1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
  29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  30 #include "gc_implementation/g1/survRateGroup.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/space.inline.hpp"
  34 #include "memory/watermark.hpp"
  35 #include "utilities/macros.hpp"
  36 
  37 #if INCLUDE_ALL_GCS
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 class HeapRegionRemSet;
  50 class HeapRegionRemSetIterator;
  51 class HeapRegion;
  52 class HeapRegionSetBase;
  53 class nmethod;
  54 
  55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
  56 #define HR_FORMAT_PARAMS(_hr_) \
  57                 (_hr_)->hrs_index(), \
  58                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
  59                 (_hr_)->startsHumongous() ? "HS" : \
  60                 (_hr_)->continuesHumongous() ? "HC" : \
  61                 !(_hr_)->is_empty() ? "O" : "F", \
  62                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  63 
  64 // sentinel value for hrs_index
  65 #define G1_NULL_HRS_INDEX ((uint) -1)
  66 
  67 // A dirty card to oop closure for heap regions. It
  68 // knows how to get the G1 heap and how to use the bitmap
  69 // in the concurrent marker used by G1 to filter remembered
  70 // sets.
  71 
  72 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  73 public:
  74   // Specification of possible DirtyCardToOopClosure filtering.
  75   enum FilterKind {
  76     NoFilterKind,
  77     IntoCSFilterKind,
  78     OutOfRegionFilterKind
  79   };
  80 
  81 protected:
  82   HeapRegion* _hr;
  83   FilterKind _fk;
  84   G1CollectedHeap* _g1;
  85 
  86   // Walk the given memory region from bottom to (actual) top
  87   // looking for objects and applying the oop closure (_cl) to
  88   // them. The base implementation of this treats the area as
  89   // blocks, where a block may or may not be an object. Sub-
  90   // classes should override this to provide more accurate
  91   // or possibly more efficient walking.
  92   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  93 
  94 public:
  95   HeapRegionDCTOC(G1CollectedHeap* g1,
  96                   HeapRegion* hr, ExtendedOopClosure* cl,
  97                   CardTableModRefBS::PrecisionStyle precision,
  98                   FilterKind fk);
  99 };
 100 
 101 // The complicating factor is that BlockOffsetTable diverged
 102 // significantly, and we need functionality that is only in the G1 version.
 103 // So I copied that code, which led to an alternate G1 version of
 104 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 105 // be reconciled, then G1OffsetTableContigSpace could go away.
 106 
 107 // The idea behind time stamps is the following. Doing a save_marks on
 108 // all regions at every GC pause is time consuming (if I remember
 109 // well, 10ms or so). So, we would like to do that only for regions
 110 // that are GC alloc regions. To achieve this, we use time
 111 // stamps. For every evacuation pause, G1CollectedHeap generates a
 112 // unique time stamp (essentially a counter that gets
 113 // incremented). Every time we want to call save_marks on a region,
 114 // we set the saved_mark_word to top and also copy the current GC
 115 // time stamp to the time stamp field of the space. Reading the
 116 // saved_mark_word involves checking the time stamp of the
 117 // region. If it is the same as the current GC time stamp, then we
 118 // can safely read the saved_mark_word field, as it is valid. If the
 119 // time stamp of the region is not the same as the current GC time
 120 // stamp, then we instead read top, as the saved_mark_word field is
 121 // invalid. Time stamps (on the regions and also on the
 122 // G1CollectedHeap) are reset at every cleanup (we iterate over
 123 // the regions anyway) and at the end of a Full GC. The current scheme
 124 // that uses sequential unsigned ints will fail only if we have 4b
 125 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 126 class G1OffsetTableContigSpace: public CompactibleSpace {
 127   friend class VMStructs;
 128   HeapWord* _top;
 129  protected:
 130   G1BlockOffsetArrayContigSpace _offsets;
 131   Mutex _par_alloc_lock;
 132   volatile unsigned _gc_time_stamp;
 133   // When we need to retire an allocation region, while other threads
 134   // are also concurrently trying to allocate into it, we typically
 135   // allocate a dummy object at the end of the region to ensure that
 136   // no more allocations can take place in it. However, sometimes we
 137   // want to know where the end of the last "real" object we allocated
 138   // into the region was and this is what this keeps track.
 139   HeapWord* _pre_dummy_top;
 140 
 141  public:
 142   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 143                            MemRegion mr);
 144 
 145   void set_top(HeapWord* value) { _top = value; }
 146   HeapWord* top() const { return _top; }
 147 
 148  protected:
 149   HeapWord** top_addr() { return &_top; }
 150   // Allocation helpers (return NULL if full).
 151   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
 152   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
 153 
 154  public:
 155   void reset_after_compaction() { set_top(compaction_top()); }
 156 
 157   size_t used() const { return byte_size(bottom(), top()); }
 158   size_t free() const { return byte_size(top(), end()); }
 159   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 160 
 161   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 162 
 163   void object_iterate(ObjectClosure* blk);
 164   void safe_object_iterate(ObjectClosure* blk);
 165 
 166   void set_bottom(HeapWord* value);
 167   void set_end(HeapWord* value);
 168 
 169   virtual HeapWord* saved_mark_word() const;
 170   void record_top_and_timestamp();
 171   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 172   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 173 
 174   // See the comment above in the declaration of _pre_dummy_top for an
 175   // explanation of what it is.
 176   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 177     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 178     _pre_dummy_top = pre_dummy_top;
 179   }
 180   HeapWord* pre_dummy_top() {
 181     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 182   }
 183   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 184 
 185   virtual void clear(bool mangle_space);
 186 
 187   HeapWord* block_start(const void* p);
 188   HeapWord* block_start_const(const void* p) const;
 189 
 190   void prepare_for_compaction(CompactPoint* cp);
 191 
 192   // Add offset table update.
 193   virtual HeapWord* allocate(size_t word_size);
 194   HeapWord* par_allocate(size_t word_size);
 195 
 196   // MarkSweep support phase3
 197   virtual HeapWord* initialize_threshold();
 198   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 199 
 200   virtual void print() const;
 201 
 202   void reset_bot() {
 203     _offsets.zero_bottom_entry();
 204     _offsets.initialize_threshold();
 205   }
 206 
 207   void update_bot_for_object(HeapWord* start, size_t word_size) {
 208     _offsets.alloc_block(start, word_size);
 209   }
 210 
 211   void print_bot_on(outputStream* out) {
 212     _offsets.print_on(out);
 213   }
 214 };
 215 
 216 class HeapRegion: public G1OffsetTableContigSpace {
 217   friend class VMStructs;
 218  private:
 219 
 220   enum HumongousType {
 221     NotHumongous = 0,
 222     StartsHumongous,
 223     ContinuesHumongous
 224   };
 225 
 226   // The remembered set for this region.
 227   // (Might want to make this "inline" later, to avoid some alloc failure
 228   // issues.)
 229   HeapRegionRemSet* _rem_set;
 230 
 231   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 232 
 233  protected:
 234   // The index of this region in the heap region sequence.
 235   uint  _hrs_index;
 236 
 237   HumongousType _humongous_type;
 238   // For a humongous region, region in which it starts.
 239   HeapRegion* _humongous_start_region;
 240   // For the start region of a humongous sequence, it's original end().
 241   HeapWord* _orig_end;
 242 
 243   // True iff the region is in current collection_set.
 244   bool _in_collection_set;
 245 
 246   // True iff an attempt to evacuate an object in the region failed.
 247   bool _evacuation_failed;
 248 
 249   // A heap region may be a member one of a number of special subsets, each
 250   // represented as linked lists through the field below.  Currently, these
 251   // sets include:
 252   //   The collection set.
 253   //   The set of allocation regions used in a collection pause.
 254   //   Spaces that may contain gray objects.
 255   HeapRegion* _next_in_special_set;
 256 
 257   // next region in the young "generation" region set
 258   HeapRegion* _next_young_region;
 259 
 260   // Next region whose cards need cleaning
 261   HeapRegion* _next_dirty_cards_region;
 262 
 263   // Fields used by the HeapRegionSetBase class and subclasses.
 264   HeapRegion* _next;
 265   HeapRegion* _prev;
 266 #ifdef ASSERT
 267   HeapRegionSetBase* _containing_set;
 268 #endif // ASSERT
 269   bool _pending_removal;
 270 
 271   // For parallel heapRegion traversal.
 272   jint _claimed;
 273 
 274   // We use concurrent marking to determine the amount of live data
 275   // in each heap region.
 276   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 277   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 278 
 279   // The calculated GC efficiency of the region.
 280   double _gc_efficiency;
 281 
 282   enum YoungType {
 283     NotYoung,                   // a region is not young
 284     Young,                      // a region is young
 285     Survivor                    // a region is young and it contains survivors
 286   };
 287 
 288   volatile YoungType _young_type;
 289   int  _young_index_in_cset;
 290   SurvRateGroup* _surv_rate_group;
 291   int  _age_index;
 292 
 293   // The start of the unmarked area. The unmarked area extends from this
 294   // word until the top and/or end of the region, and is the part
 295   // of the region for which no marking was done, i.e. objects may
 296   // have been allocated in this part since the last mark phase.
 297   // "prev" is the top at the start of the last completed marking.
 298   // "next" is the top at the start of the in-progress marking (if any.)
 299   HeapWord* _prev_top_at_mark_start;
 300   HeapWord* _next_top_at_mark_start;
 301   // If a collection pause is in progress, this is the top at the start
 302   // of that pause.
 303 
 304   void init_top_at_mark_start() {
 305     assert(_prev_marked_bytes == 0 &&
 306            _next_marked_bytes == 0,
 307            "Must be called after zero_marked_bytes.");
 308     HeapWord* bot = bottom();
 309     _prev_top_at_mark_start = bot;
 310     _next_top_at_mark_start = bot;
 311   }
 312 
 313   void set_young_type(YoungType new_type) {
 314     //assert(_young_type != new_type, "setting the same type" );
 315     // TODO: add more assertions here
 316     _young_type = new_type;
 317   }
 318 
 319   // Cached attributes used in the collection set policy information
 320 
 321   // The RSet length that was added to the total value
 322   // for the collection set.
 323   size_t _recorded_rs_length;
 324 
 325   // The predicted elapsed time that was added to total value
 326   // for the collection set.
 327   double _predicted_elapsed_time_ms;
 328 
 329   // The predicted number of bytes to copy that was added to
 330   // the total value for the collection set.
 331   size_t _predicted_bytes_to_copy;
 332 
 333  public:
 334   HeapRegion(uint hrs_index,
 335              G1BlockOffsetSharedArray* sharedOffsetArray,
 336              MemRegion mr);
 337 
 338   static int    LogOfHRGrainBytes;
 339   static int    LogOfHRGrainWords;
 340 
 341   static size_t GrainBytes;
 342   static size_t GrainWords;
 343   static size_t CardsPerRegion;
 344 
 345   static size_t align_up_to_region_byte_size(size_t sz) {
 346     return (sz + (size_t) GrainBytes - 1) &
 347                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 348   }
 349 
 350   static size_t max_region_size();
 351 
 352   // It sets up the heap region size (GrainBytes / GrainWords), as
 353   // well as other related fields that are based on the heap region
 354   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 355   // CardsPerRegion). All those fields are considered constant
 356   // throughout the JVM's execution, therefore they should only be set
 357   // up once during initialization time.
 358   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 359 
 360   enum ClaimValues {
 361     InitialClaimValue          = 0,
 362     FinalCountClaimValue       = 1,
 363     NoteEndClaimValue          = 2,
 364     ScrubRemSetClaimValue      = 3,
 365     ParVerifyClaimValue        = 4,
 366     RebuildRSClaimValue        = 5,
 367     ParEvacFailureClaimValue   = 6,
 368     AggregateCountClaimValue   = 7,
 369     VerifyCountClaimValue      = 8,
 370     ParMarkRootClaimValue      = 9
 371   };
 372 
 373   // All allocated blocks are occupied by objects in a HeapRegion
 374   bool block_is_obj(const HeapWord* p) const;
 375 
 376   // Returns the object size for all valid block starts
 377   // and the amount of unallocated words if called on top()
 378   size_t block_size(const HeapWord* p) const;
 379 
 380   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
 381   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 382 
 383   // If this region is a member of a HeapRegionSeq, the index in that
 384   // sequence, otherwise -1.
 385   uint hrs_index() const { return _hrs_index; }
 386 
 387   // The number of bytes marked live in the region in the last marking phase.
 388   size_t marked_bytes()    { return _prev_marked_bytes; }
 389   size_t live_bytes() {
 390     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 391   }
 392 
 393   // The number of bytes counted in the next marking.
 394   size_t next_marked_bytes() { return _next_marked_bytes; }
 395   // The number of bytes live wrt the next marking.
