = CallGenerator::for_osr(method(), entry_bci());
 781     } else {
 782       // Normal case.
 783       init_tf(TypeFunc::make(method()));
 784       StartNode* s = new StartNode(root(), tf()->domain());
 785       initial_gvn()->set_type_bottom(s);
 786       init_start(s);
 787       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 788         // With java.lang.ref.reference.get() we must go through the
 789         // intrinsic - even when get() is the root
 790         // method of the compile - so that, if necessary, the value in
 791         // the referent field of the reference object gets recorded by
 792         // the pre-barrier code.
 793         cg = find_intrinsic(method(), false);
 794       }
 795       if (cg == NULL) {
 796         float past_uses = method()->interpreter_invocation_count();
 797         float expected_uses = past_uses;
 798         cg = CallGenerator::for_inline(method(), expected_uses);
 799       }
 800     }
 801     if (failing())  return;
 802     if (cg == NULL) {
 803       record_method_not_compilable("cannot parse method");
 804       return;
 805     }
 806     JVMState* jvms = build_start_state(start(), tf());
 807     if ((jvms = cg->generate(jvms)) == NULL) {
 808       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 809         record_method_not_compilable("method parse failed");
 810       }
 811       return;
 812     }
 813     GraphKit kit(jvms);
 814 
 815     if (!kit.stopped()) {
 816       // Accept return values, and transfer control we know not where.
 817       // This is done by a special, unique ReturnNode bound to root.
 818       return_values(kit.jvms());
 819     }
 820 
 821     if (kit.has_exceptions()) {
 822       // Any exceptions that escape from this call must be rethrown
 823       // to whatever caller is dynamically above us on the stack.
 824       // This is done by a special, unique RethrowNode bound to root.
 825       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 826     }
 827 
 828     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 829 
 830     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 831       inline_string_calls(true);
 832     }
 833 
 834     if (failing())  return;
 835 
 836     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 837 
 838     // Remove clutter produced by parsing.
 839     if (!failing()) {
 840       ResourceMark rm;
 841       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 842     }
 843   }
 844 
 845   // Note:  Large methods are capped off in do_one_bytecode().
 846   if (failing())  return;
 847 
 848   // After parsing, node notes are no longer automagic.
 849   // They must be propagated by register_new_node_with_optimizer(),
 850   // clone(), or the like.
 851   set_default_node_notes(NULL);
 852 
 853   for (;;) {
 854     int successes = Inline_Warm();
 855     if (failing())  return;
 856     if (successes == 0)  break;
 857   }
 858 
 859   // Drain the list.
 860   Finish_Warm();
 861 #ifndef PRODUCT
 862   if (_printer && _printer->should_print(1)) {
 863     _printer->print_inlining();
 864   }
 865 #endif
 866 
 867   if (failing())  return;
 868   NOT_PRODUCT( verify_graph_edges(); )
 869 
 870   // Now optimize
 871   Optimize();
 872   if (failing())  return;
 873   NOT_PRODUCT( verify_graph_edges(); )
 874 
 875 #ifndef PRODUCT
 876   if (PrintIdeal) {
 877     ttyLocker ttyl;  // keep the following output all in one block
 878     // This output goes directly to the tty, not the compiler log.
 879     // To enable tools to match it up with the compilation activity,
 880     // be sure to tag this tty output with the compile ID.
 881     if (xtty != NULL) {
 882       xtty->head("ideal compile_id='%d'%s", compile_id(),
 883                  is_osr_compilation()    ? " compile_kind='osr'" :
 884                  "");
 885     }
 886     root()->dump(9999);
 887     if (xtty != NULL) {
 888       xtty->tail("ideal");
 889     }
 890   }
 891 #endif
 892 
 893   NOT_PRODUCT( verify_barriers(); )
 894 
 895   // Dump compilation data to replay it.
 896   if (directive->DumpReplayOption) {
 897     env()->dump_replay_data(_compile_id);
 898   }
 899   if (directive->DumpInlineOption && (ilt() != NULL)) {
 900     env()->dump_inline_data(_compile_id);
 901   }
 902 
 903   // Now that we know the size of all the monitors we can add a fixed slot
 904   // for the original deopt pc.
 905 
 906   _orig_pc_slot =  fixed_slots();
 907   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 908   set_fixed_slots(next_slot);
 909 
 910   // Compute when to use implicit null checks. Used by matching trap based
 911   // nodes and NullCheck optimization.
 912   set_allowed_deopt_reasons();
 913 
 914   // Now generate code
 915   Code_Gen();
 916   if (failing())  return;
 917 
 918   // Check if we want to skip execution of all compiled code.
 919   {
 920 #ifndef PRODUCT
 921     if (OptoNoExecute) {
 922       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 923       return;
 924     }
 925 #endif
 926     TracePhase tp("install_code", &timers[_t_registerMethod]);
 927 
 928     if (is_osr_compilation()) {
 929       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 930       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 931     } else {
 932       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 933       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 934     }
 935 
 936     env()->register_method(_method, _entry_bci,
 937                            &_code_offsets,
 938                            _orig_pc_slot_offset_in_bytes,
 939                            code_buffer(),
 940                            frame_size_in_words(), _oop_map_set,
 941                            &_handler_table, &_inc_table,
 942                            compiler,
 943                            has_unsafe_access(),
 944                            SharedRuntime::is_wide_vector(max_vector_size()),
 945                            rtm_state()
 946                            );
 947 
 948     if (log() != NULL) // Print code cache state into compiler log
 949       log()->code_cache_state();
 950   }
 951 }
 952 
 953 //------------------------------Compile----------------------------------------
 954 // Compile a runtime stub
 955 Compile::Compile( ciEnv* ci_env,
 956                   TypeFunc_generator generator,
 957                   address stub_function,
 958                   const char *stub_name,
 959                   int is_fancy_jump,
 960                   bool pass_tls,
 961                   bool save_arg_registers,
 962                   bool return_pc,
 963                   DirectiveSet* directive)
 964   : Phase(Compiler),
 965     _env(ci_env),
 966     _directive(directive),
 967     _log(ci_env->log()),
 968     _compile_id(0),
 969     _save_argument_registers(save_arg_registers),
 970     _method(NULL),
 971     _stub_name(stub_name),
 972     _stub_function(stub_function),
 973     _stub_entry_point(NULL),
 974     _entry_bci(InvocationEntryBci),
 975     _initial_gvn(NULL),
 976     _for_igvn(NULL),
 977     _warm_calls(NULL),
 978     _orig_pc_slot(0),
 979     _orig_pc_slot_offset_in_bytes(0),
 980     _subsume_loads(true),
 981     _do_escape_analysis(false),
 982     _eliminate_boxing(false),
 983     _failure_reason(NULL),
 984     _code_buffer("Compile::Fill_buffer"),
 985     _has_method_handle_invokes(false),
 986     _mach_constant_base_node(NULL),
 987     _node_bundling_limit(0),
 988     _node_bundling_base(NULL),
 989     _java_calls(0),
 990     _inner_loops(0),
 991 #ifndef PRODUCT
 992     _trace_opto_output(directive->TraceOptoOutputOption),
 993     _in_dump_cnt(0),
 994     _printer(NULL),
 995 #endif
 996     _comp_arena(mtCompiler),
 997     _node_arena(mtCompiler),
 998     _old_arena(mtCompiler),
 999     _Compile_types(mtCompiler),
1000     _dead_node_list(comp_arena()),
1001     _dead_node_count(0),
1002     _congraph(NULL),
1003     _replay_inline_data(NULL),
1004     _number_of_mh_late_inlines(0),
1005     _inlining_progress(false),
1006     _inlining_incrementally(false),
1007     _print_inlining_list(NULL),
1008     _print_inlining_stream(NULL),
1009     _print_inlining_idx(0),
1010     _print_inlining_output(NULL),
1011     _allowed_reasons(0),
1012     _interpreter_frame_size(0),
1013     _max_node_limit(MaxNodeLimit),
1014     _has_reserved_stack_access(false) {
1015   C = this;
1016 
1017   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1018   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1019 
1020 #ifndef PRODUCT
1021   set_print_assembly(PrintFrameConverterAssembly);
1022   set_parsed_irreducible_loop(false);
1023 #endif
1024   set_has_irreducible_loop(false); // no loops
1025 
1026   CompileWrapper cw(this);
1027   Init(/*AliasLevel=*/ 0);
1028   init_tf((*generator)());
1029 
1030   {
1031     // The following is a dummy for the sake of GraphKit::gen_stub
1032     Unique_Node_List for_igvn(comp_arena());
1033     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1034     PhaseGVN gvn(Thread::current()->resource_area(),255);
1035     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1036     gvn.transform_no_reclaim(top());
1037 
1038     GraphKit kit;
1039     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1040   }
1041 
1042   NOT_PRODUCT( verify_graph_edges(); )
1043   Code_Gen();
1044   if (failing())  return;
1045 
1046 
1047   // Entry point will be accessed using compile->stub_entry_point();
1048   if (code_buffer() == NULL) {
1049     Matcher::soft_match_failure();
1050   } else {
1051     if (PrintAssembly && (WizardMode || Verbose))
1052       tty->print_cr("### Stub::%s", stub_name);
1053 
1054     if (!failing()) {
1055       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1056 
1057       // Make the NMethod
1058       // For now we mark the frame as never safe for profile stackwalking
1059       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1060                                                       code_buffer(),
1061                                                       CodeOffsets::frame_never_safe,
1062                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1063                                                       frame_size_in_words(),
1064                                                       _oop_map_set,
1065                                                       save_arg_registers);
1066       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1067 
1068       _stub_entry_point = rs->entry_point();
1069     }
1070   }
1071 }
1072 
1073 //------------------------------Init-------------------------------------------
1074 // Prepare for a single compilation
1075 void Compile::Init(int aliaslevel) {
1076   _unique  = 0;
1077   _regalloc = NULL;
1078 
1079   _tf      = NULL;  // filled in later
1080   _top     = NULL;  // cached later
1081   _matcher = NULL;  // filled in later
1082   _cfg     = NULL;  // filled in later
1083 
1084   set_24_bit_selection_and_mode(Use24BitFP, false);
1085 
1086   _node_note_array = NULL;
1087   _default_node_notes = NULL;
1088   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1089 
1090   _immutable_memory = NULL; // filled in at first inquiry
1091 
1092   // Globally visible Nodes
1093   // First set TOP to NULL to give safe behavior during creation of RootNode
1094   set_cached_top_node(NULL);
1095   set_root(new RootNode());
1096   // Now that you have a Root to point to, create the real TOP
1097   set_cached_top_node( new ConNode(Type::TOP) );
1098   set_recent_alloc(NULL, NULL);
1099 
1100   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1101   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1102   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1103   env()->set_dependencies(new Dependencies(env()));
1104 
1105   _fixed_slots = 0;
1106   set_has_split_ifs(false);
1107   set_has_loops(false); // first approximation
1108   set_has_stringbuilder(false);
1109   set_has_boxed_value(false);
1110   _trap_can_recompile = false;  // no traps emitted yet
1111   _major_progress = true; // start out assuming good things will happen
1112   set_has_unsafe_access(false);
1113   set_max_vector_size(0);
1114   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1115   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1116   set_decompile_count(0);
1117 
1118   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1119   set_num_loop_opts(LoopOptsCount);
1120   set_do_inlining(Inline);
1121   set_max_inline_size(MaxInlineSize);
1122   set_freq_inline_size(FreqInlineSize);
1123   set_do_scheduling(OptoScheduling);
1124   set_do_count_invocations(false);
1125   set_do_method_data_update(false);
1126 
1127   set_do_vector_loop(false);
1128 
1129   if (AllowVectorizeOnDemand) {
1130     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1131       set_do_vector_loop(true);
1132       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1133     } else if (has_method() && method()->name() != 0 &&
1134                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1135       set_do_vector_loop(true);
1136     }
1137   }
1138   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1139   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1140 
1141   set_age_code(has_method() && method()->profile_aging());
1142   set_rtm_state(NoRTM); // No RTM lock eliding by default
1143   _max_node_limit = _directive->MaxNodeLimitOption;
1144 
1145 #if INCLUDE_RTM_OPT
1146   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1147     int rtm_state = method()->method_data()->rtm_state();
1148     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1149       // Don't generate RTM lock eliding code.
1150       set_rtm_state(NoRTM);
1151     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1152       // Generate RTM lock eliding code without abort ratio calculation code.
1153       set_rtm_state(UseRTM);
1154     } else if (UseRTMDeopt) {
1155       // Generate RTM lock eliding code and include abort ratio calculation
1156       // code if UseRTMDeopt is on.
1157       set_rtm_state(ProfileRTM);
1158     }
1159   }
1160 #endif
1161   if (debug_info()->recording_non_safepoints()) {
1162     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1163                         (comp_arena(), 8, 0, NULL));
1164     set_default_node_notes(Node_Notes::make(this));
1165   }
1166 
1167   // // -- Initialize types before each compile --
1168   // // Update cached type information
1169   // if( _method && _method->constants() )
1170   //   Type::update_loaded_types(_method, _method->constants());
1171 
1172   // Init alias_type map.
1173   if (!_do_escape_analysis && aliaslevel == 3)
1174     aliaslevel = 2;  // No unique types without escape analysis
1175   _AliasLevel = aliaslevel;
1176   const int grow_ats = 16;
1177   _max_alias_types = grow_ats;
1178   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1179   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1180   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1181   {
1182     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1183   }
1184   // Initialize the first few types.
1185   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1186   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1187   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1188   _num_alias_types = AliasIdxRaw+1;
1189   // Zero out the alias type cache.
1190   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1191   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1192   probe_alias_cache(NULL)->_index = AliasIdxTop;
1193 
1194   _intrinsics = NULL;
1195   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1196   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1197   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1198   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1199   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1200   register_library_intrinsics();
1201 #ifdef ASSERT
1202   _type_verify_symmetry = true;
1203   _exception_backedge = false;
1204 #endif
1205 }
1206 
1207 //---------------------------init_start----------------------------------------
1208 // Install the StartNode on this compile object.
1209 void Compile::init_start(StartNode* s) {
1210   if (failing())
1211     return; // already failing
1212   assert(s == start(), "");
1213 }
1214 
1215 /**
1216  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1217  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1218  * the ideal graph.
1219  */
1220 StartNode* Compile::start() const {
1221   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1222   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1223     Node* start = root()->fast_out(i);
1224     if (start->is_Start()) {
1225       return start->as_Start();
1226     }
1227   }
1228   fatal("Did not find Start node!");
1229   return NULL;
1230 }
1231 
1232 //-------------------------------immutable_memory-------------------------------------
1233 // Access immutable memory
1234 Node* Compile::immutable_memory() {
1235   if (_immutable_memory != NULL) {
1236     return _immutable_memory;
1237   }
1238   StartNode* s = start();
1239   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1240     Node *p = s->fast_out(i);
1241     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1242       _immutable_memory = p;
1243       return _immutable_memory;
1244     }
1245   }
1246   ShouldNotReachHere();
1247   return NULL;
1248 }
1249 
1250 //----------------------set_cached_top_node------------------------------------
1251 // Install the cached top node, and make sure Node::is_top works correctly.
1252 void Compile::set_cached_top_node(Node* tn) {
1253   if (tn != NULL)  verify_top(tn);
1254   Node* old_top = _top;
1255   _top = tn;
1256   // Calling Node::setup_is_top allows the nodes the chance to adjust
1257   // their _out arrays.
1258   if (_top != NULL)     _top->setup_is_top();
1259   if (old_top != NULL)  old_top->setup_is_top();
1260   assert(_top == NULL || top()->is_top(), "");
1261 }
1262 
1263 #ifdef ASSERT
1264 uint Compile::count_live_nodes_by_graph_walk() {
1265   Unique_Node_List useful(comp_arena());
1266   // Get useful node list by walking the graph.
1267   identify_useful_nodes(useful);
1268   return useful.size();
1269 }
1270 
1271 void Compile::print_missing_nodes() {
1272 
1273   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1274   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1275     return;
1276   }
1277 
1278   // This is an expensive function. It is executed only when the user
1279   // specifies VerifyIdealNodeCount option or otherwise knows the
1280   // additional work that needs to be done to identify reachable nodes
1281   // by walking the flow graph and find the missing ones using
1282   // _dead_node_list.
1283 
1284   Unique_Node_List useful(comp_arena());
1285   // Get useful node list by walking the graph.
1286   identify_useful_nodes(useful);
1287 
1288   uint l_nodes = C->live_nodes();
1289   uint l_nodes_by_walk = useful.size();
1290 
1291   if (l_nodes != l_nodes_by_walk) {
1292     if (_log != NULL) {
1293       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1294       _log->stamp();
1295       _log->end_head();
1296     }
1297     VectorSet& useful_member_set = useful.member_set();
1298     int last_idx = l_nodes_by_walk;
1299     for (int i = 0; i < last_idx; i++) {
1300       if (useful_member_set.test(i)) {
1301         if (_dead_node_list.test(i)) {
1302           if (_log != NULL) {
1303             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1304           }
1305           if (PrintIdealNodeCount) {
1306             // Print the log message to tty
1307               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1308               useful.at(i)->dump();
1309           }
1310         }
1311       }
1312       else if (! _dead_node_list.test(i)) {
1313         if (_log != NULL) {
1314           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1315         }
1316         if (PrintIdealNodeCount) {
1317           // Print the log message to tty
1318           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1319         }
1320       }
1321     }
1322     if (_log != NULL) {
1323       _log->tail("mismatched_nodes");
1324     }
1325   }
1326 }
1327 void Compile::record_modified_node(Node* n) {
1328   if (_modified_nodes != NULL && !_inlining_incrementally &&
1329       n->outcnt() != 0 && !n->is_Con()) {
1330     _modified_nodes->push(n);
1331   }
1332 }
1333 
1334 void Compile::remove_modified_node(Node* n) {
1335   if (_modified_nodes != NULL) {
1336     _modified_nodes->remove(n);
1337   }
1338 }
1339 #endif
1340 
1341 #ifndef PRODUCT
1342 void Compile::verify_top(Node* tn) const {
1343   if (tn != NULL) {
1344     assert(tn->is_Con(), "top node must be a constant");
1345     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1346     assert(tn->in(0) != NULL, "must have live top node");
1347   }
1348 }
1349 #endif
1350 
1351 
1352 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1353 
1354 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1355   guarantee(arr != NULL, "");
1356   int num_blocks = arr->length();
1357   if (grow_by < num_blocks)  grow_by = num_blocks;
1358   int num_notes = grow_by * _node_notes_block_size;
1359   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1360   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1361   while (num_notes > 0) {
1362     arr->append(notes);
1363     notes     += _node_notes_block_size;
1364     num_notes -= _node_notes_block_size;
1365   }
1366   assert(num_notes == 0, "exact multiple, please");
1367 }
1368 
1369 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1370   if (source == NULL || dest == NULL)  return false;
1371 
1372   if (dest->is_Con())
1373     return false;               // Do not push debug info onto constants.
1374 
1375 #ifdef ASSERT
1376   // Leave a bread crumb trail pointing to the original node:
1377   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1378     dest->set_debug_orig(source);
1379   }
1380 #endif
1381 
1382   if (node_note_array() == NULL)
1383     return false;               // Not collecting any notes now.
1384 
1385   // This is a copy onto a pre-existing node, which may already have notes.
1386   // If both nodes have notes, do not overwrite any pre-existing notes.
1387   Node_Notes* source_notes = node_notes_at(source->_idx);
1388   if (source_notes == NULL || source_notes->is_clear())  return false;
1389   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1390   if (dest_notes == NULL || dest_notes->is_clear()) {
1391     return set_node_notes_at(dest->_idx, source_notes);
1392   }
1393 
1394   Node_Notes merged_notes = (*source_notes);
1395   // The order of operations here ensures that dest notes will win...
1396   merged_notes.update_from(dest_notes);
1397   return set_node_notes_at(dest->_idx, &merged_notes);
1398 }
1399 
1400 
1401 //--------------------------allow_range_check_smearing-------------------------
1402 // Gating condition for coalescing similar range checks.
1403 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1404 // single covering check that is at least as strong as any of them.
1405 // If the optimization succeeds, the simplified (strengthened) range check
1406 // will always succeed.  If it fails, we will deopt, and then give up
1407 // on the optimization.
1408 bool Compile::allow_range_check_smearing() const {
1409   // If this method has already thrown a range-check,
1410   // assume it was because we already tried range smearing
1411   // and it failed.
1412   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1413   return !already_trapped;
1414 }
1415 
1416 
1417 //------------------------------flatten_alias_type-----------------------------
1418 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1419   int offset = tj->offset();
1420   TypePtr::PTR ptr = tj->ptr();
1421 
1422   // Known instance (scalarizable allocation) alias only with itself.
1423   bool is_known_inst = tj->isa_oopptr() != NULL &&
1424                        tj->is_oopptr()->is_known_instance();
1425 
1426   // Process weird unsafe references.
1427   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1428     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1429     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1430     tj = TypeOopPtr::BOTTOM;
1431     ptr = tj->ptr();
1432     offset = tj->offset();
1433   }
1434 
1435   // Array pointers need some flattening
1436   const TypeAryPtr *ta = tj->isa_aryptr();
1437   if (ta && ta->is_stable()) {
1438     // Erase stability property for alias analysis.
1439     tj = ta = ta->cast_to_stable(false);
1440   }
1441   if( ta && is_known_inst ) {
1442     if ( offset != Type::OffsetBot &&
1443          offset > arrayOopDesc::length_offset_in_bytes() ) {
1444       offset = Type::OffsetBot; // Flatten constant access into array body only
1445       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1446     }
1447   } else if( ta && _AliasLevel >= 2 ) {
1448     // For arrays indexed by constant indices, we flatten the alias
1449     // space to include all of the array body.  Only the header, klass
1450     // and array length can be accessed un-aliased.
1451     if( offset != Type::OffsetBot ) {
1452       if( ta->const_oop() ) { // MethodData* or Method*
1453         offset = Type::OffsetBot;   // Flatten constant access into array body
1454         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1455       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1456         // range is OK as-is.
1457         tj = ta = TypeAryPtr::RANGE;
1458       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1459         tj = TypeInstPtr::KLASS; // all klass loads look alike
1460         ta = TypeAryPtr::RANGE; // generic ignored junk
1461         ptr = TypePtr::BotPTR;
1462       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1463         tj = TypeInstPtr::MARK;
1464         ta = TypeAryPtr::RANGE; // generic ignored junk
1465         ptr = TypePtr::BotPTR;
1466       } else {                  // Random constant offset into array body
1467         offset = Type::OffsetBot;   // Flatten constant access into array body
1468         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1469       }
1470     }
1471     // Arrays of fixed size alias with arrays of unknown size.
1472     if (ta->size() != TypeInt::POS) {
1473       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1474       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1475     }
1476     // Arrays of known objects become arrays of unknown objects.
1477     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1478       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1479       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1480     }
1481     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1482       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1483       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1484     }
1485     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1486     // cannot be distinguished by bytecode alone.
1487     if (ta->elem() == TypeInt::BOOL) {
1488       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1489       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1490       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1491     }
1492     // During the 2nd round of IterGVN, NotNull castings are removed.
1493     // Make sure the Bottom and NotNull variants alias the same.
1494     // Also, make sure exact and non-exact variants alias the same.
1495     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1496       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1497     }
1498   }
1499 
1500   // Oop pointers need some flattening
1501   const TypeInstPtr *to = tj->isa_instptr();
1502   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1503     ciInstanceKlass *k = to->klass()->as_instance_klass();
1504     if( ptr == TypePtr::Constant ) {
1505       if (to->klass() != ciEnv::current()->Class_klass() ||
1506           offset < k->size_helper() * wordSize) {
1507         // No constant oop pointers (such as Strings); they alias with
1508         // unknown strings.
1509         assert(!is_known_inst, "not scalarizable allocation");
1510         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1511       }
1512     } else if( is_known_inst ) {
1513       tj = to; // Keep NotNull and klass_is_exact for instance type
1514     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1515       // During the 2nd round of IterGVN, NotNull castings are removed.
1516       // Make sure the Bottom and NotNull variants alias the same.
1517       // Also, make sure exact and non-exact variants alias the same.
1518       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1519     }
1520     if (to->speculative() != NULL) {
1521       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),to->offset(), to->instance_id());
1522     }
1523     // Canonicalize the holder of this field
1524     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1525       // First handle header references such as a LoadKlassNode, even if the
1526       // object's klass is unloaded at compile time (4965979).
1527       if (!is_known_inst) { // Do it only for non-instance types
1528         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1529       }
1530     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1531       // Static fields are in the space above the normal instance
1532       // fields in the java.lang.Class instance.
1533       if (to->klass() != ciEnv::current()->Class_klass()) {
1534         to = NULL;
1535         tj = TypeOopPtr::BOTTOM;
1536         offset = tj->offset();
1537       }
1538     } else {
1539       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1540       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1541         if( is_known_inst ) {
1542           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1543         } else {
1544           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1545         }
1546       }
1547     }
1548   }
1549 
1550   // Klass pointers to object array klasses need some flattening
1551   const TypeKlassPtr *tk = tj->isa_klassptr();
1552   if( tk ) {
1553     // If we are referencing a field within a Klass, we need
1554     // to assume the worst case of an Object.  Both exact and
1555     // inexact types must flatten to the same alias class so
1556     // use NotNull as the PTR.
1557     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1558 
1559       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1560                                    TypeKlassPtr::OBJECT->klass(),
1561                                    offset);
1562     }
1563 
1564     ciKlass* klass = tk->klass();
1565     if( klass->is_obj_array_klass() ) {
1566       ciKlass* k = TypeAryPtr::OOPS->klass();
1567       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1568         k = TypeInstPtr::BOTTOM->klass();
1569       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1570     }
1571 
1572     // Check for precise loads from the primary supertype array and force them
1573     // to the supertype cache alias index.  Check for generic array loads from
1574     // the primary supertype array and also force them to the supertype cache
1575     // alias index.  Since the same load can reach both, we need to merge
1576     // these 2 disparate memories into the same alias class.  Since the
1577     // primary supertype array is read-only, there's no chance of confusion
1578     // where we bypass an array load and an array store.
1579     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1580     if (offset == Type::OffsetBot ||
1581         (offset >= primary_supers_offset &&
1582          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1583         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1584       offset = in_bytes(Klass::secondary_super_cache_offset());
1585       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1586     }
1587   }
1588 
1589   // Flatten all Raw pointers together.
1590   if (tj->base() == Type::RawPtr)
1591     tj = TypeRawPtr::BOTTOM;
1592 
1593   if (tj->base() == Type::AnyPtr)
1594     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1595 
1596   // Flatten all to bottom for now
1597   switch( _AliasLevel ) {
1598   case 0:
1599     tj = TypePtr::BOTTOM;
1600     break;
1601   case 1:                       // Flatten to: oop, static, field or array
1602     switch (tj->base()) {
1603     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1604     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1605     case Type::AryPtr:   // do not distinguish arrays at all
1606     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1607     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1608     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1609     default: ShouldNotReachHere();
1610     }
1611     break;
1612   case 2:                       // No collapsing at level 2; keep all splits
1613   case 3:                       // No collapsing at level 3; keep all splits
1614     break;
1615   default:
1616     Unimplemented();
1617   }
1618 
1619   offset = tj->offset();
1620   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1621 
1622   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1623           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1624           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1625           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1626           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1627           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1628           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1629           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1630   assert( tj->ptr() != TypePtr::TopPTR &&
1631           tj->ptr() != TypePtr::AnyNull &&
1632           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1633 //    assert( tj->ptr() != TypePtr::Constant ||
1634 //            tj->base() == Type::RawPtr ||
1635 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1636 
1637   return tj;
1638 }
1639 
1640 void Compile::AliasType::Init(int i, const TypePtr* at) {
1641   _index = i;
1642   _adr_type = at;
1643   _field = NULL;
1644   _element = NULL;
1645   _is_rewritable = true; // default
1646   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1647   if (atoop != NULL && atoop->is_known_instance()) {
1648     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1649     _general_index = Compile::current()->get_alias_index(gt);
1650   } else {
1651     _general_index = 0;
1652   }
1653 }
1654 
1655 BasicType Compile::AliasType::basic_type() const {
1656   if (element() != NULL) {
1657     const Type* element = adr_type()->is_aryptr()->elem();
1658     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1659   } if (field() != NULL) {
1660     return field()->layout_type();
1661   } else {
1662     return T_ILLEGAL; // unknown
1663   }
1664 }
1665 
1666 //---------------------------------print_on------------------------------------
1667 #ifndef PRODUCT
1668 void Compile::AliasType::print_on(outputStream* st) {
1669   if (index() < 10)
1670         st->print("@ <%d> ", index());
1671   else  st->print("@ <%d>",  index());
1672   st->print(is_rewritable() ? "   " : " RO");
1673   int offset = adr_type()->offset();
1674   if (offset == Type::OffsetBot)
1675         st->print(" +any");
1676   else  st->print(" +%-3d", offset);
1677   st->print(" in ");
1678   adr_type()->dump_on(st);
1679   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1680   if (field() != NULL && tjp) {
1681     if (tjp->klass()  != field()->holder() ||
1682         tjp->offset() != field()->offset_in_bytes()) {
1683       st->print(" != ");
1684       field()->print();
1685       st->print(" ***");
1686     }
1687   }
1688 }
1689 
1690 void print_alias_types() {
1691   Compile* C = Compile::current();
1692   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1693   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1694     C->alias_type(idx)->print_on(tty);
1695     tty->cr();
1696   }
1697 }
1698 #endif
1699 
1700 
1701 //----------------------------probe_alias_cache--------------------------------
1702 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1703   intptr_t key = (intptr_t) adr_type;
1704   key ^= key >> logAliasCacheSize;
1705   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1706 }
1707 
1708 
1709 //-----------------------------grow_alias_types--------------------------------
1710 void Compile::grow_alias_types() {
1711   const int old_ats  = _max_alias_types; // how many before?
1712   const int new_ats  = old_ats;          // how many more?
1713   const int grow_ats = old_ats+new_ats;  // how many now?
1714   _max_alias_types = grow_ats;
1715   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1716   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1717   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1718   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1719 }
1720 
1721 
1722 //--------------------------------find_alias_type------------------------------
1723 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1724   if (_AliasLevel == 0)
1725     return alias_type(AliasIdxBot);
1726 
1727   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1728   if (ace->_adr_type == adr_type) {
1729     return alias_type(ace->_index);
1730   }
1731 
1732   // Handle special cases.
1733   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1734   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1735 
1736   // Do it the slow way.
1737   const TypePtr* flat = flatten_alias_type(adr_type);
1738 
1739 #ifdef ASSERT
1740   {
1741     ResourceMark rm;
1742     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1743            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1744     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1745            Type::str(adr_type));
1746     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1747       const TypeOopPtr* foop = flat->is_oopptr();
1748       // Scalarizable allocations have exact klass always.
1749       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1750       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1751       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1752              Type::str(foop), Type::str(xoop));
1753     }
1754   }
1755 #endif
1756 
1757   int idx = AliasIdxTop;
1758   for (int i = 0; i < num_alias_types(); i++) {
1759     if (alias_type(i)->adr_type() == flat) {
1760       idx = i;
1761       break;
1762     }
1763   }
1764 
1765   if (idx == AliasIdxTop) {
1766     if (no_create)  return NULL;
1767     // Grow the array if necessary.
1768     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1769     // Add a new alias type.
1770     idx = _num_alias_types++;
1771     _alias_types[idx]->Init(idx, flat);
1772     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1773     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1774     if (flat->isa_instptr()) {
1775       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1776           && flat->is_instptr()->klass() == env()->Class_klass())
1777         alias_type(idx)->set_rewritable(false);
1778     }
1779     if (flat->isa_aryptr()) {
1780 #ifdef ASSERT
1781       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1782       // (T_BYTE has the weakest alignment and size restrictions...)
1783       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1784 #endif
1785       if (flat->offset() == TypePtr::OffsetBot) {
1786         alias_type(idx)->set_element(flat->is_aryptr()->elem());
1787       }
1788     }
1789     if (flat->isa_klassptr()) {
1790       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1791         alias_type(idx)->set_rewritable(false);
1792       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1793         alias_type(idx)->set_rewritable(false);
1794       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1795         alias_type(idx)->set_rewritable(false);
1796       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1797         alias_type(idx)->set_rewritable(false);
1798     }
1799     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1800     // but the base pointer type is not distinctive enough to identify
1801     // references into JavaThread.)
1802 
1803     // Check for final fields.
1804     const TypeInstPtr* tinst = flat->isa_instptr();
1805     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1806       ciField* field;
1807       if (tinst->const_oop() != NULL &&
1808           tinst->klass() == ciEnv::current()->Class_klass() &&
1809           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1810         // static field
1811         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1812         field = k->get_field_by_offset(tinst->offset(), true);
1813       } else {
1814         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1815         field = k->get_field_by_offset(tinst->offset(), false);
1816       }
1817       assert(field == NULL ||
1818              original_field == NULL ||
1819              (field->holder() == original_field->holder() &&
1820               field->offset() == original_field->offset() &&
1821               field->is_static() == original_field->is_static()), "wrong field?");
1822       // Set field() and is_rewritable() attributes.
1823       if (field != NULL)  alias_type(idx)->set_field(field);
1824     }
1825   }
1826 
1827   // Fill the cache for next time.
1828   ace->_adr_type = adr_type;
1829   ace->_index    = idx;
1830   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1831 
1832   // Might as well try to fill the cache for the flattened version, too.
1833   AliasCacheEntry* face = probe_alias_cache(flat);
1834   if (face->_adr_type == NULL) {
1835     face->_adr_type = flat;
1836     face->_index    = idx;
1837     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1838   }
1839 
1840   return alias_type(idx);
1841 }
1842 
1843 
1844 Compile::AliasType* Compile::alias_type(ciField* field) {
1845   const TypeOopPtr* t;
1846   if (field->is_static())
1847     t = TypeInstPtr::make(field->holder()->java_mirror());
1848   else
1849     t = TypeOopPtr::make_from_klass_raw(field->holder());
1850   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1851   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1852   return atp;
1853 }
1854 
1855 
1856 //------------------------------have_alias_type--------------------------------
1857 bool Compile::have_alias_type(const TypePtr* adr_type) {
1858   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1859   if (ace->_adr_type == adr_type) {
1860     return true;
1861   }
1862 
1863   // Handle special cases.
