1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  26 #define SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP
  27 
  28 #include "gc_implementation/g1/g1AllocationContext.hpp"
  29 #include "gc_implementation/g1/g1BlockOffsetTable.hpp"
  30 #include "gc_implementation/g1/g1_specialized_oop_closures.hpp"
  31 #include "gc_implementation/g1/heapRegionType.hpp"
  32 #include "gc_implementation/g1/survRateGroup.hpp"
  33 #include "gc_implementation/shared/ageTable.hpp"
  34 #include "gc_implementation/shared/spaceDecorator.hpp"
  35 #include "memory/space.inline.hpp"
  36 #include "memory/watermark.hpp"
  37 #include "utilities/macros.hpp"
  38 
  39 // A HeapRegion is the smallest piece of a G1CollectedHeap that
  40 // can be collected independently.
  41 
  42 // NOTE: Although a HeapRegion is a Space, its
  43 // Space::initDirtyCardClosure method must not be called.
  44 // The problem is that the existence of this method breaks
  45 // the independence of barrier sets from remembered sets.
  46 // The solution is to remove this method from the definition
  47 // of a Space.
  48 
  49 class HeapRegionRemSet;
  50 class HeapRegionRemSetIterator;
  51 class HeapRegion;
  52 class HeapRegionSetBase;
  53 class nmethod;
  54 
  55 #define HR_FORMAT "%u:(%s)["PTR_FORMAT","PTR_FORMAT","PTR_FORMAT"]"
  56 #define HR_FORMAT_PARAMS(_hr_) \
  57                 (_hr_)->hrm_index(), \
  58                 (_hr_)->get_short_type_str(), \
  59                 p2i((_hr_)->bottom()), p2i((_hr_)->top()), p2i((_hr_)->end())
  60 
  61 // sentinel value for hrm_index
  62 #define G1_NO_HRM_INDEX ((uint) -1)
  63 
  64 // A dirty card to oop closure for heap regions. It
  65 // knows how to get the G1 heap and how to use the bitmap
  66 // in the concurrent marker used by G1 to filter remembered
  67 // sets.
  68 
  69 class HeapRegionDCTOC : public DirtyCardToOopClosure {
  70 private:
  71   HeapRegion* _hr;
  72   G1ParPushHeapRSClosure* _rs_scan;
  73   G1CollectedHeap* _g1;
  74 
  75   // Walk the given memory region from bottom to (actual) top
  76   // looking for objects and applying the oop closure (_cl) to
  77   // them. The base implementation of this treats the area as
  78   // blocks, where a block may or may not be an object. Sub-
  79   // classes should override this to provide more accurate
  80   // or possibly more efficient walking.
  81   void walk_mem_region(MemRegion mr, HeapWord* bottom, HeapWord* top);
  82 
  83 public:
  84   HeapRegionDCTOC(G1CollectedHeap* g1,
  85                   HeapRegion* hr, G1ParPushHeapRSClosure* cl,
  86                   CardTableModRefBS::PrecisionStyle precision);
  87 };
  88 
  89 // The complicating factor is that BlockOffsetTable diverged
  90 // significantly, and we need functionality that is only in the G1 version.
  91 // So I copied that code, which led to an alternate G1 version of
  92 // OffsetTableContigSpace.  If the two versions of BlockOffsetTable could
  93 // be reconciled, then G1OffsetTableContigSpace could go away.
  94 
  95 // The idea behind time stamps is the following. We want to keep track of
  96 // the highest address where it's safe to scan objects for each region.
  97 // This is only relevant for current GC alloc regions so we keep a time stamp
  98 // per region to determine if the region has been allocated during the current
  99 // GC or not. If the time stamp is current we report a scan_top value which
 100 // was saved at the end of the previous GC for retained alloc regions and which is
 101 // equal to the bottom for all other regions.
 102 // There is a race between card scanners and allocating gc workers where we must ensure
 103 // that card scanners do not read the memory allocated by the gc workers.
 104 // In order to enforce that, we must not return a value of _top which is more recent than the
 105 // time stamp. This is due to the fact that a region may become a gc alloc region at
 106 // some point after we've read the timestamp value as being < the current time stamp.
 107 // The time stamps are re-initialized to zero at cleanup and at Full GCs.
 108 // The current scheme that uses sequential unsigned ints will fail only if we have 4b
 109 // evacuation pauses between two cleanups, which is _highly_ unlikely.
 110 class G1OffsetTableContigSpace: public CompactibleSpace {
 111   friend class VMStructs;
 112   HeapWord* _top;
 113   HeapWord* volatile _scan_top;
 114  protected:
 115   G1BlockOffsetArrayContigSpace _offsets;
 116   Mutex _par_alloc_lock;
 117   volatile unsigned _gc_time_stamp;
 118   // When we need to retire an allocation region, while other threads
 119   // are also concurrently trying to allocate into it, we typically
 120   // allocate a dummy object at the end of the region to ensure that
 121   // no more allocations can take place in it. However, sometimes we
 122   // want to know where the end of the last "real" object we allocated
 123   // into the region was and this is what this keeps track.
 124   HeapWord* _pre_dummy_top;
 125 
 126  public:
 127   G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
 128                            MemRegion mr);
 129 
 130   void set_top(HeapWord* value) { _top = value; }
 131   HeapWord* top() const { return _top; }
 132 
 133  protected:
 134   // Reset the G1OffsetTableContigSpace.
 135   virtual void initialize(MemRegion mr, bool clear_space, bool mangle_space);
 136 
 137   HeapWord** top_addr() { return &_top; }
 138   // Allocation helpers (return NULL if full).
 139   inline HeapWord* allocate_impl(size_t word_size, HeapWord* end_value);
 140   inline HeapWord* par_allocate_impl(size_t word_size, HeapWord* end_value);
 141 
 142  public:
 143   void reset_after_compaction() { set_top(compaction_top()); }
 144 
 145   size_t used() const { return byte_size(bottom(), top()); }
 146   size_t free() const { return byte_size(top(), end()); }
 147   bool is_free_block(const HeapWord* p) const { return p >= top(); }
 148 
 149   MemRegion used_region() const { return MemRegion(bottom(), top()); }
 150 
 151   void object_iterate(ObjectClosure* blk);
 152   void safe_object_iterate(ObjectClosure* blk);
 153 
 154   void set_bottom(HeapWord* value);
 155   void set_end(HeapWord* value);
 156 
 157   HeapWord* scan_top() const;
 158   void record_timestamp();
 159   void reset_gc_time_stamp() { _gc_time_stamp = 0; }
 160   unsigned get_gc_time_stamp() { return _gc_time_stamp; }
 161   void record_retained_region();
 162 
 163   // See the comment above in the declaration of _pre_dummy_top for an
 164   // explanation of what it is.
 165   void set_pre_dummy_top(HeapWord* pre_dummy_top) {
 166     assert(is_in(pre_dummy_top) && pre_dummy_top <= top(), "pre-condition");
 167     _pre_dummy_top = pre_dummy_top;
 168   }
 169   HeapWord* pre_dummy_top() {
 170     return (_pre_dummy_top == NULL) ? top() : _pre_dummy_top;
 171   }
 172   void reset_pre_dummy_top() { _pre_dummy_top = NULL; }
 173 
 174   virtual void clear(bool mangle_space);
 175 
 176   HeapWord* block_start(const void* p);
 177   HeapWord* block_start_const(const void* p) const;
 178 
 179   // Add offset table update.
 180   virtual HeapWord* allocate(size_t word_size);
 181   HeapWord* par_allocate(size_t word_size);
 182 
 183   HeapWord* saved_mark_word() const { ShouldNotReachHere(); return NULL; }
 184 
 185   // MarkSweep support phase3
 186   virtual HeapWord* initialize_threshold();
 187   virtual HeapWord* cross_threshold(HeapWord* start, HeapWord* end);
 188 
 189   virtual void print() const;
 190 
 191   void reset_bot() {
 192     _offsets.reset_bot();
 193   }
 194 
 195   void print_bot_on(outputStream* out) {
 196     _offsets.print_on(out);
 197   }
 198 };
 199 
 200 class HeapRegion: public G1OffsetTableContigSpace {
 201   friend class VMStructs;
 202   // Allow scan_and_forward to call (private) overrides for auxiliary functions on this class
 203   template <typename SpaceType>
 204   friend void CompactibleSpace::scan_and_forward(SpaceType* space, CompactPoint* cp);
 205  private:
 206 
 207   // The remembered set for this region.
 208   // (Might want to make this "inline" later, to avoid some alloc failure
 209   // issues.)
 210   HeapRegionRemSet* _rem_set;
 211 
 212   G1BlockOffsetArrayContigSpace* offsets() { return &_offsets; }
 213 
 214   // Auxiliary functions for scan_and_forward support.
 215   // See comments for CompactibleSpace for more information.
 216   inline HeapWord* scan_limit() const {
 217     return top();
 218   }
 219 
 220   inline bool scanned_block_is_obj(const HeapWord* addr) const {
 221     return true; // Always true, since scan_limit is top
 222   }
 223 
 224   inline size_t scanned_block_size(const HeapWord* addr) const {
 225     return HeapRegion::block_size(addr); // Avoid virtual call
 226   }
 227 
 228  protected:
 229   // The index of this region in the heap region sequence.
 230   uint  _hrm_index;
 231 
 232   AllocationContext_t _allocation_context;
 233 
 234   HeapRegionType _type;
 235 
 236   // For a humongous region, region in which it starts.
 237   HeapRegion* _humongous_start_region;
 238   // True iff the region is in current collection_set.
 239   bool _in_collection_set;
 240 
 241   // True iff an attempt to evacuate an object in the region failed.
 242   bool _evacuation_failed;
 243 
 244   // A heap region may be a member one of a number of special subsets, each
 245   // represented as linked lists through the field below.  Currently, there
 246   // is only one set:
 247   //   The collection set.
 248   HeapRegion* _next_in_special_set;
 249 
 250   // next region in the young "generation" region set
 251   HeapRegion* _next_young_region;
 252 
 253   // Next region whose cards need cleaning
 254   HeapRegion* _next_dirty_cards_region;
 255 
 256   // Fields used by the HeapRegionSetBase class and subclasses.
 257   HeapRegion* _next;
 258   HeapRegion* _prev;
 259 #ifdef ASSERT
 260   HeapRegionSetBase* _containing_set;
 261 #endif // ASSERT
 262 
 263   // We use concurrent marking to determine the amount of live data
 264   // in each heap region.
 265   size_t _prev_marked_bytes;    // Bytes known to be live via last completed marking.
 266   size_t _next_marked_bytes;    // Bytes known to be live via in-progress marking.
 267 
 268   // The calculated GC efficiency of the region.
 269   double _gc_efficiency;
 270 
 271   int  _young_index_in_cset;
 272   SurvRateGroup* _surv_rate_group;
 273   int  _age_index;
 274 
 275   // The start of the unmarked area. The unmarked area extends from this
 276   // word until the top and/or end of the region, and is the part
 277   // of the region for which no marking was done, i.e. objects may
 278   // have been allocated in this part since the last mark phase.
 279   // "prev" is the top at the start of the last completed marking.
 280   // "next" is the top at the start of the in-progress marking (if any.)
 281   HeapWord* _prev_top_at_mark_start;
 282   HeapWord* _next_top_at_mark_start;
 283   // If a collection pause is in progress, this is the top at the start
 284   // of that pause.
 285 
 286   void init_top_at_mark_start() {
 287     assert(_prev_marked_bytes == 0 &&
 288            _next_marked_bytes == 0,
 289            "Must be called after zero_marked_bytes.");
 290     HeapWord* bot = bottom();
 291     _prev_top_at_mark_start = bot;
 292     _next_top_at_mark_start = bot;
 293   }
 294 
 295   // Cached attributes used in the collection set policy information
 296 
 297   // The RSet length that was added to the total value
 298   // for the collection set.
 299   size_t _recorded_rs_length;
 300 
 301   // The predicted elapsed time that was added to total value
 302   // for the collection set.
 303   double _predicted_elapsed_time_ms;
 304 
 305   // The predicted number of bytes to copy that was added to
 306   // the total value for the collection set.
