1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 
  28 import java.io.IOException;
  29 import java.io.InvalidObjectException;
  30 import java.io.Serializable;
  31 import java.lang.reflect.ParameterizedType;
  32 import java.lang.reflect.Type;
  33 import java.util.function.BiConsumer;
  34 import java.util.function.BiFunction;
  35 import java.util.function.Consumer;
  36 import java.util.function.Function;
  37 
  38 /**
  39  * Hash table based implementation of the <tt>Map</tt> interface.  This
  40  * implementation provides all of the optional map operations, and permits
  41  * <tt>null</tt> values and the <tt>null</tt> key.  (The <tt>HashMap</tt>
  42  * class is roughly equivalent to <tt>Hashtable</tt>, except that it is
  43  * unsynchronized and permits nulls.)  This class makes no guarantees as to
  44  * the order of the map; in particular, it does not guarantee that the order
  45  * will remain constant over time.
  46  *
  47  * <p>This implementation provides constant-time performance for the basic
  48  * operations (<tt>get</tt> and <tt>put</tt>), assuming the hash function
  49  * disperses the elements properly among the buckets.  Iteration over
  50  * collection views requires time proportional to the "capacity" of the
  51  * <tt>HashMap</tt> instance (the number of buckets) plus its size (the number
  52  * of key-value mappings).  Thus, it's very important not to set the initial
  53  * capacity too high (or the load factor too low) if iteration performance is
  54  * important.
  55  *
  56  * <p>An instance of <tt>HashMap</tt> has two parameters that affect its
  57  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  58  * <i>capacity</i> is the number of buckets in the hash table, and the initial
  59  * capacity is simply the capacity at the time the hash table is created.  The
  60  * <i>load factor</i> is a measure of how full the hash table is allowed to
  61  * get before its capacity is automatically increased.  When the number of
  62  * entries in the hash table exceeds the product of the load factor and the
  63  * current capacity, the hash table is <i>rehashed</i> (that is, internal data
  64  * structures are rebuilt) so that the hash table has approximately twice the
  65  * number of buckets.
  66  *
  67  * <p>As a general rule, the default load factor (.75) offers a good
  68  * tradeoff between time and space costs.  Higher values decrease the
  69  * space overhead but increase the lookup cost (reflected in most of
  70  * the operations of the <tt>HashMap</tt> class, including
  71  * <tt>get</tt> and <tt>put</tt>).  The expected number of entries in
  72  * the map and its load factor should be taken into account when
  73  * setting its initial capacity, so as to minimize the number of
  74  * rehash operations.  If the initial capacity is greater than the
  75  * maximum number of entries divided by the load factor, no rehash
  76  * operations will ever occur.
  77  *
  78  * <p>If many mappings are to be stored in a <tt>HashMap</tt>
  79  * instance, creating it with a sufficiently large capacity will allow
  80  * the mappings to be stored more efficiently than letting it perform
  81  * automatic rehashing as needed to grow the table.  Note that using
  82  * many keys with the same {@code hashCode()} is a sure way to slow
  83  * down performance of any hash table. To ameliorate impact, when keys
  84  * are {@link Comparable}, this class may use comparison order among
  85  * keys to help break ties.
  86  *
  87  * <p><strong>Note that this implementation is not synchronized.</strong>
  88  * If multiple threads access a hash map concurrently, and at least one of
  89  * the threads modifies the map structurally, it <i>must</i> be
  90  * synchronized externally.  (A structural modification is any operation
  91  * that adds or deletes one or more mappings; merely changing the value
  92  * associated with a key that an instance already contains is not a
  93  * structural modification.)  This is typically accomplished by
  94  * synchronizing on some object that naturally encapsulates the map.
  95  *
  96  * If no such object exists, the map should be "wrapped" using the
  97  * {@link Collections#synchronizedMap Collections.synchronizedMap}
  98  * method.  This is best done at creation time, to prevent accidental
  99  * unsynchronized access to the map:<pre>
 100  *   Map m = Collections.synchronizedMap(new HashMap(...));</pre>
 101  *
 102  * <p>The iterators returned by all of this class's "collection view methods"
 103  * are <i>fail-fast</i>: if the map is structurally modified at any time after
 104  * the iterator is created, in any way except through the iterator's own
 105  * <tt>remove</tt> method, the iterator will throw a
 106  * {@link ConcurrentModificationException}.  Thus, in the face of concurrent
 107  * modification, the iterator fails quickly and cleanly, rather than risking
 108  * arbitrary, non-deterministic behavior at an undetermined time in the
 109  * future.
 110  *
 111  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
 112  * as it is, generally speaking, impossible to make any hard guarantees in the
 113  * presence of unsynchronized concurrent modification.  Fail-fast iterators
 114  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
 115  * Therefore, it would be wrong to write a program that depended on this
 116  * exception for its correctness: <i>the fail-fast behavior of iterators
 117  * should be used only to detect bugs.</i>
 118  *
 119  * <p>This class is a member of the
 120  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 121  * Java Collections Framework</a>.
 122  *
 123  * @param <K> the type of keys maintained by this map
 124  * @param <V> the type of mapped values
 125  *
 126  * @author  Doug Lea
 127  * @author  Josh Bloch
 128  * @author  Arthur van Hoff
 129  * @author  Neal Gafter
 130  * @see     Object#hashCode()
 131  * @see     Collection
 132  * @see     Map
 133  * @see     TreeMap
 134  * @see     Hashtable
 135  * @since   1.2
 136  */
 137 public class HashMap<K,V> extends AbstractMap<K,V>
 138     implements Map<K,V>, Cloneable, Serializable {
 139 
 140     private static final long serialVersionUID = 362498820763181265L;
 141 
 142     /*
 143      * Implementation notes.
 144      *
 145      * This map usually acts as a binned (bucketed) hash table, but
 146      * when bins get too large, they are transformed into bins of
 147      * TreeNodes, each structured similarly to those in
 148      * java.util.TreeMap. Most methods try to use normal bins, but
 149      * relay to TreeNode methods when applicable (simply by checking
 150      * instanceof a node).  Bins of TreeNodes may be traversed and
 151      * used like any others, but additionally support faster lookup
 152      * when overpopulated. However, since the vast majority of bins in
 153      * normal use are not overpopulated, checking for existence of
 154      * tree bins may be delayed in the course of table methods.
 155      *
 156      * Tree bins (i.e., bins whose elements are all TreeNodes) are
 157      * ordered primarily by hashCode, but in the case of ties, if two
 158      * elements are of the same "class C implements Comparable<C>",
 159      * type then their compareTo method is used for ordering. (We
 160      * conservatively check generic types via reflection to validate
 161      * this -- see method comparableClassFor).  The added complexity
 162      * of tree bins is worthwhile in providing worst-case O(log n)
 163      * operations when keys either have distinct hashes or are
 164      * orderable, Thus, performance degrades gracefully under
 165      * accidental or malicious usages in which hashCode() methods
 166      * return values that are poorly distributed, as well as those in
 167      * which many keys share a hashCode, so long as they are also
 168      * Comparable. (If neither of these apply, we may waste about a
 169      * factor of two in time and space compared to taking no
 170      * precautions. But the only known cases stem from poor user
 171      * programming practices that are already so slow that this makes
 172      * little difference.)
 173      *
 174      * Because TreeNodes are about twice the size of regular nodes, we
 175      * use them only when bins contain enough nodes to warrant use
 176      * (see TREEIFY_THRESHOLD). And when they become too small (due to
 177      * removal or resizing) they are converted back to plain bins.  In
 178      * usages with well-distributed user hashCodes, tree bins are
 179      * rarely used.  Ideally, under random hashCodes, the frequency of
 180      * nodes in bins follows a Poisson distribution
 181      * (http://en.wikipedia.org/wiki/Poisson_distribution) with a
 182      * parameter of about 0.5 on average for the default resizing
 183      * threshold of 0.75, although with a large variance because of
 184      * resizing granularity. Ignoring variance, the expected
 185      * occurrences of list size k are (exp(-0.5) * pow(0.5, k) /
 186      * factorial(k)). The first values are:
 187      *
 188      * 0:    0.60653066
 189      * 1:    0.30326533
 190      * 2:    0.07581633
 191      * 3:    0.01263606
 192      * 4:    0.00157952
 193      * 5:    0.00015795
 194      * 6:    0.00001316
 195      * 7:    0.00000094
 196      * 8:    0.00000006
 197      * more: less than 1 in ten million
 198      *
 199      * The root of a tree bin is normally its first node.  However,
 200      * sometimes (currently only upon Iterator.remove), the root might
 201      * be elsewhere, but can be recovered following parent links
 202      * (method TreeNode.root()).
 203      *
 204      * All applicable internal methods accept a hash code as an
 205      * argument (as normally supplied from a public method), allowing
 206      * them to call each other without recomputing user hashCodes.
 207      * Most internal methods also accept a "tab" argument, that is
 208      * normally the current table, but may be a new or old one when
 209      * resizing or converting.
 210      *
 211      * When bin lists are treeified, split, or untreeified, we keep
 212      * them in the same relative access/traversal order (i.e., field
 213      * Node.next) to better preserve locality, and to slightly
 214      * simplify handling of splits and traversals that invoke
 215      * iterator.remove. When using comparators on insertion, to keep a
 216      * total ordering (or as close as is required here) across
 217      * rebalancings, we compare classes and identityHashCodes as
 218      * tie-breakers.
 219      *
 220      * The use and transitions among plain vs tree modes is
 221      * complicated by the existence of subclass LinkedHashMap. See
 222      * below for hook methods defined to be invoked upon insertion,
 223      * removal and access that allow LinkedHashMap internals to
 224      * otherwise remain independent of these mechanics. (This also
 225      * requires that a map instance be passed to some utility methods
 226      * that may create new nodes.)
 227      *
 228      * The concurrent-programming-like SSA-based coding style helps
 229      * avoid aliasing errors amid all of the twisty pointer operations.
 230      */
 231 
 232     /**
 233      * The default initial capacity - MUST be a power of two.
 234      */
 235     static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
 236 
 237     /**
 238      * The maximum capacity, used if a higher value is implicitly specified
 239      * by either of the constructors with arguments.
 240      * MUST be a power of two <= 1<<30.
 241      */
 242     static final int MAXIMUM_CAPACITY = 1 << 30;
 243 
 244     /**
 245      * The load factor used when none specified in constructor.
 246      */
 247     static final float DEFAULT_LOAD_FACTOR = 0.75f;
 248 
 249     /**
 250      * The bin count threshold for using a tree rather than list for a
 251      * bin.  Bins are converted to trees when adding an element to a
 252      * bin with at least this many nodes. The value must be greater
 253      * than 2 and should be at least 8 to mesh with assumptions in
 254      * tree removal about conversion back to plain bins upon
 255      * shrinkage.
 256      */
 257     static final int TREEIFY_THRESHOLD = 8;
 258 
 259     /**
 260      * The bin count threshold for untreeifying a (split) bin during a
 261      * resize operation. Should be less than TREEIFY_THRESHOLD, and at
 262      * most 6 to mesh with shrinkage detection under removal.
 263      */
 264     static final int UNTREEIFY_THRESHOLD = 6;
 265 
 266     /**
 267      * The smallest table capacity for which bins may be treeified.
 268      * (Otherwise the table is resized if too many nodes in a bin.)
 269      * Should be at least 4 * TREEIFY_THRESHOLD to avoid conflicts
 270      * between resizing and treeification thresholds.
 271      */
 272     static final int MIN_TREEIFY_CAPACITY = 64;
 273 
 274     /**
 275      * Basic hash bin node, used for most entries.  (See below for
 276      * TreeNode subclass, and in LinkedHashMap for its Entry subclass.)
 277      */
 278     static class Node<K,V> implements Map.Entry<K,V> {
 279         final int hash;
 280         final K key;
 281         V value;
 282         Node<K,V> next;
 283 
 284         Node(int hash, K key, V value, Node<K,V> next) {
 285             this.hash = hash;
 286             this.key = key;
 287             this.value = value;
 288             this.next = next;
 289         }
 290 
 291         public final K getKey()        { return key; }
 292         public final V getValue()      { return value; }
 293         public final String toString() { return key + "=" + value; }
 294 
 295         public final int hashCode() {
 296             return Objects.hashCode(key) ^ Objects.hashCode(value);
 297         }
 298 
 299         public final V setValue(V newValue) {
 300             V oldValue = value;
 301             value = newValue;
 302             return oldValue;
 303         }
 304 
 305         public final boolean equals(Object o) {
 306             if (o == this)
 307                 return true;
 308             if (o instanceof Map.Entry) {
 309                 Map.Entry<?,?> e = (Map.Entry<?,?>)o;
 310                 if (Objects.equals(key, e.getKey()) &&
 311                     Objects.equals(value, e.getValue()))
 312                     return true;
 313             }
 314             return false;
 315         }
 316     }
 317 
 318     /* ---------------- Static utilities -------------- */
 319 
 320     /**
 321      * Computes key.hashCode() and spreads (XORs) higher bits of hash
 322      * to lower.  Because the table uses power-of-two masking, sets of
 323      * hashes that vary only in bits above the current mask will
 324      * always collide. (Among known examples are sets of Float keys
 325      * holding consecutive whole numbers in small tables.)  So we
 326      * apply a transform that spreads the impact of higher bits
 327      * downward. There is a tradeoff between speed, utility, and
 328      * quality of bit-spreading. Because many common sets of hashes
 329      * are already reasonably distributed (so don't benefit from
 330      * spreading), and because we use trees to handle large sets of
 331      * collisions in bins, we just XOR some shifted bits in the
 332      * cheapest possible way to reduce systematic lossage, as well as
 333      * to incorporate impact of the highest bits that would otherwise
 334      * never be used in index calculations because of table bounds.
 335      */
 336     static final int hash(Object key) {
 337         int h;
 338         return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
 339     }
 340 
 341     /**
 342      * Returns x's Class if it is of the form "class C implements
 343      * Comparable<C>", else null.
 344      */
 345     static Class<?> comparableClassFor(Object x) {
 346         if (x instanceof Comparable) {
 347             Class<?> c; Type[] ts, as; Type t; ParameterizedType p;
 348             if ((c = x.getClass()) == String.class) // bypass checks
 349                 return c;
 350             if ((ts = c.getGenericInterfaces()) != null) {
 351                 for (int i = 0; i < ts.length; ++i) {
 352                     if (((t = ts[i]) instanceof ParameterizedType) &&
 353                         ((p = (ParameterizedType)t).getRawType() ==
 354                          Comparable.class) &&
 355                         (as = p.getActualTypeArguments()) != null &&
 356                         as.length == 1 && as[0] == c) // type arg is c
 357                         return c;
 358                 }
 359             }
 360         }
 361         return null;
 362     }
 363 
 364     /**
 365      * Returns k.compareTo(x) if x matches kc (k's screened comparable
 366      * class), else 0.
 367      */
 368     @SuppressWarnings({"rawtypes","unchecked"}) // for cast to Comparable
 369     static int compareComparables(Class<?> kc, Object k, Object x) {
 370         return (x == null || x.getClass() != kc ? 0 :
 371                 ((Comparable)k).compareTo(x));
 372     }
 373 
 374     /**
 375      * Returns a power of two size for the given target capacity.
 376      */
 377     static final int tableSizeFor(int cap) {
 378         int n = cap - 1;
 379         n |= n >>> 1;
 380         n |= n >>> 2;
 381         n |= n >>> 4;
 382         n |= n >>> 8;
 383         n |= n >>> 16;
 384         return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
 385     }
 386 
 387     /* ---------------- Fields -------------- */
 388 
 389     /**
 390      * The table, initialized on first use, and resized as
 391      * necessary. When allocated, length is always a power of two.
 392      * (We also tolerate length zero in some operations to allow
 393      * bootstrapping mechanics that are currently not needed.)
 394      */
 395     transient Node<K,V>[] table;
 396 
 397     /**
 398      * Holds cached entrySet(). Note that AbstractMap fields are used
 399      * for keySet() and values().
 400      */
 401     transient Set<Map.Entry<K,V>> entrySet;
 402 
 403     /**
 404      * The number of key-value mappings contained in this map.
 405      */
 406     transient int size;
 407 
 408     /**
 409      * The number of times this HashMap has been structurally modified
 410      * Structural modifications are those that change the number of mappings in
 411      * the HashMap or otherwise modify its internal structure (e.g.,
 412      * rehash).  This field is used to make iterators on Collection-views of
 413      * the HashMap fail-fast.  (See ConcurrentModificationException).
 414      */
 415     transient int modCount;
 416 
 417     /**
 418      * The next size value at which to resize (capacity * load factor).
 419      *
 420      * @serial
 421      */
 422     // (The javadoc description is true upon serialization.
 423     // Additionally, if the table array has not been allocated, this
 424     // field holds the initial array capacity, or zero signifying
 425     // DEFAULT_INITIAL_CAPACITY.)
 426     int threshold;
 427 
 428     /**
 429      * The load factor for the hash table.
 430      *
 431      * @serial
 432      */
 433     final float loadFactor;
 434 
 435     /* ---------------- Public operations -------------- */
 436 
 437     /**
 438      * Constructs an empty <tt>HashMap</tt> with the specified initial
 439      * capacity and load factor.
 440      *
 441      * @param  initialCapacity the initial capacity
 442      * @param  loadFactor      the load factor
 443      * @throws IllegalArgumentException if the initial capacity is negative
 444      *         or the load factor is nonpositive
 445      */
 446     public HashMap(int initialCapacity, float loadFactor) {
 447         if (initialCapacity < 0)
 448             throw new IllegalArgumentException("Illegal initial capacity: " +
 449                                                initialCapacity);
 450         if (initialCapacity > MAXIMUM_CAPACITY)
 451             initialCapacity = MAXIMUM_CAPACITY;
 452         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 453             throw new IllegalArgumentException("Illegal load factor: " +
 454                                                loadFactor);
 455         this.loadFactor = loadFactor;
 456         this.threshold = tableSizeFor(initialCapacity);
 457     }
 458 
 459     /**
 460      * Constructs an empty <tt>HashMap</tt> with the specified initial
 461      * capacity and the default load factor (0.75).
 462      *
 463      * @param  initialCapacity the initial capacity.
 464      * @throws IllegalArgumentException if the initial capacity is negative.
 465      */
 466     public HashMap(int initialCapacity) {
 467         this(initialCapacity, DEFAULT_LOAD_FACTOR);
 468     }
 469 
 470     /**
 471      * Constructs an empty <tt>HashMap</tt> with the default initial capacity
 472      * (16) and the default load factor (0.75).
 473      */
 474     public HashMap() {
 475         this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
 476     }
 477 
 478     /**
 479      * Constructs a new <tt>HashMap</tt> with the same mappings as the
 480      * specified <tt>Map</tt>.  The <tt>HashMap</tt> is created with
 481      * default load factor (0.75) and an initial capacity sufficient to
 482      * hold the mappings in the specified <tt>Map</tt>.
 483      *
 484      * @param   m the map whose mappings are to be placed in this map
 485      * @throws  NullPointerException if the specified map is null
 486      */
 487     public HashMap(Map<? extends K, ? extends V> m) {
 488         this.loadFactor = DEFAULT_LOAD_FACTOR;
 489         putMapEntries(m, false);
 490     }
 491 
 492     /**
 493      * Implements Map.putAll and Map constructor
 494      *
 495      * @param m the map
 496      * @param evict false when initially constructing this map, else
 497      * true (relayed to method afterNodeInsertion).
 498      */
 499     final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
 500         int s = m.size();
 501         if (s > 0) {
 502             if (table == null) { // pre-size
 503                 float ft = ((float)s / loadFactor) + 1.0F;
 504                 int t = ((ft < (float)MAXIMUM_CAPACITY) ?
 505                          (int)ft : MAXIMUM_CAPACITY);
 506                 if (t > threshold)
 507                     threshold = tableSizeFor(t);
 508             }
 509             else if (s > threshold)
 510                 resize();
 511             for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
 512                 K key = e.getKey();
 513                 V value = e.getValue();
 514                 putVal(hash(key), key, value, false, evict);
 515             }
 516         }
 517     }
 518 
 519     /**
 520      * Returns the number of key-value mappings in this map.
 521      *
 522      * @return the number of key-value mappings in this map
 523      */
 524     public int size() {
 525         return size;
 526     }
 527 
 528     /**
 529      * Returns <tt>true</tt> if this map contains no key-value mappings.
 530      *
 531      * @return <tt>true</tt> if this map contains no key-value mappings
 532      */
 533     public boolean isEmpty() {
 534         return size == 0;
 535     }
 536 
 537     /**
 538      * Returns the value to which the specified key is mapped,
 539      * or {@code null} if this map contains no mapping for the key.
 540      *
 541      * <p>More formally, if this map contains a mapping from a key
 542      * {@code k} to a value {@code v} such that {@code (key==null ? k==null :
 543      * key.equals(k))}, then this method returns {@code v}; otherwise
 544      * it returns {@code null}.  (There can be at most one such mapping.)
 545      *
 546      * <p>A return value of {@code null} does not <i>necessarily</i>
 547      * indicate that the map contains no mapping for the key; it's also
 548      * possible that the map explicitly maps the key to {@code null}.
 549      * The {@link #containsKey containsKey} operation may be used to
 550      * distinguish these two cases.
 551      *
 552      * @see #put(Object, Object)
 553      */
 554     public V get(Object key) {
 555         Node<K,V> e;
 556         return (e = getNode(hash(key), key)) == null ? null : e.value;
 557     }
 558 
 559     /**
 560      * Implements Map.get and related methods
 561      *
 562      * @param hash hash for key
 563      * @param key the key
 564      * @return the node, or null if none
 565      */
 566     final Node<K,V> getNode(int hash, Object key) {
 567         Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
 568         if ((tab = table) != null && (n = tab.length) > 0 &&
 569             (first = tab[(n - 1) & hash]) != null) {
 570             if (first.hash == hash && // always check first node
 571                 ((k = first.key) == key || (key != null && key.equals(k))))
 572                 return first;
 573             if ((e = first.next) != null) {
 574                 if (first instanceof TreeNode)
 575                     return ((TreeNode<K,V>)first).getTreeNode(hash, key);
 576                 do {
 577                     if (e.hash == hash &&
 578                         ((k = e.key) == key || (key != null && key.equals(k))))
 579                         return e;
 580                 } while ((e = e.next) != null);
 581             }
 582         }
 583         return null;
 584     }
 585 
 586     /**
 587      * Returns <tt>true</tt> if this map contains a mapping for the
 588      * specified key.
 589      *
 590      * @param   key   The key whose presence in this map is to be tested
 591      * @return <tt>true</tt> if this map contains a mapping for the specified
 592      * key.
 593      */
 594     public boolean containsKey(Object key) {
 595         return getNode(hash(key), key) != null;
 596     }
 597 
 598     /**
 599      * Associates the specified value with the specified key in this map.
 600      * If the map previously contained a mapping for the key, the old
 601      * value is replaced.
 602      *
 603      * @param key key with which the specified value is to be associated
 604      * @param value value to be associated with the specified key
 605      * @return the previous value associated with <tt>key</tt>, or
 606      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 607      *         (A <tt>null</tt> return can also indicate that the map
 608      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 609      */
 610     public V put(K key, V value) {
 611         return putVal(hash(key), key, value, false, true);
 612     }
 613 
 614     /**
 615      * Implements Map.put and related methods
 616      *
 617      * @param hash hash for key
 618      * @param key the key
 619      * @param value the value to put
 620      * @param onlyIfAbsent if true, don't change existing value
 621      * @param evict if false, the table is in creation mode.
 622      * @return previous value, or null if none
 623      */
 624     final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
 625                    boolean evict) {
 626         Node<K,V>[] tab; Node<K,V> p; int n, i;
 627         if ((tab = table) == null || (n = tab.length) == 0)
 628             n = (tab = resize()).length;
 629         if ((p = tab[i = (n - 1) & hash]) == null)
 630             tab[i] = newNode(hash, key, value, null);
 631         else {
 632             Node<K,V> e; K k;
 633             if (p.hash == hash &&
 634                 ((k = p.key) == key || (key != null && key.equals(k))))
 635                 e = p;
 636             else if (p instanceof TreeNode)
 637                 e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
 638             else {
 639                 for (int binCount = 0; ; ++binCount) {
 640                     if ((e = p.next) == null) {
 641                         p.next = newNode(hash, key, value, null);
 642                         if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
 643                             treeifyBin(tab, hash);
 644                         break;
 645                     }
 646                     if (e.hash == hash &&
 647                         ((k = e.key) == key || (key != null && key.equals(k))))
 648                         break;
 649                     p = e;
 650                 }
 651             }
 652             if (e != null) { // existing mapping for key
 653                 V oldValue = e.value;
 654                 if (!onlyIfAbsent || oldValue == null)
 655                     e.value = value;
 656                 afterNodeAccess(e);
 657                 return oldValue;
 658             }
 659         }
 660         ++modCount;
 661         if (++size > threshold)
 662             resize();
 663         afterNodeInsertion(evict);
 664         return null;
 665     }
 666 
 667     /**
 668      * Initializes or doubles table size.  If null, allocates in
 669      * accord with initial capacity target held in field threshold.
 670      * Otherwise, because we are using power-of-two expansion, the
 671      * elements from each bin must either stay at same index, or move
 672      * with a power of two offset in the new table.
 673      *
 674      * @return the table
 675      */
 676     final Node<K,V>[] resize() {
 677         Node<K,V>[] oldTab = table;
 678         int oldCap = (oldTab == null) ? 0 : oldTab.length;
 679         int oldThr = threshold;
 680         int newCap, newThr = 0;
 681         if (oldCap > 0) {
 682             if (oldCap >= MAXIMUM_CAPACITY) {
 683                 threshold = Integer.MAX_VALUE;
 684                 return oldTab;
 685             }
 686             else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
 687                      oldCap >= DEFAULT_INITIAL_CAPACITY)
 688                 newThr = oldThr << 1; // double threshold
 689         }
 690         else if (oldThr > 0) // initial capacity was placed in threshold
 691             newCap = oldThr;
 692         else {               // zero initial threshold signifies using defaults
 693             newCap = DEFAULT_INITIAL_CAPACITY;
 694             newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
 695         }
 696         if (newThr == 0) {
 697             float ft = (float)newCap * loadFactor;
 698             newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
 699                       (int)ft : Integer.MAX_VALUE);
 700         }
 701         threshold = newThr;
 702         @SuppressWarnings({"rawtypes","unchecked"})
 703             Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
 704         table = newTab;
 705         if (oldTab != null) {
 706             for (int j = 0; j < oldCap; ++j) {
 707                 Node<K,V> e;
 708                 if ((e = oldTab[j]) != null) {
 709                     oldTab[j] = null;
 710                     if (e.next == null)
 711                         newTab[e.hash & (newCap - 1)] = e;
 712                     else if (e instanceof TreeNode)
 713                         ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
 714                     else { // preserve order
 715                         Node<K,V> loHead = null, loTail = null;
 716                         Node<K,V> hiHead = null, hiTail = null;
 717                         Node<K,V> next;
 718                         do {
 719                             next = e.next;
 720                             if ((e.hash & oldCap) == 0) {
 721                                 if (loTail == null)
 722                                     loHead = e;
 723                                 else
 724                                     loTail.next = e;
 725                                 loTail = e;
 726                             }
 727                             else {
 728                                 if (hiTail == null)
 729                                     hiHead = e;
 730                                 else
 731                                     hiTail.next = e;
 732                                 hiTail = e;
 733                             }
 734                         } while ((e = next) != null);
 735                         if (loTail != null) {
 736                             loTail.next = null;
 737                             newTab[j] = loHead;
 738                         }
 739                         if (hiTail != null) {
 740                             hiTail.next = null;
 741                             newTab[j + oldCap] = hiHead;
 742                         }
 743                     }
 744                 }
 745             }
 746         }
 747         return newTab;
 748     }
 749 
 750     /**
 751      * Replaces all linked nodes in bin at index for given hash unless
 752      * table is too small, in which case resizes instead.
 753      */
 754     final void treeifyBin(Node<K,V>[] tab, int hash) {
 755         int n, index; Node<K,V> e;
 756         if (tab == null || (n = tab.length) < MIN_TREEIFY_CAPACITY)
 757             resize();
 758         else if ((e = tab[index = (n - 1) & hash]) != null) {
 759             TreeNode<K,V> hd = null, tl = null;
 760             do {
 761                 TreeNode<K,V> p = replacementTreeNode(e, null);
 762                 if (tl == null)
 763                     hd = p;
 764                 else {
 765                     p.prev = tl;
 766                     tl.next = p;
 767                 }
 768                 tl = p;
 769             } while ((e = e.next) != null);
 770             if ((tab[index] = hd) != null)
 771                 hd.treeify(tab);
 772         }
 773     }
 774 
 775     /**
 776      * Copies all of the mappings from the specified map to this map.
 777      * These mappings will replace any mappings that this map had for
 778      * any of the keys currently in the specified map.
 779      *
 780      * @param m mappings to be stored in this map
 781      * @throws NullPointerException if the specified map is null
 782      */
 783     public void putAll(Map<? extends K, ? extends V> m) {
 784         putMapEntries(m, true);
 785     }
 786 
 787     /**
 788      * Removes the mapping for the specified key from this map if present.
 789      *
 790      * @param  key key whose mapping is to be removed from the map
 791      * @return the previous value associated with <tt>key</tt>, or
 792      *         <tt>null</tt> if there was no mapping for <tt>key</tt>.
 793      *         (A <tt>null</tt> return can also indicate that the map
 794      *         previously associated <tt>null</tt> with <tt>key</tt>.)
 795      */
 796     public V remove(Object key) {
 797         Node<K,V> e;
 798         return (e = removeNode(hash(key), key, null, false, true)) == null ?
 799             null : e.value;
 800     }
 801 
 802     /**
 803      * Implements Map.remove and related methods
 804      *
 805      * @param hash hash for key
 806      * @param key the key
 807      * @param value the value to match if matchValue, else ignored
 808      * @param matchValue if true only remove if value is equal
 809      * @param movable if false do not move other nodes while removing
 810      * @return the node, or null if none
 811      */
 812     final Node<K,V> removeNode(int hash, Object key, Object value,
 813                                boolean matchValue, boolean movable) {
 814         Node<K,V>[] tab; Node<K,V> p; int n, index;
 815         if ((tab = table) != null && (n = tab.length) > 0 &&
 816             (p = tab[index = (n - 1) & hash]) != null) {
 817             Node<K,V> node = null, e; K k; V v;
 818             if (p.hash == hash &&
 819                 ((k = p.key) == key || (key != null && key.equals(k))))
 820                 node = p;
 821             else if ((e = p.next) != null) {
 822                 if (p instanceof TreeNode)
 823                     node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
 824                 else {
 825                     do {
 826                         if (e.hash == hash &&
 827                             ((k = e.key) == key ||
 828                              (key != null && key.equals(k)))) {
 829                             node = e;
 830                             break;
 831                         }
 832                         p = e;
 833                     } while ((e = e.next) != null);
 834                 }
 835             }
 836             if (node != null && (!matchValue || (v = node.value) == value ||
 837                                  (value != null && value.equals(v)))) {
 838                 if (node instanceof TreeNode)
 839                     ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
 840                 else if (node == p)
 841                     tab[index] = node.next;
 842                 else
 843                     p.next = node.next;
 844                 ++modCount;
 845                 --size;
 846                 afterNodeRemoval(node);
 847                 return node;
 848             }
 849         }
 850         return null;
 851     }
 852 
 853     /**
 854      * Removes all of the mappings from this map.
 855      * The map will be empty after this call returns.
 856      */
 857     public void clear() {
 858         Node<K,V>[] tab;
 859         modCount++;
 860         if ((tab = table) != null && size > 0) {
 861             size = 0;
 862             for (int i = 0; i < tab.length; ++i)
 863                 tab[i] = null;
 864         }
 865     }
 866 
 867     /**
 868      * Returns <tt>true</tt> if this map maps one or more keys to the
 869      * specified value.
 870      *
 871      * @param value value whose presence in this map is to be tested
 872      * @return <tt>true</tt> if this map maps one or more keys to the
 873      *         specified value
 874      */
 875     public boolean containsValue(Object value) {
 876         Node<K,V>[] tab; V v;
 877         if ((tab = table) != null && size > 0) {
 878             for (int i = 0; i < tab.length; ++i) {
 879                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
 880                     if ((v = e.value) == value ||
 881                         (value != null && value.equals(v)))
 882                         return true;
 883                 }
 884             }
 885         }
 886         return false;
 887     }
 888 
 889     /**
 890      * Returns a {@link Set} view of the keys contained in this map.
 891      * The set is backed by the map, so changes to the map are
 892      * reflected in the set, and vice-versa.  If the map is modified
 893      * while an iteration over the set is in progress (except through
 894      * the iterator's own <tt>remove</tt> operation), the results of
 895      * the iteration are undefined.  The set supports element removal,
 896      * which removes the corresponding mapping from the map, via the
 897      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 898      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 899      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 900      * operations.
 901      *
 902      * @return a set view of the keys contained in this map
 903      */
 904     public Set<K> keySet() {
 905         Set<K> ks;
 906         return (ks = keySet) == null ? (keySet = new KeySet()) : ks;
 907     }
 908 
 909     final class KeySet extends AbstractSet<K> {
 910         public final int size()                 { return size; }
 911         public final void clear()               { HashMap.this.clear(); }
 912         public final Iterator<K> iterator()     { return new KeyIterator(); }
 913         public final boolean contains(Object o) { return containsKey(o); }
 914         public final boolean remove(Object key) {
 915             return removeNode(hash(key), key, null, false, true) != null;
 916         }
 917         public final Spliterator<K> spliterator() {
 918             return new KeySpliterator<K,V>(HashMap.this, 0, -1, 0, 0);
 919         }
 920         public final void forEach(Consumer<? super K> action) {
 921             Node<K,V>[] tab;
 922             if (action == null)
 923                 throw new NullPointerException();
 924             if (size > 0 && (tab = table) != null) {
 925                 int mc = modCount;
 926                 for (int i = 0; i < tab.length; ++i) {
 927                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 928                         action.accept(e.key);
 929                 }
 930                 if (modCount != mc)
 931                     throw new ConcurrentModificationException();
 932             }
 933         }
 934     }
 935 
 936     /**
 937      * Returns a {@link Collection} view of the values contained in this map.
 938      * The collection is backed by the map, so changes to the map are
 939      * reflected in the collection, and vice-versa.  If the map is
 940      * modified while an iteration over the collection is in progress
 941      * (except through the iterator's own <tt>remove</tt> operation),
 942      * the results of the iteration are undefined.  The collection
 943      * supports element removal, which removes the corresponding
 944      * mapping from the map, via the <tt>Iterator.remove</tt>,
 945      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 946      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 947      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 948      *
 949      * @return a view of the values contained in this map
 950      */
 951     public Collection<V> values() {
 952         Collection<V> vs;
 953         return (vs = values) == null ? (values = new Values()) : vs;
 954     }
 955 
 956     final class Values extends AbstractCollection<V> {
 957         public final int size()                 { return size; }
 958         public final void clear()               { HashMap.this.clear(); }
 959         public final Iterator<V> iterator()     { return new ValueIterator(); }
 960         public final boolean contains(Object o) { return containsValue(o); }
 961         public final Spliterator<V> spliterator() {
 962             return new ValueSpliterator<K,V>(HashMap.this, 0, -1, 0, 0);
 963         }
 964         public final void forEach(Consumer<? super V> action) {
 965             Node<K,V>[] tab;
 966             if (action == null)
 967                 throw new NullPointerException();
 968             if (size > 0 && (tab = table) != null) {
 969                 int mc = modCount;
 970                 for (int i = 0; i < tab.length; ++i) {
 971                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
 972                         action.accept(e.value);
 973                 }
 974                 if (modCount != mc)
 975                     throw new ConcurrentModificationException();
 976             }
 977         }
 978     }
 979 
 980     /**
 981      * Returns a {@link Set} view of the mappings contained in this map.
 982      * The set is backed by the map, so changes to the map are
 983      * reflected in the set, and vice-versa.  If the map is modified
 984      * while an iteration over the set is in progress (except through
 985      * the iterator's own <tt>remove</tt> operation, or through the
 986      * <tt>setValue</tt> operation on a map entry returned by the
 987      * iterator) the results of the iteration are undefined.  The set
 988      * supports element removal, which removes the corresponding
 989      * mapping from the map, via the <tt>Iterator.remove</tt>,
 990      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 991      * <tt>clear</tt> operations.  It does not support the
 992      * <tt>add</tt> or <tt>addAll</tt> operations.
 993      *
 994      * @return a set view of the mappings contained in this map
 995      */
 996     public Set<Map.Entry<K,V>> entrySet() {
 997         Set<Map.Entry<K,V>> es;
 998         return (es = entrySet) == null ? (entrySet = new EntrySet()) : es;
 999     }
1000 
1001     final class EntrySet extends AbstractSet<Map.Entry<K,V>> {
1002         public final int size()                 { return size; }
1003         public final void clear()               { HashMap.this.clear(); }
1004         public final Iterator<Map.Entry<K,V>> iterator() {
1005             return new EntryIterator();
1006         }
1007         public final boolean contains(Object o) {
1008             if (!(o instanceof Map.Entry))
1009                 return false;
1010             Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1011             Object key = e.getKey();
1012             Node<K,V> candidate = getNode(hash(key), key);
1013             return candidate != null && candidate.equals(e);
1014         }
1015         public final boolean remove(Object o) {
1016             if (o instanceof Map.Entry) {
1017                 Map.Entry<?,?> e = (Map.Entry<?,?>) o;
1018                 Object key = e.getKey();
1019                 Object value = e.getValue();
1020                 return removeNode(hash(key), key, value, true, true) != null;
1021             }
1022             return false;
1023         }
1024         public final Spliterator<Map.Entry<K,V>> spliterator() {
1025             return new EntrySpliterator<K,V>(HashMap.this, 0, -1, 0, 0);
1026         }
1027         public final void forEach(Consumer<? super Map.Entry<K,V>> action) {
1028             Node<K,V>[] tab;
1029             if (action == null)
1030                 throw new NullPointerException();
1031             if (size > 0 && (tab = table) != null) {
1032                 int mc = modCount;
1033                 for (int i = 0; i < tab.length; ++i) {
1034                     for (Node<K,V> e = tab[i]; e != null; e = e.next)
1035                         action.accept(e);
1036                 }
1037                 if (modCount != mc)
1038                     throw new ConcurrentModificationException();
1039             }
1040         }
1041     }
1042 
1043     // Overrides of JDK8 Map extension methods
1044 
1045     public V getOrDefault(Object key, V defaultValue) {
1046         Node<K,V> e;
1047         return (e = getNode(hash(key), key)) == null ? defaultValue : e.value;
1048     }
1049 
1050     public V putIfAbsent(K key, V value) {
1051         return putVal(hash(key), key, value, true, true);
1052     }
1053 
1054     public boolean remove(Object key, Object value) {
1055         return removeNode(hash(key), key, value, true, true) != null;
1056     }
1057 
1058     public boolean replace(K key, V oldValue, V newValue) {
1059         Node<K,V> e; V v;
1060         if ((e = getNode(hash(key), key)) != null &&
1061             ((v = e.value) == oldValue || (v != null && v.equals(oldValue)))) {
1062             e.value = newValue;
1063             afterNodeAccess(e);
1064             return true;
1065         }
1066         return false;
1067     }
1068 
1069     public V replace(K key, V value) {
1070         Node<K,V> e;
1071         if ((e = getNode(hash(key), key)) != null) {
1072             V oldValue = e.value;
1073             e.value = value;
1074             afterNodeAccess(e);
1075             return oldValue;
1076         }
1077         return null;
1078     }
1079 
1080     public V computeIfAbsent(K key,
1081                              Function<? super K, ? extends V> mappingFunction) {
1082         if (mappingFunction == null)
1083             throw new NullPointerException();
1084         int hash = hash(key);
1085         Node<K,V>[] tab; Node<K,V> first; int n, i;
1086         int binCount = 0;
1087         TreeNode<K,V> t = null;
1088         Node<K,V> old = null;
1089         if (size > threshold || (tab = table) == null ||
1090             (n = tab.length) == 0)
1091             n = (tab = resize()).length;
1092         if ((first = tab[i = (n - 1) & hash]) != null) {
1093             if (first instanceof TreeNode)
1094                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1095             else {
1096                 Node<K,V> e = first; K k;
1097                 do {
1098                     if (e.hash == hash &&
1099                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1100                         old = e;
1101                         break;
1102                     }
1103                     ++binCount;
1104                 } while ((e = e.next) != null);
1105             }
1106             V oldValue;
1107             if (old != null && (oldValue = old.value) != null) {
1108                 afterNodeAccess(old);
1109                 return oldValue;
1110             }
1111         }
1112         V v = mappingFunction.apply(key);
1113         if (old != null) {
1114             old.value = v;
1115             afterNodeAccess(old);
1116             return v;
1117         }
1118         else if (v == null)
1119             return null;
1120         else if (t != null)
1121             t.putTreeVal(this, tab, hash, key, v);
1122         else {
1123             tab[i] = newNode(hash, key, v, first);
1124             if (binCount >= TREEIFY_THRESHOLD - 1)
1125                 treeifyBin(tab, hash);
1126         }
1127         ++modCount;
1128         ++size;
1129         afterNodeInsertion(true);
1130         return v;
1131     }
1132 
1133     public V computeIfPresent(K key,
1134                               BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1135         if (remappingFunction == null)
1136             throw new NullPointerException();
1137         Node<K,V> e; V oldValue;
1138         int hash = hash(key);
1139         if ((e = getNode(hash, key)) != null &&
1140             (oldValue = e.value) != null) {
1141             V v = remappingFunction.apply(key, oldValue);
1142             if (v != null) {
1143                 e.value = v;
1144                 afterNodeAccess(e);
1145                 return v;
1146             }
1147             else
1148                 removeNode(hash, key, null, false, true);
1149         }
1150         return null;
1151     }
1152 
1153     public V compute(K key,
1154                      BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
1155         if (remappingFunction == null)
1156             throw new NullPointerException();
1157         int hash = hash(key);
1158         Node<K,V>[] tab; Node<K,V> first; int n, i;
1159         int binCount = 0;
1160         TreeNode<K,V> t = null;
1161         Node<K,V> old = null;
1162         if (size > threshold || (tab = table) == null ||
1163             (n = tab.length) == 0)
1164             n = (tab = resize()).length;
1165         if ((first = tab[i = (n - 1) & hash]) != null) {
1166             if (first instanceof TreeNode)
1167                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1168             else {
1169                 Node<K,V> e = first; K k;
1170                 do {
1171                     if (e.hash == hash &&
1172                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1173                         old = e;
1174                         break;
1175                     }
1176                     ++binCount;
1177                 } while ((e = e.next) != null);
1178             }
1179         }
1180         V oldValue = (old == null) ? null : old.value;
1181         V v = remappingFunction.apply(key, oldValue);
1182         if (old != null) {
1183             if (v != null) {
1184                 old.value = v;
1185                 afterNodeAccess(old);
1186             }
1187             else
1188                 removeNode(hash, key, null, false, true);
1189         }
1190         else if (v != null) {
1191             if (t != null)
1192                 t.putTreeVal(this, tab, hash, key, v);
1193             else {
1194                 tab[i] = newNode(hash, key, v, first);
1195                 if (binCount >= TREEIFY_THRESHOLD - 1)
1196                     treeifyBin(tab, hash);
1197             }
1198             ++modCount;
1199             ++size;
1200             afterNodeInsertion(true);
1201         }
1202         return v;
1203     }
1204 
1205     public V merge(K key, V value,
1206                    BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
1207         if (remappingFunction == null)
1208             throw new NullPointerException();
1209         int hash = hash(key);
1210         Node<K,V>[] tab; Node<K,V> first; int n, i;
1211         int binCount = 0;
1212         TreeNode<K,V> t = null;
1213         Node<K,V> old = null;
1214         if (size > threshold || (tab = table) == null ||
1215             (n = tab.length) == 0)
1216             n = (tab = resize()).length;
1217         if ((first = tab[i = (n - 1) & hash]) != null) {
1218             if (first instanceof TreeNode)
1219                 old = (t = (TreeNode<K,V>)first).getTreeNode(hash, key);
1220             else {
1221                 Node<K,V> e = first; K k;
1222                 do {
1223                     if (e.hash == hash &&
1224                         ((k = e.key) == key || (key != null && key.equals(k)))) {
1225                         old = e;
1226                         break;
1227                     }
1228                     ++binCount;
1229                 } while ((e = e.next) != null);
1230             }
1231         }
1232         if (old != null) {
1233             V v;
1234             if(old.value != null)
1235                 v = remappingFunction.apply(old.value, value);
1236             else
1237                 v = value;
1238             if (v != null) {
1239                 old.value = v;
1240                 afterNodeAccess(old);
1241             }
1242             else
1243                 removeNode(hash, key, null, false, true);
1244             return v;
1245         }
1246         if (value != null) {
1247             if (t != null)
1248                 t.putTreeVal(this, tab, hash, key, value);
1249             else {
1250                 tab[i] = newNode(hash, key, value, first);
1251                 if (binCount >= TREEIFY_THRESHOLD - 1)
1252                     treeifyBin(tab, hash);
1253             }
1254             ++modCount;
1255             ++size;
1256             afterNodeInsertion(true);
1257         }
1258         return value;
1259     }
1260 
1261     public void forEach(BiConsumer<? super K, ? super V> action) {
1262         Node<K,V>[] tab;
1263         if (action == null)
1264             throw new NullPointerException();
1265         if (size > 0 && (tab = table) != null) {
1266             int mc = modCount;
1267             for (int i = 0; i < tab.length; ++i) {
1268                 for (Node<K,V> e = tab[i]; e != null; e = e.next)
1269                     action.accept(e.key, e.value);
1270             }
1271             if (modCount != mc)
1272                 throw new ConcurrentModificationException();
1273         }
1274     }
1275 
1276     public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
1277         Node<K,V>[] tab;
1278         if (function == null)
1279             throw new NullPointerException();
1280         if (size > 0 && (tab = table) != null) {
1281             int mc = modCount;
1282             for (int i = 0; i < tab.length; ++i) {
1283                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1284                     e.value = function.apply(e.key, e.value);
1285                 }
1286             }
1287             if (modCount != mc)
1288                 throw new ConcurrentModificationException();
1289         }
1290     }
1291 
1292     /* ------------------------------------------------------------ */
1293     // Cloning and serialization
1294 
1295     /**
1296      * Returns a shallow copy of this <tt>HashMap</tt> instance: the keys and
1297      * values themselves are not cloned.
1298      *
1299      * @return a shallow copy of this map
1300      */
1301     @SuppressWarnings("unchecked")
1302     public Object clone() {
1303         HashMap<K,V> result;
1304         try {
1305             result = (HashMap<K,V>)super.clone();
1306         } catch (CloneNotSupportedException e) {
1307             // this shouldn't happen, since we are Cloneable
1308             throw new InternalError(e);
1309         }
1310         result.reinitialize();
1311         result.putMapEntries(this, false);
1312         return result;
1313     }
1314 
1315     // These methods are also used when serializing HashSets
1316     final float loadFactor() { return loadFactor; }
1317     final int capacity() {
1318         return (table != null) ? table.length :
1319             (threshold > 0) ? threshold :
1320             DEFAULT_INITIAL_CAPACITY;
1321     }
1322 
1323     /**
1324      * Save the state of the <tt>HashMap</tt> instance to a stream (i.e.,
1325      * serialize it).
1326      *
1327      * @serialData The <i>capacity</i> of the HashMap (the length of the
1328      *             bucket array) is emitted (int), followed by the
1329      *             <i>size</i> (an int, the number of key-value
1330      *             mappings), followed by the key (Object) and value (Object)
1331      *             for each key-value mapping.  The key-value mappings are
1332      *             emitted in no particular order.
1333      */
1334     private void writeObject(java.io.ObjectOutputStream s)
1335         throws IOException {
1336         int buckets = capacity();
1337         // Write out the threshold, loadfactor, and any hidden stuff
1338         s.defaultWriteObject();
1339         s.writeInt(buckets);
1340         s.writeInt(size);
1341         internalWriteEntries(s);
1342     }
1343 
1344     /**
1345      * Reconstitute the {@code HashMap} instance from a stream (i.e.,
1346      * deserialize it).
1347      */
1348     private void readObject(java.io.ObjectInputStream s)
1349         throws IOException, ClassNotFoundException {
1350         // Read in the threshold (ignored), loadfactor, and any hidden stuff
1351         s.defaultReadObject();
1352         reinitialize();
1353         if (loadFactor <= 0 || Float.isNaN(loadFactor))
1354             throw new InvalidObjectException("Illegal load factor: " +
1355                                              loadFactor);
1356         s.readInt();                // Read and ignore number of buckets
1357         int mappings = s.readInt(); // Read number of mappings (size)
1358         if (mappings < 0)
1359             throw new InvalidObjectException("Illegal mappings count: " +
1360                                              mappings);
1361         else if (mappings > 0) { // (if zero, use defaults)
1362             // Size the table using given load factor only if within
1363             // range of 0.25...4.0
1364             float lf = Math.min(Math.max(0.25f, loadFactor), 4.0f);
1365             float fc = (float)mappings / lf + 1.0f;
1366             int cap = ((fc < DEFAULT_INITIAL_CAPACITY) ?
1367                        DEFAULT_INITIAL_CAPACITY :
1368                        (fc >= MAXIMUM_CAPACITY) ?
1369                        MAXIMUM_CAPACITY :
1370                        tableSizeFor((int)fc));
1371             float ft = (float)cap * lf;
1372             threshold = ((cap < MAXIMUM_CAPACITY && ft < MAXIMUM_CAPACITY) ?
1373                          (int)ft : Integer.MAX_VALUE);
1374             @SuppressWarnings({"rawtypes","unchecked"})
1375                 Node<K,V>[] tab = (Node<K,V>[])new Node[cap];
1376             table = tab;
1377 
1378             // Read the keys and values, and put the mappings in the HashMap
1379             for (int i = 0; i < mappings; i++) {
1380                 @SuppressWarnings("unchecked")
1381                     K key = (K) s.readObject();
1382                 @SuppressWarnings("unchecked")
1383                     V value = (V) s.readObject();
1384                 putVal(hash(key), key, value, false, false);
1385             }
1386         }
1387     }
1388 
1389     /* ------------------------------------------------------------ */
1390     // iterators
1391 
1392     abstract class HashIterator {
1393         Node<K,V> next;        // next entry to return
1394         Node<K,V> current;     // current entry
1395         int expectedModCount;  // for fast-fail
1396         int index;             // current slot
1397 
1398         HashIterator() {
1399             expectedModCount = modCount;
1400             Node<K,V>[] t = table;
1401             current = next = null;
1402             index = 0;
1403             if (t != null && size > 0) { // advance to first entry
1404                 do {} while (index < t.length && (next = t[index++]) == null);
1405             }
1406         }
1407 
1408         public final boolean hasNext() {
1409             return next != null;
1410         }
1411 
1412         final Node<K,V> nextNode() {
1413             Node<K,V>[] t;
1414             Node<K,V> e = next;
1415             if (modCount != expectedModCount)
1416                 throw new ConcurrentModificationException();
1417             if (e == null)
1418                 throw new NoSuchElementException();
1419             if ((next = (current = e).next) == null && (t = table) != null) {
1420                 do {} while (index < t.length && (next = t[index++]) == null);
1421             }
1422             return e;
1423         }
1424 
1425         public final void remove() {
1426             Node<K,V> p = current;
1427             if (p == null)
1428                 throw new IllegalStateException();
1429             if (modCount != expectedModCount)
1430                 throw new ConcurrentModificationException();
1431             current = null;
1432             K key = p.key;
1433             removeNode(hash(key), key, null, false, false);
1434             expectedModCount = modCount;
1435         }
1436     }
1437 
1438     final class KeyIterator extends HashIterator
1439         implements Iterator<K> {
1440         public final K next() { return nextNode().key; }
1441     }
1442 
1443     final class ValueIterator extends HashIterator
1444         implements Iterator<V> {
1445         public final V next() { return nextNode().value; }
1446     }
1447 
1448     final class EntryIterator extends HashIterator
1449         implements Iterator<Map.Entry<K,V>> {
1450         public final Map.Entry<K,V> next() { return nextNode(); }
1451     }
1452 
1453     /* ------------------------------------------------------------ */
1454     // spliterators
1455 
1456     static class HashMapSpliterator<K,V> {
1457         final HashMap<K,V> map;
1458         Node<K,V> current;          // current node
1459         int index;                  // current index, modified on advance/split
1460         int fence;                  // one past last index
1461         int est;                    // size estimate
1462         int expectedModCount;       // for comodification checks
1463 
1464         HashMapSpliterator(HashMap<K,V> m, int origin,
1465                            int fence, int est,
1466                            int expectedModCount) {
1467             this.map = m;
1468             this.index = origin;
1469             this.fence = fence;
1470             this.est = est;
1471             this.expectedModCount = expectedModCount;
1472         }
1473 
1474         final int getFence() { // initialize fence and size on first use
1475             int hi;
1476             if ((hi = fence) < 0) {
1477                 HashMap<K,V> m = map;
1478                 est = m.size;
1479                 expectedModCount = m.modCount;
1480                 Node<K,V>[] tab = m.table;
1481                 hi = fence = (tab == null) ? 0 : tab.length;
1482             }
1483             return hi;
1484         }
1485 
1486         public final long estimateSize() {
1487             getFence(); // force init
1488             return (long) est;
1489         }
1490     }
1491 
1492     static final class KeySpliterator<K,V>
1493         extends HashMapSpliterator<K,V>
1494         implements Spliterator<K> {
1495         KeySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1496                        int expectedModCount) {
1497             super(m, origin, fence, est, expectedModCount);
1498         }
1499 
1500         public KeySpliterator<K,V> trySplit() {
1501             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1502             return (lo >= mid || current != null) ? null :
1503                 new KeySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1504                                         expectedModCount);
1505         }
1506 
1507         public void forEachRemaining(Consumer<? super K> action) {
1508             int i, hi, mc;
1509             if (action == null)
1510                 throw new NullPointerException();
1511             HashMap<K,V> m = map;
1512             Node<K,V>[] tab = m.table;
1513             if ((hi = fence) < 0) {
1514                 mc = expectedModCount = m.modCount;
1515                 hi = fence = (tab == null) ? 0 : tab.length;
1516             }
1517             else
1518                 mc = expectedModCount;
1519             if (tab != null && tab.length >= hi &&
1520                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1521                 Node<K,V> p = current;
1522                 current = null;
1523                 do {
1524                     if (p == null)
1525                         p = tab[i++];
1526                     else {
1527                         action.accept(p.key);
1528                         p = p.next;
1529                     }
1530                 } while (p != null || i < hi);
1531                 if (m.modCount != mc)
1532                     throw new ConcurrentModificationException();
1533             }
1534         }
1535 
1536         public boolean tryAdvance(Consumer<? super K> action) {
1537             int hi;
1538             if (action == null)
1539                 throw new NullPointerException();
1540             Node<K,V>[] tab = map.table;
1541             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1542                 while (current != null || index < hi) {
1543                     if (current == null)
1544                         current = tab[index++];
1545                     else {
1546                         K k = current.key;
1547                         current = current.next;
1548                         action.accept(k);
1549                         if (map.modCount != expectedModCount)
1550                             throw new ConcurrentModificationException();
1551                         return true;
1552                     }
1553                 }
1554             }
1555             return false;
1556         }
1557 
1558         public int characteristics() {
1559             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1560                 Spliterator.DISTINCT;
1561         }
1562     }
1563 
1564     static final class ValueSpliterator<K,V>
1565         extends HashMapSpliterator<K,V>
1566         implements Spliterator<V> {
1567         ValueSpliterator(HashMap<K,V> m, int origin, int fence, int est,
1568                          int expectedModCount) {
1569             super(m, origin, fence, est, expectedModCount);
1570         }
1571 
1572         public ValueSpliterator<K,V> trySplit() {
1573             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1574             return (lo >= mid || current != null) ? null :
1575                 new ValueSpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1576                                           expectedModCount);
1577         }
1578 
1579         public void forEachRemaining(Consumer<? super V> action) {
1580             int i, hi, mc;
1581             if (action == null)
1582                 throw new NullPointerException();
1583             HashMap<K,V> m = map;
1584             Node<K,V>[] tab = m.table;
1585             if ((hi = fence) < 0) {
1586                 mc = expectedModCount = m.modCount;
1587                 hi = fence = (tab == null) ? 0 : tab.length;
1588             }
1589             else
1590                 mc = expectedModCount;
1591             if (tab != null && tab.length >= hi &&
1592                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1593                 Node<K,V> p = current;
1594                 current = null;
1595                 do {
1596                     if (p == null)
1597                         p = tab[i++];
1598                     else {
1599                         action.accept(p.value);
1600                         p = p.next;
1601                     }
1602                 } while (p != null || i < hi);
1603                 if (m.modCount != mc)
1604                     throw new ConcurrentModificationException();
1605             }
1606         }
1607 
1608         public boolean tryAdvance(Consumer<? super V> action) {
1609             int hi;
1610             if (action == null)
1611                 throw new NullPointerException();
1612             Node<K,V>[] tab = map.table;
1613             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1614                 while (current != null || index < hi) {
1615                     if (current == null)
1616                         current = tab[index++];
1617                     else {
1618                         V v = current.value;
1619                         current = current.next;
1620                         action.accept(v);
1621                         if (map.modCount != expectedModCount)
1622                             throw new ConcurrentModificationException();
1623                         return true;
1624                     }
1625                 }
1626             }
1627             return false;
1628         }
1629 
1630         public int characteristics() {
1631             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0);
1632         }
1633     }
1634 
1635     static final class EntrySpliterator<K,V>
1636         extends HashMapSpliterator<K,V>
1637         implements Spliterator<Map.Entry<K,V>> {
1638         EntrySpliterator(HashMap<K,V> m, int origin, int fence, int est,
1639                          int expectedModCount) {
1640             super(m, origin, fence, est, expectedModCount);
1641         }
1642 
1643         public EntrySpliterator<K,V> trySplit() {
1644             int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
1645             return (lo >= mid || current != null) ? null :
1646                 new EntrySpliterator<K,V>(map, lo, index = mid, est >>>= 1,
1647                                           expectedModCount);
1648         }
1649 
1650         public void forEachRemaining(Consumer<? super Map.Entry<K,V>> action) {
1651             int i, hi, mc;
1652             if (action == null)
1653                 throw new NullPointerException();
1654             HashMap<K,V> m = map;
1655             Node<K,V>[] tab = m.table;
1656             if ((hi = fence) < 0) {
1657                 mc = expectedModCount = m.modCount;
1658                 hi = fence = (tab == null) ? 0 : tab.length;
1659             }
1660             else
1661                 mc = expectedModCount;
1662             if (tab != null && tab.length >= hi &&
1663                 (i = index) >= 0 && (i < (index = hi) || current != null)) {
1664                 Node<K,V> p = current;
1665                 current = null;
1666                 do {
1667                     if (p == null)
1668                         p = tab[i++];
1669                     else {
1670                         action.accept(p);
1671                         p = p.next;
1672                     }
1673                 } while (p != null || i < hi);
1674                 if (m.modCount != mc)
1675                     throw new ConcurrentModificationException();
1676             }
1677         }
1678 
1679         public boolean tryAdvance(Consumer<? super Map.Entry<K,V>> action) {
1680             int hi;
1681             if (action == null)
1682                 throw new NullPointerException();
1683             Node<K,V>[] tab = map.table;
1684             if (tab != null && tab.length >= (hi = getFence()) && index >= 0) {
1685                 while (current != null || index < hi) {
1686                     if (current == null)
1687                         current = tab[index++];
1688                     else {
1689                         Node<K,V> e = current;
1690                         current = current.next;
1691                         action.accept(e);
1692                         if (map.modCount != expectedModCount)
1693                             throw new ConcurrentModificationException();
1694                         return true;
1695                     }
1696                 }
1697             }
1698             return false;
1699         }
1700 
1701         public int characteristics() {
1702             return (fence < 0 || est == map.size ? Spliterator.SIZED : 0) |
1703                 Spliterator.DISTINCT;
1704         }
1705     }
1706 
1707     /* ------------------------------------------------------------ */
1708     // LinkedHashMap support
1709 
1710 
1711     /*
1712      * The following package-protected methods are designed to be
1713      * overridden by LinkedHashMap, but not by any other subclass.
1714      * Nearly all other internal methods are also package-protected
1715      * but are declared final, so can be used by LinkedHashMap, view
1716      * classes, and HashSet.
1717      */
1718 
1719     // Create a regular (non-tree) node
1720     Node<K,V> newNode(int hash, K key, V value, Node<K,V> next) {
1721         return new Node<K,V>(hash, key, value, next);
1722     }
1723 
1724     // For conversion from TreeNodes to plain nodes
1725     Node<K,V> replacementNode(Node<K,V> p, Node<K,V> next) {
1726         return new Node<K,V>(p.hash, p.key, p.value, next);
1727     }
1728 
1729     // Create a tree bin node
1730     TreeNode<K,V> newTreeNode(int hash, K key, V value, Node<K,V> next) {
1731         return new TreeNode<K,V>(hash, key, value, next);
1732     }
1733 
1734     // For treeifyBin
1735     TreeNode<K,V> replacementTreeNode(Node<K,V> p, Node<K,V> next) {
1736         return new TreeNode<K,V>(p.hash, p.key, p.value, next);
1737     }
1738 
1739     /**
1740      * Reset to initial default state.  Called by clone and readObject.
1741      */
1742     void reinitialize() {
1743         table = null;
1744         entrySet = null;
1745         keySet = null;
1746         values = null;
1747         modCount = 0;
1748         threshold = 0;
1749         size = 0;
1750     }
1751 
1752     // Callbacks to allow LinkedHashMap post-actions
1753     void afterNodeAccess(Node<K,V> p) { }
1754     void afterNodeInsertion(boolean evict) { }
1755     void afterNodeRemoval(Node<K,V> p) { }
1756 
1757     // Called only from writeObject, to ensure compatible ordering.
1758     void internalWriteEntries(java.io.ObjectOutputStream s) throws IOException {
1759         Node<K,V>[] tab;
1760         if (size > 0 && (tab = table) != null) {
1761             for (int i = 0; i < tab.length; ++i) {
1762                 for (Node<K,V> e = tab[i]; e != null; e = e.next) {
1763                     s.writeObject(e.key);
1764                     s.writeObject(e.value);
1765                 }
1766             }
1767         }
1768     }
1769 
1770     /* ------------------------------------------------------------ */
1771     // Tree bins
1772 
1773     /**
1774      * Entry for Tree bins. Extends LinkedHashMap.Entry (which in turn
1775      * extends Node) so can be used as extension of either regular or
1776      * linked node.
1777      */
1778     static final class TreeNode<K,V> extends LinkedHashMap.Entry<K,V> {
1779         TreeNode<K,V> parent;  // red-black tree links
1780         TreeNode<K,V> left;
1781         TreeNode<K,V> right;
1782         TreeNode<K,V> prev;    // needed to unlink next upon deletion
1783         boolean red;
1784         TreeNode(int hash, K key, V val, Node<K,V> next) {
1785             super(hash, key, val, next);
1786         }
1787 
1788         /**
1789          * Returns root of tree containing this node.
1790          */
1791         final TreeNode<K,V> root() {
1792             for (TreeNode<K,V> r = this, p;;) {
1793                 if ((p = r.parent) == null)
1794                     return r;
1795                 r = p;
1796             }
1797         }
1798 
1799         /**
1800          * Ensures that the given root is the first node of its bin.
1801          */
1802         static <K,V> void moveRootToFront(Node<K,V>[] tab, TreeNode<K,V> root) {
1803             int n;
1804             if (root != null && tab != null && (n = tab.length) > 0) {
1805                 int index = (n - 1) & root.hash;
1806                 TreeNode<K,V> first = (TreeNode<K,V>)tab[index];
1807                 if (root != first) {
1808                     Node<K,V> rn;
1809                     tab[index] = root;
1810                     TreeNode<K,V> rp = root.prev;
1811                     if ((rn = root.next) != null)
1812                         ((TreeNode<K,V>)rn).prev = rp;
1813                     if (rp != null)
1814                         rp.next = rn;
1815                     if (first != null)
1816                         first.prev = root;
1817                     root.next = first;
1818                     root.prev = null;
1819                 }
1820                 assert checkInvariants(root);
1821             }
1822         }
1823 
1824         /**
1825          * Finds the node starting at root p with the given hash and key.
1826          * The kc argument caches comparableClassFor(key) upon first use
1827          * comparing keys.
1828          */
1829         final TreeNode<K,V> find(int h, Object k, Class<?> kc) {
1830             TreeNode<K,V> p = this;
1831             do {
1832                 int ph, dir; K pk;
1833                 TreeNode<K,V> pl = p.left, pr = p.right, q;
1834                 if ((ph = p.hash) > h)
1835                     p = pl;
1836                 else if (ph < h)
1837                     p = pr;
1838                 else if ((pk = p.key) == k || (k != null && k.equals(pk)))
1839                     return p;
1840                 else if (pl == null)
1841                     p = pr;
1842                 else if (pr == null)
1843                     p = pl;
1844                 else if ((kc != null ||
1845                           (kc = comparableClassFor(k)) != null) &&
1846                          (dir = compareComparables(kc, k, pk)) != 0)
1847                     p = (dir < 0) ? pl : pr;
1848                 else if ((q = pr.find(h, k, kc)) != null)
1849                     return q;
1850                 else
1851                     p = pl;
1852             } while (p != null);
1853             return null;
1854         }
1855 
1856         /**
1857          * Calls find for root node.
1858          */
1859         final TreeNode<K,V> getTreeNode(int h, Object k) {
1860             return ((parent != null) ? root() : this).find(h, k, null);
1861         }
1862 
1863         /**
1864          * Tie-breaking utility for ordering insertions when equal
1865          * hashCodes and non-comparable. We don't require a total
1866          * order, just a consistent insertion rule to maintain
1867          * equivalence across rebalancings. Tie-breaking further than
1868          * necessary simplifies testing a bit.
1869          */
1870         static int tieBreakOrder(Object a, Object b) {
1871             int d;
1872             if (a == null || b == null ||
1873                 (d = a.getClass().getName().
1874                  compareTo(b.getClass().getName())) == 0)
1875                 d = (System.identityHashCode(a) <= System.identityHashCode(b) ?
1876                      -1 : 1);
1877             return d;
1878         }
1879 
1880         /**
1881          * Forms tree of the nodes linked from this node.
1882          * @return root of tree
1883          */
1884         final void treeify(Node<K,V>[] tab) {
1885             TreeNode<K,V> root = null;
1886             for (TreeNode<K,V> x = this, next; x != null; x = next) {
1887                 next = (TreeNode<K,V>)x.next;
1888                 x.left = x.right = null;
1889                 if (root == null) {
1890                     x.parent = null;
1891                     x.red = false;
1892                     root = x;
1893                 }
1894                 else {
1895                     K k = x.key;
1896                     int h = x.hash;
1897                     Class<?> kc = null;
1898                     for (TreeNode<K,V> p = root;;) {
1899                         int dir, ph;
1900                         K pk = p.key;
1901                         if ((ph = p.hash) > h)
1902                             dir = -1;
1903                         else if (ph < h)
1904                             dir = 1;
1905                         else if ((kc == null &&
1906                                   (kc = comparableClassFor(k)) == null) ||
1907                                  (dir = compareComparables(kc, k, pk)) == 0)
1908                             dir = tieBreakOrder(k, pk);
1909 
1910                         TreeNode<K,V> xp = p;
1911                         if ((p = (dir <= 0) ? p.left : p.right) == null) {
1912                             x.parent = xp;
1913                             if (dir <= 0)
1914                                 xp.left = x;
1915                             else
1916                                 xp.right = x;
1917                             root = balanceInsertion(root, x);
1918                             break;
1919                         }
1920                     }
1921                 }
1922             }
1923             moveRootToFront(tab, root);
1924         }
1925 
1926         /**
1927          * Returns a list of non-TreeNodes replacing those linked from
1928          * this node.
1929          */
1930         final Node<K,V> untreeify(HashMap<K,V> map) {
1931             Node<K,V> hd = null, tl = null;
1932             for (Node<K,V> q = this; q != null; q = q.next) {
1933                 Node<K,V> p = map.replacementNode(q, null);
1934                 if (tl == null)
1935                     hd = p;
1936                 else
1937                     tl.next = p;
1938                 tl = p;
1939             }
1940             return hd;
1941         }
1942 
1943         /**
1944          * Tree version of putVal.
1945          */
1946         final TreeNode<K,V> putTreeVal(HashMap<K,V> map, Node<K,V>[] tab,
1947                                        int h, K k, V v) {
1948             Class<?> kc = null;
1949             boolean searched = false;
1950             TreeNode<K,V> root = (parent != null) ? root() : this;
1951             for (TreeNode<K,V> p = root;;) {
1952                 int dir, ph; K pk;
1953                 if ((ph = p.hash) > h)
1954                     dir = -1;
1955                 else if (ph < h)
1956                     dir = 1;
1957                 else if ((pk = p.key) == k || (pk != null && k.equals(pk)))
1958                     return p;
1959                 else if ((kc == null &&
1960                           (kc = comparableClassFor(k)) == null) ||
1961                          (dir = compareComparables(kc, k, pk)) == 0) {
1962                     if (!searched) {
1963                         TreeNode<K,V> q, ch;
1964                         searched = true;
1965                         if (((ch = p.left) != null &&
1966                              (q = ch.find(h, k, kc)) != null) ||
1967                             ((ch = p.right) != null &&
1968                              (q = ch.find(h, k, kc)) != null))
1969                             return q;
1970                     }
1971                     dir = tieBreakOrder(k, pk);
1972                 }
1973 
1974                 TreeNode<K,V> xp = p;
1975                 if ((p = (dir <= 0) ? p.left : p.right) == null) {
1976                     Node<K,V> xpn = xp.next;
1977                     TreeNode<K,V> x = map.newTreeNode(h, k, v, xpn);
1978                     if (dir <= 0)
1979                         xp.left = x;
1980                     else
1981                         xp.right = x;
1982                     xp.next = x;
1983                     x.parent = x.prev = xp;
1984                     if (xpn != null)
1985                         ((TreeNode<K,V>)xpn).prev = x;
1986                     moveRootToFront(tab, balanceInsertion(root, x));
1987                     return null;
1988                 }
1989             }
1990         }
1991 
1992         /**
1993          * Removes the given node, that must be present before this call.
1994          * This is messier than typical red-black deletion code because we
1995          * cannot swap the contents of an interior node with a leaf
1996          * successor that is pinned by "next" pointers that are accessible
1997          * independently during traversal. So instead we swap the tree
1998          * linkages. If the current tree appears to have too few nodes,
1999          * the bin is converted back to a plain bin. (The test triggers
2000          * somewhere between 2 and 6 nodes, depending on tree structure).
2001          */
2002         final void removeTreeNode(HashMap<K,V> map, Node<K,V>[] tab,
2003                                   boolean movable) {
2004             int n;
2005             if (tab == null || (n = tab.length) == 0)
2006                 return;
2007             int index = (n - 1) & hash;
2008             TreeNode<K,V> first = (TreeNode<K,V>)tab[index], root = first, rl;
2009             TreeNode<K,V> succ = (TreeNode<K,V>)next, pred = prev;
2010             if (pred == null)
2011                 tab[index] = first = succ;
2012             else
2013                 pred.next = succ;
2014             if (succ != null)
2015                 succ.prev = pred;
2016             if (first == null)
2017                 return;
2018             if (root.parent != null)
2019                 root = root.root();
2020             if (root == null || root.right == null ||
2021                 (rl = root.left) == null || rl.left == null) {
2022                 tab[index] = first.untreeify(map);  // too small
2023                 return;
2024             }
2025             TreeNode<K,V> p = this, pl = left, pr = right, replacement;
2026             if (pl != null && pr != null) {
2027                 TreeNode<K,V> s = pr, sl;
2028                 while ((sl = s.left) != null) // find successor
2029                     s = sl;
2030                 boolean c = s.red; s.red = p.red; p.red = c; // swap colors
2031                 TreeNode<K,V> sr = s.right;
2032                 TreeNode<K,V> pp = p.parent;
2033                 if (s == pr) { // p was s's direct parent
2034                     p.parent = s;
2035                     s.right = p;
2036                 }
2037                 else {
2038                     TreeNode<K,V> sp = s.parent;
2039                     if ((p.parent = sp) != null) {
2040                         if (s == sp.left)
2041                             sp.left = p;
2042                         else
2043                             sp.right = p;
2044                     }
2045                     if ((s.right = pr) != null)
2046                         pr.parent = s;
2047                 }
2048                 p.left = null;
2049                 if ((p.right = sr) != null)
2050                     sr.parent = p;
2051                 if ((s.left = pl) != null)
2052                     pl.parent = s;
2053                 if ((s.parent = pp) == null)
2054                     root = s;
2055                 else if (p == pp.left)
2056                     pp.left = s;
2057                 else
2058                     pp.right = s;
2059                 if (sr != null)
2060                     replacement = sr;
2061                 else
2062                     replacement = p;
2063             }
2064             else if (pl != null)
2065                 replacement = pl;
2066             else if (pr != null)
2067                 replacement = pr;
2068             else
2069                 replacement = p;
2070             if (replacement != p) {
2071                 TreeNode<K,V> pp = replacement.parent = p.parent;
2072                 if (pp == null)
2073                     root = replacement;
2074                 else if (p == pp.left)
2075                     pp.left = replacement;
2076                 else
2077                     pp.right = replacement;
2078                 p.left = p.right = p.parent = null;
2079             }
2080 
2081             TreeNode<K,V> r = p.red ? root : balanceDeletion(root, replacement);
2082 
2083             if (replacement == p) {  // detach
2084                 TreeNode<K,V> pp = p.parent;
2085                 p.parent = null;
2086                 if (pp != null) {
2087                     if (p == pp.left)
2088                         pp.left = null;
2089                     else if (p == pp.right)
2090                         pp.right = null;
2091                 }
2092             }
2093             if (movable)
2094                 moveRootToFront(tab, r);
2095         }
2096 
2097         /**
2098          * Splits nodes in a tree bin into lower and upper tree bins,
2099          * or untreeifies if now too small. Called only from resize;
2100          * see above discussion about split bits and indices.
2101          *
2102          * @param map the map
2103          * @param tab the table for recording bin heads
2104          * @param index the index of the table being split
2105          * @param bit the bit of hash to split on
2106          */
2107         final void split(HashMap<K,V> map, Node<K,V>[] tab, int index, int bit) {
2108             TreeNode<K,V> b = this;
2109             // Relink into lo and hi lists, preserving order
2110             TreeNode<K,V> loHead = null, loTail = null;
2111             TreeNode<K,V> hiHead = null, hiTail = null;
2112             int lc = 0, hc = 0;
2113             for (TreeNode<K,V> e = b, next; e != null; e = next) {
2114                 next = (TreeNode<K,V>)e.next;
2115                 e.next = null;
2116                 if ((e.hash & bit) == 0) {
2117                     if ((e.prev = loTail) == null)
2118                         loHead = e;
2119                     else
2120                         loTail.next = e;
2121                     loTail = e;
2122                     ++lc;
2123                 }
2124                 else {
2125                     if ((e.prev = hiTail) == null)
2126                         hiHead = e;
2127                     else
2128                         hiTail.next = e;
2129                     hiTail = e;
2130                     ++hc;
2131                 }
2132             }
2133 
2134             if (loHead != null) {
2135                 if (lc <= UNTREEIFY_THRESHOLD)
2136                     tab[index] = loHead.untreeify(map);
2137                 else {
2138                     tab[index] = loHead;
2139                     if (hiHead != null) // (else is already treeified)
2140                         loHead.treeify(tab);
2141                 }
2142             }
2143             if (hiHead != null) {
2144                 if (hc <= UNTREEIFY_THRESHOLD)
2145                     tab[index + bit] = hiHead.untreeify(map);
2146                 else {
2147                     tab[index + bit] = hiHead;
2148                     if (loHead != null)
2149                         hiHead.treeify(tab);
2150                 }
2151             }
2152         }
2153 
2154         /* ------------------------------------------------------------ */
2155         // Red-black tree methods, all adapted from CLR
2156 
2157         static <K,V> TreeNode<K,V> rotateLeft(TreeNode<K,V> root,
2158                                               TreeNode<K,V> p) {
2159             TreeNode<K,V> r, pp, rl;
2160             if (p != null && (r = p.right) != null) {
2161                 if ((rl = p.right = r.left) != null)
2162                     rl.parent = p;
2163                 if ((pp = r.parent = p.parent) == null)
2164                     (root = r).red = false;
2165                 else if (pp.left == p)
2166                     pp.left = r;
2167                 else
2168                     pp.right = r;
2169                 r.left = p;
2170                 p.parent = r;
2171             }
2172             return root;
2173         }
2174 
2175         static <K,V> TreeNode<K,V> rotateRight(TreeNode<K,V> root,
2176                                                TreeNode<K,V> p) {
2177             TreeNode<K,V> l, pp, lr;
2178             if (p != null && (l = p.left) != null) {
2179                 if ((lr = p.left = l.right) != null)
2180                     lr.parent = p;
2181                 if ((pp = l.parent = p.parent) == null)
2182                     (root = l).red = false;
2183                 else if (pp.right == p)
2184                     pp.right = l;
2185                 else
2186                     pp.left = l;
2187                 l.right = p;
2188                 p.parent = l;
2189             }
2190             return root;
2191         }
2192 
2193         static <K,V> TreeNode<K,V> balanceInsertion(TreeNode<K,V> root,
2194                                                     TreeNode<K,V> x) {
2195             x.red = true;
2196             for (TreeNode<K,V> xp, xpp, xppl, xppr;;) {
2197                 if ((xp = x.parent) == null) {
2198                     x.red = false;
2199                     return x;
2200                 }
2201                 else if (!xp.red || (xpp = xp.parent) == null)
2202                     return root;
2203                 if (xp == (xppl = xpp.left)) {
2204                     if ((xppr = xpp.right) != null && xppr.red) {
2205                         xppr.red = false;
2206                         xp.red = false;
2207                         xpp.red = true;
2208                         x = xpp;
2209                     }
2210                     else {
2211                         if (x == xp.right) {
2212                             root = rotateLeft(root, x = xp);
2213                             xpp = (xp = x.parent) == null ? null : xp.parent;
2214                         }
2215                         if (xp != null) {
2216                             xp.red = false;
2217                             if (xpp != null) {
2218                                 xpp.red = true;
2219                                 root = rotateRight(root, xpp);
2220                             }
2221                         }
2222                     }
2223                 }
2224                 else {
2225                     if (xppl != null && xppl.red) {
2226                         xppl.red = false;
2227                         xp.red = false;
2228                         xpp.red = true;
2229                         x = xpp;
2230                     }
2231                     else {
2232                         if (x == xp.left) {
2233                             root = rotateRight(root, x = xp);
2234                             xpp = (xp = x.parent) == null ? null : xp.parent;
2235                         }
2236                         if (xp != null) {
2237                             xp.red = false;
2238                             if (xpp != null) {
2239                                 xpp.red = true;
2240                                 root = rotateLeft(root, xpp);
2241                             }
2242                         }
2243                     }
2244                 }
2245             }
2246         }
2247 
2248         static <K,V> TreeNode<K,V> balanceDeletion(TreeNode<K,V> root,
2249                                                    TreeNode<K,V> x) {
2250             for (TreeNode<K,V> xp, xpl, xpr;;)  {
2251                 if (x == null || x == root)
2252                     return root;
2253                 else if ((xp = x.parent) == null) {
2254                     x.red = false;
2255                     return x;
2256                 }
2257                 else if (x.red) {
2258                     x.red = false;
2259                     return root;
2260                 }
2261                 else if ((xpl = xp.left) == x) {
2262                     if ((xpr = xp.right) != null && xpr.red) {
2263                         xpr.red = false;
2264                         xp.red = true;
2265                         root = rotateLeft(root, xp);
2266                         xpr = (xp = x.parent) == null ? null : xp.right;
2267                     }
2268                     if (xpr == null)
2269                         x = xp;
2270                     else {
2271                         TreeNode<K,V> sl = xpr.left, sr = xpr.right;
2272                         if ((sr == null || !sr.red) &&
2273                             (sl == null || !sl.red)) {
2274                             xpr.red = true;
2275                             x = xp;
2276                         }
2277                         else {
2278                             if (sr == null || !sr.red) {
2279                                 if (sl != null)
2280                                     sl.red = false;
2281                                 xpr.red = true;
2282                                 root = rotateRight(root, xpr);
2283                                 xpr = (xp = x.parent) == null ?
2284                                     null : xp.right;
2285                             }
2286                             if (xpr != null) {
2287                                 xpr.red = (xp == null) ? false : xp.red;
2288                                 if ((sr = xpr.right) != null)
2289                                     sr.red = false;
2290                             }
2291                             if (xp != null) {
2292                                 xp.red = false;
2293                                 root = rotateLeft(root, xp);
2294                             }
2295                             x = root;
2296                         }
2297                     }
2298                 }
2299                 else { // symmetric
2300                     if (xpl != null && xpl.red) {
2301                         xpl.red = false;
2302                         xp.red = true;
2303                         root = rotateRight(root, xp);
2304                         xpl = (xp = x.parent) == null ? null : xp.left;
2305                     }
2306                     if (xpl == null)
2307                         x = xp;
2308                     else {
2309                         TreeNode<K,V> sl = xpl.left, sr = xpl.right;
2310                         if ((sl == null || !sl.red) &&
2311                             (sr == null || !sr.red)) {
2312                             xpl.red = true;
2313                             x = xp;
2314                         }
2315                         else {
2316                             if (sl == null || !sl.red) {
2317                                 if (sr != null)
2318                                     sr.red = false;
2319                                 xpl.red = true;
2320                                 root = rotateLeft(root, xpl);
2321                                 xpl = (xp = x.parent) == null ?
2322                                     null : xp.left;
2323                             }
2324                             if (xpl != null) {
2325                                 xpl.red = (xp == null) ? false : xp.red;
2326                                 if ((sl = xpl.left) != null)
2327                                     sl.red = false;
2328                             }
2329                             if (xp != null) {
2330                                 xp.red = false;
2331                                 root = rotateRight(root, xp);
2332                             }
2333                             x = root;
2334                         }
2335                     }
2336                 }
2337             }
2338         }
2339 
2340         /**
2341          * Recursive invariant check
2342          */
2343         static <K,V> boolean checkInvariants(TreeNode<K,V> t) {
2344             TreeNode<K,V> tp = t.parent, tl = t.left, tr = t.right,
2345                 tb = t.prev, tn = (TreeNode<K,V>)t.next;
2346             if (tb != null && tb.next != t)
2347                 return false;
2348             if (tn != null && tn.prev != t)
2349                 return false;
2350             if (tp != null && t != tp.left && t != tp.right)
2351                 return false;
2352             if (tl != null && (tl.parent != t || tl.hash > t.hash))
2353                 return false;
2354             if (tr != null && (tr.parent != t || tr.hash < t.hash))
2355                 return false;
2356             if (t.red && tl != null && tl.red && tr != null && tr.red)
2357                 return false;
2358             if (tl != null && !checkInvariants(tl))
2359                 return false;
2360             if (tr != null && !checkInvariants(tr))
2361                 return false;
2362             return true;
2363         }
2364     }
2365 
2366 }