1864   if (adr_type == NULL)             return true;
1865   if (adr_type == TypePtr::BOTTOM)  return true;
1866 
1867   return find_alias_type(adr_type, true, NULL) != NULL;
1868 }
1869 
1870 //-----------------------------must_alias--------------------------------------
1871 // True if all values of the given address type are in the given alias category.
1872 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1873   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1874   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1875   if (alias_idx == AliasIdxTop)         return false; // the empty category
1876   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1877 
1878   // the only remaining possible overlap is identity
1879   int adr_idx = get_alias_index(adr_type);
1880   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1881   assert(adr_idx == alias_idx ||
1882          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1883           && adr_type                       != TypeOopPtr::BOTTOM),
1884          "should not be testing for overlap with an unsafe pointer");
1885   return adr_idx == alias_idx;
1886 }
1887 
1888 //------------------------------can_alias--------------------------------------
1889 // True if any values of the given address type are in the given alias category.
1890 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1891   if (alias_idx == AliasIdxTop)         return false; // the empty category
1892   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1893   // Known instance doesn't alias with bottom memory
1894   if (alias_idx == AliasIdxBot)         return !adr_type->is_known_instance();                   // the universal category
1895   if (adr_type->base() == Type::AnyPtr) return !C->get_adr_type(alias_idx)->is_known_instance(); // TypePtr::BOTTOM or its twins
1896 
1897   // the only remaining possible overlap is identity
1898   int adr_idx = get_alias_index(adr_type);
1899   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1900   return adr_idx == alias_idx;
1901 }
1902 
1903 
1904 
1905 //---------------------------pop_warm_call-------------------------------------
1906 WarmCallInfo* Compile::pop_warm_call() {
1907   WarmCallInfo* wci = _warm_calls;
1908   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1909   return wci;
1910 }
1911 
1912 //----------------------------Inline_Warm--------------------------------------
1913 int Compile::Inline_Warm() {
1914   // If there is room, try to inline some more warm call sites.
1915   // %%% Do a graph index compaction pass when we think we're out of space?
1916   if (!InlineWarmCalls)  return 0;
1917 
1918   int calls_made_hot = 0;
1919   int room_to_grow   = NodeCountInliningCutoff - unique();
1920   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1921   int amount_grown   = 0;
1922   WarmCallInfo* call;
1923   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1924     int est_size = (int)call->size();
1925     if (est_size > (room_to_grow - amount_grown)) {
1926       // This one won't fit anyway.  Get rid of it.
1927       call->make_cold();
1928       continue;
1929     }
1930     call->make_hot();
1931     calls_made_hot++;
1932     amount_grown   += est_size;
1933     amount_to_grow -= est_size;
1934   }
1935 
1936   if (calls_made_hot > 0)  set_major_progress();
1937   return calls_made_hot;
1938 }
1939 
1940 
1941 //----------------------------Finish_Warm--------------------------------------
1942 void Compile::Finish_Warm() {
1943   if (!InlineWarmCalls)  return;
1944   if (failing())  return;
1945   if (warm_calls() == NULL)  return;
1946 
1947   // Clean up loose ends, if we are out of space for inlining.
1948   WarmCallInfo* call;
1949   while ((call = pop_warm_call()) != NULL) {
1950     call->make_cold();
1951   }
1952 }
1953 
1954 //---------------------cleanup_loop_predicates-----------------------
1955 // Remove the opaque nodes that protect the predicates so that all unused
1956 // checks and uncommon_traps will be eliminated from the ideal graph
1957 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1958   if (predicate_count()==0) return;
1959   for (int i = predicate_count(); i > 0; i--) {
1960     Node * n = predicate_opaque1_node(i-1);
1961     assert(n->Opcode() == Op_Opaque1, "must be");
1962     igvn.replace_node(n, n->in(1));
1963   }
1964   assert(predicate_count()==0, "should be clean!");
1965 }
1966 
1967 void Compile::add_range_check_cast(Node* n) {
1968   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1969   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
1970   _range_check_casts->append(n);
1971 }
1972 
1973 // Remove all range check dependent CastIINodes.
1974 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
1975   for (int i = range_check_cast_count(); i > 0; i--) {
1976     Node* cast = range_check_cast_node(i-1);
1977     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
1978     igvn.replace_node(cast, cast->in(1));
1979   }
1980   assert(range_check_cast_count() == 0, "should be empty");
1981 }
1982 
1983 void Compile::add_opaque4_node(Node* n) {
1984   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
1985   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
1986   _opaque4_nodes->append(n);
1987 }
1988 
1989 // Remove all Opaque4 nodes.
1990 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
1991   for (int i = opaque4_count(); i > 0; i--) {
1992     Node* opaq = opaque4_node(i-1);
1993     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
1994     // With Opaque4 nodes, the expectation is that the test of input 1
1995     // is always equal to the constant value of input 2. So we can
1996     // remove the Opaque4 and replace it by input 2. In debug builds,
1997     // leave the non constant test in instead to sanity check that it
1998     // never fails (if it does, that subgraph was constructed so, at
1999     // runtime, a Halt node is executed).
2000 #ifdef ASSERT
2001     igvn.replace_node(opaq, opaq->in(1));
2002 #else
2003     igvn.replace_node(opaq, opaq->in(2));
2004 #endif
2005   }
2006   assert(opaque4_count() == 0, "should be empty");
2007 }
2008 
2009 // StringOpts and late inlining of string methods
2010 void Compile::inline_string_calls(bool parse_time) {
2011   {
2012     // remove useless nodes to make the usage analysis simpler
2013     ResourceMark rm;
2014     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2015   }
2016 
2017   {
2018     ResourceMark rm;
2019     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2020     PhaseStringOpts pso(initial_gvn(), for_igvn());
2021     print_method(PHASE_AFTER_STRINGOPTS, 3);
2022   }
2023 
2024   // now inline anything that we skipped the first time around
2025   if (!parse_time) {
2026     _late_inlines_pos = _late_inlines.length();
2027   }
2028 
2029   while (_string_late_inlines.length() > 0) {
2030     CallGenerator* cg = _string_late_inlines.pop();
2031     cg->do_late_inline();
2032     if (failing())  return;
2033   }
2034   _string_late_inlines.trunc_to(0);
2035 }
2036 
2037 // Late inlining of boxing methods
2038 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2039   if (_boxing_late_inlines.length() > 0) {
2040     assert(has_boxed_value(), "inconsistent");
2041 
2042     PhaseGVN* gvn = initial_gvn();
2043     set_inlining_incrementally(true);
2044 
2045     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2046     for_igvn()->clear();
2047     gvn->replace_with(&igvn);
2048 
2049     _late_inlines_pos = _late_inlines.length();
2050 
2051     while (_boxing_late_inlines.length() > 0) {
2052       CallGenerator* cg = _boxing_late_inlines.pop();
2053       cg->do_late_inline();
2054       if (failing())  return;
2055     }
2056     _boxing_late_inlines.trunc_to(0);
2057 
2058     {
2059       ResourceMark rm;
2060       PhaseRemoveUseless pru(gvn, for_igvn());
2061     }
2062 
2063     igvn = PhaseIterGVN(gvn);
2064     igvn.optimize();
2065 
2066     set_inlining_progress(false);
2067     set_inlining_incrementally(false);
2068   }
2069 }
2070 
2071 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2072   assert(IncrementalInline, "incremental inlining should be on");
2073   PhaseGVN* gvn = initial_gvn();
2074 
2075   set_inlining_progress(false);
2076   for_igvn()->clear();
2077   gvn->replace_with(&igvn);
2078 
2079   {
2080     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2081     int i = 0;
2082     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2083       CallGenerator* cg = _late_inlines.at(i);
2084       _late_inlines_pos = i+1;
2085       cg->do_late_inline();
2086       if (failing())  return;
2087     }
2088     int j = 0;
2089     for (; i < _late_inlines.length(); i++, j++) {
2090       _late_inlines.at_put(j, _late_inlines.at(i));
2091     }
2092     _late_inlines.trunc_to(j);
2093   }
2094 
2095   {
2096     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2097     ResourceMark rm;
2098     PhaseRemoveUseless pru(gvn, for_igvn());
2099   }
2100 
2101   {
2102     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2103     igvn = PhaseIterGVN(gvn);
2104   }
2105 }
2106 
2107 // Perform incremental inlining until bound on number of live nodes is reached
2108 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2109   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2110 
2111   PhaseGVN* gvn = initial_gvn();
2112 
2113   set_inlining_incrementally(true);
2114   set_inlining_progress(true);
2115   uint low_live_nodes = 0;
2116 
2117   while(inlining_progress() && _late_inlines.length() > 0) {
2118 
2119     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2120       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2121         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2122         // PhaseIdealLoop is expensive so we only try it once we are
2123         // out of live nodes and we only try it again if the previous
2124         // helped got the number of nodes down significantly
2125         PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2126         if (failing())  return;
2127         low_live_nodes = live_nodes();
2128         _major_progress = true;
2129       }
2130 
2131       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2132         break;
2133       }
2134     }
2135 
2136     inline_incrementally_one(igvn);
2137 
2138     if (failing())  return;
2139 
2140     {
2141       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2142       igvn.optimize();
2143     }
2144 
2145     if (failing())  return;
2146   }
2147 
2148   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2149 
2150   if (_string_late_inlines.length() > 0) {
2151     assert(has_stringbuilder(), "inconsistent");
2152     for_igvn()->clear();
2153     initial_gvn()->replace_with(&igvn);
2154 
2155     inline_string_calls(false);
2156 
2157     if (failing())  return;
2158 
2159     {
2160       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2161       ResourceMark rm;
2162       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2163     }
2164 
2165     {
2166       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2167       igvn = PhaseIterGVN(gvn);
2168       igvn.optimize();
2169     }
2170   }
2171 
2172   set_inlining_incrementally(false);
2173 }
2174 
2175 
2176 bool Compile::optimize_loops(int& loop_opts_cnt, PhaseIterGVN& igvn, LoopOptsMode mode) {
2177   if(loop_opts_cnt > 0) {
2178     debug_only( int cnt = 0; );
2179     while(major_progress() && (loop_opts_cnt > 0)) {
2180       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2181       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2182       PhaseIdealLoop ideal_loop(igvn, mode);
2183       loop_opts_cnt--;
2184       if (failing())  return false;
2185       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2186     }
2187   }
2188   return true;
2189 }
2190 
2191 // Remove edges from "root" to each SafePoint at a backward branch.
2192 // They were inserted during parsing (see add_safepoint()) to make
2193 // infinite loops without calls or exceptions visible to root, i.e.,
2194 // useful.
2195 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2196   Node *r = root();
2197   if (r != NULL) {
2198     for (uint i = r->req(); i < r->len(); ++i) {
2199       Node *n = r->in(i);
2200       if (n != NULL && n->is_SafePoint()) {
2201         r->rm_prec(i);
2202         if (n->outcnt() == 0) {
2203           igvn.remove_dead_node(n);
2204         }
2205         --i;
2206       }
2207     }
2208     // Parsing may have added top inputs to the root node (Path
2209     // leading to the Halt node proven dead). Make sure we get a
2210     // chance to clean them up.
2211     igvn._worklist.push(r);
2212     igvn.optimize();
2213   }
2214 }
2215 
2216 //------------------------------Optimize---------------------------------------
2217 // Given a graph, optimize it.
2218 void Compile::Optimize() {
2219   TracePhase tp("optimizer", &timers[_t_optimizer]);
2220 
2221 #ifndef PRODUCT
2222   if (_directive->BreakAtCompileOption) {
2223     BREAKPOINT;
2224   }
2225 
2226 #endif
2227 
2228 #ifdef ASSERT
2229   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2230   bs->verify_gc_barriers(true);
2231 #endif
2232 
2233   ResourceMark rm;
2234   int          loop_opts_cnt;
2235 
2236   print_inlining_reinit();
2237 
2238   NOT_PRODUCT( verify_graph_edges(); )
2239 
2240   print_method(PHASE_AFTER_PARSING);
2241 
2242  {
2243   // Iterative Global Value Numbering, including ideal transforms
2244   // Initialize IterGVN with types and values from parse-time GVN
2245   PhaseIterGVN igvn(initial_gvn());
2246 #ifdef ASSERT
2247   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2248 #endif
2249   {
2250     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2251     igvn.optimize();
2252   }
2253 
2254   if (failing())  return;
2255 
2256   print_method(PHASE_ITER_GVN1, 2);
2257 
2258   inline_incrementally(igvn);
2259 
2260   print_method(PHASE_INCREMENTAL_INLINE, 2);
2261 
2262   if (failing())  return;
2263 
2264   if (eliminate_boxing()) {
2265     // Inline valueOf() methods now.
2266     inline_boxing_calls(igvn);
2267 
2268     if (AlwaysIncrementalInline) {
2269       inline_incrementally(igvn);
2270     }
2271 
2272     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2273 
2274     if (failing())  return;
2275   }
2276 
2277   // Now that all inlining is over, cut edge from root to loop
2278   // safepoints
2279   remove_root_to_sfpts_edges(igvn);
2280 
2281   // Remove the speculative part of types and clean up the graph from
2282   // the extra CastPP nodes whose only purpose is to carry them. Do
2283   // that early so that optimizations are not disrupted by the extra
2284   // CastPP nodes.
2285   remove_speculative_types(igvn);
2286 
2287   // No more new expensive nodes will be added to the list from here
2288   // so keep only the actual candidates for optimizations.
2289   cleanup_expensive_nodes(igvn);
2290 
2291   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2292     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2293     initial_gvn()->replace_with(&igvn);
2294     for_igvn()->clear();
2295     Unique_Node_List new_worklist(C->comp_arena());
2296     {
2297       ResourceMark rm;
2298       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2299     }
2300     set_for_igvn(&new_worklist);
2301     igvn = PhaseIterGVN(initial_gvn());
2302     igvn.optimize();
2303   }
2304 
2305   // Perform escape analysis
2306   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2307     if (has_loops()) {
2308       // Cleanup graph (remove dead nodes).
2309       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2310       PhaseIdealLoop ideal_loop(igvn, LoopOptsNone);
2311       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2312       if (failing())  return;
2313     }
2314     ConnectionGraph::do_analysis(this, &igvn);
2315 
2316     if (failing())  return;
2317 
2318     // Optimize out fields loads from scalar replaceable allocations.
2319     igvn.optimize();
2320     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2321 
2322     if (failing())  return;
2323 
2324     if (congraph() != NULL && macro_count() > 0) {
2325       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2326       PhaseMacroExpand mexp(igvn);
2327       mexp.eliminate_macro_nodes();
2328       igvn.set_delay_transform(false);
2329 
2330       igvn.optimize();
2331       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2332 
2333       if (failing())  return;
2334     }
2335   }
2336 
2337   // Loop transforms on the ideal graph.  Range Check Elimination,
2338   // peeling, unrolling, etc.
2339 
2340   // Set loop opts counter
2341   loop_opts_cnt = num_loop_opts();
2342   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2343     {
2344       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2345       PhaseIdealLoop ideal_loop(igvn, LoopOptsDefault);
2346       loop_opts_cnt--;
2347       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2348       if (failing())  return;
2349     }
2350     // Loop opts pass if partial peeling occurred in previous pass
2351     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2352       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2353       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2354       loop_opts_cnt--;
2355       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2356       if (failing())  return;
2357     }
2358     // Loop opts pass for loop-unrolling before CCP
2359     if(major_progress() && (loop_opts_cnt > 0)) {
2360       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2361       PhaseIdealLoop ideal_loop(igvn, LoopOptsSkipSplitIf);
2362       loop_opts_cnt--;
2363       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2364     }
2365     if (!failing()) {
2366       // Verify that last round of loop opts produced a valid graph
2367       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2368       PhaseIdealLoop::verify(igvn);
2369     }
2370   }
2371   if (failing())  return;
2372 
2373   // Conditional Constant Propagation;
2374   PhaseCCP ccp( &igvn );
2375   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2376   {
2377     TracePhase tp("ccp", &timers[_t_ccp]);
2378     ccp.do_transform();
2379   }
2380   print_method(PHASE_CPP1, 2);
2381 
2382   assert( true, "Break here to ccp.dump_old2new_map()");
2383 
2384   // Iterative Global Value Numbering, including ideal transforms
2385   {
2386     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2387     igvn = ccp;
2388     igvn.optimize();
2389   }
2390 
2391   print_method(PHASE_ITER_GVN2, 2);
2392 
2393   if (failing())  return;
2394 
2395   // Loop transforms on the ideal graph.  Range Check Elimination,
2396   // peeling, unrolling, etc.
2397   if (!optimize_loops(loop_opts_cnt, igvn, LoopOptsDefault)) {
2398     return;
2399   }
2400 
2401 #if INCLUDE_ZGC
2402   if (UseZGC) {
2403     ZBarrierSetC2::find_dominating_barriers(igvn);
2404   }
2405 #endif
2406 
2407   if (failing())  return;
2408 
2409   // Ensure that major progress is now clear
2410   C->clear_major_progress();
2411 
2412   {
2413     // Verify that all previous optimizations produced a valid graph
2414     // at least to this point, even if no loop optimizations were done.
2415     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2416     PhaseIdealLoop::verify(igvn);
2417   }
2418 
2419   if (range_check_cast_count() > 0) {
2420     // No more loop optimizations. Remove all range check dependent CastIINodes.
2421     C->remove_range_check_casts(igvn);
2422     igvn.optimize();
2423   }
2424 
2425 #ifdef ASSERT
2426   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2427   bs->verify_gc_barriers(false);
2428 #endif
2429 
2430   {
2431     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2432     PhaseMacroExpand  mex(igvn);
2433     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2434     if (mex.expand_macro_nodes()) {
2435       assert(failing(), "must bail out w/ explicit message");
2436       return;
2437     }
2438   }
2439 
2440 #if INCLUDE_SHENANDOAHGC
2441   if (UseShenandoahGC) {
2442     print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2443     if (((ShenandoahBarrierSetC2*)BarrierSet::barrier_set()->barrier_set_c2())->expand_barriers(this, igvn)) {
2444       assert(failing(), "must bail out w/ explicit message");
2445       return;
2446     }
2447   }
2448 #endif
2449 
2450   if (opaque4_count() > 0) {
2451     C->remove_opaque4_nodes(igvn);
2452     igvn.optimize();
2453   }
2454 
2455   DEBUG_ONLY( _modified_nodes = NULL; )
2456  } // (End scope of igvn; run destructor if necessary for asserts.)
2457 
2458  process_print_inlining();
2459  // A method with only infinite loops has no edges entering loops from root
2460  {
2461    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2462    if (final_graph_reshaping()) {
2463      assert(failing(), "must bail out w/ explicit message");
2464      return;
2465    }
2466  }
2467 
2468  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2469 }
2470 
2471 
2472 //------------------------------Code_Gen---------------------------------------
2473 // Given a graph, generate code for it
2474 void Compile::Code_Gen() {
2475   if (failing()) {
2476     return;
2477   }
2478 
2479   // Perform instruction selection.  You might think we could reclaim Matcher
2480   // memory PDQ, but actually the Matcher is used in generating spill code.
2481   // Internals of the Matcher (including some VectorSets) must remain live
2482   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2483   // set a bit in reclaimed memory.
2484 
2485   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2486   // nodes.  Mapping is only valid at the root of each matched subtree.
2487   NOT_PRODUCT( verify_graph_edges(); )
2488 
2489   Matcher matcher;
2490   _matcher = &matcher;
2491   {
2492     TracePhase tp("matcher", &timers[_t_matcher]);
2493     matcher.match();
2494   }
2495   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2496   // nodes.  Mapping is only valid at the root of each matched subtree.
2497   NOT_PRODUCT( verify_graph_edges(); )
2498 
2499   // If you have too many nodes, or if matching has failed, bail out
2500   check_node_count(0, "out of nodes matching instructions");
2501   if (failing()) {
2502     return;
2503   }
2504 
2505   print_method(PHASE_MATCHING, 2);
2506 
2507   // Build a proper-looking CFG
2508   PhaseCFG cfg(node_arena(), root(), matcher);
2509   _cfg = &cfg;
2510   {
2511     TracePhase tp("scheduler", &timers[_t_scheduler]);
2512     bool success = cfg.do_global_code_motion();
2513     if (!success) {
2514       return;
2515     }
2516 
2517     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2518     NOT_PRODUCT( verify_graph_edges(); )
2519     debug_only( cfg.verify(); )
2520   }
2521 
2522   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2523   _regalloc = &regalloc;
2524   {
2525     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2526     // Perform register allocation.  After Chaitin, use-def chains are
2527     // no longer accurate (at spill code) and so must be ignored.
2528     // Node->LRG->reg mappings are still accurate.
2529     _regalloc->Register_Allocate();
2530 
2531     // Bail out if the allocator builds too many nodes
2532     if (failing()) {
2533       return;
2534     }
2535   }
2536 
2537   // Prior to register allocation we kept empty basic blocks in case the
2538   // the allocator needed a place to spill.  After register allocation we
2539   // are not adding any new instructions.  If any basic block is empty, we
2540   // can now safely remove it.
2541   {
2542     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2543     cfg.remove_empty_blocks();
2544     if (do_freq_based_layout()) {
2545       PhaseBlockLayout layout(cfg);
2546     } else {
2547       cfg.set_loop_alignment();
2548     }
2549     cfg.fixup_flow();
2550   }
2551 
2552   // Apply peephole optimizations
2553   if( OptoPeephole ) {
2554     TracePhase tp("peephole", &timers[_t_peephole]);
2555     PhasePeephole peep( _regalloc, cfg);
2556     peep.do_transform();
2557   }
2558 
2559   // Do late expand if CPU requires this.
2560   if (Matcher::require_postalloc_expand) {
2561     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2562     cfg.postalloc_expand(_regalloc);
2563   }
2564 
2565   // Convert Nodes to instruction bits in a buffer
2566   {
2567     TraceTime tp("output", &timers[_t_output], CITime);
2568     Output();
2569   }
2570 
2571   print_method(PHASE_FINAL_CODE);
2572 
2573   // He's dead, Jim.
2574   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2575   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2576 }
2577 
2578 
2579 //------------------------------dump_asm---------------------------------------
2580 // Dump formatted assembly
2581 #ifndef PRODUCT
2582 void Compile::dump_asm(int *pcs, uint pc_limit) {
2583   bool cut_short = false;
2584   tty->print_cr("#");
2585   tty->print("#  ");  _tf->dump();  tty->cr();
2586   tty->print_cr("#");
2587 
2588   // For all blocks
2589   int pc = 0x0;                 // Program counter
2590   char starts_bundle = ' ';
2591   _regalloc->dump_frame();
2592 
2593   Node *n = NULL;
2594   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2595     if (VMThread::should_terminate()) {
2596       cut_short = true;
2597       break;
2598     }
2599     Block* block = _cfg->get_block(i);
2600     if (block->is_connector() && !Verbose) {
2601       continue;
2602     }
2603     n = block->head();
2604     if (pcs && n->_idx < pc_limit) {
2605       tty->print("%3.3x   ", pcs[n->_idx]);
2606     } else {
2607       tty->print("      ");
2608     }
2609     block->dump_head(_cfg);
2610     if (block->is_connector()) {
2611       tty->print_cr("        # Empty connector block");
2612     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2613       tty->print_cr("        # Block is sole successor of call");
2614     }
2615 
2616     // For all instructions
2617     Node *delay = NULL;
2618     for (uint j = 0; j < block->number_of_nodes(); j++) {
2619       if (VMThread::should_terminate()) {
2620         cut_short = true;
2621         break;
2622       }
2623       n = block->get_node(j);
2624       if (valid_bundle_info(n)) {
2625         Bundle* bundle = node_bundling(n);
2626         if (bundle->used_in_unconditional_delay()) {
2627           delay = n;
2628           continue;
2629         }
2630         if (bundle->starts_bundle()) {
2631           starts_bundle = '+';
2632         }
2633       }
2634 
2635       if (WizardMode) {
2636         n->dump();
2637       }
2638 
2639       if( !n->is_Region() &&    // Dont print in the Assembly
2640           !n->is_Phi() &&       // a few noisely useless nodes
2641           !n->is_Proj() &&
2642           !n->is_MachTemp() &&
2643           !n->is_SafePointScalarObject() &&
2644           !n->is_Catch() &&     // Would be nice to print exception table targets
2645           !n->is_MergeMem() &&  // Not very interesting
2646           !n->is_top() &&       // Debug info table constants
2647           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2648           ) {
2649         if (pcs && n->_idx < pc_limit)
2650           tty->print("%3.3x", pcs[n->_idx]);
2651         else
2652           tty->print("   ");
2653         tty->print(" %c ", starts_bundle);
2654         starts_bundle = ' ';
2655         tty->print("\t");
2656         n->format(_regalloc, tty);
2657         tty->cr();
2658       }
2659 
2660       // If we have an instruction with a delay slot, and have seen a delay,
2661       // then back up and print it
2662       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2663         assert(delay != NULL, "no unconditional delay instruction");
2664         if (WizardMode) delay->dump();
2665 
2666         if (node_bundling(delay)->starts_bundle())
2667           starts_bundle = '+';
2668         if (pcs && n->_idx < pc_limit)
2669           tty->print("%3.3x", pcs[n->_idx]);
2670         else
2671           tty->print("   ");
2672         tty->print(" %c ", starts_bundle);
2673         starts_bundle = ' ';
2674         tty->print("\t");
2675         delay->format(_regalloc, tty);
2676         tty->cr();
2677         delay = NULL;
2678       }
2679 
2680       // Dump the exception table as well
2681       if( n->is_Catch() && (Verbose || WizardMode) ) {
2682         // Print the exception table for this offset
2683         _handler_table.print_subtable_for(pc);
2684       }
2685     }
2686 
2687     if (pcs && n->_idx < pc_limit)
2688       tty->print_cr("%3.3x", pcs[n->_idx]);
2689     else
2690       tty->cr();
2691 
2692     assert(cut_short || delay == NULL, "no unconditional delay branch");
2693 
2694   } // End of per-block dump
2695   tty->cr();
2696 
2697   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2698 }
2699 #endif
2700 
2701 //------------------------------Final_Reshape_Counts---------------------------
2702 // This class defines counters to help identify when a method
2703 // may/must be executed using hardware with only 24-bit precision.
2704 struct Final_Reshape_Counts : public StackObj {
2705   int  _call_count;             // count non-inlined 'common' calls
2706   int  _float_count;            // count float ops requiring 24-bit precision
2707   int  _double_count;           // count double ops requiring more precision
2708   int  _java_call_count;        // count non-inlined 'java' calls
2709   int  _inner_loop_count;       // count loops which need alignment
2710   VectorSet _visited;           // Visitation flags
2711   Node_List _tests;             // Set of IfNodes & PCTableNodes
2712 
2713   Final_Reshape_Counts() :
2714     _call_count(0), _float_count(0), _double_count(0),
2715     _java_call_count(0), _inner_loop_count(0),
2716     _visited( Thread::current()->resource_area() ) { }
2717 
2718   void inc_call_count  () { _call_count  ++; }
2719   void inc_float_count () { _float_count ++; }
2720   void inc_double_count() { _double_count++; }
2721   void inc_java_call_count() { _java_call_count++; }
2722   void inc_inner_loop_count() { _inner_loop_count++; }
2723 
2724   int  get_call_count  () const { return _call_count  ; }
2725   int  get_float_count () const { return _float_count ; }
2726   int  get_double_count() const { return _double_count; }
2727   int  get_java_call_count() const { return _java_call_count; }
2728   int  get_inner_loop_count() const { return _inner_loop_count; }
2729 };
2730 
2731 #ifdef ASSERT
2732 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2733   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2734   // Make sure the offset goes inside the instance layout.
2735   return k->contains_field_offset(tp->offset());
2736   // Note that OffsetBot and OffsetTop are very negative.
2737 }
2738 #endif
2739 
2740 // Eliminate trivially redundant StoreCMs and accumulate their
2741 // precedence edges.
2742 void Compile::eliminate_redundant_card_marks(Node* n) {
2743   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2744   if (n->in(MemNode::Address)->outcnt() > 1) {
2745     // There are multiple users of the same address so it might be
2746     // possible to eliminate some of the StoreCMs
2747     Node* mem = n->in(MemNode::Memory);
2748     Node* adr = n->in(MemNode::Address);
2749     Node* val = n->in(MemNode::ValueIn);
2750     Node* prev = n;
2751     bool done = false;
2752     // Walk the chain of StoreCMs eliminating ones that match.  As
2753     // long as it's a chain of single users then the optimization is
2754     // safe.  Eliminating partially redundant StoreCMs would require
2755     // cloning copies down the other paths.
2756     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2757       if (adr == mem->in(MemNode::Address) &&
2758           val == mem->in(MemNode::ValueIn)) {
2759         // redundant StoreCM
2760         if (mem->req() > MemNode::OopStore) {
2761           // Hasn't been processed by this code yet.
2762           n->add_prec(mem->in(MemNode::OopStore));
2763         } else {
2764           // Already converted to precedence edge
2765           for (uint i = mem->req(); i < mem->len(); i++) {
2766             // Accumulate any precedence edges
2767             if (mem->in(i) != NULL) {
2768               n->add_prec(mem->in(i));
2769             }
2770           }
2771           // Everything above this point has been processed.
2772           done = true;
2773         }
2774         // Eliminate the previous StoreCM
2775         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2776         assert(mem->outcnt() == 0, "should be dead");
2777         mem->disconnect_inputs(NULL, this);
2778       } else {
2779         prev = mem;
2780       }
2781       mem = prev->in(MemNode::Memory);
2782     }
2783   }
2784 }
2785 
2786 //------------------------------final_graph_reshaping_impl----------------------
2787 // Implement items 1-5 from final_graph_reshaping below.
2788 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2789 
2790   if ( n->outcnt() == 0 ) return; // dead node
2791   uint nop = n->Opcode();
2792 
2793   // Check for 2-input instruction with "last use" on right input.
2794   // Swap to left input.  Implements item (2).
2795   if( n->req() == 3 &&          // two-input instruction
2796       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2797       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2798       n->in(2)->outcnt() == 1 &&// right use IS a last use
2799       !n->in(2)->is_Con() ) {   // right use is not a constant
2800     // Check for commutative opcode
2801     switch( nop ) {
2802     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2803     case Op_MaxI:  case Op_MinI:
2804     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2805     case Op_AndL:  case Op_XorL:  case Op_OrL:
2806     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2807       // Move "last use" input to left by swapping inputs
2808       n->swap_edges(1, 2);
2809       break;
2810     }
2811     default:
2812       break;
2813     }
2814   }
2815 
2816 #ifdef ASSERT
2817   if( n->is_Mem() ) {
2818     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2819     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2820             // oop will be recorded in oop map if load crosses safepoint
2821             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2822                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2823             "raw memory operations should have control edge");
2824   }
2825   if (n->is_MemBar()) {
2826     MemBarNode* mb = n->as_MemBar();
2827     if (mb->trailing_store() || mb->trailing_load_store()) {
2828       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2829       Node* mem = mb->in(MemBarNode::Precedent);
2830       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2831              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2832     } else if (mb->leading()) {
2833       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2834     }
2835   }
2836 #endif
2837   // Count FPU ops and common calls, implements item (3)
2838   switch( nop ) {
2839   // Count all float operations that may use FPU
2840   case Op_AddF:
2841   case Op_SubF:
2842   case Op_MulF:
2843   case Op_DivF:
2844   case Op_NegF:
2845   case Op_ModF:
2846   case Op_ConvI2F:
2847   case Op_ConF:
2848   case Op_CmpF:
2849   case Op_CmpF3:
2850   // case Op_ConvL2F: // longs are split into 32-bit halves
2851     frc.inc_float_count();
2852     break;
2853 
2854   case Op_ConvF2D:
2855   case Op_ConvD2F:
2856     frc.inc_float_count();
2857     frc.inc_double_count();
2858     break;
2859 
2860   // Count all double operations that may use FPU
2861   case Op_AddD:
2862   case Op_SubD:
2863   case Op_MulD:
2864   case Op_DivD:
2865   case Op_NegD:
2866   case Op_ModD:
2867   case Op_ConvI2D:
2868   case Op_ConvD2I:
2869   // case Op_ConvL2D: // handled by leaf call
2870   // case Op_ConvD2L: // handled by leaf call
2871   case Op_ConD:
2872   case Op_CmpD:
2873   case Op_CmpD3:
2874     frc.inc_double_count();
2875     break;
2876   case Op_Opaque1:              // Remove Opaque Nodes before matching
2877   case Op_Opaque2:              // Remove Opaque Nodes before matching
2878   case Op_Opaque3:
2879     n->subsume_by(n->in(1), this);
2880     break;
2881   case Op_CallStaticJava:
2882   case Op_CallJava:
2883   case Op_CallDynamicJava:
2884     frc.inc_java_call_count(); // Count java call site;
2885   case Op_CallRuntime:
2886   case Op_CallLeaf:
2887   case Op_CallLeafNoFP: {
2888     assert (n->is_Call(), "");
2889     CallNode *call = n->as_Call();
2890 #if INCLUDE_SHENANDOAHGC
2891     if (UseShenandoahGC && ShenandoahBarrierSetC2::is_shenandoah_wb_pre_call(call)) {
2892       uint cnt = ShenandoahBarrierSetC2::write_ref_field_pre_entry_Type()->domain()->cnt();
2893       if (call->req() > cnt) {
2894         assert(call->req() == cnt+1, "only one extra input");
2895         Node* addp = call->in(cnt);
2896         assert(!ShenandoahBarrierSetC2::has_only_shenandoah_wb_pre_uses(addp), "useless address computation?");
2897         call->del_req(cnt);
2898       }
2899     }
2900 #endif
2901     // Count call sites where the FP mode bit would have to be flipped.
