1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  30 #include "gc_implementation/g1/survRateGroup.hpp"
  31 #include "gc_implementation/shared/ageTable.hpp"
  32 #include "gc_implementation/shared/spaceDecorator.hpp"
  33 #include "memory/space.inline.hpp"
  34 #include "memory/watermark.hpp"
  35 #include "utilities/macros.hpp"
  36 
  37 #if INCLUDE_ALL_GCS
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 class CompactibleSpace;
  50 class ContiguousSpace;
  51 class HeapRegionRemSet;
  52 class HeapRegionRemSetIterator;
  53 class HeapRegion;
  54 class HeapRegionSetBase;
  55 class nmethod;
  56 
  57 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
  58 #define HR_FORMAT_PARAMS(_hr_) \
  59                 (_hr_)->hrs_index(), \
  60                 (_hr_)->is_survivor() ? "S" : (_hr_)->is_young() ? "E" : \
  61                 (_hr_)->startsHumongous() ? "HS" : \
  62                 (_hr_)->continuesHumongous() ? "HC" : \
  63                 !(_hr_)->is_empty() ? "O" : "F", \
  64                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  65 
  66 // sentinel value for hrs_index
  67 #define G1_NULL_HRS_INDEX ((uint) -1)
  68 
  69 // A dirty card to oop closure for heap regions. It
  70 // knows how to get the G1 heap and how to use the bitmap
  71 // in the concurrent marker used by G1 to filter remembered
  72 // sets.
  73 
  74 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  75 public:
  76   // Specification of possible DirtyCardToOopClosure filtering.
  77   enum FilterKind {
  78     NoFilterKind,
  79     IntoCSFilterKind,
  80     OutOfRegionFilterKind
  81   };
  82 
  83 protected:
  84   HeapRegion* _hr;
  85   FilterKind _fk;
  86   G1CollectedHeap* _g1;
  87 
  88   // Walk the given memory region from bottom to (actual) top
  89   // looking for objects and applying the oop closure (_cl) to
  90   // them. The base implementation of this treats the area as
  91   // blocks, where a block may or may not be an object. Sub-
  92   // classes should override this to provide more accurate
  93   // or possibly more efficient walking.
  94   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  95 
  96 public:
  97   HeapRegionDCTOC(G1CollectedHeap* g1,
  98                   HeapRegion* hr, ExtendedOopClosure* cl,
  99                   CardTableModRefBS::PrecisionStyle precision,
 100                   FilterKind fk);
 101 };
 102 
 103 // The complicating factor is that BlockOffsetTable diverged
 104 // significantly, and we need functionality that is only in the G1 version.
 105 // So I copied that code, which led to an alternate G1 version of
 106 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
 107 // be reconciled, then G1OffsetTableContigSpace could go away.
 108 
 109 // The idea behind time stamps is the following. Doing a save_marks on
 110 // all regions at every GC pause is time consuming (if I remember
 111 // well, 10ms or so). So, we would like to do that only for regions
 112 // that are GC alloc regions. To achieve this, we use time
 113 // stamps. For every evacuation pause, G1CollectedHeap generates a
 114 // unique time stamp (essentially a counter that gets
 115 // incremented). Every time we want to call save_marks on a region,
 116 // we set the saved_mark_word to top and also copy the current GC
 117 // time stamp to the time stamp field of the space. Reading the
 118 // saved_mark_word involves checking the time stamp of the
 119 // region. If it is the same as the current GC time stamp, then we
 120 // can safely read the saved_mark_word field, as it is valid. If the
 121 // time stamp of the region is not the same as the current GC time
 122 // stamp, then we instead read top, as the saved_mark_word field is
 123 // invalid. Time stamps (on the regions and also on the
 124 // G1CollectedHeap) are reset at every cleanup (we iterate over
 125 // the regions anyway) and at the end of a Full GC. The current scheme
 126 // that uses sequential unsigned ints will fail only if we have 4b
 127 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 128 
 129 class G1OffsetTableContigSpace: public ContiguousSpace {
 130   friend class VMStructs;
 131  protected:
 132   G1BlockOffsetArrayContigSpace _offsets;
 133   Mutex _par_alloc_lock;
 134   volatile unsigned _gc_time_stamp;
 135   // When we need to retire an allocation region, while other threads
 136   // are also concurrently trying to allocate into it, we typically
 137   // allocate a dummy object at the end of the region to ensure that
 138   // no more allocations can take place in it. However, sometimes we
 139   // want to know where the end of the last "real" object we allocated
 140   // into the region was and this is what this keeps track.
 141   HeapWord* _pre_dummy_top;
 142 
 143  public:
 144   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 145                            MemRegion mr);
 146 
 147   void set_bottom(HeapWord* value);
 148   void set_end(HeapWord* value);
 149 
 150   virtual HeapWord* saved_mark_word() const;
 151   void record_top_and_timestamp();
 152   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 153   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 154 
 155   // See the comment above in the declaration of _pre_dummy_top for an
 156   // explanation of what it is.
 157   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 158     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 159     _pre_dummy_top = pre_dummy_top;
 160   }
 161   HeapWord* pre_dummy_top() {
 162     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 163   }
 164   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 165 
 166   virtual void clear(bool mangle_space);
 167 
 168   HeapWord* block_start(const void* p);
 169   HeapWord* block_start_const(const void* p) const;
 170 
 171   // Add offset table update.
 172   virtual HeapWord* allocate(size_t word_size);
 173   HeapWord* par_allocate(size_t word_size);
 174 
 175   // MarkSweep support phase3
 176   virtual HeapWord* initialize_threshold();
 177   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 178 
 179   virtual void print() const;
 180 
 181   void reset_bot() {
 182     _offsets.zero_bottom_entry();
 183     _offsets.initialize_threshold();
 184   }
 185 
 186   void update_bot_for_object(HeapWord* start, size_t word_size) {
 187     _offsets.alloc_block(start, word_size);
 188   }
 189 
 190   void print_bot_on(outputStream* out) {
 191     _offsets.print_on(out);
 192   }
 193 };
 194 
 195 class HeapRegion: public G1OffsetTableContigSpace {
 196   friend class VMStructs;
 197  private:
 198 
 199   enum HumongousType {
 200     NotHumongous = 0,
 201     StartsHumongous,
 202     ContinuesHumongous
 203   };
 204 
 205   // The remembered set for this region.
 206   // (Might want to make this "inline" later, to avoid some alloc failure
 207   // issues.)
 208   HeapRegionRemSet* _rem_set;
 209 
 210   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 211 
 212  protected:
 213   // The index of this region in the heap region sequence.
 214   uint  _hrs_index;
 215 
 216   HumongousType _humongous_type;
 217   // For a humongous region, region in which it starts.
 218   HeapRegion* _humongous_start_region;
 219   // For the start region of a humongous sequence, it's original end().
 220   HeapWord* _orig_end;
 221 
 222   // True iff the region is in current collection_set.
 223   bool _in_collection_set;
 224 
 225   // True iff an attempt to evacuate an object in the region failed.
 226   bool _evacuation_failed;
 227 
 228   // A heap region may be a member one of a number of special subsets, each
 229   // represented as linked lists through the field below.  Currently, these
 230   // sets include:
 231   //   The collection set.
 232   //   The set of allocation regions used in a collection pause.
 233   //   Spaces that may contain gray objects.
 234   HeapRegion* _next_in_special_set;
 235 
 236   // next region in the young "generation" region set
 237   HeapRegion* _next_young_region;
 238 
 239   // Next region whose cards need cleaning
 240   HeapRegion* _next_dirty_cards_region;
 241 
 242   // Fields used by the HeapRegionSetBase class and subclasses.
 243   HeapRegion* _next;
 244   HeapRegion* _prev;
 245 #ifdef ASSERT
 246   HeapRegionSetBase* _containing_set;
 247 #endif // ASSERT
 248   bool _pending_removal;
 249 
 250   // For parallel heapRegion traversal.
 251   jint _claimed;
 252 
 253   // We use concurrent marking to determine the amount of live data
 254   // in each heap region.
 255   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 256   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 257 
 258   // The calculated GC efficiency of the region.
 259   double _gc_efficiency;
 260 
 261   enum YoungType {
 262     NotYoung,                   // a region is not young
 263     Young,                      // a region is young
 264     Survivor                    // a region is young and it contains survivors
 265   };
 266 
 267   volatile YoungType _young_type;
 268   int  _young_index_in_cset;
 269   SurvRateGroup* _surv_rate_group;
 270   int  _age_index;
 271 
 272   // The start of the unmarked area. The unmarked area extends from this
 273   // word until the top and/or end of the region, and is the part
 274   // of the region for which no marking was done, i.e. objects may
 275   // have been allocated in this part since the last mark phase.
 276   // "prev" is the top at the start of the last completed marking.
 277   // "next" is the top at the start of the in-progress marking (if any.)
 278   HeapWord* _prev_top_at_mark_start;
 279   HeapWord* _next_top_at_mark_start;
 280   // If a collection pause is in progress, this is the top at the start
 281   // of that pause.
 282 
 283   void init_top_at_mark_start() {
 284     assert(_prev_marked_bytes == 0 &&
 285            _next_marked_bytes == 0,
 286            "Must be called after zero_marked_bytes.");
 287     HeapWord* bot = bottom();
 288     _prev_top_at_mark_start = bot;
 289     _next_top_at_mark_start = bot;
 290   }
 291 
 292   void set_young_type(YoungType new_type) {
 293     //assert(_young_type != new_type, "setting the same type" );
 294     // TODO: add more assertions here
 295     _young_type = new_type;
 296   }
 297 
 298   // Cached attributes used in the collection set policy information
 299 
 300   // The RSet length that was added to the total value
 301   // for the collection set.
 302   size_t _recorded_rs_length;
 303 
 304   // The predicted elapsed time that was added to total value
 305   // for the collection set.
 306   double _predicted_elapsed_time_ms;
 307 
 308   // The predicted number of bytes to copy that was added to
 309   // the total value for the collection set.
 310   size_t _predicted_bytes_to_copy;
 311 
 312  public:
 313   HeapRegion(uint hrs_index,
 314              G1BlockOffsetSharedArray* sharedOffsetArray,
 315              MemRegion mr);
 316 
 317   static int    LogOfHRGrainBytes;
 318   static int    LogOfHRGrainWords;
 319 
 320   static size_t GrainBytes;
 321   static size_t GrainWords;
 322   static size_t CardsPerRegion;
 323 
 324   static size_t align_up_to_region_byte_size(size_t sz) {
 325     return (sz + (size_t) GrainBytes - 1) &
 326                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 327   }
 328 
 329   static size_t max_region_size();
 330 
 331   // It sets up the heap region size (GrainBytes / GrainWords), as
 332   // well as other related fields that are based on the heap region
 333   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 334   // CardsPerRegion). All those fields are considered constant
 335   // throughout the JVM's execution, therefore they should only be set
 336   // up once during initialization time.
 337   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 338 
 339   enum ClaimValues {
 340     InitialClaimValue          = 0,
 341     FinalCountClaimValue       = 1,
 342     NoteEndClaimValue          = 2,
 343     ScrubRemSetClaimValue      = 3,
 344     ParVerifyClaimValue        = 4,
 345     RebuildRSClaimValue        = 5,
 346     ParEvacFailureClaimValue   = 6,
 347     AggregateCountClaimValue   = 7,
 348     VerifyCountClaimValue      = 8,
 349     ParMarkRootClaimValue      = 9
 350   };
 351 
 352   inline HeapWord* par_allocate_no_bot_updates(size_t word_size) {
 353     assert(is_young(), "we can only skip BOT updates on young regions");
 354     return ContiguousSpace::par_allocate(word_size);
 355   }
 356   inline HeapWord* allocate_no_bot_updates(size_t word_size) {
 357     assert(is_young(), "we can only skip BOT updates on young regions");
 358     return ContiguousSpace::allocate(word_size);
 359   }
 360 
 361   // If this region is a member of a HeapRegionSeq, the index in that
 362   // sequence, otherwise -1.
 363   uint hrs_index() const { return _hrs_index; }
 364 
 365   // The number of bytes marked live in the region in the last marking phase.
 366   size_t marked_bytes()    { return _prev_marked_bytes; }
 367   size_t live_bytes() {
 368     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 369   }
 370 
 371   // The number of bytes counted in the next marking.
 372   size_t next_marked_bytes() { return _next_marked_bytes; }
 373   // The number of bytes live wrt the next marking.
 374   size_t next_live_bytes() {
 375     return
 376       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 377   }
 378 
 379   // A lower bound on the amount of garbage bytes in the region.
 380   size_t garbage_bytes() {
 381     size_t used_at_mark_start_bytes =
 382       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 383     assert(used_at_mark_start_bytes >= marked_bytes(),
 384            "Can't mark more than we have.");
 385     return used_at_mark_start_bytes - marked_bytes();
 386   }
 387 
 388   // Return the amount of bytes we'll reclaim if we collect this
 389   // region. This includes not only the known garbage bytes in the
 390   // region but also any unallocated space in it, i.e., [top, end),
 391   // since it will also be reclaimed if we collect the region.
 392   size_t reclaimable_bytes() {
 393     size_t known_live_bytes = live_bytes();
 394     assert(known_live_bytes <= capacity(), "sanity");
 395     return capacity() - known_live_bytes;
 396   }
 397 
 398   // An upper bound on the number of live bytes in the region.
 399   size_t max_live_bytes() { return used() - garbage_bytes(); }
 400 
 401   void add_to_marked_bytes(size_t incr_bytes) {
 402     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 403     assert(_next_marked_bytes <= used(), "invariant" );
 404   }
 405 
 406   void zero_marked_bytes()      {
 407     _prev_marked_bytes = _next_marked_bytes = 0;
 408   }
 409 
 410   bool isHumongous() const { return _humongous_type != NotHumongous; }
 411   bool startsHumongous() const { return _humongous_type == StartsHumongous; }
 412   bool continuesHumongous() const { return _humongous_type == ContinuesHumongous; }
 413   // For a humongous region, region in which it starts.
 414   HeapRegion* humongous_start_region() const {
 415     return _humongous_start_region;
 416   }
 417 
 418   // Return the number of distinct regions that are covered by this region:
 419   // 1 if the region is not humongous, >= 1 if the region is humongous.
 420   uint region_num() const {
 421     if (!isHumongous()) {
 422       return 1U;
 423     } else {
 424       assert(startsHumongous(), "doesn't make sense on HC regions");
 425       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 426       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 427     }
 428   }
 429 
 430   // Return the index + 1 of the last HC regions that's associated
 431   // with this HS region.
 432   uint last_hc_index() const {
 433     assert(startsHumongous(), "don't call this otherwise");
 434     return hrs_index() + region_num();
 435   }
 436 
 437   // Same as Space::is_in_reserved, but will use the original size of the region.
 438   // The original size is different only for start humongous regions. They get
 439   // their _end set up to be the end of the last continues region of the
 440   // corresponding humongous object.
 441   bool is_in_reserved_raw(const void* p) const {
 442     return _bottom <= p && p < _orig_end;
 443   }
 444 
 445   // Makes the current region be a "starts humongous" region, i.e.,
 446   // the first region in a series of one or more contiguous regions
 447   // that will contain a single "humongous" object. The two parameters
 448   // are as follows:
 449   //
 450   // new_top : The new value of the top field of this region which
 451   // points to the end of the humongous object that's being
 452   // allocated. If there is more than one region in the series, top
 453   // will lie beyond this region's original end field and on the last
 454   // region in the series.
 455   //
 456   // new_end : The new value of the end field of this region which
 457   // points to the end of the last region in the series. If there is
 458   // one region in the series (namely: this one) end will be the same
 459   // as the original end of this region.
 460   //
 461   // Updating top and end as described above makes this region look as
 462   // if it spans the entire space taken up by all the regions in the
 463   // series and an single allocation moved its top to new_top. This
 464   // ensures that the space (capacity / allocated) taken up by all
 465   // humongous regions can be calculated by just looking at the
 466   // "starts humongous" regions and by ignoring the "continues
 467   // humongous" regions.
 468   void set_startsHumongous(HeapWord* new_top, HeapWord* new_end);
 469 
 470   // Makes the current region be a "continues humongous'
 471   // region. first_hr is the "start humongous" region of the series
 472   // which this region will be part of.
 473   void set_continuesHumongous(HeapRegion* first_hr);
 474 
 475   // Unsets the humongous-related fields on the region.
 476   void set_notHumongous();
 477 
 478   // If the region has a remembered set, return a pointer to it.
 479   HeapRegionRemSet* rem_set() const {
 480     return _rem_set;
 481   }
 482 
 483   // True iff the region is in current collection_set.
 484   bool in_collection_set() const {
 485     return _in_collection_set;
 486   }
 487   void set_in_collection_set(bool b) {
 488     _in_collection_set = b;
 489   }
 490   HeapRegion* next_in_collection_set() {
 491     assert(in_collection_set(), "should only invoke on member of CS.");
 492     assert(_next_in_special_set == NULL ||
 493            _next_in_special_set->in_collection_set(),
 494            "Malformed CS.");
 495     return _next_in_special_set;
 496   }
 497   void set_next_in_collection_set(HeapRegion* r) {
 498     assert(in_collection_set(), "should only invoke on member of CS.");
 499     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 500     _next_in_special_set = r;
 501   }
 502 
 503   // Methods used by the HeapRegionSetBase class and subclasses.
 504 
 505   // Getter and setter for the next and prev fields used to link regions into
 506   // linked lists.
 507   HeapRegion* next()              { return _next; }
 508   HeapRegion* prev()              { return _prev; }
 509 
 510   void set_next(HeapRegion* next) { _next = next; }
 511   void set_prev(HeapRegion* prev) { _prev = prev; }
 512 
 513   // Every region added to a set is tagged with a reference to that
 514   // set. This is used for doing consistency checking to make sure that
 515   // the contents of a set are as they should be and it's only
 516   // available in non-product builds.
 517 #ifdef ASSERT
 518   void set_containing_set(HeapRegionSetBase* containing_set) {
 519     assert((containing_set == NULL && _containing_set != NULL) ||
 520            (containing_set != NULL && _containing_set == NULL),
 521            err_msg("containing_set: "PTR_FORMAT" "
 522                    "_containing_set: "PTR_FORMAT,
 523                    p2i(containing_set), p2i(_containing_set)));
 524 
 525     _containing_set = containing_set;
 526   }
 527 
 528   HeapRegionSetBase* containing_set() { return _containing_set; }
 529 #else // ASSERT
 530   void set_containing_set(HeapRegionSetBase* containing_set) { }
 531 
 532   // containing_set() is only used in asserts so there's no reason
 533   // to provide a dummy version of it.
 534 #endif // ASSERT
 535 
 536   // If we want to remove regions from a list in bulk we can simply tag
 537   // them with the pending_removal tag and call the
 538   // remove_all_pending() method on the list.
 539 
 540   bool pending_removal() { return _pending_removal; }
 541 
 542   void set_pending_removal(bool pending_removal) {
 543     if (pending_removal) {
 544       assert(!_pending_removal && containing_set() != NULL,
 545              "can only set pending removal to true if it's false and "
 546              "the region belongs to a region set");
 547     } else {
 548       assert( _pending_removal && containing_set() == NULL,
 549               "can only set pending removal to false if it's true and "
 550               "the region does not belong to a region set");
 551     }
 552 
 553     _pending_removal = pending_removal;
 554   }
 555 
 556   HeapRegion* get_next_young_region() { return _next_young_region; }
 557   void set_next_young_region(HeapRegion* hr) {
 558     _next_young_region = hr;
 559   }
 560 
 561   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 562   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 563   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 564   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 565 
 566   HeapWord* orig_end() { return _orig_end; }
 567 
 568   // Reset HR stuff to default values.
 569   void hr_clear(bool par, bool clear_space, bool locked = false);
 570   void par_clear();
 571 
 572   // Get the start of the unmarked area in this region.
 573   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 574   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 575 
 576   // Note the start or end of marking. This tells the heap region
 577   // that the collector is about to start or has finished (concurrently)
 578   // marking the heap.
 579 
 580   // Notify the region that concurrent marking is starting. Initialize
 581   // all fields related to the next marking info.
 582   inline void note_start_of_marking();
 583 
 584   // Notify the region that concurrent marking has finished. Copy the
 585   // (now finalized) next marking info fields into the prev marking
 586   // info fields.
 587   inline void note_end_of_marking();
 588 
 589   // Notify the region that it will be used as to-space during a GC
 590   // and we are about to start copying objects into it.
 591   inline void note_start_of_copying(bool during_initial_mark);
 592 
 593   // Notify the region that it ceases being to-space during a GC and
 594   // we will not copy objects into it any more.
 595   inline void note_end_of_copying(bool during_initial_mark);
 596 
 597   // Notify the region that we are about to start processing
 598   // self-forwarded objects during evac failure handling.
 599   void note_self_forwarding_removal_start(bool during_initial_mark,
 600                                           bool during_conc_mark);
 601 
 602   // Notify the region that we have finished processing self-forwarded
 603   // objects during evac failure handling.
 604   void note_self_forwarding_removal_end(bool during_initial_mark,
 605                                         bool during_conc_mark,
 606                                         size_t marked_bytes);
 607 
 608   // Returns "false" iff no object in the region was allocated when the
 609   // last mark phase ended.
 610   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 611 
 612   void reset_during_compaction() {
 613     assert(isHumongous() && startsHumongous(),
 614            "should only be called for starts humongous regions");
 615 
 616     zero_marked_bytes();
 617     init_top_at_mark_start();
 618   }
 619 
 620   void calc_gc_efficiency(void);
 621   double gc_efficiency() { return _gc_efficiency;}
 622 
 623   bool is_young() const     { return _young_type != NotYoung; }
 624   bool is_survivor() const  { return _young_type == Survivor; }
 625 
 626   int  young_index_in_cset() const { return _young_index_in_cset; }
 627   void set_young_index_in_cset(int index) {
 628     assert( (index == -1) || is_young(), "pre-condition" );
 629     _young_index_in_cset = index;
 630   }
 631 
 632   int age_in_surv_rate_group() {
 633     assert( _surv_rate_group != NULL, "pre-condition" );
 634     assert( _age_index > -1, "pre-condition" );
 635     return _surv_rate_group->age_in_group(_age_index);
 636   }
 637 
 638   void record_surv_words_in_group(size_t words_survived) {
 639     assert( _surv_rate_group != NULL, "pre-condition" );
 640     assert( _age_index > -1, "pre-condition" );
 641     int age_in_group = age_in_surv_rate_group();
 642     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 643   }
 644 
 645   int age_in_surv_rate_group_cond() {
 646     if (_surv_rate_group != NULL)
 647       return age_in_surv_rate_group();
 648     else
 649       return -1;
 650   }
 651 
 652   SurvRateGroup* surv_rate_group() {
 653     return _surv_rate_group;
 654   }
 655 
 656   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 657     assert( surv_rate_group != NULL, "pre-condition" );
 658     assert( _surv_rate_group == NULL, "pre-condition" );
 659     assert( is_young(), "pre-condition" );
 660 
 661     _surv_rate_group = surv_rate_group;
 662     _age_index = surv_rate_group->next_age_index();
 663   }
 664 
 665   void uninstall_surv_rate_group() {
 666     if (_surv_rate_group != NULL) {
 667       assert( _age_index > -1, "pre-condition" );
 668       assert( is_young(), "pre-condition" );
 669 
 670       _surv_rate_group = NULL;
 671       _age_index = -1;
 672     } else {
 673       assert( _age_index == -1, "pre-condition" );
 674     }
 675   }
 676 
 677   void set_young() { set_young_type(Young); }
 678 
 679   void set_survivor() { set_young_type(Survivor); }
 680 
 681   void set_not_young() { set_young_type(NotYoung); }
 682 
 683   // Determine if an object has been allocated since the last
 684   // mark performed by the collector. This returns true iff the object
 685   // is within the unmarked area of the region.
 686   bool obj_allocated_since_prev_marking(oop obj) const {
 687     return (HeapWord *) obj >= prev_top_at_mark_start();
 688   }
 689   bool obj_allocated_since_next_marking(oop obj) const {
 690     return (HeapWord *) obj >= next_top_at_mark_start();
 691   }
 692 
 693   // For parallel heapRegion traversal.
 694   bool claimHeapRegion(int claimValue);
 695   jint claim_value() { return _claimed; }
 696   // Use this carefully: only when you're sure no one is claiming...
 697   void set_claim_value(int claimValue) { _claimed = claimValue; }
 698 
 699   // Returns the "evacuation_failed" property of the region.
 700   bool evacuation_failed() { return _evacuation_failed; }
 701 
 702   // Sets the "evacuation_failed" property of the region.
 703   void set_evacuation_failed(bool b) {
 704     _evacuation_failed = b;
 705 
 706     if (b) {
 707       _next_marked_bytes = 0;
 708     }
 709   }
 710 
 711   // Requires that "mr" be entirely within the region.
 712   // Apply "cl->do_object" to all objects that intersect with "mr".
 713   // If the iteration encounters an unparseable portion of the region,
 714   // or if "cl->abort()" is true after a closure application,
 715   // terminate the iteration and return the address of the start of the
 716   // subregion that isn't done.  (The two can be distinguished by querying
 717   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 718   // completed.
 719   HeapWord*
 720   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 721 
 722   // filter_young: if true and the region is a young region then we
 723   // skip the iteration.
 724   // card_ptr: if not NULL, and we decide that the card is not young
 725   // and we iterate over it, we'll clean the card before we start the
 726   // iteration.
 727   HeapWord*
 728   oops_on_card_seq_iterate_careful(MemRegion mr,
 729                                    FilterOutOfRegionClosure* cl,
 730                                    bool filter_young,
 731                                    jbyte* card_ptr);
 732 
 733   // A version of block start that is guaranteed to find *some* block
 734   // boundary at or before "p", but does not object iteration, and may
 735   // therefore be used safely when the heap is unparseable.
 736   HeapWord* block_start_careful(const void* p) const {
 737     return _offsets.block_start_careful(p);
 738   }
 739 
 740   // Requires that "addr" is within the region.  Returns the start of the
 741   // first ("careful") block that starts at or after "addr", or else the
 742   // "end" of the region if there is no such block.
 743   HeapWord* next_block_start_careful(HeapWord* addr);
 744 
 745   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 746   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 747   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 748 
 749   void set_recorded_rs_length(size_t rs_length) {
 750     _recorded_rs_length = rs_length;
 751   }
 752 
 753   void set_predicted_elapsed_time_ms(double ms) {
 754     _predicted_elapsed_time_ms = ms;
 755   }
 756 
 757   void set_predicted_bytes_to_copy(size_t bytes) {
 758     _predicted_bytes_to_copy = bytes;
 759   }
 760 
 761   virtual CompactibleSpace* next_compaction_space() const;
 762 
 763   virtual void reset_after_compaction();
 764 
 765   // Routines for managing a list of code roots (attached to the
 766   // this region's RSet) that point into this heap region.
 767   void add_strong_code_root(nmethod* nm);
 768   void remove_strong_code_root(nmethod* nm);
 769 
 770   // During a collection, migrate the successfully evacuated
 771   // strong code roots that referenced into this region to the
 772   // new regions that they now point into. Unsuccessfully
 773   // evacuated code roots are not migrated.
 774   void migrate_strong_code_roots();
 775 
 776   // Applies blk->do_code_blob() to each of the entries in
 777   // the strong code roots list for this region
 778   void strong_code_roots_do(CodeBlobClosure* blk) const;
 779 
 780   // Verify that the entries on the strong code root list for this
 781   // region are live and include at least one pointer into this region.
 782   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 783 
 784   void print() const;
 785   void print_on(outputStream* st) const;
 786 
 787   // vo == UsePrevMarking  -> use "prev" marking information,
 788   // vo == UseNextMarking -> use "next" marking information
 789   // vo == UseMarkWord    -> use the mark word in the object header
 790   //
 791   // NOTE: Only the "prev" marking information is guaranteed to be
 792   // consistent most of the time, so most calls to this should use
 793   // vo == UsePrevMarking.
 794   // Currently, there is only one case where this is called with
 795   // vo == UseNextMarking, which is to verify the "next" marking
 796   // information at the end of remark.
 797   // Currently there is only one place where this is called with
 798   // vo == UseMarkWord, which is to verify the marking during a
 799   // full GC.
 800   void verify(VerifyOption vo, bool *failures) const;
 801 
 802   // Override; it uses the "prev" marking information
 803   virtual void verify() const;
 804 };
 805 
 806 // HeapRegionClosure is used for iterating over regions.
 807 // Terminates the iteration when the "doHeapRegion" method returns "true".
 808 class HeapRegionClosure : public StackObj {
 809   friend class HeapRegionSeq;
 810   friend class G1CollectedHeap;
 811 
 812   bool _complete;
 813   void incomplete() { _complete = false; }
 814 
 815  public:
 816   HeapRegionClosure(): _complete(true) {}
 817 
 818   // Typically called on each region until it returns true.
 819   virtual bool doHeapRegion(HeapRegion* r) = 0;
 820 
 821   // True after iteration if the closure was applied to all heap regions
 822   // and returned "false" in all cases.
 823   bool complete() { return _complete; }
 824 };
 825 
 826 #endif // INCLUDE_ALL_GCS
 827 
 828 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP