1 /*
   2  * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.*;
  28 
  29 /**
  30  * This class implements a hash table, which maps keys to values. Any
  31  * non-<code>null</code> object can be used as a key or as a value. <p>
  32  *
  33  * To successfully store and retrieve objects from a hashtable, the
  34  * objects used as keys must implement the <code>hashCode</code>
  35  * method and the <code>equals</code> method. <p>
  36  *
  37  * An instance of <code>Hashtable</code> has two parameters that affect its
  38  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  39  * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
  40  * <i>initial capacity</i> is simply the capacity at the time the hash table
  41  * is created.  Note that the hash table is <i>open</i>: in the case of a "hash
  42  * collision", a single bucket stores multiple entries, which must be searched
  43  * sequentially.  The <i>load factor</i> is a measure of how full the hash
  44  * table is allowed to get before its capacity is automatically increased.
  45  * The initial capacity and load factor parameters are merely hints to
  46  * the implementation.  The exact details as to when and whether the rehash
  47  * method is invoked are implementation-dependent.<p>
  48  *
  49  * Generally, the default load factor (.75) offers a good tradeoff between
  50  * time and space costs.  Higher values decrease the space overhead but
  51  * increase the time cost to look up an entry (which is reflected in most
  52  * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
  53  *
  54  * The initial capacity controls a tradeoff between wasted space and the
  55  * need for <code>rehash</code> operations, which are time-consuming.
  56  * No <code>rehash</code> operations will <i>ever</i> occur if the initial
  57  * capacity is greater than the maximum number of entries the
  58  * <tt>Hashtable</tt> will contain divided by its load factor.  However,
  59  * setting the initial capacity too high can waste space.<p>
  60  *
  61  * If many entries are to be made into a <code>Hashtable</code>,
  62  * creating it with a sufficiently large capacity may allow the
  63  * entries to be inserted more efficiently than letting it perform
  64  * automatic rehashing as needed to grow the table. <p>
  65  *
  66  * This example creates a hashtable of numbers. It uses the names of
  67  * the numbers as keys:
  68  * <pre>   {@code
  69  *   Hashtable<String, Integer> numbers
  70  *     = new Hashtable<String, Integer>();
  71  *   numbers.put("one", 1);
  72  *   numbers.put("two", 2);
  73  *   numbers.put("three", 3);}</pre>
  74  *
  75  * <p>To retrieve a number, use the following code:
  76  * <pre>   {@code
  77  *   Integer n = numbers.get("two");
  78  *   if (n != null) {
  79  *     System.out.println("two = " + n);
  80  *   }}</pre>
  81  *
  82  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
  83  * returned by all of this class's "collection view methods" are
  84  * <em>fail-fast</em>: if the Hashtable is structurally modified at any time
  85  * after the iterator is created, in any way except through the iterator's own
  86  * <tt>remove</tt> method, the iterator will throw a {@link
  87  * ConcurrentModificationException}.  Thus, in the face of concurrent
  88  * modification, the iterator fails quickly and cleanly, rather than risking
  89  * arbitrary, non-deterministic behavior at an undetermined time in the future.
  90  * The Enumerations returned by Hashtable's keys and elements methods are
  91  * <em>not</em> fail-fast.
  92  *
  93  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  94  * as it is, generally speaking, impossible to make any hard guarantees in the
  95  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  96  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
  97  * Therefore, it would be wrong to write a program that depended on this
  98  * exception for its correctness: <i>the fail-fast behavior of iterators
  99  * should be used only to detect bugs.</i>
 100  *
 101  * <p>As of the Java 2 platform v1.2, this class was retrofitted to
 102  * implement the {@link Map} interface, making it a member of the
 103  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 104  *
 105  * Java Collections Framework</a>.  Unlike the new collection
 106  * implementations, {@code Hashtable} is synchronized.  If a
 107  * thread-safe implementation is not needed, it is recommended to use
 108  * {@link HashMap} in place of {@code Hashtable}.  If a thread-safe
 109  * highly-concurrent implementation is desired, then it is recommended
 110  * to use {@link java.util.concurrent.ConcurrentHashMap} in place of
 111  * {@code Hashtable}.
 112  *
 113  * @author  Arthur van Hoff
 114  * @author  Josh Bloch
 115  * @author  Neal Gafter
 116  * @see     Object#equals(java.lang.Object)
 117  * @see     Object#hashCode()
 118  * @see     Hashtable#rehash()
 119  * @see     Collection
 120  * @see     Map
 121  * @see     HashMap
 122  * @see     TreeMap
 123  * @since JDK1.0
 124  */
 125 public class Hashtable<K,V>
 126     extends Dictionary<K,V>
 127     implements Map<K,V>, Cloneable, java.io.Serializable {
 128 
 129     /**
 130      * The hash table data.
 131      */
 132     private transient Entry<K,V>[] table;
 133 
 134     /**
 135      * The total number of entries in the hash table.
 136      */
 137     private transient int count;
 138 
 139     /**
 140      * The table is rehashed when its size exceeds this threshold.  (The
 141      * value of this field is (int)(capacity * loadFactor).)
 142      *
 143      * @serial
 144      */
 145     private int threshold;
 146 
 147     /**
 148      * The load factor for the hashtable.
 149      *
 150      * @serial
 151      */
 152     private float loadFactor;
 153 
 154     /**
 155      * The number of times this Hashtable has been structurally modified
 156      * Structural modifications are those that change the number of entries in
 157      * the Hashtable or otherwise modify its internal structure (e.g.,
 158      * rehash).  This field is used to make iterators on Collection-views of
 159      * the Hashtable fail-fast.  (See ConcurrentModificationException).
 160      */
 161     private transient int modCount = 0;
 162 
 163     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 164     private static final long serialVersionUID = 1421746759512286392L;
 165 
 166     /**
 167      * The default threshold of map capacity above which alternative hashing is
 168      * used for String keys. Alternative hashing reduces the incidence of
 169      * collisions due to weak hash code calculation for String keys.
 170      * <p>
 171      * This value may be overridden by defining the system property
 172      * {@code jdk.map.althashing.threshold}. A property value of {@code 1}
 173      * forces alternative hashing to be used at all times whereas
 174      * {@code -1} value ensures that alternative hashing is never used.
 175      */
 176     static final int ALTERNATIVE_HASHING_THRESHOLD_DEFAULT = Integer.MAX_VALUE;
 177 
 178     /**
 179      * holds values which can't be initialized until after VM is booted.
 180      */
 181     private static class Holder {
 182 
 183         /**
 184          * Table capacity above which to switch to use alternative hashing.
 185          */
 186         static final int ALTERNATIVE_HASHING_THRESHOLD;
 187 
 188         static {
 189             String altThreshold = java.security.AccessController.doPrivileged(
 190                 new sun.security.action.GetPropertyAction(
 191                     "jdk.map.althashing.threshold"));
 192 
 193             int threshold;
 194             try {
 195                 threshold = (null != altThreshold)
 196                         ? Integer.parseInt(altThreshold)
 197                         : ALTERNATIVE_HASHING_THRESHOLD_DEFAULT;
 198 
 199                 // disable alternative hashing if -1
 200                 if (threshold == -1) {
 201                     threshold = Integer.MAX_VALUE;
 202                 }
 203 
 204                 if (threshold < 0) {
 205                     throw new IllegalArgumentException("value must be positive integer.");
 206                 }
 207             } catch(IllegalArgumentException failed) {
 208                 throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
 209             }
 210 
 211             ALTERNATIVE_HASHING_THRESHOLD = threshold;
 212         }
 213     }
 214 
 215     /**
 216      * If {@code true} then perform alternative hashing of String keys to reduce
 217      * the incidence of collisions due to weak hash code calculation.
 218      */
 219     transient boolean useAltHashing;
 220 
 221     // Unsafe mechanics
 222     /**
 223     * Unsafe utilities
 224     */
 225     private static final sun.misc.Unsafe UNSAFE;
 226 
 227     /**
 228     * Offset of "final" hashSeed field we must set in readObject() method.
 229     */
 230     private static final long HASHSEED_OFFSET;
 231 
 232      static {
 233         try {
 234             UNSAFE = sun.misc.Unsafe.getUnsafe();
 235             HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
 236                 Hashtable.class.getDeclaredField("hashSeed"));
 237         } catch (NoSuchFieldException | SecurityException e) {
 238             throw new Error("Failed to record hashSeed offset", e);
 239         }
 240      }
 241 
 242     /**
 243      * A randomizing value associated with this instance that is applied to
 244      * hash code of keys to make hash collisions harder to find.
 245      */
 246     transient final int hashSeed = sun.misc.Hashing.randomHashSeed(this);
 247 
 248     private int hash(Object k) {
 249         if (useAltHashing) {
 250             if (k.getClass() == String.class) {
 251                 return sun.misc.Hashing.stringHash32((String) k);
 252             } else {
 253                 int h = hashSeed ^ k.hashCode();
 254 
 255                 // This function ensures that hashCodes that differ only by
 256                 // constant multiples at each bit position have a bounded
 257                 // number of collisions (approximately 8 at default load factor).
 258                 h ^= (h >>> 20) ^ (h >>> 12);
 259                 return h ^ (h >>> 7) ^ (h >>> 4);
 260              }
 261         } else  {
 262             return k.hashCode();
 263         }
 264     }
 265 
 266     /**
 267      * Constructs a new, empty hashtable with the specified initial
 268      * capacity and the specified load factor.
 269      *
 270      * @param      initialCapacity   the initial capacity of the hashtable.
 271      * @param      loadFactor        the load factor of the hashtable.
 272      * @exception  IllegalArgumentException  if the initial capacity is less
 273      *             than zero, or if the load factor is nonpositive.
 274      */
 275     public Hashtable(int initialCapacity, float loadFactor) {
 276         if (initialCapacity < 0)
 277             throw new IllegalArgumentException("Illegal Capacity: "+
 278                                                initialCapacity);
 279         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 280             throw new IllegalArgumentException("Illegal Load: "+loadFactor);
 281 
 282         if (initialCapacity==0)
 283             initialCapacity = 1;
 284         this.loadFactor = loadFactor;
 285         table = new Entry[initialCapacity];
 286         threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 287         useAltHashing = sun.misc.VM.isBooted() &&
 288                 (initialCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
 289     }
 290 
 291     /**
 292      * Constructs a new, empty hashtable with the specified initial capacity
 293      * and default load factor (0.75).
 294      *
 295      * @param     initialCapacity   the initial capacity of the hashtable.
 296      * @exception IllegalArgumentException if the initial capacity is less
 297      *              than zero.
 298      */
 299     public Hashtable(int initialCapacity) {
 300         this(initialCapacity, 0.75f);
 301     }
 302 
 303     /**
 304      * Constructs a new, empty hashtable with a default initial capacity (11)
 305      * and load factor (0.75).
 306      */
 307     public Hashtable() {
 308         this(11, 0.75f);
 309     }
 310 
 311     /**
 312      * Constructs a new hashtable with the same mappings as the given
 313      * Map.  The hashtable is created with an initial capacity sufficient to
 314      * hold the mappings in the given Map and a default load factor (0.75).
 315      *
 316      * @param t the map whose mappings are to be placed in this map.
 317      * @throws NullPointerException if the specified map is null.
 318      * @since   1.2
 319      */
 320     public Hashtable(Map<? extends K, ? extends V> t) {
 321         this(Math.max(2*t.size(), 11), 0.75f);
 322         putAll(t);
 323     }
 324 
 325     /**
 326      * Returns the number of keys in this hashtable.
 327      *
 328      * @return  the number of keys in this hashtable.
 329      */
 330     public synchronized int size() {
 331         return count;
 332     }
 333 
 334     /**
 335      * Tests if this hashtable maps no keys to values.
 336      *
 337      * @return  <code>true</code> if this hashtable maps no keys to values;
 338      *          <code>false</code> otherwise.
 339      */
 340     public synchronized boolean isEmpty() {
 341         return count == 0;
 342     }
 343 
 344     /**
 345      * Returns an enumeration of the keys in this hashtable.
 346      *
 347      * @return  an enumeration of the keys in this hashtable.
 348      * @see     Enumeration
 349      * @see     #elements()
 350      * @see     #keySet()
 351      * @see     Map
 352      */
 353     public synchronized Enumeration<K> keys() {
 354         return this.<K>getEnumeration(KEYS);
 355     }
 356 
 357     /**
 358      * Returns an enumeration of the values in this hashtable.
 359      * Use the Enumeration methods on the returned object to fetch the elements
 360      * sequentially.
 361      *
 362      * @return  an enumeration of the values in this hashtable.
 363      * @see     java.util.Enumeration
 364      * @see     #keys()
 365      * @see     #values()
 366      * @see     Map
 367      */
 368     public synchronized Enumeration<V> elements() {
 369         return this.<V>getEnumeration(VALUES);
 370     }
 371 
 372     /**
 373      * Tests if some key maps into the specified value in this hashtable.
 374      * This operation is more expensive than the {@link #containsKey
 375      * containsKey} method.
 376      *
 377      * <p>Note that this method is identical in functionality to
 378      * {@link #containsValue containsValue}, (which is part of the
 379      * {@link Map} interface in the collections framework).
 380      *
 381      * @param      value   a value to search for
 382      * @return     <code>true</code> if and only if some key maps to the
 383      *             <code>value</code> argument in this hashtable as
 384      *             determined by the <tt>equals</tt> method;
 385      *             <code>false</code> otherwise.
 386      * @exception  NullPointerException  if the value is <code>null</code>
 387      */
 388     public synchronized boolean contains(Object value) {
 389         if (value == null) {
 390             throw new NullPointerException();
 391         }
 392 
 393         Entry tab[] = table;
 394         for (int i = tab.length ; i-- > 0 ;) {
 395             for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
 396                 if (e.value.equals(value)) {
 397                     return true;
 398                 }
 399             }
 400         }
 401         return false;
 402     }
 403 
 404     /**
 405      * Returns true if this hashtable maps one or more keys to this value.
 406      *
 407      * <p>Note that this method is identical in functionality to {@link
 408      * #contains contains} (which predates the {@link Map} interface).
 409      *
 410      * @param value value whose presence in this hashtable is to be tested
 411      * @return <tt>true</tt> if this map maps one or more keys to the
 412      *         specified value
 413      * @throws NullPointerException  if the value is <code>null</code>
 414      * @since 1.2
 415      */
 416     public boolean containsValue(Object value) {
 417         return contains(value);
 418     }
 419 
 420     /**
 421      * Tests if the specified object is a key in this hashtable.
 422      *
 423      * @param   key   possible key
 424      * @return  <code>true</code> if and only if the specified object
 425      *          is a key in this hashtable, as determined by the
 426      *          <tt>equals</tt> method; <code>false</code> otherwise.
 427      * @throws  NullPointerException  if the key is <code>null</code>
 428      * @see     #contains(Object)
 429      */
 430     public synchronized boolean containsKey(Object key) {
 431         Entry tab[] = table;
 432         int hash = hash(key);
 433         int index = (hash & 0x7FFFFFFF) % tab.length;
 434         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 435             if ((e.hash == hash) && e.key.equals(key)) {
 436                 return true;
 437             }
 438         }
 439         return false;
 440     }
 441 
 442     /**
 443      * Returns the value to which the specified key is mapped,
 444      * or {@code null} if this map contains no mapping for the key.
 445      *
 446      * <p>More formally, if this map contains a mapping from a key
 447      * {@code k} to a value {@code v} such that {@code (key.equals(k))},
 448      * then this method returns {@code v}; otherwise it returns
 449      * {@code null}.  (There can be at most one such mapping.)
 450      *
 451      * @param key the key whose associated value is to be returned
 452      * @return the value to which the specified key is mapped, or
 453      *         {@code null} if this map contains no mapping for the key
 454      * @throws NullPointerException if the specified key is null
 455      * @see     #put(Object, Object)
 456      */
 457     public synchronized V get(Object key) {
 458         Entry tab[] = table;
 459         int hash = hash(key);
 460         int index = (hash & 0x7FFFFFFF) % tab.length;
 461         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 462             if ((e.hash == hash) && e.key.equals(key)) {
 463                 return e.value;
 464             }
 465         }
 466         return null;
 467     }
 468 
 469     /**
 470      * The maximum size of array to allocate.
 471      * Some VMs reserve some header words in an array.
 472      * Attempts to allocate larger arrays may result in
 473      * OutOfMemoryError: Requested array size exceeds VM limit
 474      */
 475     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 476 
 477     /**
 478      * Increases the capacity of and internally reorganizes this
 479      * hashtable, in order to accommodate and access its entries more
 480      * efficiently.  This method is called automatically when the
 481      * number of keys in the hashtable exceeds this hashtable's capacity
 482      * and load factor.
 483      */
 484     protected void rehash() {
 485         int oldCapacity = table.length;
 486         Entry<K,V>[] oldMap = table;
 487 
 488         // overflow-conscious code
 489         int newCapacity = (oldCapacity << 1) + 1;
 490         if (newCapacity - MAX_ARRAY_SIZE > 0) {
 491             if (oldCapacity == MAX_ARRAY_SIZE)
 492                 // Keep running with MAX_ARRAY_SIZE buckets
 493                 return;
 494             newCapacity = MAX_ARRAY_SIZE;
 495         }
 496         Entry<K,V>[] newMap = new Entry[newCapacity];
 497 
 498         modCount++;
 499         threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 500         boolean currentAltHashing = useAltHashing;
 501         useAltHashing = sun.misc.VM.isBooted() &&
 502                 (newCapacity >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
 503         boolean rehash = currentAltHashing ^ useAltHashing;
 504 
 505         table = newMap;
 506 
 507         for (int i = oldCapacity ; i-- > 0 ;) {
 508             for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
 509                 Entry<K,V> e = old;
 510                 old = old.next;
 511 
 512                 if (rehash) {
 513                     e.hash = hash(e.key);
 514                 }
 515                 int index = (e.hash & 0x7FFFFFFF) % newCapacity;
 516                 e.next = newMap[index];
 517                 newMap[index] = e;
 518             }
 519         }
 520     }
 521 
 522     /**
 523      * Maps the specified <code>key</code> to the specified
 524      * <code>value</code> in this hashtable. Neither the key nor the
 525      * value can be <code>null</code>. <p>
 526      *
 527      * The value can be retrieved by calling the <code>get</code> method
 528      * with a key that is equal to the original key.
 529      *
 530      * @param      key     the hashtable key
 531      * @param      value   the value
 532      * @return     the previous value of the specified key in this hashtable,
 533      *             or <code>null</code> if it did not have one
 534      * @exception  NullPointerException  if the key or value is
 535      *               <code>null</code>
 536      * @see     Object#equals(Object)
 537      * @see     #get(Object)
 538      */
 539     public synchronized V put(K key, V value) {
 540         // Make sure the value is not null
 541         if (value == null) {
 542             throw new NullPointerException();
 543         }
 544 
 545         // Makes sure the key is not already in the hashtable.
 546         Entry tab[] = table;
 547         int hash = hash(key);
 548         int index = (hash & 0x7FFFFFFF) % tab.length;
 549         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 550             if ((e.hash == hash) && e.key.equals(key)) {
 551                 V old = e.value;
 552                 e.value = value;
 553                 return old;
 554             }
 555         }
 556 
 557         modCount++;
 558         if (count >= threshold) {
 559             // Rehash the table if the threshold is exceeded
 560             rehash();
 561 
 562             tab = table;
 563             hash = hash(key);
 564             index = (hash & 0x7FFFFFFF) % tab.length;
 565         }
 566 
 567         // Creates the new entry.
 568         Entry<K,V> e = tab[index];
 569         tab[index] = new Entry<>(hash, key, value, e);
 570         count++;
 571         return null;
 572     }
 573 
 574     /**
 575      * Removes the key (and its corresponding value) from this
 576      * hashtable. This method does nothing if the key is not in the hashtable.
 577      *
 578      * @param   key   the key that needs to be removed
 579      * @return  the value to which the key had been mapped in this hashtable,
 580      *          or <code>null</code> if the key did not have a mapping
 581      * @throws  NullPointerException  if the key is <code>null</code>
 582      */
 583     public synchronized V remove(Object key) {
 584         Entry tab[] = table;
 585         int hash = hash(key);
 586         int index = (hash & 0x7FFFFFFF) % tab.length;
 587         for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
 588             if ((e.hash == hash) && e.key.equals(key)) {
 589                 modCount++;
 590                 if (prev != null) {
 591                     prev.next = e.next;
 592                 } else {
 593                     tab[index] = e.next;
 594                 }
 595                 count--;
 596                 V oldValue = e.value;
 597                 e.value = null;
 598                 return oldValue;
 599             }
 600         }
 601         return null;
 602     }
 603 
 604     /**
 605      * Copies all of the mappings from the specified map to this hashtable.
 606      * These mappings will replace any mappings that this hashtable had for any
 607      * of the keys currently in the specified map.
 608      *
 609      * @param t mappings to be stored in this map
 610      * @throws NullPointerException if the specified map is null
 611      * @since 1.2
 612      */
 613     public synchronized void putAll(Map<? extends K, ? extends V> t) {
 614         for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
 615             put(e.getKey(), e.getValue());
 616     }
 617 
 618     /**
 619      * Clears this hashtable so that it contains no keys.
 620      */
 621     public synchronized void clear() {
 622         Entry tab[] = table;
 623         modCount++;
 624         for (int index = tab.length; --index >= 0; )
 625             tab[index] = null;
 626         count = 0;
 627     }
 628 
 629     /**
 630      * Creates a shallow copy of this hashtable. All the structure of the
 631      * hashtable itself is copied, but the keys and values are not cloned.
 632      * This is a relatively expensive operation.
 633      *
 634      * @return  a clone of the hashtable
 635      */
 636     public synchronized Object clone() {
 637         try {
 638             Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
 639             t.table = new Entry[table.length];
 640             for (int i = table.length ; i-- > 0 ; ) {
 641                 t.table[i] = (table[i] != null)
 642                     ? (Entry<K,V>) table[i].clone() : null;
 643             }
 644             t.keySet = null;
 645             t.entrySet = null;
 646             t.values = null;
 647             t.modCount = 0;
 648             return t;
 649         } catch (CloneNotSupportedException e) {
 650             // this shouldn't happen, since we are Cloneable
 651             throw new InternalError();
 652         }
 653     }
 654 
 655     /**
 656      * Returns a string representation of this <tt>Hashtable</tt> object
 657      * in the form of a set of entries, enclosed in braces and separated
 658      * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
 659      * entry is rendered as the key, an equals sign <tt>=</tt>, and the
 660      * associated element, where the <tt>toString</tt> method is used to
 661      * convert the key and element to strings.
 662      *
 663      * @return  a string representation of this hashtable
 664      */
 665     public synchronized String toString() {
 666         int max = size() - 1;
 667         if (max == -1)
 668             return "{}";
 669 
 670         StringBuilder sb = new StringBuilder();
 671         Iterator<Map.Entry<K,V>> it = entrySet().iterator();
 672 
 673         sb.append('{');
 674         for (int i = 0; ; i++) {
 675             Map.Entry<K,V> e = it.next();
 676             K key = e.getKey();
 677             V value = e.getValue();
 678             sb.append(key   == this ? "(this Map)" : key.toString());
 679             sb.append('=');
 680             sb.append(value == this ? "(this Map)" : value.toString());
 681 
 682             if (i == max)
 683                 return sb.append('}').toString();
 684             sb.append(", ");
 685         }
 686     }
 687 
 688 
 689     private <T> Enumeration<T> getEnumeration(int type) {
 690         if (count == 0) {
 691             return Collections.emptyEnumeration();
 692         } else {
 693             return new Enumerator<>(type, false);
 694         }
 695     }
 696 
 697     private <T> Iterator<T> getIterator(int type) {
 698         if (count == 0) {
 699             return Collections.emptyIterator();
 700         } else {
 701             return new Enumerator<>(type, true);
 702         }
 703     }
 704 
 705     // Views
 706 
 707     /**
 708      * Each of these fields are initialized to contain an instance of the
 709      * appropriate view the first time this view is requested.  The views are
 710      * stateless, so there's no reason to create more than one of each.
 711      */
 712     private transient volatile Set<K> keySet = null;
 713     private transient volatile Set<Map.Entry<K,V>> entrySet = null;
 714     private transient volatile Collection<V> values = null;
 715 
 716     /**
 717      * Returns a {@link Set} view of the keys contained in this map.
 718      * The set is backed by the map, so changes to the map are
 719      * reflected in the set, and vice-versa.  If the map is modified
 720      * while an iteration over the set is in progress (except through
 721      * the iterator's own <tt>remove</tt> operation), the results of
 722      * the iteration are undefined.  The set supports element removal,
 723      * which removes the corresponding mapping from the map, via the
 724      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 725      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 726      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 727      * operations.
 728      *
 729      * @since 1.2
 730      */
 731     public Set<K> keySet() {
 732         if (keySet == null)
 733             keySet = Collections.synchronizedSet(new KeySet(), this);
 734         return keySet;
 735     }
 736 
 737     private class KeySet extends AbstractSet<K> {
 738         public Iterator<K> iterator() {
 739             return getIterator(KEYS);
 740         }
 741         public int size() {
 742             return count;
 743         }
 744         public boolean contains(Object o) {
 745             return containsKey(o);
 746         }
 747         public boolean remove(Object o) {
 748             return Hashtable.this.remove(o) != null;
 749         }
 750         public void clear() {
 751             Hashtable.this.clear();
 752         }
 753     }
 754 
 755     /**
 756      * Returns a {@link Set} view of the mappings contained in this map.
 757      * The set is backed by the map, so changes to the map are
 758      * reflected in the set, and vice-versa.  If the map is modified
 759      * while an iteration over the set is in progress (except through
 760      * the iterator's own <tt>remove</tt> operation, or through the
 761      * <tt>setValue</tt> operation on a map entry returned by the
 762      * iterator) the results of the iteration are undefined.  The set
 763      * supports element removal, which removes the corresponding
 764      * mapping from the map, via the <tt>Iterator.remove</tt>,
 765      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 766      * <tt>clear</tt> operations.  It does not support the
 767      * <tt>add</tt> or <tt>addAll</tt> operations.
 768      *
 769      * @since 1.2
 770      */
 771     public Set<Map.Entry<K,V>> entrySet() {
 772         if (entrySet==null)
 773             entrySet = Collections.synchronizedSet(new EntrySet(), this);
 774         return entrySet;
 775     }
 776 
 777     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 778         public Iterator<Map.Entry<K,V>> iterator() {
 779             return getIterator(ENTRIES);
 780         }
 781 
 782         public boolean add(Map.Entry<K,V> o) {
 783             return super.add(o);
 784         }
 785 
 786         public boolean contains(Object o) {
 787             if (!(o instanceof Map.Entry))
 788                 return false;
 789             Map.Entry entry = (Map.Entry)o;
 790             Object key = entry.getKey();
 791             Entry[] tab = table;
 792             int hash = hash(key);
 793             int index = (hash & 0x7FFFFFFF) % tab.length;
 794 
 795             for (Entry e = tab[index]; e != null; e = e.next)
 796                 if (e.hash==hash && e.equals(entry))
 797                     return true;
 798             return false;
 799         }
 800 
 801         public boolean remove(Object o) {
 802             if (!(o instanceof Map.Entry))
 803                 return false;
 804             Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
 805             K key = entry.getKey();
 806             Entry[] tab = table;
 807             int hash = hash(key);
 808             int index = (hash & 0x7FFFFFFF) % tab.length;
 809 
 810             for (Entry<K,V> e = tab[index], prev = null; e != null;
 811                  prev = e, e = e.next) {
 812                 if (e.hash==hash && e.equals(entry)) {
 813                     modCount++;
 814                     if (prev != null)
 815                         prev.next = e.next;
 816                     else
 817                         tab[index] = e.next;
 818 
 819                     count--;
 820                     e.value = null;
 821                     return true;
 822                 }
 823             }
 824             return false;
 825         }
 826 
 827         public int size() {
 828             return count;
 829         }
 830 
 831         public void clear() {
 832             Hashtable.this.clear();
 833         }
 834     }
 835 
 836     /**
 837      * Returns a {@link Collection} view of the values contained in this map.
 838      * The collection is backed by the map, so changes to the map are
 839      * reflected in the collection, and vice-versa.  If the map is
 840      * modified while an iteration over the collection is in progress
 841      * (except through the iterator's own <tt>remove</tt> operation),
 842      * the results of the iteration are undefined.  The collection
 843      * supports element removal, which removes the corresponding
 844      * mapping from the map, via the <tt>Iterator.remove</tt>,
 845      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 846      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 847      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 848      *
 849      * @since 1.2
 850      */
 851     public Collection<V> values() {
 852         if (values==null)
 853             values = Collections.synchronizedCollection(new ValueCollection(),
 854                                                         this);
 855         return values;
 856     }
 857 
 858     private class ValueCollection extends AbstractCollection<V> {
 859         public Iterator<V> iterator() {
 860             return getIterator(VALUES);
 861         }
 862         public int size() {
 863             return count;
 864         }
 865         public boolean contains(Object o) {
 866             return containsValue(o);
 867         }
 868         public void clear() {
 869             Hashtable.this.clear();
 870         }
 871     }
 872 
 873     // Comparison and hashing
 874 
 875     /**
 876      * Compares the specified Object with this Map for equality,
 877      * as per the definition in the Map interface.
 878      *
 879      * @param  o object to be compared for equality with this hashtable
 880      * @return true if the specified Object is equal to this Map
 881      * @see Map#equals(Object)
 882      * @since 1.2
 883      */
 884     public synchronized boolean equals(Object o) {
 885         if (o == this)
 886             return true;
 887 
 888         if (!(o instanceof Map))
 889             return false;
 890         Map<K,V> t = (Map<K,V>) o;
 891         if (t.size() != size())
 892             return false;
 893 
 894         try {
 895             Iterator<Map.Entry<K,V>> i = entrySet().iterator();
 896             while (i.hasNext()) {
 897                 Map.Entry<K,V> e = i.next();
 898                 K key = e.getKey();
 899                 V value = e.getValue();
 900                 if (value == null) {
 901                     if (!(t.get(key)==null && t.containsKey(key)))
 902                         return false;
 903                 } else {
 904                     if (!value.equals(t.get(key)))
 905                         return false;
 906                 }
 907             }
 908         } catch (ClassCastException unused)   {
 909             return false;
 910         } catch (NullPointerException unused) {
 911             return false;
 912         }
 913 
 914         return true;
 915     }
 916 
 917     /**
 918      * Returns the hash code value for this Map as per the definition in the
 919      * Map interface.
 920      *
 921      * @see Map#hashCode()
 922      * @since 1.2
 923      */
 924     public synchronized int hashCode() {
 925         /*
 926          * This code detects the recursion caused by computing the hash code
 927          * of a self-referential hash table and prevents the stack overflow
 928          * that would otherwise result.  This allows certain 1.1-era
 929          * applets with self-referential hash tables to work.  This code
 930          * abuses the loadFactor field to do double-duty as a hashCode
 931          * in progress flag, so as not to worsen the space performance.
 932          * A negative load factor indicates that hash code computation is
 933          * in progress.
 934          */
 935         int h = 0;
 936         if (count == 0 || loadFactor < 0)
 937             return h;  // Returns zero
 938 
 939         loadFactor = -loadFactor;  // Mark hashCode computation in progress
 940         Entry[] tab = table;
 941         for (Entry<K,V> entry : tab)
 942             while (entry != null) {
 943                 h += entry.hashCode();
 944                 entry = entry.next;
 945             }
 946         loadFactor = -loadFactor;  // Mark hashCode computation complete
 947 
 948         return h;
 949     }
 950 
 951     /**
 952      * Save the state of the Hashtable to a stream (i.e., serialize it).
 953      *
 954      * @serialData The <i>capacity</i> of the Hashtable (the length of the
 955      *             bucket array) is emitted (int), followed by the
 956      *             <i>size</i> of the Hashtable (the number of key-value
 957      *             mappings), followed by the key (Object) and value (Object)
 958      *             for each key-value mapping represented by the Hashtable
 959      *             The key-value mappings are emitted in no particular order.
 960      */
 961     private void writeObject(java.io.ObjectOutputStream s)
 962             throws IOException {
 963         Entry<K, V> entryStack = null;
 964 
 965         synchronized (this) {
 966             // Write out the length, threshold, loadfactor
 967             s.defaultWriteObject();
 968 
 969             // Write out length, count of elements
 970             s.writeInt(table.length);
 971             s.writeInt(count);
 972 
 973             // Stack copies of the entries in the table
 974             for (int index = 0; index < table.length; index++) {
 975                 Entry<K,V> entry = table[index];
 976 
 977                 while (entry != null) {
 978                     entryStack =
 979                         new Entry<>(0, entry.key, entry.value, entryStack);
 980                     entry = entry.next;
 981                 }
 982             }
 983         }
 984 
 985         // Write out the key/value objects from the stacked entries
 986         while (entryStack != null) {
 987             s.writeObject(entryStack.key);
 988             s.writeObject(entryStack.value);
 989             entryStack = entryStack.next;
 990         }
 991     }
 992 
 993     /**
 994      * Reconstitute the Hashtable from a stream (i.e., deserialize it).
 995      */
 996     private void readObject(java.io.ObjectInputStream s)
 997          throws IOException, ClassNotFoundException
 998     {
 999         // Read in the length, threshold, and loadfactor
1000         s.defaultReadObject();
1001 
1002         // set hashSeed
1003         UNSAFE.putIntVolatile(this, HASHSEED_OFFSET,
1004                 sun.misc.Hashing.randomHashSeed(this));
1005 
1006         // Read the original length of the array and number of elements
1007         int origlength = s.readInt();
1008         int elements = s.readInt();
1009 
1010         // Compute new size with a bit of room 5% to grow but
1011         // no larger than the original size.  Make the length
1012         // odd if it's large enough, this helps distribute the entries.
1013         // Guard against the length ending up zero, that's not valid.
1014         int length = (int)(elements * loadFactor) + (elements / 20) + 3;
1015         if (length > elements && (length & 1) == 0)
1016             length--;
1017         if (origlength > 0 && length > origlength)
1018             length = origlength;
1019 
1020         Entry<K,V>[] table = new Entry[length];
1021         threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
1022         count = 0;
1023         useAltHashing = sun.misc.VM.isBooted() &&
1024                 (length >= Holder.ALTERNATIVE_HASHING_THRESHOLD);
1025 
1026         // Read the number of elements and then all the key/value objects
1027         for (; elements > 0; elements--) {
1028             K key = (K)s.readObject();
1029             V value = (V)s.readObject();
1030             // synch could be eliminated for performance
1031             reconstitutionPut(table, key, value);
1032         }
1033         this.table = table;
1034     }
1035 
1036     /**
1037      * The put method used by readObject. This is provided because put
1038      * is overridable and should not be called in readObject since the
1039      * subclass will not yet be initialized.
1040      *
1041      * <p>This differs from the regular put method in several ways. No
1042      * checking for rehashing is necessary since the number of elements
1043      * initially in the table is known. The modCount is not incremented
1044      * because we are creating a new instance. Also, no return value
1045      * is needed.
1046      */
1047     private void reconstitutionPut(Entry<K,V>[] tab, K key, V value)
1048         throws StreamCorruptedException
1049     {
1050         if (value == null) {
1051             throw new java.io.StreamCorruptedException();
1052         }
1053         // Makes sure the key is not already in the hashtable.
1054         // This should not happen in deserialized version.
1055         int hash = hash(key);
1056         int index = (hash & 0x7FFFFFFF) % tab.length;
1057         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
1058             if ((e.hash == hash) && e.key.equals(key)) {
1059                 throw new java.io.StreamCorruptedException();
1060             }
1061         }
1062         // Creates the new entry.
1063         Entry<K,V> e = tab[index];
1064         tab[index] = new Entry<>(hash, key, value, e);
1065         count++;
1066     }
1067 
1068     /**
1069      * Hashtable bucket collision list entry
1070      */
1071     private static class Entry<K,V> implements Map.Entry<K,V> {
1072         int hash;
1073         final K key;
1074         V value;
1075         Entry<K,V> next;
1076 
1077         protected Entry(int hash, K key, V value, Entry<K,V> next) {
1078             this.hash = hash;
1079             this.key =  key;
1080             this.value = value;
1081             this.next = next;
1082         }
1083 
1084         protected Object clone() {
1085             return new Entry<>(hash, key, value,
1086                                   (next==null ? null : (Entry<K,V>) next.clone()));
1087         }
1088 
1089         // Map.Entry Ops
1090 
1091         public K getKey() {
1092             return key;
1093         }
1094 
1095         public V getValue() {
1096             return value;
1097         }
1098 
1099         public V setValue(V value) {
1100             if (value == null)
1101                 throw new NullPointerException();
1102 
1103             V oldValue = this.value;
1104             this.value = value;
1105             return oldValue;
1106         }
1107 
1108         public boolean equals(Object o) {
1109             if (!(o instanceof Map.Entry))
1110                 return false;
1111             Map.Entry<?,?> e = (Map.Entry)o;
1112 
1113             return key.equals(e.getKey()) && value.equals(e.getValue());
1114         }
1115 
1116         public int hashCode() {
1117             return (Objects.hashCode(key) ^ Objects.hashCode(value));
1118         }
1119 
1120         public String toString() {
1121             return key.toString()+"="+value.toString();
1122         }
1123     }
1124 
1125     // Types of Enumerations/Iterations
1126     private static final int KEYS = 0;
1127     private static final int VALUES = 1;
1128     private static final int ENTRIES = 2;
1129 
1130     /**
1131      * A hashtable enumerator class.  This class implements both the
1132      * Enumeration and Iterator interfaces, but individual instances
1133      * can be created with the Iterator methods disabled.  This is necessary
1134      * to avoid unintentionally increasing the capabilities granted a user
1135      * by passing an Enumeration.
1136      */
1137     private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
1138         Entry[] table = Hashtable.this.table;
1139         int index = table.length;
1140         Entry<K,V> entry = null;
1141         Entry<K,V> lastReturned = null;
1142         int type;
1143 
1144         /**
1145          * Indicates whether this Enumerator is serving as an Iterator
1146          * or an Enumeration.  (true -> Iterator).
1147          */
1148         boolean iterator;
1149 
1150         /**
1151          * The modCount value that the iterator believes that the backing
1152          * Hashtable should have.  If this expectation is violated, the iterator
1153          * has detected concurrent modification.
1154          */
1155         protected int expectedModCount = modCount;
1156 
1157         Enumerator(int type, boolean iterator) {
1158             this.type = type;
1159             this.iterator = iterator;
1160         }
1161 
1162         public boolean hasMoreElements() {
1163             Entry<K,V> e = entry;
1164             int i = index;
1165             Entry[] t = table;
1166             /* Use locals for faster loop iteration */
1167             while (e == null && i > 0) {
1168                 e = t[--i];
1169             }
1170             entry = e;
1171             index = i;
1172             return e != null;
1173         }
1174 
1175         public T nextElement() {
1176             Entry<K,V> et = entry;
1177             int i = index;
1178             Entry[] t = table;
1179             /* Use locals for faster loop iteration */
1180             while (et == null && i > 0) {
1181                 et = t[--i];
1182             }
1183             entry = et;
1184             index = i;
1185             if (et != null) {
1186                 Entry<K,V> e = lastReturned = entry;
1187                 entry = e.next;
1188                 return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
1189             }
1190             throw new NoSuchElementException("Hashtable Enumerator");
1191         }
1192 
1193         // Iterator methods
1194         public boolean hasNext() {
1195             return hasMoreElements();
1196         }
1197 
1198         public T next() {
1199             if (modCount != expectedModCount)
1200                 throw new ConcurrentModificationException();
1201             return nextElement();
1202         }
1203 
1204         public void remove() {
1205             if (!iterator)
1206                 throw new UnsupportedOperationException();
1207             if (lastReturned == null)
1208                 throw new IllegalStateException("Hashtable Enumerator");
1209             if (modCount != expectedModCount)
1210                 throw new ConcurrentModificationException();
1211 
1212             synchronized(Hashtable.this) {
1213                 Entry[] tab = Hashtable.this.table;
1214                 int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
1215 
1216                 for (Entry<K,V> e = tab[index], prev = null; e != null;
1217                      prev = e, e = e.next) {
1218                     if (e == lastReturned) {
1219                         modCount++;
1220                         expectedModCount++;
1221                         if (prev == null)
1222                             tab[index] = e.next;
1223                         else
1224                             prev.next = e.next;
1225                         count--;
1226                         lastReturned = null;
1227                         return;
1228                     }
1229                 }
1230                 throw new ConcurrentModificationException();
1231             }
1232         }
1233     }
1234 }