1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.util.function.BiConsumer;
  29 import java.util.function.BiFunction;
  30 import java.util.function.Consumer;
  31 
  32 /**
  33  * A Red-Black tree based {@link NavigableMap} implementation.
  34  * The map is sorted according to the {@linkplain Comparable natural
  35  * ordering} of its keys, or by a {@link Comparator} provided at map
  36  * creation time, depending on which constructor is used.
  37  *
  38  * <p>This implementation provides guaranteed log(n) time cost for the
  39  * {@code containsKey}, {@code get}, {@code put} and {@code remove}
  40  * operations.  Algorithms are adaptations of those in Cormen, Leiserson, and
  41  * Rivest's <em>Introduction to Algorithms</em>.
  42  *
  43  * <p>Note that the ordering maintained by a tree map, like any sorted map, and
  44  * whether or not an explicit comparator is provided, must be <em>consistent
  45  * with {@code equals}</em> if this sorted map is to correctly implement the
  46  * {@code Map} interface.  (See {@code Comparable} or {@code Comparator} for a
  47  * precise definition of <em>consistent with equals</em>.)  This is so because
  48  * the {@code Map} interface is defined in terms of the {@code equals}
  49  * operation, but a sorted map performs all key comparisons using its {@code
  50  * compareTo} (or {@code compare}) method, so two keys that are deemed equal by
  51  * this method are, from the standpoint of the sorted map, equal.  The behavior
  52  * of a sorted map <em>is</em> well-defined even if its ordering is
  53  * inconsistent with {@code equals}; it just fails to obey the general contract
  54  * of the {@code Map} interface.
  55  *
  56  * <p><strong>Note that this implementation is not synchronized.</strong>
  57  * If multiple threads access a map concurrently, and at least one of the
  58  * threads modifies the map structurally, it <em>must</em> be synchronized
  59  * externally.  (A structural modification is any operation that adds or
  60  * deletes one or more mappings; merely changing the value associated
  61  * with an existing key is not a structural modification.)  This is
  62  * typically accomplished by synchronizing on some object that naturally
  63  * encapsulates the map.
  64  * If no such object exists, the map should be "wrapped" using the
  65  * {@link Collections#synchronizedSortedMap Collections.synchronizedSortedMap}
  66  * method.  This is best done at creation time, to prevent accidental
  67  * unsynchronized access to the map: <pre>
  68  *   SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));</pre>
  69  *
  70  * <p>The iterators returned by the {@code iterator} method of the collections
  71  * returned by all of this class's "collection view methods" are
  72  * <em>fail-fast</em>: if the map is structurally modified at any time after
  73  * the iterator is created, in any way except through the iterator's own
  74  * {@code remove} method, the iterator will throw a {@link
  75  * ConcurrentModificationException}.  Thus, in the face of concurrent
  76  * modification, the iterator fails quickly and cleanly, rather than risking
  77  * arbitrary, non-deterministic behavior at an undetermined time in the future.
  78  *
  79  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  80  * as it is, generally speaking, impossible to make any hard guarantees in the
  81  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  82  * throw {@code ConcurrentModificationException} on a best-effort basis.
  83  * Therefore, it would be wrong to write a program that depended on this
  84  * exception for its correctness:   <em>the fail-fast behavior of iterators
  85  * should be used only to detect bugs.</em>
  86  *
  87  * <p>All {@code Map.Entry} pairs returned by methods in this class
  88  * and its views represent snapshots of mappings at the time they were
  89  * produced. They do <strong>not</strong> support the {@code Entry.setValue}
  90  * method. (Note however that it is possible to change mappings in the
  91  * associated map using {@code put}.)
  92  *
  93  * <p>This class is a member of the
  94  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
  95  * Java Collections Framework</a>.
  96  *
  97  * @param <K> the type of keys maintained by this map
  98  * @param <V> the type of mapped values
  99  *
 100  * @author  Josh Bloch and Doug Lea
 101  * @see Map
 102  * @see HashMap
 103  * @see Hashtable
 104  * @see Comparable
 105  * @see Comparator
 106  * @see Collection
 107  * @since 1.2
 108  */
 109 
 110 public class TreeMap<K,V>
 111     extends AbstractMap<K,V>
 112     implements NavigableMap<K,V>, Cloneable, java.io.Serializable
 113 {
 114     /**
 115      * The comparator used to maintain order in this tree map, or
 116      * null if it uses the natural ordering of its keys.
 117      *
 118      * @serial
 119      */
 120     private final Comparator<? super K> comparator;
 121 
 122     private transient Entry<K,V> root = null;
 123 
 124     /**
 125      * The number of entries in the tree
 126      */
 127     private transient int size = 0;
 128 
 129     /**
 130      * The number of structural modifications to the tree.
 131      */
 132     private transient int modCount = 0;
 133 
 134     /**
 135      * Constructs a new, empty tree map, using the natural ordering of its
 136      * keys.  All keys inserted into the map must implement the {@link
 137      * Comparable} interface.  Furthermore, all such keys must be
 138      * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
 139      * a {@code ClassCastException} for any keys {@code k1} and
 140      * {@code k2} in the map.  If the user attempts to put a key into the
 141      * map that violates this constraint (for example, the user attempts to
 142      * put a string key into a map whose keys are integers), the
 143      * {@code put(Object key, Object value)} call will throw a
 144      * {@code ClassCastException}.
 145      */
 146     public TreeMap() {
 147         comparator = null;
 148     }
 149 
 150     /**
 151      * Constructs a new, empty tree map, ordered according to the given
 152      * comparator.  All keys inserted into the map must be <em>mutually
 153      * comparable</em> by the given comparator: {@code comparator.compare(k1,
 154      * k2)} must not throw a {@code ClassCastException} for any keys
 155      * {@code k1} and {@code k2} in the map.  If the user attempts to put
 156      * a key into the map that violates this constraint, the {@code put(Object
 157      * key, Object value)} call will throw a
 158      * {@code ClassCastException}.
 159      *
 160      * @param comparator the comparator that will be used to order this map.
 161      *        If {@code null}, the {@linkplain Comparable natural
 162      *        ordering} of the keys will be used.
 163      */
 164     public TreeMap(Comparator<? super K> comparator) {
 165         this.comparator = comparator;
 166     }
 167 
 168     /**
 169      * Constructs a new tree map containing the same mappings as the given
 170      * map, ordered according to the <em>natural ordering</em> of its keys.
 171      * All keys inserted into the new map must implement the {@link
 172      * Comparable} interface.  Furthermore, all such keys must be
 173      * <em>mutually comparable</em>: {@code k1.compareTo(k2)} must not throw
 174      * a {@code ClassCastException} for any keys {@code k1} and
 175      * {@code k2} in the map.  This method runs in n*log(n) time.
 176      *
 177      * @param  m the map whose mappings are to be placed in this map
 178      * @throws ClassCastException if the keys in m are not {@link Comparable},
 179      *         or are not mutually comparable
 180      * @throws NullPointerException if the specified map is null
 181      */
 182     public TreeMap(Map<? extends K, ? extends V> m) {
 183         comparator = null;
 184         putAll(m);
 185     }
 186 
 187     /**
 188      * Constructs a new tree map containing the same mappings and
 189      * using the same ordering as the specified sorted map.  This
 190      * method runs in linear time.
 191      *
 192      * @param  m the sorted map whose mappings are to be placed in this map,
 193      *         and whose comparator is to be used to sort this map
 194      * @throws NullPointerException if the specified map is null
 195      */
 196     public TreeMap(SortedMap<K, ? extends V> m) {
 197         comparator = m.comparator();
 198         try {
 199             buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
 200         } catch (java.io.IOException cannotHappen) {
 201         } catch (ClassNotFoundException cannotHappen) {
 202         }
 203     }
 204 
 205 
 206     // Query Operations
 207 
 208     /**
 209      * Returns the number of key-value mappings in this map.
 210      *
 211      * @return the number of key-value mappings in this map
 212      */
 213     public int size() {
 214         return size;
 215     }
 216 
 217     /**
 218      * Returns {@code true} if this map contains a mapping for the specified
 219      * key.
 220      *
 221      * @param key key whose presence in this map is to be tested
 222      * @return {@code true} if this map contains a mapping for the
 223      *         specified key
 224      * @throws ClassCastException if the specified key cannot be compared
 225      *         with the keys currently in the map
 226      * @throws NullPointerException if the specified key is null
 227      *         and this map uses natural ordering, or its comparator
 228      *         does not permit null keys
 229      */
 230     public boolean containsKey(Object key) {
 231         return getEntry(key) != null;
 232     }
 233 
 234     /**
 235      * Returns {@code true} if this map maps one or more keys to the
 236      * specified value.  More formally, returns {@code true} if and only if
 237      * this map contains at least one mapping to a value {@code v} such
 238      * that {@code (value==null ? v==null : value.equals(v))}.  This
 239      * operation will probably require time linear in the map size for
 240      * most implementations.
 241      *
 242      * @param value value whose presence in this map is to be tested
 243      * @return {@code true} if a mapping to {@code value} exists;
 244      *         {@code false} otherwise
 245      * @since 1.2
 246      */
 247     public boolean containsValue(Object value) {
 248         for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
 249             if (valEquals(value, e.value))
 250                 return true;
 251         return false;
 252     }
 253 
 254     /**
 255      * Returns the value to which the specified key is mapped,
 256      * or {@code null} if this map contains no mapping for the key.
 257      *
 258      * <p>More formally, if this map contains a mapping from a key
 259      * {@code k} to a value {@code v} such that {@code key} compares
 260      * equal to {@code k} according to the map's ordering, then this
 261      * method returns {@code v}; otherwise it returns {@code null}.
 262      * (There can be at most one such mapping.)
 263      *
 264      * <p>A return value of {@code null} does not <em>necessarily</em>
 265      * indicate that the map contains no mapping for the key; it's also
 266      * possible that the map explicitly maps the key to {@code null}.
 267      * The {@link #containsKey containsKey} operation may be used to
 268      * distinguish these two cases.
 269      *
 270      * @throws ClassCastException if the specified key cannot be compared
 271      *         with the keys currently in the map
 272      * @throws NullPointerException if the specified key is null
 273      *         and this map uses natural ordering, or its comparator
 274      *         does not permit null keys
 275      */
 276     public V get(Object key) {
 277         Entry<K,V> p = getEntry(key);
 278         return (p==null ? null : p.value);
 279     }
 280 
 281     public Comparator<? super K> comparator() {
 282         return comparator;
 283     }
 284 
 285     /**
 286      * @throws NoSuchElementException {@inheritDoc}
 287      */
 288     public K firstKey() {
 289         return key(getFirstEntry());
 290     }
 291 
 292     /**
 293      * @throws NoSuchElementException {@inheritDoc}
 294      */
 295     public K lastKey() {
 296         return key(getLastEntry());
 297     }
 298 
 299     /**
 300      * Copies all of the mappings from the specified map to this map.
 301      * These mappings replace any mappings that this map had for any
 302      * of the keys currently in the specified map.
 303      *
 304      * @param  map mappings to be stored in this map
 305      * @throws ClassCastException if the class of a key or value in
 306      *         the specified map prevents it from being stored in this map
 307      * @throws NullPointerException if the specified map is null or
 308      *         the specified map contains a null key and this map does not
 309      *         permit null keys
 310      */
 311     public void putAll(Map<? extends K, ? extends V> map) {
 312         int mapSize = map.size();
 313         if (size==0 && mapSize!=0 && map instanceof SortedMap) {
 314             Comparator<?> c = ((SortedMap<?,?>)map).comparator();
 315             if (c == comparator || (c != null && c.equals(comparator))) {
 316                 ++modCount;
 317                 try {
 318                     buildFromSorted(mapSize, map.entrySet().iterator(),
 319                                     null, null);
 320                 } catch (java.io.IOException cannotHappen) {
 321                 } catch (ClassNotFoundException cannotHappen) {
 322                 }
 323                 return;
 324             }
 325         }
 326         super.putAll(map);
 327     }
 328 
 329     /**
 330      * Returns this map's entry for the given key, or {@code null} if the map
 331      * does not contain an entry for the key.
 332      *
 333      * @return this map's entry for the given key, or {@code null} if the map
 334      *         does not contain an entry for the key
 335      * @throws ClassCastException if the specified key cannot be compared
 336      *         with the keys currently in the map
 337      * @throws NullPointerException if the specified key is null
 338      *         and this map uses natural ordering, or its comparator
 339      *         does not permit null keys
 340      */
 341     final Entry<K,V> getEntry(Object key) {
 342         // Offload comparator-based version for sake of performance
 343         if (comparator != null)
 344             return getEntryUsingComparator(key);
 345         if (key == null)
 346             throw new NullPointerException();
 347         @SuppressWarnings("unchecked")
 348             Comparable<? super K> k = (Comparable<? super K>) key;
 349         Entry<K,V> p = root;
 350         while (p != null) {
 351             int cmp = k.compareTo(p.key);
 352             if (cmp < 0)
 353                 p = p.left;
 354             else if (cmp > 0)
 355                 p = p.right;
 356             else
 357                 return p;
 358         }
 359         return null;
 360     }
 361 
 362     /**
 363      * Version of getEntry using comparator. Split off from getEntry
 364      * for performance. (This is not worth doing for most methods,
 365      * that are less dependent on comparator performance, but is
 366      * worthwhile here.)
 367      */
 368     final Entry<K,V> getEntryUsingComparator(Object key) {
 369         @SuppressWarnings("unchecked")
 370             K k = (K) key;
 371         Comparator<? super K> cpr = comparator;
 372         if (cpr != null) {
 373             Entry<K,V> p = root;
 374             while (p != null) {
 375                 int cmp = cpr.compare(k, p.key);
 376                 if (cmp < 0)
 377                     p = p.left;
 378                 else if (cmp > 0)
 379                     p = p.right;
 380                 else
 381                     return p;
 382             }
 383         }
 384         return null;
 385     }
 386 
 387     /**
 388      * Gets the entry corresponding to the specified key; if no such entry
 389      * exists, returns the entry for the least key greater than the specified
 390      * key; if no such entry exists (i.e., the greatest key in the Tree is less
 391      * than the specified key), returns {@code null}.
 392      */
 393     final Entry<K,V> getCeilingEntry(K key) {
 394         Entry<K,V> p = root;
 395         while (p != null) {
 396             int cmp = compare(key, p.key);
 397             if (cmp < 0) {
 398                 if (p.left != null)
 399                     p = p.left;
 400                 else
 401                     return p;
 402             } else if (cmp > 0) {
 403                 if (p.right != null) {
 404                     p = p.right;
 405                 } else {
 406                     Entry<K,V> parent = p.parent;
 407                     Entry<K,V> ch = p;
 408                     while (parent != null && ch == parent.right) {
 409                         ch = parent;
 410                         parent = parent.parent;
 411                     }
 412                     return parent;
 413                 }
 414             } else
 415                 return p;
 416         }
 417         return null;
 418     }
 419 
 420     /**
 421      * Gets the entry corresponding to the specified key; if no such entry
 422      * exists, returns the entry for the greatest key less than the specified
 423      * key; if no such entry exists, returns {@code null}.
 424      */
 425     final Entry<K,V> getFloorEntry(K key) {
 426         Entry<K,V> p = root;
 427         while (p != null) {
 428             int cmp = compare(key, p.key);
 429             if (cmp > 0) {
 430                 if (p.right != null)
 431                     p = p.right;
 432                 else
 433                     return p;
 434             } else if (cmp < 0) {
 435                 if (p.left != null) {
 436                     p = p.left;
 437                 } else {
 438                     Entry<K,V> parent = p.parent;
 439                     Entry<K,V> ch = p;
 440                     while (parent != null && ch == parent.left) {
 441                         ch = parent;
 442                         parent = parent.parent;
 443                     }
 444                     return parent;
 445                 }
 446             } else
 447                 return p;
 448 
 449         }
 450         return null;
 451     }
 452 
 453     /**
 454      * Gets the entry for the least key greater than the specified
 455      * key; if no such entry exists, returns the entry for the least
 456      * key greater than the specified key; if no such entry exists
 457      * returns {@code null}.
 458      */
 459     final Entry<K,V> getHigherEntry(K key) {
 460         Entry<K,V> p = root;
 461         while (p != null) {
 462             int cmp = compare(key, p.key);
 463             if (cmp < 0) {
 464                 if (p.left != null)
 465                     p = p.left;
 466                 else
 467                     return p;
 468             } else {
 469                 if (p.right != null) {
 470                     p = p.right;
 471                 } else {
 472                     Entry<K,V> parent = p.parent;
 473                     Entry<K,V> ch = p;
 474                     while (parent != null && ch == parent.right) {
 475                         ch = parent;
 476                         parent = parent.parent;
 477                     }
 478                     return parent;
 479                 }
 480             }
 481         }
 482         return null;
 483     }
 484 
 485     /**
 486      * Returns the entry for the greatest key less than the specified key; if
 487      * no such entry exists (i.e., the least key in the Tree is greater than
 488      * the specified key), returns {@code null}.
 489      */
 490     final Entry<K,V> getLowerEntry(K key) {
 491         Entry<K,V> p = root;
 492         while (p != null) {
 493             int cmp = compare(key, p.key);
 494             if (cmp > 0) {
 495                 if (p.right != null)
 496                     p = p.right;
 497                 else
 498                     return p;
 499             } else {
 500                 if (p.left != null) {
 501                     p = p.left;
 502                 } else {
 503                     Entry<K,V> parent = p.parent;
 504                     Entry<K,V> ch = p;
 505                     while (parent != null && ch == parent.left) {
 506                         ch = parent;
 507                         parent = parent.parent;
 508                     }
 509                     return parent;
 510                 }
 511             }
 512         }
 513         return null;
 514     }
 515 
 516     /**
 517      * Associates the specified value with the specified key in this map.
 518      * If the map previously contained a mapping for the key, the old
 519      * value is replaced.
 520      *
 521      * @param key key with which the specified value is to be associated
 522      * @param value value to be associated with the specified key
 523      *
 524      * @return the previous value associated with {@code key}, or
 525      *         {@code null} if there was no mapping for {@code key}.
 526      *         (A {@code null} return can also indicate that the map
 527      *         previously associated {@code null} with {@code key}.)
 528      * @throws ClassCastException if the specified key cannot be compared
 529      *         with the keys currently in the map
 530      * @throws NullPointerException if the specified key is null
 531      *         and this map uses natural ordering, or its comparator
 532      *         does not permit null keys
 533      */
 534     public V put(K key, V value) {
 535         Entry<K,V> t = root;
 536         if (t == null) {
 537             compare(key, key); // type (and possibly null) check
 538 
 539             root = new Entry<>(key, value, null);
 540             size = 1;
 541             modCount++;
 542             return null;
 543         }
 544         int cmp;
 545         Entry<K,V> parent;
 546         // split comparator and comparable paths
 547         Comparator<? super K> cpr = comparator;
 548         if (cpr != null) {
 549             do {
 550                 parent = t;
 551                 cmp = cpr.compare(key, t.key);
 552                 if (cmp < 0)
 553                     t = t.left;
 554                 else if (cmp > 0)
 555                     t = t.right;
 556                 else
 557                     return t.setValue(value);
 558             } while (t != null);
 559         }
 560         else {
 561             if (key == null)
 562                 throw new NullPointerException();
 563             @SuppressWarnings("unchecked")
 564                 Comparable<? super K> k = (Comparable<? super K>) key;
 565             do {
 566                 parent = t;
 567                 cmp = k.compareTo(t.key);
 568                 if (cmp < 0)
 569                     t = t.left;
 570                 else if (cmp > 0)
 571                     t = t.right;
 572                 else
 573                     return t.setValue(value);
 574             } while (t != null);
 575         }
 576         Entry<K,V> e = new Entry<>(key, value, parent);
 577         if (cmp < 0)
 578             parent.left = e;
 579         else
 580             parent.right = e;
 581         fixAfterInsertion(e);
 582         size++;
 583         modCount++;
 584         return null;
 585     }
 586 
 587     /**
 588      * Removes the mapping for this key from this TreeMap if present.
 589      *
 590      * @param  key key for which mapping should be removed
 591      * @return the previous value associated with {@code key}, or
 592      *         {@code null} if there was no mapping for {@code key}.
 593      *         (A {@code null} return can also indicate that the map
 594      *         previously associated {@code null} with {@code key}.)
 595      * @throws ClassCastException if the specified key cannot be compared
 596      *         with the keys currently in the map
 597      * @throws NullPointerException if the specified key is null
 598      *         and this map uses natural ordering, or its comparator
 599      *         does not permit null keys
 600      */
 601     public V remove(Object key) {
 602         Entry<K,V> p = getEntry(key);
 603         if (p == null)
 604             return null;
 605 
 606         V oldValue = p.value;
 607         deleteEntry(p);
 608         return oldValue;
 609     }
 610 
 611     /**
 612      * Removes all of the mappings from this map.
 613      * The map will be empty after this call returns.
 614      */
 615     public void clear() {
 616         modCount++;
 617         size = 0;
 618         root = null;
 619     }
 620 
 621     /**
 622      * Returns a shallow copy of this {@code TreeMap} instance. (The keys and
 623      * values themselves are not cloned.)
 624      *
 625      * @return a shallow copy of this map
 626      */
 627     public Object clone() {
 628         TreeMap<?,?> clone;
 629         try {
 630             clone = (TreeMap<?,?>) super.clone();
 631         } catch (CloneNotSupportedException e) {
 632             throw new InternalError(e);
 633         }
 634 
 635         // Put clone into "virgin" state (except for comparator)
 636         clone.root = null;
 637         clone.size = 0;
 638         clone.modCount = 0;
 639         clone.entrySet = null;
 640         clone.navigableKeySet = null;
 641         clone.descendingMap = null;
 642 
 643         // Initialize clone with our mappings
 644         try {
 645             clone.buildFromSorted(size, entrySet().iterator(), null, null);
 646         } catch (java.io.IOException cannotHappen) {
 647         } catch (ClassNotFoundException cannotHappen) {
 648         }
 649 
 650         return clone;
 651     }
 652 
 653     // NavigableMap API methods
 654 
 655     /**
 656      * @since 1.6
 657      */
 658     public Map.Entry<K,V> firstEntry() {
 659         return exportEntry(getFirstEntry());
 660     }
 661 
 662     /**
 663      * @since 1.6
 664      */
 665     public Map.Entry<K,V> lastEntry() {
 666         return exportEntry(getLastEntry());
 667     }
 668 
 669     /**
 670      * @since 1.6
 671      */
 672     public Map.Entry<K,V> pollFirstEntry() {
 673         Entry<K,V> p = getFirstEntry();
 674         Map.Entry<K,V> result = exportEntry(p);
 675         if (p != null)
 676             deleteEntry(p);
 677         return result;
 678     }
 679 
 680     /**
 681      * @since 1.6
 682      */
 683     public Map.Entry<K,V> pollLastEntry() {
 684         Entry<K,V> p = getLastEntry();
 685         Map.Entry<K,V> result = exportEntry(p);
 686         if (p != null)
 687             deleteEntry(p);
 688         return result;
 689     }
 690 
 691     /**
 692      * @throws ClassCastException {@inheritDoc}
 693      * @throws NullPointerException if the specified key is null
 694      *         and this map uses natural ordering, or its comparator
 695      *         does not permit null keys
 696      * @since 1.6
 697      */
 698     public Map.Entry<K,V> lowerEntry(K key) {
 699         return exportEntry(getLowerEntry(key));
 700     }
 701 
 702     /**
 703      * @throws ClassCastException {@inheritDoc}
 704      * @throws NullPointerException if the specified key is null
 705      *         and this map uses natural ordering, or its comparator
 706      *         does not permit null keys
 707      * @since 1.6
 708      */
 709     public K lowerKey(K key) {
 710         return keyOrNull(getLowerEntry(key));
 711     }
 712 
 713     /**
 714      * @throws ClassCastException {@inheritDoc}
 715      * @throws NullPointerException if the specified key is null
 716      *         and this map uses natural ordering, or its comparator
 717      *         does not permit null keys
 718      * @since 1.6
 719      */
 720     public Map.Entry<K,V> floorEntry(K key) {
 721         return exportEntry(getFloorEntry(key));
 722     }
 723 
 724     /**
 725      * @throws ClassCastException {@inheritDoc}
 726      * @throws NullPointerException if the specified key is null
 727      *         and this map uses natural ordering, or its comparator
 728      *         does not permit null keys
 729      * @since 1.6
 730      */
 731     public K floorKey(K key) {
 732         return keyOrNull(getFloorEntry(key));
 733     }
 734 
 735     /**
 736      * @throws ClassCastException {@inheritDoc}
 737      * @throws NullPointerException if the specified key is null
 738      *         and this map uses natural ordering, or its comparator
 739      *         does not permit null keys
 740      * @since 1.6
 741      */
 742     public Map.Entry<K,V> ceilingEntry(K key) {
 743         return exportEntry(getCeilingEntry(key));
 744     }
 745 
 746     /**
 747      * @throws ClassCastException {@inheritDoc}
 748      * @throws NullPointerException if the specified key is null
 749      *         and this map uses natural ordering, or its comparator
 750      *         does not permit null keys
 751      * @since 1.6
 752      */
 753     public K ceilingKey(K key) {
 754         return keyOrNull(getCeilingEntry(key));
 755     }
 756 
 757     /**
 758      * @throws ClassCastException {@inheritDoc}
 759      * @throws NullPointerException if the specified key is null
 760      *         and this map uses natural ordering, or its comparator
 761      *         does not permit null keys
 762      * @since 1.6
 763      */
 764     public Map.Entry<K,V> higherEntry(K key) {
 765         return exportEntry(getHigherEntry(key));
 766     }
 767 
 768     /**
 769      * @throws ClassCastException {@inheritDoc}
 770      * @throws NullPointerException if the specified key is null
 771      *         and this map uses natural ordering, or its comparator
 772      *         does not permit null keys
 773      * @since 1.6
 774      */
 775     public K higherKey(K key) {
 776         return keyOrNull(getHigherEntry(key));
 777     }
 778 
 779     // Views
 780 
 781     /**
 782      * Fields initialized to contain an instance of the entry set view
 783      * the first time this view is requested.  Views are stateless, so
 784      * there's no reason to create more than one.
 785      */
 786     private transient EntrySet entrySet = null;
 787     private transient KeySet<K> navigableKeySet = null;
 788     private transient NavigableMap<K,V> descendingMap = null;
 789 
 790     /**
 791      * Returns a {@link Set} view of the keys contained in this map.
 792      * The set's iterator returns the keys in ascending order.
 793      * The set is backed by the map, so changes to the map are
 794      * reflected in the set, and vice-versa.  If the map is modified
 795      * while an iteration over the set is in progress (except through
 796      * the iterator's own {@code remove} operation), the results of
 797      * the iteration are undefined.  The set supports element removal,
 798      * which removes the corresponding mapping from the map, via the
 799      * {@code Iterator.remove}, {@code Set.remove},
 800      * {@code removeAll}, {@code retainAll}, and {@code clear}
 801      * operations.  It does not support the {@code add} or {@code addAll}
 802      * operations.
 803      */
 804     public Set<K> keySet() {
 805         return navigableKeySet();
 806     }
 807 
 808     /**
 809      * @since 1.6
 810      */
 811     public NavigableSet<K> navigableKeySet() {
 812         KeySet<K> nks = navigableKeySet;
 813         return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
 814     }
 815 
 816     /**
 817      * @since 1.6
 818      */
 819     public NavigableSet<K> descendingKeySet() {
 820         return descendingMap().navigableKeySet();
 821     }
 822 
 823     /**
 824      * Returns a {@link Collection} view of the values contained in this map.
 825      * The collection's iterator returns the values in ascending order
 826      * of the corresponding keys.
 827      * The collection is backed by the map, so changes to the map are
 828      * reflected in the collection, and vice-versa.  If the map is
 829      * modified while an iteration over the collection is in progress
 830      * (except through the iterator's own {@code remove} operation),
 831      * the results of the iteration are undefined.  The collection
 832      * supports element removal, which removes the corresponding
 833      * mapping from the map, via the {@code Iterator.remove},
 834      * {@code Collection.remove}, {@code removeAll},
 835      * {@code retainAll} and {@code clear} operations.  It does not
 836      * support the {@code add} or {@code addAll} operations.
 837      */
 838     public Collection<V> values() {
 839         Collection<V> vs = values;
 840         return (vs != null) ? vs : (values = new Values());
 841     }
 842 
 843     /**
 844      * Returns a {@link Set} view of the mappings contained in this map.
 845      * The set's iterator returns the entries in ascending key order.
 846      * The set is backed by the map, so changes to the map are
 847      * reflected in the set, and vice-versa.  If the map is modified
 848      * while an iteration over the set is in progress (except through
 849      * the iterator's own {@code remove} operation, or through the
 850      * {@code setValue} operation on a map entry returned by the
 851      * iterator) the results of the iteration are undefined.  The set
 852      * supports element removal, which removes the corresponding
 853      * mapping from the map, via the {@code Iterator.remove},
 854      * {@code Set.remove}, {@code removeAll}, {@code retainAll} and
 855      * {@code clear} operations.  It does not support the
 856      * {@code add} or {@code addAll} operations.
 857      */
 858     public Set<Map.Entry<K,V>> entrySet() {
 859         EntrySet es = entrySet;
 860         return (es != null) ? es : (entrySet = new EntrySet());
 861     }
 862 
 863     /**
 864      * @since 1.6
 865      */
 866     public NavigableMap<K, V> descendingMap() {
 867         NavigableMap<K, V> km = descendingMap;
 868         return (km != null) ? km :
 869             (descendingMap = new DescendingSubMap<>(this,
 870                                                     true, null, true,
 871                                                     true, null, true));
 872     }
 873 
 874     /**
 875      * @throws ClassCastException       {@inheritDoc}
 876      * @throws NullPointerException if {@code fromKey} or {@code toKey} is
 877      *         null and this map uses natural ordering, or its comparator
 878      *         does not permit null keys
 879      * @throws IllegalArgumentException {@inheritDoc}
 880      * @since 1.6
 881      */
 882     public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
 883                                     K toKey,   boolean toInclusive) {
 884         return new AscendingSubMap<>(this,
 885                                      false, fromKey, fromInclusive,
 886                                      false, toKey,   toInclusive);
 887     }
 888 
 889     /**
 890      * @throws ClassCastException       {@inheritDoc}
 891      * @throws NullPointerException if {@code toKey} is null
 892      *         and this map uses natural ordering, or its comparator
 893      *         does not permit null keys
 894      * @throws IllegalArgumentException {@inheritDoc}
 895      * @since 1.6
 896      */
 897     public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
 898         return new AscendingSubMap<>(this,
 899                                      true,  null,  true,
 900                                      false, toKey, inclusive);
 901     }
 902 
 903     /**
 904      * @throws ClassCastException       {@inheritDoc}
 905      * @throws NullPointerException if {@code fromKey} is null
 906      *         and this map uses natural ordering, or its comparator
 907      *         does not permit null keys
 908      * @throws IllegalArgumentException {@inheritDoc}
 909      * @since 1.6
 910      */
 911     public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
 912         return new AscendingSubMap<>(this,
 913                                      false, fromKey, inclusive,
 914                                      true,  null,    true);
 915     }
 916 
 917     /**
 918      * @throws ClassCastException       {@inheritDoc}
 919      * @throws NullPointerException if {@code fromKey} or {@code toKey} is
 920      *         null and this map uses natural ordering, or its comparator
 921      *         does not permit null keys
 922      * @throws IllegalArgumentException {@inheritDoc}
 923      */
 924     public SortedMap<K,V> subMap(K fromKey, K toKey) {
 925         return subMap(fromKey, true, toKey, false);
 926     }
 927 
 928     /**
 929      * @throws ClassCastException       {@inheritDoc}
 930      * @throws NullPointerException if {@code toKey} is null
 931      *         and this map uses natural ordering, or its comparator
 932      *         does not permit null keys
 933      * @throws IllegalArgumentException {@inheritDoc}
 934      */
 935     public SortedMap<K,V> headMap(K toKey) {
 936         return headMap(toKey, false);
 937     }
 938 
 939     /**
 940      * @throws ClassCastException       {@inheritDoc}
 941      * @throws NullPointerException if {@code fromKey} is null
 942      *         and this map uses natural ordering, or its comparator
 943      *         does not permit null keys
 944      * @throws IllegalArgumentException {@inheritDoc}
 945      */
 946     public SortedMap<K,V> tailMap(K fromKey) {
 947         return tailMap(fromKey, true);
 948     }
 949 
 950     @Override
 951     public void forEach(BiConsumer<? super K, ? super V> action) {
 952         Objects.requireNonNull(action);
 953         int expectedModCount = modCount;
 954         for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
 955             action.accept(e.key, e.value);
 956 
 957             if (expectedModCount != modCount) {
 958                 throw new ConcurrentModificationException();
 959             }
 960         }
 961     }
 962 
 963     @Override
 964     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
 965         Objects.requireNonNull(function);
 966         int expectedModCount = modCount;
 967 
 968         for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
 969             e.value = Objects.requireNonNull(function.apply(e.key, e.value));
 970 
 971             if (expectedModCount != modCount) {
 972                 throw new ConcurrentModificationException();
 973             }
 974         }
 975     }
 976 
 977     // View class support
 978 
 979     class Values extends AbstractCollection<V> {
 980         public Iterator<V> iterator() {
 981             return new ValueIterator(getFirstEntry());
 982         }
 983 
 984         public int size() {
 985             return TreeMap.this.size();
 986         }
 987 
 988         public boolean contains(Object o) {
 989             return TreeMap.this.containsValue(o);
 990         }
 991 
 992         public boolean remove(Object o) {
 993             for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
 994                 if (valEquals(e.getValue(), o)) {
 995                     deleteEntry(e);
 996                     return true;
 997                 }
 998             }
 999             return false;
1000         }
1001 
1002         public void clear() {
1003             TreeMap.this.clear();
1004         }
1005 
1006         public Spliterator<V> spliterator() {
1007             return new ValueSpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
1008         }
1009     }
1010 
1011     class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1012         public Iterator<Map.Entry<K,V>> iterator() {
1013             return new EntryIterator(getFirstEntry());
1014         }
1015 
1016         public boolean contains(Object o) {
1017             if (!(o instanceof Map.Entry))
1018                 return false;
1019             Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
1020             Object value = entry.getValue();
1021             Entry<K,V> p = getEntry(entry.getKey());
1022             return p != null && valEquals(p.getValue(), value);
1023         }
1024 
1025         public boolean remove(Object o) {
1026             if (!(o instanceof Map.Entry))
1027                 return false;
1028             Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
1029             Object value = entry.getValue();
1030             Entry<K,V> p = getEntry(entry.getKey());
1031             if (p != null && valEquals(p.getValue(), value)) {
1032                 deleteEntry(p);
1033                 return true;
1034             }
1035             return false;
1036         }
1037 
1038         public int size() {
1039             return TreeMap.this.size();
1040         }
1041 
1042         public void clear() {
1043             TreeMap.this.clear();
1044         }
1045 
1046         public Spliterator<Map.Entry<K,V>> spliterator() {
1047             return new EntrySpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
1048         }
1049     }
1050 
1051     /*
1052      * Unlike Values and EntrySet, the KeySet class is static,
1053      * delegating to a NavigableMap to allow use by SubMaps, which
1054      * outweighs the ugliness of needing type-tests for the following
1055      * Iterator methods that are defined appropriately in main versus
1056      * submap classes.
1057      */
1058 
1059     Iterator<K> keyIterator() {
1060         return new KeyIterator(getFirstEntry());
1061     }
1062 
1063     Iterator<K> descendingKeyIterator() {
1064         return new DescendingKeyIterator(getLastEntry());
1065     }
1066 
1067     static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
1068         private final NavigableMap<E, ?> m;
1069         KeySet(NavigableMap<E,?> map) { m = map; }
1070 
1071         public Iterator<E> iterator() {
1072             if (m instanceof TreeMap)
1073                 return ((TreeMap<E,?>)m).keyIterator();
1074             else
1075                 return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
1076         }
1077 
1078         public Iterator<E> descendingIterator() {
1079             if (m instanceof TreeMap)
1080                 return ((TreeMap<E,?>)m).descendingKeyIterator();
1081             else
1082                 return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
1083         }
1084 
1085         public int size() { return m.size(); }
1086         public boolean isEmpty() { return m.isEmpty(); }
1087         public boolean contains(Object o) { return m.containsKey(o); }
1088         public void clear() { m.clear(); }
1089         public E lower(E e) { return m.lowerKey(e); }
1090         public E floor(E e) { return m.floorKey(e); }
1091         public E ceiling(E e) { return m.ceilingKey(e); }
1092         public E higher(E e) { return m.higherKey(e); }
1093         public E first() { return m.firstKey(); }
1094         public E last() { return m.lastKey(); }
1095         public Comparator<? super E> comparator() { return m.comparator(); }
1096         public E pollFirst() {
1097             Map.Entry<E,?> e = m.pollFirstEntry();
1098             return (e == null) ? null : e.getKey();
1099         }
1100         public E pollLast() {
1101             Map.Entry<E,?> e = m.pollLastEntry();
1102             return (e == null) ? null : e.getKey();
1103         }
1104         public boolean remove(Object o) {
1105             int oldSize = size();
1106             m.remove(o);
1107             return size() != oldSize;
1108         }
1109         public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
1110                                       E toElement,   boolean toInclusive) {
1111             return new KeySet<>(m.subMap(fromElement, fromInclusive,
1112                                           toElement,   toInclusive));
1113         }
1114         public NavigableSet<E> headSet(E toElement, boolean inclusive) {
1115             return new KeySet<>(m.headMap(toElement, inclusive));
1116         }
1117         public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
1118             return new KeySet<>(m.tailMap(fromElement, inclusive));
1119         }
1120         public SortedSet<E> subSet(E fromElement, E toElement) {
1121             return subSet(fromElement, true, toElement, false);
1122         }
1123         public SortedSet<E> headSet(E toElement) {
1124             return headSet(toElement, false);
1125         }
1126         public SortedSet<E> tailSet(E fromElement) {
1127             return tailSet(fromElement, true);
1128         }
1129         public NavigableSet<E> descendingSet() {
1130             return new KeySet<>(m.descendingMap());
1131         }
1132 
1133         public Spliterator<E> spliterator() {
1134             return keySpliteratorFor(m);
1135         }
1136     }
1137 
1138     /**
1139      * Base class for TreeMap Iterators
1140      */
1141     abstract class PrivateEntryIterator<T> implements Iterator<T> {
1142         Entry<K,V> next;
1143         Entry<K,V> lastReturned;
1144         int expectedModCount;
1145 
1146         PrivateEntryIterator(Entry<K,V> first) {
1147             expectedModCount = modCount;
1148             lastReturned = null;
1149             next = first;
1150         }
1151 
1152         public final boolean hasNext() {
1153             return next != null;
1154         }
1155 
1156         final Entry<K,V> nextEntry() {
1157             Entry<K,V> e = next;
1158             if (e == null)
1159                 throw new NoSuchElementException();
1160             if (modCount != expectedModCount)
1161                 throw new ConcurrentModificationException();
1162             next = successor(e);
1163             lastReturned = e;
1164             return e;
1165         }
1166 
1167         final Entry<K,V> prevEntry() {
1168             Entry<K,V> e = next;
1169             if (e == null)
1170                 throw new NoSuchElementException();
1171             if (modCount != expectedModCount)
1172                 throw new ConcurrentModificationException();
1173             next = predecessor(e);
1174             lastReturned = e;
1175             return e;
1176         }
1177 
1178         public void remove() {
1179             if (lastReturned == null)
1180                 throw new IllegalStateException();
1181             if (modCount != expectedModCount)
1182                 throw new ConcurrentModificationException();
1183             // deleted entries are replaced by their successors
1184             if (lastReturned.left != null && lastReturned.right != null)
1185                 next = lastReturned;
1186             deleteEntry(lastReturned);
1187             expectedModCount = modCount;
1188             lastReturned = null;
1189         }
1190     }
1191 
1192     final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
1193         EntryIterator(Entry<K,V> first) {
1194             super(first);
1195         }
1196         public Map.Entry<K,V> next() {
1197             return nextEntry();
1198         }
1199     }
1200 
1201     final class ValueIterator extends PrivateEntryIterator<V> {
1202         ValueIterator(Entry<K,V> first) {
1203             super(first);
1204         }
1205         public V next() {
1206             return nextEntry().value;
1207         }
1208     }
1209 
1210     final class KeyIterator extends PrivateEntryIterator<K> {
1211         KeyIterator(Entry<K,V> first) {
1212             super(first);
1213         }
1214         public K next() {
1215             return nextEntry().key;
1216         }
1217     }
1218 
1219     final class DescendingKeyIterator extends PrivateEntryIterator<K> {
1220         DescendingKeyIterator(Entry<K,V> first) {
1221             super(first);
1222         }
1223         public K next() {
1224             return prevEntry().key;
1225         }
1226     }
1227 
1228     // Little utilities
1229 
1230     /**
1231      * Compares two keys using the correct comparison method for this TreeMap.
1232      */
1233     @SuppressWarnings("unchecked")
1234     final int compare(Object k1, Object k2) {
1235         return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
1236             : comparator.compare((K)k1, (K)k2);
1237     }
1238 
1239     /**
1240      * Test two values for equality.  Differs from o1.equals(o2) only in
1241      * that it copes with {@code null} o1 properly.
1242      */
1243     static final boolean valEquals(Object o1, Object o2) {
1244         return (o1==null ? o2==null : o1.equals(o2));
1245     }
1246 
1247     /**
1248      * Return SimpleImmutableEntry for entry, or null if null
1249      */
1250     static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
1251         return (e == null) ? null :
1252             new AbstractMap.SimpleImmutableEntry<>(e);
1253     }
1254 
1255     /**
1256      * Return key for entry, or null if null
1257      */
1258     static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
1259         return (e == null) ? null : e.key;
1260     }
1261 
1262     /**
1263      * Returns the key corresponding to the specified Entry.
1264      * @throws NoSuchElementException if the Entry is null
1265      */
1266     static <K> K key(Entry<K,?> e) {
1267         if (e==null)
1268             throw new NoSuchElementException();
1269         return e.key;
1270     }
1271 
1272 
1273     // SubMaps
1274 
1275     /**
1276      * Dummy value serving as unmatchable fence key for unbounded
1277      * SubMapIterators
1278      */
1279     private static final Object UNBOUNDED = new Object();
1280 
1281     /**
1282      * @serial include
1283      */
1284     abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
1285         implements NavigableMap<K,V>, java.io.Serializable {
1286         /**
1287          * The backing map.
1288          */
1289         final TreeMap<K,V> m;
1290 
1291         /**
1292          * Endpoints are represented as triples (fromStart, lo,
1293          * loInclusive) and (toEnd, hi, hiInclusive). If fromStart is
1294          * true, then the low (absolute) bound is the start of the
1295          * backing map, and the other values are ignored. Otherwise,
1296          * if loInclusive is true, lo is the inclusive bound, else lo
1297          * is the exclusive bound. Similarly for the upper bound.
1298          */
1299         final K lo, hi;
1300         final boolean fromStart, toEnd;
1301         final boolean loInclusive, hiInclusive;
1302 
1303         NavigableSubMap(TreeMap<K,V> m,
1304                         boolean fromStart, K lo, boolean loInclusive,
1305                         boolean toEnd,     K hi, boolean hiInclusive) {
1306             if (!fromStart && !toEnd) {
1307                 if (m.compare(lo, hi) > 0)
1308                     throw new IllegalArgumentException("fromKey > toKey");
1309             } else {
1310                 if (!fromStart) // type check
1311                     m.compare(lo, lo);
1312                 if (!toEnd)
1313                     m.compare(hi, hi);
1314             }
1315 
1316             this.m = m;
1317             this.fromStart = fromStart;
1318             this.lo = lo;
1319             this.loInclusive = loInclusive;
1320             this.toEnd = toEnd;
1321             this.hi = hi;
1322             this.hiInclusive = hiInclusive;
1323         }
1324 
1325         // internal utilities
1326 
1327         final boolean tooLow(Object key) {
1328             if (!fromStart) {
1329                 int c = m.compare(key, lo);
1330                 if (c < 0 || (c == 0 && !loInclusive))
1331                     return true;
1332             }
1333             return false;
1334         }
1335 
1336         final boolean tooHigh(Object key) {
1337             if (!toEnd) {
1338                 int c = m.compare(key, hi);
1339                 if (c > 0 || (c == 0 && !hiInclusive))
1340                     return true;
1341             }
1342             return false;
1343         }
1344 
1345         final boolean inRange(Object key) {
1346             return !tooLow(key) && !tooHigh(key);
1347         }
1348 
1349         final boolean inClosedRange(Object key) {
1350             return (fromStart || m.compare(key, lo) >= 0)
1351                 && (toEnd || m.compare(hi, key) >= 0);
1352         }
1353 
1354         final boolean inRange(Object key, boolean inclusive) {
1355             return inclusive ? inRange(key) : inClosedRange(key);
1356         }
1357 
1358         /*
1359          * Absolute versions of relation operations.
1360          * Subclasses map to these using like-named "sub"
1361          * versions that invert senses for descending maps
1362          */
1363 
1364         final TreeMap.Entry<K,V> absLowest() {
1365             TreeMap.Entry<K,V> e =
1366                 (fromStart ?  m.getFirstEntry() :
1367                  (loInclusive ? m.getCeilingEntry(lo) :
1368                                 m.getHigherEntry(lo)));
1369             return (e == null || tooHigh(e.key)) ? null : e;
1370         }
1371 
1372         final TreeMap.Entry<K,V> absHighest() {
1373             TreeMap.Entry<K,V> e =
1374                 (toEnd ?  m.getLastEntry() :
1375                  (hiInclusive ?  m.getFloorEntry(hi) :
1376                                  m.getLowerEntry(hi)));
1377             return (e == null || tooLow(e.key)) ? null : e;
1378         }
1379 
1380         final TreeMap.Entry<K,V> absCeiling(K key) {
1381             if (tooLow(key))
1382                 return absLowest();
1383             TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
1384             return (e == null || tooHigh(e.key)) ? null : e;
1385         }
1386 
1387         final TreeMap.Entry<K,V> absHigher(K key) {
1388             if (tooLow(key))
1389                 return absLowest();
1390             TreeMap.Entry<K,V> e = m.getHigherEntry(key);
1391             return (e == null || tooHigh(e.key)) ? null : e;
1392         }
1393 
1394         final TreeMap.Entry<K,V> absFloor(K key) {
1395             if (tooHigh(key))
1396                 return absHighest();
1397             TreeMap.Entry<K,V> e = m.getFloorEntry(key);
1398             return (e == null || tooLow(e.key)) ? null : e;
1399         }
1400 
1401         final TreeMap.Entry<K,V> absLower(K key) {
1402             if (tooHigh(key))
1403                 return absHighest();
1404             TreeMap.Entry<K,V> e = m.getLowerEntry(key);
1405             return (e == null || tooLow(e.key)) ? null : e;
1406         }
1407 
1408         /** Returns the absolute high fence for ascending traversal */
1409         final TreeMap.Entry<K,V> absHighFence() {
1410             return (toEnd ? null : (hiInclusive ?
1411                                     m.getHigherEntry(hi) :
1412                                     m.getCeilingEntry(hi)));
1413         }
1414 
1415         /** Return the absolute low fence for descending traversal  */
1416         final TreeMap.Entry<K,V> absLowFence() {
1417             return (fromStart ? null : (loInclusive ?
1418                                         m.getLowerEntry(lo) :
1419                                         m.getFloorEntry(lo)));
1420         }
1421 
1422         // Abstract methods defined in ascending vs descending classes
1423         // These relay to the appropriate absolute versions
1424 
1425         abstract TreeMap.Entry<K,V> subLowest();
1426         abstract TreeMap.Entry<K,V> subHighest();
1427         abstract TreeMap.Entry<K,V> subCeiling(K key);
1428         abstract TreeMap.Entry<K,V> subHigher(K key);
1429         abstract TreeMap.Entry<K,V> subFloor(K key);
1430         abstract TreeMap.Entry<K,V> subLower(K key);
1431 
1432         /** Returns ascending iterator from the perspective of this submap */
1433         abstract Iterator<K> keyIterator();
1434 
1435         abstract Spliterator<K> keySpliterator();
1436 
1437         /** Returns descending iterator from the perspective of this submap */
1438         abstract Iterator<K> descendingKeyIterator();
1439 
1440         // public methods
1441 
1442         public boolean isEmpty() {
1443             return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
1444         }
1445 
1446         public int size() {
1447             return (fromStart && toEnd) ? m.size() : entrySet().size();
1448         }
1449 
1450         public final boolean containsKey(Object key) {
1451             return inRange(key) && m.containsKey(key);
1452         }
1453 
1454         public final V put(K key, V value) {
1455             if (!inRange(key))
1456                 throw new IllegalArgumentException("key out of range");
1457             return m.put(key, value);
1458         }
1459 
1460         public final V get(Object key) {
1461             return !inRange(key) ? null :  m.get(key);
1462         }
1463 
1464         public final V remove(Object key) {
1465             return !inRange(key) ? null : m.remove(key);
1466         }
1467 
1468         public final Map.Entry<K,V> ceilingEntry(K key) {
1469             return exportEntry(subCeiling(key));
1470         }
1471 
1472         public final K ceilingKey(K key) {
1473             return keyOrNull(subCeiling(key));
1474         }
1475 
1476         public final Map.Entry<K,V> higherEntry(K key) {
1477             return exportEntry(subHigher(key));
1478         }
1479 
1480         public final K higherKey(K key) {
1481             return keyOrNull(subHigher(key));
1482         }
1483 
1484         public final Map.Entry<K,V> floorEntry(K key) {
1485             return exportEntry(subFloor(key));
1486         }
1487 
1488         public final K floorKey(K key) {
1489             return keyOrNull(subFloor(key));
1490         }
1491 
1492         public final Map.Entry<K,V> lowerEntry(K key) {
1493             return exportEntry(subLower(key));
1494         }
1495 
1496         public final K lowerKey(K key) {
1497             return keyOrNull(subLower(key));
1498         }
1499 
1500         public final K firstKey() {
1501             return key(subLowest());
1502         }
1503 
1504         public final K lastKey() {
1505             return key(subHighest());
1506         }
1507 
1508         public final Map.Entry<K,V> firstEntry() {
1509             return exportEntry(subLowest());
1510         }
1511 
1512         public final Map.Entry<K,V> lastEntry() {
1513             return exportEntry(subHighest());
1514         }
1515 
1516         public final Map.Entry<K,V> pollFirstEntry() {
1517             TreeMap.Entry<K,V> e = subLowest();
1518             Map.Entry<K,V> result = exportEntry(e);
1519             if (e != null)
1520                 m.deleteEntry(e);
1521             return result;
1522         }
1523 
1524         public final Map.Entry<K,V> pollLastEntry() {
1525             TreeMap.Entry<K,V> e = subHighest();
1526             Map.Entry<K,V> result = exportEntry(e);
1527             if (e != null)
1528                 m.deleteEntry(e);
1529             return result;
1530         }
1531 
1532         // Views
1533         transient NavigableMap<K,V> descendingMapView = null;
1534         transient EntrySetView entrySetView = null;
1535         transient KeySet<K> navigableKeySetView = null;
1536 
1537         public final NavigableSet<K> navigableKeySet() {
1538             KeySet<K> nksv = navigableKeySetView;
1539             return (nksv != null) ? nksv :
1540                 (navigableKeySetView = new TreeMap.KeySet<>(this));
1541         }
1542 
1543         public final Set<K> keySet() {
1544             return navigableKeySet();
1545         }
1546 
1547         public NavigableSet<K> descendingKeySet() {
1548             return descendingMap().navigableKeySet();
1549         }
1550 
1551         public final SortedMap<K,V> subMap(K fromKey, K toKey) {
1552             return subMap(fromKey, true, toKey, false);
1553         }
1554 
1555         public final SortedMap<K,V> headMap(K toKey) {
1556             return headMap(toKey, false);
1557         }
1558 
1559         public final SortedMap<K,V> tailMap(K fromKey) {
1560             return tailMap(fromKey, true);
1561         }
1562 
1563         // View classes
1564 
1565         abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
1566             private transient int size = -1, sizeModCount;
1567 
1568             public int size() {
1569                 if (fromStart && toEnd)
1570                     return m.size();
1571                 if (size == -1 || sizeModCount != m.modCount) {
1572                     sizeModCount = m.modCount;
1573                     size = 0;
1574                     Iterator<?> i = iterator();
1575                     while (i.hasNext()) {
1576                         size++;
1577                         i.next();
1578                     }
1579                 }
1580                 return size;
1581             }
1582 
1583             public boolean isEmpty() {
1584                 TreeMap.Entry<K,V> n = absLowest();
1585                 return n == null || tooHigh(n.key);
1586             }
1587 
1588             public boolean contains(Object o) {
1589                 if (!(o instanceof Map.Entry))
1590                     return false;
1591                 Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
1592                 Object key = entry.getKey();
1593                 if (!inRange(key))
1594                     return false;
1595                 TreeMap.Entry<?,?> node = m.getEntry(key);
1596                 return node != null &&
1597                     valEquals(node.getValue(), entry.getValue());
1598             }
1599 
1600             public boolean remove(Object o) {
1601                 if (!(o instanceof Map.Entry))
1602                     return false;
1603                 Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
1604                 Object key = entry.getKey();
1605                 if (!inRange(key))
1606                     return false;
1607                 TreeMap.Entry<K,V> node = m.getEntry(key);
1608                 if (node!=null && valEquals(node.getValue(),
1609                                             entry.getValue())) {
1610                     m.deleteEntry(node);
1611                     return true;
1612                 }
1613                 return false;
1614             }
1615         }
1616 
1617         /**
1618          * Iterators for SubMaps
1619          */
1620         abstract class SubMapIterator<T> implements Iterator<T> {
1621             TreeMap.Entry<K,V> lastReturned;
1622             TreeMap.Entry<K,V> next;
1623             final Object fenceKey;
1624             int expectedModCount;
1625 
1626             SubMapIterator(TreeMap.Entry<K,V> first,
1627                            TreeMap.Entry<K,V> fence) {
1628                 expectedModCount = m.modCount;
1629                 lastReturned = null;
1630                 next = first;
1631                 fenceKey = fence == null ? UNBOUNDED : fence.key;
1632             }
1633 
1634             public final boolean hasNext() {
1635                 return next != null && next.key != fenceKey;
1636             }
1637 
1638             final TreeMap.Entry<K,V> nextEntry() {
1639                 TreeMap.Entry<K,V> e = next;
1640                 if (e == null || e.key == fenceKey)
1641                     throw new NoSuchElementException();
1642                 if (m.modCount != expectedModCount)
1643                     throw new ConcurrentModificationException();
1644                 next = successor(e);
1645                 lastReturned = e;
1646                 return e;
1647             }
1648 
1649             final TreeMap.Entry<K,V> prevEntry() {
1650                 TreeMap.Entry<K,V> e = next;
1651                 if (e == null || e.key == fenceKey)
1652                     throw new NoSuchElementException();
1653                 if (m.modCount != expectedModCount)
1654                     throw new ConcurrentModificationException();
1655                 next = predecessor(e);
1656                 lastReturned = e;
1657                 return e;
1658             }
1659 
1660             final void removeAscending() {
1661                 if (lastReturned == null)
1662                     throw new IllegalStateException();
1663                 if (m.modCount != expectedModCount)
1664                     throw new ConcurrentModificationException();
1665                 // deleted entries are replaced by their successors
1666                 if (lastReturned.left != null && lastReturned.right != null)
1667                     next = lastReturned;
1668                 m.deleteEntry(lastReturned);
1669                 lastReturned = null;
1670                 expectedModCount = m.modCount;
1671             }
1672 
1673             final void removeDescending() {
1674                 if (lastReturned == null)
1675                     throw new IllegalStateException();
1676                 if (m.modCount != expectedModCount)
1677                     throw new ConcurrentModificationException();
1678                 m.deleteEntry(lastReturned);
1679                 lastReturned = null;
1680                 expectedModCount = m.modCount;
1681             }
1682 
1683         }
1684 
1685         final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1686             SubMapEntryIterator(TreeMap.Entry<K,V> first,
1687                                 TreeMap.Entry<K,V> fence) {
1688                 super(first, fence);
1689             }
1690             public Map.Entry<K,V> next() {
1691                 return nextEntry();
1692             }
1693             public void remove() {
1694                 removeAscending();
1695             }
1696         }
1697 
1698         final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
1699             DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
1700                                           TreeMap.Entry<K,V> fence) {
1701                 super(last, fence);
1702             }
1703 
1704             public Map.Entry<K,V> next() {
1705                 return prevEntry();
1706             }
1707             public void remove() {
1708                 removeDescending();
1709             }
1710         }
1711 
1712         // Implement minimal Spliterator as KeySpliterator backup
1713         final class SubMapKeyIterator extends SubMapIterator<K>
1714             implements Spliterator<K> {
1715             SubMapKeyIterator(TreeMap.Entry<K,V> first,
1716                               TreeMap.Entry<K,V> fence) {
1717                 super(first, fence);
1718             }
1719             public K next() {
1720                 return nextEntry().key;
1721             }
1722             public void remove() {
1723                 removeAscending();
1724             }
1725             public Spliterator<K> trySplit() {
1726                 return null;
1727             }
1728             public void forEachRemaining(Consumer<? super K> action) {
1729                 while (hasNext())
1730                     action.accept(next());
1731             }
1732             public boolean tryAdvance(Consumer<? super K> action) {
1733                 if (hasNext()) {
1734                     action.accept(next());
1735                     return true;
1736                 }
1737                 return false;
1738             }
1739             public long estimateSize() {
1740                 return Long.MAX_VALUE;
1741             }
1742             public int characteristics() {
1743                 return Spliterator.DISTINCT | Spliterator.ORDERED |
1744                     Spliterator.SORTED;
1745             }
1746             public final Comparator<? super K>  getComparator() {
1747                 return NavigableSubMap.this.comparator();
1748             }
1749         }
1750 
1751         final class DescendingSubMapKeyIterator extends SubMapIterator<K>
1752             implements Spliterator<K> {
1753             DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
1754                                         TreeMap.Entry<K,V> fence) {
1755                 super(last, fence);
1756             }
1757             public K next() {
1758                 return prevEntry().key;
1759             }
1760             public void remove() {
1761                 removeDescending();
1762             }
1763             public Spliterator<K> trySplit() {
1764                 return null;
1765             }
1766             public void forEachRemaining(Consumer<? super K> action) {
1767                 while (hasNext())
1768                     action.accept(next());
1769             }
1770             public boolean tryAdvance(Consumer<? super K> action) {
1771                 if (hasNext()) {
1772                     action.accept(next());
1773                     return true;
1774                 }
1775                 return false;
1776             }
1777             public long estimateSize() {
1778                 return Long.MAX_VALUE;
1779             }
1780             public int characteristics() {
1781                 return Spliterator.DISTINCT | Spliterator.ORDERED;
1782             }
1783         }
1784     }
1785 
1786     /**
1787      * @serial include
1788      */
1789     static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
1790         private static final long serialVersionUID = 912986545866124060L;
1791 
1792         AscendingSubMap(TreeMap<K,V> m,
1793                         boolean fromStart, K lo, boolean loInclusive,
1794                         boolean toEnd,     K hi, boolean hiInclusive) {
1795             super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1796         }
1797 
1798         public Comparator<? super K> comparator() {
1799             return m.comparator();
1800         }
1801 
1802         public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1803                                         K toKey,   boolean toInclusive) {
1804             if (!inRange(fromKey, fromInclusive))
1805                 throw new IllegalArgumentException("fromKey out of range");
1806             if (!inRange(toKey, toInclusive))
1807                 throw new IllegalArgumentException("toKey out of range");
1808             return new AscendingSubMap<>(m,
1809                                          false, fromKey, fromInclusive,
1810                                          false, toKey,   toInclusive);
1811         }
1812 
1813         public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1814             if (!inRange(toKey, inclusive))
1815                 throw new IllegalArgumentException("toKey out of range");
1816             return new AscendingSubMap<>(m,
1817                                          fromStart, lo,    loInclusive,
1818                                          false,     toKey, inclusive);
1819         }
1820 
1821         public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1822             if (!inRange(fromKey, inclusive))
1823                 throw new IllegalArgumentException("fromKey out of range");
1824             return new AscendingSubMap<>(m,
1825                                          false, fromKey, inclusive,
1826                                          toEnd, hi,      hiInclusive);
1827         }
1828 
1829         public NavigableMap<K,V> descendingMap() {
1830             NavigableMap<K,V> mv = descendingMapView;
1831             return (mv != null) ? mv :
1832                 (descendingMapView =
1833                  new DescendingSubMap<>(m,
1834                                         fromStart, lo, loInclusive,
1835                                         toEnd,     hi, hiInclusive));
1836         }
1837 
1838         Iterator<K> keyIterator() {
1839             return new SubMapKeyIterator(absLowest(), absHighFence());
1840         }
1841 
1842         Spliterator<K> keySpliterator() {
1843             return new SubMapKeyIterator(absLowest(), absHighFence());
1844         }
1845 
1846         Iterator<K> descendingKeyIterator() {
1847             return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1848         }
1849 
1850         final class AscendingEntrySetView extends EntrySetView {
1851             public Iterator<Map.Entry<K,V>> iterator() {
1852                 return new SubMapEntryIterator(absLowest(), absHighFence());
1853             }
1854         }
1855 
1856         public Set<Map.Entry<K,V>> entrySet() {
1857             EntrySetView es = entrySetView;
1858             return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
1859         }
1860 
1861         TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
1862         TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
1863         TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
1864         TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
1865         TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
1866         TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
1867     }
1868 
1869     /**
1870      * @serial include
1871      */
1872     static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
1873         private static final long serialVersionUID = 912986545866120460L;
1874         DescendingSubMap(TreeMap<K,V> m,
1875                         boolean fromStart, K lo, boolean loInclusive,
1876                         boolean toEnd,     K hi, boolean hiInclusive) {
1877             super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
1878         }
1879 
1880         private final Comparator<? super K> reverseComparator =
1881             Collections.reverseOrder(m.comparator);
1882 
1883         public Comparator<? super K> comparator() {
1884             return reverseComparator;
1885         }
1886 
1887         public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
1888                                         K toKey,   boolean toInclusive) {
1889             if (!inRange(fromKey, fromInclusive))
1890                 throw new IllegalArgumentException("fromKey out of range");
1891             if (!inRange(toKey, toInclusive))
1892                 throw new IllegalArgumentException("toKey out of range");
1893             return new DescendingSubMap<>(m,
1894                                           false, toKey,   toInclusive,
1895                                           false, fromKey, fromInclusive);
1896         }
1897 
1898         public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
1899             if (!inRange(toKey, inclusive))
1900                 throw new IllegalArgumentException("toKey out of range");
1901             return new DescendingSubMap<>(m,
1902                                           false, toKey, inclusive,
1903                                           toEnd, hi,    hiInclusive);
1904         }
1905 
1906         public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
1907             if (!inRange(fromKey, inclusive))
1908                 throw new IllegalArgumentException("fromKey out of range");
1909             return new DescendingSubMap<>(m,
1910                                           fromStart, lo, loInclusive,
1911                                           false, fromKey, inclusive);
1912         }
1913 
1914         public NavigableMap<K,V> descendingMap() {
1915             NavigableMap<K,V> mv = descendingMapView;
1916             return (mv != null) ? mv :
1917                 (descendingMapView =
1918                  new AscendingSubMap<>(m,
1919                                        fromStart, lo, loInclusive,
1920                                        toEnd,     hi, hiInclusive));
1921         }
1922 
1923         Iterator<K> keyIterator() {
1924             return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1925         }
1926 
1927         Spliterator<K> keySpliterator() {
1928             return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
1929         }
1930 
1931         Iterator<K> descendingKeyIterator() {
1932             return new SubMapKeyIterator(absLowest(), absHighFence());
1933         }
1934 
1935         final class DescendingEntrySetView extends EntrySetView {
1936             public Iterator<Map.Entry<K,V>> iterator() {
1937                 return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
1938             }
1939         }
1940 
1941         public Set<Map.Entry<K,V>> entrySet() {
1942             EntrySetView es = entrySetView;
1943             return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
1944         }
1945 
1946         TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
1947         TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
1948         TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
1949         TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
1950         TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
1951         TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
1952     }
1953 
1954     /**
1955      * This class exists solely for the sake of serialization
1956      * compatibility with previous releases of TreeMap that did not
1957      * support NavigableMap.  It translates an old-version SubMap into
1958      * a new-version AscendingSubMap. This class is never otherwise
1959      * used.
1960      *
1961      * @serial include
1962      */
1963     private class SubMap extends AbstractMap<K,V>
1964         implements SortedMap<K,V>, java.io.Serializable {
1965         private static final long serialVersionUID = -6520786458950516097L;
1966         private boolean fromStart = false, toEnd = false;
1967         private K fromKey, toKey;
1968         private Object readResolve() {
1969             return new AscendingSubMap<>(TreeMap.this,
1970                                          fromStart, fromKey, true,
1971                                          toEnd, toKey, false);
1972         }
1973         public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
1974         public K lastKey() { throw new InternalError(); }
1975         public K firstKey() { throw new InternalError(); }
1976         public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
1977         public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
1978         public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
1979         public Comparator<? super K> comparator() { throw new InternalError(); }
1980     }
1981 
1982 
1983     // Red-black mechanics
1984 
1985     private static final boolean RED   = false;
1986     private static final boolean BLACK = true;
1987 
1988     /**
1989      * Node in the Tree.  Doubles as a means to pass key-value pairs back to
1990      * user (see Map.Entry).
1991      */
1992 
1993     static final class Entry<K,V> implements Map.Entry<K,V> {
1994         K key;
1995         V value;
1996         Entry<K,V> left = null;
1997         Entry<K,V> right = null;
1998         Entry<K,V> parent;
1999         boolean color = BLACK;
2000 
2001         /**
2002          * Make a new cell with given key, value, and parent, and with
2003          * {@code null} child links, and BLACK color.
2004          */
2005         Entry(K key, V value, Entry<K,V> parent) {
2006             this.key = key;
2007             this.value = value;
2008             this.parent = parent;
2009         }
2010 
2011         /**
2012          * Returns the key.
2013          *
2014          * @return the key
2015          */
2016         public K getKey() {
2017             return key;
2018         }
2019 
2020         /**
2021          * Returns the value associated with the key.
2022          *
2023          * @return the value associated with the key
2024          */
2025         public V getValue() {
2026             return value;
2027         }
2028 
2029         /**
2030          * Replaces the value currently associated with the key with the given
2031          * value.
2032          *
2033          * @return the value associated with the key before this method was
2034          *         called
2035          */
2036         public V setValue(V value) {
2037             V oldValue = this.value;
2038             this.value = value;
2039             return oldValue;
2040         }
2041 
2042         public boolean equals(Object o) {
2043             if (!(o instanceof Map.Entry))
2044                 return false;
2045             Map.Entry<?,?> e = (Map.Entry<?,?>)o;
2046 
2047             return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
2048         }
2049 
2050         public int hashCode() {
2051             int keyHash = (key==null ? 0 : key.hashCode());
2052             int valueHash = (value==null ? 0 : value.hashCode());
2053             return keyHash ^ valueHash;
2054         }
2055 
2056         public String toString() {
2057             return key + "=" + value;
2058         }
2059     }
2060 
2061     /**
2062      * Returns the first Entry in the TreeMap (according to the TreeMap's
2063      * key-sort function).  Returns null if the TreeMap is empty.
2064      */
2065     final Entry<K,V> getFirstEntry() {
2066         Entry<K,V> p = root;
2067         if (p != null)
2068             while (p.left != null)
2069                 p = p.left;
2070         return p;
2071     }
2072 
2073     /**
2074      * Returns the last Entry in the TreeMap (according to the TreeMap's
2075      * key-sort function).  Returns null if the TreeMap is empty.
2076      */
2077     final Entry<K,V> getLastEntry() {
2078         Entry<K,V> p = root;
2079         if (p != null)
2080             while (p.right != null)
2081                 p = p.right;
2082         return p;
2083     }
2084 
2085     /**
2086      * Returns the successor of the specified Entry, or null if no such.
2087      */
2088     static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
2089         if (t == null)
2090             return null;
2091         else if (t.right != null) {
2092             Entry<K,V> p = t.right;
2093             while (p.left != null)
2094                 p = p.left;
2095             return p;
2096         } else {
2097             Entry<K,V> p = t.parent;
2098             Entry<K,V> ch = t;
2099             while (p != null && ch == p.right) {
2100                 ch = p;
2101                 p = p.parent;
2102             }
2103             return p;
2104         }
2105     }
2106 
2107     /**
2108      * Returns the predecessor of the specified Entry, or null if no such.
2109      */
2110     static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
2111         if (t == null)
2112             return null;
2113         else if (t.left != null) {
2114             Entry<K,V> p = t.left;
2115             while (p.right != null)
2116                 p = p.right;
2117             return p;
2118         } else {
2119             Entry<K,V> p = t.parent;
2120             Entry<K,V> ch = t;
2121             while (p != null && ch == p.left) {
2122                 ch = p;
2123                 p = p.parent;
2124             }
2125             return p;
2126         }
2127     }
2128 
2129     /**
2130      * Balancing operations.
2131      *
2132      * Implementations of rebalancings during insertion and deletion are
2133      * slightly different than the CLR version.  Rather than using dummy
2134      * nilnodes, we use a set of accessors that deal properly with null.  They
2135      * are used to avoid messiness surrounding nullness checks in the main
2136      * algorithms.
2137      */
2138 
2139     private static <K,V> boolean colorOf(Entry<K,V> p) {
2140         return (p == null ? BLACK : p.color);
2141     }
2142 
2143     private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
2144         return (p == null ? null: p.parent);
2145     }
2146 
2147     private static <K,V> void setColor(Entry<K,V> p, boolean c) {
2148         if (p != null)
2149             p.color = c;
2150     }
2151 
2152     private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
2153         return (p == null) ? null: p.left;
2154     }
2155 
2156     private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
2157         return (p == null) ? null: p.right;
2158     }
2159 
2160     /** From CLR */
2161     private void rotateLeft(Entry<K,V> p) {
2162         if (p != null) {
2163             Entry<K,V> r = p.right;
2164             p.right = r.left;
2165             if (r.left != null)
2166                 r.left.parent = p;
2167             r.parent = p.parent;
2168             if (p.parent == null)
2169                 root = r;
2170             else if (p.parent.left == p)
2171                 p.parent.left = r;
2172             else
2173                 p.parent.right = r;
2174             r.left = p;
2175             p.parent = r;
2176         }
2177     }
2178 
2179     /** From CLR */
2180     private void rotateRight(Entry<K,V> p) {
2181         if (p != null) {
2182             Entry<K,V> l = p.left;
2183             p.left = l.right;
2184             if (l.right != null) l.right.parent = p;
2185             l.parent = p.parent;
2186             if (p.parent == null)
2187                 root = l;
2188             else if (p.parent.right == p)
2189                 p.parent.right = l;
2190             else p.parent.left = l;
2191             l.right = p;
2192             p.parent = l;
2193         }
2194     }
2195 
2196     /** From CLR */
2197     private void fixAfterInsertion(Entry<K,V> x) {
2198         x.color = RED;
2199 
2200         while (x != null && x != root && x.parent.color == RED) {
2201             if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {
2202                 Entry<K,V> y = rightOf(parentOf(parentOf(x)));
2203                 if (colorOf(y) == RED) {
2204                     setColor(parentOf(x), BLACK);
2205                     setColor(y, BLACK);
2206                     setColor(parentOf(parentOf(x)), RED);
2207                     x = parentOf(parentOf(x));
2208                 } else {
2209                     if (x == rightOf(parentOf(x))) {
2210                         x = parentOf(x);
2211                         rotateLeft(x);
2212                     }
2213                     setColor(parentOf(x), BLACK);
2214                     setColor(parentOf(parentOf(x)), RED);
2215                     rotateRight(parentOf(parentOf(x)));
2216                 }
2217             } else {
2218                 Entry<K,V> y = leftOf(parentOf(parentOf(x)));
2219                 if (colorOf(y) == RED) {
2220                     setColor(parentOf(x), BLACK);
2221                     setColor(y, BLACK);
2222                     setColor(parentOf(parentOf(x)), RED);
2223                     x = parentOf(parentOf(x));
2224                 } else {
2225                     if (x == leftOf(parentOf(x))) {
2226                         x = parentOf(x);
2227                         rotateRight(x);
2228                     }
2229                     setColor(parentOf(x), BLACK);
2230                     setColor(parentOf(parentOf(x)), RED);
2231                     rotateLeft(parentOf(parentOf(x)));
2232                 }
2233             }
2234         }
2235         root.color = BLACK;
2236     }
2237 
2238     /**
2239      * Delete node p, and then rebalance the tree.
2240      */
2241     private void deleteEntry(Entry<K,V> p) {
2242         modCount++;
2243         size--;
2244 
2245         // If strictly internal, copy successor's element to p and then make p
2246         // point to successor.
2247         if (p.left != null && p.right != null) {
2248             Entry<K,V> s = successor(p);
2249             p.key = s.key;
2250             p.value = s.value;
2251             p = s;
2252         } // p has 2 children
2253 
2254         // Start fixup at replacement node, if it exists.
2255         Entry<K,V> replacement = (p.left != null ? p.left : p.right);
2256 
2257         if (replacement != null) {
2258             // Link replacement to parent
2259             replacement.parent = p.parent;
2260             if (p.parent == null)
2261                 root = replacement;
2262             else if (p == p.parent.left)
2263                 p.parent.left  = replacement;
2264             else
2265                 p.parent.right = replacement;
2266 
2267             // Null out links so they are OK to use by fixAfterDeletion.
2268             p.left = p.right = p.parent = null;
2269 
2270             // Fix replacement
2271             if (p.color == BLACK)
2272                 fixAfterDeletion(replacement);
2273         } else if (p.parent == null) { // return if we are the only node.
2274             root = null;
2275         } else { //  No children. Use self as phantom replacement and unlink.
2276             if (p.color == BLACK)
2277                 fixAfterDeletion(p);
2278 
2279             if (p.parent != null) {
2280                 if (p == p.parent.left)
2281                     p.parent.left = null;
2282                 else if (p == p.parent.right)
2283                     p.parent.right = null;
2284                 p.parent = null;
2285             }
2286         }
2287     }
2288 
2289     /** From CLR */
2290     private void fixAfterDeletion(Entry<K,V> x) {
2291         while (x != root && colorOf(x) == BLACK) {
2292             if (x == leftOf(parentOf(x))) {
2293                 Entry<K,V> sib = rightOf(parentOf(x));
2294 
2295                 if (colorOf(sib) == RED) {
2296                     setColor(sib, BLACK);
2297                     setColor(parentOf(x), RED);
2298                     rotateLeft(parentOf(x));
2299                     sib = rightOf(parentOf(x));
2300                 }
2301 
2302                 if (colorOf(leftOf(sib))  == BLACK &&
2303                     colorOf(rightOf(sib)) == BLACK) {
2304                     setColor(sib, RED);
2305                     x = parentOf(x);
2306                 } else {
2307                     if (colorOf(rightOf(sib)) == BLACK) {
2308                         setColor(leftOf(sib), BLACK);
2309                         setColor(sib, RED);
2310                         rotateRight(sib);
2311                         sib = rightOf(parentOf(x));
2312                     }
2313                     setColor(sib, colorOf(parentOf(x)));
2314                     setColor(parentOf(x), BLACK);
2315                     setColor(rightOf(sib), BLACK);
2316                     rotateLeft(parentOf(x));
2317                     x = root;
2318                 }
2319             } else { // symmetric
2320                 Entry<K,V> sib = leftOf(parentOf(x));
2321 
2322                 if (colorOf(sib) == RED) {
2323                     setColor(sib, BLACK);
2324                     setColor(parentOf(x), RED);
2325                     rotateRight(parentOf(x));
2326                     sib = leftOf(parentOf(x));
2327                 }
2328 
2329                 if (colorOf(rightOf(sib)) == BLACK &&
2330                     colorOf(leftOf(sib)) == BLACK) {
2331                     setColor(sib, RED);
2332                     x = parentOf(x);
2333                 } else {
2334                     if (colorOf(leftOf(sib)) == BLACK) {
2335                         setColor(rightOf(sib), BLACK);
2336                         setColor(sib, RED);
2337                         rotateLeft(sib);
2338                         sib = leftOf(parentOf(x));
2339                     }
2340                     setColor(sib, colorOf(parentOf(x)));
2341                     setColor(parentOf(x), BLACK);
2342                     setColor(leftOf(sib), BLACK);
2343                     rotateRight(parentOf(x));
2344                     x = root;
2345                 }
2346             }
2347         }
2348 
2349         setColor(x, BLACK);
2350     }
2351 
2352     private static final long serialVersionUID = 919286545866124006L;
2353 
2354     /**
2355      * Save the state of the {@code TreeMap} instance to a stream (i.e.,
2356      * serialize it).
2357      *
2358      * @serialData The <em>size</em> of the TreeMap (the number of key-value
2359      *             mappings) is emitted (int), followed by the key (Object)
2360      *             and value (Object) for each key-value mapping represented
2361      *             by the TreeMap. The key-value mappings are emitted in
2362      *             key-order (as determined by the TreeMap's Comparator,
2363      *             or by the keys' natural ordering if the TreeMap has no
2364      *             Comparator).
2365      */
2366     private void writeObject(java.io.ObjectOutputStream s)
2367         throws java.io.IOException {
2368         // Write out the Comparator and any hidden stuff
2369         s.defaultWriteObject();
2370 
2371         // Write out size (number of Mappings)
2372         s.writeInt(size);
2373 
2374         // Write out keys and values (alternating)
2375         for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
2376             Map.Entry<K,V> e = i.next();
2377             s.writeObject(e.getKey());
2378             s.writeObject(e.getValue());
2379         }
2380     }
2381 
2382     /**
2383      * Reconstitute the {@code TreeMap} instance from a stream (i.e.,
2384      * deserialize it).
2385      */
2386     private void readObject(final java.io.ObjectInputStream s)
2387         throws java.io.IOException, ClassNotFoundException {
2388         // Read in the Comparator and any hidden stuff
2389         s.defaultReadObject();
2390 
2391         // Read in size
2392         int size = s.readInt();
2393 
2394         buildFromSorted(size, null, s, null);
2395     }
2396 
2397     /** Intended to be called only from TreeSet.readObject */
2398     void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
2399         throws java.io.IOException, ClassNotFoundException {
2400         buildFromSorted(size, null, s, defaultVal);
2401     }
2402 
2403     /** Intended to be called only from TreeSet.addAll */
2404     void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
2405         try {
2406             buildFromSorted(set.size(), set.iterator(), null, defaultVal);
2407         } catch (java.io.IOException cannotHappen) {
2408         } catch (ClassNotFoundException cannotHappen) {
2409         }
2410     }
2411 
2412 
2413     /**
2414      * Linear time tree building algorithm from sorted data.  Can accept keys
2415      * and/or values from iterator or stream. This leads to too many
2416      * parameters, but seems better than alternatives.  The four formats
2417      * that this method accepts are:
2418      *
2419      *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
2420      *    2) An iterator of keys.         (it != null, defaultVal != null).
2421      *    3) A stream of alternating serialized keys and values.
2422      *                                   (it == null, defaultVal == null).
2423      *    4) A stream of serialized keys. (it == null, defaultVal != null).
2424      *
2425      * It is assumed that the comparator of the TreeMap is already set prior
2426      * to calling this method.
2427      *
2428      * @param size the number of keys (or key-value pairs) to be read from
2429      *        the iterator or stream
2430      * @param it If non-null, new entries are created from entries
2431      *        or keys read from this iterator.
2432      * @param str If non-null, new entries are created from keys and
2433      *        possibly values read from this stream in serialized form.
2434      *        Exactly one of it and str should be non-null.
2435      * @param defaultVal if non-null, this default value is used for
2436      *        each value in the map.  If null, each value is read from
2437      *        iterator or stream, as described above.
2438      * @throws java.io.IOException propagated from stream reads. This cannot
2439      *         occur if str is null.
2440      * @throws ClassNotFoundException propagated from readObject.
2441      *         This cannot occur if str is null.
2442      */
2443     private void buildFromSorted(int size, Iterator<?> it,
2444                                  java.io.ObjectInputStream str,
2445                                  V defaultVal)
2446         throws  java.io.IOException, ClassNotFoundException {
2447         this.size = size;
2448         root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
2449                                it, str, defaultVal);
2450     }
2451 
2452     /**
2453      * Recursive "helper method" that does the real work of the
2454      * previous method.  Identically named parameters have
2455      * identical definitions.  Additional parameters are documented below.
2456      * It is assumed that the comparator and size fields of the TreeMap are
2457      * already set prior to calling this method.  (It ignores both fields.)
2458      *
2459      * @param level the current level of tree. Initial call should be 0.
2460      * @param lo the first element index of this subtree. Initial should be 0.
2461      * @param hi the last element index of this subtree.  Initial should be
2462      *        size-1.
2463      * @param redLevel the level at which nodes should be red.
2464      *        Must be equal to computeRedLevel for tree of this size.
2465      */
2466     @SuppressWarnings("unchecked")
2467     private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
2468                                              int redLevel,
2469                                              Iterator<?> it,
2470                                              java.io.ObjectInputStream str,
2471                                              V defaultVal)
2472         throws  java.io.IOException, ClassNotFoundException {
2473         /*
2474          * Strategy: The root is the middlemost element. To get to it, we
2475          * have to first recursively construct the entire left subtree,
2476          * so as to grab all of its elements. We can then proceed with right
2477          * subtree.
2478          *
2479          * The lo and hi arguments are the minimum and maximum
2480          * indices to pull out of the iterator or stream for current subtree.
2481          * They are not actually indexed, we just proceed sequentially,
2482          * ensuring that items are extracted in corresponding order.
2483          */
2484 
2485         if (hi < lo) return null;
2486 
2487         int mid = (lo + hi) >>> 1;
2488 
2489         Entry<K,V> left  = null;
2490         if (lo < mid)
2491             left = buildFromSorted(level+1, lo, mid - 1, redLevel,
2492                                    it, str, defaultVal);
2493 
2494         // extract key and/or value from iterator or stream
2495         K key;
2496         V value;
2497         if (it != null) {
2498             if (defaultVal==null) {
2499                 Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
2500                 key = (K)entry.getKey();
2501                 value = (V)entry.getValue();
2502             } else {
2503                 key = (K)it.next();
2504                 value = defaultVal;
2505             }
2506         } else { // use stream
2507             key = (K) str.readObject();
2508             value = (defaultVal != null ? defaultVal : (V) str.readObject());
2509         }
2510 
2511         Entry<K,V> middle =  new Entry<>(key, value, null);
2512 
2513         // color nodes in non-full bottommost level red
2514         if (level == redLevel)
2515             middle.color = RED;
2516 
2517         if (left != null) {
2518             middle.left = left;
2519             left.parent = middle;
2520         }
2521 
2522         if (mid < hi) {
2523             Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
2524                                                it, str, defaultVal);
2525             middle.right = right;
2526             right.parent = middle;
2527         }
2528 
2529         return middle;
2530     }
2531 
2532     /**
2533      * Find the level down to which to assign all nodes BLACK.  This is the
2534      * last `full' level of the complete binary tree produced by
2535      * buildTree. The remaining nodes are colored RED. (This makes a `nice'
2536      * set of color assignments wrt future insertions.) This level number is
2537      * computed by finding the number of splits needed to reach the zeroeth
2538      * node.  (The answer is ~lg(N), but in any case must be computed by same
2539      * quick O(lg(N)) loop.)
2540      */
2541     private static int computeRedLevel(int sz) {
2542         int level = 0;
2543         for (int m = sz - 1; m >= 0; m = m / 2 - 1)
2544             level++;
2545         return level;
2546     }
2547 
2548     /**
2549      * Currently, we support Spliterator-based versions only for the
2550      * full map, in either plain of descending form, otherwise relying
2551      * on defaults because size estimation for submaps would dominate
2552      * costs. The type tests needed to check these for key views are
2553      * not very nice but avoid disrupting existing class
2554      * structures. Callers must use plain default spliterators if this
2555      * returns null.
2556      */
2557     static <K> Spliterator<K> keySpliteratorFor(NavigableMap<K,?> m) {
2558         if (m instanceof TreeMap) {
2559             @SuppressWarnings("unchecked") TreeMap<K,Object> t =
2560                 (TreeMap<K,Object>) m;
2561             return t.keySpliterator();
2562         }
2563         if (m instanceof DescendingSubMap) {
2564             @SuppressWarnings("unchecked") DescendingSubMap<K,?> dm =
2565                 (DescendingSubMap<K,?>) m;
2566             TreeMap<K,?> tm = dm.m;
2567             if (dm == tm.descendingMap) {
2568                 @SuppressWarnings("unchecked") TreeMap<K,Object> t =
2569                     (TreeMap<K,Object>) tm;
2570                 return t.descendingKeySpliterator();
2571             }
2572         }
2573         @SuppressWarnings("unchecked") NavigableSubMap<K,?> sm =
2574             (NavigableSubMap<K,?>) m;
2575         return sm.keySpliterator();
2576     }
2577 
2578     final Spliterator<K> keySpliterator() {
2579         return new KeySpliterator<K,V>(this, null, null, 0, -1, 0);
2580     }
2581 
2582     final Spliterator<K> descendingKeySpliterator() {
2583         return new DescendingKeySpliterator<K,V>(this, null, null, 0, -2, 0);
2584     }
2585 
2586     /**
2587      * Base class for spliterators.  Iteration starts at a given
2588      * origin and continues up to but not including a given fence (or
2589      * null for end).  At top-level, for ascending cases, the first
2590      * split uses the root as left-fence/right-origin. From there,
2591      * right-hand splits replace the current fence with its left
2592      * child, also serving as origin for the split-off spliterator.
2593      * Left-hands are symmetric. Descending versions place the origin
2594      * at the end and invert ascending split rules.  This base class
2595      * is non-commital about directionality, or whether the top-level
2596      * spliterator covers the whole tree. This means that the actual
2597      * split mechanics are located in subclasses. Some of the subclass
2598      * trySplit methods are identical (except for return types), but
2599      * not nicely factorable.
2600      *
2601      * Currently, subclass versions exist only for the full map
2602      * (including descending keys via its descendingMap).  Others are
2603      * possible but currently not worthwhile because submaps require
2604      * O(n) computations to determine size, which substantially limits
2605      * potential speed-ups of using custom Spliterators versus default
2606      * mechanics.
2607      *
2608      * To boostrap initialization, external constructors use
2609      * negative size estimates: -1 for ascend, -2 for descend.
2610      */
2611     static class TreeMapSpliterator<K,V> {
2612         final TreeMap<K,V> tree;
2613         TreeMap.Entry<K,V> current; // traverser; initially first node in range
2614         TreeMap.Entry<K,V> fence;   // one past last, or null
2615         int side;                   // 0: top, -1: is a left split, +1: right
2616         int est;                    // size estimate (exact only for top-level)
2617         int expectedModCount;       // for CME checks
2618 
2619         TreeMapSpliterator(TreeMap<K,V> tree,
2620                            TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
2621                            int side, int est, int expectedModCount) {
2622             this.tree = tree;
2623             this.current = origin;
2624             this.fence = fence;
2625             this.side = side;
2626             this.est = est;
2627             this.expectedModCount = expectedModCount;
2628         }
2629 
2630         final int getEstimate() { // force initialization
2631             int s; TreeMap<K,V> t;
2632             if ((s = est) < 0) {
2633                 if ((t = tree) != null) {
2634                     current = (s == -1) ? t.getFirstEntry() : t.getLastEntry();
2635                     s = est = t.size;
2636                     expectedModCount = t.modCount;
2637                 }
2638                 else
2639                     s = est = 0;
2640             }
2641             return s;
2642         }
2643 
2644         public final long estimateSize() {
2645             return (long)getEstimate();
2646         }
2647     }
2648 
2649     static final class KeySpliterator<K,V>
2650         extends TreeMapSpliterator<K,V>
2651         implements Spliterator<K> {
2652         KeySpliterator(TreeMap<K,V> tree,
2653                        TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
2654                        int side, int est, int expectedModCount) {
2655             super(tree, origin, fence, side, est, expectedModCount);
2656         }
2657 
2658         public KeySpliterator<K,V> trySplit() {
2659             if (est < 0)
2660                 getEstimate(); // force initialization
2661             int d = side;
2662             TreeMap.Entry<K,V> e = current, f = fence,
2663                 s = ((e == null || e == f) ? null :      // empty
2664                      (d == 0)              ? tree.root : // was top
2665                      (d >  0)              ? e.right :   // was right
2666                      (d <  0 && f != null) ? f.left :    // was left
2667                      null);
2668             if (s != null && s != e && s != f &&
2669                 tree.compare(e.key, s.key) < 0) {        // e not already past s
2670                 side = 1;
2671                 return new KeySpliterator<>
2672                     (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2673             }
2674             return null;
2675         }
2676 
2677         public void forEachRemaining(Consumer<? super K> action) {
2678             if (action == null)
2679                 throw new NullPointerException();
2680             if (est < 0)
2681                 getEstimate(); // force initialization
2682             TreeMap.Entry<K,V> f = fence, e, p, pl;
2683             if ((e = current) != null && e != f) {
2684                 current = f; // exhaust
2685                 do {
2686                     action.accept(e.key);
2687                     if ((p = e.right) != null) {
2688                         while ((pl = p.left) != null)
2689                             p = pl;
2690                     }
2691                     else {
2692                         while ((p = e.parent) != null && e == p.right)
2693                             e = p;
2694                     }
2695                 } while ((e = p) != null && e != f);
2696                 if (tree.modCount != expectedModCount)
2697                     throw new ConcurrentModificationException();
2698             }
2699         }
2700 
2701         public boolean tryAdvance(Consumer<? super K> action) {
2702             TreeMap.Entry<K,V> e;
2703             if (action == null)
2704                 throw new NullPointerException();
2705             if (est < 0)
2706                 getEstimate(); // force initialization
2707             if ((e = current) == null || e == fence)
2708                 return false;
2709             current = successor(e);
2710             action.accept(e.key);
2711             if (tree.modCount != expectedModCount)
2712                 throw new ConcurrentModificationException();
2713             return true;
2714         }
2715 
2716         public int characteristics() {
2717             return (side == 0 ? Spliterator.SIZED : 0) |
2718                 Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
2719         }
2720 
2721         public final Comparator<? super K>  getComparator() {
2722             return tree.comparator;
2723         }
2724 
2725     }
2726 
2727     static final class DescendingKeySpliterator<K,V>
2728         extends TreeMapSpliterator<K,V>
2729         implements Spliterator<K> {
2730         DescendingKeySpliterator(TreeMap<K,V> tree,
2731                                  TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
2732                                  int side, int est, int expectedModCount) {
2733             super(tree, origin, fence, side, est, expectedModCount);
2734         }
2735 
2736         public DescendingKeySpliterator<K,V> trySplit() {
2737             if (est < 0)
2738                 getEstimate(); // force initialization
2739             int d = side;
2740             TreeMap.Entry<K,V> e = current, f = fence,
2741                     s = ((e == null || e == f) ? null :      // empty
2742                          (d == 0)              ? tree.root : // was top
2743                          (d <  0)              ? e.left :    // was left
2744                          (d >  0 && f != null) ? f.right :   // was right
2745                          null);
2746             if (s != null && s != e && s != f &&
2747                 tree.compare(e.key, s.key) > 0) {       // e not already past s
2748                 side = 1;
2749                 return new DescendingKeySpliterator<>
2750                         (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2751             }
2752             return null;
2753         }
2754 
2755         public void forEachRemaining(Consumer<? super K> action) {
2756             if (action == null)
2757                 throw new NullPointerException();
2758             if (est < 0)
2759                 getEstimate(); // force initialization
2760             TreeMap.Entry<K,V> f = fence, e, p, pr;
2761             if ((e = current) != null && e != f) {
2762                 current = f; // exhaust
2763                 do {
2764                     action.accept(e.key);
2765                     if ((p = e.left) != null) {
2766                         while ((pr = p.right) != null)
2767                             p = pr;
2768                     }
2769                     else {
2770                         while ((p = e.parent) != null && e == p.left)
2771                             e = p;
2772                     }
2773                 } while ((e = p) != null && e != f);
2774                 if (tree.modCount != expectedModCount)
2775                     throw new ConcurrentModificationException();
2776             }
2777         }
2778 
2779         public boolean tryAdvance(Consumer<? super K> action) {
2780             TreeMap.Entry<K,V> e;
2781             if (action == null)
2782                 throw new NullPointerException();
2783             if (est < 0)
2784                 getEstimate(); // force initialization
2785             if ((e = current) == null || e == fence)
2786                 return false;
2787             current = predecessor(e);
2788             action.accept(e.key);
2789             if (tree.modCount != expectedModCount)
2790                 throw new ConcurrentModificationException();
2791             return true;
2792         }
2793 
2794         public int characteristics() {
2795             return (side == 0 ? Spliterator.SIZED : 0) |
2796                 Spliterator.DISTINCT | Spliterator.ORDERED;
2797         }
2798     }
2799 
2800     static final class ValueSpliterator<K,V>
2801             extends TreeMapSpliterator<K,V>
2802             implements Spliterator<V> {
2803         ValueSpliterator(TreeMap<K,V> tree,
2804                          TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
2805                          int side, int est, int expectedModCount) {
2806             super(tree, origin, fence, side, est, expectedModCount);
2807         }
2808 
2809         public ValueSpliterator<K,V> trySplit() {
2810             if (est < 0)
2811                 getEstimate(); // force initialization
2812             int d = side;
2813             TreeMap.Entry<K,V> e = current, f = fence,
2814                     s = ((e == null || e == f) ? null :      // empty
2815                          (d == 0)              ? tree.root : // was top
2816                          (d >  0)              ? e.right :   // was right
2817                          (d <  0 && f != null) ? f.left :    // was left
2818                          null);
2819             if (s != null && s != e && s != f &&
2820                 tree.compare(e.key, s.key) < 0) {        // e not already past s
2821                 side = 1;
2822                 return new ValueSpliterator<>
2823                         (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2824             }
2825             return null;
2826         }
2827 
2828         public void forEachRemaining(Consumer<? super V> action) {
2829             if (action == null)
2830                 throw new NullPointerException();
2831             if (est < 0)
2832                 getEstimate(); // force initialization
2833             TreeMap.Entry<K,V> f = fence, e, p, pl;
2834             if ((e = current) != null && e != f) {
2835                 current = f; // exhaust
2836                 do {
2837                     action.accept(e.value);
2838                     if ((p = e.right) != null) {
2839                         while ((pl = p.left) != null)
2840                             p = pl;
2841                     }
2842                     else {
2843                         while ((p = e.parent) != null && e == p.right)
2844                             e = p;
2845                     }
2846                 } while ((e = p) != null && e != f);
2847                 if (tree.modCount != expectedModCount)
2848                     throw new ConcurrentModificationException();
2849             }
2850         }
2851 
2852         public boolean tryAdvance(Consumer<? super V> action) {
2853             TreeMap.Entry<K,V> e;
2854             if (action == null)
2855                 throw new NullPointerException();
2856             if (est < 0)
2857                 getEstimate(); // force initialization
2858             if ((e = current) == null || e == fence)
2859                 return false;
2860             current = successor(e);
2861             action.accept(e.value);
2862             if (tree.modCount != expectedModCount)
2863                 throw new ConcurrentModificationException();
2864             return true;
2865         }
2866 
2867         public int characteristics() {
2868             return (side == 0 ? Spliterator.SIZED : 0);
2869         }
2870     }
2871 
2872     static final class EntrySpliterator<K,V>
2873         extends TreeMapSpliterator<K,V>
2874         implements Spliterator<Map.Entry<K,V>> {
2875         EntrySpliterator(TreeMap<K,V> tree,
2876                          TreeMap.Entry<K,V> origin, TreeMap.Entry<K,V> fence,
2877                          int side, int est, int expectedModCount) {
2878             super(tree, origin, fence, side, est, expectedModCount);
2879         }
2880 
2881         public EntrySpliterator<K,V> trySplit() {
2882             if (est < 0)
2883                 getEstimate(); // force initialization
2884             int d = side;
2885             TreeMap.Entry<K,V> e = current, f = fence,
2886                     s = ((e == null || e == f) ? null :      // empty
2887                          (d == 0)              ? tree.root : // was top
2888                          (d >  0)              ? e.right :   // was right
2889                          (d <  0 && f != null) ? f.left :    // was left
2890                          null);
2891             if (s != null && s != e && s != f &&
2892                 tree.compare(e.key, s.key) < 0) {        // e not already past s
2893                 side = 1;
2894                 return new EntrySpliterator<>
2895                         (tree, e, current = s, -1, est >>>= 1, expectedModCount);
2896             }
2897             return null;
2898         }
2899 
2900         public void forEachRemaining(Consumer<? super Map.Entry<K, V>> action) {
2901             if (action == null)
2902                 throw new NullPointerException();
2903             if (est < 0)
2904                 getEstimate(); // force initialization
2905             TreeMap.Entry<K,V> f = fence, e, p, pl;
2906             if ((e = current) != null && e != f) {
2907                 current = f; // exhaust
2908                 do {
2909                     action.accept(e);
2910                     if ((p = e.right) != null) {
2911                         while ((pl = p.left) != null)
2912                             p = pl;
2913                     }
2914                     else {
2915                         while ((p = e.parent) != null && e == p.right)
2916                             e = p;
2917                     }
2918                 } while ((e = p) != null && e != f);
2919                 if (tree.modCount != expectedModCount)
2920                     throw new ConcurrentModificationException();
2921             }
2922         }
2923 
2924         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
2925             TreeMap.Entry<K,V> e;
2926             if (action == null)
2927                 throw new NullPointerException();
2928             if (est < 0)
2929                 getEstimate(); // force initialization
2930             if ((e = current) == null || e == fence)
2931                 return false;
2932             current = successor(e);
2933             action.accept(e);
2934             if (tree.modCount != expectedModCount)
2935                 throw new ConcurrentModificationException();
2936             return true;
2937         }
2938 
2939         public int characteristics() {
2940             return (side == 0 ? Spliterator.SIZED : 0) |
2941                     Spliterator.DISTINCT | Spliterator.SORTED | Spliterator.ORDERED;
2942         }
2943 
2944         @Override
2945         public Comparator<? super Map.Entry<K, V>> getComparator() {
2946             return tree.comparator != null ?
2947                     Map.Entry.comparingByKey(tree.comparator) : null;
2948         }
2949     }
2950 }