1 /*
   2  * Copyright (c) 1994, 2011, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.util;
  27 import java.io.*;
  28 
  29 /**
  30  * This class implements a hash table, which maps keys to values. Any
  31  * non-<code>null</code> object can be used as a key or as a value. <p>
  32  *
  33  * To successfully store and retrieve objects from a hashtable, the
  34  * objects used as keys must implement the <code>hashCode</code>
  35  * method and the <code>equals</code> method. <p>
  36  *
  37  * An instance of <code>Hashtable</code> has two parameters that affect its
  38  * performance: <i>initial capacity</i> and <i>load factor</i>.  The
  39  * <i>capacity</i> is the number of <i>buckets</i> in the hash table, and the
  40  * <i>initial capacity</i> is simply the capacity at the time the hash table
  41  * is created.  Note that the hash table is <i>open</i>: in the case of a "hash
  42  * collision", a single bucket stores multiple entries, which must be searched
  43  * sequentially.  The <i>load factor</i> is a measure of how full the hash
  44  * table is allowed to get before its capacity is automatically increased.
  45  * The initial capacity and load factor parameters are merely hints to
  46  * the implementation.  The exact details as to when and whether the rehash
  47  * method is invoked are implementation-dependent.<p>
  48  *
  49  * Generally, the default load factor (.75) offers a good tradeoff between
  50  * time and space costs.  Higher values decrease the space overhead but
  51  * increase the time cost to look up an entry (which is reflected in most
  52  * <tt>Hashtable</tt> operations, including <tt>get</tt> and <tt>put</tt>).<p>
  53  *
  54  * The initial capacity controls a tradeoff between wasted space and the
  55  * need for <code>rehash</code> operations, which are time-consuming.
  56  * No <code>rehash</code> operations will <i>ever</i> occur if the initial
  57  * capacity is greater than the maximum number of entries the
  58  * <tt>Hashtable</tt> will contain divided by its load factor.  However,
  59  * setting the initial capacity too high can waste space.<p>
  60  *
  61  * If many entries are to be made into a <code>Hashtable</code>,
  62  * creating it with a sufficiently large capacity may allow the
  63  * entries to be inserted more efficiently than letting it perform
  64  * automatic rehashing as needed to grow the table. <p>
  65  *
  66  * This example creates a hashtable of numbers. It uses the names of
  67  * the numbers as keys:
  68  * <pre>   {@code
  69  *   Hashtable<String, Integer> numbers
  70  *     = new Hashtable<String, Integer>();
  71  *   numbers.put("one", 1);
  72  *   numbers.put("two", 2);
  73  *   numbers.put("three", 3);}</pre>
  74  *
  75  * <p>To retrieve a number, use the following code:
  76  * <pre>   {@code
  77  *   Integer n = numbers.get("two");
  78  *   if (n != null) {
  79  *     System.out.println("two = " + n);
  80  *   }}</pre>
  81  *
  82  * <p>The iterators returned by the <tt>iterator</tt> method of the collections
  83  * returned by all of this class's "collection view methods" are
  84  * <em>fail-fast</em>: if the Hashtable is structurally modified at any time
  85  * after the iterator is created, in any way except through the iterator's own
  86  * <tt>remove</tt> method, the iterator will throw a {@link
  87  * ConcurrentModificationException}.  Thus, in the face of concurrent
  88  * modification, the iterator fails quickly and cleanly, rather than risking
  89  * arbitrary, non-deterministic behavior at an undetermined time in the future.
  90  * The Enumerations returned by Hashtable's keys and elements methods are
  91  * <em>not</em> fail-fast.
  92  *
  93  * <p>Note that the fail-fast behavior of an iterator cannot be guaranteed
  94  * as it is, generally speaking, impossible to make any hard guarantees in the
  95  * presence of unsynchronized concurrent modification.  Fail-fast iterators
  96  * throw <tt>ConcurrentModificationException</tt> on a best-effort basis.
  97  * Therefore, it would be wrong to write a program that depended on this
  98  * exception for its correctness: <i>the fail-fast behavior of iterators
  99  * should be used only to detect bugs.</i>
 100  *
 101  * <p>As of the Java 2 platform v1.2, this class was retrofitted to
 102  * implement the {@link Map} interface, making it a member of the
 103  * <a href="{@docRoot}/../technotes/guides/collections/index.html">
 104  *
 105  * Java Collections Framework</a>.  Unlike the new collection
 106  * implementations, {@code Hashtable} is synchronized.  If a
 107  * thread-safe implementation is not needed, it is recommended to use
 108  * {@link HashMap} in place of {@code Hashtable}.  If a thread-safe
 109  * highly-concurrent implementation is desired, then it is recommended
 110  * to use {@link java.util.concurrent.ConcurrentHashMap} in place of
 111  * {@code Hashtable}.
 112  *
 113  * @author  Arthur van Hoff
 114  * @author  Josh Bloch
 115  * @author  Neal Gafter
 116  * @see     Object#equals(java.lang.Object)
 117  * @see     Object#hashCode()
 118  * @see     Hashtable#rehash()
 119  * @see     Collection
 120  * @see     Map
 121  * @see     HashMap
 122  * @see     TreeMap
 123  * @since JDK1.0
 124  */
 125 public class Hashtable<K,V>
 126     extends Dictionary<K,V>
 127     implements Map<K,V>, Cloneable, java.io.Serializable {
 128 
 129     /**
 130      * The hash table data.
 131      */
 132     private transient Entry<K,V>[] table;
 133 
 134     /**
 135      * The total number of entries in the hash table.