 396   size_t next_live_bytes() {
 397     return
 398       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 399   }
 400 
 401   // A lower bound on the amount of garbage bytes in the region.
 402   size_t garbage_bytes() {
 403     size_t used_at_mark_start_bytes =
 404       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 405     assert(used_at_mark_start_bytes >= marked_bytes(),
 406            "Can't mark more than we have.");
 407     return used_at_mark_start_bytes - marked_bytes();
 408   }
 409 
 410   // Return the amount of bytes we'll reclaim if we collect this
 411   // region. This includes not only the known garbage bytes in the
 412   // region but also any unallocated space in it, i.e., [top, end),
 413   // since it will also be reclaimed if we collect the region.
 414   size_t reclaimable_bytes() {
 415     size_t known_live_bytes = live_bytes();
 416     assert(known_live_bytes <= capacity(), "sanity");
 417     return capacity() - known_live_bytes;
 418   }
 419 
 420   // An upper bound on the number of live bytes in the region.
 421   size_t max_live_bytes() { return used() - garbage_bytes(); }
 422 
 423   void add_to_marked_bytes(size_t incr_bytes) {
 424     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 425     assert(_next_marked_bytes <= used(), "invariant" );
 426   }
 427 
 428   void zero_marked_bytes()      {
 429     _prev_marked_bytes = _next_marked_bytes = 0;
 430   }
 431 
 432   bool isHumongous() const { return _humongous_type != NotHumongous; }
 433   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 434   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 435   // For a humongous region, region in which it starts.
 436   HeapRegion* humongous_start_region() const {
 437     return _humongous_start_region;
 438   }
 439 
 440   // Return the number of distinct regions that are covered by this region:
 441   // 1 if the region is not humongous, >= 1 if the region is humongous.
 442   uint region_num() const {
 443     if (!isHumongous()) {
 444       return 1U;
 445     } else {
 446       assert(startsHumongous(), "doesn't make sense on HC regions");
 447       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 448       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 449     }
 450   }
 451 
 452   // Return the index + 1 of the last HC regions that's associated
 453   // with this HS region.
 454   uint last_hc_index() const {
 455     assert(startsHumongous(), "don't call this otherwise");
 456     return hrs_index() + region_num();
 457   }
 458 
 459   // Same as Space::is_in_reserved, but will use the original size of the region.
 460   // The original size is different only for start humongous regions. They get
 461   // their _end set up to be the end of the last continues region of the
 462   // corresponding humongous object.
 463   bool is_in_reserved_raw(const void* p) const {
 464     return _bottom <= p && p < _orig_end;
 465   }
 466 
 467   // Makes the current region be a "starts humongous" region, i.e.,
 468   // the first region in a series of one or more contiguous regions
 469   // that will contain a single "humongous" object. The two parameters
 470   // are as follows:
 471   //
 472   // new_top : The new value of the top field of this region which
 473   // points to the end of the humongous object that's being
 474   // allocated. If there is more than one region in the series, top
 475   // will lie beyond this region's original end field and on the last
 476   // region in the series.
 477   //
 478   // new_end : The new value of the end field of this region which
 479   // points to the end of the last region in the series. If there is
 480   // one region in the series (namely: this one) end will be the same
 481   // as the original end of this region.
 482   //
 483   // Updating top and end as described above makes this region look as
 484   // if it spans the entire space taken up by all the regions in the
 485   // series and an single allocation moved its top to new_top. This
 486   // ensures that the space (capacity / allocated) taken up by all
 487   // humongous regions can be calculated by just looking at the
 488   // "starts humongous" regions and by ignoring the "continues
 489   // humongous" regions.
 490   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
 491 
 492   // Makes the current region be a "continues humongous'
 493   // region. first_hr is the "start humongous" region of the series
 494   // which this region will be part of.
 495   void set_continuesHumongous(HeapRegion* first_hr);
 496 
 497   // Unsets the humongous-related fields on the region.
 498   void set_notHumongous();
 499 
 500   // If the region has a remembered set, return a pointer to it.
 501   HeapRegionRemSet* rem_set() const {
 502     return _rem_set;
 503   }
 504 
 505   // True iff the region is in current collection_set.
 506   bool in_collection_set() const {
 507     return _in_collection_set;
 508   }
 509   void set_in_collection_set(bool b) {
 510     _in_collection_set = b;
 511   }
 512   HeapRegion* next_in_collection_set() {
 513     assert(in_collection_set(), "should only invoke on member of CS.");
 514     assert(_next_in_special_set == NULL ||
 515            _next_in_special_set->in_collection_set(),
 516            "Malformed CS.");
 517     return _next_in_special_set;
 518   }
 519   void set_next_in_collection_set(HeapRegion* r) {
 520     assert(in_collection_set(), "should only invoke on member of CS.");
 521     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 522     _next_in_special_set = r;
 523   }
 524 
 525   // Methods used by the HeapRegionSetBase class and subclasses.
 526 
 527   // Getter and setter for the next and prev fields used to link regions into
 528   // linked lists.
 529   HeapRegion* next()              { return _next; }
 530   HeapRegion* prev()              { return _prev; }
 531 
 532   void set_next(HeapRegion* next) { _next = next; }
 533   void set_prev(HeapRegion* prev) { _prev = prev; }
 534 
 535   // Every region added to a set is tagged with a reference to that
 536   // set. This is used for doing consistency checking to make sure that
 537   // the contents of a set are as they should be and it's only
 538   // available in non-product builds.
 539 #ifdef ASSERT
 540   void set_containing_set(HeapRegionSetBase* containing_set) {
 541     assert((containing_set == NULL && _containing_set != NULL) ||
 542            (containing_set != NULL && _containing_set == NULL),
 543            err_msg("containing_set: "PTR_FORMAT" "
 544                    "_containing_set: "PTR_FORMAT,
 545                    p2i(containing_set), p2i(_containing_set)));
 546 
 547     _containing_set = containing_set;
 548   }
 549 
 550   HeapRegionSetBase* containing_set() { return _containing_set; }
 551 #else // ASSERT
 552   void set_containing_set(HeapRegionSetBase* containing_set) { }
 553 
 554   // containing_set() is only used in asserts so there's no reason
 555   // to provide a dummy version of it.
 556 #endif // ASSERT
 557 
 558   // If we want to remove regions from a list in bulk we can simply tag
 559   // them with the pending_removal tag and call the
 560   // remove_all_pending() method on the list.
 561 
 562   bool pending_removal() { return _pending_removal; }
 563 
 564   void set_pending_removal(bool pending_removal) {
 565     if (pending_removal) {
 566       assert(!_pending_removal && containing_set() != NULL,
 567              "can only set pending removal to true if it's false and "
 568              "the region belongs to a region set");
 569     } else {
 570       assert( _pending_removal && containing_set() == NULL,
 571               "can only set pending removal to false if it's true and "
 572               "the region does not belong to a region set");
 573     }
 574 
 575     _pending_removal = pending_removal;
 576   }
 577 
 578   HeapRegion* get_next_young_region() { return _next_young_region; }
 579   void set_next_young_region(HeapRegion* hr) {
 580     _next_young_region = hr;
 581   }
 582 
 583   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 584   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 585   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 586   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 587 
 588   HeapWord* orig_end() { return _orig_end; }
 589 
 590   // Reset HR stuff to default values.
 591   void hr_clear(bool par, bool clear_space, bool locked = false);
 592   void par_clear();
 593 
 594   // Get the start of the unmarked area in this region.
 595   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 596   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 597 
 598   // Note the start or end of marking. This tells the heap region
 599   // that the collector is about to start or has finished (concurrently)
 600   // marking the heap.
 601 
 602   // Notify the region that concurrent marking is starting. Initialize
 603   // all fields related to the next marking info.
 604   inline void note_start_of_marking();
 605 
 606   // Notify the region that concurrent marking has finished. Copy the
 607   // (now finalized) next marking info fields into the prev marking
 608   // info fields.
 609   inline void note_end_of_marking();
 610 
 611   // Notify the region that it will be used as to-space during a GC
 612   // and we are about to start copying objects into it.
 613   inline void note_start_of_copying(bool during_initial_mark);
 614 
 615   // Notify the region that it ceases being to-space during a GC and
 616   // we will not copy objects into it any more.
 617   inline void note_end_of_copying(bool during_initial_mark);
 618 
 619   // Notify the region that we are about to start processing
 620   // self-forwarded objects during evac failure handling.
 621   void note_self_forwarding_removal_start(bool during_initial_mark,
 622                                           bool during_conc_mark);
 623 
 624   // Notify the region that we have finished processing self-forwarded
 625   // objects during evac failure handling.