2902     // Do not count uncommon runtime calls:
2903     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2904     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2905     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2906       frc.inc_call_count();   // Count the call site
2907     } else {                  // See if uncommon argument is shared
2908       Node *n = call->in(TypeFunc::Parms);
2909       int nop = n->Opcode();
2910       // Clone shared simple arguments to uncommon calls, item (1).
2911       if (n->outcnt() > 1 &&
2912           !n->is_Proj() &&
2913           nop != Op_CreateEx &&
2914           nop != Op_CheckCastPP &&
2915           nop != Op_DecodeN &&
2916           nop != Op_DecodeNKlass &&
2917           !n->is_Mem() &&
2918           !n->is_Phi()) {
2919         Node *x = n->clone();
2920         call->set_req(TypeFunc::Parms, x);
2921       }
2922     }
2923     break;
2924   }
2925 
2926   case Op_StoreD:
2927   case Op_LoadD:
2928   case Op_LoadD_unaligned:
2929     frc.inc_double_count();
2930     goto handle_mem;
2931   case Op_StoreF:
2932   case Op_LoadF:
2933     frc.inc_float_count();
2934     goto handle_mem;
2935 
2936   case Op_StoreCM:
2937     {
2938       // Convert OopStore dependence into precedence edge
2939       Node* prec = n->in(MemNode::OopStore);
2940       n->del_req(MemNode::OopStore);
2941       n->add_prec(prec);
2942       eliminate_redundant_card_marks(n);
2943     }
2944 
2945     // fall through
2946 
2947   case Op_StoreB:
2948   case Op_StoreC:
2949   case Op_StorePConditional:
2950   case Op_StoreI:
2951   case Op_StoreL:
2952   case Op_StoreIConditional:
2953   case Op_StoreLConditional:
2954   case Op_CompareAndSwapB:
2955   case Op_CompareAndSwapS:
2956   case Op_CompareAndSwapI:
2957   case Op_CompareAndSwapL:
2958   case Op_CompareAndSwapP:
2959   case Op_CompareAndSwapN:
2960   case Op_WeakCompareAndSwapB:
2961   case Op_WeakCompareAndSwapS:
2962   case Op_WeakCompareAndSwapI:
2963   case Op_WeakCompareAndSwapL:
2964   case Op_WeakCompareAndSwapP:
2965   case Op_WeakCompareAndSwapN:
2966   case Op_CompareAndExchangeB:
2967   case Op_CompareAndExchangeS:
2968   case Op_CompareAndExchangeI:
2969   case Op_CompareAndExchangeL:
2970   case Op_CompareAndExchangeP:
2971   case Op_CompareAndExchangeN:
2972   case Op_GetAndAddS:
2973   case Op_GetAndAddB:
2974   case Op_GetAndAddI:
2975   case Op_GetAndAddL:
2976   case Op_GetAndSetS:
2977   case Op_GetAndSetB:
2978   case Op_GetAndSetI:
2979   case Op_GetAndSetL:
2980   case Op_GetAndSetP:
2981   case Op_GetAndSetN:
2982   case Op_StoreP:
2983   case Op_StoreN:
2984   case Op_StoreNKlass:
2985   case Op_LoadB:
2986   case Op_LoadUB:
2987   case Op_LoadUS:
2988   case Op_LoadI:
2989   case Op_LoadKlass:
2990   case Op_LoadNKlass:
2991   case Op_LoadL:
2992   case Op_LoadL_unaligned:
2993   case Op_LoadPLocked:
2994   case Op_LoadP:
2995 #if INCLUDE_ZGC
2996   case Op_LoadBarrierSlowReg:
2997   case Op_LoadBarrierWeakSlowReg:
2998 #endif
2999   case Op_LoadN:
3000   case Op_LoadRange:
3001   case Op_LoadS: {
3002   handle_mem:
3003 #ifdef ASSERT
3004     if( VerifyOptoOopOffsets ) {
3005       assert( n->is_Mem(), "" );
3006       MemNode *mem  = (MemNode*)n;
3007       // Check to see if address types have grounded out somehow.
3008       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3009       assert( !tp || oop_offset_is_sane(tp), "" );
3010     }
3011 #endif
3012     break;
3013   }
3014 
3015   case Op_AddP: {               // Assert sane base pointers
3016     Node *addp = n->in(AddPNode::Address);
3017     assert( !addp->is_AddP() ||
3018             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3019             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3020             "Base pointers must match (addp %u)", addp->_idx );
3021 #ifdef _LP64
3022     if ((UseCompressedOops || UseCompressedClassPointers) &&
3023         addp->Opcode() == Op_ConP &&
3024         addp == n->in(AddPNode::Base) &&
3025         n->in(AddPNode::Offset)->is_Con()) {
3026       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3027       // on the platform and on the compressed oops mode.
3028       // Use addressing with narrow klass to load with offset on x86.
3029       // Some platforms can use the constant pool to load ConP.
3030       // Do this transformation here since IGVN will convert ConN back to ConP.
3031       const Type* t = addp->bottom_type();
3032       bool is_oop   = t->isa_oopptr() != NULL;
3033       bool is_klass = t->isa_klassptr() != NULL;
3034 
3035       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3036           (is_klass && Matcher::const_klass_prefer_decode())) {
3037         Node* nn = NULL;
3038 
3039         int op = is_oop ? Op_ConN : Op_ConNKlass;
3040 
3041         // Look for existing ConN node of the same exact type.
3042         Node* r  = root();
3043         uint cnt = r->outcnt();
3044         for (uint i = 0; i < cnt; i++) {
3045           Node* m = r->raw_out(i);
3046           if (m!= NULL && m->Opcode() == op &&
3047               m->bottom_type()->make_ptr() == t) {
3048             nn = m;
3049             break;
3050           }
3051         }
3052         if (nn != NULL) {
3053           // Decode a narrow oop to match address
3054           // [R12 + narrow_oop_reg<<3 + offset]
3055           if (is_oop) {
3056             nn = new DecodeNNode(nn, t);
3057           } else {
3058             nn = new DecodeNKlassNode(nn, t);
3059           }
3060           // Check for succeeding AddP which uses the same Base.
3061           // Otherwise we will run into the assertion above when visiting that guy.
3062           for (uint i = 0; i < n->outcnt(); ++i) {
3063             Node *out_i = n->raw_out(i);
3064             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3065               out_i->set_req(AddPNode::Base, nn);
3066 #ifdef ASSERT
3067               for (uint j = 0; j < out_i->outcnt(); ++j) {
3068                 Node *out_j = out_i->raw_out(j);
3069                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3070                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3071               }
3072 #endif
3073             }
3074           }
3075           n->set_req(AddPNode::Base, nn);
3076           n->set_req(AddPNode::Address, nn);
3077           if (addp->outcnt() == 0) {
3078             addp->disconnect_inputs(NULL, this);
3079           }
3080         }
3081       }
3082     }
3083 #endif
3084     // platform dependent reshaping of the address expression
3085     reshape_address(n->as_AddP());
3086     break;
3087   }
3088 
3089   case Op_CastPP: {
3090     // Remove CastPP nodes to gain more freedom during scheduling but
3091     // keep the dependency they encode as control or precedence edges
3092     // (if control is set already) on memory operations. Some CastPP
3093     // nodes don't have a control (don't carry a dependency): skip
3094     // those.
3095     if (n->in(0) != NULL) {
3096       ResourceMark rm;
3097       Unique_Node_List wq;
3098       wq.push(n);
3099       for (uint next = 0; next < wq.size(); ++next) {
3100         Node *m = wq.at(next);
3101         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3102           Node* use = m->fast_out(i);
3103           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3104             use->ensure_control_or_add_prec(n->in(0));
3105           } else {
3106             switch(use->Opcode()) {
3107             case Op_AddP:
3108             case Op_DecodeN:
3109             case Op_DecodeNKlass:
3110             case Op_CheckCastPP:
3111             case Op_CastPP:
3112               wq.push(use);
3113               break;
3114             }
3115           }
3116         }
3117       }
3118     }
3119     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3120     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3121       Node* in1 = n->in(1);
3122       const Type* t = n->bottom_type();
3123       Node* new_in1 = in1->clone();
3124       new_in1->as_DecodeN()->set_type(t);
3125 
3126       if (!Matcher::narrow_oop_use_complex_address()) {
3127         //
3128         // x86, ARM and friends can handle 2 adds in addressing mode
3129         // and Matcher can fold a DecodeN node into address by using
3130         // a narrow oop directly and do implicit NULL check in address:
3131         //
3132         // [R12 + narrow_oop_reg<<3 + offset]
3133         // NullCheck narrow_oop_reg
3134         //
3135         // On other platforms (Sparc) we have to keep new DecodeN node and
3136         // use it to do implicit NULL check in address:
3137         //
3138         // decode_not_null narrow_oop_reg, base_reg
3139         // [base_reg + offset]
3140         // NullCheck base_reg
3141         //
3142         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3143         // to keep the information to which NULL check the new DecodeN node
3144         // corresponds to use it as value in implicit_null_check().
3145         //
3146         new_in1->set_req(0, n->in(0));
3147       }
3148 
3149       n->subsume_by(new_in1, this);
3150       if (in1->outcnt() == 0) {
3151         in1->disconnect_inputs(NULL, this);
3152       }
3153     } else {
3154       n->subsume_by(n->in(1), this);
3155       if (n->outcnt() == 0) {
3156         n->disconnect_inputs(NULL, this);
3157       }
3158     }
3159     break;
3160   }
3161 #ifdef _LP64
3162   case Op_CmpP:
3163     // Do this transformation here to preserve CmpPNode::sub() and
3164     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3165     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3166       Node* in1 = n->in(1);
3167       Node* in2 = n->in(2);
3168       if (!in1->is_DecodeNarrowPtr()) {
3169         in2 = in1;
3170         in1 = n->in(2);
3171       }
3172       assert(in1->is_DecodeNarrowPtr(), "sanity");
3173 
3174       Node* new_in2 = NULL;
3175       if (in2->is_DecodeNarrowPtr()) {
3176         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3177         new_in2 = in2->in(1);
3178       } else if (in2->Opcode() == Op_ConP) {
3179         const Type* t = in2->bottom_type();
3180         if (t == TypePtr::NULL_PTR) {
3181           assert(in1->is_DecodeN(), "compare klass to null?");
3182           // Don't convert CmpP null check into CmpN if compressed
3183           // oops implicit null check is not generated.
3184           // This will allow to generate normal oop implicit null check.
3185           if (Matcher::gen_narrow_oop_implicit_null_checks())
3186             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3187           //
3188           // This transformation together with CastPP transformation above
3189           // will generated code for implicit NULL checks for compressed oops.
3190           //
3191           // The original code after Optimize()
3192           //
3193           //    LoadN memory, narrow_oop_reg
3194           //    decode narrow_oop_reg, base_reg
3195           //    CmpP base_reg, NULL
3196           //    CastPP base_reg // NotNull
3197           //    Load [base_reg + offset], val_reg
3198           //
3199           // after these transformations will be
3200           //
3201           //    LoadN memory, narrow_oop_reg
3202           //    CmpN narrow_oop_reg, NULL
3203           //    decode_not_null narrow_oop_reg, base_reg
3204           //    Load [base_reg + offset], val_reg
3205           //
3206           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3207           // since narrow oops can be used in debug info now (see the code in
3208           // final_graph_reshaping_walk()).
3209           //
3210           // At the end the code will be matched to
3211           // on x86:
3212           //
3213           //    Load_narrow_oop memory, narrow_oop_reg
3214           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3215           //    NullCheck narrow_oop_reg
3216           //
3217           // and on sparc:
3218           //
3219           //    Load_narrow_oop memory, narrow_oop_reg
3220           //    decode_not_null narrow_oop_reg, base_reg
3221           //    Load [base_reg + offset], val_reg
3222           //    NullCheck base_reg
3223           //
3224         } else if (t->isa_oopptr()) {
3225           new_in2 = ConNode::make(t->make_narrowoop());
3226         } else if (t->isa_klassptr()) {
3227           new_in2 = ConNode::make(t->make_narrowklass());
3228         }
3229       }
3230       if (new_in2 != NULL) {
3231         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3232         n->subsume_by(cmpN, this);
3233         if (in1->outcnt() == 0) {
3234           in1->disconnect_inputs(NULL, this);
3235         }
3236         if (in2->outcnt() == 0) {
3237           in2->disconnect_inputs(NULL, this);
3238         }
3239       }
3240     }
3241     break;
3242 
3243   case Op_DecodeN:
3244   case Op_DecodeNKlass:
3245     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3246     // DecodeN could be pinned when it can't be fold into
3247     // an address expression, see the code for Op_CastPP above.
3248     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3249     break;
3250 
3251   case Op_EncodeP:
3252   case Op_EncodePKlass: {
3253     Node* in1 = n->in(1);
3254     if (in1->is_DecodeNarrowPtr()) {
3255       n->subsume_by(in1->in(1), this);
3256     } else if (in1->Opcode() == Op_ConP) {
3257       const Type* t = in1->bottom_type();
3258       if (t == TypePtr::NULL_PTR) {
3259         assert(t->isa_oopptr(), "null klass?");
3260         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3261       } else if (t->isa_oopptr()) {
3262         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3263       } else if (t->isa_klassptr()) {
3264         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3265       }
3266     }
3267     if (in1->outcnt() == 0) {
3268       in1->disconnect_inputs(NULL, this);
3269     }
3270     break;
3271   }
3272 
3273   case Op_Proj: {
3274     if (OptimizeStringConcat) {
3275       ProjNode* p = n->as_Proj();
3276       if (p->_is_io_use) {
3277         // Separate projections were used for the exception path which
3278         // are normally removed by a late inline.  If it wasn't inlined
3279         // then they will hang around and should just be replaced with
3280         // the original one.
3281         Node* proj = NULL;
3282         // Replace with just one
3283         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3284           Node *use = i.get();
3285           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3286             proj = use;
3287             break;
3288           }
3289         }
3290         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3291         if (proj != NULL) {
3292           p->subsume_by(proj, this);
3293         }
3294       }
3295     }
3296     break;
3297   }
3298 
3299   case Op_Phi:
3300     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3301       // The EncodeP optimization may create Phi with the same edges
3302       // for all paths. It is not handled well by Register Allocator.
3303       Node* unique_in = n->in(1);
3304       assert(unique_in != NULL, "");
3305       uint cnt = n->req();
3306       for (uint i = 2; i < cnt; i++) {
3307         Node* m = n->in(i);
3308         assert(m != NULL, "");
3309         if (unique_in != m)
3310           unique_in = NULL;
3311       }
3312       if (unique_in != NULL) {
3313         n->subsume_by(unique_in, this);
3314       }
3315     }
3316     break;
3317 
3318 #endif
3319 
3320 #ifdef ASSERT
3321   case Op_CastII:
3322     // Verify that all range check dependent CastII nodes were removed.
3323     if (n->isa_CastII()->has_range_check()) {
3324       n->dump(3);
3325       assert(false, "Range check dependent CastII node was not removed");
3326     }
3327     break;
3328 #endif
3329 
3330   case Op_ModI:
3331     if (UseDivMod) {
3332       // Check if a%b and a/b both exist
3333       Node* d = n->find_similar(Op_DivI);
3334       if (d) {
3335         // Replace them with a fused divmod if supported
3336         if (Matcher::has_match_rule(Op_DivModI)) {
3337           DivModINode* divmod = DivModINode::make(n);
3338           d->subsume_by(divmod->div_proj(), this);
3339           n->subsume_by(divmod->mod_proj(), this);
3340         } else {
3341           // replace a%b with a-((a/b)*b)
3342           Node* mult = new MulINode(d, d->in(2));
3343           Node* sub  = new SubINode(d->in(1), mult);
3344           n->subsume_by(sub, this);
3345         }
3346       }
3347     }
3348     break;
3349 
3350   case Op_ModL:
3351     if (UseDivMod) {
3352       // Check if a%b and a/b both exist
3353       Node* d = n->find_similar(Op_DivL);
3354       if (d) {
3355         // Replace them with a fused divmod if supported
3356         if (Matcher::has_match_rule(Op_DivModL)) {
3357           DivModLNode* divmod = DivModLNode::make(n);
3358           d->subsume_by(divmod->div_proj(), this);
3359           n->subsume_by(divmod->mod_proj(), this);
3360         } else {
3361           // replace a%b with a-((a/b)*b)
3362           Node* mult = new MulLNode(d, d->in(2));
3363           Node* sub  = new SubLNode(d->in(1), mult);
3364           n->subsume_by(sub, this);
3365         }
3366       }
3367     }
3368     break;
3369 
3370   case Op_LoadVector:
3371   case Op_StoreVector:
3372     break;
3373 
3374   case Op_AddReductionVI:
3375   case Op_AddReductionVL:
3376   case Op_AddReductionVF:
3377   case Op_AddReductionVD:
3378   case Op_MulReductionVI:
3379   case Op_MulReductionVL:
3380   case Op_MulReductionVF:
3381   case Op_MulReductionVD:
3382   case Op_MinReductionV:
3383   case Op_MaxReductionV:
3384     break;
3385 
3386   case Op_PackB:
3387   case Op_PackS:
3388   case Op_PackI:
3389   case Op_PackF:
3390   case Op_PackL:
3391   case Op_PackD:
3392     if (n->req()-1 > 2) {
3393       // Replace many operand PackNodes with a binary tree for matching
3394       PackNode* p = (PackNode*) n;
3395       Node* btp = p->binary_tree_pack(1, n->req());
3396       n->subsume_by(btp, this);
3397     }
3398     break;
3399   case Op_Loop:
3400   case Op_CountedLoop:
3401   case Op_OuterStripMinedLoop:
3402     if (n->as_Loop()->is_inner_loop()) {
3403       frc.inc_inner_loop_count();
3404     }
3405     n->as_Loop()->verify_strip_mined(0);
3406     break;
3407   case Op_LShiftI:
3408   case Op_RShiftI:
3409   case Op_URShiftI:
3410   case Op_LShiftL:
3411   case Op_RShiftL:
3412   case Op_URShiftL:
3413     if (Matcher::need_masked_shift_count) {
3414       // The cpu's shift instructions don't restrict the count to the
3415       // lower 5/6 bits. We need to do the masking ourselves.
3416       Node* in2 = n->in(2);
3417       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3418       const TypeInt* t = in2->find_int_type();
3419       if (t != NULL && t->is_con()) {
3420         juint shift = t->get_con();
3421         if (shift > mask) { // Unsigned cmp
3422           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3423         }
3424       } else {
3425         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3426           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3427           n->set_req(2, shift);
3428         }
3429       }
3430       if (in2->outcnt() == 0) { // Remove dead node
3431         in2->disconnect_inputs(NULL, this);
3432       }
3433     }
3434     break;
3435   case Op_MemBarStoreStore:
3436   case Op_MemBarRelease:
3437     // Break the link with AllocateNode: it is no longer useful and
3438     // confuses register allocation.
3439     if (n->req() > MemBarNode::Precedent) {
3440       n->set_req(MemBarNode::Precedent, top());
3441     }
3442     break;
3443   case Op_MemBarAcquire: {
3444     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3445       // At parse time, the trailing MemBarAcquire for a volatile load
3446       // is created with an edge to the load. After optimizations,
3447       // that input may be a chain of Phis. If those phis have no
3448       // other use, then the MemBarAcquire keeps them alive and
3449       // register allocation can be confused.
3450       ResourceMark rm;
3451       Unique_Node_List wq;
3452       wq.push(n->in(MemBarNode::Precedent));
3453       n->set_req(MemBarNode::Precedent, top());
3454       while (wq.size() > 0) {
3455         Node* m = wq.pop();
3456         if (m->outcnt() == 0) {
3457           for (uint j = 0; j < m->req(); j++) {
3458             Node* in = m->in(j);
3459             if (in != NULL) {
3460               wq.push(in);
3461             }
3462           }
3463           m->disconnect_inputs(NULL, this);
3464         }
3465       }
3466     }
3467     break;
3468   }
3469 #if INCLUDE_SHENANDOAHGC
3470   case Op_ShenandoahCompareAndSwapP:
3471   case Op_ShenandoahCompareAndSwapN:
3472   case Op_ShenandoahWeakCompareAndSwapN:
3473   case Op_ShenandoahWeakCompareAndSwapP:
3474   case Op_ShenandoahCompareAndExchangeP:
3475   case Op_ShenandoahCompareAndExchangeN:
3476 #ifdef ASSERT
3477     if( VerifyOptoOopOffsets ) {
3478       MemNode* mem  = n->as_Mem();
3479       // Check to see if address types have grounded out somehow.
3480       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3481       ciInstanceKlass *k = tp->klass()->as_instance_klass();
3482       bool oop_offset_is_sane = k->contains_field_offset(tp->offset());
3483       assert( !tp || oop_offset_is_sane, "" );
3484     }
3485 #endif
3486      break;
3487   case Op_ShenandoahLoadReferenceBarrier:
3488     assert(false, "should have been expanded already");
3489     break;
3490 #endif
3491   case Op_RangeCheck: {
3492     RangeCheckNode* rc = n->as_RangeCheck();
3493     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3494     n->subsume_by(iff, this);
3495     frc._tests.push(iff);
3496     break;
3497   }
3498   case Op_ConvI2L: {
3499     if (!Matcher::convi2l_type_required) {
3500       // Code generation on some platforms doesn't need accurate
3501       // ConvI2L types. Widening the type can help remove redundant
3502       // address computations.
3503       n->as_Type()->set_type(TypeLong::INT);
3504       ResourceMark rm;
3505       Unique_Node_List wq;
3506       wq.push(n);
3507       for (uint next = 0; next < wq.size(); next++) {
3508         Node *m = wq.at(next);
3509 
3510         for(;;) {
3511           // Loop over all nodes with identical inputs edges as m
3512           Node* k = m->find_similar(m->Opcode());
3513           if (k == NULL) {
3514             break;
3515           }
3516           // Push their uses so we get a chance to remove node made
3517           // redundant
3518           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3519             Node* u = k->fast_out(i);
3520             if (u->Opcode() == Op_LShiftL ||
3521                 u->Opcode() == Op_AddL ||
3522                 u->Opcode() == Op_SubL ||
3523                 u->Opcode() == Op_AddP) {
3524               wq.push(u);
3525             }
3526           }
3527           // Replace all nodes with identical edges as m with m
3528           k->subsume_by(m, this);
3529         }
3530       }
3531     }
3532     break;
3533   }
3534   case Op_CmpUL: {
3535     if (!Matcher::has_match_rule(Op_CmpUL)) {
3536       // No support for unsigned long comparisons
3537       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3538       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3539       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3540       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3541       Node* andl = new AndLNode(orl, remove_sign_mask);
3542       Node* cmp = new CmpLNode(andl, n->in(2));
3543       n->subsume_by(cmp, this);
3544     }
3545     break;
3546   }
3547   default:
3548     assert( !n->is_Call(), "" );
3549     assert( !n->is_Mem(), "" );
3550     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3551     break;
3552   }
3553 
3554   // Collect CFG split points
3555   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3556     frc._tests.push(n);
3557   }
3558 }
3559 
3560 //------------------------------final_graph_reshaping_walk---------------------
3561 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3562 // requires that the walk visits a node's inputs before visiting the node.
3563 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3564   ResourceArea *area = Thread::current()->resource_area();
3565   Unique_Node_List sfpt(area);
3566 
3567   frc._visited.set(root->_idx); // first, mark node as visited
3568   uint cnt = root->req();
3569   Node *n = root;
3570   uint  i = 0;
3571   while (true) {
3572     if (i < cnt) {
3573       // Place all non-visited non-null inputs onto stack
3574       Node* m = n->in(i);
3575       ++i;
3576       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3577         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3578           // compute worst case interpreter size in case of a deoptimization
3579           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3580 
3581           sfpt.push(m);
3582         }
3583         cnt = m->req();
3584         nstack.push(n, i); // put on stack parent and next input's index
3585         n = m;
3586         i = 0;
3587       }
3588     } else {
3589       // Now do post-visit work
3590       final_graph_reshaping_impl( n, frc );
3591       if (nstack.is_empty())
3592         break;             // finished
3593       n = nstack.node();   // Get node from stack
3594       cnt = n->req();
3595       i = nstack.index();
3596       nstack.pop();        // Shift to the next node on stack
3597     }
3598   }
3599 
3600   // Skip next transformation if compressed oops are not used.
3601   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3602       (!UseCompressedOops && !UseCompressedClassPointers))
3603     return;
3604 
3605   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3606   // It could be done for an uncommon traps or any safepoints/calls
3607   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3608   while (sfpt.size() > 0) {
3609     n = sfpt.pop();
3610     JVMState *jvms = n->as_SafePoint()->jvms();
3611     assert(jvms != NULL, "sanity");
3612     int start = jvms->debug_start();
3613     int end   = n->req();
3614     bool is_uncommon = (n->is_CallStaticJava() &&
3615                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3616     for (int j = start; j < end; j++) {
3617       Node* in = n->in(j);
3618       if (in->is_DecodeNarrowPtr()) {
3619         bool safe_to_skip = true;
3620         if (!is_uncommon ) {
3621           // Is it safe to skip?
3622           for (uint i = 0; i < in->outcnt(); i++) {
3623             Node* u = in->raw_out(i);
3624             if (!u->is_SafePoint() ||
3625                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3626               safe_to_skip = false;
3627             }
3628           }
3629         }
3630         if (safe_to_skip) {
3631           n->set_req(j, in->in(1));
3632         }
3633         if (in->outcnt() == 0) {
3634           in->disconnect_inputs(NULL, this);
3635         }
3636       }
3637     }
3638   }
3639 }
3640 
3641 //------------------------------final_graph_reshaping--------------------------
3642 // Final Graph Reshaping.
3643 //
3644 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3645 //     and not commoned up and forced early.  Must come after regular
3646 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3647 //     inputs to Loop Phis; these will be split by the allocator anyways.
3648 //     Remove Opaque nodes.
3649 // (2) Move last-uses by commutative operations to the left input to encourage
3650 //     Intel update-in-place two-address operations and better register usage
3651 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3652 //     calls canonicalizing them back.
3653 // (3) Count the number of double-precision FP ops, single-precision FP ops
3654 //     and call sites.  On Intel, we can get correct rounding either by
3655 //     forcing singles to memory (requires extra stores and loads after each
3656 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3657 //     clearing the mode bit around call sites).  The mode bit is only used
3658 //     if the relative frequency of single FP ops to calls is low enough.
3659 //     This is a key transform for SPEC mpeg_audio.
3660 // (4) Detect infinite loops; blobs of code reachable from above but not
3661 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3662 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3663 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3664 //     Detection is by looking for IfNodes where only 1 projection is
3665 //     reachable from below or CatchNodes missing some targets.
3666 // (5) Assert for insane oop offsets in debug mode.
3667 
3668 bool Compile::final_graph_reshaping() {
3669   // an infinite loop may have been eliminated by the optimizer,
3670   // in which case the graph will be empty.
3671   if (root()->req() == 1) {
3672     record_method_not_compilable("trivial infinite loop");
3673     return true;
3674   }
3675 
3676   // Expensive nodes have their control input set to prevent the GVN
3677   // from freely commoning them. There's no GVN beyond this point so
3678   // no need to keep the control input. We want the expensive nodes to
3679   // be freely moved to the least frequent code path by gcm.
3680   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3681   for (int i = 0; i < expensive_count(); i++) {
3682     _expensive_nodes->at(i)->set_req(0, NULL);
3683   }
3684 
3685   Final_Reshape_Counts frc;
3686 
3687   // Visit everybody reachable!
3688   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3689   Node_Stack nstack(live_nodes() >> 1);
3690   final_graph_reshaping_walk(nstack, root(), frc);
3691 
3692   // Check for unreachable (from below) code (i.e., infinite loops).
3693   for( uint i = 0; i < frc._tests.size(); i++ ) {
3694     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3695     // Get number of CFG targets.
3696     // Note that PCTables include exception targets after calls.
3697     uint required_outcnt = n->required_outcnt();
3698     if (n->outcnt() != required_outcnt) {
3699       // Check for a few special cases.  Rethrow Nodes never take the
3700       // 'fall-thru' path, so expected kids is 1 less.
3701       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3702         if (n->in(0)->in(0)->is_Call()) {
3703           CallNode *call = n->in(0)->in(0)->as_Call();
3704           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3705             required_outcnt--;      // Rethrow always has 1 less kid
3706           } else if (call->req() > TypeFunc::Parms &&
3707                      call->is_CallDynamicJava()) {
3708             // Check for null receiver. In such case, the optimizer has
3709             // detected that the virtual call will always result in a null
3710             // pointer exception. The fall-through projection of this CatchNode
3711             // will not be populated.
3712             Node *arg0 = call->in(TypeFunc::Parms);
3713             if (arg0->is_Type() &&
3714                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3715               required_outcnt--;
3716             }
3717           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3718                      call->req() > TypeFunc::Parms+1 &&
3719                      call->is_CallStaticJava()) {
3720             // Check for negative array length. In such case, the optimizer has
3721             // detected that the allocation attempt will always result in an
3722             // exception. There is no fall-through projection of this CatchNode .
3723             Node *arg1 = call->in(TypeFunc::Parms+1);
3724             if (arg1->is_Type() &&
3725                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3726               required_outcnt--;
3727             }
3728           }
3729         }
3730       }
3731       // Recheck with a better notion of 'required_outcnt'
3732       if (n->outcnt() != required_outcnt) {
3733         record_method_not_compilable("malformed control flow");
3734         return true;            // Not all targets reachable!
3735       }
3736     }
3737     // Check that I actually visited all kids.  Unreached kids
3738     // must be infinite loops.
3739     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3740       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3741         record_method_not_compilable("infinite loop");
3742         return true;            // Found unvisited kid; must be unreach
3743       }
3744 
3745     // Here so verification code in final_graph_reshaping_walk()
3746     // always see an OuterStripMinedLoopEnd
3747     if (n->is_OuterStripMinedLoopEnd()) {
3748       IfNode* init_iff = n->as_If();
3749       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3750       n->subsume_by(iff, this);
3751     }
3752   }
3753 
3754   // If original bytecodes contained a mixture of floats and doubles
3755   // check if the optimizer has made it homogenous, item (3).
3756   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3757       frc.get_float_count() > 32 &&
3758       frc.get_double_count() == 0 &&
3759       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3760     set_24_bit_selection_and_mode( false,  true );
3761   }
3762 
3763   set_java_calls(frc.get_java_call_count());
3764   set_inner_loops(frc.get_inner_loop_count());
3765 
3766   // No infinite loops, no reason to bail out.
3767   return false;
3768 }
3769 
3770 //-----------------------------too_many_traps----------------------------------
3771 // Report if there are too many traps at the current method and bci.
3772 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3773 bool Compile::too_many_traps(ciMethod* method,
3774                              int bci,
3775                              Deoptimization::DeoptReason reason) {
3776   ciMethodData* md = method->method_data();
3777   if (md->is_empty()) {
3778     // Assume the trap has not occurred, or that it occurred only
3779     // because of a transient condition during start-up in the interpreter.
3780     return false;
3781   }
3782   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3783   if (md->has_trap_at(bci, m, reason) != 0) {
3784     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3785     // Also, if there are multiple reasons, or if there is no per-BCI record,
3786     // assume the worst.
3787     if (log())
3788       log()->elem("observe trap='%s' count='%d'",
3789                   Deoptimization::trap_reason_name(reason),
3790                   md->trap_count(reason));
3791     return true;
3792   } else {
3793     // Ignore method/bci and see if there have been too many globally.
3794     return too_many_traps(reason, md);
3795   }
3796 }
3797 
3798 // Less-accurate variant which does not require a method and bci.
3799 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3800                              ciMethodData* logmd) {
3801   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3802     // Too many traps globally.
3803     // Note that we use cumulative trap_count, not just md->trap_count.
3804     if (log()) {
3805       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3806       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3807                   Deoptimization::trap_reason_name(reason),
3808                   mcount, trap_count(reason));
3809     }
3810     return true;
3811   } else {
3812     // The coast is clear.
3813     return false;
3814   }
3815 }
3816 
3817 //--------------------------too_many_recompiles--------------------------------
3818 // Report if there are too many recompiles at the current method and bci.
3819 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3820 // Is not eager to return true, since this will cause the compiler to use
3821 // Action_none for a trap point, to avoid too many recompilations.
3822 bool Compile::too_many_recompiles(ciMethod* method,
3823                                   int bci,
3824                                   Deoptimization::DeoptReason reason) {
3825   ciMethodData* md = method->method_data();
3826   if (md->is_empty()) {
3827     // Assume the trap has not occurred, or that it occurred only
3828     // because of a transient condition during start-up in the interpreter.
3829     return false;
3830   }
3831   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3832   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3833   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3834   Deoptimization::DeoptReason per_bc_reason
3835     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3836   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3837   if ((per_bc_reason == Deoptimization::Reason_none
3838        || md->has_trap_at(bci, m, reason) != 0)
3839       // The trap frequency measure we care about is the recompile count:
3840       && md->trap_recompiled_at(bci, m)
3841       && md->overflow_recompile_count() >= bc_cutoff) {
3842     // Do not emit a trap here if it has already caused recompilations.
3843     // Also, if there are multiple reasons, or if there is no per-BCI record,
3844     // assume the worst.
3845     if (log())
3846       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3847                   Deoptimization::trap_reason_name(reason),
3848                   md->trap_count(reason),
3849                   md->overflow_recompile_count());
3850     return true;
3851   } else if (trap_count(reason) != 0
3852              && decompile_count() >= m_cutoff) {
3853     // Too many recompiles globally, and we have seen this sort of trap.
3854     // Use cumulative decompile_count, not just md->decompile_count.
3855     if (log())
3856       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3857                   Deoptimization::trap_reason_name(reason),
3858                   md->trap_count(reason), trap_count(reason),
3859                   md->decompile_count(), decompile_count());
3860     return true;
3861   } else {
3862     // The coast is clear.
3863     return false;
3864   }
3865 }
3866 
3867 // Compute when not to trap. Used by matching trap based nodes and
3868 // NullCheck optimization.
3869 void Compile::set_allowed_deopt_reasons() {
3870   _allowed_reasons = 0;
3871   if (is_method_compilation()) {
3872     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3873       assert(rs < BitsPerInt, "recode bit map");
3874       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3875         _allowed_reasons |= nth_bit(rs);
3876       }
3877     }
3878   }
3879 }
3880 
3881 bool Compile::is_compiling_clinit_for(ciKlass* k) {
3882   ciMethod* root = method(); // the root method of compilation
3883   return root->is_static_initializer() && root->holder() == k; // access in the context of clinit
3884 }
3885 
3886 #ifndef PRODUCT
3887 //------------------------------verify_graph_edges---------------------------
3888 // Walk the Graph and verify that there is a one-to-one correspondence
3889 // between Use-Def edges and Def-Use edges in the graph.
3890 void Compile::verify_graph_edges(bool no_dead_code) {
3891   if (VerifyGraphEdges) {
3892     ResourceArea *area = Thread::current()->resource_area();
3893     Unique_Node_List visited(area);
3894     // Call recursive graph walk to check edges
3895     _root->verify_edges(visited);
3896     if (no_dead_code) {
3897       // Now make sure that no visited node is used by an unvisited node.
3898       bool dead_nodes = false;
3899       Unique_Node_List checked(area);
3900       while (visited.size() > 0) {
3901         Node* n = visited.pop();
3902         checked.push(n);
3903         for (uint i = 0; i < n->outcnt(); i++) {
3904           Node* use = n->raw_out(i);
3905           if (checked.member(use))  continue;  // already checked
3906           if (visited.member(use))  continue;  // already in the graph
3907           if (use->is_Con())        continue;  // a dead ConNode is OK
3908           // At this point, we have found a dead node which is DU-reachable.
3909           if (!dead_nodes) {
3910             tty->print_cr("*** Dead nodes reachable via DU edges:");
3911             dead_nodes = true;
3912           }
3913           use->dump(2);
3914           tty->print_cr("---");
3915           checked.push(use);  // No repeats; pretend it is now checked.
3916         }
3917       }
3918       assert(!dead_nodes, "using nodes must be reachable from root");
3919     }
3920   }
3921 }
3922 
3923 // Verify GC barriers consistency
3924 // Currently supported:
3925 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3926 void Compile::verify_barriers() {
3927 #if INCLUDE_G1GC || INCLUDE_SHENANDOAHGC
3928   if (UseG1GC SHENANDOAHGC_ONLY(|| UseShenandoahGC)) {
3929     // Verify G1 pre-barriers
3930 
3931 #if INCLUDE_G1GC && INCLUDE_SHENANDOAHGC
3932     const int marking_offset = in_bytes(UseG1GC ? G1ThreadLocalData::satb_mark_queue_active_offset()
3933                                                 : ShenandoahThreadLocalData::satb_mark_queue_active_offset());
3934 #elif INCLUDE_G1GC
3935     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3936 #else
3937     const int marking_offset = in_bytes(ShenandoahThreadLocalData::satb_mark_queue_active_offset());
3938 #endif
3939 
3940     ResourceArea *area = Thread::current()->resource_area();
3941     Unique_Node_List visited(area);
3942     Node_List worklist(area);
3943     // We're going to walk control flow backwards starting from the Root
3944     worklist.push(_root);
3945     while (worklist.size() > 0) {
3946       Node* x = worklist.pop();
3947       if (x == NULL || x == top()) continue;
3948       if (visited.member(x)) {
3949         continue;
3950       } else {
3951         visited.push(x);
3952       }
3953 
3954       if (x->is_Region()) {
3955         for (uint i = 1; i < x->req(); i++) {
3956           worklist.push(x->in(i));
3957         }
3958       } else {
3959         worklist.push(x->in(0));
3960         // We are looking for the pattern:
3961         //                            /->ThreadLocal
3962         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3963         //              \->ConI(0)
3964         // We want to verify that the If and the LoadB have the same control
3965         // See GraphKit::g1_write_barrier_pre()
3966         if (x->is_If()) {
3967           IfNode *iff = x->as_If();
3968           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3969             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3970             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3971                 && cmp->in(1)->is_Load()) {
3972               LoadNode* load = cmp->in(1)->as_Load();
3973               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3974                   && load->in(2)->in(3)->is_Con()
3975                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3976 
3977                 Node* if_ctrl = iff->in(0);
3978                 Node* load_ctrl = load->in(0);
3979 
3980                 if (if_ctrl != load_ctrl) {
3981                   // Skip possible CProj->NeverBranch in infinite loops
3982                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3983                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3984                     if_ctrl = if_ctrl->in(0)->in(0);
3985                   }
3986                 }
3987                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3988               }
3989             }
3990           }
3991         }
3992       }
3993     }
3994   }
3995 #endif
3996 }
3997 
3998 #endif
3999 
4000 // The Compile object keeps track of failure reasons separately from the ciEnv.
4001 // This is required because there is not quite a 1-1 relation between the
4002 // ciEnv and its compilation task and the Compile object.  Note that one
4003 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
4004 // to backtrack and retry without subsuming loads.  Other than this backtracking
4005 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
4006 // by the logic in C2Compiler.
4007 void Compile::record_failure(const char* reason) {
4008   if (log() != NULL) {
4009     log()->elem("failure reason='%s' phase='compile'", reason);
4010   }
4011   if (_failure_reason == NULL) {
4012     // Record the first failure reason.
4013     _failure_reason = reason;
4014   }
4015 
4016   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
4017     C->print_method(PHASE_FAILURE);
4018   }
4019   _root = NULL;  // flush the graph, too
4020 }
4021 
4022 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
4023   : TraceTime(name, accumulator, CITime, CITimeVerbose),
4024     _phase_name(name), _dolog(CITimeVerbose)
4025 {
4026   if (_dolog) {
4027     C = Compile::current();
4028     _log = C->log();
4029   } else {
4030     C = NULL;
4031     _log = NULL;
4032   }
4033   if (_log != NULL) {
4034     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4035     _log->stamp();
4036     _log->end_head();
4037   }
4038 }
4039 
4040 Compile::TracePhase::~TracePhase() {
4041 
4042   C = Compile::current();
4043   if (_dolog) {
4044     _log = C->log();
4045   } else {
4046     _log = NULL;
4047   }
4048 
4049 #ifdef ASSERT
4050   if (PrintIdealNodeCount) {
4051     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4052                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4053   }
4054 
4055   if (VerifyIdealNodeCount) {
4056     Compile::current()->print_missing_nodes();
4057   }
4058 #endif
4059 
4060   if (_log != NULL) {
4061     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4062   }
4063 }
4064 
4065 //=============================================================================
4066 // Two Constant's are equal when the type and the value are equal.
4067 bool Compile::Constant::operator==(const Constant& other) {
4068   if (type()          != other.type()         )  return false;
4069   if (can_be_reused() != other.can_be_reused())  return false;
4070   // For floating point values we compare the bit pattern.
4071   switch (type()) {
4072   case T_INT:
4073   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4074   case T_LONG:
4075   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4076   case T_OBJECT:
4077   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4078   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4079   case T_METADATA: return (_v._metadata == other._v._metadata);
4080   default: ShouldNotReachHere(); return false;
4081   }
4082 }
4083 
4084 static int type_to_size_in_bytes(BasicType t) {
4085   switch (t) {
4086   case T_INT:     return sizeof(jint   );
4087   case T_LONG:    return sizeof(jlong  );
4088   case T_FLOAT:   return sizeof(jfloat );
4089   case T_DOUBLE:  return sizeof(jdouble);
4090   case T_METADATA: return sizeof(Metadata*);
4091     // We use T_VOID as marker for jump-table entries (labels) which
4092     // need an internal word relocation.
4093   case T_VOID:
4094   case T_ADDRESS:
4095   case T_OBJECT:  return sizeof(jobject);
4096   default:
4097     ShouldNotReachHere();
4098     return -1;
4099   }
4100 }
4101 
4102 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4103   // sort descending
4104   if (a->freq() > b->freq())  return -1;
4105   if (a->freq() < b->freq())  return  1;
4106   return 0;
4107 }
4108 
4109 void Compile::ConstantTable::calculate_offsets_and_size() {
4110   // First, sort the array by frequencies.
4111   _constants.sort(qsort_comparator);
4112 
4113 #ifdef ASSERT
4114   // Make sure all jump-table entries were sorted to the end of the
4115   // array (they have a negative frequency).
4116   bool found_void = false;
4117   for (int i = 0; i < _constants.length(); i++) {
4118     Constant con = _constants.at(i);
4119     if (con.type() == T_VOID)
4120       found_void = true;  // jump-tables
4121     else
4122       assert(!found_void, "wrong sorting");
4123   }
4124 #endif
4125 
4126   int offset = 0;
4127   for (int i = 0; i < _constants.length(); i++) {
4128     Constant* con = _constants.adr_at(i);
4129 
4130     // Align offset for type.
4131     int typesize = type_to_size_in_bytes(con->type());
4132     offset = align_up(offset, typesize);
4133     con->set_offset(offset);   // set constant's offset
4134 
4135     if (con->type() == T_VOID) {
4136       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4137       offset = offset + typesize * n->outcnt();  // expand jump-table
4138     } else {
4139       offset = offset + typesize;
4140     }
4141   }
4142 
4143   // Align size up to the next section start (which is insts; see
4144   // CodeBuffer::align_at_start).
4145   assert(_size == -1, "already set?");
4146   _size = align_up(offset, (int)CodeEntryAlignment);
4147 }
4148 
4149 bool Compile::ConstantTable::emit(CodeBuffer& cb) const {
4150   MacroAssembler _masm(&cb);
4151   for (int i = 0; i < _constants.length(); i++) {
4152     Constant con = _constants.at(i);
4153     address constant_addr = NULL;
4154     switch (con.type()) {
4155     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4156     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4157     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4158     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4159     case T_OBJECT: {
4160       jobject obj = con.get_jobject();
4161       int oop_index = _masm.oop_recorder()->find_index(obj);
4162       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4163       break;
4164     }
4165     case T_ADDRESS: {
4166       address addr = (address) con.get_jobject();
4167       constant_addr = _masm.address_constant(addr);
4168       break;
4169     }
4170     // We use T_VOID as marker for jump-table entries (labels) which
4171     // need an internal word relocation.
4172     case T_VOID: {
4173       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4174       // Fill the jump-table with a dummy word.  The real value is
4175       // filled in later in fill_jump_table.
4176       address dummy = (address) n;
4177       constant_addr = _masm.address_constant(dummy);
4178       if (constant_addr == NULL) {
4179         return false;
4180       }
4181       assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4182              "must be: %d == %d", (int)(constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4183 
4184       // Expand jump-table
4185       address last_addr = NULL;
4186       for (uint j = 1; j < n->outcnt(); j++) {
4187         last_addr = _masm.address_constant(dummy + j);
4188         if (last_addr == NULL) {
4189           return false;
4190         }
4191       }
4192 #ifdef ASSERT
4193       address start = _masm.code()->consts()->start();
4194       address new_constant_addr = last_addr - ((n->outcnt() - 1) * sizeof(address));
4195       // Expanding the jump-table could result in an expansion of the const code section.
4196       // In that case, we need to check if the new constant address matches the offset.
4197       assert((constant_addr - start == con.offset()) || (new_constant_addr - start == con.offset()),
4198              "must be: %d == %d or %d == %d (after an expansion)", (int)(constant_addr - start), (int)(con.offset()),
4199              (int)(new_constant_addr - start), (int)(con.offset()));
4200 #endif
4201       continue; // Loop
4202     }
4203     case T_METADATA: {
4204       Metadata* obj = con.get_metadata();
4205       int metadata_index = _masm.oop_recorder()->find_index(obj);
4206       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4207       break;
4208     }
4209     default: ShouldNotReachHere();
4210     }
4211 
4212     if (constant_addr == NULL) {
4213       return false;
4214     }
4215     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4216             "must be: %d == %d", (int)(constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4217   }
4218   return true;
4219 }
4220 
4221 int Compile::ConstantTable::find_offset(Constant& con) const {
4222   int idx = _constants.find(con);
4223   guarantee(idx != -1, "constant must be in constant table");
4224   int offset = _constants.at(idx).offset();
4225   guarantee(offset != -1, "constant table not emitted yet?");
4226   return offset;
4227 }
4228 
4229 void Compile::ConstantTable::add(Constant& con) {
4230   if (con.can_be_reused()) {
4231     int idx = _constants.find(con);
4232     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4233       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4234       return;
4235     }
4236   }
4237   (void) _constants.append(con);
4238 }
4239 
4240 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4241   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4242   Constant con(type, value, b->_freq);
4243   add(con);
4244   return con;
4245 }
4246 
4247 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4248   Constant con(metadata);
4249   add(con);
4250   return con;
4251 }
4252 
4253 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4254   jvalue value;
4255   BasicType type = oper->type()->basic_type();
4256   switch (type) {
4257   case T_LONG:    value.j = oper->constantL(); break;
4258   case T_FLOAT:   value.f = oper->constantF(); break;
4259   case T_DOUBLE:  value.d = oper->constantD(); break;
4260   case T_OBJECT:
4261   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4262   case T_METADATA: return add((Metadata*)oper->constant()); break;
4263   default: guarantee(false, "unhandled type: %s", type2name(type));
4264   }
4265   return add(n, type, value);
4266 }
4267 
4268 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4269   jvalue value;
4270   // We can use the node pointer here to identify the right jump-table
4271   // as this method is called from Compile::Fill_buffer right before
4272   // the MachNodes are emitted and the jump-table is filled (means the
4273   // MachNode pointers do not change anymore).
4274   value.l = (jobject) n;
4275   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4276   add(con);
4277   return con;
4278 }
4279 
4280 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4281   // If called from Compile::scratch_emit_size do nothing.
4282   if (Compile::current()->in_scratch_emit_size())  return;
4283 
4284   assert(labels.is_nonempty(), "must be");
4285   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4286 
4287   // Since MachConstantNode::constant_offset() also contains
4288   // table_base_offset() we need to subtract the table_base_offset()
4289   // to get the plain offset into the constant table.
4290   int offset = n->constant_offset() - table_base_offset();
4291 
4292   MacroAssembler _masm(&cb);
4293   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4294 
4295   for (uint i = 0; i < n->outcnt(); i++) {
4296     address* constant_addr = &jump_table_base[i];
4297     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4298     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4299     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4300   }
4301 }
4302 
4303 //----------------------------static_subtype_check-----------------------------
4304 // Shortcut important common cases when superklass is exact:
4305 // (0) superklass is java.lang.Object (can occur in reflective code)
4306 // (1) subklass is already limited to a subtype of superklass => always ok
4307 // (2) subklass does not overlap with superklass => always fail
4308 // (3) superklass has NO subtypes and we can check with a simple compare.
4309 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4310   if (StressReflectiveCode) {
4311     return SSC_full_test;       // Let caller generate the general case.
4312   }
4313 
4314   if (superk == env()->Object_klass()) {
4315     return SSC_always_true;     // (0) this test cannot fail
4316   }
4317 
4318   ciType* superelem = superk;
4319   if (superelem->is_array_klass())
4320     superelem = superelem->as_array_klass()->base_element_type();
4321 
4322   if (!subk->is_interface()) {  // cannot trust static interface types yet
4323     if (subk->is_subtype_of(superk)) {
4324       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4325     }
4326     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4327         !superk->is_subtype_of(subk)) {
4328       return SSC_always_false;
4329     }
4330   }
4331 
4332   // If casting to an instance klass, it must have no subtypes
4333   if (superk->is_interface()) {
4334     // Cannot trust interfaces yet.
4335     // %%% S.B. superk->nof_implementors() == 1
4336   } else if (superelem->is_instance_klass()) {
4337     ciInstanceKlass* ik = superelem->as_instance_klass();
4338     if (!ik->has_subklass() && !ik->is_interface()) {
4339       if (!ik->is_final()) {
4340         // Add a dependency if there is a chance of a later subclass.
4341         dependencies()->assert_leaf_type(ik);
4342       }
4343       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4344     }
4345   } else {
4346     // A primitive array type has no subtypes.
4347     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4348   }
4349 
4350   return SSC_full_test;
4351 }
4352 
4353 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4354 #ifdef _LP64
4355   // The scaled index operand to AddP must be a clean 64-bit value.
4356   // Java allows a 32-bit int to be incremented to a negative
4357   // value, which appears in a 64-bit register as a large
4358   // positive number.  Using that large positive number as an
4359   // operand in pointer arithmetic has bad consequences.
4360   // On the other hand, 32-bit overflow is rare, and the possibility
4361   // can often be excluded, if we annotate the ConvI2L node with
4362   // a type assertion that its value is known to be a small positive
4363   // number.  (The prior range check has ensured this.)
4364   // This assertion is used by ConvI2LNode::Ideal.
4365   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4366   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4367   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4368   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4369 #endif
4370   return idx;
4371 }
4372 
4373 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4374 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl, bool carry_dependency) {
4375   if (ctrl != NULL) {
4376     // Express control dependency by a CastII node with a narrow type.
4377     value = new CastIINode(value, itype, carry_dependency, true /* range check dependency */);
4378     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4379     // node from floating above the range check during loop optimizations. Otherwise, the
4380     // ConvI2L node may be eliminated independently of the range check, causing the data path
4381     // to become TOP while the control path is still there (although it's unreachable).
4382     value->set_req(0, ctrl);
4383     // Save CastII node to remove it after loop optimizations.
4384     phase->C->add_range_check_cast(value);
4385     value = phase->transform(value);
4386   }
4387   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4388   return phase->transform(new ConvI2LNode(value, ltype));
4389 }
4390 
4391 void Compile::print_inlining_stream_free() {
4392   if (_print_inlining_stream != NULL) {
4393     _print_inlining_stream->~stringStream();
4394     _print_inlining_stream = NULL;
4395   }
4396 }
4397 
4398 // The message about the current inlining is accumulated in
4399 // _print_inlining_stream and transfered into the _print_inlining_list
4400 // once we know whether inlining succeeds or not. For regular
4401 // inlining, messages are appended to the buffer pointed by
4402 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4403 // a new buffer is added after _print_inlining_idx in the list. This
4404 // way we can update the inlining message for late inlining call site
4405 // when the inlining is attempted again.
4406 void Compile::print_inlining_init() {
4407   if (print_inlining() || print_intrinsics()) {
4408     // print_inlining_init is actually called several times.
4409     print_inlining_stream_free();
4410     _print_inlining_stream = new stringStream();
4411     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer*>(comp_arena(), 1, 1, new PrintInliningBuffer());
4412   }
4413 }
4414 
4415 void Compile::print_inlining_reinit() {
4416   if (print_inlining() || print_intrinsics()) {
4417     print_inlining_stream_free();
4418     // Re allocate buffer when we change ResourceMark
4419     _print_inlining_stream = new stringStream();
4420   }
4421 }
4422 
4423 void Compile::print_inlining_reset() {
4424   _print_inlining_stream->reset();
4425 }
4426 
4427 void Compile::print_inlining_commit() {
4428   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4429   // Transfer the message from _print_inlining_stream to the current
4430   // _print_inlining_list buffer and clear _print_inlining_stream.
4431   _print_inlining_list->at(_print_inlining_idx)->ss()->write(_print_inlining_stream->base(), _print_inlining_stream->size());
4432   print_inlining_reset();
4433 }
4434 
4435 void Compile::print_inlining_push() {
4436   // Add new buffer to the _print_inlining_list at current position
4437   _print_inlining_idx++;
4438   _print_inlining_list->insert_before(_print_inlining_idx, new PrintInliningBuffer());
4439 }
4440 
4441 Compile::PrintInliningBuffer* Compile::print_inlining_current() {
4442   return _print_inlining_list->at(_print_inlining_idx);
4443 }
4444 
4445 void Compile::print_inlining_update(CallGenerator* cg) {
4446   if (print_inlining() || print_intrinsics()) {
4447     if (!cg->is_late_inline()) {
4448       if (print_inlining_current()->cg() != NULL) {
4449         print_inlining_push();
4450       }
4451       print_inlining_commit();
4452     } else {
4453       if (print_inlining_current()->cg() != cg &&
4454           (print_inlining_current()->cg() != NULL ||
4455            print_inlining_current()->ss()->size() != 0)) {
4456         print_inlining_push();
4457       }
4458       print_inlining_commit();
4459       print_inlining_current()->set_cg(cg);
4460     }
4461   }
4462 }
4463 
4464 void Compile::print_inlining_move_to(CallGenerator* cg) {
4465   // We resume inlining at a late inlining call site. Locate the
4466   // corresponding inlining buffer so that we can update it.
4467   if (print_inlining()) {
4468     for (int i = 0; i < _print_inlining_list->length(); i++) {
4469       if (_print_inlining_list->at(i)->cg() == cg) {
4470         _print_inlining_idx = i;
4471         return;
4472       }
4473     }
4474     ShouldNotReachHere();
4475   }
4476 }
4477 
4478 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4479   if (print_inlining()) {
4480     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4481     assert(print_inlining_current()->cg() == cg, "wrong entry");
4482     // replace message with new message
4483     _print_inlining_list->at_put(_print_inlining_idx, new PrintInliningBuffer());
4484     print_inlining_commit();
4485     print_inlining_current()->set_cg(cg);
4486   }
4487 }
4488 
4489 void Compile::print_inlining_assert_ready() {
4490   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4491 }
4492 
4493 void Compile::process_print_inlining() {
4494   bool do_print_inlining = print_inlining() || print_intrinsics();
4495   if (do_print_inlining || log() != NULL) {
4496     // Print inlining message for candidates that we couldn't inline
4497     // for lack of space
4498     for (int i = 0; i < _late_inlines.length(); i++) {
4499       CallGenerator* cg = _late_inlines.at(i);
4500       if (!cg->is_mh_late_inline()) {
4501         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4502         if (do_print_inlining) {
4503           cg->print_inlining_late(msg);
4504         }
4505         log_late_inline_failure(cg, msg);
4506       }
4507     }
4508   }
4509   if (do_print_inlining) {
4510     ResourceMark rm;
4511     stringStream ss;
4512     assert(_print_inlining_list != NULL, "process_print_inlining should be called only once.");
4513     for (int i = 0; i < _print_inlining_list->length(); i++) {
4514       PrintInliningBuffer* pib = _print_inlining_list->at(i);
4515       ss.print("%s", pib->ss()->as_string());
4516       delete pib;
4517       DEBUG_ONLY(_print_inlining_list->at_put(i, NULL));
4518     }
4519     // Reset _print_inlining_list, it only contains destructed objects.
4520     // It is on the arena, so it will be freed when the arena is reset.
4521     _print_inlining_list = NULL;
4522     // _print_inlining_stream won't be used anymore, either.
4523     print_inlining_stream_free();
4524     size_t end = ss.size();
4525     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4526     strncpy(_print_inlining_output, ss.base(), end+1);
4527     _print_inlining_output[end] = 0;
4528   }
4529 }
4530 
4531 void Compile::dump_print_inlining() {
4532   if (_print_inlining_output != NULL) {
4533     tty->print_raw(_print_inlining_output);
4534   }
4535 }
4536 
4537 void Compile::log_late_inline(CallGenerator* cg) {
4538   if (log() != NULL) {
4539     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4540                 cg->unique_id());
4541     JVMState* p = cg->call_node()->jvms();
4542     while (p != NULL) {
4543       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4544       p = p->caller();
4545     }
4546     log()->tail("late_inline");
4547   }
4548 }
4549 
4550 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4551   log_late_inline(cg);
4552   if (log() != NULL) {
4553     log()->inline_fail(msg);
4554   }
4555 }
4556 
4557 void Compile::log_inline_id(CallGenerator* cg) {
4558   if (log() != NULL) {
4559     // The LogCompilation tool needs a unique way to identify late
4560     // inline call sites. This id must be unique for this call site in
4561     // this compilation. Try to have it unique across compilations as
4562     // well because it can be convenient when grepping through the log
4563     // file.
4564     // Distinguish OSR compilations from others in case CICountOSR is
4565     // on.
4566     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4567     cg->set_unique_id(id);
4568     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4569   }
4570 }
4571 
4572 void Compile::log_inline_failure(const char* msg) {
4573   if (C->log() != NULL) {
4574     C->log()->inline_fail(msg);
4575   }
4576 }
4577 
4578 
4579 // Dump inlining replay data to the stream.
4580 // Don't change thread state and acquire any locks.
4581 void Compile::dump_inline_data(outputStream* out) {
4582   InlineTree* inl_tree = ilt();
4583   if (inl_tree != NULL) {
4584     out->print(" inline %d", inl_tree->count());
4585     inl_tree->dump_replay_data(out);
4586   }
4587 }
4588 
4589 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4590   if (n1->Opcode() < n2->Opcode())      return -1;
4591   else if (n1->Opcode() > n2->Opcode()) return 1;
4592 
4593   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4594   for (uint i = 1; i < n1->req(); i++) {
4595     if (n1->in(i) < n2->in(i))      return -1;
4596     else if (n1->in(i) > n2->in(i)) return 1;
4597   }
4598 
4599   return 0;
4600 }
4601 
4602 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4603   Node* n1 = *n1p;
4604   Node* n2 = *n2p;
4605 
4606   return cmp_expensive_nodes(n1, n2);
4607 }
4608 
4609 void Compile::sort_expensive_nodes() {
4610   if (!expensive_nodes_sorted()) {
4611     _expensive_nodes->sort(cmp_expensive_nodes);
4612   }
4613 }
4614 
4615 bool Compile::expensive_nodes_sorted() const {
4616   for (int i = 1; i < _expensive_nodes->length(); i++) {
4617     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4618       return false;
4619     }
4620   }
4621   return true;
4622 }
4623 
4624 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4625   if (_expensive_nodes->length() == 0) {
4626     return false;
4627   }
4628 
4629   assert(OptimizeExpensiveOps, "optimization off?");
4630 
4631   // Take this opportunity to remove dead nodes from the list
4632   int j = 0;
4633   for (int i = 0; i < _expensive_nodes->length(); i++) {
4634     Node* n = _expensive_nodes->at(i);
4635     if (!n->is_unreachable(igvn)) {
4636       assert(n->is_expensive(), "should be expensive");
4637       _expensive_nodes->at_put(j, n);
4638       j++;
4639     }
4640   }
4641   _expensive_nodes->trunc_to(j);
4642 
4643   // Then sort the list so that similar nodes are next to each other
4644   // and check for at least two nodes of identical kind with same data
4645   // inputs.
4646   sort_expensive_nodes();
4647 
4648   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4649     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4650       return true;
4651     }
4652   }
4653 
4654   return false;
4655 }
4656 
4657 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4658   if (_expensive_nodes->length() == 0) {
4659     return;
4660   }
4661 
4662   assert(OptimizeExpensiveOps, "optimization off?");
4663 
4664   // Sort to bring similar nodes next to each other and clear the
4665   // control input of nodes for which there's only a single copy.
4666   sort_expensive_nodes();
4667 
4668   int j = 0;
4669   int identical = 0;
4670   int i = 0;
4671   bool modified = false;
4672   for (; i < _expensive_nodes->length()-1; i++) {
4673     assert(j <= i, "can't write beyond current index");
4674     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4675       identical++;
4676       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4677       continue;
4678     }
4679     if (identical > 0) {
4680       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4681       identical = 0;
4682     } else {
4683       Node* n = _expensive_nodes->at(i);
4684       igvn.replace_input_of(n, 0, NULL);
4685       igvn.hash_insert(n);
4686       modified = true;
4687     }
4688   }
4689   if (identical > 0) {
4690     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4691   } else if (_expensive_nodes->length() >= 1) {
4692     Node* n = _expensive_nodes->at(i);
4693     igvn.replace_input_of(n, 0, NULL);
4694     igvn.hash_insert(n);
4695     modified = true;
4696   }
4697   _expensive_nodes->trunc_to(j);
4698   if (modified) {
4699     igvn.optimize();
4700   }
4701 }
4702 
4703 void Compile::add_expensive_node(Node * n) {
4704   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4705   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4706   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4707   if (OptimizeExpensiveOps) {
4708     _expensive_nodes->append(n);
4709   } else {
4710     // Clear control input and let IGVN optimize expensive nodes if
4711     // OptimizeExpensiveOps is off.
4712     n->set_req(0, NULL);
4713   }
4714 }
4715 
4716 /**
4717  * Remove the speculative part of types and clean up the graph
4718  */
4719 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4720   if (UseTypeSpeculation) {
4721     Unique_Node_List worklist;
4722     worklist.push(root());
4723     int modified = 0;
4724     // Go over all type nodes that carry a speculative type, drop the
4725     // speculative part of the type and enqueue the node for an igvn
4726     // which may optimize it out.
4727     for (uint next = 0; next < worklist.size(); ++next) {
4728       Node *n  = worklist.at(next);
4729       if (n->is_Type()) {
4730         TypeNode* tn = n->as_Type();
4731         const Type* t = tn->type();
4732         const Type* t_no_spec = t->remove_speculative();
4733         if (t_no_spec != t) {
4734           bool in_hash = igvn.hash_delete(n);
4735           assert(in_hash, "node should be in igvn hash table");
4736           tn->set_type(t_no_spec);
4737           igvn.hash_insert(n);
4738           igvn._worklist.push(n); // give it a chance to go away
4739           modified++;
4740         }
4741       }
4742       uint max = n->len();
4743       for( uint i = 0; i < max; ++i ) {
4744         Node *m = n->in(i);
4745         if (not_a_node(m))  continue;
4746         worklist.push(m);
4747       }
4748     }
4749     // Drop the speculative part of all types in the igvn's type table
4750     igvn.remove_speculative_types();
4751     if (modified > 0) {
4752       igvn.optimize();
4753     }
4754 #ifdef ASSERT
4755     // Verify that after the IGVN is over no speculative type has resurfaced
4756     worklist.clear();
4757     worklist.push(root());
4758     for (uint next = 0; next < worklist.size(); ++next) {
4759       Node *n  = worklist.at(next);
4760       const Type* t = igvn.type_or_null(n);
4761       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4762       if (n->is_Type()) {
4763         t = n->as_Type()->type();
4764         assert(t == t->remove_speculative(), "no more speculative types");
4765       }
4766       uint max = n->len();
4767       for( uint i = 0; i < max; ++i ) {
4768         Node *m = n->in(i);
4769         if (not_a_node(m))  continue;
4770         worklist.push(m);
4771       }
4772     }
4773     igvn.check_no_speculative_types();
4774 #endif
4775   }
4776 }
4777 
4778 // Auxiliary method to support randomized stressing/fuzzing.
4779 //
4780 // This method can be called the arbitrary number of times, with current count
4781 // as the argument. The logic allows selecting a single candidate from the
4782 // running list of candidates as follows:
4783 //    int count = 0;
4784 //    Cand* selected = null;
4785 //    while(cand = cand->next()) {
4786 //      if (randomized_select(++count)) {
4787 //        selected = cand;
4788 //      }
4789 //    }
4790 //
4791 // Including count equalizes the chances any candidate is "selected".
4792 // This is useful when we don't have the complete list of candidates to choose
4793 // from uniformly. In this case, we need to adjust the randomicity of the
4794 // selection, or else we will end up biasing the selection towards the latter
4795 // candidates.
4796 //
4797 // Quick back-envelope calculation shows that for the list of n candidates
4798 // the equal probability for the candidate to persist as "best" can be
4799 // achieved by replacing it with "next" k-th candidate with the probability
4800 // of 1/k. It can be easily shown that by the end of the run, the
4801 // probability for any candidate is converged to 1/n, thus giving the
4802 // uniform distribution among all the candidates.
4803 //
4804 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4805 #define RANDOMIZED_DOMAIN_POW 29
4806 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4807 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4808 bool Compile::randomized_select(int count) {
4809   assert(count > 0, "only positive");
4810   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4811 }
4812 
4813 Node* Compile::narrow_value(BasicType bt, Node* value, const Type* type, PhaseGVN* phase, bool transform_res) {
4814   if (type != NULL && phase->type(value)->higher_equal(type)) {
4815     return value;
4816   }
4817   Node* result = NULL;
4818   if (bt == T_BYTE) {
4819     result = phase->transform(new LShiftINode(value, phase->intcon(24)));
4820     result = new RShiftINode(result, phase->intcon(24));
4821   } else if (bt == T_BOOLEAN) {
4822     result = new AndINode(value, phase->intcon(0xFF));
4823   } else if (bt == T_CHAR) {
4824     result = new AndINode(value,phase->intcon(0xFFFF));
4825   } else {
4826     assert(bt == T_SHORT, "unexpected narrow type");
4827     result = phase->transform(new LShiftINode(value, phase->intcon(16)));
4828     result = new RShiftINode(result, phase->intcon(16));
4829   }
4830   if (transform_res) {
4831     result = phase->transform(result);
4832   }
4833   return result;
4834 }
4835 
4836 
4837 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4838 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4839 
4840 void NodeCloneInfo::dump() const {
4841   tty->print(" {%d:%d} ", idx(), gen());
4842 }
4843 
4844 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4845   uint64_t val = value(old->_idx);
4846   NodeCloneInfo cio(val);
4847   assert(val != 0, "old node should be in the map");
4848   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4849   insert(nnn->_idx, cin.get());
4850 #ifndef PRODUCT
4851   if (is_debug()) {
4852     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4853   }
4854 #endif
4855 }
4856 
4857 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4858   NodeCloneInfo cio(value(old->_idx));
4859   if (cio.get() == 0) {
4860     cio.set(old->_idx, 0);
4861     insert(old->_idx, cio.get());
4862 #ifndef PRODUCT
4863     if (is_debug()) {
4864       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4865     }
4866 #endif
4867   }
4868   clone(old, nnn, gen);
4869 }
4870 
4871 int CloneMap::max_gen() const {
4872   int g = 0;
4873   DictI di(_dict);
4874   for(; di.test(); ++di) {
4875     int t = gen(di._key);
4876     if (g < t) {
4877       g = t;
4878 #ifndef PRODUCT
4879       if (is_debug()) {
4880         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4881       }
4882 #endif
4883     }
4884   }
4885   return g;
4886 }
4887 
4888 void CloneMap::dump(node_idx_t key) const {
4889   uint64_t val = value(key);
4890   if (val != 0) {
4891     NodeCloneInfo ni(val);
4892     ni.dump();
4893   }
4894 }