 136      */
 137     private transient int count;
 138 
 139     /**
 140      * The table is rehashed when its size exceeds this threshold.  (The
 141      * value of this field is (int)(capacity * loadFactor).)
 142      *
 143      * @serial
 144      */
 145     private int threshold;
 146 
 147     /**
 148      * The load factor for the hashtable.
 149      *
 150      * @serial
 151      */
 152     private float loadFactor;
 153 
 154     /**
 155      * The number of times this Hashtable has been structurally modified
 156      * Structural modifications are those that change the number of entries in
 157      * the Hashtable or otherwise modify its internal structure (e.g.,
 158      * rehash).  This field is used to make iterators on Collection-views of
 159      * the Hashtable fail-fast.  (See ConcurrentModificationException).
 160      */
 161     private transient int modCount = 0;
 162 
 163     /** use serialVersionUID from JDK 1.0.2 for interoperability */
 164     private static final long serialVersionUID = 1421746759512286392L;
 165     
 166     /**
 167      * The default threshold of capacity above which alternate hashing is used. 
 168      * Alternative hashing reduces the incidence of collisions due to weak hash
 169      * code calculation. 
 170      * <p/>
 171      * This value may be overridden by defining the system property 
 172      * {@code java.util.althashing.threshold}. A property value of {@code 1}
 173      * forces alternative hashing to be used at all times whereas
 174      * {@code 2147483648 } ({@code Integer.MAX_VALUE}) value ensures that
 175      * alternative hashing is never used.
 176      */
 177     static final int ALTERNATE_HASHING_THRESHOLD_DEFAULT = 0;
 178     
 179     /**
 180      * holds values which can't be initialized until after VM is booted.
 181      */
 182     private static class Holder {
 183 
 184         /**
 185          * Table capacity above which to switch to use alternate hashing.
 186          */
 187         static final int ALTERNATE_HASHING_THRESHOLD;
 188         
 189         static {
 190             String altThreshold = java.security.AccessController.doPrivileged(
 191                 new sun.security.action.GetPropertyAction(
 192                     "jdk.map.althashing.threshold"));
 193             
 194             int threshold;
 195             try {
 196                 threshold = (null != altThreshold)
 197                         ? Integer.parseInt(altThreshold)
 198                         : 1;
 199                 
 200                 if(threshold == -1) {
 201                     threshold = Integer.MAX_VALUE;
 202                 }
 203 
 204                 if(threshold < 0) {
 205                     throw new IllegalArgumentException("value must be positive integer.");
 206                 }
 207             } catch(IllegalArgumentException failed) {
 208                 throw new Error("Illegal value for 'jdk.map.althashing.threshold'", failed);
 209             }
 210             
 211             ALTERNATE_HASHING_THRESHOLD = threshold;
 212         }
 213     }
 214             
 215     /** 
 216      * If {@code true} then perform alternate hashing to reduce the incidence of
 217      * collisions due to weak hash code calculation.
 218      */
 219     transient boolean useAltHashing;
 220     
 221     // Unsafe mechanics
 222     private static final sun.misc.Unsafe UNSAFE;
 223     private static final long HASHSEED_OFFSET;
 224     
 225      static {
 226         try {
 227             UNSAFE = sun.misc.Unsafe.getUnsafe();
 228             HASHSEED_OFFSET = UNSAFE.objectFieldOffset(
 229                 Hashtable.class.getDeclaredField("hashSeed"));                        
 230         } catch (NoSuchFieldException | SecurityException e) {
 231             throw new Error("Failed to record hashSeed offset", e);
 232         }
 233      }
 234      
 235     /**
 236      * A randomizing value associated with this instance that is applied to  
 237      * hash code of keys to make hash collisions harder to find.
 238      */
 239     transient final int hashSeed = sun.misc.Hashing.randomHashSeed(this);
 240 
 241     private int hash(Object k) {
 242         if (useAltHashing) {
 243             int h = hashSeed;
 244             if (k.getClass() == String.class) {
 245                 return h ^ sun.misc.Hashing.stringHash32((String) k);
 246             } else {
 247                 h ^= k.hashCode();
 248  
 249                 // This function ensures that hashCodes that differ only by
 250                 // constant multiples at each bit position have a bounded
 251                 // number of collisions (approximately 8 at default load factor).
 252                 h ^= (h >>> 20) ^ (h >>> 12);
 253                 return h ^ (h >>> 7) ^ (h >>> 4);
 254              }
 255         } else  {
 256             return k.hashCode();
 257         }
 258     }
 259 
 260     /**
 261      * Constructs a new, empty hashtable with the specified initial
 262      * capacity and the specified load factor.
 263      *
 264      * @param      initialCapacity   the initial capacity of the hashtable.
 265      * @param      loadFactor        the load factor of the hashtable.
 266      * @exception  IllegalArgumentException  if the initial capacity is less
 267      *             than zero, or if the load factor is nonpositive.
 268      */
 269     public Hashtable(int initialCapacity, float loadFactor) {
 270         if (initialCapacity < 0)
 271             throw new IllegalArgumentException("Illegal Capacity: "+
 272                                                initialCapacity);
 273         if (loadFactor <= 0 || Float.isNaN(loadFactor))
 274             throw new IllegalArgumentException("Illegal Load: "+loadFactor);
 275 
 276         if (initialCapacity==0)
 277             initialCapacity = 1;
 278         this.loadFactor = loadFactor;
 279         table = new Entry[initialCapacity];
 280         threshold = (int)Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 281         useAltHashing = sun.misc.VM.isBooted() &&
 282                 (initialCapacity >= Holder.ALTERNATE_HASHING_THRESHOLD);
 283     }
 284 
 285     /**
 286      * Constructs a new, empty hashtable with the specified initial capacity
 287      * and default load factor (0.75).
 288      *
 289      * @param     initialCapacity   the initial capacity of the hashtable.
 290      * @exception IllegalArgumentException if the initial capacity is less
 291      *              than zero.
 292      */
 293     public Hashtable(int initialCapacity) {
 294         this(initialCapacity, 0.75f);
 295     }
 296 
 297     /**
 298      * Constructs a new, empty hashtable with a default initial capacity (11)
 299      * and load factor (0.75).
 300      */
 301     public Hashtable() {
 302         this(11, 0.75f);
 303     }
 304 
 305     /**
 306      * Constructs a new hashtable with the same mappings as the given
 307      * Map.  The hashtable is created with an initial capacity sufficient to
 308      * hold the mappings in the given Map and a default load factor (0.75).
 309      *
 310      * @param t the map whose mappings are to be placed in this map.
 311      * @throws NullPointerException if the specified map is null.
 312      * @since   1.2
 313      */
 314     public Hashtable(Map<? extends K, ? extends V> t) {
 315         this(Math.max(2*t.size(), 11), 0.75f);
 316         putAll(t);
 317     }
 318 
 319     /**
 320      * Returns the number of keys in this hashtable.
 321      *
 322      * @return  the number of keys in this hashtable.
 323      */
 324     public synchronized int size() {
 325         return count;
 326     }
 327 
 328     /**
 329      * Tests if this hashtable maps no keys to values.
 330      *
 331      * @return  <code>true</code> if this hashtable maps no keys to values;
 332      *          <code>false</code> otherwise.
 333      */
 334     public synchronized boolean isEmpty() {
 335         return count == 0;
 336     }
 337 
 338     /**
 339      * Returns an enumeration of the keys in this hashtable.
 340      *
 341      * @return  an enumeration of the keys in this hashtable.
 342      * @see     Enumeration
 343      * @see     #elements()
 344      * @see     #keySet()
 345      * @see     Map
 346      */
 347     public synchronized Enumeration<K> keys() {
 348         return this.<K>getEnumeration(KEYS);
 349     }
 350 
 351     /**
 352      * Returns an enumeration of the values in this hashtable.
 353      * Use the Enumeration methods on the returned object to fetch the elements
 354      * sequentially.
 355      *
 356      * @return  an enumeration of the values in this hashtable.
 357      * @see     java.util.Enumeration
 358      * @see     #keys()
 359      * @see     #values()
 360      * @see     Map
 361      */
 362     public synchronized Enumeration<V> elements() {
 363         return this.<V>getEnumeration(VALUES);
 364     }
 365 
 366     /**
 367      * Tests if some key maps into the specified value in this hashtable.
 368      * This operation is more expensive than the {@link #containsKey
 369      * containsKey} method.
 370      *
 371      * <p>Note that this method is identical in functionality to
 372      * {@link #containsValue containsValue}, (which is part of the
 373      * {@link Map} interface in the collections framework).
 374      *
 375      * @param      value   a value to search for
 376      * @return     <code>true</code> if and only if some key maps to the
 377      *             <code>value</code> argument in this hashtable as
 378      *             determined by the <tt>equals</tt> method;
 379      *             <code>false</code> otherwise.
 380      * @exception  NullPointerException  if the value is <code>null</code>
 381      */
 382     public synchronized boolean contains(Object value) {
 383         if (value == null) {
 384             throw new NullPointerException();
 385         }
 386 
 387         Entry tab[] = table;
 388         for (int i = tab.length ; i-- > 0 ;) {
 389             for (Entry<K,V> e = tab[i] ; e != null ; e = e.next) {
 390                 if (e.value.equals(value)) {
 391                     return true;
 392                 }
 393             }
 394         }
 395         return false;
 396     }
 397 
 398     /**
 399      * Returns true if this hashtable maps one or more keys to this value.
 400      *
 401      * <p>Note that this method is identical in functionality to {@link
 402      * #contains contains} (which predates the {@link Map} interface).
 403      *
 404      * @param value value whose presence in this hashtable is to be tested
 405      * @return <tt>true</tt> if this map maps one or more keys to the
 406      *         specified value
 407      * @throws NullPointerException  if the value is <code>null</code>
 408      * @since 1.2
 409      */
 410     public boolean containsValue(Object value) {
 411         return contains(value);
 412     }
 413 
 414     /**
 415      * Tests if the specified object is a key in this hashtable.
 416      *
 417      * @param   key   possible key
 418      * @return  <code>true</code> if and only if the specified object
 419      *          is a key in this hashtable, as determined by the
 420      *          <tt>equals</tt> method; <code>false</code> otherwise.
 421      * @throws  NullPointerException  if the key is <code>null</code>
 422      * @see     #contains(Object)
 423      */
 424     public synchronized boolean containsKey(Object key) {
 425         Entry tab[] = table;
 426         int hash = hash(key);
 427         int index = (hash & 0x7FFFFFFF) % tab.length;
 428         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 429             if ((e.hash == hash) && e.key.equals(key)) {
 430                 return true;
 431             }
 432         }
 433         return false;
 434     }
 435 
 436     /**
 437      * Returns the value to which the specified key is mapped,
 438      * or {@code null} if this map contains no mapping for the key.
 439      *
 440      * <p>More formally, if this map contains a mapping from a key
 441      * {@code k} to a value {@code v} such that {@code (key.equals(k))},
 442      * then this method returns {@code v}; otherwise it returns
 443      * {@code null}.  (There can be at most one such mapping.)
 444      *
 445      * @param key the key whose associated value is to be returned
 446      * @return the value to which the specified key is mapped, or
 447      *         {@code null} if this map contains no mapping for the key
 448      * @throws NullPointerException if the specified key is null
 449      * @see     #put(Object, Object)
 450      */
 451     public synchronized V get(Object key) {
 452         Entry tab[] = table;
 453         int hash = hash(key);
 454         int index = (hash & 0x7FFFFFFF) % tab.length;
 455         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 456             if ((e.hash == hash) && e.key.equals(key)) {
 457                 return e.value;
 458             }
 459         }
 460         return null;
 461     }
 462 
 463     /**
 464      * The maximum size of array to allocate.
 465      * Some VMs reserve some header words in an array.
 466      * Attempts to allocate larger arrays may result in
 467      * OutOfMemoryError: Requested array size exceeds VM limit
 468      */
 469     private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
 470 
 471     /**
 472      * Increases the capacity of and internally reorganizes this
 473      * hashtable, in order to accommodate and access its entries more
 474      * efficiently.  This method is called automatically when the
 475      * number of keys in the hashtable exceeds this hashtable's capacity
 476      * and load factor.
 477      */
 478     protected void rehash() {
 479         int oldCapacity = table.length;
 480         Entry<K,V>[] oldMap = table;
 481 
 482         // overflow-conscious code
 483         int newCapacity = (oldCapacity << 1) + 1;
 484         if (newCapacity - MAX_ARRAY_SIZE > 0) {
 485             if (oldCapacity == MAX_ARRAY_SIZE)
 486                 // Keep running with MAX_ARRAY_SIZE buckets
 487                 return;
 488             newCapacity = MAX_ARRAY_SIZE;
 489         }
 490         Entry<K,V>[] newMap = new Entry[newCapacity];
 491 
 492         modCount++;
 493         threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
 494         boolean currentAltHashing = useAltHashing;
 495         useAltHashing = sun.misc.VM.isBooted() && 
 496                 (newCapacity >= Holder.ALTERNATE_HASHING_THRESHOLD);
 497         boolean rehash = currentAltHashing ^ useAltHashing;
 498         
 499         table = newMap;
 500 
 501         for (int i = oldCapacity ; i-- > 0 ;) {
 502             for (Entry<K,V> old = oldMap[i] ; old != null ; ) {
 503                 Entry<K,V> e = old;
 504                 old = old.next;
 505 
 506                 if(rehash) {
 507                     e.hash = hash(e.key);
 508                 }
 509                 int index = (e.hash & 0x7FFFFFFF) % newCapacity;
 510                 e.next = newMap[index];
 511                 newMap[index] = e;
 512             }
 513         }
 514     }
 515 
 516     /**
 517      * Maps the specified <code>key</code> to the specified
 518      * <code>value</code> in this hashtable. Neither the key nor the
 519      * value can be <code>null</code>. <p>
 520      *
 521      * The value can be retrieved by calling the <code>get</code> method
 522      * with a key that is equal to the original key.
 523      *
 524      * @param      key     the hashtable key
 525      * @param      value   the value
 526      * @return     the previous value of the specified key in this hashtable,
 527      *             or <code>null</code> if it did not have one
 528      * @exception  NullPointerException  if the key or value is
 529      *               <code>null</code>
 530      * @see     Object#equals(Object)
 531      * @see     #get(Object)
 532      */
 533     public synchronized V put(K key, V value) {
 534         // Make sure the value is not null
 535         if (value == null) {
 536             throw new NullPointerException();
 537         }
 538 
 539         // Makes sure the key is not already in the hashtable.
 540         Entry tab[] = table;
 541         int hash = hash(key);
 542         int index = (hash & 0x7FFFFFFF) % tab.length;
 543         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
 544             if ((e.hash == hash) && e.key.equals(key)) {
 545                 V old = e.value;
 546                 e.value = value;
 547                 return old;
 548             }
 549         }
 550 
 551         modCount++;
 552         if (count >= threshold) {
 553             // Rehash the table if the threshold is exceeded
 554             rehash();
 555 
 556             tab = table;
 557             hash = hash(key);
 558             index = (hash & 0x7FFFFFFF) % tab.length;
 559         }
 560 
 561         // Creates the new entry.
 562         Entry<K,V> e = tab[index];
 563         tab[index] = new Entry<>(hash, key, value, e);
 564         count++;
 565         return null;
 566     }
 567 
 568     /**
 569      * Removes the key (and its corresponding value) from this
 570      * hashtable. This method does nothing if the key is not in the hashtable.
 571      *
 572      * @param   key   the key that needs to be removed
 573      * @return  the value to which the key had been mapped in this hashtable,
 574      *          or <code>null</code> if the key did not have a mapping
 575      * @throws  NullPointerException  if the key is <code>null</code>
 576      */
 577     public synchronized V remove(Object key) {
 578         Entry tab[] = table;
 579         int hash = hash(key);
 580         int index = (hash & 0x7FFFFFFF) % tab.length;
 581         for (Entry<K,V> e = tab[index], prev = null ; e != null ; prev = e, e = e.next) {
 582             if ((e.hash == hash) && e.key.equals(key)) {
 583                 modCount++;
 584                 if (prev != null) {
 585                     prev.next = e.next;
 586                 } else {
 587                     tab[index] = e.next;
 588                 }
 589                 count--;
 590                 V oldValue = e.value;
 591                 e.value = null;
 592                 return oldValue;
 593             }
 594         }
 595         return null;
 596     }
 597 
 598     /**
 599      * Copies all of the mappings from the specified map to this hashtable.
 600      * These mappings will replace any mappings that this hashtable had for any
 601      * of the keys currently in the specified map.
 602      *
 603      * @param t mappings to be stored in this map
 604      * @throws NullPointerException if the specified map is null
 605      * @since 1.2
 606      */
 607     public synchronized void putAll(Map<? extends K, ? extends V> t) {
 608         for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
 609             put(e.getKey(), e.getValue());
 610     }
 611 
 612     /**
 613      * Clears this hashtable so that it contains no keys.
 614      */
 615     public synchronized void clear() {
 616         Entry tab[] = table;
 617         modCount++;
 618         for (int index = tab.length; --index >= 0; )
 619             tab[index] = null;
 620         count = 0;
 621     }
 622 
 623     /**
 624      * Creates a shallow copy of this hashtable. All the structure of the
 625      * hashtable itself is copied, but the keys and values are not cloned.
 626      * This is a relatively expensive operation.
 627      *
 628      * @return  a clone of the hashtable
 629      */
 630     public synchronized Object clone() {
 631         try {
 632             Hashtable<K,V> t = (Hashtable<K,V>) super.clone();
 633             t.table = new Entry[table.length];
 634             for (int i = table.length ; i-- > 0 ; ) {
 635                 t.table[i] = (table[i] != null)
 636                     ? (Entry<K,V>) table[i].clone() : null;
 637             }
 638             t.keySet = null;
 639             t.entrySet = null;
 640             t.values = null;
 641             t.modCount = 0;
 642             return t;
 643         } catch (CloneNotSupportedException e) {
 644             // this shouldn't happen, since we are Cloneable
 645             throw new InternalError();
 646         }
 647     }
 648 
 649     /**
 650      * Returns a string representation of this <tt>Hashtable</tt> object
 651      * in the form of a set of entries, enclosed in braces and separated
 652      * by the ASCII characters "<tt>,&nbsp;</tt>" (comma and space). Each
 653      * entry is rendered as the key, an equals sign <tt>=</tt>, and the
 654      * associated element, where the <tt>toString</tt> method is used to
 655      * convert the key and element to strings.
 656      *
 657      * @return  a string representation of this hashtable
 658      */
 659     public synchronized String toString() {
 660         int max = size() - 1;
 661         if (max == -1)
 662             return "{}";
 663 
 664         StringBuilder sb = new StringBuilder();
 665         Iterator<Map.Entry<K,V>> it = entrySet().iterator();
 666 
 667         sb.append('{');
 668         for (int i = 0; ; i++) {
 669             Map.Entry<K,V> e = it.next();
 670             K key = e.getKey();
 671             V value = e.getValue();
 672             sb.append(key   == this ? "(this Map)" : key.toString());
 673             sb.append('=');
 674             sb.append(value == this ? "(this Map)" : value.toString());
 675 
 676             if (i == max)
 677                 return sb.append('}').toString();
 678             sb.append(", ");
 679         }
 680     }
 681 
 682 
 683     private <T> Enumeration<T> getEnumeration(int type) {
 684         if (count == 0) {
 685             return Collections.emptyEnumeration();
 686         } else {
 687             return new Enumerator<>(type, false);
 688         }
 689     }
 690 
 691     private <T> Iterator<T> getIterator(int type) {
 692         if (count == 0) {
 693             return Collections.emptyIterator();
 694         } else {
 695             return new Enumerator<>(type, true);
 696         }
 697     }
 698 
 699     // Views
 700 
 701     /**
 702      * Each of these fields are initialized to contain an instance of the
 703      * appropriate view the first time this view is requested.  The views are
 704      * stateless, so there's no reason to create more than one of each.
 705      */
 706     private transient volatile Set<K> keySet = null;
 707     private transient volatile Set<Map.Entry<K,V>> entrySet = null;
 708     private transient volatile Collection<V> values = null;
 709 
 710     /**
 711      * Returns a {@link Set} view of the keys contained in this map.
 712      * The set is backed by the map, so changes to the map are
 713      * reflected in the set, and vice-versa.  If the map is modified
 714      * while an iteration over the set is in progress (except through
 715      * the iterator's own <tt>remove</tt> operation), the results of
 716      * the iteration are undefined.  The set supports element removal,
 717      * which removes the corresponding mapping from the map, via the
 718      * <tt>Iterator.remove</tt>, <tt>Set.remove</tt>,
 719      * <tt>removeAll</tt>, <tt>retainAll</tt>, and <tt>clear</tt>
 720      * operations.  It does not support the <tt>add</tt> or <tt>addAll</tt>
 721      * operations.
 722      *
 723      * @since 1.2
 724      */
 725     public Set<K> keySet() {
 726         if (keySet == null)
 727             keySet = Collections.synchronizedSet(new KeySet(), this);
 728         return keySet;
 729     }
 730 
 731     private class KeySet extends AbstractSet<K> {
 732         public Iterator<K> iterator() {
 733             return getIterator(KEYS);
 734         }
 735         public int size() {
 736             return count;
 737         }
 738         public boolean contains(Object o) {
 739             return containsKey(o);
 740         }
 741         public boolean remove(Object o) {
 742             return Hashtable.this.remove(o) != null;
 743         }
 744         public void clear() {
 745             Hashtable.this.clear();
 746         }
 747     }
 748 
 749     /**
 750      * Returns a {@link Set} view of the mappings contained in this map.
 751      * The set is backed by the map, so changes to the map are
 752      * reflected in the set, and vice-versa.  If the map is modified
 753      * while an iteration over the set is in progress (except through
 754      * the iterator's own <tt>remove</tt> operation, or through the
 755      * <tt>setValue</tt> operation on a map entry returned by the
 756      * iterator) the results of the iteration are undefined.  The set
 757      * supports element removal, which removes the corresponding
 758      * mapping from the map, via the <tt>Iterator.remove</tt>,
 759      * <tt>Set.remove</tt>, <tt>removeAll</tt>, <tt>retainAll</tt> and
 760      * <tt>clear</tt> operations.  It does not support the
 761      * <tt>add</tt> or <tt>addAll</tt> operations.
 762      *
 763      * @since 1.2
 764      */
 765     public Set<Map.Entry<K,V>> entrySet() {
 766         if (entrySet==null)
 767             entrySet = Collections.synchronizedSet(new EntrySet(), this);
 768         return entrySet;
 769     }
 770 
 771     private class EntrySet extends AbstractSet<Map.Entry<K,V>> {
 772         public Iterator<Map.Entry<K,V>> iterator() {
 773             return getIterator(ENTRIES);
 774         }
 775 
 776         public boolean add(Map.Entry<K,V> o) {
 777             return super.add(o);
 778         }
 779 
 780         public boolean contains(Object o) {
 781             if (!(o instanceof Map.Entry))
 782                 return false;
 783             Map.Entry entry = (Map.Entry)o;
 784             Object key = entry.getKey();
 785             Entry[] tab = table;
 786             int hash = hash(key);
 787             int index = (hash & 0x7FFFFFFF) % tab.length;
 788 
 789             for (Entry e = tab[index]; e != null; e = e.next)
 790                 if (e.hash==hash && e.equals(entry))
 791                     return true;
 792             return false;
 793         }
 794 
 795         public boolean remove(Object o) {
 796             if (!(o instanceof Map.Entry))
 797                 return false;
 798             Map.Entry<K,V> entry = (Map.Entry<K,V>) o;
 799             K key = entry.getKey();
 800             Entry[] tab = table;
 801             int hash = hash(key);
 802             int index = (hash & 0x7FFFFFFF) % tab.length;
 803 
 804             for (Entry<K,V> e = tab[index], prev = null; e != null;
 805                  prev = e, e = e.next) {
 806                 if (e.hash==hash && e.equals(entry)) {
 807                     modCount++;
 808                     if (prev != null)
 809                         prev.next = e.next;
 810                     else
 811                         tab[index] = e.next;
 812 
 813                     count--;
 814                     e.value = null;
 815                     return true;
 816                 }
 817             }
 818             return false;
 819         }
 820 
 821         public int size() {
 822             return count;
 823         }
 824 
 825         public void clear() {
 826             Hashtable.this.clear();
 827         }
 828     }
 829 
 830     /**
 831      * Returns a {@link Collection} view of the values contained in this map.
 832      * The collection is backed by the map, so changes to the map are
 833      * reflected in the collection, and vice-versa.  If the map is
 834      * modified while an iteration over the collection is in progress
 835      * (except through the iterator's own <tt>remove</tt> operation),
 836      * the results of the iteration are undefined.  The collection
 837      * supports element removal, which removes the corresponding
 838      * mapping from the map, via the <tt>Iterator.remove</tt>,
 839      * <tt>Collection.remove</tt>, <tt>removeAll</tt>,
 840      * <tt>retainAll</tt> and <tt>clear</tt> operations.  It does not
 841      * support the <tt>add</tt> or <tt>addAll</tt> operations.
 842      *
 843      * @since 1.2
 844      */
 845     public Collection<V> values() {
 846         if (values==null)
 847             values = Collections.synchronizedCollection(new ValueCollection(),
 848                                                         this);
 849         return values;
 850     }
 851 
 852     private class ValueCollection extends AbstractCollection<V> {
 853         public Iterator<V> iterator() {
 854             return getIterator(VALUES);
 855         }
 856         public int size() {
 857             return count;
 858         }
 859         public boolean contains(Object o) {
 860             return containsValue(o);
 861         }
 862         public void clear() {
 863             Hashtable.this.clear();
 864         }
 865     }
 866 
 867     // Comparison and hashing
 868 
 869     /**
 870      * Compares the specified Object with this Map for equality,
 871      * as per the definition in the Map interface.
 872      *
 873      * @param  o object to be compared for equality with this hashtable
 874      * @return true if the specified Object is equal to this Map
 875      * @see Map#equals(Object)
 876      * @since 1.2
 877      */
 878     public synchronized boolean equals(Object o) {
 879         if (o == this)
 880             return true;
 881 
 882         if (!(o instanceof Map))
 883             return false;
 884         Map<K,V> t = (Map<K,V>) o;
 885         if (t.size() != size())
 886             return false;
 887 
 888         try {
 889             Iterator<Map.Entry<K,V>> i = entrySet().iterator();
 890             while (i.hasNext()) {
 891                 Map.Entry<K,V> e = i.next();
 892                 K key = e.getKey();
 893                 V value = e.getValue();
 894                 if (value == null) {
 895                     if (!(t.get(key)==null && t.containsKey(key)))
 896                         return false;
 897                 } else {
 898                     if (!value.equals(t.get(key)))
 899                         return false;
 900                 }
 901             }
 902         } catch (ClassCastException unused)   {
 903             return false;
 904         } catch (NullPointerException unused) {
 905             return false;
 906         }
 907 
 908         return true;
 909     }
 910 
 911     /**
 912      * Returns the hash code value for this Map as per the definition in the
 913      * Map interface.
 914      *
 915      * @see Map#hashCode()
 916      * @since 1.2
 917      */
 918     public synchronized int hashCode() {
 919         /*
 920          * This code detects the recursion caused by computing the hash code
 921          * of a self-referential hash table and prevents the stack overflow
 922          * that would otherwise result.  This allows certain 1.1-era
 923          * applets with self-referential hash tables to work.  This code
 924          * abuses the loadFactor field to do double-duty as a hashCode
 925          * in progress flag, so as not to worsen the space performance.
 926          * A negative load factor indicates that hash code computation is
 927          * in progress.
 928          */
 929         int h = 0;
 930         if (count == 0 || loadFactor < 0)
 931             return h;  // Returns zero
 932 
 933         loadFactor = -loadFactor;  // Mark hashCode computation in progress
 934         Entry[] tab = table;
 935         for (Entry<K,V> entry : tab)
 936             while (entry != null) {
 937                 h += entry.hashCode();
 938                 entry = entry.next;
 939             }
 940         loadFactor = -loadFactor;  // Mark hashCode computation complete
 941 
 942         return h;
 943     }
 944 
 945     /**
 946      * Save the state of the Hashtable to a stream (i.e., serialize it).
 947      *
 948      * @serialData The <i>capacity</i> of the Hashtable (the length of the
 949      *             bucket array) is emitted (int), followed by the
 950      *             <i>size</i> of the Hashtable (the number of key-value
 951      *             mappings), followed by the key (Object) and value (Object)
 952      *             for each key-value mapping represented by the Hashtable
 953      *             The key-value mappings are emitted in no particular order.
 954      */
 955     private void writeObject(java.io.ObjectOutputStream s)
 956             throws IOException {
 957         Entry<K, V> entryStack = null;
 958 
 959         synchronized (this) {
 960             // Write out the length, threshold, loadfactor
 961             s.defaultWriteObject();
 962 
 963             // Write out length, count of elements
 964             s.writeInt(table.length);
 965             s.writeInt(count);
 966 
 967             // Stack copies of the entries in the table
 968             for (int index = 0; index < table.length; index++) {
 969                 Entry<K,V> entry = table[index];
 970 
 971                 while (entry != null) {
 972                     entryStack =
 973                         new Entry<>(0, entry.key, entry.value, entryStack);
 974                     entry = entry.next;
 975                 }
 976             }
 977         }
 978 
 979         // Write out the key/value objects from the stacked entries
 980         while (entryStack != null) {
 981             s.writeObject(entryStack.key);
 982             s.writeObject(entryStack.value);
 983             entryStack = entryStack.next;
 984         }
 985     }
 986 
 987     /**
 988      * Reconstitute the Hashtable from a stream (i.e., deserialize it).
 989      */
 990     private void readObject(java.io.ObjectInputStream s)
 991          throws IOException, ClassNotFoundException
 992     {
 993         // Read in the length, threshold, and loadfactor
 994         s.defaultReadObject();
 995         
 996         // set hashSeed
 997         UNSAFE.putIntVolatile(this, HASHSEED_OFFSET, 
 998                 sun.misc.Hashing.randomHashSeed(this));        
 999 
1000         // Read the original length of the array and number of elements
1001         int origlength = s.readInt();
1002         int elements = s.readInt();
1003 
1004         // Compute new size with a bit of room 5% to grow but
1005         // no larger than the original size.  Make the length
1006         // odd if it's large enough, this helps distribute the entries.
1007         // Guard against the length ending up zero, that's not valid.
1008         int length = (int)(elements * loadFactor) + (elements / 20) + 3;
1009         if (length > elements && (length & 1) == 0)
1010             length--;
1011         if (origlength > 0 && length > origlength)
1012             length = origlength;
1013 
1014         Entry<K,V>[] table = new Entry[length];
1015         threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
1016         count = 0;
1017         useAltHashing = sun.misc.VM.isBooted() && 
1018                 (length >= Holder.ALTERNATE_HASHING_THRESHOLD);
1019 
1020         // Read the number of elements and then all the key/value objects
1021         for (; elements > 0; elements--) {
1022             K key = (K)s.readObject();
1023             V value = (V)s.readObject();
1024             // synch could be eliminated for performance
1025             reconstitutionPut(table, key, value);
1026         }
1027         this.table = table;
1028     }
1029 
1030     /**
1031      * The put method used by readObject. This is provided because put
1032      * is overridable and should not be called in readObject since the
1033      * subclass will not yet be initialized.
1034      *
1035      * <p>This differs from the regular put method in several ways. No
1036      * checking for rehashing is necessary since the number of elements
1037      * initially in the table is known. The modCount is not incremented
1038      * because we are creating a new instance. Also, no return value
1039      * is needed.
1040      */
1041     private void reconstitutionPut(Entry<K,V>[] tab, K key, V value)
1042         throws StreamCorruptedException
1043     {
1044         if (value == null) {
1045             throw new java.io.StreamCorruptedException();
1046         }
1047         // Makes sure the key is not already in the hashtable.
1048         // This should not happen in deserialized version.
1049         int hash = hash(key);
1050         int index = (hash & 0x7FFFFFFF) % tab.length;
1051         for (Entry<K,V> e = tab[index] ; e != null ; e = e.next) {
1052             if ((e.hash == hash) && e.key.equals(key)) {
1053                 throw new java.io.StreamCorruptedException();
1054             }
1055         }
1056         // Creates the new entry.
1057         Entry<K,V> e = tab[index];
1058         tab[index] = new Entry<>(hash, key, value, e);
1059         count++;
1060     }
1061 
1062     /**
1063      * Hashtable bucket collision list entry
1064      */
1065     private static class Entry<K,V> implements Map.Entry<K,V> {
1066         int hash;
1067         K key;
1068         V value;
1069         Entry<K,V> next;
1070 
1071         protected Entry(int hash, K key, V value, Entry<K,V> next) {
1072             this.hash = hash;
1073             this.key =  key;
1074             this.value = value;
1075             this.next = next;
1076         }
1077 
1078         protected Object clone() {
1079             return new Entry<>(hash, key, value,
1080                                   (next==null ? null : (Entry<K,V>) next.clone()));
1081         }
1082 
1083         // Map.Entry Ops
1084 
1085         public K getKey() {
1086             return key;
1087         }
1088 
1089         public V getValue() {
1090             return value;
1091         }
1092 
1093         public V setValue(V value) {
1094             if (value == null)
1095                 throw new NullPointerException();
1096 
1097             V oldValue = this.value;
1098             this.value = value;
1099             return oldValue;
1100         }
1101 
1102         public boolean equals(Object o) {
1103             if (!(o instanceof Map.Entry))
1104                 return false;
1105             Map.Entry<?,?> e = (Map.Entry)o;
1106 
1107             return key.equals(e.getKey()) && value.equals(e.getValue());
1108         }
1109 
1110         public int hashCode() {
1111             return hash ^ value.hashCode();
1112         }
1113 
1114         public String toString() {
1115             return key.toString()+"="+value.toString();
1116         }
1117     }
1118 
1119     // Types of Enumerations/Iterations
1120     private static final int KEYS = 0;
1121     private static final int VALUES = 1;
1122     private static final int ENTRIES = 2;
1123 
1124     /**
1125      * A hashtable enumerator class.  This class implements both the
1126      * Enumeration and Iterator interfaces, but individual instances
1127      * can be created with the Iterator methods disabled.  This is necessary
1128      * to avoid unintentionally increasing the capabilities granted a user
1129      * by passing an Enumeration.
1130      */
1131     private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
1132         Entry[] table = Hashtable.this.table;
1133         int index = table.length;
1134         Entry<K,V> entry = null;
1135         Entry<K,V> lastReturned = null;
1136         int type;
1137 
1138         /**
1139          * Indicates whether this Enumerator is serving as an Iterator
1140          * or an Enumeration.  (true -> Iterator).
1141          */
1142         boolean iterator;
1143 
1144         /**
1145          * The modCount value that the iterator believes that the backing
1146          * Hashtable should have.  If this expectation is violated, the iterator
1147          * has detected concurrent modification.
1148          */
1149         protected int expectedModCount = modCount;
1150 
1151         Enumerator(int type, boolean iterator) {
1152             this.type = type;
1153             this.iterator = iterator;
1154         }
1155 
1156         public boolean hasMoreElements() {
1157             Entry<K,V> e = entry;
1158             int i = index;
1159             Entry[] t = table;
1160             /* Use locals for faster loop iteration */
1161             while (e == null && i > 0) {
1162                 e = t[--i];
1163             }
1164             entry = e;
1165             index = i;
1166             return e != null;
1167         }
1168 
1169         public T nextElement() {
1170             Entry<K,V> et = entry;
1171             int i = index;
1172             Entry[] t = table;
1173             /* Use locals for faster loop iteration */
1174             while (et == null && i > 0) {
1175                 et = t[--i];
1176             }
1177             entry = et;
1178             index = i;
1179             if (et != null) {
1180                 Entry<K,V> e = lastReturned = entry;
1181                 entry = e.next;
1182                 return type == KEYS ? (T)e.key : (type == VALUES ? (T)e.value : (T)e);
1183             }
1184             throw new NoSuchElementException("Hashtable Enumerator");
1185         }
1186 
1187         // Iterator methods
1188         public boolean hasNext() {
1189             return hasMoreElements();
1190         }
1191 
1192         public T next() {
1193             if (modCount != expectedModCount)
1194                 throw new ConcurrentModificationException();
1195             return nextElement();
1196         }
1197 
1198         public void remove() {
1199             if (!iterator)
1200                 throw new UnsupportedOperationException();
1201             if (lastReturned == null)
1202                 throw new IllegalStateException("Hashtable Enumerator");
1203             if (modCount != expectedModCount)
1204                 throw new ConcurrentModificationException();
1205 
1206             synchronized(Hashtable.this) {
1207                 Entry[] tab = Hashtable.this.table;
1208                 int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length;
1209 
1210                 for (Entry<K,V> e = tab[index], prev = null; e != null;
1211                      prev = e, e = e.next) {
1212                     if (e == lastReturned) {
1213                         modCount++;
1214                         expectedModCount++;
1215                         if (prev == null)
1216                             tab[index] = e.next;
1217                         else
1218                             prev.next = e.next;
1219                         count--;
1220                         lastReturned = null;
1221                         return;
1222                     }
1223                 }
1224                 throw new ConcurrentModificationException();
1225             }
1226         }
1227     }
1228 }