 307   size_t _predicted_bytes_to_copy;
 308 
 309  public:
 310   HeapRegion(uint hrm_index,
 311              G1BlockOffsetSharedArray* sharedOffsetArray,
 312              MemRegion mr);
 313 
 314   // Initializing the HeapRegion not only resets the data structure, but also
 315   // resets the BOT for that heap region.
 316   // The default values for clear_space means that we will do the clearing if
 317   // there's clearing to be done ourselves. We also always mangle the space.
 318   virtual void initialize(MemRegion mr, bool clear_space = false, bool mangle_space = SpaceDecorator::Mangle);
 319 
 320   static int    LogOfHRGrainBytes;
 321   static int    LogOfHRGrainWords;
 322 
 323   static size_t GrainBytes;
 324   static size_t GrainWords;
 325   static size_t CardsPerRegion;
 326 
 327   static size_t align_up_to_region_byte_size(size_t sz) {
 328     return (sz + (size_t) GrainBytes - 1) &
 329                                       ~((1 << (size_t) LogOfHRGrainBytes) - 1);
 330   }
 331 
 332   static size_t max_region_size();
 333 
 334   // It sets up the heap region size (GrainBytes / GrainWords), as
 335   // well as other related fields that are based on the heap region
 336   // size (LogOfHRGrainBytes / LogOfHRGrainWords /
 337   // CardsPerRegion). All those fields are considered constant
 338   // throughout the JVM's execution, therefore they should only be set
 339   // up once during initialization time.
 340   static void setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size);
 341 
 342   // All allocated blocks are occupied by objects in a HeapRegion
 343   bool block_is_obj(const HeapWord* p) const;
 344 
 345   // Returns the object size for all valid block starts
 346   // and the amount of unallocated words if called on top()
 347   size_t block_size(const HeapWord* p) const;
 348 
 349   // Override for scan_and_forward support.
 350   void prepare_for_compaction(CompactPoint* cp);
 351 
 352   inline HeapWord* par_allocate_no_bot_updates(size_t word_size);
 353   inline HeapWord* allocate_no_bot_updates(size_t word_size);
 354 
 355   // If this region is a member of a HeapRegionManager, the index in that
 356   // sequence, otherwise -1.
 357   uint hrm_index() const { return _hrm_index; }
 358 
 359   // The number of bytes marked live in the region in the last marking phase.
 360   size_t marked_bytes()    { return _prev_marked_bytes; }
 361   size_t live_bytes() {
 362     return (top() - prev_top_at_mark_start()) * HeapWordSize + marked_bytes();
 363   }
 364 
 365   // The number of bytes counted in the next marking.
 366   size_t next_marked_bytes() { return _next_marked_bytes; }
 367   // The number of bytes live wrt the next marking.
 368   size_t next_live_bytes() {
 369     return
 370       (top() - next_top_at_mark_start()) * HeapWordSize + next_marked_bytes();
 371   }
 372 
 373   // A lower bound on the amount of garbage bytes in the region.
 374   size_t garbage_bytes() {
 375     size_t used_at_mark_start_bytes =
 376       (prev_top_at_mark_start() - bottom()) * HeapWordSize;
 377     assert(used_at_mark_start_bytes >= marked_bytes(),
 378            "Can't mark more than we have.");
 379     return used_at_mark_start_bytes - marked_bytes();
 380   }
 381 
 382   // Return the amount of bytes we'll reclaim if we collect this
 383   // region. This includes not only the known garbage bytes in the
 384   // region but also any unallocated space in it, i.e., [top, end),
 385   // since it will also be reclaimed if we collect the region.
 386   size_t reclaimable_bytes() {
 387     size_t known_live_bytes = live_bytes();
 388     assert(known_live_bytes <= capacity(), "sanity");
 389     return capacity() - known_live_bytes;
 390   }
 391 
 392   // An upper bound on the number of live bytes in the region.
 393   size_t max_live_bytes() { return used() - garbage_bytes(); }
 394 
 395   void add_to_marked_bytes(size_t incr_bytes) {
 396     _next_marked_bytes = _next_marked_bytes + incr_bytes;
 397     assert(_next_marked_bytes <= used(), "invariant" );
 398   }
 399 
 400   void zero_marked_bytes()      {
 401     _prev_marked_bytes = _next_marked_bytes = 0;
 402   }
 403 
 404   const char* get_type_str() const { return _type.get_str(); }
 405   const char* get_short_type_str() const { return _type.get_short_str(); }
 406 
 407   bool is_free() const { return _type.is_free(); }
 408 
 409   bool is_young()    const { return _type.is_young();    }
 410   bool is_eden()     const { return _type.is_eden();     }
 411   bool is_survivor() const { return _type.is_survivor(); }
 412 
 413   bool is_humongous() const { return _type.is_humongous(); }
 414   bool is_starts_humongous() const { return _type.is_starts_humongous(); }
 415   bool is_continues_humongous() const { return _type.is_continues_humongous();   }
 416 
 417   bool is_old() const { return _type.is_old(); }
 418 
 419   // For a humongous region, region in which it starts.
 420   HeapRegion* humongous_start_region() const {
 421     return _humongous_start_region;
 422   }
 423 
 424   // Return the number of distinct regions that are covered by this region:
 425   // 1 if the region is not humongous, >= 1 if the region is humongous.
 426   uint region_num() const {
 427     if (!is_humongous()) {
 428       return 1U;
 429     } else {
 430       assert(is_starts_humongous(), "doesn't make sense on HC regions");
 431       assert(capacity() % HeapRegion::GrainBytes == 0, "sanity");
 432       return (uint) (capacity() >> HeapRegion::LogOfHRGrainBytes);
 433     }
 434   }
 435 
 436   // Return the index + 1 of the last HC regions that's associated
 437   // with this HS region.
 438   uint last_hc_index() const {
 439     assert(is_starts_humongous(), "don't call this otherwise");
 440     return hrm_index() + region_num();
 441   }
 442 
 443   // Same as Space::is_in_reserved, but will use the original size of the region.
 444   // The original size is different only for start humongous regions. They get
 445   // their _end set up to be the end of the last continues region of the
 446   // corresponding humongous object.
 447   bool is_in_reserved_raw(const void* p) const {
 448     return _bottom <= p && p < orig_end();
 449   }
 450 
 451   // Makes the current region be a "starts humongous" region, i.e.,
 452   // the first region in a series of one or more contiguous regions
 453   // that will contain a single "humongous" object. The two parameters
 454   // are as follows:
 455   //
 456   // new_top : The new value of the top field of this region which
 457   // points to the end of the humongous object that's being
 458   // allocated. If there is more than one region in the series, top
 459   // will lie beyond this region's original end field and on the last
 460   // region in the series.
 461   //
 462   // new_end : The new value of the end field of this region which
 463   // points to the end of the last region in the series. If there is
 464   // one region in the series (namely: this one) end will be the same
 465   // as the original end of this region.
 466   //
 467   // Updating top and end as described above makes this region look as
 468   // if it spans the entire space taken up by all the regions in the
 469   // series and an single allocation moved its top to new_top. This
 470   // ensures that the space (capacity / allocated) taken up by all
 471   // humongous regions can be calculated by just looking at the
 472   // "starts humongous" regions and by ignoring the "continues
 473   // humongous" regions.
 474   void set_starts_humongous(HeapWord* new_top, HeapWord* new_end);
 475 
 476   // Makes the current region be a "continues humongous'
 477   // region. first_hr is the "start humongous" region of the series
 478   // which this region will be part of.
 479   void set_continues_humongous(HeapRegion* first_hr);
 480 
 481   // Unsets the humongous-related fields on the region.
 482   void clear_humongous();
 483 
 484   // If the region has a remembered set, return a pointer to it.
 485   HeapRegionRemSet* rem_set() const {
 486     return _rem_set;
 487   }
 488 
 489   // True iff the region is in current collection_set.
 490   bool in_collection_set() const {
 491     return _in_collection_set;
 492   }
 493   void set_in_collection_set(bool b) {
 494     _in_collection_set = b;
 495   }
 496   HeapRegion* next_in_collection_set() {
 497     assert(in_collection_set(), "should only invoke on member of CS.");
 498     assert(_next_in_special_set == NULL ||
 499            _next_in_special_set->in_collection_set(),
 500            "Malformed CS.");
 501     return _next_in_special_set;
 502   }
 503   void set_next_in_collection_set(HeapRegion* r) {
 504     assert(in_collection_set(), "should only invoke on member of CS.");
 505     assert(r == NULL || r->in_collection_set(), "Malformed CS.");
 506     _next_in_special_set = r;
 507   }
 508 
 509   void set_allocation_context(AllocationContext_t context) {
 510     _allocation_context = context;
 511   }
 512 
 513   AllocationContext_t  allocation_context() const {
 514     return _allocation_context;
 515   }
 516 
 517   // Methods used by the HeapRegionSetBase class and subclasses.
 518 
 519   // Getter and setter for the next and prev fields used to link regions into
 520   // linked lists.
 521   HeapRegion* next()              { return _next; }
 522   HeapRegion* prev()              { return _prev; }
 523 
 524   void set_next(HeapRegion* next) { _next = next; }
 525   void set_prev(HeapRegion* prev) { _prev = prev; }
 526 
 527   // Every region added to a set is tagged with a reference to that
 528   // set. This is used for doing consistency checking to make sure that
 529   // the contents of a set are as they should be and it's only
 530   // available in non-product builds.
 531 #ifdef ASSERT
 532   void set_containing_set(HeapRegionSetBase* containing_set) {
 533     assert((containing_set == NULL && _containing_set != NULL) ||
 534            (containing_set != NULL && _containing_set == NULL),
 535            err_msg("containing_set: "PTR_FORMAT" "
 536                    "_containing_set: "PTR_FORMAT,
 537                    p2i(containing_set), p2i(_containing_set)));
 538 
 539     _containing_set = containing_set;
 540   }
 541 
 542   HeapRegionSetBase* containing_set() { return _containing_set; }
 543 #else // ASSERT
 544   void set_containing_set(HeapRegionSetBase* containing_set) { }
 545 
 546   // containing_set() is only used in asserts so there's no reason
 547   // to provide a dummy version of it.
 548 #endif // ASSERT
 549 
 550   HeapRegion* get_next_young_region() { return _next_young_region; }
 551   void set_next_young_region(HeapRegion* hr) {
 552     _next_young_region = hr;
 553   }
 554 
 555   HeapRegion* get_next_dirty_cards_region() const { return _next_dirty_cards_region; }
 556   HeapRegion** next_dirty_cards_region_addr() { return &_next_dirty_cards_region; }
 557   void set_next_dirty_cards_region(HeapRegion* hr) { _next_dirty_cards_region = hr; }
 558   bool is_on_dirty_cards_region_list() const { return get_next_dirty_cards_region() != NULL; }
 559 
 560   // For the start region of a humongous sequence, it's original end().
 561   HeapWord* orig_end() const { return _bottom + GrainWords; }
 562 
 563   // Reset HR stuff to default values.
 564   void hr_clear(bool par, bool clear_space, bool locked = false);
 565   void par_clear();
 566 
 567   // Get the start of the unmarked area in this region.
 568   HeapWord* prev_top_at_mark_start() const { return _prev_top_at_mark_start; }
 569   HeapWord* next_top_at_mark_start() const { return _next_top_at_mark_start; }
 570 
 571   // Note the start or end of marking. This tells the heap region
 572   // that the collector is about to start or has finished (concurrently)
 573   // marking the heap.
 574 
 575   // Notify the region that concurrent marking is starting. Initialize
 576   // all fields related to the next marking info.
 577   inline void note_start_of_marking();
 578 
 579   // Notify the region that concurrent marking has finished. Copy the
 580   // (now finalized) next marking info fields into the prev marking
 581   // info fields.
 582   inline void note_end_of_marking();
 583 
 584   // Notify the region that it will be used as to-space during a GC
 585   // and we are about to start copying objects into it.
 586   inline void note_start_of_copying(bool during_initial_mark);
 587 
 588   // Notify the region that it ceases being to-space during a GC and
 589   // we will not copy objects into it any more.
 590   inline void note_end_of_copying(bool during_initial_mark);
 591 
 592   // Notify the region that we are about to start processing
 593   // self-forwarded objects during evac failure handling.
 594   void note_self_forwarding_removal_start(bool during_initial_mark,
 595                                           bool during_conc_mark);
 596 
 597   // Notify the region that we have finished processing self-forwarded
 598   // objects during evac failure handling.
 599   void note_self_forwarding_removal_end(bool during_initial_mark,
 600                                         bool during_conc_mark,
 601                                         size_t marked_bytes);
 602 
 603   // Returns "false" iff no object in the region was allocated when the
 604   // last mark phase ended.
 605   bool is_marked() { return _prev_top_at_mark_start != bottom(); }
 606 
 607   void reset_during_compaction() {
 608     assert(is_starts_humongous(),
 609            "should only be called for starts humongous regions");
 610 
 611     zero_marked_bytes();
 612     init_top_at_mark_start();
 613   }
 614 
 615   void calc_gc_efficiency(void);
 616   double gc_efficiency() { return _gc_efficiency;}
 617 
 618   int  young_index_in_cset() const { return _young_index_in_cset; }
 619   void set_young_index_in_cset(int index) {
 620     assert( (index == -1) || is_young(), "pre-condition" );
 621     _young_index_in_cset = index;
 622   }
 623 
 624   int age_in_surv_rate_group() {
 625     assert( _surv_rate_group != NULL, "pre-condition" );
 626     assert( _age_index > -1, "pre-condition" );
 627     return _surv_rate_group->age_in_group(_age_index);
 628   }
 629 
 630   void record_surv_words_in_group(size_t words_survived) {
 631     assert( _surv_rate_group != NULL, "pre-condition" );
 632     assert( _age_index > -1, "pre-condition" );
 633     int age_in_group = age_in_surv_rate_group();
 634     _surv_rate_group->record_surviving_words(age_in_group, words_survived);
 635   }
 636 
 637   int age_in_surv_rate_group_cond() {
 638     if (_surv_rate_group != NULL)
 639       return age_in_surv_rate_group();
 640     else
 641       return -1;
 642   }
 643 
 644   SurvRateGroup* surv_rate_group() {
 645     return _surv_rate_group;
 646   }
 647 
 648   void install_surv_rate_group(SurvRateGroup* surv_rate_group) {
 649     assert( surv_rate_group != NULL, "pre-condition" );
 650     assert( _surv_rate_group == NULL, "pre-condition" );
 651     assert( is_young(), "pre-condition" );
 652 
 653     _surv_rate_group = surv_rate_group;
 654     _age_index = surv_rate_group->next_age_index();
 655   }
 656 
 657   void uninstall_surv_rate_group() {
 658     if (_surv_rate_group != NULL) {
 659       assert( _age_index > -1, "pre-condition" );
 660       assert( is_young(), "pre-condition" );
 661 
 662       _surv_rate_group = NULL;
 663       _age_index = -1;
 664     } else {
 665       assert( _age_index == -1, "pre-condition" );
 666     }
 667   }
 668 
 669   void set_free() { _type.set_free(); }
 670 
 671   void set_eden()        { _type.set_eden();        }
 672   void set_eden_pre_gc() { _type.set_eden_pre_gc(); }
 673   void set_survivor()    { _type.set_survivor();    }
 674 
 675   void set_old() { _type.set_old(); }
 676 
 677   // Determine if an object has been allocated since the last
 678   // mark performed by the collector. This returns true iff the object
 679   // is within the unmarked area of the region.
 680   bool obj_allocated_since_prev_marking(oop obj) const {
 681     return (HeapWord *) obj >= prev_top_at_mark_start();
 682   }
 683   bool obj_allocated_since_next_marking(oop obj) const {
 684     return (HeapWord *) obj >= next_top_at_mark_start();
 685   }
 686 
 687   // Returns the "evacuation_failed" property of the region.
 688   bool evacuation_failed() { return _evacuation_failed; }
 689 
 690   // Sets the "evacuation_failed" property of the region.
 691   void set_evacuation_failed(bool b) {
 692     _evacuation_failed = b;
 693 
 694     if (b) {
 695       _next_marked_bytes = 0;
 696     }
 697   }
 698 
 699   // Requires that "mr" be entirely within the region.
 700   // Apply "cl->do_object" to all objects that intersect with "mr".
 701   // If the iteration encounters an unparseable portion of the region,
 702   // or if "cl->abort()" is true after a closure application,
 703   // terminate the iteration and return the address of the start of the
 704   // subregion that isn't done.  (The two can be distinguished by querying
 705   // "cl->abort()".)  Return of "NULL" indicates that the iteration
 706   // completed.
 707   HeapWord*
 708   object_iterate_mem_careful(MemRegion mr, ObjectClosure* cl);
 709 
 710   // filter_young: if true and the region is a young region then we
 711   // skip the iteration.
 712   // card_ptr: if not NULL, and we decide that the card is not young
 713   // and we iterate over it, we'll clean the card before we start the
 714   // iteration.
 715   HeapWord*
 716   oops_on_card_seq_iterate_careful(MemRegion mr,
 717                                    FilterOutOfRegionClosure* cl,
 718                                    bool filter_young,
 719                                    jbyte* card_ptr);
 720 
 721   size_t recorded_rs_length() const        { return _recorded_rs_length; }
 722   double predicted_elapsed_time_ms() const { return _predicted_elapsed_time_ms; }
 723   size_t predicted_bytes_to_copy() const   { return _predicted_bytes_to_copy; }
 724 
 725   void set_recorded_rs_length(size_t rs_length) {
 726     _recorded_rs_length = rs_length;
 727   }
 728 
 729   void set_predicted_elapsed_time_ms(double ms) {
 730     _predicted_elapsed_time_ms = ms;
 731   }
 732 
 733   void set_predicted_bytes_to_copy(size_t bytes) {
 734     _predicted_bytes_to_copy = bytes;
 735   }
 736 
 737   virtual CompactibleSpace* next_compaction_space() const;
 738 
 739   virtual void reset_after_compaction();
 740 
 741   // Routines for managing a list of code roots (attached to the
 742   // this region's RSet) that point into this heap region.
 743   void add_strong_code_root(nmethod* nm);
 744   void add_strong_code_root_locked(nmethod* nm);
 745   void remove_strong_code_root(nmethod* nm);
 746 
 747   // Applies blk->do_code_blob() to each of the entries in
 748   // the strong code roots list for this region
 749   void strong_code_roots_do(CodeBlobClosure* blk) const;
 750 
 751   // Verify that the entries on the strong code root list for this
 752   // region are live and include at least one pointer into this region.
 753   void verify_strong_code_roots(VerifyOption vo, bool* failures) const;
 754 
 755   void print() const;
 756   void print_on(outputStream* st) const;
 757 
 758   // vo == UsePrevMarking  -> use "prev" marking information,
 759   // vo == UseNextMarking -> use "next" marking information
 760   // vo == UseMarkWord    -> use the mark word in the object header
 761   //
 762   // NOTE: Only the "prev" marking information is guaranteed to be
 763   // consistent most of the time, so most calls to this should use
 764   // vo == UsePrevMarking.
 765   // Currently, there is only one case where this is called with
 766   // vo == UseNextMarking, which is to verify the "next" marking
 767   // information at the end of remark.
 768   // Currently there is only one place where this is called with
 769   // vo == UseMarkWord, which is to verify the marking during a
 770   // full GC.
 771   void verify(VerifyOption vo, bool *failures) const;
 772 
 773   // Override; it uses the "prev" marking information
 774   virtual void verify() const;
 775 };
 776 
 777 // HeapRegionClosure is used for iterating over regions.
 778 // Terminates the iteration when the "doHeapRegion" method returns "true".
 779 class HeapRegionClosure : public StackObj {
 780   friend class HeapRegionManager;
 781   friend class G1CollectedHeap;
 782 
 783   bool _complete;
 784   void incomplete() { _complete = false; }
 785 
 786  public:
 787   HeapRegionClosure(): _complete(true) {}
 788 
 789   // Typically called on each region until it returns true.
 790   virtual bool doHeapRegion(HeapRegion* r) = 0;
 791 
 792   // True after iteration if the closure was applied to all heap regions
 793   // and returned "false" in all cases.
 794   bool complete() { return _complete; }
 795 };
 796 
 797 #endif // SHARE_VM_GC_IMPLEMENTATION_G1_HEAPREGION_HPP