 626   void note_self_forwarding_removal_end(bool during_initial_mark,
 627                                         bool during_conc_mark,
 628                                         size_t marked_bytes);
 629 
 630   // Returns "false" iff no object in the region was allocated when the
 631   // last mark phase ended.
 632   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 633 
 634   void reset_during_compaction() {
 635     assert(isHumongous() && startsHumongous(),
 636            "should only be called for starts humongous regions");
 637 
 638     zero_marked_bytes();
 639     init_top_at_mark_start();
 640   }
 641 
 642   void calc_gc_efficiency(void);
 643   double gc_efficiency() { return _gc_efficiency;}
 644 
 645   bool is_young() const     { return _young_type != NotYoung; }
 646   bool is_survivor() const  { return _young_type == Survivor; }
 647 
 648   int  young_index_in_cset() const { return _young_index_in_cset; }
 649   void set_young_index_in_cset(int index) {
 650     assert( (index == -1) || is_young(), "pre-condition" );
 651     _young_index_in_cset = index;
 652   }
 653 
 654   int age_in_surv_rate_group() {
 655     assert( _surv_rate_group != NULL, "pre-condition" );
 656     assert( _age_index > -1, "pre-condition" );
 657     return _surv_rate_group->age_in_group(_age_index);
 658   }
 659 
 660   void record_surv_words_in_group(size_t words_survived) {
 661     assert( _surv_rate_group != NULL, "pre-condition" );
 662     assert( _age_index > -1, "pre-condition" );
 663     int age_in_group = age_in_surv_rate_group();
 664     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 665   }
 666 
 667   int age_in_surv_rate_group_cond() {
 668     if (_surv_rate_group != NULL)
 669       return age_in_surv_rate_group();
 670     else
 671       return -1;
 672   }
 673 
 674   SurvRateGroup* surv_rate_group() {
 675     return _surv_rate_group;
 676   }
 677 
 678   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 679     assert( surv_rate_group != NULL, "pre-condition" );
 680     assert( _surv_rate_group == NULL, "pre-condition" );
 681     assert( is_young(), "pre-condition" );
 682 
 683     _surv_rate_group = surv_rate_group;
 684     _age_index = surv_rate_group->next_age_index();
 685   }
 686 
 687   void uninstall_surv_rate_group() {
 688     if (_surv_rate_group != NULL) {
 689       assert( _age_index > -1, "pre-condition" );
 690       assert( is_young(), "pre-condition" );
 691 
 692       _surv_rate_group = NULL;
 693       _age_index = -1;
 694     } else {
 695       assert( _age_index == -1, "pre-condition" );
 696     }
 697   }
 698 
 699   void set_young() { set_young_type(Young); }
 700 
 701   void set_survivor() { set_young_type(Survivor); }
 702 
 703   void set_not_young() { set_young_type(NotYoung); }
 704 
 705   // Determine if an object has been allocated since the last
 706   // mark performed by the collector. This returns true iff the object
 707   // is within the unmarked area of the region.
 708   bool obj_allocated_since_prev_marking(oop obj) const {
 709     return (HeapWord *) obj >= prev_top_at_mark_start();
 710   }
 711   bool obj_allocated_since_next_marking(oop obj) const {
 712     return (HeapWord *) obj >= next_top_at_mark_start();
 713   }
 714 
 715   // For parallel heapRegion traversal.
 716   bool claimHeapRegion(int claimValue);
 717   jint claim_value() { return _claimed; }
 718   // Use this carefully: only when you're sure no one is claiming...
 719   void set_claim_value(int claimValue) { _claimed = claimValue; }
 720 
 721   // Returns the "evacuation_failed" property of the region.
 722   bool evacuation_failed() { return _evacuation_failed; }
 723 
 724   // Sets the "evacuation_failed" property of the region.
 725   void set_evacuation_failed(bool b) {
 726     _evacuation_failed = b;
 727 
 728     if (b) {
 729       _next_marked_bytes = 0;
 730     }
 731   }
 732 
 733   // Requires that "mr" be entirely within the region.
 734   // Apply "cl->do_object" to all objects that intersect with "mr".
