1 /*
   2  * Copyright (c) 1997, 2007, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.Serializable;
  28 import java.io.ObjectOutputStream;
  29 import java.io.IOException;
  30 import java.lang.reflect.Array;
  31 
  32 /**
  33  * This class consists exclusively of static methods that operate on or return
  34  * collections.  It contains polymorphic algorithms that operate on
  35  * collections, "wrappers", which return a new collection backed by a
  36  * specified collection, and a few other odds and ends.
  37  *
  38  * <p>The methods of this class all throw a <tt>NullPointerException</tt>
  39  * if the collections or class objects provided to them are null.
  40  *
  41  * <p>The documentation for the polymorphic algorithms contained in this class
  42  * generally includes a brief description of the <i>implementation</i>.  Such
  43  * descriptions should be regarded as <i>implementation notes</i>, rather than
  44  * parts of the <i>specification</i>.  Implementors should feel free to
  45  * substitute other algorithms, so long as the specification itself is adhered
  46  * to.  (For example, the algorithm used by <tt>sort</tt> does not have to be
  47  * a mergesort, but it does have to be <i>stable</i>.)
  48  *
  49  * <p>The "destructive" algorithms contained in this class, that is, the
  50  * algorithms that modify the collection on which they operate, are specified
  51  * to throw <tt>UnsupportedOperationException</tt> if the collection does not
  52  * support the appropriate mutation primitive(s), such as the <tt>set</tt>
  53  * method.  These algorithms may, but are not required to, throw this
  54  * exception if an invocation would have no effect on the collection.  For
  55  * example, invoking the <tt>sort</tt> method on an unmodifiable list that is
  56  * already sorted may or may not throw <tt>UnsupportedOperationException</tt>.
  57  *
  58  * <p>This class is a member of the
  59  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  60  * Java Collections Framework</a>.
  61  *
  62  * @author  Josh Bloch
  63  * @author  Neal Gafter
  64  * @see     Collection
  65  * @see     Set
  66  * @see     List
  67  * @see     Map
  68  * @since   1.2
  69  */
  70 
  71 public class Collections {
  72     // Suppresses default constructor, ensuring non-instantiability.
  73     private Collections() {
  74     }
  75 
  76     // Algorithms
  77 
  78     /*
  79      * Tuning parameters for algorithms - Many of the List algorithms have
  80      * two implementations, one of which is appropriate for RandomAccess
  81      * lists, the other for "sequential."  Often, the random access variant
  82      * yields better performance on small sequential access lists.  The
  83      * tuning parameters below determine the cutoff point for what constitutes
  84      * a "small" sequential access list for each algorithm.  The values below
  85      * were empirically determined to work well for LinkedList. Hopefully
  86      * they should be reasonable for other sequential access List
  87      * implementations.  Those doing performance work on this code would
  88      * do well to validate the values of these parameters from time to time.
  89      * (The first word of each tuning parameter name is the algorithm to which
  90      * it applies.)
  91      */
  92     private static final int BINARYSEARCH_THRESHOLD   = 5000;
  93     private static final int REVERSE_THRESHOLD        =   18;
  94     private static final int SHUFFLE_THRESHOLD        =    5;
  95     private static final int FILL_THRESHOLD           =   25;
  96     private static final int ROTATE_THRESHOLD         =  100;
  97     private static final int COPY_THRESHOLD           =   10;
  98     private static final int REPLACEALL_THRESHOLD     =   11;
  99     private static final int INDEXOFSUBLIST_THRESHOLD =   35;
 100 
 101     /**
 102      * Sorts the specified list into ascending order, according to the
 103      * {@linkplain Comparable natural ordering} of its elements.
 104      * All elements in the list must implement the {@link Comparable}
 105      * interface.  Furthermore, all elements in the list must be
 106      * <i>mutually comparable</i> (that is, {@code e1.compareTo(e2)}
 107      * must not throw a {@code ClassCastException} for any elements
 108      * {@code e1} and {@code e2} in the list).
 109      *
 110      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
 111      * not be reordered as a result of the sort.
 112      *
 113      * <p>The specified list must be modifiable, but need not be resizable.
 114      *
 115      * <p>Implementation note: This implementation is a stable, adaptive,
 116      * iterative mergesort that requires far fewer than n lg(n) comparisons
 117      * when the input array is partially sorted, while offering the
 118      * performance of a traditional mergesort when the input array is
 119      * randomly ordered.  If the input array is nearly sorted, the
 120      * implementation requires approximately n comparisons.  Temporary
 121      * storage requirements vary from a small constant for nearly sorted
 122      * input arrays to n/2 object references for randomly ordered input
 123      * arrays.
 124      *
 125      * <p>The implementation takes equal advantage of ascending and
 126      * descending order in its input array, and can take advantage of
 127      * ascending and descending order in different parts of the the same
 128      * input array.  It is well-suited to merging two or more sorted arrays:
 129      * simply concatenate the arrays and sort the resulting array.
 130      *
 131      * <p>The implementation was adapted from Tim Peters's list sort for Python
 132      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
 133      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
 134      * Sorting and Information Theoretic Complexity", in Proceedings of the
 135      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
 136      * January 1993.
 137      *
 138      * <p>This implementation dumps the specified list into an array, sorts
 139      * the array, and iterates over the list resetting each element
 140      * from the corresponding position in the array.  This avoids the
 141      * n<sup>2</sup> log(n) performance that would result from attempting
 142      * to sort a linked list in place.
 143      *
 144      * @param  list the list to be sorted.
 145      * @throws ClassCastException if the list contains elements that are not
 146      *         <i>mutually comparable</i> (for example, strings and integers).
 147      * @throws UnsupportedOperationException if the specified list's
 148      *         list-iterator does not support the {@code set} operation.
 149      * @throws IllegalArgumentException (optional) if the implementation
 150      *         detects that the natural ordering of the list elements is
 151      *         found to violate the {@link Comparable} contract
 152      */
 153     public static <T extends Comparable<? super T>> void sort(List<T> list) {
 154         Object[] a = list.toArray();
 155         Arrays.sort(a);
 156         ListIterator<T> i = list.listIterator();
 157         for (int j=0; j<a.length; j++) {
 158             i.next();
 159             i.set((T)a[j]);
 160         }
 161     }
 162 
 163     /**
 164      * Sorts the specified list according to the order induced by the
 165      * specified comparator.  All elements in the list must be <i>mutually
 166      * comparable</i> using the specified comparator (that is,
 167      * {@code c.compare(e1, e2)} must not throw a {@code ClassCastException}
 168      * for any elements {@code e1} and {@code e2} in the list).
 169      *
 170      * <p>This sort is guaranteed to be <i>stable</i>:  equal elements will
 171      * not be reordered as a result of the sort.
 172      *
 173      * <p>The specified list must be modifiable, but need not be resizable.
 174      *
 175      * <p>Implementation note: This implementation is a stable, adaptive,
 176      * iterative mergesort that requires far fewer than n lg(n) comparisons
 177      * when the input array is partially sorted, while offering the
 178      * performance of a traditional mergesort when the input array is
 179      * randomly ordered.  If the input array is nearly sorted, the
 180      * implementation requires approximately n comparisons.  Temporary
 181      * storage requirements vary from a small constant for nearly sorted
 182      * input arrays to n/2 object references for randomly ordered input
 183      * arrays.
 184      *
 185      * <p>The implementation takes equal advantage of ascending and
 186      * descending order in its input array, and can take advantage of
 187      * ascending and descending order in different parts of the the same
 188      * input array.  It is well-suited to merging two or more sorted arrays:
 189      * simply concatenate the arrays and sort the resulting array.
 190      *
 191      * <p>The implementation was adapted from Tim Peters's list sort for Python
 192      * (<a href="http://svn.python.org/projects/python/trunk/Objects/listsort.txt">
 193      * TimSort</a>).  It uses techiques from Peter McIlroy's "Optimistic
 194      * Sorting and Information Theoretic Complexity", in Proceedings of the
 195      * Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 467-474,
 196      * January 1993.
 197      *
 198      * <p>This implementation dumps the specified list into an array, sorts
 199      * the array, and iterates over the list resetting each element
 200      * from the corresponding position in the array.  This avoids the
 201      * n<sup>2</sup> log(n) performance that would result from attempting
 202      * to sort a linked list in place.
 203      *
 204      * @param  list the list to be sorted.
 205      * @param  c the comparator to determine the order of the list.  A
 206      *        {@code null} value indicates that the elements' <i>natural
 207      *        ordering</i> should be used.
 208      * @throws ClassCastException if the list contains elements that are not
 209      *         <i>mutually comparable</i> using the specified comparator.
 210      * @throws UnsupportedOperationException if the specified list's
 211      *         list-iterator does not support the {@code set} operation.
 212      * @throws IllegalArgumentException (optional) if the comparator is
 213      *         found to violate the {@link Comparator} contract
 214      */
 215     public static <T> void sort(List<T> list, Comparator<? super T> c) {
 216         Object[] a = list.toArray();
 217         Arrays.sort(a, (Comparator)c);
 218         ListIterator i = list.listIterator();
 219         for (int j=0; j<a.length; j++) {
 220             i.next();
 221             i.set(a[j]);
 222         }
 223     }
 224 
 225 
 226     /**
 227      * Searches the specified list for the specified object using the binary
 228      * search algorithm.  The list must be sorted into ascending order
 229      * according to the {@linkplain Comparable natural ordering} of its
 230      * elements (as by the {@link #sort(List)} method) prior to making this
 231      * call.  If it is not sorted, the results are undefined.  If the list
 232      * contains multiple elements equal to the specified object, there is no
 233      * guarantee which one will be found.
 234      *
 235      * <p>This method runs in log(n) time for a "random access" list (which
 236      * provides near-constant-time positional access).  If the specified list
 237      * does not implement the {@link RandomAccess} interface and is large,
 238      * this method will do an iterator-based binary search that performs
 239      * O(n) link traversals and O(log n) element comparisons.
 240      *
 241      * @param  list the list to be searched.
 242      * @param  key the key to be searched for.
 243      * @return the index of the search key, if it is contained in the list;
 244      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
 245      *         <i>insertion point</i> is defined as the point at which the
 246      *         key would be inserted into the list: the index of the first
 247      *         element greater than the key, or <tt>list.size()</tt> if all
 248      *         elements in the list are less than the specified key.  Note
 249      *         that this guarantees that the return value will be &gt;= 0 if
 250      *         and only if the key is found.
 251      * @throws ClassCastException if the list contains elements that are not
 252      *         <i>mutually comparable</i> (for example, strings and
 253      *         integers), or the search key is not mutually comparable
 254      *         with the elements of the list.
 255      */
 256     public static <T>
 257     int binarySearch(List<? extends Comparable<? super T>> list, T key) {
 258         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
 259             return Collections.indexedBinarySearch(list, key);
 260         else
 261             return Collections.iteratorBinarySearch(list, key);
 262     }
 263 
 264     private static <T>
 265     int indexedBinarySearch(List<? extends Comparable<? super T>> list, T key)
 266     {
 267         int low = 0;
 268         int high = list.size()-1;
 269 
 270         while (low <= high) {
 271             int mid = (low + high) >>> 1;
 272             Comparable<? super T> midVal = list.get(mid);
 273             int cmp = midVal.compareTo(key);
 274 
 275             if (cmp < 0)
 276                 low = mid + 1;
 277             else if (cmp > 0)
 278                 high = mid - 1;
 279             else
 280                 return mid; // key found
 281         }
 282         return -(low + 1);  // key not found
 283     }
 284 
 285     private static <T>
 286     int iteratorBinarySearch(List<? extends Comparable<? super T>> list, T key)
 287     {
 288         int low = 0;
 289         int high = list.size()-1;
 290         ListIterator<? extends Comparable<? super T>> i = list.listIterator();
 291 
 292         while (low <= high) {
 293             int mid = (low + high) >>> 1;
 294             Comparable<? super T> midVal = get(i, mid);
 295             int cmp = midVal.compareTo(key);
 296 
 297             if (cmp < 0)
 298                 low = mid + 1;
 299             else if (cmp > 0)
 300                 high = mid - 1;
 301             else
 302                 return mid; // key found
 303         }
 304         return -(low + 1);  // key not found
 305     }
 306 
 307     /**
 308      * Gets the ith element from the given list by repositioning the specified
 309      * list listIterator.
 310      */
 311     private static <T> T get(ListIterator<? extends T> i, int index) {
 312         T obj = null;
 313         int pos = i.nextIndex();
 314         if (pos <= index) {
 315             do {
 316                 obj = i.next();
 317             } while (pos++ < index);
 318         } else {
 319             do {
 320                 obj = i.previous();
 321             } while (--pos > index);
 322         }
 323         return obj;
 324     }
 325 
 326     /**
 327      * Searches the specified list for the specified object using the binary
 328      * search algorithm.  The list must be sorted into ascending order
 329      * according to the specified comparator (as by the
 330      * {@link #sort(List, Comparator) sort(List, Comparator)}
 331      * method), prior to making this call.  If it is
 332      * not sorted, the results are undefined.  If the list contains multiple
 333      * elements equal to the specified object, there is no guarantee which one
 334      * will be found.
 335      *
 336      * <p>This method runs in log(n) time for a "random access" list (which
 337      * provides near-constant-time positional access).  If the specified list
 338      * does not implement the {@link RandomAccess} interface and is large,
 339      * this method will do an iterator-based binary search that performs
 340      * O(n) link traversals and O(log n) element comparisons.
 341      *
 342      * @param  list the list to be searched.
 343      * @param  key the key to be searched for.
 344      * @param  c the comparator by which the list is ordered.
 345      *         A <tt>null</tt> value indicates that the elements'
 346      *         {@linkplain Comparable natural ordering} should be used.
 347      * @return the index of the search key, if it is contained in the list;
 348      *         otherwise, <tt>(-(<i>insertion point</i>) - 1)</tt>.  The
 349      *         <i>insertion point</i> is defined as the point at which the
 350      *         key would be inserted into the list: the index of the first
 351      *         element greater than the key, or <tt>list.size()</tt> if all
 352      *         elements in the list are less than the specified key.  Note
 353      *         that this guarantees that the return value will be &gt;= 0 if
 354      *         and only if the key is found.
 355      * @throws ClassCastException if the list contains elements that are not
 356      *         <i>mutually comparable</i> using the specified comparator,
 357      *         or the search key is not mutually comparable with the
 358      *         elements of the list using this comparator.
 359      */
 360     public static <T> int binarySearch(List<? extends T> list, T key, Comparator<? super T> c) {
 361         if (c==null)
 362             return binarySearch((List) list, key);
 363 
 364         if (list instanceof RandomAccess || list.size()<BINARYSEARCH_THRESHOLD)
 365             return Collections.indexedBinarySearch(list, key, c);
 366         else
 367             return Collections.iteratorBinarySearch(list, key, c);
 368     }
 369 
 370     private static <T> int indexedBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
 371         int low = 0;
 372         int high = l.size()-1;
 373 
 374         while (low <= high) {
 375             int mid = (low + high) >>> 1;
 376             T midVal = l.get(mid);
 377             int cmp = c.compare(midVal, key);
 378 
 379             if (cmp < 0)
 380                 low = mid + 1;
 381             else if (cmp > 0)
 382                 high = mid - 1;
 383             else
 384                 return mid; // key found
 385         }
 386         return -(low + 1);  // key not found
 387     }
 388 
 389     private static <T> int iteratorBinarySearch(List<? extends T> l, T key, Comparator<? super T> c) {
 390         int low = 0;
 391         int high = l.size()-1;
 392         ListIterator<? extends T> i = l.listIterator();
 393 
 394         while (low <= high) {
 395             int mid = (low + high) >>> 1;
 396             T midVal = get(i, mid);
 397             int cmp = c.compare(midVal, key);
 398 
 399             if (cmp < 0)
 400                 low = mid + 1;
 401             else if (cmp > 0)
 402                 high = mid - 1;
 403             else
 404                 return mid; // key found
 405         }
 406         return -(low + 1);  // key not found
 407     }
 408 
 409     private interface SelfComparable extends Comparable<SelfComparable> {}
 410 
 411 
 412     /**
 413      * Reverses the order of the elements in the specified list.<p>
 414      *
 415      * This method runs in linear time.
 416      *
 417      * @param  list the list whose elements are to be reversed.
 418      * @throws UnsupportedOperationException if the specified list or
 419      *         its list-iterator does not support the <tt>set</tt> operation.
 420      */
 421     public static void reverse(List<?> list) {
 422         int size = list.size();
 423         if (size < REVERSE_THRESHOLD || list instanceof RandomAccess) {
 424             for (int i=0, mid=size>>1, j=size-1; i<mid; i++, j--)
 425                 swap(list, i, j);
 426         } else {
 427             ListIterator fwd = list.listIterator();
 428             ListIterator rev = list.listIterator(size);
 429             for (int i=0, mid=list.size()>>1; i<mid; i++) {
 430                 Object tmp = fwd.next();
 431                 fwd.set(rev.previous());
 432                 rev.set(tmp);
 433             }
 434         }
 435     }
 436 
 437     /**
 438      * Randomly permutes the specified list using a default source of
 439      * randomness.  All permutations occur with approximately equal
 440      * likelihood.<p>
 441      *
 442      * The hedge "approximately" is used in the foregoing description because
 443      * default source of randomness is only approximately an unbiased source
 444      * of independently chosen bits. If it were a perfect source of randomly
 445      * chosen bits, then the algorithm would choose permutations with perfect
 446      * uniformity.<p>
 447      *
 448      * This implementation traverses the list backwards, from the last element
 449      * up to the second, repeatedly swapping a randomly selected element into
 450      * the "current position".  Elements are randomly selected from the
 451      * portion of the list that runs from the first element to the current
 452      * position, inclusive.<p>
 453      *
 454      * This method runs in linear time.  If the specified list does not
 455      * implement the {@link RandomAccess} interface and is large, this
 456      * implementation dumps the specified list into an array before shuffling
 457      * it, and dumps the shuffled array back into the list.  This avoids the
 458      * quadratic behavior that would result from shuffling a "sequential
 459      * access" list in place.
 460      *
 461      * @param  list the list to be shuffled.
 462      * @throws UnsupportedOperationException if the specified list or
 463      *         its list-iterator does not support the <tt>set</tt> operation.
 464      */
 465     public static void shuffle(List<?> list) {
 466         Random rnd = r;
 467         if (rnd == null)
 468             r = rnd = new Random();
 469         shuffle(list, rnd);
 470     }
 471     private static Random r;
 472 
 473     /**
 474      * Randomly permute the specified list using the specified source of
 475      * randomness.  All permutations occur with equal likelihood
 476      * assuming that the source of randomness is fair.<p>
 477      *
 478      * This implementation traverses the list backwards, from the last element
 479      * up to the second, repeatedly swapping a randomly selected element into
 480      * the "current position".  Elements are randomly selected from the
 481      * portion of the list that runs from the first element to the current
 482      * position, inclusive.<p>
 483      *
 484      * This method runs in linear time.  If the specified list does not
 485      * implement the {@link RandomAccess} interface and is large, this
 486      * implementation dumps the specified list into an array before shuffling
 487      * it, and dumps the shuffled array back into the list.  This avoids the
 488      * quadratic behavior that would result from shuffling a "sequential
 489      * access" list in place.
 490      *
 491      * @param  list the list to be shuffled.
 492      * @param  rnd the source of randomness to use to shuffle the list.
 493      * @throws UnsupportedOperationException if the specified list or its
 494      *         list-iterator does not support the <tt>set</tt> operation.
 495      */
 496     public static void shuffle(List<?> list, Random rnd) {
 497         int size = list.size();
 498         if (size < SHUFFLE_THRESHOLD || list instanceof RandomAccess) {
 499             for (int i=size; i>1; i--)
 500                 swap(list, i-1, rnd.nextInt(i));
 501         } else {
 502             Object arr[] = list.toArray();
 503 
 504             // Shuffle array
 505             for (int i=size; i>1; i--)
 506                 swap(arr, i-1, rnd.nextInt(i));
 507 
 508             // Dump array back into list
 509             ListIterator it = list.listIterator();
 510             for (int i=0; i<arr.length; i++) {
 511                 it.next();
 512                 it.set(arr[i]);
 513             }
 514         }
 515     }
 516 
 517     /**
 518      * Swaps the elements at the specified positions in the specified list.
 519      * (If the specified positions are equal, invoking this method leaves
 520      * the list unchanged.)
 521      *
 522      * @param list The list in which to swap elements.
 523      * @param i the index of one element to be swapped.
 524      * @param j the index of the other element to be swapped.
 525      * @throws IndexOutOfBoundsException if either <tt>i</tt> or <tt>j</tt>
 526      *         is out of range (i &lt; 0 || i &gt;= list.size()
 527      *         || j &lt; 0 || j &gt;= list.size()).
 528      * @since 1.4
 529      */
 530     public static void swap(List<?> list, int i, int j) {
 531         final List l = list;
 532         l.set(i, l.set(j, l.get(i)));
 533     }
 534 
 535     /**
 536      * Swaps the two specified elements in the specified array.
 537      */
 538     private static void swap(Object[] arr, int i, int j) {
 539         Object tmp = arr[i];
 540         arr[i] = arr[j];
 541         arr[j] = tmp;
 542     }
 543 
 544     /**
 545      * Replaces all of the elements of the specified list with the specified
 546      * element. <p>
 547      *
 548      * This method runs in linear time.
 549      *
 550      * @param  list the list to be filled with the specified element.
 551      * @param  obj The element with which to fill the specified list.
 552      * @throws UnsupportedOperationException if the specified list or its
 553      *         list-iterator does not support the <tt>set</tt> operation.
 554      */
 555     public static <T> void fill(List<? super T> list, T obj) {
 556         int size = list.size();
 557 
 558         if (size < FILL_THRESHOLD || list instanceof RandomAccess) {
 559             for (int i=0; i<size; i++)
 560                 list.set(i, obj);
 561         } else {
 562             ListIterator<? super T> itr = list.listIterator();
 563             for (int i=0; i<size; i++) {
 564                 itr.next();
 565                 itr.set(obj);
 566             }
 567         }
 568     }
 569 
 570     /**
 571      * Copies all of the elements from one list into another.  After the
 572      * operation, the index of each copied element in the destination list
 573      * will be identical to its index in the source list.  The destination
 574      * list must be at least as long as the source list.  If it is longer, the
 575      * remaining elements in the destination list are unaffected. <p>
 576      *
 577      * This method runs in linear time.
 578      *
 579      * @param  dest The destination list.
 580      * @param  src The source list.
 581      * @throws IndexOutOfBoundsException if the destination list is too small
 582      *         to contain the entire source List.
 583      * @throws UnsupportedOperationException if the destination list's
 584      *         list-iterator does not support the <tt>set</tt> operation.
 585      */
 586     public static <T> void copy(List<? super T> dest, List<? extends T> src) {
 587         int srcSize = src.size();
 588         if (srcSize > dest.size())
 589             throw new IndexOutOfBoundsException("Source does not fit in dest");
 590 
 591         if (srcSize < COPY_THRESHOLD ||
 592             (src instanceof RandomAccess && dest instanceof RandomAccess)) {
 593             for (int i=0; i<srcSize; i++)
 594                 dest.set(i, src.get(i));
 595         } else {
 596             ListIterator<? super T> di=dest.listIterator();
 597             ListIterator<? extends T> si=src.listIterator();
 598             for (int i=0; i<srcSize; i++) {
 599                 di.next();
 600                 di.set(si.next());
 601             }
 602         }
 603     }
 604 
 605     /**
 606      * Returns the minimum element of the given collection, according to the
 607      * <i>natural ordering</i> of its elements.  All elements in the
 608      * collection must implement the <tt>Comparable</tt> interface.
 609      * Furthermore, all elements in the collection must be <i>mutually
 610      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
 611      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 612      * <tt>e2</tt> in the collection).<p>
 613      *
 614      * This method iterates over the entire collection, hence it requires
 615      * time proportional to the size of the collection.
 616      *
 617      * @param  coll the collection whose minimum element is to be determined.
 618      * @return the minimum element of the given collection, according
 619      *         to the <i>natural ordering</i> of its elements.
 620      * @throws ClassCastException if the collection contains elements that are
 621      *         not <i>mutually comparable</i> (for example, strings and
 622      *         integers).
 623      * @throws NoSuchElementException if the collection is empty.
 624      * @see Comparable
 625      */
 626     public static <T extends Object & Comparable<? super T>> T min(Collection<? extends T> coll) {
 627         Iterator<? extends T> i = coll.iterator();
 628         T candidate = i.next();
 629 
 630         while (i.hasNext()) {
 631             T next = i.next();
 632             if (next.compareTo(candidate) < 0)
 633                 candidate = next;
 634         }
 635         return candidate;
 636     }
 637 
 638     /**
 639      * Returns the minimum element of the given collection, according to the
 640      * order induced by the specified comparator.  All elements in the
 641      * collection must be <i>mutually comparable</i> by the specified
 642      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
 643      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 644      * <tt>e2</tt> in the collection).<p>
 645      *
 646      * This method iterates over the entire collection, hence it requires
 647      * time proportional to the size of the collection.
 648      *
 649      * @param  coll the collection whose minimum element is to be determined.
 650      * @param  comp the comparator with which to determine the minimum element.
 651      *         A <tt>null</tt> value indicates that the elements' <i>natural
 652      *         ordering</i> should be used.
 653      * @return the minimum element of the given collection, according
 654      *         to the specified comparator.
 655      * @throws ClassCastException if the collection contains elements that are
 656      *         not <i>mutually comparable</i> using the specified comparator.
 657      * @throws NoSuchElementException if the collection is empty.
 658      * @see Comparable
 659      */
 660     public static <T> T min(Collection<? extends T> coll, Comparator<? super T> comp) {
 661         if (comp==null)
 662             return (T)min((Collection<SelfComparable>) (Collection) coll);
 663 
 664         Iterator<? extends T> i = coll.iterator();
 665         T candidate = i.next();
 666 
 667         while (i.hasNext()) {
 668             T next = i.next();
 669             if (comp.compare(next, candidate) < 0)
 670                 candidate = next;
 671         }
 672         return candidate;
 673     }
 674 
 675     /**
 676      * Returns the maximum element of the given collection, according to the
 677      * <i>natural ordering</i> of its elements.  All elements in the
 678      * collection must implement the <tt>Comparable</tt> interface.
 679      * Furthermore, all elements in the collection must be <i>mutually
 680      * comparable</i> (that is, <tt>e1.compareTo(e2)</tt> must not throw a
 681      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 682      * <tt>e2</tt> in the collection).<p>
 683      *
 684      * This method iterates over the entire collection, hence it requires
 685      * time proportional to the size of the collection.
 686      *
 687      * @param  coll the collection whose maximum element is to be determined.
 688      * @return the maximum element of the given collection, according
 689      *         to the <i>natural ordering</i> of its elements.
 690      * @throws ClassCastException if the collection contains elements that are
 691      *         not <i>mutually comparable</i> (for example, strings and
 692      *         integers).
 693      * @throws NoSuchElementException if the collection is empty.
 694      * @see Comparable
 695      */
 696     public static <T extends Object & Comparable<? super T>> T max(Collection<? extends T> coll) {
 697         Iterator<? extends T> i = coll.iterator();
 698         T candidate = i.next();
 699 
 700         while (i.hasNext()) {
 701             T next = i.next();
 702             if (next.compareTo(candidate) > 0)
 703                 candidate = next;
 704         }
 705         return candidate;
 706     }
 707 
 708     /**
 709      * Returns the maximum element of the given collection, according to the
 710      * order induced by the specified comparator.  All elements in the
 711      * collection must be <i>mutually comparable</i> by the specified
 712      * comparator (that is, <tt>comp.compare(e1, e2)</tt> must not throw a
 713      * <tt>ClassCastException</tt> for any elements <tt>e1</tt> and
 714      * <tt>e2</tt> in the collection).<p>
 715      *
 716      * This method iterates over the entire collection, hence it requires
 717      * time proportional to the size of the collection.
 718      *
 719      * @param  coll the collection whose maximum element is to be determined.
 720      * @param  comp the comparator with which to determine the maximum element.
 721      *         A <tt>null</tt> value indicates that the elements' <i>natural
 722      *        ordering</i> should be used.
 723      * @return the maximum element of the given collection, according
 724      *         to the specified comparator.
 725      * @throws ClassCastException if the collection contains elements that are
 726      *         not <i>mutually comparable</i> using the specified comparator.
 727      * @throws NoSuchElementException if the collection is empty.
 728      * @see Comparable
 729      */
 730     public static <T> T max(Collection<? extends T> coll, Comparator<? super T> comp) {
 731         if (comp==null)
 732             return (T)max((Collection<SelfComparable>) (Collection) coll);
 733 
 734         Iterator<? extends T> i = coll.iterator();
 735         T candidate = i.next();
 736 
 737         while (i.hasNext()) {
 738             T next = i.next();
 739             if (comp.compare(next, candidate) > 0)
 740                 candidate = next;
 741         }
 742         return candidate;
 743     }
 744 
 745     /**
 746      * Rotates the elements in the specified list by the specified distance.
 747      * After calling this method, the element at index <tt>i</tt> will be
 748      * the element previously at index <tt>(i - distance)</tt> mod
 749      * <tt>list.size()</tt>, for all values of <tt>i</tt> between <tt>0</tt>
 750      * and <tt>list.size()-1</tt>, inclusive.  (This method has no effect on
 751      * the size of the list.)
 752      *
 753      * <p>For example, suppose <tt>list</tt> comprises<tt> [t, a, n, k, s]</tt>.
 754      * After invoking <tt>Collections.rotate(list, 1)</tt> (or
 755      * <tt>Collections.rotate(list, -4)</tt>), <tt>list</tt> will comprise
 756      * <tt>[s, t, a, n, k]</tt>.
 757      *
 758      * <p>Note that this method can usefully be applied to sublists to
 759      * move one or more elements within a list while preserving the
 760      * order of the remaining elements.  For example, the following idiom
 761      * moves the element at index <tt>j</tt> forward to position
 762      * <tt>k</tt> (which must be greater than or equal to <tt>j</tt>):
 763      * <pre>
 764      *     Collections.rotate(list.subList(j, k+1), -1);
 765      * </pre>
 766      * To make this concrete, suppose <tt>list</tt> comprises
 767      * <tt>[a, b, c, d, e]</tt>.  To move the element at index <tt>1</tt>
 768      * (<tt>b</tt>) forward two positions, perform the following invocation:
 769      * <pre>
 770      *     Collections.rotate(l.subList(1, 4), -1);
 771      * </pre>
 772      * The resulting list is <tt>[a, c, d, b, e]</tt>.
 773      *
 774      * <p>To move more than one element forward, increase the absolute value
 775      * of the rotation distance.  To move elements backward, use a positive
 776      * shift distance.
 777      *
 778      * <p>If the specified list is small or implements the {@link
 779      * RandomAccess} interface, this implementation exchanges the first
 780      * element into the location it should go, and then repeatedly exchanges
 781      * the displaced element into the location it should go until a displaced
 782      * element is swapped into the first element.  If necessary, the process
 783      * is repeated on the second and successive elements, until the rotation
 784      * is complete.  If the specified list is large and doesn't implement the
 785      * <tt>RandomAccess</tt> interface, this implementation breaks the
 786      * list into two sublist views around index <tt>-distance mod size</tt>.
 787      * Then the {@link #reverse(List)} method is invoked on each sublist view,
 788      * and finally it is invoked on the entire list.  For a more complete
 789      * description of both algorithms, see Section 2.3 of Jon Bentley's
 790      * <i>Programming Pearls</i> (Addison-Wesley, 1986).
 791      *
 792      * @param list the list to be rotated.
 793      * @param distance the distance to rotate the list.  There are no
 794      *        constraints on this value; it may be zero, negative, or
 795      *        greater than <tt>list.size()</tt>.
 796      * @throws UnsupportedOperationException if the specified list or
 797      *         its list-iterator does not support the <tt>set</tt> operation.
 798      * @since 1.4
 799      */
 800     public static void rotate(List<?> list, int distance) {
 801         if (list instanceof RandomAccess || list.size() < ROTATE_THRESHOLD)
 802             rotate1(list, distance);
 803         else
 804             rotate2(list, distance);
 805     }
 806 
 807     private static <T> void rotate1(List<T> list, int distance) {
 808         int size = list.size();
 809         if (size == 0)
 810             return;
 811         distance = distance % size;
 812         if (distance < 0)
 813             distance += size;
 814         if (distance == 0)
 815             return;
 816 
 817         for (int cycleStart = 0, nMoved = 0; nMoved != size; cycleStart++) {
 818             T displaced = list.get(cycleStart);
 819             int i = cycleStart;
 820             do {
 821                 i += distance;
 822                 if (i >= size)
 823                     i -= size;
 824                 displaced = list.set(i, displaced);
 825                 nMoved ++;
 826             } while(i != cycleStart);
 827         }
 828     }
 829 
 830     private static void rotate2(List<?> list, int distance) {
 831         int size = list.size();
 832         if (size == 0)
 833             return;
 834         int mid =  -distance % size;
 835         if (mid < 0)
 836             mid += size;
 837         if (mid == 0)
 838             return;
 839 
 840         reverse(list.subList(0, mid));
 841         reverse(list.subList(mid, size));
 842         reverse(list);
 843     }
 844 
 845     /**
 846      * Replaces all occurrences of one specified value in a list with another.
 847      * More formally, replaces with <tt>newVal</tt> each element <tt>e</tt>
 848      * in <tt>list</tt> such that
 849      * <tt>(oldVal==null ? e==null : oldVal.equals(e))</tt>.
 850      * (This method has no effect on the size of the list.)
 851      *
 852      * @param list the list in which replacement is to occur.
 853      * @param oldVal the old value to be replaced.
 854      * @param newVal the new value with which <tt>oldVal</tt> is to be
 855      *        replaced.
 856      * @return <tt>true</tt> if <tt>list</tt> contained one or more elements
 857      *         <tt>e</tt> such that
 858      *         <tt>(oldVal==null ?  e==null : oldVal.equals(e))</tt>.
 859      * @throws UnsupportedOperationException if the specified list or
 860      *         its list-iterator does not support the <tt>set</tt> operation.
 861      * @since  1.4
 862      */
 863     public static <T> boolean replaceAll(List<T> list, T oldVal, T newVal) {
 864         boolean result = false;
 865         int size = list.size();
 866         if (size < REPLACEALL_THRESHOLD || list instanceof RandomAccess) {
 867             if (oldVal==null) {
 868                 for (int i=0; i<size; i++) {
 869                     if (list.get(i)==null) {
 870                         list.set(i, newVal);
 871                         result = true;
 872                     }
 873                 }
 874             } else {
 875                 for (int i=0; i<size; i++) {
 876                     if (oldVal.equals(list.get(i))) {
 877                         list.set(i, newVal);
 878                         result = true;
 879                     }
 880                 }
 881             }
 882         } else {
 883             ListIterator<T> itr=list.listIterator();
 884             if (oldVal==null) {
 885                 for (int i=0; i<size; i++) {
 886                     if (itr.next()==null) {
 887                         itr.set(newVal);
 888                         result = true;
 889                     }
 890                 }
 891             } else {
 892                 for (int i=0; i<size; i++) {
 893                     if (oldVal.equals(itr.next())) {
 894                         itr.set(newVal);
 895                         result = true;
 896                     }
 897                 }
 898             }
 899         }
 900         return result;
 901     }
 902 
 903     /**
 904      * Returns the starting position of the first occurrence of the specified
 905      * target list within the specified source list, or -1 if there is no
 906      * such occurrence.  More formally, returns the lowest index <tt>i</tt>
 907      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
 908      * or -1 if there is no such index.  (Returns -1 if
 909      * <tt>target.size() > source.size()</tt>.)
 910      *
 911      * <p>This implementation uses the "brute force" technique of scanning
 912      * over the source list, looking for a match with the target at each
 913      * location in turn.
 914      *
 915      * @param source the list in which to search for the first occurrence
 916      *        of <tt>target</tt>.
 917      * @param target the list to search for as a subList of <tt>source</tt>.
 918      * @return the starting position of the first occurrence of the specified
 919      *         target list within the specified source list, or -1 if there
 920      *         is no such occurrence.
 921      * @since  1.4
 922      */
 923     public static int indexOfSubList(List<?> source, List<?> target) {
 924         int sourceSize = source.size();
 925         int targetSize = target.size();
 926         int maxCandidate = sourceSize - targetSize;
 927 
 928         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
 929             (source instanceof RandomAccess&&target instanceof RandomAccess)) {
 930         nextCand:
 931             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
 932                 for (int i=0, j=candidate; i<targetSize; i++, j++)
 933                     if (!eq(target.get(i), source.get(j)))
 934                         continue nextCand;  // Element mismatch, try next cand
 935                 return candidate;  // All elements of candidate matched target
 936             }
 937         } else {  // Iterator version of above algorithm
 938             ListIterator<?> si = source.listIterator();
 939         nextCand:
 940             for (int candidate = 0; candidate <= maxCandidate; candidate++) {
 941                 ListIterator<?> ti = target.listIterator();
 942                 for (int i=0; i<targetSize; i++) {
 943                     if (!eq(ti.next(), si.next())) {
 944                         // Back up source iterator to next candidate
 945                         for (int j=0; j<i; j++)
 946                             si.previous();
 947                         continue nextCand;
 948                     }
 949                 }
 950                 return candidate;
 951             }
 952         }
 953         return -1;  // No candidate matched the target
 954     }
 955 
 956     /**
 957      * Returns the starting position of the last occurrence of the specified
 958      * target list within the specified source list, or -1 if there is no such
 959      * occurrence.  More formally, returns the highest index <tt>i</tt>
 960      * such that <tt>source.subList(i, i+target.size()).equals(target)</tt>,
 961      * or -1 if there is no such index.  (Returns -1 if
 962      * <tt>target.size() > source.size()</tt>.)
 963      *
 964      * <p>This implementation uses the "brute force" technique of iterating
 965      * over the source list, looking for a match with the target at each
 966      * location in turn.
 967      *
 968      * @param source the list in which to search for the last occurrence
 969      *        of <tt>target</tt>.
 970      * @param target the list to search for as a subList of <tt>source</tt>.
 971      * @return the starting position of the last occurrence of the specified
 972      *         target list within the specified source list, or -1 if there
 973      *         is no such occurrence.
 974      * @since  1.4
 975      */
 976     public static int lastIndexOfSubList(List<?> source, List<?> target) {
 977         int sourceSize = source.size();
 978         int targetSize = target.size();
 979         int maxCandidate = sourceSize - targetSize;
 980 
 981         if (sourceSize < INDEXOFSUBLIST_THRESHOLD ||
 982             source instanceof RandomAccess) {   // Index access version
 983         nextCand:
 984             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
 985                 for (int i=0, j=candidate; i<targetSize; i++, j++)
 986                     if (!eq(target.get(i), source.get(j)))
 987                         continue nextCand;  // Element mismatch, try next cand
 988                 return candidate;  // All elements of candidate matched target
 989             }
 990         } else {  // Iterator version of above algorithm
 991             if (maxCandidate < 0)
 992                 return -1;
 993             ListIterator<?> si = source.listIterator(maxCandidate);
 994         nextCand:
 995             for (int candidate = maxCandidate; candidate >= 0; candidate--) {
 996                 ListIterator<?> ti = target.listIterator();
 997                 for (int i=0; i<targetSize; i++) {
 998                     if (!eq(ti.next(), si.next())) {
 999                         if (candidate != 0) {
1000                             // Back up source iterator to next candidate
1001                             for (int j=0; j<=i+1; j++)
1002                                 si.previous();
1003                         }
1004                         continue nextCand;
1005                     }
1006                 }
1007                 return candidate;
1008             }
1009         }
1010         return -1;  // No candidate matched the target
1011     }
1012 
1013 
1014     // Unmodifiable Wrappers
1015 
1016     /**
1017      * Returns an unmodifiable view of the specified collection.  This method
1018      * allows modules to provide users with "read-only" access to internal
1019      * collections.  Query operations on the returned collection "read through"
1020      * to the specified collection, and attempts to modify the returned
1021      * collection, whether direct or via its iterator, result in an
1022      * <tt>UnsupportedOperationException</tt>.<p>
1023      *
1024      * The returned collection does <i>not</i> pass the hashCode and equals
1025      * operations through to the backing collection, but relies on
1026      * <tt>Object</tt>'s <tt>equals</tt> and <tt>hashCode</tt> methods.  This
1027      * is necessary to preserve the contracts of these operations in the case
1028      * that the backing collection is a set or a list.<p>
1029      *
1030      * The returned collection will be serializable if the specified collection
1031      * is serializable.
1032      *
1033      * @param  c the collection for which an unmodifiable view is to be
1034      *         returned.
1035      * @return an unmodifiable view of the specified collection.
1036      */
1037     public static <T> Collection<T> unmodifiableCollection(Collection<? extends T> c) {
1038         return new UnmodifiableCollection<T>(c);
1039     }
1040 
1041     /**
1042      * @serial include
1043      */
1044     static class UnmodifiableCollection<E> implements Collection<E>, Serializable {
1045         private static final long serialVersionUID = 1820017752578914078L;
1046 
1047         final Collection<? extends E> c;
1048 
1049         UnmodifiableCollection(Collection<? extends E> c) {
1050             if (c==null)
1051                 throw new NullPointerException();
1052             this.c = c;
1053         }
1054 
1055         public int size()                   {return c.size();}
1056         public boolean isEmpty()            {return c.isEmpty();}
1057         public boolean contains(Object o)   {return c.contains(o);}
1058         public Object[] toArray()           {return c.toArray();}
1059         public <T> T[] toArray(T[] a)       {return c.toArray(a);}
1060         public String toString()            {return c.toString();}
1061 
1062         public Iterator<E> iterator() {
1063             return new Iterator<E>() {
1064                 private final Iterator<? extends E> i = c.iterator();
1065 
1066                 public boolean hasNext() {return i.hasNext();}
1067                 public E next()          {return i.next();}
1068                 public void remove() {
1069                     throw new UnsupportedOperationException();
1070                 }
1071             };
1072         }
1073 
1074         public boolean add(E e) {
1075             throw new UnsupportedOperationException();
1076         }
1077         public boolean remove(Object o) {
1078             throw new UnsupportedOperationException();
1079         }
1080 
1081         public boolean containsAll(Collection<?> coll) {
1082             return c.containsAll(coll);
1083         }
1084         public boolean addAll(Collection<? extends E> coll) {
1085             throw new UnsupportedOperationException();
1086         }
1087         public boolean removeAll(Collection<?> coll) {
1088             throw new UnsupportedOperationException();
1089         }
1090         public boolean retainAll(Collection<?> coll) {
1091             throw new UnsupportedOperationException();
1092         }
1093         public void clear() {
1094             throw new UnsupportedOperationException();
1095         }
1096     }
1097 
1098     /**
1099      * Returns an unmodifiable view of the specified set.  This method allows
1100      * modules to provide users with "read-only" access to internal sets.
1101      * Query operations on the returned set "read through" to the specified
1102      * set, and attempts to modify the returned set, whether direct or via its
1103      * iterator, result in an <tt>UnsupportedOperationException</tt>.<p>
1104      *
1105      * The returned set will be serializable if the specified set
1106      * is serializable.
1107      *
1108      * @param  s the set for which an unmodifiable view is to be returned.
1109      * @return an unmodifiable view of the specified set.
1110      */
1111     public static <T> Set<T> unmodifiableSet(Set<? extends T> s) {
1112         return new UnmodifiableSet<T>(s);
1113     }
1114 
1115     /**
1116      * @serial include
1117      */
1118     static class UnmodifiableSet<E> extends UnmodifiableCollection<E>
1119                                  implements Set<E>, Serializable {
1120         private static final long serialVersionUID = -9215047833775013803L;
1121 
1122         UnmodifiableSet(Set<? extends E> s)     {super(s);}
1123         public boolean equals(Object o) {return o == this || c.equals(o);}
1124         public int hashCode()           {return c.hashCode();}
1125     }
1126 
1127     /**
1128      * Returns an unmodifiable view of the specified sorted set.  This method
1129      * allows modules to provide users with "read-only" access to internal
1130      * sorted sets.  Query operations on the returned sorted set "read
1131      * through" to the specified sorted set.  Attempts to modify the returned
1132      * sorted set, whether direct, via its iterator, or via its
1133      * <tt>subSet</tt>, <tt>headSet</tt>, or <tt>tailSet</tt> views, result in
1134      * an <tt>UnsupportedOperationException</tt>.<p>
1135      *
1136      * The returned sorted set will be serializable if the specified sorted set
1137      * is serializable.
1138      *
1139      * @param s the sorted set for which an unmodifiable view is to be
1140      *        returned.
1141      * @return an unmodifiable view of the specified sorted set.
1142      */
1143     public static <T> SortedSet<T> unmodifiableSortedSet(SortedSet<T> s) {
1144         return new UnmodifiableSortedSet<T>(s);
1145     }
1146 
1147     /**
1148      * @serial include
1149      */
1150     static class UnmodifiableSortedSet<E>
1151                              extends UnmodifiableSet<E>
1152                              implements SortedSet<E>, Serializable {
1153         private static final long serialVersionUID = -4929149591599911165L;
1154         private final SortedSet<E> ss;
1155 
1156         UnmodifiableSortedSet(SortedSet<E> s) {super(s); ss = s;}
1157 
1158         public Comparator<? super E> comparator() {return ss.comparator();}
1159 
1160         public SortedSet<E> subSet(E fromElement, E toElement) {
1161             return new UnmodifiableSortedSet<E>(ss.subSet(fromElement,toElement));
1162         }
1163         public SortedSet<E> headSet(E toElement) {
1164             return new UnmodifiableSortedSet<E>(ss.headSet(toElement));
1165         }
1166         public SortedSet<E> tailSet(E fromElement) {
1167             return new UnmodifiableSortedSet<E>(ss.tailSet(fromElement));
1168         }
1169 
1170         public E first()                   {return ss.first();}
1171         public E last()                    {return ss.last();}
1172     }
1173 
1174     /**
1175      * Returns an unmodifiable view of the specified list.  This method allows
1176      * modules to provide users with "read-only" access to internal
1177      * lists.  Query operations on the returned list "read through" to the
1178      * specified list, and attempts to modify the returned list, whether
1179      * direct or via its iterator, result in an
1180      * <tt>UnsupportedOperationException</tt>.<p>
1181      *
1182      * The returned list will be serializable if the specified list
1183      * is serializable. Similarly, the returned list will implement
1184      * {@link RandomAccess} if the specified list does.
1185      *
1186      * @param  list the list for which an unmodifiable view is to be returned.
1187      * @return an unmodifiable view of the specified list.
1188      */
1189     public static <T> List<T> unmodifiableList(List<? extends T> list) {
1190         return (list instanceof RandomAccess ?
1191                 new UnmodifiableRandomAccessList<T>(list) :
1192                 new UnmodifiableList<T>(list));
1193     }
1194 
1195     /**
1196      * @serial include
1197      */
1198     static class UnmodifiableList<E> extends UnmodifiableCollection<E>
1199                                   implements List<E> {
1200         private static final long serialVersionUID = -283967356065247728L;
1201         final List<? extends E> list;
1202 
1203         UnmodifiableList(List<? extends E> list) {
1204             super(list);
1205             this.list = list;
1206         }
1207 
1208         public boolean equals(Object o) {return o == this || list.equals(o);}
1209         public int hashCode()           {return list.hashCode();}
1210 
1211         public E get(int index) {return list.get(index);}
1212         public E set(int index, E element) {
1213             throw new UnsupportedOperationException();
1214         }
1215         public void add(int index, E element) {
1216             throw new UnsupportedOperationException();
1217         }
1218         public E remove(int index) {
1219             throw new UnsupportedOperationException();
1220         }
1221         public int indexOf(Object o)            {return list.indexOf(o);}
1222         public int lastIndexOf(Object o)        {return list.lastIndexOf(o);}
1223         public boolean addAll(int index, Collection<? extends E> c) {
1224             throw new UnsupportedOperationException();
1225         }
1226         public ListIterator<E> listIterator()   {return listIterator(0);}
1227 
1228         public ListIterator<E> listIterator(final int index) {
1229             return new ListIterator<E>() {
1230                 private final ListIterator<? extends E> i
1231                     = list.listIterator(index);
1232 
1233                 public boolean hasNext()     {return i.hasNext();}
1234                 public E next()              {return i.next();}
1235                 public boolean hasPrevious() {return i.hasPrevious();}
1236                 public E previous()          {return i.previous();}
1237                 public int nextIndex()       {return i.nextIndex();}
1238                 public int previousIndex()   {return i.previousIndex();}
1239 
1240                 public void remove() {
1241                     throw new UnsupportedOperationException();
1242                 }
1243                 public void set(E e) {
1244                     throw new UnsupportedOperationException();
1245                 }
1246                 public void add(E e) {
1247                     throw new UnsupportedOperationException();
1248                 }
1249             };
1250         }
1251 
1252         public List<E> subList(int fromIndex, int toIndex) {
1253             return new UnmodifiableList<E>(list.subList(fromIndex, toIndex));
1254         }
1255 
1256         /**
1257          * UnmodifiableRandomAccessList instances are serialized as
1258          * UnmodifiableList instances to allow them to be deserialized
1259          * in pre-1.4 JREs (which do not have UnmodifiableRandomAccessList).
1260          * This method inverts the transformation.  As a beneficial
1261          * side-effect, it also grafts the RandomAccess marker onto
1262          * UnmodifiableList instances that were serialized in pre-1.4 JREs.
1263          *
1264          * Note: Unfortunately, UnmodifiableRandomAccessList instances
1265          * serialized in 1.4.1 and deserialized in 1.4 will become
1266          * UnmodifiableList instances, as this method was missing in 1.4.
1267          */
1268         private Object readResolve() {
1269             return (list instanceof RandomAccess
1270                     ? new UnmodifiableRandomAccessList<E>(list)
1271                     : this);
1272         }
1273     }
1274 
1275     /**
1276      * @serial include
1277      */
1278     static class UnmodifiableRandomAccessList<E> extends UnmodifiableList<E>
1279                                               implements RandomAccess
1280     {
1281         UnmodifiableRandomAccessList(List<? extends E> list) {
1282             super(list);
1283         }
1284 
1285         public List<E> subList(int fromIndex, int toIndex) {
1286             return new UnmodifiableRandomAccessList<E>(
1287                 list.subList(fromIndex, toIndex));
1288         }
1289 
1290         private static final long serialVersionUID = -2542308836966382001L;
1291 
1292         /**
1293          * Allows instances to be deserialized in pre-1.4 JREs (which do
1294          * not have UnmodifiableRandomAccessList).  UnmodifiableList has
1295          * a readResolve method that inverts this transformation upon
1296          * deserialization.
1297          */
1298         private Object writeReplace() {
1299             return new UnmodifiableList<E>(list);
1300         }
1301     }
1302 
1303     /**
1304      * Returns an unmodifiable view of the specified map.  This method
1305      * allows modules to provide users with "read-only" access to internal
1306      * maps.  Query operations on the returned map "read through"
1307      * to the specified map, and attempts to modify the returned
1308      * map, whether direct or via its collection views, result in an
1309      * <tt>UnsupportedOperationException</tt>.<p>
1310      *
1311      * The returned map will be serializable if the specified map
1312      * is serializable.
1313      *
1314      * @param  m the map for which an unmodifiable view is to be returned.
1315      * @return an unmodifiable view of the specified map.
1316      */
1317     public static <K,V> Map<K,V> unmodifiableMap(Map<? extends K, ? extends V> m) {
1318         return new UnmodifiableMap<K,V>(m);
1319     }
1320 
1321     /**
1322      * @serial include
1323      */
1324     private static class UnmodifiableMap<K,V> implements Map<K,V>, Serializable {
1325         private static final long serialVersionUID = -1034234728574286014L;
1326 
1327         private final Map<? extends K, ? extends V> m;
1328 
1329         UnmodifiableMap(Map<? extends K, ? extends V> m) {
1330             if (m==null)
1331                 throw new NullPointerException();
1332             this.m = m;
1333         }
1334 
1335         public int size()                        {return m.size();}
1336         public boolean isEmpty()                 {return m.isEmpty();}
1337         public boolean containsKey(Object key)   {return m.containsKey(key);}
1338         public boolean containsValue(Object val) {return m.containsValue(val);}
1339         public V get(Object key)                 {return m.get(key);}
1340 
1341         public V put(K key, V value) {
1342             throw new UnsupportedOperationException();
1343         }
1344         public V remove(Object key) {
1345             throw new UnsupportedOperationException();
1346         }
1347         public void putAll(Map<? extends K, ? extends V> m) {
1348             throw new UnsupportedOperationException();
1349         }
1350         public void clear() {
1351             throw new UnsupportedOperationException();
1352         }
1353 
1354         private transient Set<K> keySet = null;
1355         private transient Set<Map.Entry<K,V>> entrySet = null;
1356         private transient Collection<V> values = null;
1357 
1358         public Set<K> keySet() {
1359             if (keySet==null)
1360                 keySet = unmodifiableSet(m.keySet());
1361             return keySet;
1362         }
1363 
1364         public Set<Map.Entry<K,V>> entrySet() {
1365             if (entrySet==null)
1366                 entrySet = new UnmodifiableEntrySet<K,V>(m.entrySet());
1367             return entrySet;
1368         }
1369 
1370         public Collection<V> values() {
1371             if (values==null)
1372                 values = unmodifiableCollection(m.values());
1373             return values;
1374         }
1375 
1376         public boolean equals(Object o) {return o == this || m.equals(o);}
1377         public int hashCode()           {return m.hashCode();}
1378         public String toString()        {return m.toString();}
1379 
1380         /**
1381          * We need this class in addition to UnmodifiableSet as
1382          * Map.Entries themselves permit modification of the backing Map
1383          * via their setValue operation.  This class is subtle: there are
1384          * many possible attacks that must be thwarted.
1385          *
1386          * @serial include
1387          */
1388         static class UnmodifiableEntrySet<K,V>
1389             extends UnmodifiableSet<Map.Entry<K,V>> {
1390             private static final long serialVersionUID = 7854390611657943733L;
1391 
1392             UnmodifiableEntrySet(Set<? extends Map.Entry<? extends K, ? extends V>> s) {
1393                 super((Set)s);
1394             }
1395             public Iterator<Map.Entry<K,V>> iterator() {
1396                 return new Iterator<Map.Entry<K,V>>() {
1397                     private final Iterator<? extends Map.Entry<? extends K, ? extends V>> i = c.iterator();
1398 
1399                     public boolean hasNext() {
1400                         return i.hasNext();
1401                     }
1402                     public Map.Entry<K,V> next() {
1403                         return new UnmodifiableEntry<K,V>(i.next());
1404                     }
1405                     public void remove() {
1406                         throw new UnsupportedOperationException();
1407                     }
1408                 };
1409             }
1410 
1411             public Object[] toArray() {
1412                 Object[] a = c.toArray();
1413                 for (int i=0; i<a.length; i++)
1414                     a[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)a[i]);
1415                 return a;
1416             }
1417 
1418             public <T> T[] toArray(T[] a) {
1419                 // We don't pass a to c.toArray, to avoid window of
1420                 // vulnerability wherein an unscrupulous multithreaded client
1421                 // could get his hands on raw (unwrapped) Entries from c.
1422                 Object[] arr = c.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
1423 
1424                 for (int i=0; i<arr.length; i++)
1425                     arr[i] = new UnmodifiableEntry<K,V>((Map.Entry<K,V>)arr[i]);
1426 
1427                 if (arr.length > a.length)
1428                     return (T[])arr;
1429 
1430                 System.arraycopy(arr, 0, a, 0, arr.length);
1431                 if (a.length > arr.length)
1432                     a[arr.length] = null;
1433                 return a;
1434             }
1435 
1436             /**
1437              * This method is overridden to protect the backing set against
1438              * an object with a nefarious equals function that senses
1439              * that the equality-candidate is Map.Entry and calls its
1440              * setValue method.
1441              */
1442             public boolean contains(Object o) {
1443                 if (!(o instanceof Map.Entry))
1444                     return false;
1445                 return c.contains(
1446                     new UnmodifiableEntry<Object,Object>((Map.Entry<?,?>) o));
1447             }
1448 
1449             /**
1450              * The next two methods are overridden to protect against
1451              * an unscrupulous List whose contains(Object o) method senses
1452              * when o is a Map.Entry, and calls o.setValue.
1453              */
1454             public boolean containsAll(Collection<?> coll) {
1455                 Iterator<?> e = coll.iterator();
1456                 while (e.hasNext())
1457                     if (!contains(e.next())) // Invokes safe contains() above
1458                         return false;
1459                 return true;
1460             }
1461             public boolean equals(Object o) {
1462                 if (o == this)
1463                     return true;
1464 
1465                 if (!(o instanceof Set))
1466                     return false;
1467                 Set s = (Set) o;
1468                 if (s.size() != c.size())
1469                     return false;
1470                 return containsAll(s); // Invokes safe containsAll() above
1471             }
1472 
1473             /**
1474              * This "wrapper class" serves two purposes: it prevents
1475              * the client from modifying the backing Map, by short-circuiting
1476              * the setValue method, and it protects the backing Map against
1477              * an ill-behaved Map.Entry that attempts to modify another
1478              * Map Entry when asked to perform an equality check.
1479              */
1480             private static class UnmodifiableEntry<K,V> implements Map.Entry<K,V> {
1481                 private Map.Entry<? extends K, ? extends V> e;
1482 
1483                 UnmodifiableEntry(Map.Entry<? extends K, ? extends V> e) {this.e = e;}
1484 
1485                 public K getKey()         {return e.getKey();}
1486                 public V getValue()  {return e.getValue();}
1487                 public V setValue(V value) {
1488                     throw new UnsupportedOperationException();
1489                 }
1490                 public int hashCode()     {return e.hashCode();}
1491                 public boolean equals(Object o) {
1492                     if (!(o instanceof Map.Entry))
1493                         return false;
1494                     Map.Entry t = (Map.Entry)o;
1495                     return eq(e.getKey(),   t.getKey()) &&
1496                            eq(e.getValue(), t.getValue());
1497                 }
1498                 public String toString()  {return e.toString();}
1499             }
1500         }
1501     }
1502 
1503     /**
1504      * Returns an unmodifiable view of the specified sorted map.  This method
1505      * allows modules to provide users with "read-only" access to internal
1506      * sorted maps.  Query operations on the returned sorted map "read through"
1507      * to the specified sorted map.  Attempts to modify the returned
1508      * sorted map, whether direct, via its collection views, or via its
1509      * <tt>subMap</tt>, <tt>headMap</tt>, or <tt>tailMap</tt> views, result in
1510      * an <tt>UnsupportedOperationException</tt>.<p>
1511      *
1512      * The returned sorted map will be serializable if the specified sorted map
1513      * is serializable.
1514      *
1515      * @param m the sorted map for which an unmodifiable view is to be
1516      *        returned.
1517      * @return an unmodifiable view of the specified sorted map.
1518      */
1519     public static <K,V> SortedMap<K,V> unmodifiableSortedMap(SortedMap<K, ? extends V> m) {
1520         return new UnmodifiableSortedMap<K,V>(m);
1521     }
1522 
1523     /**
1524      * @serial include
1525      */
1526     static class UnmodifiableSortedMap<K,V>
1527           extends UnmodifiableMap<K,V>
1528           implements SortedMap<K,V>, Serializable {
1529         private static final long serialVersionUID = -8806743815996713206L;
1530 
1531         private final SortedMap<K, ? extends V> sm;
1532 
1533         UnmodifiableSortedMap(SortedMap<K, ? extends V> m) {super(m); sm = m;}
1534 
1535         public Comparator<? super K> comparator() {return sm.comparator();}
1536 
1537         public SortedMap<K,V> subMap(K fromKey, K toKey) {
1538             return new UnmodifiableSortedMap<K,V>(sm.subMap(fromKey, toKey));
1539         }
1540         public SortedMap<K,V> headMap(K toKey) {
1541             return new UnmodifiableSortedMap<K,V>(sm.headMap(toKey));
1542         }
1543         public SortedMap<K,V> tailMap(K fromKey) {
1544             return new UnmodifiableSortedMap<K,V>(sm.tailMap(fromKey));
1545         }
1546 
1547         public K firstKey()           {return sm.firstKey();}
1548         public K lastKey()            {return sm.lastKey();}
1549     }
1550 
1551 
1552     // Synch Wrappers
1553 
1554     /**
1555      * Returns a synchronized (thread-safe) collection backed by the specified
1556      * collection.  In order to guarantee serial access, it is critical that
1557      * <strong>all</strong> access to the backing collection is accomplished
1558      * through the returned collection.<p>
1559      *
1560      * It is imperative that the user manually synchronize on the returned
1561      * collection when iterating over it:
1562      * <pre>
1563      *  Collection c = Collections.synchronizedCollection(myCollection);
1564      *     ...
1565      *  synchronized(c) {
1566      *      Iterator i = c.iterator(); // Must be in the synchronized block
1567      *      while (i.hasNext())
1568      *         foo(i.next());
1569      *  }
1570      * </pre>
1571      * Failure to follow this advice may result in non-deterministic behavior.
1572      *
1573      * <p>The returned collection does <i>not</i> pass the <tt>hashCode</tt>
1574      * and <tt>equals</tt> operations through to the backing collection, but
1575      * relies on <tt>Object</tt>'s equals and hashCode methods.  This is
1576      * necessary to preserve the contracts of these operations in the case
1577      * that the backing collection is a set or a list.<p>
1578      *
1579      * The returned collection will be serializable if the specified collection
1580      * is serializable.
1581      *
1582      * @param  c the collection to be "wrapped" in a synchronized collection.
1583      * @return a synchronized view of the specified collection.
1584      */
1585     public static <T> Collection<T> synchronizedCollection(Collection<T> c) {
1586         return new SynchronizedCollection<T>(c);
1587     }
1588 
1589     static <T> Collection<T> synchronizedCollection(Collection<T> c, Object mutex) {
1590         return new SynchronizedCollection<T>(c, mutex);
1591     }
1592 
1593     /**
1594      * @serial include
1595      */
1596     static class SynchronizedCollection<E> implements Collection<E>, Serializable {
1597         private static final long serialVersionUID = 3053995032091335093L;
1598 
1599         final Collection<E> c;  // Backing Collection
1600         final Object mutex;     // Object on which to synchronize
1601 
1602         SynchronizedCollection(Collection<E> c) {
1603             if (c==null)
1604                 throw new NullPointerException();
1605             this.c = c;
1606             mutex = this;
1607         }
1608         SynchronizedCollection(Collection<E> c, Object mutex) {
1609             this.c = c;
1610             this.mutex = mutex;
1611         }
1612 
1613         public int size() {
1614             synchronized(mutex) {return c.size();}
1615         }
1616         public boolean isEmpty() {
1617             synchronized(mutex) {return c.isEmpty();}
1618         }
1619         public boolean contains(Object o) {
1620             synchronized(mutex) {return c.contains(o);}
1621         }
1622         public Object[] toArray() {
1623             synchronized(mutex) {return c.toArray();}
1624         }
1625         public <T> T[] toArray(T[] a) {
1626             synchronized(mutex) {return c.toArray(a);}
1627         }
1628 
1629         public Iterator<E> iterator() {
1630             return c.iterator(); // Must be manually synched by user!
1631         }
1632 
1633         public boolean add(E e) {
1634             synchronized(mutex) {return c.add(e);}
1635         }
1636         public boolean remove(Object o) {
1637             synchronized(mutex) {return c.remove(o);}
1638         }
1639 
1640         public boolean containsAll(Collection<?> coll) {
1641             synchronized(mutex) {return c.containsAll(coll);}
1642         }
1643         public boolean addAll(Collection<? extends E> coll) {
1644             synchronized(mutex) {return c.addAll(coll);}
1645         }
1646         public boolean removeAll(Collection<?> coll) {
1647             synchronized(mutex) {return c.removeAll(coll);}
1648         }
1649         public boolean retainAll(Collection<?> coll) {
1650             synchronized(mutex) {return c.retainAll(coll);}
1651         }
1652         public void clear() {
1653             synchronized(mutex) {c.clear();}
1654         }
1655         public String toString() {
1656             synchronized(mutex) {return c.toString();}
1657         }
1658         private void writeObject(ObjectOutputStream s) throws IOException {
1659             synchronized(mutex) {s.defaultWriteObject();}
1660         }
1661     }
1662 
1663     /**
1664      * Returns a synchronized (thread-safe) set backed by the specified
1665      * set.  In order to guarantee serial access, it is critical that
1666      * <strong>all</strong> access to the backing set is accomplished
1667      * through the returned set.<p>
1668      *
1669      * It is imperative that the user manually synchronize on the returned
1670      * set when iterating over it:
1671      * <pre>
1672      *  Set s = Collections.synchronizedSet(new HashSet());
1673      *      ...
1674      *  synchronized(s) {
1675      *      Iterator i = s.iterator(); // Must be in the synchronized block
1676      *      while (i.hasNext())
1677      *          foo(i.next());
1678      *  }
1679      * </pre>
1680      * Failure to follow this advice may result in non-deterministic behavior.
1681      *
1682      * <p>The returned set will be serializable if the specified set is
1683      * serializable.
1684      *
1685      * @param  s the set to be "wrapped" in a synchronized set.
1686      * @return a synchronized view of the specified set.
1687      */
1688     public static <T> Set<T> synchronizedSet(Set<T> s) {
1689         return new SynchronizedSet<T>(s);
1690     }
1691 
1692     static <T> Set<T> synchronizedSet(Set<T> s, Object mutex) {
1693         return new SynchronizedSet<T>(s, mutex);
1694     }
1695 
1696     /**
1697      * @serial include
1698      */
1699     static class SynchronizedSet<E>
1700           extends SynchronizedCollection<E>
1701           implements Set<E> {
1702         private static final long serialVersionUID = 487447009682186044L;
1703 
1704         SynchronizedSet(Set<E> s) {
1705             super(s);
1706         }
1707         SynchronizedSet(Set<E> s, Object mutex) {
1708             super(s, mutex);
1709         }
1710 
1711         public boolean equals(Object o) {
1712             synchronized(mutex) {return c.equals(o);}
1713         }
1714         public int hashCode() {
1715             synchronized(mutex) {return c.hashCode();}
1716         }
1717     }
1718 
1719     /**
1720      * Returns a synchronized (thread-safe) sorted set backed by the specified
1721      * sorted set.  In order to guarantee serial access, it is critical that
1722      * <strong>all</strong> access to the backing sorted set is accomplished
1723      * through the returned sorted set (or its views).<p>
1724      *
1725      * It is imperative that the user manually synchronize on the returned
1726      * sorted set when iterating over it or any of its <tt>subSet</tt>,
1727      * <tt>headSet</tt>, or <tt>tailSet</tt> views.
1728      * <pre>
1729      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1730      *      ...
1731      *  synchronized(s) {
1732      *      Iterator i = s.iterator(); // Must be in the synchronized block
1733      *      while (i.hasNext())
1734      *          foo(i.next());
1735      *  }
1736      * </pre>
1737      * or:
1738      * <pre>
1739      *  SortedSet s = Collections.synchronizedSortedSet(new TreeSet());
1740      *  SortedSet s2 = s.headSet(foo);
1741      *      ...
1742      *  synchronized(s) {  // Note: s, not s2!!!
1743      *      Iterator i = s2.iterator(); // Must be in the synchronized block
1744      *      while (i.hasNext())
1745      *          foo(i.next());
1746      *  }
1747      * </pre>
1748      * Failure to follow this advice may result in non-deterministic behavior.
1749      *
1750      * <p>The returned sorted set will be serializable if the specified
1751      * sorted set is serializable.
1752      *
1753      * @param  s the sorted set to be "wrapped" in a synchronized sorted set.
1754      * @return a synchronized view of the specified sorted set.
1755      */
1756     public static <T> SortedSet<T> synchronizedSortedSet(SortedSet<T> s) {
1757         return new SynchronizedSortedSet<T>(s);
1758     }
1759 
1760     /**
1761      * @serial include
1762      */
1763     static class SynchronizedSortedSet<E>
1764         extends SynchronizedSet<E>
1765         implements SortedSet<E>
1766     {
1767         private static final long serialVersionUID = 8695801310862127406L;
1768 
1769         final private SortedSet<E> ss;
1770 
1771         SynchronizedSortedSet(SortedSet<E> s) {
1772             super(s);
1773             ss = s;
1774         }
1775         SynchronizedSortedSet(SortedSet<E> s, Object mutex) {
1776             super(s, mutex);
1777             ss = s;
1778         }
1779 
1780         public Comparator<? super E> comparator() {
1781             synchronized(mutex) {return ss.comparator();}
1782         }
1783 
1784         public SortedSet<E> subSet(E fromElement, E toElement) {
1785             synchronized(mutex) {
1786                 return new SynchronizedSortedSet<E>(
1787                     ss.subSet(fromElement, toElement), mutex);
1788             }
1789         }
1790         public SortedSet<E> headSet(E toElement) {
1791             synchronized(mutex) {
1792                 return new SynchronizedSortedSet<E>(ss.headSet(toElement), mutex);
1793             }
1794         }
1795         public SortedSet<E> tailSet(E fromElement) {
1796             synchronized(mutex) {
1797                return new SynchronizedSortedSet<E>(ss.tailSet(fromElement),mutex);
1798             }
1799         }
1800 
1801         public E first() {
1802             synchronized(mutex) {return ss.first();}
1803         }
1804         public E last() {
1805             synchronized(mutex) {return ss.last();}
1806         }
1807     }
1808 
1809     /**
1810      * Returns a synchronized (thread-safe) list backed by the specified
1811      * list.  In order to guarantee serial access, it is critical that
1812      * <strong>all</strong> access to the backing list is accomplished
1813      * through the returned list.<p>
1814      *
1815      * It is imperative that the user manually synchronize on the returned
1816      * list when iterating over it:
1817      * <pre>
1818      *  List list = Collections.synchronizedList(new ArrayList());
1819      *      ...
1820      *  synchronized(list) {
1821      *      Iterator i = list.iterator(); // Must be in synchronized block
1822      *      while (i.hasNext())
1823      *          foo(i.next());
1824      *  }
1825      * </pre>
1826      * Failure to follow this advice may result in non-deterministic behavior.
1827      *
1828      * <p>The returned list will be serializable if the specified list is
1829      * serializable.
1830      *
1831      * @param  list the list to be "wrapped" in a synchronized list.
1832      * @return a synchronized view of the specified list.
1833      */
1834     public static <T> List<T> synchronizedList(List<T> list) {
1835         return (list instanceof RandomAccess ?
1836                 new SynchronizedRandomAccessList<T>(list) :
1837                 new SynchronizedList<T>(list));
1838     }
1839 
1840     static <T> List<T> synchronizedList(List<T> list, Object mutex) {
1841         return (list instanceof RandomAccess ?
1842                 new SynchronizedRandomAccessList<T>(list, mutex) :
1843                 new SynchronizedList<T>(list, mutex));
1844     }
1845 
1846     /**
1847      * @serial include
1848      */
1849     static class SynchronizedList<E>
1850         extends SynchronizedCollection<E>
1851         implements List<E> {
1852         private static final long serialVersionUID = -7754090372962971524L;
1853 
1854         final List<E> list;
1855 
1856         SynchronizedList(List<E> list) {
1857             super(list);
1858             this.list = list;
1859         }
1860         SynchronizedList(List<E> list, Object mutex) {
1861             super(list, mutex);
1862             this.list = list;
1863         }
1864 
1865         public boolean equals(Object o) {
1866             synchronized(mutex) {return list.equals(o);}
1867         }
1868         public int hashCode() {
1869             synchronized(mutex) {return list.hashCode();}
1870         }
1871 
1872         public E get(int index) {
1873             synchronized(mutex) {return list.get(index);}
1874         }
1875         public E set(int index, E element) {
1876             synchronized(mutex) {return list.set(index, element);}
1877         }
1878         public void add(int index, E element) {
1879             synchronized(mutex) {list.add(index, element);}
1880         }
1881         public E remove(int index) {
1882             synchronized(mutex) {return list.remove(index);}
1883         }
1884 
1885         public int indexOf(Object o) {
1886             synchronized(mutex) {return list.indexOf(o);}
1887         }
1888         public int lastIndexOf(Object o) {
1889             synchronized(mutex) {return list.lastIndexOf(o);}
1890         }
1891 
1892         public boolean addAll(int index, Collection<? extends E> c) {
1893             synchronized(mutex) {return list.addAll(index, c);}
1894         }
1895 
1896         public ListIterator<E> listIterator() {
1897             return list.listIterator(); // Must be manually synched by user
1898         }
1899 
1900         public ListIterator<E> listIterator(int index) {
1901             return list.listIterator(index); // Must be manually synched by user
1902         }
1903 
1904         public List<E> subList(int fromIndex, int toIndex) {
1905             synchronized(mutex) {
1906                 return new SynchronizedList<E>(list.subList(fromIndex, toIndex),
1907                                             mutex);
1908             }
1909         }
1910 
1911         /**
1912          * SynchronizedRandomAccessList instances are serialized as
1913          * SynchronizedList instances to allow them to be deserialized
1914          * in pre-1.4 JREs (which do not have SynchronizedRandomAccessList).
1915          * This method inverts the transformation.  As a beneficial
1916          * side-effect, it also grafts the RandomAccess marker onto
1917          * SynchronizedList instances that were serialized in pre-1.4 JREs.
1918          *
1919          * Note: Unfortunately, SynchronizedRandomAccessList instances
1920          * serialized in 1.4.1 and deserialized in 1.4 will become
1921          * SynchronizedList instances, as this method was missing in 1.4.
1922          */
1923         private Object readResolve() {
1924             return (list instanceof RandomAccess
1925                     ? new SynchronizedRandomAccessList<E>(list)
1926                     : this);
1927         }
1928     }
1929 
1930     /**
1931      * @serial include
1932      */
1933     static class SynchronizedRandomAccessList<E>
1934         extends SynchronizedList<E>
1935         implements RandomAccess {
1936 
1937         SynchronizedRandomAccessList(List<E> list) {
1938             super(list);
1939         }
1940 
1941         SynchronizedRandomAccessList(List<E> list, Object mutex) {
1942             super(list, mutex);
1943         }
1944 
1945         public List<E> subList(int fromIndex, int toIndex) {
1946             synchronized(mutex) {
1947                 return new SynchronizedRandomAccessList<E>(
1948                     list.subList(fromIndex, toIndex), mutex);
1949             }
1950         }
1951 
1952         private static final long serialVersionUID = 1530674583602358482L;
1953 
1954         /**
1955          * Allows instances to be deserialized in pre-1.4 JREs (which do
1956          * not have SynchronizedRandomAccessList).  SynchronizedList has
1957          * a readResolve method that inverts this transformation upon
1958          * deserialization.
1959          */
1960         private Object writeReplace() {
1961             return new SynchronizedList<E>(list);
1962         }
1963     }
1964 
1965     /**
1966      * Returns a synchronized (thread-safe) map backed by the specified
1967      * map.  In order to guarantee serial access, it is critical that
1968      * <strong>all</strong> access to the backing map is accomplished
1969      * through the returned map.<p>
1970      *
1971      * It is imperative that the user manually synchronize on the returned
1972      * map when iterating over any of its collection views:
1973      * <pre>
1974      *  Map m = Collections.synchronizedMap(new HashMap());
1975      *      ...
1976      *  Set s = m.keySet();  // Needn't be in synchronized block
1977      *      ...
1978      *  synchronized(m) {  // Synchronizing on m, not s!
1979      *      Iterator i = s.iterator(); // Must be in synchronized block
1980      *      while (i.hasNext())
1981      *          foo(i.next());
1982      *  }
1983      * </pre>
1984      * Failure to follow this advice may result in non-deterministic behavior.
1985      *
1986      * <p>The returned map will be serializable if the specified map is
1987      * serializable.
1988      *
1989      * @param  m the map to be "wrapped" in a synchronized map.
1990      * @return a synchronized view of the specified map.
1991      */
1992     public static <K,V> Map<K,V> synchronizedMap(Map<K,V> m) {
1993         return new SynchronizedMap<K,V>(m);
1994     }
1995 
1996     /**
1997      * @serial include
1998      */
1999     private static class SynchronizedMap<K,V>
2000         implements Map<K,V>, Serializable {
2001         private static final long serialVersionUID = 1978198479659022715L;
2002 
2003         private final Map<K,V> m;     // Backing Map
2004         final Object      mutex;        // Object on which to synchronize
2005 
2006         SynchronizedMap(Map<K,V> m) {
2007             if (m==null)
2008                 throw new NullPointerException();
2009             this.m = m;
2010             mutex = this;
2011         }
2012 
2013         SynchronizedMap(Map<K,V> m, Object mutex) {
2014             this.m = m;
2015             this.mutex = mutex;
2016         }
2017 
2018         public int size() {
2019             synchronized(mutex) {return m.size();}
2020         }
2021         public boolean isEmpty() {
2022             synchronized(mutex) {return m.isEmpty();}
2023         }
2024         public boolean containsKey(Object key) {
2025             synchronized(mutex) {return m.containsKey(key);}
2026         }
2027         public boolean containsValue(Object value) {
2028             synchronized(mutex) {return m.containsValue(value);}
2029         }
2030         public V get(Object key) {
2031             synchronized(mutex) {return m.get(key);}
2032         }
2033 
2034         public V put(K key, V value) {
2035             synchronized(mutex) {return m.put(key, value);}
2036         }
2037         public V remove(Object key) {
2038             synchronized(mutex) {return m.remove(key);}
2039         }
2040         public void putAll(Map<? extends K, ? extends V> map) {
2041             synchronized(mutex) {m.putAll(map);}
2042         }
2043         public void clear() {
2044             synchronized(mutex) {m.clear();}
2045         }
2046 
2047         private transient Set<K> keySet = null;
2048         private transient Set<Map.Entry<K,V>> entrySet = null;
2049         private transient Collection<V> values = null;
2050 
2051         public Set<K> keySet() {
2052             synchronized(mutex) {
2053                 if (keySet==null)
2054                     keySet = new SynchronizedSet<K>(m.keySet(), mutex);
2055                 return keySet;
2056             }
2057         }
2058 
2059         public Set<Map.Entry<K,V>> entrySet() {
2060             synchronized(mutex) {
2061                 if (entrySet==null)
2062                     entrySet = new SynchronizedSet<Map.Entry<K,V>>(m.entrySet(), mutex);
2063                 return entrySet;
2064             }
2065         }
2066 
2067         public Collection<V> values() {
2068             synchronized(mutex) {
2069                 if (values==null)
2070                     values = new SynchronizedCollection<V>(m.values(), mutex);
2071                 return values;
2072             }
2073         }
2074 
2075         public boolean equals(Object o) {
2076             synchronized(mutex) {return m.equals(o);}
2077         }
2078         public int hashCode() {
2079             synchronized(mutex) {return m.hashCode();}
2080         }
2081         public String toString() {
2082             synchronized(mutex) {return m.toString();}
2083         }
2084         private void writeObject(ObjectOutputStream s) throws IOException {
2085             synchronized(mutex) {s.defaultWriteObject();}
2086         }
2087     }
2088 
2089     /**
2090      * Returns a synchronized (thread-safe) sorted map backed by the specified
2091      * sorted map.  In order to guarantee serial access, it is critical that
2092      * <strong>all</strong> access to the backing sorted map is accomplished
2093      * through the returned sorted map (or its views).<p>
2094      *
2095      * It is imperative that the user manually synchronize on the returned
2096      * sorted map when iterating over any of its collection views, or the
2097      * collections views of any of its <tt>subMap</tt>, <tt>headMap</tt> or
2098      * <tt>tailMap</tt> views.
2099      * <pre>
2100      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2101      *      ...
2102      *  Set s = m.keySet();  // Needn't be in synchronized block
2103      *      ...
2104      *  synchronized(m) {  // Synchronizing on m, not s!
2105      *      Iterator i = s.iterator(); // Must be in synchronized block
2106      *      while (i.hasNext())
2107      *          foo(i.next());
2108      *  }
2109      * </pre>
2110      * or:
2111      * <pre>
2112      *  SortedMap m = Collections.synchronizedSortedMap(new TreeMap());
2113      *  SortedMap m2 = m.subMap(foo, bar);
2114      *      ...
2115      *  Set s2 = m2.keySet();  // Needn't be in synchronized block
2116      *      ...
2117      *  synchronized(m) {  // Synchronizing on m, not m2 or s2!
2118      *      Iterator i = s.iterator(); // Must be in synchronized block
2119      *      while (i.hasNext())
2120      *          foo(i.next());
2121      *  }
2122      * </pre>
2123      * Failure to follow this advice may result in non-deterministic behavior.
2124      *
2125      * <p>The returned sorted map will be serializable if the specified
2126      * sorted map is serializable.
2127      *
2128      * @param  m the sorted map to be "wrapped" in a synchronized sorted map.
2129      * @return a synchronized view of the specified sorted map.
2130      */
2131     public static <K,V> SortedMap<K,V> synchronizedSortedMap(SortedMap<K,V> m) {
2132         return new SynchronizedSortedMap<K,V>(m);
2133     }
2134 
2135 
2136     /**
2137      * @serial include
2138      */
2139     static class SynchronizedSortedMap<K,V>
2140         extends SynchronizedMap<K,V>
2141         implements SortedMap<K,V>
2142     {
2143         private static final long serialVersionUID = -8798146769416483793L;
2144 
2145         private final SortedMap<K,V> sm;
2146 
2147         SynchronizedSortedMap(SortedMap<K,V> m) {
2148             super(m);
2149             sm = m;
2150         }
2151         SynchronizedSortedMap(SortedMap<K,V> m, Object mutex) {
2152             super(m, mutex);
2153             sm = m;
2154         }
2155 
2156         public Comparator<? super K> comparator() {
2157             synchronized(mutex) {return sm.comparator();}
2158         }
2159 
2160         public SortedMap<K,V> subMap(K fromKey, K toKey) {
2161             synchronized(mutex) {
2162                 return new SynchronizedSortedMap<K,V>(
2163                     sm.subMap(fromKey, toKey), mutex);
2164             }
2165         }
2166         public SortedMap<K,V> headMap(K toKey) {
2167             synchronized(mutex) {
2168                 return new SynchronizedSortedMap<K,V>(sm.headMap(toKey), mutex);
2169             }
2170         }
2171         public SortedMap<K,V> tailMap(K fromKey) {
2172             synchronized(mutex) {
2173                return new SynchronizedSortedMap<K,V>(sm.tailMap(fromKey),mutex);
2174             }
2175         }
2176 
2177         public K firstKey() {
2178             synchronized(mutex) {return sm.firstKey();}
2179         }
2180         public K lastKey() {
2181             synchronized(mutex) {return sm.lastKey();}
2182         }
2183     }
2184 
2185     // Dynamically typesafe collection wrappers
2186 
2187     /**
2188      * Returns a dynamically typesafe view of the specified collection.
2189      * Any attempt to insert an element of the wrong type will result in an
2190      * immediate {@link ClassCastException}.  Assuming a collection
2191      * contains no incorrectly typed elements prior to the time a
2192      * dynamically typesafe view is generated, and that all subsequent
2193      * access to the collection takes place through the view, it is
2194      * <i>guaranteed</i> that the collection cannot contain an incorrectly
2195      * typed element.
2196      *
2197      * <p>The generics mechanism in the language provides compile-time
2198      * (static) type checking, but it is possible to defeat this mechanism
2199      * with unchecked casts.  Usually this is not a problem, as the compiler
2200      * issues warnings on all such unchecked operations.  There are, however,
2201      * times when static type checking alone is not sufficient.  For example,
2202      * suppose a collection is passed to a third-party library and it is
2203      * imperative that the library code not corrupt the collection by
2204      * inserting an element of the wrong type.
2205      *
2206      * <p>Another use of dynamically typesafe views is debugging.  Suppose a
2207      * program fails with a {@code ClassCastException}, indicating that an
2208      * incorrectly typed element was put into a parameterized collection.
2209      * Unfortunately, the exception can occur at any time after the erroneous
2210      * element is inserted, so it typically provides little or no information
2211      * as to the real source of the problem.  If the problem is reproducible,
2212      * one can quickly determine its source by temporarily modifying the
2213      * program to wrap the collection with a dynamically typesafe view.
2214      * For example, this declaration:
2215      *  <pre> {@code
2216      *     Collection<String> c = new HashSet<String>();
2217      * }</pre>
2218      * may be replaced temporarily by this one:
2219      *  <pre> {@code
2220      *     Collection<String> c = Collections.checkedCollection(
2221      *         new HashSet<String>(), String.class);
2222      * }</pre>
2223      * Running the program again will cause it to fail at the point where
2224      * an incorrectly typed element is inserted into the collection, clearly
2225      * identifying the source of the problem.  Once the problem is fixed, the
2226      * modified declaration may be reverted back to the original.
2227      *
2228      * <p>The returned collection does <i>not</i> pass the hashCode and equals
2229      * operations through to the backing collection, but relies on
2230      * {@code Object}'s {@code equals} and {@code hashCode} methods.  This
2231      * is necessary to preserve the contracts of these operations in the case
2232      * that the backing collection is a set or a list.
2233      *
2234      * <p>The returned collection will be serializable if the specified
2235      * collection is serializable.
2236      *
2237      * <p>Since {@code null} is considered to be a value of any reference
2238      * type, the returned collection permits insertion of null elements
2239      * whenever the backing collection does.
2240      *
2241      * @param c the collection for which a dynamically typesafe view is to be
2242      *          returned
2243      * @param type the type of element that {@code c} is permitted to hold
2244      * @return a dynamically typesafe view of the specified collection
2245      * @since 1.5
2246      */
2247     public static <E> Collection<E> checkedCollection(Collection<E> c,
2248                                                       Class<E> type) {
2249         return new CheckedCollection<E>(c, type);
2250     }
2251 
2252     @SuppressWarnings("unchecked")
2253     static <T> T[] zeroLengthArray(Class<T> type) {
2254         return (T[]) Array.newInstance(type, 0);
2255     }
2256 
2257     /**
2258      * @serial include
2259      */
2260     static class CheckedCollection<E> implements Collection<E>, Serializable {
2261         private static final long serialVersionUID = 1578914078182001775L;
2262 
2263         final Collection<E> c;
2264         final Class<E> type;
2265 
2266         void typeCheck(Object o) {
2267             if (o != null && !type.isInstance(o))
2268                 throw new ClassCastException(badElementMsg(o));
2269         }
2270 
2271         private String badElementMsg(Object o) {
2272             return "Attempt to insert " + o.getClass() +
2273                 " element into collection with element type " + type;
2274         }
2275 
2276         CheckedCollection(Collection<E> c, Class<E> type) {
2277             if (c==null || type == null)
2278                 throw new NullPointerException();
2279             this.c = c;
2280             this.type = type;
2281         }
2282 
2283         public int size()                 { return c.size(); }
2284         public boolean isEmpty()          { return c.isEmpty(); }
2285         public boolean contains(Object o) { return c.contains(o); }
2286         public Object[] toArray()         { return c.toArray(); }
2287         public <T> T[] toArray(T[] a)     { return c.toArray(a); }
2288         public String toString()          { return c.toString(); }
2289         public boolean remove(Object o)   { return c.remove(o); }
2290         public void clear()               {        c.clear(); }
2291 
2292         public boolean containsAll(Collection<?> coll) {
2293             return c.containsAll(coll);
2294         }
2295         public boolean removeAll(Collection<?> coll) {
2296             return c.removeAll(coll);
2297         }
2298         public boolean retainAll(Collection<?> coll) {
2299             return c.retainAll(coll);
2300         }
2301 
2302         public Iterator<E> iterator() {
2303             final Iterator<E> it = c.iterator();
2304             return new Iterator<E>() {
2305                 public boolean hasNext() { return it.hasNext(); }
2306                 public E next()          { return it.next(); }
2307                 public void remove()     {        it.remove(); }};
2308         }
2309 
2310         public boolean add(E e) {
2311             typeCheck(e);
2312             return c.add(e);
2313         }
2314 
2315         private E[] zeroLengthElementArray = null; // Lazily initialized
2316 
2317         private E[] zeroLengthElementArray() {
2318             return zeroLengthElementArray != null ? zeroLengthElementArray :
2319                 (zeroLengthElementArray = zeroLengthArray(type));
2320         }
2321 
2322         @SuppressWarnings("unchecked")
2323         Collection<E> checkedCopyOf(Collection<? extends E> coll) {
2324             Object[] a = null;
2325             try {
2326                 E[] z = zeroLengthElementArray();
2327                 a = coll.toArray(z);
2328                 // Defend against coll violating the toArray contract
2329                 if (a.getClass() != z.getClass())
2330                     a = Arrays.copyOf(a, a.length, z.getClass());
2331             } catch (ArrayStoreException ignore) {
2332                 // To get better and consistent diagnostics,
2333                 // we call typeCheck explicitly on each element.
2334                 // We call clone() to defend against coll retaining a
2335                 // reference to the returned array and storing a bad
2336                 // element into it after it has been type checked.
2337                 a = coll.toArray().clone();
2338                 for (Object o : a)
2339                     typeCheck(o);
2340             }
2341             // A slight abuse of the type system, but safe here.
2342             return (Collection<E>) Arrays.asList(a);
2343         }
2344 
2345         public boolean addAll(Collection<? extends E> coll) {
2346             // Doing things this way insulates us from concurrent changes
2347             // in the contents of coll and provides all-or-nothing
2348             // semantics (which we wouldn't get if we type-checked each
2349             // element as we added it)
2350             return c.addAll(checkedCopyOf(coll));
2351         }
2352     }
2353 
2354     /**
2355      * Returns a dynamically typesafe view of the specified set.
2356      * Any attempt to insert an element of the wrong type will result in
2357      * an immediate {@link ClassCastException}.  Assuming a set contains
2358      * no incorrectly typed elements prior to the time a dynamically typesafe
2359      * view is generated, and that all subsequent access to the set
2360      * takes place through the view, it is <i>guaranteed</i> that the
2361      * set cannot contain an incorrectly typed element.
2362      *
2363      * <p>A discussion of the use of dynamically typesafe views may be
2364      * found in the documentation for the {@link #checkedCollection
2365      * checkedCollection} method.
2366      *
2367      * <p>The returned set will be serializable if the specified set is
2368      * serializable.
2369      *
2370      * <p>Since {@code null} is considered to be a value of any reference
2371      * type, the returned set permits insertion of null elements whenever
2372      * the backing set does.
2373      *
2374      * @param s the set for which a dynamically typesafe view is to be
2375      *          returned
2376      * @param type the type of element that {@code s} is permitted to hold
2377      * @return a dynamically typesafe view of the specified set
2378      * @since 1.5
2379      */
2380     public static <E> Set<E> checkedSet(Set<E> s, Class<E> type) {
2381         return new CheckedSet<E>(s, type);
2382     }
2383 
2384     /**
2385      * @serial include
2386      */
2387     static class CheckedSet<E> extends CheckedCollection<E>
2388                                  implements Set<E>, Serializable
2389     {
2390         private static final long serialVersionUID = 4694047833775013803L;
2391 
2392         CheckedSet(Set<E> s, Class<E> elementType) { super(s, elementType); }
2393 
2394         public boolean equals(Object o) { return o == this || c.equals(o); }
2395         public int hashCode()           { return c.hashCode(); }
2396     }
2397 
2398     /**
2399      * Returns a dynamically typesafe view of the specified sorted set.
2400      * Any attempt to insert an element of the wrong type will result in an
2401      * immediate {@link ClassCastException}.  Assuming a sorted set
2402      * contains no incorrectly typed elements prior to the time a
2403      * dynamically typesafe view is generated, and that all subsequent
2404      * access to the sorted set takes place through the view, it is
2405      * <i>guaranteed</i> that the sorted set cannot contain an incorrectly
2406      * typed element.
2407      *
2408      * <p>A discussion of the use of dynamically typesafe views may be
2409      * found in the documentation for the {@link #checkedCollection
2410      * checkedCollection} method.
2411      *
2412      * <p>The returned sorted set will be serializable if the specified sorted
2413      * set is serializable.
2414      *
2415      * <p>Since {@code null} is considered to be a value of any reference
2416      * type, the returned sorted set permits insertion of null elements
2417      * whenever the backing sorted set does.
2418      *
2419      * @param s the sorted set for which a dynamically typesafe view is to be
2420      *          returned
2421      * @param type the type of element that {@code s} is permitted to hold
2422      * @return a dynamically typesafe view of the specified sorted set
2423      * @since 1.5
2424      */
2425     public static <E> SortedSet<E> checkedSortedSet(SortedSet<E> s,
2426                                                     Class<E> type) {
2427         return new CheckedSortedSet<E>(s, type);
2428     }
2429 
2430     /**
2431      * @serial include
2432      */
2433     static class CheckedSortedSet<E> extends CheckedSet<E>
2434         implements SortedSet<E>, Serializable
2435     {
2436         private static final long serialVersionUID = 1599911165492914959L;
2437         private final SortedSet<E> ss;
2438 
2439         CheckedSortedSet(SortedSet<E> s, Class<E> type) {
2440             super(s, type);
2441             ss = s;
2442         }
2443 
2444         public Comparator<? super E> comparator() { return ss.comparator(); }
2445         public E first()                   { return ss.first(); }
2446         public E last()                    { return ss.last(); }
2447 
2448         public SortedSet<E> subSet(E fromElement, E toElement) {
2449             return checkedSortedSet(ss.subSet(fromElement,toElement), type);
2450         }
2451         public SortedSet<E> headSet(E toElement) {
2452             return checkedSortedSet(ss.headSet(toElement), type);
2453         }
2454         public SortedSet<E> tailSet(E fromElement) {
2455             return checkedSortedSet(ss.tailSet(fromElement), type);
2456         }
2457     }
2458 
2459     /**
2460      * Returns a dynamically typesafe view of the specified list.
2461      * Any attempt to insert an element of the wrong type will result in
2462      * an immediate {@link ClassCastException}.  Assuming a list contains
2463      * no incorrectly typed elements prior to the time a dynamically typesafe
2464      * view is generated, and that all subsequent access to the list
2465      * takes place through the view, it is <i>guaranteed</i> that the
2466      * list cannot contain an incorrectly typed element.
2467      *
2468      * <p>A discussion of the use of dynamically typesafe views may be
2469      * found in the documentation for the {@link #checkedCollection
2470      * checkedCollection} method.
2471      *
2472      * <p>The returned list will be serializable if the specified list
2473      * is serializable.
2474      *
2475      * <p>Since {@code null} is considered to be a value of any reference
2476      * type, the returned list permits insertion of null elements whenever
2477      * the backing list does.
2478      *
2479      * @param list the list for which a dynamically typesafe view is to be
2480      *             returned
2481      * @param type the type of element that {@code list} is permitted to hold
2482      * @return a dynamically typesafe view of the specified list
2483      * @since 1.5
2484      */
2485     public static <E> List<E> checkedList(List<E> list, Class<E> type) {
2486         return (list instanceof RandomAccess ?
2487                 new CheckedRandomAccessList<E>(list, type) :
2488                 new CheckedList<E>(list, type));
2489     }
2490 
2491     /**
2492      * @serial include
2493      */
2494     static class CheckedList<E>
2495         extends CheckedCollection<E>
2496         implements List<E>
2497     {
2498         private static final long serialVersionUID = 65247728283967356L;
2499         final List<E> list;
2500 
2501         CheckedList(List<E> list, Class<E> type) {
2502             super(list, type);
2503             this.list = list;
2504         }
2505 
2506         public boolean equals(Object o)  { return o == this || list.equals(o); }
2507         public int hashCode()            { return list.hashCode(); }
2508         public E get(int index)          { return list.get(index); }
2509         public E remove(int index)       { return list.remove(index); }
2510         public int indexOf(Object o)     { return list.indexOf(o); }
2511         public int lastIndexOf(Object o) { return list.lastIndexOf(o); }
2512 
2513         public E set(int index, E element) {
2514             typeCheck(element);
2515             return list.set(index, element);
2516         }
2517 
2518         public void add(int index, E element) {
2519             typeCheck(element);
2520             list.add(index, element);
2521         }
2522 
2523         public boolean addAll(int index, Collection<? extends E> c) {
2524             return list.addAll(index, checkedCopyOf(c));
2525         }
2526         public ListIterator<E> listIterator()   { return listIterator(0); }
2527 
2528         public ListIterator<E> listIterator(final int index) {
2529             final ListIterator<E> i = list.listIterator(index);
2530 
2531             return new ListIterator<E>() {
2532                 public boolean hasNext()     { return i.hasNext(); }
2533                 public E next()              { return i.next(); }
2534                 public boolean hasPrevious() { return i.hasPrevious(); }
2535                 public E previous()          { return i.previous(); }
2536                 public int nextIndex()       { return i.nextIndex(); }
2537                 public int previousIndex()   { return i.previousIndex(); }
2538                 public void remove()         {        i.remove(); }
2539 
2540                 public void set(E e) {
2541                     typeCheck(e);
2542                     i.set(e);
2543                 }
2544 
2545                 public void add(E e) {
2546                     typeCheck(e);
2547                     i.add(e);
2548                 }
2549             };
2550         }
2551 
2552         public List<E> subList(int fromIndex, int toIndex) {
2553             return new CheckedList<E>(list.subList(fromIndex, toIndex), type);
2554         }
2555     }
2556 
2557     /**
2558      * @serial include
2559      */
2560     static class CheckedRandomAccessList<E> extends CheckedList<E>
2561                                             implements RandomAccess
2562     {
2563         private static final long serialVersionUID = 1638200125423088369L;
2564 
2565         CheckedRandomAccessList(List<E> list, Class<E> type) {
2566             super(list, type);
2567         }
2568 
2569         public List<E> subList(int fromIndex, int toIndex) {
2570             return new CheckedRandomAccessList<E>(
2571                 list.subList(fromIndex, toIndex), type);
2572         }
2573     }
2574 
2575     /**
2576      * Returns a dynamically typesafe view of the specified map.
2577      * Any attempt to insert a mapping whose key or value have the wrong
2578      * type will result in an immediate {@link ClassCastException}.
2579      * Similarly, any attempt to modify the value currently associated with
2580      * a key will result in an immediate {@link ClassCastException},
2581      * whether the modification is attempted directly through the map
2582      * itself, or through a {@link Map.Entry} instance obtained from the
2583      * map's {@link Map#entrySet() entry set} view.
2584      *
2585      * <p>Assuming a map contains no incorrectly typed keys or values
2586      * prior to the time a dynamically typesafe view is generated, and
2587      * that all subsequent access to the map takes place through the view
2588      * (or one of its collection views), it is <i>guaranteed</i> that the
2589      * map cannot contain an incorrectly typed key or value.
2590      *
2591      * <p>A discussion of the use of dynamically typesafe views may be
2592      * found in the documentation for the {@link #checkedCollection
2593      * checkedCollection} method.
2594      *
2595      * <p>The returned map will be serializable if the specified map is
2596      * serializable.
2597      *
2598      * <p>Since {@code null} is considered to be a value of any reference
2599      * type, the returned map permits insertion of null keys or values
2600      * whenever the backing map does.
2601      *
2602      * @param m the map for which a dynamically typesafe view is to be
2603      *          returned
2604      * @param keyType the type of key that {@code m} is permitted to hold
2605      * @param valueType the type of value that {@code m} is permitted to hold
2606      * @return a dynamically typesafe view of the specified map
2607      * @since 1.5
2608      */
2609     public static <K, V> Map<K, V> checkedMap(Map<K, V> m,
2610                                               Class<K> keyType,
2611                                               Class<V> valueType) {
2612         return new CheckedMap<K,V>(m, keyType, valueType);
2613     }
2614 
2615 
2616     /**
2617      * @serial include
2618      */
2619     private static class CheckedMap<K,V>
2620         implements Map<K,V>, Serializable
2621     {
2622         private static final long serialVersionUID = 5742860141034234728L;
2623 
2624         private final Map<K, V> m;
2625         final Class<K> keyType;
2626         final Class<V> valueType;
2627 
2628         private void typeCheck(Object key, Object value) {
2629             if (key != null && !keyType.isInstance(key))
2630                 throw new ClassCastException(badKeyMsg(key));
2631 
2632             if (value != null && !valueType.isInstance(value))
2633                 throw new ClassCastException(badValueMsg(value));
2634         }
2635 
2636         private String badKeyMsg(Object key) {
2637             return "Attempt to insert " + key.getClass() +
2638                 " key into map with key type " + keyType;
2639         }
2640 
2641         private String badValueMsg(Object value) {
2642             return "Attempt to insert " + value.getClass() +
2643                 " value into map with value type " + valueType;
2644         }
2645 
2646         CheckedMap(Map<K, V> m, Class<K> keyType, Class<V> valueType) {
2647             if (m == null || keyType == null || valueType == null)
2648                 throw new NullPointerException();
2649             this.m = m;
2650             this.keyType = keyType;
2651             this.valueType = valueType;
2652         }
2653 
2654         public int size()                      { return m.size(); }
2655         public boolean isEmpty()               { return m.isEmpty(); }
2656         public boolean containsKey(Object key) { return m.containsKey(key); }
2657         public boolean containsValue(Object v) { return m.containsValue(v); }
2658         public V get(Object key)               { return m.get(key); }
2659         public V remove(Object key)            { return m.remove(key); }
2660         public void clear()                    { m.clear(); }
2661         public Set<K> keySet()                 { return m.keySet(); }
2662         public Collection<V> values()          { return m.values(); }
2663         public boolean equals(Object o)        { return o == this || m.equals(o); }
2664         public int hashCode()                  { return m.hashCode(); }
2665         public String toString()               { return m.toString(); }
2666 
2667         public V put(K key, V value) {
2668             typeCheck(key, value);
2669             return m.put(key, value);
2670         }
2671 
2672         @SuppressWarnings("unchecked")
2673         public void putAll(Map<? extends K, ? extends V> t) {
2674             // Satisfy the following goals:
2675             // - good diagnostics in case of type mismatch
2676             // - all-or-nothing semantics
2677             // - protection from malicious t
2678             // - correct behavior if t is a concurrent map
2679             Object[] entries = t.entrySet().toArray();
2680             List<Map.Entry<K,V>> checked =
2681                 new ArrayList<Map.Entry<K,V>>(entries.length);
2682             for (Object o : entries) {
2683                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2684                 Object k = e.getKey();
2685                 Object v = e.getValue();
2686                 typeCheck(k, v);
2687                 checked.add(
2688                     new AbstractMap.SimpleImmutableEntry<K,V>((K) k, (V) v));
2689             }
2690             for (Map.Entry<K,V> e : checked)
2691                 m.put(e.getKey(), e.getValue());
2692         }
2693 
2694         private transient Set<Map.Entry<K,V>> entrySet = null;
2695 
2696         public Set<Map.Entry<K,V>> entrySet() {
2697             if (entrySet==null)
2698                 entrySet = new CheckedEntrySet<K,V>(m.entrySet(), valueType);
2699             return entrySet;
2700         }
2701 
2702         /**
2703          * We need this class in addition to CheckedSet as Map.Entry permits
2704          * modification of the backing Map via the setValue operation.  This
2705          * class is subtle: there are many possible attacks that must be
2706          * thwarted.
2707          *
2708          * @serial exclude
2709          */
2710         static class CheckedEntrySet<K,V> implements Set<Map.Entry<K,V>> {
2711             private final Set<Map.Entry<K,V>> s;
2712             private final Class<V> valueType;
2713 
2714             CheckedEntrySet(Set<Map.Entry<K, V>> s, Class<V> valueType) {
2715                 this.s = s;
2716                 this.valueType = valueType;
2717             }
2718 
2719             public int size()        { return s.size(); }
2720             public boolean isEmpty() { return s.isEmpty(); }
2721             public String toString() { return s.toString(); }
2722             public int hashCode()    { return s.hashCode(); }
2723             public void clear()      {        s.clear(); }
2724 
2725             public boolean add(Map.Entry<K, V> e) {
2726                 throw new UnsupportedOperationException();
2727             }
2728             public boolean addAll(Collection<? extends Map.Entry<K, V>> coll) {
2729                 throw new UnsupportedOperationException();
2730             }
2731 
2732             public Iterator<Map.Entry<K,V>> iterator() {
2733                 final Iterator<Map.Entry<K, V>> i = s.iterator();
2734                 final Class<V> valueType = this.valueType;
2735 
2736                 return new Iterator<Map.Entry<K,V>>() {
2737                     public boolean hasNext() { return i.hasNext(); }
2738                     public void remove()     { i.remove(); }
2739 
2740                     public Map.Entry<K,V> next() {
2741                         return checkedEntry(i.next(), valueType);
2742                     }
2743                 };
2744             }
2745 
2746             @SuppressWarnings("unchecked")
2747             public Object[] toArray() {
2748                 Object[] source = s.toArray();
2749 
2750                 /*
2751                  * Ensure that we don't get an ArrayStoreException even if
2752                  * s.toArray returns an array of something other than Object
2753                  */
2754                 Object[] dest = (CheckedEntry.class.isInstance(
2755                     source.getClass().getComponentType()) ? source :
2756                                  new Object[source.length]);
2757 
2758                 for (int i = 0; i < source.length; i++)
2759                     dest[i] = checkedEntry((Map.Entry<K,V>)source[i],
2760                                            valueType);
2761                 return dest;
2762             }
2763 
2764             @SuppressWarnings("unchecked")
2765             public <T> T[] toArray(T[] a) {
2766                 // We don't pass a to s.toArray, to avoid window of
2767                 // vulnerability wherein an unscrupulous multithreaded client
2768                 // could get his hands on raw (unwrapped) Entries from s.
2769                 T[] arr = s.toArray(a.length==0 ? a : Arrays.copyOf(a, 0));
2770 
2771                 for (int i=0; i<arr.length; i++)
2772                     arr[i] = (T) checkedEntry((Map.Entry<K,V>)arr[i],
2773                                               valueType);
2774                 if (arr.length > a.length)
2775                     return arr;
2776 
2777                 System.arraycopy(arr, 0, a, 0, arr.length);
2778                 if (a.length > arr.length)
2779                     a[arr.length] = null;
2780                 return a;
2781             }
2782 
2783             /**
2784              * This method is overridden to protect the backing set against
2785              * an object with a nefarious equals function that senses
2786              * that the equality-candidate is Map.Entry and calls its
2787              * setValue method.
2788              */
2789             public boolean contains(Object o) {
2790                 if (!(o instanceof Map.Entry))
2791                     return false;
2792                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
2793                 return s.contains(
2794                     (e instanceof CheckedEntry) ? e : checkedEntry(e, valueType));
2795             }
2796 
2797             /**
2798              * The bulk collection methods are overridden to protect
2799              * against an unscrupulous collection whose contains(Object o)
2800              * method senses when o is a Map.Entry, and calls o.setValue.
2801              */
2802             public boolean containsAll(Collection<?> c) {
2803                 for (Object o : c)
2804                     if (!contains(o)) // Invokes safe contains() above
2805                         return false;
2806                 return true;
2807             }
2808 
2809             public boolean remove(Object o) {
2810                 if (!(o instanceof Map.Entry))
2811                     return false;
2812                 return s.remove(new AbstractMap.SimpleImmutableEntry
2813                                 <Object, Object>((Map.Entry<?,?>)o));
2814             }
2815 
2816             public boolean removeAll(Collection<?> c) {
2817                 return batchRemove(c, false);
2818             }
2819             public boolean retainAll(Collection<?> c) {
2820                 return batchRemove(c, true);
2821             }
2822             private boolean batchRemove(Collection<?> c, boolean complement) {
2823                 boolean modified = false;
2824                 Iterator<Map.Entry<K,V>> it = iterator();
2825                 while (it.hasNext()) {
2826                     if (c.contains(it.next()) != complement) {
2827                         it.remove();
2828                         modified = true;
2829                     }
2830                 }
2831                 return modified;
2832             }
2833 
2834             public boolean equals(Object o) {
2835                 if (o == this)
2836                     return true;
2837                 if (!(o instanceof Set))
2838                     return false;
2839                 Set<?> that = (Set<?>) o;
2840                 return that.size() == s.size()
2841                     && containsAll(that); // Invokes safe containsAll() above
2842             }
2843 
2844             static <K,V,T> CheckedEntry<K,V,T> checkedEntry(Map.Entry<K,V> e,
2845                                                             Class<T> valueType) {
2846                 return new CheckedEntry<K,V,T>(e, valueType);
2847             }
2848 
2849             /**
2850              * This "wrapper class" serves two purposes: it prevents
2851              * the client from modifying the backing Map, by short-circuiting
2852              * the setValue method, and it protects the backing Map against
2853              * an ill-behaved Map.Entry that attempts to modify another
2854              * Map.Entry when asked to perform an equality check.
2855              */
2856             private static class CheckedEntry<K,V,T> implements Map.Entry<K,V> {
2857                 private final Map.Entry<K, V> e;
2858                 private final Class<T> valueType;
2859 
2860                 CheckedEntry(Map.Entry<K, V> e, Class<T> valueType) {
2861                     this.e = e;
2862                     this.valueType = valueType;
2863                 }
2864 
2865                 public K getKey()        { return e.getKey(); }
2866                 public V getValue()      { return e.getValue(); }
2867                 public int hashCode()    { return e.hashCode(); }
2868                 public String toString() { return e.toString(); }
2869 
2870                 public V setValue(V value) {
2871                     if (value != null && !valueType.isInstance(value))
2872                         throw new ClassCastException(badValueMsg(value));
2873                     return e.setValue(value);
2874                 }
2875 
2876                 private String badValueMsg(Object value) {
2877                     return "Attempt to insert " + value.getClass() +
2878                         " value into map with value type " + valueType;
2879                 }
2880 
2881                 public boolean equals(Object o) {
2882                     if (o == this)
2883                         return true;
2884                     if (!(o instanceof Map.Entry))
2885                         return false;
2886                     return e.equals(new AbstractMap.SimpleImmutableEntry
2887                                     <Object, Object>((Map.Entry<?,?>)o));
2888                 }
2889             }
2890         }
2891     }
2892 
2893     /**
2894      * Returns a dynamically typesafe view of the specified sorted map.
2895      * Any attempt to insert a mapping whose key or value have the wrong
2896      * type will result in an immediate {@link ClassCastException}.
2897      * Similarly, any attempt to modify the value currently associated with
2898      * a key will result in an immediate {@link ClassCastException},
2899      * whether the modification is attempted directly through the map
2900      * itself, or through a {@link Map.Entry} instance obtained from the
2901      * map's {@link Map#entrySet() entry set} view.
2902      *
2903      * <p>Assuming a map contains no incorrectly typed keys or values
2904      * prior to the time a dynamically typesafe view is generated, and
2905      * that all subsequent access to the map takes place through the view
2906      * (or one of its collection views), it is <i>guaranteed</i> that the
2907      * map cannot contain an incorrectly typed key or value.
2908      *
2909      * <p>A discussion of the use of dynamically typesafe views may be
2910      * found in the documentation for the {@link #checkedCollection
2911      * checkedCollection} method.
2912      *
2913      * <p>The returned map will be serializable if the specified map is
2914      * serializable.
2915      *
2916      * <p>Since {@code null} is considered to be a value of any reference
2917      * type, the returned map permits insertion of null keys or values
2918      * whenever the backing map does.
2919      *
2920      * @param m the map for which a dynamically typesafe view is to be
2921      *          returned
2922      * @param keyType the type of key that {@code m} is permitted to hold
2923      * @param valueType the type of value that {@code m} is permitted to hold
2924      * @return a dynamically typesafe view of the specified map
2925      * @since 1.5
2926      */
2927     public static <K,V> SortedMap<K,V> checkedSortedMap(SortedMap<K, V> m,
2928                                                         Class<K> keyType,
2929                                                         Class<V> valueType) {
2930         return new CheckedSortedMap<K,V>(m, keyType, valueType);
2931     }
2932 
2933     /**
2934      * @serial include
2935      */
2936     static class CheckedSortedMap<K,V> extends CheckedMap<K,V>
2937         implements SortedMap<K,V>, Serializable
2938     {
2939         private static final long serialVersionUID = 1599671320688067438L;
2940 
2941         private final SortedMap<K, V> sm;
2942 
2943         CheckedSortedMap(SortedMap<K, V> m,
2944                          Class<K> keyType, Class<V> valueType) {
2945             super(m, keyType, valueType);
2946             sm = m;
2947         }
2948 
2949         public Comparator<? super K> comparator() { return sm.comparator(); }
2950         public K firstKey()                       { return sm.firstKey(); }
2951         public K lastKey()                        { return sm.lastKey(); }
2952 
2953         public SortedMap<K,V> subMap(K fromKey, K toKey) {
2954             return checkedSortedMap(sm.subMap(fromKey, toKey),
2955                                     keyType, valueType);
2956         }
2957         public SortedMap<K,V> headMap(K toKey) {
2958             return checkedSortedMap(sm.headMap(toKey), keyType, valueType);
2959         }
2960         public SortedMap<K,V> tailMap(K fromKey) {
2961             return checkedSortedMap(sm.tailMap(fromKey), keyType, valueType);
2962         }
2963     }
2964 
2965     // Empty collections
2966 
2967     /**
2968      * Returns an iterator that has no elements.  More precisely,
2969      *
2970      * <ul compact>
2971      *
2972      * <li>{@link Iterator#hasNext hasNext} always returns {@code
2973      * false}.
2974      *
2975      * <li>{@link Iterator#next next} always throws {@link
2976      * NoSuchElementException}.
2977      *
2978      * <li>{@link Iterator#remove remove} always throws {@link
2979      * IllegalStateException}.
2980      *
2981      * </ul>
2982      *
2983      * <p>Implementations of this method are permitted, but not
2984      * required, to return the same object from multiple invocations.
2985      *
2986      * @return an empty iterator
2987      * @since 1.7
2988      */
2989     @SuppressWarnings("unchecked")
2990     public static <T> Iterator<T> emptyIterator() {
2991         return (Iterator<T>) EmptyIterator.EMPTY_ITERATOR;
2992     }
2993 
2994     private static class EmptyIterator<E> implements Iterator<E> {
2995         static final EmptyIterator<Object> EMPTY_ITERATOR
2996             = new EmptyIterator<Object>();
2997 
2998         public boolean hasNext() { return false; }
2999         public E next() { throw new NoSuchElementException(); }
3000         public void remove() { throw new IllegalStateException(); }
3001     }
3002 
3003     /**
3004      * Returns a list iterator that has no elements.  More precisely,
3005      *
3006      * <ul compact>
3007      *
3008      * <li>{@link Iterator#hasNext hasNext} and {@link
3009      * ListIterator#hasPrevious hasPrevious} always return {@code
3010      * false}.
3011      *
3012      * <li>{@link Iterator#next next} and {@link ListIterator#previous
3013      * previous} always throw {@link NoSuchElementException}.
3014      *
3015      * <li>{@link Iterator#remove remove} and {@link ListIterator#set
3016      * set} always throw {@link IllegalStateException}.
3017      *
3018      * <li>{@link ListIterator#add add} always throws {@link
3019      * UnsupportedOperationException}.
3020      *
3021      * <li>{@link ListIterator#nextIndex nextIndex} always returns
3022      * {@code 0} .
3023      *
3024      * <li>{@link ListIterator#previousIndex previousIndex} always
3025      * returns {@code -1}.
3026      *
3027      * </ul>
3028      *
3029      * <p>Implementations of this method are permitted, but not
3030      * required, to return the same object from multiple invocations.
3031      *
3032      * @return an empty list iterator
3033      * @since 1.7
3034      */
3035     @SuppressWarnings("unchecked")
3036     public static <T> ListIterator<T> emptyListIterator() {
3037         return (ListIterator<T>) EmptyListIterator.EMPTY_ITERATOR;
3038     }
3039 
3040     private static class EmptyListIterator<E>
3041         extends EmptyIterator<E>
3042         implements ListIterator<E>
3043     {
3044         static final EmptyListIterator<Object> EMPTY_ITERATOR
3045             = new EmptyListIterator<Object>();
3046 
3047         public boolean hasPrevious() { return false; }
3048         public E previous() { throw new NoSuchElementException(); }
3049         public int nextIndex()     { return 0; }
3050         public int previousIndex() { return -1; }
3051         public void set(E e) { throw new IllegalStateException(); }
3052         public void add(E e) { throw new UnsupportedOperationException(); }
3053     }
3054 
3055     /**
3056      * Returns an enumeration that has no elements.  More precisely,
3057      *
3058      * <ul compact>
3059      *
3060      * <li>{@link Enumeration#hasMoreElements hasMoreElements} always
3061      * returns {@code false}.
3062      *
3063      * <li> {@link Enumeration#nextElement nextElement} always throws
3064      * {@link NoSuchElementException}.
3065      *
3066      * </ul>
3067      *
3068      * <p>Implementations of this method are permitted, but not
3069      * required, to return the same object from multiple invocations.
3070      *
3071      * @return an empty enumeration
3072      * @since 1.7
3073      */
3074     @SuppressWarnings("unchecked")
3075     public static <T> Enumeration<T> emptyEnumeration() {
3076         return (Enumeration<T>) EmptyEnumeration.EMPTY_ENUMERATION;
3077     }
3078 
3079     private static class EmptyEnumeration<E> implements Enumeration<E> {
3080         static final EmptyEnumeration<Object> EMPTY_ENUMERATION
3081             = new EmptyEnumeration<Object>();
3082 
3083         public boolean hasMoreElements() { return false; }
3084         public E nextElement() { throw new NoSuchElementException(); }
3085     }
3086 
3087     /**
3088      * The empty set (immutable).  This set is serializable.
3089      *
3090      * @see #emptySet()
3091      */
3092     @SuppressWarnings("unchecked")
3093     public static final Set EMPTY_SET = new EmptySet<Object>();
3094 
3095     /**
3096      * Returns the empty set (immutable).  This set is serializable.
3097      * Unlike the like-named field, this method is parameterized.
3098      *
3099      * <p>This example illustrates the type-safe way to obtain an empty set:
3100      * <pre>
3101      *     Set&lt;String&gt; s = Collections.emptySet();
3102      * </pre>
3103      * Implementation note:  Implementations of this method need not
3104      * create a separate <tt>Set</tt> object for each call.   Using this
3105      * method is likely to have comparable cost to using the like-named
3106      * field.  (Unlike this method, the field does not provide type safety.)
3107      *
3108      * @see #EMPTY_SET
3109      * @since 1.5
3110      */
3111     @SuppressWarnings("unchecked")
3112     public static final <T> Set<T> emptySet() {
3113         return (Set<T>) EMPTY_SET;
3114     }
3115 
3116     /**
3117      * @serial include
3118      */
3119     private static class EmptySet<E>
3120         extends AbstractSet<E>
3121         implements Serializable
3122     {
3123         private static final long serialVersionUID = 1582296315990362920L;
3124 
3125         public Iterator<E> iterator() { return emptyIterator(); }
3126 
3127         public int size() {return 0;}
3128         public boolean isEmpty() {return true;}
3129 
3130         public boolean contains(Object obj) {return false;}
3131         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3132 
3133         public Object[] toArray() { return new Object[0]; }
3134 
3135         public <T> T[] toArray(T[] a) {
3136             if (a.length > 0)
3137                 a[0] = null;
3138             return a;
3139         }
3140 
3141         // Preserves singleton property
3142         private Object readResolve() {
3143             return EMPTY_SET;
3144         }
3145     }
3146 
3147     /**
3148      * The empty list (immutable).  This list is serializable.
3149      *
3150      * @see #emptyList()
3151      */
3152     @SuppressWarnings("unchecked")
3153     public static final List EMPTY_LIST = new EmptyList<Object>();
3154 
3155     /**
3156      * Returns the empty list (immutable).  This list is serializable.
3157      *
3158      * <p>This example illustrates the type-safe way to obtain an empty list:
3159      * <pre>
3160      *     List&lt;String&gt; s = Collections.emptyList();
3161      * </pre>
3162      * Implementation note:  Implementations of this method need not
3163      * create a separate <tt>List</tt> object for each call.   Using this
3164      * method is likely to have comparable cost to using the like-named
3165      * field.  (Unlike this method, the field does not provide type safety.)
3166      *
3167      * @see #EMPTY_LIST
3168      * @since 1.5
3169      */
3170     @SuppressWarnings("unchecked")
3171     public static final <T> List<T> emptyList() {
3172         return (List<T>) EMPTY_LIST;
3173     }
3174 
3175     /**
3176      * @serial include
3177      */
3178     private static class EmptyList<E>
3179         extends AbstractList<E>
3180         implements RandomAccess, Serializable {
3181         private static final long serialVersionUID = 8842843931221139166L;
3182 
3183         public Iterator<E> iterator() {
3184             return emptyIterator();
3185         }
3186         public ListIterator<E> listIterator() {
3187             return emptyListIterator();
3188         }
3189 
3190         public int size() {return 0;}
3191         public boolean isEmpty() {return true;}
3192 
3193         public boolean contains(Object obj) {return false;}
3194         public boolean containsAll(Collection<?> c) { return c.isEmpty(); }
3195 
3196         public Object[] toArray() { return new Object[0]; }
3197 
3198         public <T> T[] toArray(T[] a) {
3199             if (a.length > 0)
3200                 a[0] = null;
3201             return a;
3202         }
3203 
3204         public E get(int index) {
3205             throw new IndexOutOfBoundsException("Index: "+index);
3206         }
3207 
3208         public boolean equals(Object o) {
3209             return (o instanceof List) && ((List<?>)o).isEmpty();
3210         }
3211 
3212         public int hashCode() { return 1; }
3213 
3214         // Preserves singleton property
3215         private Object readResolve() {
3216             return EMPTY_LIST;
3217         }
3218     }
3219 
3220     /**
3221      * The empty map (immutable).  This map is serializable.
3222      *
3223      * @see #emptyMap()
3224      * @since 1.3
3225      */
3226     @SuppressWarnings("unchecked")
3227     public static final Map EMPTY_MAP = new EmptyMap<Object,Object>();
3228 
3229     /**
3230      * Returns the empty map (immutable).  This map is serializable.
3231      *
3232      * <p>This example illustrates the type-safe way to obtain an empty set:
3233      * <pre>
3234      *     Map&lt;String, Date&gt; s = Collections.emptyMap();
3235      * </pre>
3236      * Implementation note:  Implementations of this method need not
3237      * create a separate <tt>Map</tt> object for each call.   Using this
3238      * method is likely to have comparable cost to using the like-named
3239      * field.  (Unlike this method, the field does not provide type safety.)
3240      *
3241      * @see #EMPTY_MAP
3242      * @since 1.5
3243      */
3244     @SuppressWarnings("unchecked")
3245     public static final <K,V> Map<K,V> emptyMap() {
3246         return (Map<K,V>) EMPTY_MAP;
3247     }
3248 
3249     /**
3250      * @serial include
3251      */
3252     private static class EmptyMap<K,V>
3253         extends AbstractMap<K,V>
3254         implements Serializable
3255     {
3256         private static final long serialVersionUID = 6428348081105594320L;
3257 
3258         public int size()                          {return 0;}
3259         public boolean isEmpty()                   {return true;}
3260         public boolean containsKey(Object key)     {return false;}
3261         public boolean containsValue(Object value) {return false;}
3262         public V get(Object key)                   {return null;}
3263         public Set<K> keySet()                     {return emptySet();}
3264         public Collection<V> values()              {return emptySet();}
3265         public Set<Map.Entry<K,V>> entrySet()      {return emptySet();}
3266 
3267         public boolean equals(Object o) {
3268             return (o instanceof Map) && ((Map<?,?>)o).isEmpty();
3269         }
3270 
3271         public int hashCode()                      {return 0;}
3272 
3273         // Preserves singleton property
3274         private Object readResolve() {
3275             return EMPTY_MAP;
3276         }
3277     }
3278 
3279     // Singleton collections
3280 
3281     /**
3282      * Returns an immutable set containing only the specified object.
3283      * The returned set is serializable.
3284      *
3285      * @param o the sole object to be stored in the returned set.
3286      * @return an immutable set containing only the specified object.
3287      */
3288     public static <T> Set<T> singleton(T o) {
3289         return new SingletonSet<T>(o);
3290     }
3291 
3292     static <E> Iterator<E> singletonIterator(final E e) {
3293         return new Iterator<E>() {
3294             private boolean hasNext = true;
3295             public boolean hasNext() {
3296                 return hasNext;
3297             }
3298             public E next() {
3299                 if (hasNext) {
3300                     hasNext = false;
3301                     return e;
3302                 }
3303                 throw new NoSuchElementException();
3304             }
3305             public void remove() {
3306                 throw new UnsupportedOperationException();
3307             }
3308         };
3309     }
3310 
3311     /**
3312      * @serial include
3313      */
3314     private static class SingletonSet<E>
3315         extends AbstractSet<E>
3316         implements Serializable
3317     {
3318         private static final long serialVersionUID = 3193687207550431679L;
3319 
3320         final private E element;
3321 
3322         SingletonSet(E e) {element = e;}
3323 
3324         public Iterator<E> iterator() {
3325             return singletonIterator(element);
3326         }
3327 
3328         public int size() {return 1;}
3329 
3330         public boolean contains(Object o) {return eq(o, element);}
3331     }
3332 
3333     /**
3334      * Returns an immutable list containing only the specified object.
3335      * The returned list is serializable.
3336      *
3337      * @param o the sole object to be stored in the returned list.
3338      * @return an immutable list containing only the specified object.
3339      * @since 1.3
3340      */
3341     public static <T> List<T> singletonList(T o) {
3342         return new SingletonList<T>(o);
3343     }
3344 
3345     /**
3346      * @serial include
3347      */
3348     private static class SingletonList<E>
3349         extends AbstractList<E>
3350         implements RandomAccess, Serializable {
3351 
3352         private static final long serialVersionUID = 3093736618740652951L;
3353 
3354         private final E element;
3355 
3356         SingletonList(E obj)                {element = obj;}
3357 
3358         public Iterator<E> iterator() {
3359             return singletonIterator(element);
3360         }
3361 
3362         public int size()                   {return 1;}
3363 
3364         public boolean contains(Object obj) {return eq(obj, element);}
3365 
3366         public E get(int index) {
3367             if (index != 0)
3368               throw new IndexOutOfBoundsException("Index: "+index+", Size: 1");
3369             return element;
3370         }
3371     }
3372 
3373     /**
3374      * Returns an immutable map, mapping only the specified key to the
3375      * specified value.  The returned map is serializable.
3376      *
3377      * @param key the sole key to be stored in the returned map.
3378      * @param value the value to which the returned map maps <tt>key</tt>.
3379      * @return an immutable map containing only the specified key-value
3380      *         mapping.
3381      * @since 1.3
3382      */
3383     public static <K,V> Map<K,V> singletonMap(K key, V value) {
3384         return new SingletonMap<K,V>(key, value);
3385     }
3386 
3387     /**
3388      * @serial include
3389      */
3390     private static class SingletonMap<K,V>
3391           extends AbstractMap<K,V>
3392           implements Serializable {
3393         private static final long serialVersionUID = -6979724477215052911L;
3394 
3395         private final K k;
3396         private final V v;
3397 
3398         SingletonMap(K key, V value) {
3399             k = key;
3400             v = value;
3401         }
3402 
3403         public int size()                          {return 1;}
3404 
3405         public boolean isEmpty()                   {return false;}
3406 
3407         public boolean containsKey(Object key)     {return eq(key, k);}
3408 
3409         public boolean containsValue(Object value) {return eq(value, v);}
3410 
3411         public V get(Object key)                   {return (eq(key, k) ? v : null);}
3412 
3413         private transient Set<K> keySet = null;
3414         private transient Set<Map.Entry<K,V>> entrySet = null;
3415         private transient Collection<V> values = null;
3416 
3417         public Set<K> keySet() {
3418             if (keySet==null)
3419                 keySet = singleton(k);
3420             return keySet;
3421         }
3422 
3423         public Set<Map.Entry<K,V>> entrySet() {
3424             if (entrySet==null)
3425                 entrySet = Collections.<Map.Entry<K,V>>singleton(
3426                     new SimpleImmutableEntry<K,V>(k, v));
3427             return entrySet;
3428         }
3429 
3430         public Collection<V> values() {
3431             if (values==null)
3432                 values = singleton(v);
3433             return values;
3434         }
3435 
3436     }
3437 
3438     // Miscellaneous
3439 
3440     /**
3441      * Returns an immutable list consisting of <tt>n</tt> copies of the
3442      * specified object.  The newly allocated data object is tiny (it contains
3443      * a single reference to the data object).  This method is useful in
3444      * combination with the <tt>List.addAll</tt> method to grow lists.
3445      * The returned list is serializable.
3446      *
3447      * @param  n the number of elements in the returned list.
3448      * @param  o the element to appear repeatedly in the returned list.
3449      * @return an immutable list consisting of <tt>n</tt> copies of the
3450      *         specified object.
3451      * @throws IllegalArgumentException if n &lt; 0.
3452      * @see    List#addAll(Collection)
3453      * @see    List#addAll(int, Collection)
3454      */
3455     public static <T> List<T> nCopies(int n, T o) {
3456         if (n < 0)
3457             throw new IllegalArgumentException("List length = " + n);
3458         return new CopiesList<T>(n, o);
3459     }
3460 
3461     /**
3462      * @serial include
3463      */
3464     private static class CopiesList<E>
3465         extends AbstractList<E>
3466         implements RandomAccess, Serializable
3467     {
3468         private static final long serialVersionUID = 2739099268398711800L;
3469 
3470         final int n;
3471         final E element;
3472 
3473         CopiesList(int n, E e) {
3474             assert n >= 0;
3475             this.n = n;
3476             element = e;
3477         }
3478 
3479         public int size() {
3480             return n;
3481         }
3482 
3483         public boolean contains(Object obj) {
3484             return n != 0 && eq(obj, element);
3485         }
3486 
3487         public int indexOf(Object o) {
3488             return contains(o) ? 0 : -1;
3489         }
3490 
3491         public int lastIndexOf(Object o) {
3492             return contains(o) ? n - 1 : -1;
3493         }
3494 
3495         public E get(int index) {
3496             if (index < 0 || index >= n)
3497                 throw new IndexOutOfBoundsException("Index: "+index+
3498                                                     ", Size: "+n);
3499             return element;
3500         }
3501 
3502         public Object[] toArray() {
3503             final Object[] a = new Object[n];
3504             if (element != null)
3505                 Arrays.fill(a, 0, n, element);
3506             return a;
3507         }
3508 
3509         public <T> T[] toArray(T[] a) {
3510             final int n = this.n;
3511             if (a.length < n) {
3512                 a = (T[])java.lang.reflect.Array
3513                     .newInstance(a.getClass().getComponentType(), n);
3514                 if (element != null)
3515                     Arrays.fill(a, 0, n, element);
3516             } else {
3517                 Arrays.fill(a, 0, n, element);
3518                 if (a.length > n)
3519                     a[n] = null;
3520             }
3521             return a;
3522         }
3523 
3524         public List<E> subList(int fromIndex, int toIndex) {
3525             if (fromIndex < 0)
3526                 throw new IndexOutOfBoundsException("fromIndex = " + fromIndex);
3527             if (toIndex > n)
3528                 throw new IndexOutOfBoundsException("toIndex = " + toIndex);
3529             if (fromIndex > toIndex)
3530                 throw new IllegalArgumentException("fromIndex(" + fromIndex +
3531                                                    ") > toIndex(" + toIndex + ")");
3532             return new CopiesList<E>(toIndex - fromIndex, element);
3533         }
3534     }
3535 
3536     /**
3537      * Returns a comparator that imposes the reverse of the <i>natural
3538      * ordering</i> on a collection of objects that implement the
3539      * <tt>Comparable</tt> interface.  (The natural ordering is the ordering
3540      * imposed by the objects' own <tt>compareTo</tt> method.)  This enables a
3541      * simple idiom for sorting (or maintaining) collections (or arrays) of
3542      * objects that implement the <tt>Comparable</tt> interface in
3543      * reverse-natural-order.  For example, suppose a is an array of
3544      * strings. Then: <pre>
3545      *          Arrays.sort(a, Collections.reverseOrder());
3546      * </pre> sorts the array in reverse-lexicographic (alphabetical) order.<p>
3547      *
3548      * The returned comparator is serializable.
3549      *
3550      * @return a comparator that imposes the reverse of the <i>natural
3551      *         ordering</i> on a collection of objects that implement
3552      *         the <tt>Comparable</tt> interface.
3553      * @see Comparable
3554      */
3555     public static <T> Comparator<T> reverseOrder() {
3556         return (Comparator<T>) ReverseComparator.REVERSE_ORDER;
3557     }
3558 
3559     /**
3560      * @serial include
3561      */
3562     private static class ReverseComparator
3563         implements Comparator<Comparable<Object>>, Serializable {
3564 
3565         private static final long serialVersionUID = 7207038068494060240L;
3566 
3567         static final ReverseComparator REVERSE_ORDER
3568             = new ReverseComparator();
3569 
3570         public int compare(Comparable<Object> c1, Comparable<Object> c2) {
3571             return c2.compareTo(c1);
3572         }
3573 
3574         private Object readResolve() { return reverseOrder(); }
3575     }
3576 
3577     /**
3578      * Returns a comparator that imposes the reverse ordering of the specified
3579      * comparator.  If the specified comparator is null, this method is
3580      * equivalent to {@link #reverseOrder()} (in other words, it returns a
3581      * comparator that imposes the reverse of the <i>natural ordering</i> on a
3582      * collection of objects that implement the Comparable interface).
3583      *
3584      * <p>The returned comparator is serializable (assuming the specified
3585      * comparator is also serializable or null).
3586      *
3587      * @return a comparator that imposes the reverse ordering of the
3588      *         specified comparator
3589      * @since 1.5
3590      */
3591     public static <T> Comparator<T> reverseOrder(Comparator<T> cmp) {
3592         if (cmp == null)
3593             return reverseOrder();
3594 
3595         if (cmp instanceof ReverseComparator2)
3596             return ((ReverseComparator2<T>)cmp).cmp;
3597 
3598         return new ReverseComparator2<T>(cmp);
3599     }
3600 
3601     /**
3602      * @serial include
3603      */
3604     private static class ReverseComparator2<T> implements Comparator<T>,
3605         Serializable
3606     {
3607         private static final long serialVersionUID = 4374092139857L;
3608 
3609         /**
3610          * The comparator specified in the static factory.  This will never
3611          * be null, as the static factory returns a ReverseComparator
3612          * instance if its argument is null.
3613          *
3614          * @serial
3615          */
3616         final Comparator<T> cmp;
3617 
3618         ReverseComparator2(Comparator<T> cmp) {
3619             assert cmp != null;
3620             this.cmp = cmp;
3621         }
3622 
3623         public int compare(T t1, T t2) {
3624             return cmp.compare(t2, t1);
3625         }
3626 
3627         public boolean equals(Object o) {
3628             return (o == this) ||
3629                 (o instanceof ReverseComparator2 &&
3630                  cmp.equals(((ReverseComparator2)o).cmp));
3631         }
3632 
3633         public int hashCode() {
3634             return cmp.hashCode() ^ Integer.MIN_VALUE;
3635         }
3636     }
3637 
3638     /**
3639      * Returns an enumeration over the specified collection.  This provides
3640      * interoperability with legacy APIs that require an enumeration
3641      * as input.
3642      *
3643      * @param c the collection for which an enumeration is to be returned.
3644      * @return an enumeration over the specified collection.
3645      * @see Enumeration
3646      */
3647     public static <T> Enumeration<T> enumeration(final Collection<T> c) {
3648         return new Enumeration<T>() {
3649             private final Iterator<T> i = c.iterator();
3650 
3651             public boolean hasMoreElements() {
3652                 return i.hasNext();
3653             }
3654 
3655             public T nextElement() {
3656                 return i.next();
3657             }
3658         };
3659     }
3660 
3661     /**
3662      * Returns an array list containing the elements returned by the
3663      * specified enumeration in the order they are returned by the
3664      * enumeration.  This method provides interoperability between
3665      * legacy APIs that return enumerations and new APIs that require
3666      * collections.
3667      *
3668      * @param e enumeration providing elements for the returned
3669      *          array list
3670      * @return an array list containing the elements returned
3671      *         by the specified enumeration.
3672      * @since 1.4
3673      * @see Enumeration
3674      * @see ArrayList
3675      */
3676     public static <T> ArrayList<T> list(Enumeration<T> e) {
3677         ArrayList<T> l = new ArrayList<T>();
3678         while (e.hasMoreElements())
3679             l.add(e.nextElement());
3680         return l;
3681     }
3682 
3683     /**
3684      * Returns true if the specified arguments are equal, or both null.
3685      */
3686     static boolean eq(Object o1, Object o2) {
3687         return o1==null ? o2==null : o1.equals(o2);
3688     }
3689 
3690     /**
3691      * Returns the number of elements in the specified collection equal to the
3692      * specified object.  More formally, returns the number of elements
3693      * <tt>e</tt> in the collection such that
3694      * <tt>(o == null ? e == null : o.equals(e))</tt>.
3695      *
3696      * @param c the collection in which to determine the frequency
3697      *     of <tt>o</tt>
3698      * @param o the object whose frequency is to be determined
3699      * @throws NullPointerException if <tt>c</tt> is null
3700      * @since 1.5
3701      */
3702     public static int frequency(Collection<?> c, Object o) {
3703         int result = 0;
3704         if (o == null) {
3705             for (Object e : c)
3706                 if (e == null)
3707                     result++;
3708         } else {
3709             for (Object e : c)
3710                 if (o.equals(e))
3711                     result++;
3712         }
3713         return result;
3714     }
3715 
3716     /**
3717      * Returns <tt>true</tt> if the two specified collections have no
3718      * elements in common.
3719      *
3720      * <p>Care must be exercised if this method is used on collections that
3721      * do not comply with the general contract for <tt>Collection</tt>.
3722      * Implementations may elect to iterate over either collection and test
3723      * for containment in the other collection (or to perform any equivalent
3724      * computation).  If either collection uses a nonstandard equality test
3725      * (as does a {@link SortedSet} whose ordering is not <i>compatible with
3726      * equals</i>, or the key set of an {@link IdentityHashMap}), both
3727      * collections must use the same nonstandard equality test, or the
3728      * result of this method is undefined.
3729      *
3730      * <p>Note that it is permissible to pass the same collection in both
3731      * parameters, in which case the method will return true if and only if
3732      * the collection is empty.
3733      *
3734      * @param c1 a collection
3735      * @param c2 a collection
3736      * @throws NullPointerException if either collection is null
3737      * @since 1.5
3738      */
3739     public static boolean disjoint(Collection<?> c1, Collection<?> c2) {
3740         /*
3741          * We're going to iterate through c1 and test for inclusion in c2.
3742          * If c1 is a Set and c2 isn't, swap the collections.  Otherwise,
3743          * place the shorter collection in c1.  Hopefully this heuristic
3744          * will minimize the cost of the operation.
3745          */
3746         if ((c1 instanceof Set) && !(c2 instanceof Set) ||
3747             (c1.size() > c2.size())) {
3748             Collection<?> tmp = c1;
3749             c1 = c2;
3750             c2 = tmp;
3751         }
3752 
3753         for (Object e : c1)
3754             if (c2.contains(e))
3755                 return false;
3756         return true;
3757     }
3758 
3759     /**
3760      * Adds all of the specified elements to the specified collection.
3761      * Elements to be added may be specified individually or as an array.
3762      * The behavior of this convenience method is identical to that of
3763      * <tt>c.addAll(Arrays.asList(elements))</tt>, but this method is likely
3764      * to run significantly faster under most implementations.
3765      *
3766      * <p>When elements are specified individually, this method provides a
3767      * convenient way to add a few elements to an existing collection:
3768      * <pre>
3769      *     Collections.addAll(flavors, "Peaches 'n Plutonium", "Rocky Racoon");
3770      * </pre>
3771      *
3772      * @param c the collection into which <tt>elements</tt> are to be inserted
3773      * @param elements the elements to insert into <tt>c</tt>
3774      * @return <tt>true</tt> if the collection changed as a result of the call
3775      * @throws UnsupportedOperationException if <tt>c</tt> does not support
3776      *         the <tt>add</tt> operation
3777      * @throws NullPointerException if <tt>elements</tt> contains one or more
3778      *         null values and <tt>c</tt> does not permit null elements, or
3779      *         if <tt>c</tt> or <tt>elements</tt> are <tt>null</tt>
3780      * @throws IllegalArgumentException if some property of a value in
3781      *         <tt>elements</tt> prevents it from being added to <tt>c</tt>
3782      * @see Collection#addAll(Collection)
3783      * @since 1.5
3784      */
3785     public static <T> boolean addAll(Collection<? super T> c, T... elements) {
3786         boolean result = false;
3787         for (T element : elements)
3788             result |= c.add(element);
3789         return result;
3790     }
3791 
3792     /**
3793      * Returns a set backed by the specified map.  The resulting set displays
3794      * the same ordering, concurrency, and performance characteristics as the
3795      * backing map.  In essence, this factory method provides a {@link Set}
3796      * implementation corresponding to any {@link Map} implementation.  There
3797      * is no need to use this method on a {@link Map} implementation that
3798      * already has a corresponding {@link Set} implementation (such as {@link
3799      * HashMap} or {@link TreeMap}).
3800      *
3801      * <p>Each method invocation on the set returned by this method results in
3802      * exactly one method invocation on the backing map or its <tt>keySet</tt>
3803      * view, with one exception.  The <tt>addAll</tt> method is implemented
3804      * as a sequence of <tt>put</tt> invocations on the backing map.
3805      *
3806      * <p>The specified map must be empty at the time this method is invoked,
3807      * and should not be accessed directly after this method returns.  These
3808      * conditions are ensured if the map is created empty, passed directly
3809      * to this method, and no reference to the map is retained, as illustrated
3810      * in the following code fragment:
3811      * <pre>
3812      *    Set&lt;Object&gt; weakHashSet = Collections.newSetFromMap(
3813      *        new WeakHashMap&lt;Object, Boolean&gt;());
3814      * </pre>
3815      *
3816      * @param map the backing map
3817      * @return the set backed by the map
3818      * @throws IllegalArgumentException if <tt>map</tt> is not empty
3819      * @since 1.6
3820      */
3821     public static <E> Set<E> newSetFromMap(Map<E, Boolean> map) {
3822         return new SetFromMap<E>(map);
3823     }
3824 
3825     /**
3826      * @serial include
3827      */
3828     private static class SetFromMap<E> extends AbstractSet<E>
3829         implements Set<E>, Serializable
3830     {
3831         private final Map<E, Boolean> m;  // The backing map
3832         private transient Set<E> s;       // Its keySet
3833 
3834         SetFromMap(Map<E, Boolean> map) {
3835             if (!map.isEmpty())
3836                 throw new IllegalArgumentException("Map is non-empty");
3837             m = map;
3838             s = map.keySet();
3839         }
3840 
3841         public void clear()               {        m.clear(); }
3842         public int size()                 { return m.size(); }
3843         public boolean isEmpty()          { return m.isEmpty(); }
3844         public boolean contains(Object o) { return m.containsKey(o); }
3845         public boolean remove(Object o)   { return m.remove(o) != null; }
3846         public boolean add(E e) { return m.put(e, Boolean.TRUE) == null; }
3847         public Iterator<E> iterator()     { return s.iterator(); }
3848         public Object[] toArray()         { return s.toArray(); }
3849         public <T> T[] toArray(T[] a)     { return s.toArray(a); }
3850         public String toString()          { return s.toString(); }
3851         public int hashCode()             { return s.hashCode(); }
3852         public boolean equals(Object o)   { return o == this || s.equals(o); }
3853         public boolean containsAll(Collection<?> c) {return s.containsAll(c);}
3854         public boolean removeAll(Collection<?> c)   {return s.removeAll(c);}
3855         public boolean retainAll(Collection<?> c)   {return s.retainAll(c);}
3856         // addAll is the only inherited implementation
3857 
3858         private static final long serialVersionUID = 2454657854757543876L;
3859 
3860         private void readObject(java.io.ObjectInputStream stream)
3861             throws IOException, ClassNotFoundException
3862         {
3863             stream.defaultReadObject();
3864             s = m.keySet();
3865         }
3866     }
3867 
3868     /**
3869      * Returns a view of a {@link Deque} as a Last-in-first-out (Lifo)
3870      * {@link Queue}. Method <tt>add</tt> is mapped to <tt>push</tt>,
3871      * <tt>remove</tt> is mapped to <tt>pop</tt> and so on. This
3872      * view can be useful when you would like to use a method
3873      * requiring a <tt>Queue</tt> but you need Lifo ordering.
3874      *
3875      * <p>Each method invocation on the queue returned by this method
3876      * results in exactly one method invocation on the backing deque, with
3877      * one exception.  The {@link Queue#addAll addAll} method is
3878      * implemented as a sequence of {@link Deque#addFirst addFirst}
3879      * invocations on the backing deque.
3880      *
3881      * @param deque the deque
3882      * @return the queue
3883      * @since  1.6
3884      */
3885     public static <T> Queue<T> asLifoQueue(Deque<T> deque) {
3886         return new AsLIFOQueue<T>(deque);
3887     }
3888 
3889     /**
3890      * @serial include
3891      */
3892     static class AsLIFOQueue<E> extends AbstractQueue<E>
3893         implements Queue<E>, Serializable {
3894         private static final long serialVersionUID = 1802017725587941708L;
3895         private final Deque<E> q;
3896         AsLIFOQueue(Deque<E> q)           { this.q = q; }
3897         public boolean add(E e)           { q.addFirst(e); return true; }
3898         public boolean offer(E e)         { return q.offerFirst(e); }
3899         public E poll()                   { return q.pollFirst(); }
3900         public E remove()                 { return q.removeFirst(); }
3901         public E peek()                   { return q.peekFirst(); }
3902         public E element()                { return q.getFirst(); }
3903         public void clear()               {        q.clear(); }
3904         public int size()                 { return q.size(); }
3905         public boolean isEmpty()          { return q.isEmpty(); }
3906         public boolean contains(Object o) { return q.contains(o); }
3907         public boolean remove(Object o)   { return q.remove(o); }
3908         public Iterator<E> iterator()     { return q.iterator(); }
3909         public Object[] toArray()         { return q.toArray(); }
3910         public <T> T[] toArray(T[] a)     { return q.toArray(a); }
3911         public String toString()          { return q.toString(); }
3912         public boolean containsAll(Collection<?> c) {return q.containsAll(c);}
3913         public boolean removeAll(Collection<?> c)   {return q.removeAll(c);}
3914         public boolean retainAll(Collection<?> c)   {return q.retainAll(c);}
3915         // We use inherited addAll; forwarding addAll would be wrong
3916     }
3917 }