1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP
  27 
  28 #include "memory/memRegion.hpp"
  29 #include "runtime/virtualspace.hpp"
  30 #include "utilities/globalDefinitions.hpp"
  31 
  32 // The CollectedHeap type requires subtypes to implement a method
  33 // "block_start".  For some subtypes, notably generational
  34 // systems using card-table-based write barriers, the efficiency of this
  35 // operation may be important.  Implementations of the "BlockOffsetArray"
  36 // class may be useful in providing such efficient implementations.
  37 //
  38 // While generally mirroring the structure of the BOT for GenCollectedHeap,
  39 // the following types are tailored more towards G1's uses; these should,
  40 // however, be merged back into a common BOT to avoid code duplication
  41 // and reduce maintenance overhead.
  42 //
  43 //    G1BlockOffsetTable (abstract)
  44 //    -- G1BlockOffsetArray                (uses G1BlockOffsetSharedArray)
  45 //       -- G1BlockOffsetArrayContigSpace
  46 //
  47 // A main impediment to the consolidation of this code might be the
  48 // effect of making some of the block_start*() calls non-const as
  49 // below. Whether that might adversely affect performance optimizations
  50 // that compilers might normally perform in the case of non-G1
  51 // collectors needs to be carefully investigated prior to any such
  52 // consolidation.
  53 
  54 // Forward declarations
  55 class G1BlockOffsetSharedArray;
  56 class G1OffsetTableContigSpace;
  57 
  58 class G1BlockOffsetTable VALUE_OBJ_CLASS_SPEC {
  59   friend class VMStructs;
  60 protected:
  61   // These members describe the region covered by the table.
  62 
  63   // The space this table is covering.
  64   HeapWord* _bottom;    // == reserved.start
  65   HeapWord* _end;       // End of currently allocated region.
  66 
  67 public:
  68   // Initialize the table to cover the given space.
  69   // The contents of the initial table are undefined.
  70   G1BlockOffsetTable(HeapWord* bottom, HeapWord* end) :
  71     _bottom(bottom), _end(end)
  72     {
  73       assert(_bottom <= _end, "arguments out of order");
  74     }
  75 
  76   // Note that the committed size of the covered space may have changed,
  77   // so the table size might also wish to change.
  78   virtual void resize(size_t new_word_size) = 0;
  79 
  80   virtual void set_bottom(HeapWord* new_bottom) {
  81     assert(new_bottom <= _end,
  82            err_msg("new_bottom (" PTR_FORMAT ") > _end (" PTR_FORMAT ")",
  83                    p2i(new_bottom), p2i(_end)));
  84     _bottom = new_bottom;
  85     resize(pointer_delta(_end, _bottom));
  86   }
  87 
  88   // Requires "addr" to be contained by a block, and returns the address of
  89   // the start of that block.  (May have side effects, namely updating of
  90   // shared array entries that "point" too far backwards.  This can occur,
  91   // for example, when LAB allocation is used in a space covered by the
  92   // table.)
  93   virtual HeapWord* block_start_unsafe(const void* addr) = 0;
  94   // Same as above, but does not have any of the possible side effects
  95   // discussed above.
  96   virtual HeapWord* block_start_unsafe_const(const void* addr) const = 0;
  97 
  98   // Returns the address of the start of the block containing "addr", or
  99   // else "null" if it is covered by no block.  (May have side effects,
 100   // namely updating of shared array entries that "point" too far
 101   // backwards.  This can occur, for example, when lab allocation is used
 102   // in a space covered by the table.)
 103   inline HeapWord* block_start(const void* addr);
 104   // Same as above, but does not have any of the possible side effects
 105   // discussed above.
 106   inline HeapWord* block_start_const(const void* addr) const;
 107 };
 108 
 109 // This implementation of "G1BlockOffsetTable" divides the covered region
 110 // into "N"-word subregions (where "N" = 2^"LogN".  An array with an entry
 111 // for each such subregion indicates how far back one must go to find the
 112 // start of the chunk that includes the first word of the subregion.
 113 //
 114 // Each BlockOffsetArray is owned by a Space.  However, the actual array
 115 // may be shared by several BlockOffsetArrays; this is useful
 116 // when a single resizable area (such as a generation) is divided up into
 117 // several spaces in which contiguous allocation takes place,
 118 // such as, for example, in G1 or in the train generation.)
 119 
 120 // Here is the shared array type.
 121 
 122 class G1BlockOffsetSharedArray: public CHeapObj<mtGC> {
 123   friend class G1BlockOffsetArray;
 124   friend class G1BlockOffsetArrayContigSpace;
 125   friend class VMStructs;
 126 
 127 private:
 128   // The reserved region covered by the shared array.
 129   MemRegion _reserved;
 130 
 131   // End of the current committed region.
 132   HeapWord* _end;
 133 
 134   // Array for keeping offsets for retrieving object start fast given an
 135   // address.
 136   VirtualSpace _vs;
 137   u_char* _offset_array;          // byte array keeping backwards offsets
 138 
 139   void check_index(size_t index, const char* msg) const {
 140     assert(index < _vs.committed_size(),
 141            err_msg("%s - "
 142                    "index: " SIZE_FORMAT ", _vs.committed_size: " SIZE_FORMAT,
 143                    msg, index, _vs.committed_size()));
 144   }
 145 
 146   void check_offset(size_t offset, const char* msg) const {
 147     assert(offset <= N_words,
 148            err_msg("%s - "
 149                    "offset: " SIZE_FORMAT", N_words: %u",
 150                    msg, offset, (uint)N_words));
 151   }
 152 
 153   // Bounds checking accessors:
 154   // For performance these have to devolve to array accesses in product builds.
 155   u_char offset_array(size_t index) const {
 156     check_index(index, "index out of range");
 157     return _offset_array[index];
 158   }
 159 
 160   void set_offset_array(size_t index, u_char offset) {
 161     check_index(index, "index out of range");
 162     check_offset(offset, "offset too large");
 163     _offset_array[index] = offset;
 164   }
 165 
 166   void set_offset_array(size_t index, HeapWord* high, HeapWord* low) {
 167     check_index(index, "index out of range");
 168     assert(high >= low, "addresses out of order");
 169     check_offset(pointer_delta(high, low), "offset too large");
 170     _offset_array[index] = (u_char) pointer_delta(high, low);
 171   }
 172 
 173   void set_offset_array(HeapWord* left, HeapWord* right, u_char offset) {
 174     check_index(index_for(right - 1), "right address out of range");
 175     assert(left  < right, "Heap addresses out of order");
 176     size_t num_cards = pointer_delta(right, left) >> LogN_words;
 177     if (UseMemSetInBOT) {
 178       memset(&_offset_array[index_for(left)], offset, num_cards);
 179     } else {
 180       size_t i = index_for(left);
 181       const size_t end = i + num_cards;
 182       for (; i < end; i++) {
 183         _offset_array[i] = offset;
 184       }
 185     }
 186   }
 187 
 188   void set_offset_array(size_t left, size_t right, u_char offset) {
 189     check_index(right, "right index out of range");
 190     assert(left <= right, "indexes out of order");
 191     size_t num_cards = right - left + 1;
 192     if (UseMemSetInBOT) {
 193       memset(&_offset_array[left], offset, num_cards);
 194     } else {
 195       size_t i = left;
 196       const size_t end = i + num_cards;
 197       for (; i < end; i++) {
 198         _offset_array[i] = offset;
 199       }
 200     }
 201   }
 202 
 203   void check_offset_array(size_t index, HeapWord* high, HeapWord* low) const {
 204     check_index(index, "index out of range");
 205     assert(high >= low, "addresses out of order");
 206     check_offset(pointer_delta(high, low), "offset too large");
 207     assert(_offset_array[index] == pointer_delta(high, low), "Wrong offset");
 208   }
 209 
 210   bool is_card_boundary(HeapWord* p) const;
 211 
 212   // Return the number of slots needed for an offset array
 213   // that covers mem_region_words words.
 214   // We always add an extra slot because if an object
 215   // ends on a card boundary we put a 0 in the next
 216   // offset array slot, so we want that slot always
 217   // to be reserved.
 218 
 219   size_t compute_size(size_t mem_region_words) {
 220     size_t number_of_slots = (mem_region_words / N_words) + 1;
 221     return ReservedSpace::page_align_size_up(number_of_slots);
 222   }
 223 
 224 public:
 225   enum SomePublicConstants {
 226     LogN = 9,
 227     LogN_words = LogN - LogHeapWordSize,
 228     N_bytes = 1 << LogN,
 229     N_words = 1 << LogN_words
 230   };
 231 
 232   // Initialize the table to cover from "base" to (at least)
 233   // "base + init_word_size".  In the future, the table may be expanded
 234   // (see "resize" below) up to the size of "_reserved" (which must be at
 235   // least "init_word_size".) The contents of the initial table are
 236   // undefined; it is the responsibility of the constituent
 237   // G1BlockOffsetTable(s) to initialize cards.
 238   G1BlockOffsetSharedArray(MemRegion reserved, size_t init_word_size);
 239 
 240   // Notes a change in the committed size of the region covered by the
 241   // table.  The "new_word_size" may not be larger than the size of the
 242   // reserved region this table covers.
 243   void resize(size_t new_word_size);
 244 
 245   void set_bottom(HeapWord* new_bottom);
 246 
 247   // Updates all the BlockOffsetArray's sharing this shared array to
 248   // reflect the current "top"'s of their spaces.
 249   void update_offset_arrays();
 250 
 251   // Return the appropriate index into "_offset_array" for "p".
 252   inline size_t index_for(const void* p) const;
 253 
 254   // Return the address indicating the start of the region corresponding to
 255   // "index" in "_offset_array".
 256   inline HeapWord* address_for_index(size_t index) const;
 257 };
 258 
 259 // And here is the G1BlockOffsetTable subtype that uses the array.
 260 
 261 class G1BlockOffsetArray: public G1BlockOffsetTable {
 262   friend class G1BlockOffsetSharedArray;
 263   friend class G1BlockOffsetArrayContigSpace;
 264   friend class VMStructs;
 265 private:
 266   enum SomePrivateConstants {
 267     N_words = G1BlockOffsetSharedArray::N_words,
 268     LogN    = G1BlockOffsetSharedArray::LogN
 269   };
 270 
 271   // The following enums are used by do_block_helper
 272   enum Action {
 273     Action_single,      // BOT records a single block (see single_block())
 274     Action_mark,        // BOT marks the start of a block (see mark_block())
 275     Action_check        // Check that BOT records block correctly
 276                         // (see verify_single_block()).
 277   };
 278 
 279   // This is the array, which can be shared by several BlockOffsetArray's
 280   // servicing different
 281   G1BlockOffsetSharedArray* _array;
 282 
 283   // The space that owns this subregion.
 284   G1OffsetTableContigSpace* _gsp;
 285 
 286   // If true, array entries are initialized to 0; otherwise, they are
 287   // initialized to point backwards to the beginning of the covered region.
 288   bool _init_to_zero;
 289 
 290   // The portion [_unallocated_block, _sp.end()) of the space that
 291   // is a single block known not to contain any objects.
 292   // NOTE: See BlockOffsetArrayUseUnallocatedBlock flag.
 293   HeapWord* _unallocated_block;
 294 
 295   // Sets the entries
 296   // corresponding to the cards starting at "start" and ending at "end"
 297   // to point back to the card before "start": the interval [start, end)
 298   // is right-open.
 299   void set_remainder_to_point_to_start(HeapWord* start, HeapWord* end);
 300   // Same as above, except that the args here are a card _index_ interval
 301   // that is closed: [start_index, end_index]
 302   void set_remainder_to_point_to_start_incl(size_t start, size_t end);
 303 
 304   // A helper function for BOT adjustment/verification work
 305   void do_block_internal(HeapWord* blk_start, HeapWord* blk_end, Action action);
 306 
 307 protected:
 308 
 309   G1OffsetTableContigSpace* gsp() const { return _gsp; }
 310 
 311   inline size_t block_size(const HeapWord* p) const;
 312 
 313   // Returns the address of a block whose start is at most "addr".
 314   // If "has_max_index" is true, "assumes "max_index" is the last valid one
 315   // in the array.
 316   inline HeapWord* block_at_or_preceding(const void* addr,
 317                                          bool has_max_index,
 318                                          size_t max_index) const;
 319 
 320   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 321   // next block (or the end of the space.)  Return the address of the
 322   // beginning of the block that contains "addr".  Does so without side
 323   // effects (see, e.g., spec of  block_start.)
 324   inline HeapWord*
 325   forward_to_block_containing_addr_const(HeapWord* q, HeapWord* n,
 326                                          const void* addr) const;
 327 
 328   // "q" is a block boundary that is <= "addr"; return the address of the
 329   // beginning of the block that contains "addr".  May have side effects
 330   // on "this", by updating imprecise entries.
 331   inline HeapWord* forward_to_block_containing_addr(HeapWord* q,
 332                                                     const void* addr);
 333 
 334   // "q" is a block boundary that is <= "addr"; "n" is the address of the
 335   // next block (or the end of the space.)  Return the address of the
 336   // beginning of the block that contains "addr".  May have side effects
 337   // on "this", by updating imprecise entries.
 338   HeapWord* forward_to_block_containing_addr_slow(HeapWord* q,
 339                                                   HeapWord* n,
 340                                                   const void* addr);
 341 
 342   // Requires that "*threshold_" be the first array entry boundary at or
 343   // above "blk_start", and that "*index_" be the corresponding array
 344   // index.  If the block starts at or crosses "*threshold_", records
 345   // "blk_start" as the appropriate block start for the array index
 346   // starting at "*threshold_", and for any other indices crossed by the
 347   // block.  Updates "*threshold_" and "*index_" to correspond to the first
 348   // index after the block end.
 349   void alloc_block_work2(HeapWord** threshold_, size_t* index_,
 350                          HeapWord* blk_start, HeapWord* blk_end);
 351 
 352 public:
 353   // The space may not have it's bottom and top set yet, which is why the
 354   // region is passed as a parameter.  If "init_to_zero" is true, the
 355   // elements of the array are initialized to zero.  Otherwise, they are
 356   // initialized to point backwards to the beginning.
 357   G1BlockOffsetArray(G1BlockOffsetSharedArray* array, MemRegion mr,
 358                      bool init_to_zero);
 359 
 360   // Note: this ought to be part of the constructor, but that would require
 361   // "this" to be passed as a parameter to a member constructor for
 362   // the containing concrete subtype of Space.
 363   // This would be legal C++, but MS VC++ doesn't allow it.
 364   void set_space(G1OffsetTableContigSpace* sp);
 365 
 366   // Resets the covered region to the given "mr".
 367   void set_region(MemRegion mr);
 368 
 369   // Resets the covered region to one with the same _bottom as before but
 370   // the "new_word_size".
 371   void resize(size_t new_word_size);
 372 
 373   // These must be guaranteed to work properly (i.e., do nothing)
 374   // when "blk_start" ("blk" for second version) is "NULL".
 375   virtual void alloc_block(HeapWord* blk_start, HeapWord* blk_end);
 376   virtual void alloc_block(HeapWord* blk, size_t size) {
 377     alloc_block(blk, blk + size);
 378   }
 379 
 380   // The following methods are useful and optimized for a
 381   // general, non-contiguous space.
 382 
 383   // Given a block [blk_start, blk_start + full_blk_size), and
 384   // a left_blk_size < full_blk_size, adjust the BOT to show two
 385   // blocks [blk_start, blk_start + left_blk_size) and
 386   // [blk_start + left_blk_size, blk_start + full_blk_size).
 387   // It is assumed (and verified in the non-product VM) that the
 388   // BOT was correct for the original block.
 389   void split_block(HeapWord* blk_start, size_t full_blk_size,
 390                            size_t left_blk_size);
 391 
 392   // Adjust the BOT to show that it has a single block in the
 393   // range [blk_start, blk_start + size). All necessary BOT
 394   // cards are adjusted, but _unallocated_block isn't.
 395   void single_block(HeapWord* blk_start, HeapWord* blk_end);
 396   void single_block(HeapWord* blk, size_t size) {
 397     single_block(blk, blk + size);
 398   }
 399 
 400   // Adjust BOT to show that it has a block in the range
 401   // [blk_start, blk_start + size). Only the first card
 402   // of BOT is touched. It is assumed (and verified in the
 403   // non-product VM) that the remaining cards of the block
 404   // are correct.
 405   void mark_block(HeapWord* blk_start, HeapWord* blk_end);
 406   void mark_block(HeapWord* blk, size_t size) {
 407     mark_block(blk, blk + size);
 408   }
 409 
 410   // Adjust _unallocated_block to indicate that a particular
 411   // block has been newly allocated or freed. It is assumed (and
 412   // verified in the non-product VM) that the BOT is correct for
 413   // the given block.
 414   inline void allocated(HeapWord* blk_start, HeapWord* blk_end) {
 415     // Verify that the BOT shows [blk, blk + blk_size) to be one block.
 416     verify_single_block(blk_start, blk_end);
 417     if (BlockOffsetArrayUseUnallocatedBlock) {
 418       _unallocated_block = MAX2(_unallocated_block, blk_end);
 419     }
 420   }
 421 
 422   inline void allocated(HeapWord* blk, size_t size) {
 423     allocated(blk, blk + size);
 424   }
 425 
 426   inline void freed(HeapWord* blk_start, HeapWord* blk_end);
 427 
 428   inline void freed(HeapWord* blk, size_t size);
 429 
 430   virtual HeapWord* block_start_unsafe(const void* addr);
 431   virtual HeapWord* block_start_unsafe_const(const void* addr) const;
 432 
 433   // Requires "addr" to be the start of a card and returns the
 434   // start of the block that contains the given address.
 435   HeapWord* block_start_careful(const void* addr) const;
 436 
 437   // If true, initialize array slots with no allocated blocks to zero.
 438   // Otherwise, make them point back to the front.
 439   bool init_to_zero() { return _init_to_zero; }
 440 
 441   // Verification & debugging - ensure that the offset table reflects the fact
 442   // that the block [blk_start, blk_end) or [blk, blk + size) is a
 443   // single block of storage. NOTE: can;t const this because of
 444   // call to non-const do_block_internal() below.
 445   inline void verify_single_block(HeapWord* blk_start, HeapWord* blk_end) {
 446     if (VerifyBlockOffsetArray) {
 447       do_block_internal(blk_start, blk_end, Action_check);
 448     }
 449   }
 450 
 451   inline void verify_single_block(HeapWord* blk, size_t size) {
 452     verify_single_block(blk, blk + size);
 453   }
 454 
 455   // Used by region verification. Checks that the contents of the
 456   // BOT reflect that there's a single object that spans the address
 457   // range [obj_start, obj_start + word_size); returns true if this is
 458   // the case, returns false if it's not.
 459   bool verify_for_object(HeapWord* obj_start, size_t word_size) const;
 460 
 461   // Verify that the given block is before _unallocated_block
 462   inline void verify_not_unallocated(HeapWord* blk_start,
 463                                      HeapWord* blk_end) const {
 464     if (BlockOffsetArrayUseUnallocatedBlock) {
 465       assert(blk_start < blk_end, "Block inconsistency?");
 466       assert(blk_end <= _unallocated_block, "_unallocated_block problem");
 467     }
 468   }
 469 
 470   inline void verify_not_unallocated(HeapWord* blk, size_t size) const {
 471     verify_not_unallocated(blk, blk + size);
 472   }
 473 
 474   void check_all_cards(size_t left_card, size_t right_card) const;
 475 
 476   virtual void print_on(outputStream* out) PRODUCT_RETURN;
 477 };
 478 
 479 // A subtype of BlockOffsetArray that takes advantage of the fact
 480 // that its underlying space is a ContiguousSpace, so that its "active"
 481 // region can be more efficiently tracked (than for a non-contiguous space).
 482 class G1BlockOffsetArrayContigSpace: public G1BlockOffsetArray {
 483   friend class VMStructs;
 484 
 485   // allocation boundary at which offset array must be updated
 486   HeapWord* _next_offset_threshold;
 487   size_t    _next_offset_index;      // index corresponding to that boundary
 488 
 489   // Work function to be called when allocation start crosses the next
 490   // threshold in the contig space.
 491   void alloc_block_work1(HeapWord* blk_start, HeapWord* blk_end) {
 492     alloc_block_work2(&_next_offset_threshold, &_next_offset_index,
 493                       blk_start, blk_end);
 494   }
 495 
 496  public:
 497   G1BlockOffsetArrayContigSpace(G1BlockOffsetSharedArray* array, MemRegion mr);
 498 
 499   // Initialize the threshold to reflect the first boundary after the
 500   // bottom of the covered region.
 501   HeapWord* initialize_threshold();
 502 
 503   // Zero out the entry for _bottom (offset will be zero).
 504   void      zero_bottom_entry();
 505 
 506   // Return the next threshold, the point at which the table should be
 507   // updated.
 508   HeapWord* threshold() const { return _next_offset_threshold; }
 509 
 510   // These must be guaranteed to work properly (i.e., do nothing)
 511   // when "blk_start" ("blk" for second version) is "NULL".  In this
 512   // implementation, that's true because NULL is represented as 0, and thus
 513   // never exceeds the "_next_offset_threshold".
 514   void alloc_block(HeapWord* blk_start, HeapWord* blk_end) {
 515     if (blk_end > _next_offset_threshold)
 516       alloc_block_work1(blk_start, blk_end);
 517   }
 518   void alloc_block(HeapWord* blk, size_t size) {
 519      alloc_block(blk, blk+size);
 520   }
 521 
 522   HeapWord* block_start_unsafe(const void* addr);
 523   HeapWord* block_start_unsafe_const(const void* addr) const;
 524 
 525   void set_for_starts_humongous(HeapWord* new_top);
 526 
 527   virtual void print_on(outputStream* out) PRODUCT_RETURN;
 528 };
 529 
 530 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_G1BLOCKOFFSETTABLE_HPP