 735   // If the iteration encounters an unparseable portion of the region,
 736   // or if "cl->abort()" is true after a closure application,
 737   // terminate the iteration and return the address of the start of the
 738   // subregion that isn't done.  (The two can be distinguished by querying
 739   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 740   // completed.
 741   HeapWord*
 742   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 743 
 744   // filter_young: if true and the region is a young region then we
 745   // skip the iteration.
 746   // card_ptr: if not NULL, and we decide that the card is not young
 747   // and we iterate over it, we'll clean the card before we start the
 748   // iteration.
 749   HeapWord*
 750   oops_on_card_seq_iterate_careful(MemRegion mr,
 751                                    FilterOutOfRegionClosure* cl,
 752                                    bool filter_young,
 753                                    jbyte* card_ptr);
 754 
 755   // A version of block start that is guaranteed to find *some* block
 756   // boundary at or before "p", but does not object iteration, and may
 757   // therefore be used safely when the heap is unparseable.
 758   HeapWord* block_start_careful(const void* p) const {
 759     return _offsets.block_start_careful(p);
 760   }
 761 
 762   // Requires that "addr" is within the region.  Returns the start of the
 763   // first ("careful") block that starts at or after "addr", or else the
 764   // "end" of the region if there is no such block.
 765   HeapWord* next_block_start_careful(HeapWord* addr);
 766 
 767   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 768   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 769   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 770 
 771   void set_recorded_rs_length(size_t rs_length) {
 772     _recorded_rs_length = rs_length;
 773   }
 774 
 775   void set_predicted_elapsed_time_ms(double ms) {
 776     _predicted_elapsed_time_ms = ms;
 777   }
 778 
 779   void set_predicted_bytes_to_copy(size_t bytes) {
 780     _predicted_bytes_to_copy = bytes;
 781   }
 782 
 783   virtual CompactibleSpace* next_compaction_space() const;
 784 
 785   virtual void reset_after_compaction();
 786 
 787   // Routines for managing a list of code roots (attached to the
 788   // this region's RSet) that point into this heap region.
 789   void add_strong_code_root(nmethod* nm);
 790   void remove_strong_code_root(nmethod* nm);
 791 
 792   // During a collection, migrate the successfully evacuated
 793   // strong code roots that referenced into this region to the
 794   // new regions that they now point into. Unsuccessfully
 795   // evacuated code roots are not migrated.
 796   void migrate_strong_code_roots();
 797 
 798   // Applies blk->do_code_blob() to each of the entries in
 799   // the strong code roots list for this region
 800   void strong_code_roots_do(CodeBlobClosure* blk) const;
 801 
 802   // Verify that the entries on the strong code root list for this
 803   // region are live and include at least one pointer into this region.
 804   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 805 
 806   void print() const;
 807   void print_on(outputStream* st) const;
 808 
 809   // vo == UsePrevMarking  -> use "prev" marking information,
 810   // vo == UseNextMarking -> use "next" marking information
 811   // vo == UseMarkWord    -> use the mark word in the object header
 812   //
 813   // NOTE: Only the "prev" marking information is guaranteed to be
 814   // consistent most of the time, so most calls to this should use
 815   // vo == UsePrevMarking.
 816   // Currently, there is only one case where this is called with
 817   // vo == UseNextMarking, which is to verify the "next" marking
 818   // information at the end of remark.
 819   // Currently there is only one place where this is called with
 820   // vo == UseMarkWord, which is to verify the marking during a
 821   // full GC.
 822   void verify(VerifyOption vo, bool *failures) const;
 823 
 824   // Override; it uses the "prev" marking information
 825   virtual void verify() const;
 826 };
 827 
 828 // HeapRegionClosure is used for iterating over regions.
 829 // Terminates the iteration when the "doHeapRegion" method returns "true".
 830 class HeapRegionClosure : public StackObj {
 831   friend class HeapRegionSeq;
 832   friend class G1CollectedHeap;
 833 
 834   bool _complete;
 835   void incomplete() { _complete = false; }
 836 
 837  public:
 838   HeapRegionClosure(): _complete(true) {}
 839 
 840   // Typically called on each region until it returns true.
 841   virtual bool doHeapRegion(HeapRegion* r) = 0;
 842 
 843   // True after iteration if the closure was applied to all heap regions
 844   // and returned "false" in all cases.
 845   bool complete() { return _complete; }
 846 };
 847 
 848 #endif // INCLUDE_ALL_GCS
 849 
 850 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP