1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "gc_implementation/shared/liveRange.hpp"
  34 #include "memory/genOopClosures.inline.hpp"
  35 #include "memory/iterator.hpp"
  36 #include "memory/space.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/orderAccess.inline.hpp"
  39 
  40 PRAGMA_FORMAT_MUTE_WARNINGS_FOR_GCC
  41 
  42 int    HeapRegion::LogOfHRGrainBytes = 0;
  43 int    HeapRegion::LogOfHRGrainWords = 0;
  44 size_t HeapRegion::GrainBytes        = 0;
  45 size_t HeapRegion::GrainWords        = 0;
  46 size_t HeapRegion::CardsPerRegion    = 0;
  47 
  48 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  49                                  HeapRegion* hr, ExtendedOopClosure* cl,
  50                                  CardTableModRefBS::PrecisionStyle precision,
  51                                  FilterKind fk) :
  52   DirtyCardToOopClosure(hr, cl, precision, NULL),
  53   _hr(hr), _fk(fk), _g1(g1) { }
  54 
  55 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  56                                                    OopClosure* oc) :
  57   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  58 
  59 template<class ClosureType>
  60 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  61                                HeapRegion* hr,
  62                                HeapWord* cur, HeapWord* top) {
  63   oop cur_oop = oop(cur);
  64   size_t oop_size = hr->block_size(cur);
  65   HeapWord* next_obj = cur + oop_size;
  66   while (next_obj < top) {
  67     // Keep filtering the remembered set.
  68     if (!g1h->is_obj_dead(cur_oop, hr)) {
  69       // Bottom lies entirely below top, so we can call the
  70       // non-memRegion version of oop_iterate below.
  71       cur_oop->oop_iterate(cl);
  72     }
  73     cur = next_obj;
  74     cur_oop = oop(cur);
  75     oop_size = hr->block_size(cur);
  76     next_obj = cur + oop_size;
  77   }
  78   return cur;
  79 }
  80 
  81 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  82                                       HeapWord* bottom,
  83                                       HeapWord* top) {
  84   G1CollectedHeap* g1h = _g1;
  85   size_t oop_size;
  86   ExtendedOopClosure* cl2 = NULL;
  87 
  88   FilterIntoCSClosure intoCSFilt(this, g1h, _cl);
  89   FilterOutOfRegionClosure outOfRegionFilt(_hr, _cl);
  90 
  91   switch (_fk) {
  92   case NoFilterKind:          cl2 = _cl; break;
  93   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  94   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  95   default:                    ShouldNotReachHere();
  96   }
  97 
  98   // Start filtering what we add to the remembered set. If the object is
  99   // not considered dead, either because it is marked (in the mark bitmap)
 100   // or it was allocated after marking finished, then we add it. Otherwise
 101   // we can safely ignore the object.
 102   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 103     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 104   } else {
 105     oop_size = _hr->block_size(bottom);
 106   }
 107 
 108   bottom += oop_size;
 109 
 110   if (bottom < top) {
 111     // We replicate the loop below for several kinds of possible filters.
 112     switch (_fk) {
 113     case NoFilterKind:
 114       bottom = walk_mem_region_loop(_cl, g1h, _hr, bottom, top);
 115       break;
 116 
 117     case IntoCSFilterKind: {
 118       FilterIntoCSClosure filt(this, g1h, _cl);
 119       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 120       break;
 121     }
 122 
 123     case OutOfRegionFilterKind: {
 124       FilterOutOfRegionClosure filt(_hr, _cl);
 125       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 126       break;
 127     }
 128 
 129     default:
 130       ShouldNotReachHere();
 131     }
 132 
 133     // Last object. Need to do dead-obj filtering here too.
 134     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 135       oop(bottom)->oop_iterate(cl2, mr);
 136     }
 137   }
 138 }
 139 
 140 // Minimum region size; we won't go lower than that.
 141 // We might want to decrease this in the future, to deal with small
 142 // heaps a bit more efficiently.
 143 #define MIN_REGION_SIZE  (      1024 * 1024 )
 144 
 145 // Maximum region size; we don't go higher than that. There's a good
 146 // reason for having an upper bound. We don't want regions to get too
 147 // large, otherwise cleanup's effectiveness would decrease as there
 148 // will be fewer opportunities to find totally empty regions after
 149 // marking.
 150 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 151 
 152 // The automatic region size calculation will try to have around this
 153 // many regions in the heap (based on the min heap size).
 154 #define TARGET_REGION_NUMBER          2048
 155 
 156 size_t HeapRegion::max_region_size() {
 157   return (size_t)MAX_REGION_SIZE;
 158 }
 159 
 160 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 161   uintx region_size = G1HeapRegionSize;
 162   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 163     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 164     region_size = MAX2(average_heap_size / TARGET_REGION_NUMBER,
 165                        (uintx) MIN_REGION_SIZE);
 166   }
 167 
 168   int region_size_log = log2_long((jlong) region_size);
 169   // Recalculate the region size to make sure it's a power of
 170   // 2. This means that region_size is the largest power of 2 that's
 171   // <= what we've calculated so far.
 172   region_size = ((uintx)1 << region_size_log);
 173 
 174   // Now make sure that we don't go over or under our limits.
 175   if (region_size < MIN_REGION_SIZE) {
 176     region_size = MIN_REGION_SIZE;
 177   } else if (region_size > MAX_REGION_SIZE) {
 178     region_size = MAX_REGION_SIZE;
 179   }
 180 
 181   // And recalculate the log.
 182   region_size_log = log2_long((jlong) region_size);
 183 
 184   // Now, set up the globals.
 185   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 186   LogOfHRGrainBytes = region_size_log;
 187 
 188   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 189   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 190 
 191   guarantee(GrainBytes == 0, "we should only set it once");
 192   // The cast to int is safe, given that we've bounded region_size by
 193   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 194   GrainBytes = (size_t)region_size;
 195 
 196   guarantee(GrainWords == 0, "we should only set it once");
 197   GrainWords = GrainBytes >> LogHeapWordSize;
 198   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 199 
 200   guarantee(CardsPerRegion == 0, "we should only set it once");
 201   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 202 }
 203 
 204 void HeapRegion::reset_after_compaction() {
 205   G1OffsetTableContigSpace::reset_after_compaction();
 206   // After a compaction the mark bitmap is invalid, so we must
 207   // treat all objects as being inside the unmarked area.
 208   zero_marked_bytes();
 209   init_top_at_mark_start();
 210 }
 211 
 212 void HeapRegion::hr_clear(bool par, bool clear_space, bool locked) {
 213   assert(_humongous_type == NotHumongous,
 214          "we should have already filtered out humongous regions");
 215   assert(_humongous_start_region == NULL,
 216          "we should have already filtered out humongous regions");
 217   assert(_end == _orig_end,
 218          "we should have already filtered out humongous regions");
 219 
 220   _in_collection_set = false;
 221 
 222   set_young_index_in_cset(-1);
 223   uninstall_surv_rate_group();
 224   set_young_type(NotYoung);
 225   reset_pre_dummy_top();
 226 
 227   if (!par) {
 228     // If this is parallel, this will be done later.
 229     HeapRegionRemSet* hrrs = rem_set();
 230     if (locked) {
 231       hrrs->clear_locked();
 232     } else {
 233       hrrs->clear();
 234     }
 235     _claimed = InitialClaimValue;
 236   }
 237   zero_marked_bytes();
 238 
 239   _offsets.resize(HeapRegion::GrainWords);
 240   init_top_at_mark_start();
 241   if (clear_space) clear(SpaceDecorator::Mangle);
 242 }
 243 
 244 void HeapRegion::par_clear() {
 245   assert(used() == 0, "the region should have been already cleared");
 246   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 247   HeapRegionRemSet* hrrs = rem_set();
 248   hrrs->clear();
 249   CardTableModRefBS* ct_bs =
 250                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 251   ct_bs->clear(MemRegion(bottom(), end()));
 252 }
 253 
 254 void HeapRegion::calc_gc_efficiency() {
 255   // GC efficiency is the ratio of how much space would be
 256   // reclaimed over how long we predict it would take to reclaim it.
 257   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 258   G1CollectorPolicy* g1p = g1h->g1_policy();
 259 
 260   // Retrieve a prediction of the elapsed time for this region for
 261   // a mixed gc because the region will only be evacuated during a
 262   // mixed gc.
 263   double region_elapsed_time_ms =
 264     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 265   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 266 }
 267 
 268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 269   assert(!isHumongous(), "sanity / pre-condition");
 270   assert(end() == _orig_end,
 271          "Should be normal before the humongous object allocation");
 272   assert(top() == bottom(), "should be empty");
 273   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 274 
 275   _humongous_type = StartsHumongous;
 276   _humongous_start_region = this;
 277 
 278   set_end(new_end);
 279   _offsets.set_for_starts_humongous(new_top);
 280 }
 281 
 282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 283   assert(!isHumongous(), "sanity / pre-condition");
 284   assert(end() == _orig_end,
 285          "Should be normal before the humongous object allocation");
 286   assert(top() == bottom(), "should be empty");
 287   assert(first_hr->startsHumongous(), "pre-condition");
 288 
 289   _humongous_type = ContinuesHumongous;
 290   _humongous_start_region = first_hr;
 291 }
 292 
 293 void HeapRegion::set_notHumongous() {
 294   assert(isHumongous(), "pre-condition");
 295 
 296   if (startsHumongous()) {
 297     assert(top() <= end(), "pre-condition");
 298     set_end(_orig_end);
 299     if (top() > end()) {
 300       // at least one "continues humongous" region after it
 301       set_top(end());
 302     }
 303   } else {
 304     // continues humongous
 305     assert(end() == _orig_end, "sanity");
 306   }
 307 
 308   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 309   _humongous_type = NotHumongous;
 310   _humongous_start_region = NULL;
 311 }
 312 
 313 bool HeapRegion::claimHeapRegion(jint claimValue) {
 314   jint current = _claimed;
 315   if (current != claimValue) {
 316     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 317     if (res == current) {
 318       return true;
 319     }
 320   }
 321   return false;
 322 }
 323 
 324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 325   HeapWord* low = addr;
 326   HeapWord* high = end();
 327   while (low < high) {
 328     size_t diff = pointer_delta(high, low);
 329     // Must add one below to bias toward the high amount.  Otherwise, if
 330   // "high" were at the desired value, and "low" were one less, we
 331     // would not converge on "high".  This is not symmetric, because
 332     // we set "high" to a block start, which might be the right one,
 333     // which we don't do for "low".
 334     HeapWord* middle = low + (diff+1)/2;
 335     if (middle == high) return high;
 336     HeapWord* mid_bs = block_start_careful(middle);
 337     if (mid_bs < addr) {
 338       low = middle;
 339     } else {
 340       high = mid_bs;
 341     }
 342   }
 343   assert(low == high && low >= addr, "Didn't work.");
 344   return low;
 345 }
 346 
 347 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 348 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 349 #endif // _MSC_VER
 350 
 351 
 352 HeapRegion::HeapRegion(uint hrs_index,
 353                        G1BlockOffsetSharedArray* sharedOffsetArray,
 354                        MemRegion mr) :
 355     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 356     _hrs_index(hrs_index),
 357     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 358     _in_collection_set(false),
 359     _next_in_special_set(NULL), _orig_end(NULL),
 360     _claimed(InitialClaimValue), _evacuation_failed(false),
 361     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 362     _young_type(NotYoung), _next_young_region(NULL),
 363     _next_dirty_cards_region(NULL), _next(NULL), _prev(NULL), _pending_removal(false),
 364 #ifdef ASSERT
 365     _containing_set(NULL),
 366 #endif // ASSERT
 367      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 368     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 369     _predicted_bytes_to_copy(0)
 370 {
 371   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 372   _orig_end = mr.end();
 373   // Note that initialize() will set the start of the unmarked area of the
 374   // region.
 375   hr_clear(false /*par*/, false /*clear_space*/);
 376   set_top(bottom());
 377   record_top_and_timestamp();
 378 
 379   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 380 }
 381 
 382 CompactibleSpace* HeapRegion::next_compaction_space() const {
 383   // We're not using an iterator given that it will wrap around when
 384   // it reaches the last region and this is not what we want here.
 385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 386   uint index = hrs_index() + 1;
 387   while (index < g1h->n_regions()) {
 388     HeapRegion* hr = g1h->region_at(index);
 389     if (!hr->isHumongous()) {
 390       return hr;
 391     }
 392     index += 1;
 393   }
 394   return NULL;
 395 }
 396 
 397 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 398                                                     bool during_conc_mark) {
 399   // We always recreate the prev marking info and we'll explicitly
 400   // mark all objects we find to be self-forwarded on the prev
 401   // bitmap. So all objects need to be below PTAMS.
 402   _prev_top_at_mark_start = top();
 403   _prev_marked_bytes = 0;
 404 
 405   if (during_initial_mark) {
 406     // During initial-mark, we'll also explicitly mark all objects
 407     // we find to be self-forwarded on the next bitmap. So all
 408     // objects need to be below NTAMS.
 409     _next_top_at_mark_start = top();
 410     _next_marked_bytes = 0;
 411   } else if (during_conc_mark) {
 412     // During concurrent mark, all objects in the CSet (including
 413     // the ones we find to be self-forwarded) are implicitly live.
 414     // So all objects need to be above NTAMS.
 415     _next_top_at_mark_start = bottom();
 416     _next_marked_bytes = 0;
 417   }
 418 }
 419 
 420 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 421                                                   bool during_conc_mark,
 422                                                   size_t marked_bytes) {
 423   assert(0 <= marked_bytes && marked_bytes <= used(),
 424          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 425                  marked_bytes, used()));
 426   _prev_marked_bytes = marked_bytes;
 427 }
 428 
 429 HeapWord*
 430 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 431                                                  ObjectClosure* cl) {
 432   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 433   // We used to use "block_start_careful" here.  But we're actually happy
 434   // to update the BOT while we do this...
 435   HeapWord* cur = block_start(mr.start());
 436   mr = mr.intersection(used_region());
 437   if (mr.is_empty()) return NULL;
 438   // Otherwise, find the obj that extends onto mr.start().
 439 
 440   assert(cur <= mr.start()
 441          && (oop(cur)->klass_or_null() == NULL ||
 442              cur + oop(cur)->size() > mr.start()),
 443          "postcondition of block_start");
 444   oop obj;
 445   while (cur < mr.end()) {
 446     obj = oop(cur);
 447     if (obj->klass_or_null() == NULL) {
 448       // Ran into an unparseable point.
 449       return cur;
 450     } else if (!g1h->is_obj_dead(obj)) {
 451       cl->do_object(obj);
 452     }
 453     cur += block_size(cur);
 454   }
 455   return NULL;
 456 }
 457 
 458 HeapWord*
 459 HeapRegion::
 460 oops_on_card_seq_iterate_careful(MemRegion mr,
 461                                  FilterOutOfRegionClosure* cl,
 462                                  bool filter_young,
 463                                  jbyte* card_ptr) {
 464   // Currently, we should only have to clean the card if filter_young
 465   // is true and vice versa.
 466   if (filter_young) {
 467     assert(card_ptr != NULL, "pre-condition");
 468   } else {
 469     assert(card_ptr == NULL, "pre-condition");
 470   }
 471   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 472 
 473   // If we're within a stop-world GC, then we might look at a card in a
 474   // GC alloc region that extends onto a GC LAB, which may not be
 475   // parseable.  Stop such at the "saved_mark" of the region.
 476   if (g1h->is_gc_active()) {
 477     mr = mr.intersection(used_region_at_save_marks());
 478   } else {
 479     mr = mr.intersection(used_region());
 480   }
 481   if (mr.is_empty()) return NULL;
 482   // Otherwise, find the obj that extends onto mr.start().
 483 
 484   // The intersection of the incoming mr (for the card) and the
 485   // allocated part of the region is non-empty. This implies that
 486   // we have actually allocated into this region. The code in
 487   // G1CollectedHeap.cpp that allocates a new region sets the
 488   // is_young tag on the region before allocating. Thus we
 489   // safely know if this region is young.
 490   if (is_young() && filter_young) {
 491     return NULL;
 492   }
 493 
 494   assert(!is_young(), "check value of filter_young");
 495 
 496   // We can only clean the card here, after we make the decision that
 497   // the card is not young. And we only clean the card if we have been
 498   // asked to (i.e., card_ptr != NULL).
 499   if (card_ptr != NULL) {
 500     *card_ptr = CardTableModRefBS::clean_card_val();
 501     // We must complete this write before we do any of the reads below.
 502     OrderAccess::storeload();
 503   }
 504 
 505   // Cache the boundaries of the memory region in some const locals
 506   HeapWord* const start = mr.start();
 507   HeapWord* const end = mr.end();
 508 
 509   // We used to use "block_start_careful" here.  But we're actually happy
 510   // to update the BOT while we do this...
 511   HeapWord* cur = block_start(start);
 512   assert(cur <= start, "Postcondition");
 513 
 514   oop obj;
 515 
 516   HeapWord* next = cur;
 517   while (next <= start) {
 518     cur = next;
 519     obj = oop(cur);
 520     if (obj->klass_or_null() == NULL) {
 521       // Ran into an unparseable point.
 522       return cur;
 523     }
 524     // Otherwise...
 525     next = cur + block_size(cur);
 526   }
 527 
 528   // If we finish the above loop...We have a parseable object that
 529   // begins on or before the start of the memory region, and ends
 530   // inside or spans the entire region.
 531 
 532   assert(obj == oop(cur), "sanity");
 533   assert(cur <= start, "Loop postcondition");
 534   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 535   assert((cur + block_size(cur)) > start, "Loop postcondition");
 536 
 537   if (!g1h->is_obj_dead(obj)) {
 538     obj->oop_iterate(cl, mr);
 539   }
 540 
 541   while (cur < end) {
 542     obj = oop(cur);
 543     if (obj->klass_or_null() == NULL) {
 544       // Ran into an unparseable point.
 545       return cur;
 546     };
 547 
 548     // Otherwise:
 549     next = cur + block_size(cur);
 550 
 551     if (!g1h->is_obj_dead(obj)) {
 552       if (next < end || !obj->is_objArray()) {
 553         // This object either does not span the MemRegion
 554         // boundary, or if it does it's not an array.
 555         // Apply closure to whole object.
 556         obj->oop_iterate(cl);
 557       } else {
 558         // This obj is an array that spans the boundary.
 559         // Stop at the boundary.
 560         obj->oop_iterate(cl, mr);
 561       }
 562     }
 563     cur = next;
 564   }
 565   return NULL;
 566 }
 567 
 568 // Code roots support
 569 
 570 void HeapRegion::add_strong_code_root(nmethod* nm) {
 571   HeapRegionRemSet* hrrs = rem_set();
 572   hrrs->add_strong_code_root(nm);
 573 }
 574 
 575 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 576   HeapRegionRemSet* hrrs = rem_set();
 577   hrrs->remove_strong_code_root(nm);
 578 }
 579 
 580 void HeapRegion::migrate_strong_code_roots() {
 581   assert(in_collection_set(), "only collection set regions");
 582   assert(!isHumongous(),
 583           err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
 584                   HR_FORMAT_PARAMS(this)));
 585 
 586   HeapRegionRemSet* hrrs = rem_set();
 587   hrrs->migrate_strong_code_roots();
 588 }
 589 
 590 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 591   HeapRegionRemSet* hrrs = rem_set();
 592   hrrs->strong_code_roots_do(blk);
 593 }
 594 
 595 class VerifyStrongCodeRootOopClosure: public OopClosure {
 596   const HeapRegion* _hr;
 597   nmethod* _nm;
 598   bool _failures;
 599   bool _has_oops_in_region;
 600 
 601   template <class T> void do_oop_work(T* p) {
 602     T heap_oop = oopDesc::load_heap_oop(p);
 603     if (!oopDesc::is_null(heap_oop)) {
 604       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 605 
 606       // Note: not all the oops embedded in the nmethod are in the
 607       // current region. We only look at those which are.
 608       if (_hr->is_in(obj)) {
 609         // Object is in the region. Check that its less than top
 610         if (_hr->top() <= (HeapWord*)obj) {
 611           // Object is above top
 612           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 613                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 614                                  "top "PTR_FORMAT,
 615                                  (void *)obj, _hr->bottom(), _hr->end(), _hr->top());
 616           _failures = true;
 617           return;
 618         }
 619         // Nmethod has at least one oop in the current region
 620         _has_oops_in_region = true;
 621       }
 622     }
 623   }
 624 
 625 public:
 626   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 627     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 628 
 629   void do_oop(narrowOop* p) { do_oop_work(p); }
 630   void do_oop(oop* p)       { do_oop_work(p); }
 631 
 632   bool failures()           { return _failures; }
 633   bool has_oops_in_region() { return _has_oops_in_region; }
 634 };
 635 
 636 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 637   const HeapRegion* _hr;
 638   bool _failures;
 639 public:
 640   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 641     _hr(hr), _failures(false) {}
 642 
 643   void do_code_blob(CodeBlob* cb) {
 644     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 645     if (nm != NULL) {
 646       // Verify that the nemthod is live
 647       if (!nm->is_alive()) {
 648         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 649                                PTR_FORMAT" in its strong code roots",
 650                                _hr->bottom(), _hr->end(), nm);
 651         _failures = true;
 652       } else {
 653         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 654         nm->oops_do(&oop_cl);
 655         if (!oop_cl.has_oops_in_region()) {
 656           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 657                                  PTR_FORMAT" in its strong code roots "
 658                                  "with no pointers into region",
 659                                  _hr->bottom(), _hr->end(), nm);
 660           _failures = true;
 661         } else if (oop_cl.failures()) {
 662           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 663                                  "failures for nmethod "PTR_FORMAT,
 664                                  _hr->bottom(), _hr->end(), nm);
 665           _failures = true;
 666         }
 667       }
 668     }
 669   }
 670 
 671   bool failures()       { return _failures; }
 672 };
 673 
 674 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 675   if (!G1VerifyHeapRegionCodeRoots) {
 676     // We're not verifying code roots.
 677     return;
 678   }
 679   if (vo == VerifyOption_G1UseMarkWord) {
 680     // Marking verification during a full GC is performed after class
 681     // unloading, code cache unloading, etc so the strong code roots
 682     // attached to each heap region are in an inconsistent state. They won't
 683     // be consistent until the strong code roots are rebuilt after the
 684     // actual GC. Skip verifying the strong code roots in this particular
 685     // time.
 686     assert(VerifyDuringGC, "only way to get here");
 687     return;
 688   }
 689 
 690   HeapRegionRemSet* hrrs = rem_set();
 691   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 692 
 693   // if this region is empty then there should be no entries
 694   // on its strong code root list
 695   if (is_empty()) {
 696     if (strong_code_roots_length > 0) {
 697       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 698                              "but has "SIZE_FORMAT" code root entries",
 699                              bottom(), end(), strong_code_roots_length);
 700       *failures = true;
 701     }
 702     return;
 703   }
 704 
 705   if (continuesHumongous()) {
 706     if (strong_code_roots_length > 0) {
 707       gclog_or_tty->print_cr("region "HR_FORMAT" is a continuation of a humongous "
 708                              "region but has "SIZE_FORMAT" code root entries",
 709                              HR_FORMAT_PARAMS(this), strong_code_roots_length);
 710       *failures = true;
 711     }
 712     return;
 713   }
 714 
 715   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 716   strong_code_roots_do(&cb_cl);
 717 
 718   if (cb_cl.failures()) {
 719     *failures = true;
 720   }
 721 }
 722 
 723 void HeapRegion::print() const { print_on(gclog_or_tty); }
 724 void HeapRegion::print_on(outputStream* st) const {
 725   if (isHumongous()) {
 726     if (startsHumongous())
 727       st->print(" HS");
 728     else
 729       st->print(" HC");
 730   } else {
 731     st->print("   ");
 732   }
 733   if (in_collection_set())
 734     st->print(" CS");
 735   else
 736     st->print("   ");
 737   if (is_young())
 738     st->print(is_survivor() ? " SU" : " Y ");
 739   else
 740     st->print("   ");
 741   if (is_empty())
 742     st->print(" F");
 743   else
 744     st->print("  ");
 745   st->print(" TS %5d", _gc_time_stamp);
 746   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 747             prev_top_at_mark_start(), next_top_at_mark_start());
 748   G1OffsetTableContigSpace::print_on(st);
 749 }
 750 
 751 class VerifyLiveClosure: public OopClosure {
 752 private:
 753   G1CollectedHeap* _g1h;
 754   CardTableModRefBS* _bs;
 755   oop _containing_obj;
 756   bool _failures;
 757   int _n_failures;
 758   VerifyOption _vo;
 759 public:
 760   // _vo == UsePrevMarking -> use "prev" marking information,
 761   // _vo == UseNextMarking -> use "next" marking information,
 762   // _vo == UseMarkWord    -> use mark word from object header.
 763   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 764     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 765     _failures(false), _n_failures(0), _vo(vo)
 766   {
 767     BarrierSet* bs = _g1h->barrier_set();
 768     if (bs->is_a(BarrierSet::CardTableModRef))
 769       _bs = (CardTableModRefBS*)bs;
 770   }
 771 
 772   void set_containing_obj(oop obj) {
 773     _containing_obj = obj;
 774   }
 775 
 776   bool failures() { return _failures; }
 777   int n_failures() { return _n_failures; }
 778 
 779   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 780   virtual void do_oop(      oop* p) { do_oop_work(p); }
 781 
 782   void print_object(outputStream* out, oop obj) {
 783 #ifdef PRODUCT
 784     Klass* k = obj->klass();
 785     const char* class_name = InstanceKlass::cast(k)->external_name();
 786     out->print_cr("class name %s", class_name);
 787 #else // PRODUCT
 788     obj->print_on(out);
 789 #endif // PRODUCT
 790   }
 791 
 792   template <class T>
 793   void do_oop_work(T* p) {
 794     assert(_containing_obj != NULL, "Precondition");
 795     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 796            "Precondition");
 797     T heap_oop = oopDesc::load_heap_oop(p);
 798     if (!oopDesc::is_null(heap_oop)) {
 799       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 800       bool failed = false;
 801       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 802         MutexLockerEx x(ParGCRareEvent_lock,
 803                         Mutex::_no_safepoint_check_flag);
 804 
 805         if (!_failures) {
 806           gclog_or_tty->cr();
 807           gclog_or_tty->print_cr("----------");
 808         }
 809         if (!_g1h->is_in_closed_subset(obj)) {
 810           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 811           gclog_or_tty->print_cr("Field "PTR_FORMAT
 812                                  " of live obj "PTR_FORMAT" in region "
 813                                  "["PTR_FORMAT", "PTR_FORMAT")",
 814                                  p, (void*) _containing_obj,
 815                                  from->bottom(), from->end());
 816           print_object(gclog_or_tty, _containing_obj);
 817           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 818                                  (void*) obj);
 819         } else {
 820           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 821           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 822           gclog_or_tty->print_cr("Field "PTR_FORMAT
 823                                  " of live obj "PTR_FORMAT" in region "
 824                                  "["PTR_FORMAT", "PTR_FORMAT")",
 825                                  p, (void*) _containing_obj,
 826                                  from->bottom(), from->end());
 827           print_object(gclog_or_tty, _containing_obj);
 828           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 829                                  "["PTR_FORMAT", "PTR_FORMAT")",
 830                                  (void*) obj, to->bottom(), to->end());
 831           print_object(gclog_or_tty, obj);
 832         }
 833         gclog_or_tty->print_cr("----------");
 834         gclog_or_tty->flush();
 835         _failures = true;
 836         failed = true;
 837         _n_failures++;
 838       }
 839 
 840       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 841         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 842         HeapRegion* to   = _g1h->heap_region_containing(obj);
 843         if (from != NULL && to != NULL &&
 844             from != to &&
 845             !to->isHumongous()) {
 846           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 847           jbyte cv_field = *_bs->byte_for_const(p);
 848           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 849 
 850           bool is_bad = !(from->is_young()
 851                           || to->rem_set()->contains_reference(p)
 852                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 853                               (_containing_obj->is_objArray() ?
 854                                   cv_field == dirty
 855                                : cv_obj == dirty || cv_field == dirty));
 856           if (is_bad) {
 857             MutexLockerEx x(ParGCRareEvent_lock,
 858                             Mutex::_no_safepoint_check_flag);
 859 
 860             if (!_failures) {
 861               gclog_or_tty->cr();
 862               gclog_or_tty->print_cr("----------");
 863             }
 864             gclog_or_tty->print_cr("Missing rem set entry:");
 865             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 866                                    "of obj "PTR_FORMAT", "
 867                                    "in region "HR_FORMAT,
 868                                    p, (void*) _containing_obj,
 869                                    HR_FORMAT_PARAMS(from));
 870             _containing_obj->print_on(gclog_or_tty);
 871             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 872                                    "in region "HR_FORMAT,
 873                                    (void*) obj,
 874                                    HR_FORMAT_PARAMS(to));
 875             obj->print_on(gclog_or_tty);
 876             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 877                           cv_obj, cv_field);
 878             gclog_or_tty->print_cr("----------");
 879             gclog_or_tty->flush();
 880             _failures = true;
 881             if (!failed) _n_failures++;
 882           }
 883         }
 884       }
 885     }
 886   }
 887 };
 888 
 889 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 890 // We would need a mechanism to make that code skip dead objects.
 891 
 892 void HeapRegion::verify(VerifyOption vo,
 893                         bool* failures) const {
 894   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 895   *failures = false;
 896   HeapWord* p = bottom();
 897   HeapWord* prev_p = NULL;
 898   VerifyLiveClosure vl_cl(g1, vo);
 899   bool is_humongous = isHumongous();
 900   bool do_bot_verify = !is_young();
 901   size_t object_num = 0;
 902   while (p < top()) {
 903     oop obj = oop(p);
 904     size_t obj_size = block_size(p);
 905     object_num += 1;
 906 
 907     if (is_humongous != g1->isHumongous(obj_size)) {
 908       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 909                              SIZE_FORMAT" words) in a %shumongous region",
 910                              p, g1->isHumongous(obj_size) ? "" : "non-",
 911                              obj_size, is_humongous ? "" : "non-");
 912        *failures = true;
 913        return;
 914     }
 915 
 916     // If it returns false, verify_for_object() will output the
 917     // appropriate messasge.
 918     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 919       *failures = true;
 920       return;
 921     }
 922 
 923     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 924       if (obj->is_oop()) {
 925         Klass* klass = obj->klass();
 926         if (!klass->is_metaspace_object()) {
 927           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 928                                  "not metadata", klass, (void *)obj);
 929           *failures = true;
 930           return;
 931         } else if (!klass->is_klass()) {
 932           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 933                                  "not a klass", klass, (void *)obj);
 934           *failures = true;
 935           return;
 936         } else {
 937           vl_cl.set_containing_obj(obj);
 938           obj->oop_iterate_no_header(&vl_cl);
 939           if (vl_cl.failures()) {
 940             *failures = true;
 941           }
 942           if (G1MaxVerifyFailures >= 0 &&
 943               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 944             return;
 945           }
 946         }
 947       } else {
 948         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", (void *)obj);
 949         *failures = true;
 950         return;
 951       }
 952     }
 953     prev_p = p;
 954     p += obj_size;
 955   }
 956 
 957   if (p != top()) {
 958     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 959                            "does not match top "PTR_FORMAT, p, top());
 960     *failures = true;
 961     return;
 962   }
 963 
 964   HeapWord* the_end = end();
 965   assert(p == top(), "it should still hold");
 966   // Do some extra BOT consistency checking for addresses in the
 967   // range [top, end). BOT look-ups in this range should yield
 968   // top. No point in doing that if top == end (there's nothing there).
 969   if (p < the_end) {
 970     // Look up top
 971     HeapWord* addr_1 = p;
 972     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
 973     if (b_start_1 != p) {
 974       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
 975                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 976                              addr_1, b_start_1, p);
 977       *failures = true;
 978       return;
 979     }
 980 
 981     // Look up top + 1
 982     HeapWord* addr_2 = p + 1;
 983     if (addr_2 < the_end) {
 984       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
 985       if (b_start_2 != p) {
 986         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
 987                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
 988                                addr_2, b_start_2, p);
 989         *failures = true;
 990         return;
 991       }
 992     }
 993 
 994     // Look up an address between top and end
 995     size_t diff = pointer_delta(the_end, p) / 2;
 996     HeapWord* addr_3 = p + diff;
 997     if (addr_3 < the_end) {
 998       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
 999       if (b_start_3 != p) {
1000         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
1001                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1002                                addr_3, b_start_3, p);
1003         *failures = true;
1004         return;
1005       }
1006     }
1007 
1008     // Look up end - 1
1009     HeapWord* addr_4 = the_end - 1;
1010     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1011     if (b_start_4 != p) {
1012       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1013                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1014                              addr_4, b_start_4, p);
1015       *failures = true;
1016       return;
1017     }
1018   }
1019 
1020   if (is_humongous && object_num > 1) {
1021     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1022                            "but has "SIZE_FORMAT", objects",
1023                            bottom(), end(), object_num);
1024     *failures = true;
1025     return;
1026   }
1027 
1028   verify_strong_code_roots(vo, failures);
1029 }
1030 
1031 void HeapRegion::verify() const {
1032   bool dummy = false;
1033   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1034 }
1035 
1036 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1037 // away eventually.
1038 
1039 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1040   set_top(bottom());
1041   set_saved_mark_word(bottom());
1042   CompactibleSpace::clear(mangle_space);
1043   _offsets.zero_bottom_entry();
1044   _offsets.initialize_threshold();
1045 }
1046 
1047 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1048   Space::set_bottom(new_bottom);
1049   _offsets.set_bottom(new_bottom);
1050 }
1051 
1052 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1053   Space::set_end(new_end);
1054   _offsets.resize(new_end - bottom());
1055 }
1056 
1057 void G1OffsetTableContigSpace::print() const {
1058   print_short();
1059   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1060                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1061                 bottom(), top(), _offsets.threshold(), end());
1062 }
1063 
1064 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1065   return _offsets.initialize_threshold();
1066 }
1067 
1068 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1069                                                     HeapWord* end) {
1070   _offsets.alloc_block(start, end);
1071   return _offsets.threshold();
1072 }
1073 
1074 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1075   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1076   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1077   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1078     return top();
1079   else
1080     return Space::saved_mark_word();
1081 }
1082 
1083 void G1OffsetTableContigSpace::record_top_and_timestamp() {
1084   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1085   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1086 
1087   if (_gc_time_stamp < curr_gc_time_stamp) {
1088     // The order of these is important, as another thread might be
1089     // about to start scanning this region. If it does so after
1090     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1091     // will be false, and it will pick up top() as the high water mark
1092     // of region. If it does so after _gc_time_stamp = ..., then it
1093     // will pick up the right saved_mark_word() as the high water mark
1094     // of the region. Either way, the behavior will be correct.
1095     Space::set_saved_mark_word(top());
1096     OrderAccess::storestore();
1097     _gc_time_stamp = curr_gc_time_stamp;
1098     // No need to do another barrier to flush the writes above. If
1099     // this is called in parallel with other threads trying to
1100     // allocate into the region, the caller should call this while
1101     // holding a lock and when the lock is released the writes will be
1102     // flushed.
1103   }
1104 }
1105 
1106 void G1OffsetTableContigSpace::safe_object_iterate(ObjectClosure* blk) {
1107   object_iterate(blk);
1108 }
1109 
1110 void G1OffsetTableContigSpace::object_iterate(ObjectClosure* blk) {
1111   HeapWord* p = bottom();
1112   while (p < top()) {
1113     if (block_is_obj(p)) {
1114       blk->do_object(oop(p));
1115     }
1116     p += block_size(p);
1117   }
1118 }
1119 
1120 #define block_is_always_obj(q) true
1121 void G1OffsetTableContigSpace::prepare_for_compaction(CompactPoint* cp) {
1122   SCAN_AND_FORWARD(cp, top, block_is_always_obj, block_size);
1123 }
1124 #undef block_is_always_obj
1125 
1126 G1OffsetTableContigSpace::
1127 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1128                          MemRegion mr) :
1129   _offsets(sharedOffsetArray, mr),
1130   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1131   _gc_time_stamp(0)
1132 {
1133   _offsets.set_space(this);
1134   // false ==> we'll do the clearing if there's clearing to be done.
1135   CompactibleSpace::initialize(mr, false, SpaceDecorator::Mangle);
1136   _top = bottom();
1137   _offsets.zero_bottom_entry();
1138   _offsets.initialize_threshold();
1139 }