1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  26 #define SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP
  27 
  28 #include "gc/g1/concurrentMark.hpp"
  29 #include "gc/g1/evacuationInfo.hpp"
  30 #include "gc/g1/g1AllocationContext.hpp"
  31 #include "gc/g1/g1BiasedArray.hpp"
  32 #include "gc/g1/g1CollectorState.hpp"
  33 #include "gc/g1/g1HRPrinter.hpp"
  34 #include "gc/g1/g1InCSetState.hpp"
  35 #include "gc/g1/g1MonitoringSupport.hpp"
  36 #include "gc/g1/g1EvacFailure.hpp"
  37 #include "gc/g1/g1EvacStats.hpp"
  38 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  39 #include "gc/g1/g1YCTypes.hpp"
  40 #include "gc/g1/hSpaceCounters.hpp"
  41 #include "gc/g1/heapRegionManager.hpp"
  42 #include "gc/g1/heapRegionSet.hpp"
  43 #include "gc/g1/youngList.hpp"
  44 #include "gc/shared/barrierSet.hpp"
  45 #include "gc/shared/collectedHeap.hpp"
  46 #include "gc/shared/plab.hpp"
  47 #include "memory/memRegion.hpp"
  48 #include "utilities/stack.hpp"
  49 
  50 // A "G1CollectedHeap" is an implementation of a java heap for HotSpot.
  51 // It uses the "Garbage First" heap organization and algorithm, which
  52 // may combine concurrent marking with parallel, incremental compaction of
  53 // heap subsets that will yield large amounts of garbage.
  54 
  55 // Forward declarations
  56 class HeapRegion;
  57 class HRRSCleanupTask;
  58 class GenerationSpec;
  59 class OopsInHeapRegionClosure;
  60 class G1ParScanThreadState;
  61 class G1ParScanThreadStateSet;
  62 class G1KlassScanClosure;
  63 class G1ParScanThreadState;
  64 class ObjectClosure;
  65 class SpaceClosure;
  66 class CompactibleSpaceClosure;
  67 class Space;
  68 class G1CollectorPolicy;
  69 class G1RemSet;
  70 class HeapRegionRemSetIterator;
  71 class ConcurrentMark;
  72 class ConcurrentMarkThread;
  73 class ConcurrentG1Refine;
  74 class ConcurrentGCTimer;
  75 class GenerationCounters;
  76 class STWGCTimer;
  77 class G1NewTracer;
  78 class G1OldTracer;
  79 class EvacuationFailedInfo;
  80 class nmethod;
  81 class Ticks;
  82 class WorkGang;
  83 class G1Allocator;
  84 class G1ArchiveAllocator;
  85 
  86 typedef OverflowTaskQueue<StarTask, mtGC>         RefToScanQueue;
  87 typedef GenericTaskQueueSet<RefToScanQueue, mtGC> RefToScanQueueSet;
  88 
  89 typedef int RegionIdx_t;   // needs to hold [ 0..max_regions() )
  90 typedef int CardIdx_t;     // needs to hold [ 0..CardsPerRegion )
  91 
  92 // The G1 STW is alive closure.
  93 // An instance is embedded into the G1CH and used as the
  94 // (optional) _is_alive_non_header closure in the STW
  95 // reference processor. It is also extensively used during
  96 // reference processing during STW evacuation pauses.
  97 class G1STWIsAliveClosure: public BoolObjectClosure {
  98   G1CollectedHeap* _g1;
  99 public:
 100   G1STWIsAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
 101   bool do_object_b(oop p);
 102 };
 103 
 104 class RefineCardTableEntryClosure;
 105 
 106 class G1RegionMappingChangedListener : public G1MappingChangedListener {
 107  private:
 108   void reset_from_card_cache(uint start_idx, size_t num_regions);
 109  public:
 110   virtual void on_commit(uint start_idx, size_t num_regions, bool zero_filled);
 111 };
 112 
 113 class G1CollectedHeap : public CollectedHeap {
 114   friend class VM_CollectForMetadataAllocation;
 115   friend class VM_G1CollectForAllocation;
 116   friend class VM_G1CollectFull;
 117   friend class VM_G1IncCollectionPause;
 118   friend class VMStructs;
 119   friend class MutatorAllocRegion;
 120   friend class G1GCAllocRegion;
 121 
 122   // Closures used in implementation.
 123   friend class G1ParScanThreadState;
 124   friend class G1ParScanThreadStateSet;
 125   friend class G1ParTask;
 126   friend class G1PLABAllocator;
 127   friend class G1PrepareCompactClosure;
 128 
 129   // Other related classes.
 130   friend class HeapRegionClaimer;
 131 
 132   // Testing classes.
 133   friend class G1CheckCSetFastTableClosure;
 134 
 135 private:
 136   WorkGang* _workers;
 137 
 138   static size_t _humongous_object_threshold_in_words;
 139 
 140   // The secondary free list which contains regions that have been
 141   // freed up during the cleanup process. This will be appended to
 142   // the master free list when appropriate.
 143   FreeRegionList _secondary_free_list;
 144 
 145   // It keeps track of the old regions.
 146   HeapRegionSet _old_set;
 147 
 148   // It keeps track of the humongous regions.
 149   HeapRegionSet _humongous_set;
 150 
 151   void eagerly_reclaim_humongous_regions();
 152 
 153   // The number of regions we could create by expansion.
 154   uint _expansion_regions;
 155 
 156   // The block offset table for the G1 heap.
 157   G1BlockOffsetSharedArray* _bot_shared;
 158 
 159   // Tears down the region sets / lists so that they are empty and the
 160   // regions on the heap do not belong to a region set / list. The
 161   // only exception is the humongous set which we leave unaltered. If
 162   // free_list_only is true, it will only tear down the master free
 163   // list. It is called before a Full GC (free_list_only == false) or
 164   // before heap shrinking (free_list_only == true).
 165   void tear_down_region_sets(bool free_list_only);
 166 
 167   // Rebuilds the region sets / lists so that they are repopulated to
 168   // reflect the contents of the heap. The only exception is the
 169   // humongous set which was not torn down in the first place. If
 170   // free_list_only is true, it will only rebuild the master free
 171   // list. It is called after a Full GC (free_list_only == false) or
 172   // after heap shrinking (free_list_only == true).
 173   void rebuild_region_sets(bool free_list_only);
 174 
 175   // Callback for region mapping changed events.
 176   G1RegionMappingChangedListener _listener;
 177 
 178   // The sequence of all heap regions in the heap.
 179   HeapRegionManager _hrm;
 180 
 181   // Manages all allocations with regions except humongous object allocations.
 182   G1Allocator* _allocator;
 183 
 184   // Outside of GC pauses, the number of bytes used in all regions other
 185   // than the current allocation region(s).
 186   size_t _summary_bytes_used;
 187 
 188   void increase_used(size_t bytes);
 189   void decrease_used(size_t bytes);
 190 
 191   void set_used(size_t bytes);
 192 
 193   // Class that handles archive allocation ranges.
 194   G1ArchiveAllocator* _archive_allocator;
 195 
 196   // Statistics for each allocation context
 197   AllocationContextStats _allocation_context_stats;
 198 
 199   // GC allocation statistics policy for survivors.
 200   G1EvacStats _survivor_evac_stats;
 201 
 202   // GC allocation statistics policy for tenured objects.
 203   G1EvacStats _old_evac_stats;
 204 
 205   // It specifies whether we should attempt to expand the heap after a
 206   // region allocation failure. If heap expansion fails we set this to
 207   // false so that we don't re-attempt the heap expansion (it's likely
 208   // that subsequent expansion attempts will also fail if one fails).
 209   // Currently, it is only consulted during GC and it's reset at the
 210   // start of each GC.
 211   bool _expand_heap_after_alloc_failure;
 212 
 213   // Helper for monitoring and management support.
 214   G1MonitoringSupport* _g1mm;
 215 
 216   // Records whether the region at the given index is (still) a
 217   // candidate for eager reclaim.  Only valid for humongous start
 218   // regions; other regions have unspecified values.  Humongous start
 219   // regions are initialized at start of collection pause, with
 220   // candidates removed from the set as they are found reachable from
 221   // roots or the young generation.
 222   class HumongousReclaimCandidates : public G1BiasedMappedArray<bool> {
 223    protected:
 224     bool default_value() const { return false; }
 225    public:
 226     void clear() { G1BiasedMappedArray<bool>::clear(); }
 227     void set_candidate(uint region, bool value) {
 228       set_by_index(region, value);
 229     }
 230     bool is_candidate(uint region) {
 231       return get_by_index(region);
 232     }
 233   };
 234 
 235   HumongousReclaimCandidates _humongous_reclaim_candidates;
 236   // Stores whether during humongous object registration we found candidate regions.
 237   // If not, we can skip a few steps.
 238   bool _has_humongous_reclaim_candidates;
 239 
 240   volatile unsigned _gc_time_stamp;
 241 
 242   G1HRPrinter _hr_printer;
 243 
 244   // It decides whether an explicit GC should start a concurrent cycle
 245   // instead of doing a STW GC. Currently, a concurrent cycle is
 246   // explicitly started if:
 247   // (a) cause == _gc_locker and +GCLockerInvokesConcurrent, or
 248   // (b) cause == _g1_humongous_allocation
 249   // (c) cause == _java_lang_system_gc and +ExplicitGCInvokesConcurrent.
 250   // (d) cause == _dcmd_gc_run and +ExplicitGCInvokesConcurrent.
 251   // (e) cause == _update_allocation_context_stats_inc
 252   // (f) cause == _wb_conc_mark
 253   bool should_do_concurrent_full_gc(GCCause::Cause cause);
 254 
 255   // indicates whether we are in young or mixed GC mode
 256   G1CollectorState _collector_state;
 257 
 258   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 259   // concurrent cycles) we have started.
 260   volatile uint _old_marking_cycles_started;
 261 
 262   // Keeps track of how many "old marking cycles" (i.e., Full GCs or
 263   // concurrent cycles) we have completed.
 264   volatile uint _old_marking_cycles_completed;
 265 
 266   bool _heap_summary_sent;
 267 
 268   // This is a non-product method that is helpful for testing. It is
 269   // called at the end of a GC and artificially expands the heap by
 270   // allocating a number of dead regions. This way we can induce very
 271   // frequent marking cycles and stress the cleanup / concurrent
 272   // cleanup code more (as all the regions that will be allocated by
 273   // this method will be found dead by the marking cycle).
 274   void allocate_dummy_regions() PRODUCT_RETURN;
 275 
 276   // Clear RSets after a compaction. It also resets the GC time stamps.
 277   void clear_rsets_post_compaction();
 278 
 279   // If the HR printer is active, dump the state of the regions in the
 280   // heap after a compaction.
 281   void print_hrm_post_compaction();
 282 
 283   // Create a memory mapper for auxiliary data structures of the given size and
 284   // translation factor.
 285   static G1RegionToSpaceMapper* create_aux_memory_mapper(const char* description,
 286                                                          size_t size,
 287                                                          size_t translation_factor);
 288 
 289   double verify(bool guard, const char* msg);
 290   void verify_before_gc();
 291   void verify_after_gc();
 292 
 293   void log_gc_header();
 294   void log_gc_footer(double pause_time_sec);
 295 
 296   void trace_heap(GCWhen::Type when, const GCTracer* tracer);
 297 
 298   void process_weak_jni_handles();
 299 
 300   // These are macros so that, if the assert fires, we get the correct
 301   // line number, file, etc.
 302 
 303 #define heap_locking_asserts_params(_extra_message_)                          \
 304   "%s : Heap_lock locked: %s, at safepoint: %s, is VM thread: %s",            \
 305   (_extra_message_),                                                          \
 306   BOOL_TO_STR(Heap_lock->owned_by_self()),                                    \
 307   BOOL_TO_STR(SafepointSynchronize::is_at_safepoint()),                       \
 308   BOOL_TO_STR(Thread::current()->is_VM_thread())
 309 
 310 #define assert_heap_locked()                                                  \
 311   do {                                                                        \
 312     assert(Heap_lock->owned_by_self(),                                        \
 313            heap_locking_asserts_params("should be holding the Heap_lock"));   \
 314   } while (0)
 315 
 316 #define assert_heap_locked_or_at_safepoint(_should_be_vm_thread_)             \
 317   do {                                                                        \
 318     assert(Heap_lock->owned_by_self() ||                                      \
 319            (SafepointSynchronize::is_at_safepoint() &&                        \
 320              ((_should_be_vm_thread_) == Thread::current()->is_VM_thread())), \
 321            heap_locking_asserts_params("should be holding the Heap_lock or "  \
 322                                         "should be at a safepoint"));         \
 323   } while (0)
 324 
 325 #define assert_heap_locked_and_not_at_safepoint()                             \
 326   do {                                                                        \
 327     assert(Heap_lock->owned_by_self() &&                                      \
 328                                     !SafepointSynchronize::is_at_safepoint(), \
 329           heap_locking_asserts_params("should be holding the Heap_lock and "  \
 330                                        "should not be at a safepoint"));      \
 331   } while (0)
 332 
 333 #define assert_heap_not_locked()                                              \
 334   do {                                                                        \
 335     assert(!Heap_lock->owned_by_self(),                                       \
 336         heap_locking_asserts_params("should not be holding the Heap_lock"));  \
 337   } while (0)
 338 
 339 #define assert_heap_not_locked_and_not_at_safepoint()                         \
 340   do {                                                                        \
 341     assert(!Heap_lock->owned_by_self() &&                                     \
 342                                     !SafepointSynchronize::is_at_safepoint(), \
 343       heap_locking_asserts_params("should not be holding the Heap_lock and "  \
 344                                    "should not be at a safepoint"));          \
 345   } while (0)
 346 
 347 #define assert_at_safepoint(_should_be_vm_thread_)                            \
 348   do {                                                                        \
 349     assert(SafepointSynchronize::is_at_safepoint() &&                         \
 350               ((_should_be_vm_thread_) == Thread::current()->is_VM_thread()), \
 351            heap_locking_asserts_params("should be at a safepoint"));          \
 352   } while (0)
 353 
 354 #define assert_not_at_safepoint()                                             \
 355   do {                                                                        \
 356     assert(!SafepointSynchronize::is_at_safepoint(),                          \
 357            heap_locking_asserts_params("should not be at a safepoint"));      \
 358   } while (0)
 359 
 360 protected:
 361 
 362   // The young region list.
 363   YoungList*  _young_list;
 364 
 365   // The current policy object for the collector.
 366   G1CollectorPolicy* _g1_policy;
 367 
 368   // This is the second level of trying to allocate a new region. If
 369   // new_region() didn't find a region on the free_list, this call will
 370   // check whether there's anything available on the
 371   // secondary_free_list and/or wait for more regions to appear on
 372   // that list, if _free_regions_coming is set.
 373   HeapRegion* new_region_try_secondary_free_list(bool is_old);
 374 
 375   // Try to allocate a single non-humongous HeapRegion sufficient for
 376   // an allocation of the given word_size. If do_expand is true,
 377   // attempt to expand the heap if necessary to satisfy the allocation
 378   // request. If the region is to be used as an old region or for a
 379   // humongous object, set is_old to true. If not, to false.
 380   HeapRegion* new_region(size_t word_size, bool is_old, bool do_expand);
 381 
 382   // Initialize a contiguous set of free regions of length num_regions
 383   // and starting at index first so that they appear as a single
 384   // humongous region.
 385   HeapWord* humongous_obj_allocate_initialize_regions(uint first,
 386                                                       uint num_regions,
 387                                                       size_t word_size,
 388                                                       AllocationContext_t context);
 389 
 390   // Attempt to allocate a humongous object of the given size. Return
 391   // NULL if unsuccessful.
 392   HeapWord* humongous_obj_allocate(size_t word_size, AllocationContext_t context);
 393 
 394   // The following two methods, allocate_new_tlab() and
 395   // mem_allocate(), are the two main entry points from the runtime
 396   // into the G1's allocation routines. They have the following
 397   // assumptions:
 398   //
 399   // * They should both be called outside safepoints.
 400   //
 401   // * They should both be called without holding the Heap_lock.
 402   //
 403   // * All allocation requests for new TLABs should go to
 404   //   allocate_new_tlab().
 405   //
 406   // * All non-TLAB allocation requests should go to mem_allocate().
 407   //
 408   // * If either call cannot satisfy the allocation request using the
 409   //   current allocating region, they will try to get a new one. If
 410   //   this fails, they will attempt to do an evacuation pause and
 411   //   retry the allocation.
 412   //
 413   // * If all allocation attempts fail, even after trying to schedule
 414   //   an evacuation pause, allocate_new_tlab() will return NULL,
 415   //   whereas mem_allocate() will attempt a heap expansion and/or
 416   //   schedule a Full GC.
 417   //
 418   // * We do not allow humongous-sized TLABs. So, allocate_new_tlab
 419   //   should never be called with word_size being humongous. All
 420   //   humongous allocation requests should go to mem_allocate() which
 421   //   will satisfy them with a special path.
 422 
 423   virtual HeapWord* allocate_new_tlab(size_t word_size);
 424 
 425   virtual HeapWord* mem_allocate(size_t word_size,
 426                                  bool*  gc_overhead_limit_was_exceeded);
 427 
 428   // The following three methods take a gc_count_before_ret
 429   // parameter which is used to return the GC count if the method
 430   // returns NULL. Given that we are required to read the GC count
 431   // while holding the Heap_lock, and these paths will take the
 432   // Heap_lock at some point, it's easier to get them to read the GC
 433   // count while holding the Heap_lock before they return NULL instead
 434   // of the caller (namely: mem_allocate()) having to also take the
 435   // Heap_lock just to read the GC count.
 436 
 437   // First-level mutator allocation attempt: try to allocate out of
 438   // the mutator alloc region without taking the Heap_lock. This
 439   // should only be used for non-humongous allocations.
 440   inline HeapWord* attempt_allocation(size_t word_size,
 441                                       uint* gc_count_before_ret,
 442                                       uint* gclocker_retry_count_ret);
 443 
 444   // Second-level mutator allocation attempt: take the Heap_lock and
 445   // retry the allocation attempt, potentially scheduling a GC
 446   // pause. This should only be used for non-humongous allocations.
 447   HeapWord* attempt_allocation_slow(size_t word_size,
 448                                     AllocationContext_t context,
 449                                     uint* gc_count_before_ret,
 450                                     uint* gclocker_retry_count_ret);
 451 
 452   // Takes the Heap_lock and attempts a humongous allocation. It can
 453   // potentially schedule a GC pause.
 454   HeapWord* attempt_allocation_humongous(size_t word_size,
 455                                          uint* gc_count_before_ret,
 456                                          uint* gclocker_retry_count_ret);
 457 
 458   // Allocation attempt that should be called during safepoints (e.g.,
 459   // at the end of a successful GC). expect_null_mutator_alloc_region
 460   // specifies whether the mutator alloc region is expected to be NULL
 461   // or not.
 462   HeapWord* attempt_allocation_at_safepoint(size_t word_size,
 463                                             AllocationContext_t context,
 464                                             bool expect_null_mutator_alloc_region);
 465 
 466   // These methods are the "callbacks" from the G1AllocRegion class.
 467 
 468   // For mutator alloc regions.
 469   HeapRegion* new_mutator_alloc_region(size_t word_size, bool force);
 470   void retire_mutator_alloc_region(HeapRegion* alloc_region,
 471                                    size_t allocated_bytes);
 472 
 473   // For GC alloc regions.
 474   HeapRegion* new_gc_alloc_region(size_t word_size, uint count,
 475                                   InCSetState dest);
 476   void retire_gc_alloc_region(HeapRegion* alloc_region,
 477                               size_t allocated_bytes, InCSetState dest);
 478 
 479   // - if explicit_gc is true, the GC is for a System.gc() etc,
 480   //   otherwise it's for a failed allocation.
 481   // - if clear_all_soft_refs is true, all soft references should be
 482   //   cleared during the GC.
 483   // - it returns false if it is unable to do the collection due to the
 484   //   GC locker being active, true otherwise.
 485   bool do_full_collection(bool explicit_gc,
 486                           bool clear_all_soft_refs);
 487 
 488   // Callback from VM_G1CollectFull operation, or collect_as_vm_thread.
 489   virtual void do_full_collection(bool clear_all_soft_refs);
 490 
 491   // Resize the heap if necessary after a full collection.
 492   void resize_if_necessary_after_full_collection();
 493 
 494   // Callback from VM_G1CollectForAllocation operation.
 495   // This function does everything necessary/possible to satisfy a
 496   // failed allocation request (including collection, expansion, etc.)
 497   HeapWord* satisfy_failed_allocation(size_t word_size,
 498                                       AllocationContext_t context,
 499                                       bool* succeeded);
 500 private:
 501   // Helper method for satisfy_failed_allocation()
 502   HeapWord* satisfy_failed_allocation_helper(size_t word_size,
 503                                              AllocationContext_t context,
 504                                              bool do_gc,
 505                                              bool clear_all_soft_refs,
 506                                              bool expect_null_mutator_alloc_region,
 507                                              bool* gc_succeeded);
 508 
 509 protected:
 510   // Attempting to expand the heap sufficiently
 511   // to support an allocation of the given "word_size".  If
 512   // successful, perform the allocation and return the address of the
 513   // allocated block, or else "NULL".
 514   HeapWord* expand_and_allocate(size_t word_size, AllocationContext_t context);
 515 
 516   // Process any reference objects discovered during
 517   // an incremental evacuation pause.
 518   void process_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 519 
 520   // Enqueue any remaining discovered references
 521   // after processing.
 522   void enqueue_discovered_references(G1ParScanThreadStateSet* per_thread_states);
 523 
 524 public:
 525   WorkGang* workers() const { return _workers; }
 526 
 527   G1Allocator* allocator() {
 528     return _allocator;
 529   }
 530 
 531   G1MonitoringSupport* g1mm() {
 532     assert(_g1mm != NULL, "should have been initialized");
 533     return _g1mm;
 534   }
 535 
 536   // Expand the garbage-first heap by at least the given size (in bytes!).
 537   // Returns true if the heap was expanded by the requested amount;
 538   // false otherwise.
 539   // (Rounds up to a HeapRegion boundary.)
 540   bool expand(size_t expand_bytes, double* expand_time_ms = NULL);
 541 
 542   // Returns the PLAB statistics for a given destination.
 543   inline G1EvacStats* alloc_buffer_stats(InCSetState dest);
 544 
 545   // Determines PLAB size for a given destination.
 546   inline size_t desired_plab_sz(InCSetState dest);
 547 
 548   inline AllocationContextStats& allocation_context_stats();
 549 
 550   // Do anything common to GC's.
 551   void gc_prologue(bool full);
 552   void gc_epilogue(bool full);
 553 
 554   // Modify the reclaim candidate set and test for presence.
 555   // These are only valid for starts_humongous regions.
 556   inline void set_humongous_reclaim_candidate(uint region, bool value);
 557   inline bool is_humongous_reclaim_candidate(uint region);
 558 
 559   // Remove from the reclaim candidate set.  Also remove from the
 560   // collection set so that later encounters avoid the slow path.
 561   inline void set_humongous_is_live(oop obj);
 562 
 563   // Register the given region to be part of the collection set.
 564   inline void register_humongous_region_with_cset(uint index);
 565   // Register regions with humongous objects (actually on the start region) in
 566   // the in_cset_fast_test table.
 567   void register_humongous_regions_with_cset();
 568   // We register a region with the fast "in collection set" test. We
 569   // simply set to true the array slot corresponding to this region.
 570   void register_young_region_with_cset(HeapRegion* r) {
 571     _in_cset_fast_test.set_in_young(r->hrm_index());
 572   }
 573   void register_old_region_with_cset(HeapRegion* r) {
 574     _in_cset_fast_test.set_in_old(r->hrm_index());
 575   }
 576   inline void register_ext_region_with_cset(HeapRegion* r) {
 577     _in_cset_fast_test.set_ext(r->hrm_index());
 578   }
 579   void clear_in_cset(const HeapRegion* hr) {
 580     _in_cset_fast_test.clear(hr);
 581   }
 582 
 583   void clear_cset_fast_test() {
 584     _in_cset_fast_test.clear();
 585   }
 586 
 587   bool is_user_requested_concurrent_full_gc(GCCause::Cause cause);
 588 
 589   // This is called at the start of either a concurrent cycle or a Full
 590   // GC to update the number of old marking cycles started.
 591   void increment_old_marking_cycles_started();
 592 
 593   // This is called at the end of either a concurrent cycle or a Full
 594   // GC to update the number of old marking cycles completed. Those two
 595   // can happen in a nested fashion, i.e., we start a concurrent
 596   // cycle, a Full GC happens half-way through it which ends first,
 597   // and then the cycle notices that a Full GC happened and ends
 598   // too. The concurrent parameter is a boolean to help us do a bit
 599   // tighter consistency checking in the method. If concurrent is
 600   // false, the caller is the inner caller in the nesting (i.e., the
 601   // Full GC). If concurrent is true, the caller is the outer caller
 602   // in this nesting (i.e., the concurrent cycle). Further nesting is
 603   // not currently supported. The end of this call also notifies
 604   // the FullGCCount_lock in case a Java thread is waiting for a full
 605   // GC to happen (e.g., it called System.gc() with
 606   // +ExplicitGCInvokesConcurrent).
 607   void increment_old_marking_cycles_completed(bool concurrent);
 608 
 609   uint old_marking_cycles_completed() {
 610     return _old_marking_cycles_completed;
 611   }
 612 
 613   void register_concurrent_cycle_start(const Ticks& start_time);
 614   void register_concurrent_cycle_end();
 615   void trace_heap_after_concurrent_cycle();
 616 
 617   G1HRPrinter* hr_printer() { return &_hr_printer; }
 618 
 619   // Allocates a new heap region instance.
 620   HeapRegion* new_heap_region(uint hrs_index, MemRegion mr);
 621 
 622   // Allocate the highest free region in the reserved heap. This will commit
 623   // regions as necessary.
 624   HeapRegion* alloc_highest_free_region();
 625 
 626   // Frees a non-humongous region by initializing its contents and
 627   // adding it to the free list that's passed as a parameter (this is
 628   // usually a local list which will be appended to the master free
 629   // list later). The used bytes of freed regions are accumulated in
 630   // pre_used. If par is true, the region's RSet will not be freed
 631   // up. The assumption is that this will be done later.
 632   // The locked parameter indicates if the caller has already taken
 633   // care of proper synchronization. This may allow some optimizations.
 634   void free_region(HeapRegion* hr,
 635                    FreeRegionList* free_list,
 636                    bool par,
 637                    bool locked = false);
 638 
 639   // It dirties the cards that cover the block so that the post
 640   // write barrier never queues anything when updating objects on this
 641   // block. It is assumed (and in fact we assert) that the block
 642   // belongs to a young region.
 643   inline void dirty_young_block(HeapWord* start, size_t word_size);
 644 
 645   // Frees a humongous region by collapsing it into individual regions
 646   // and calling free_region() for each of them. The freed regions
 647   // will be added to the free list that's passed as a parameter (this
 648   // is usually a local list which will be appended to the master free
 649   // list later). The used bytes of freed regions are accumulated in
 650   // pre_used. If par is true, the region's RSet will not be freed
 651   // up. The assumption is that this will be done later.
 652   void free_humongous_region(HeapRegion* hr,
 653                              FreeRegionList* free_list,
 654                              bool par);
 655 
 656   // Facility for allocating in 'archive' regions in high heap memory and
 657   // recording the allocated ranges. These should all be called from the
 658   // VM thread at safepoints, without the heap lock held. They can be used
 659   // to create and archive a set of heap regions which can be mapped at the
 660   // same fixed addresses in a subsequent JVM invocation.
 661   void begin_archive_alloc_range();
 662 
 663   // Check if the requested size would be too large for an archive allocation.
 664   bool is_archive_alloc_too_large(size_t word_size);
 665 
 666   // Allocate memory of the requested size from the archive region. This will
 667   // return NULL if the size is too large or if no memory is available. It
 668   // does not trigger a garbage collection.
 669   HeapWord* archive_mem_allocate(size_t word_size);
 670 
 671   // Optionally aligns the end address and returns the allocated ranges in
 672   // an array of MemRegions in order of ascending addresses.
 673   void end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 674                                size_t end_alignment_in_bytes = 0);
 675 
 676   // Facility for allocating a fixed range within the heap and marking
 677   // the containing regions as 'archive'. For use at JVM init time, when the
 678   // caller may mmap archived heap data at the specified range(s).
 679   // Verify that the MemRegions specified in the argument array are within the
 680   // reserved heap.
 681   bool check_archive_addresses(MemRegion* range, size_t count);
 682 
 683   // Commit the appropriate G1 regions containing the specified MemRegions
 684   // and mark them as 'archive' regions. The regions in the array must be
 685   // non-overlapping and in order of ascending address.
 686   bool alloc_archive_regions(MemRegion* range, size_t count);
 687 
 688   // Insert any required filler objects in the G1 regions around the specified
 689   // ranges to make the regions parseable. This must be called after
 690   // alloc_archive_regions, and after class loading has occurred.
 691   void fill_archive_regions(MemRegion* range, size_t count);
 692 
 693   // For each of the specified MemRegions, uncommit the containing G1 regions
 694   // which had been allocated by alloc_archive_regions. This should be called
 695   // rather than fill_archive_regions at JVM init time if the archive file
 696   // mapping failed, with the same non-overlapping and sorted MemRegion array.
 697   void dealloc_archive_regions(MemRegion* range, size_t count);
 698 
 699 protected:
 700 
 701   // Shrink the garbage-first heap by at most the given size (in bytes!).
 702   // (Rounds down to a HeapRegion boundary.)
 703   virtual void shrink(size_t expand_bytes);
 704   void shrink_helper(size_t expand_bytes);
 705 
 706   #if TASKQUEUE_STATS
 707   static void print_taskqueue_stats_hdr(outputStream* const st = gclog_or_tty);
 708   void print_taskqueue_stats(outputStream* const st = gclog_or_tty) const;
 709   void reset_taskqueue_stats();
 710   #endif // TASKQUEUE_STATS
 711 
 712   // Schedule the VM operation that will do an evacuation pause to
 713   // satisfy an allocation request of word_size. *succeeded will
 714   // return whether the VM operation was successful (it did do an
 715   // evacuation pause) or not (another thread beat us to it or the GC
 716   // locker was active). Given that we should not be holding the
 717   // Heap_lock when we enter this method, we will pass the
 718   // gc_count_before (i.e., total_collections()) as a parameter since
 719   // it has to be read while holding the Heap_lock. Currently, both
 720   // methods that call do_collection_pause() release the Heap_lock
 721   // before the call, so it's easy to read gc_count_before just before.
 722   HeapWord* do_collection_pause(size_t         word_size,
 723                                 uint           gc_count_before,
 724                                 bool*          succeeded,
 725                                 GCCause::Cause gc_cause);
 726 
 727   void wait_for_root_region_scanning();
 728 
 729   // The guts of the incremental collection pause, executed by the vm
 730   // thread. It returns false if it is unable to do the collection due
 731   // to the GC locker being active, true otherwise
 732   bool do_collection_pause_at_safepoint(double target_pause_time_ms);
 733 
 734   // Actually do the work of evacuating the collection set.
 735   virtual void evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* per_thread_states);
 736 
 737   void pre_evacuate_collection_set();
 738   void post_evacuate_collection_set(EvacuationInfo& evacuation_info, G1ParScanThreadStateSet* pss);
 739 
 740   // Print the header for the per-thread termination statistics.
 741   static void print_termination_stats_hdr(outputStream* const st);
 742   // Print actual per-thread termination statistics.
 743   void print_termination_stats(outputStream* const st,
 744                                uint worker_id,
 745                                double elapsed_ms,
 746                                double strong_roots_ms,
 747                                double term_ms,
 748                                size_t term_attempts,
 749                                size_t alloc_buffer_waste,
 750                                size_t undo_waste) const;
 751   // Update object copying statistics.
 752   void record_obj_copy_mem_stats();
 753 
 754   // The g1 remembered set of the heap.
 755   G1RemSet* _g1_rem_set;
 756 
 757   // A set of cards that cover the objects for which the Rsets should be updated
 758   // concurrently after the collection.
 759   DirtyCardQueueSet _dirty_card_queue_set;
 760 
 761   // The closure used to refine a single card.
 762   RefineCardTableEntryClosure* _refine_cte_cl;
 763 
 764   // After a collection pause, make the regions in the CS into free
 765   // regions.
 766   void free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info, const size_t* surviving_young_words);
 767 
 768   // Abandon the current collection set without recording policy
 769   // statistics or updating free lists.
 770   void abandon_collection_set(HeapRegion* cs_head);
 771 
 772   // The concurrent marker (and the thread it runs in.)
 773   ConcurrentMark* _cm;
 774   ConcurrentMarkThread* _cmThread;
 775 
 776   // The concurrent refiner.
 777   ConcurrentG1Refine* _cg1r;
 778 
 779   // The parallel task queues
 780   RefToScanQueueSet *_task_queues;
 781 
 782   // True iff a evacuation has failed in the current collection.
 783   bool _evacuation_failed;
 784 
 785   EvacuationFailedInfo* _evacuation_failed_info_array;
 786 
 787   // Failed evacuations cause some logical from-space objects to have
 788   // forwarding pointers to themselves.  Reset them.
 789   void remove_self_forwarding_pointers();
 790 
 791   // Restore the preserved mark words for objects with self-forwarding pointers.
 792   void restore_preserved_marks();
 793 
 794   // Restore the objects in the regions in the collection set after an
 795   // evacuation failure.
 796   void restore_after_evac_failure();
 797 
 798   // Stores marks with the corresponding oop that we need to preserve during evacuation
 799   // failure.
 800   OopAndMarkOopStack*  _preserved_objs;
 801 
 802   // Preserve the mark of "obj", if necessary, in preparation for its mark
 803   // word being overwritten with a self-forwarding-pointer.
 804   void preserve_mark_during_evac_failure(uint worker_id, oop obj, markOop m);
 805 
 806 #ifndef PRODUCT
 807   // Support for forcing evacuation failures. Analogous to
 808   // PromotionFailureALot for the other collectors.
 809 
 810   // Records whether G1EvacuationFailureALot should be in effect
 811   // for the current GC
 812   bool _evacuation_failure_alot_for_current_gc;
 813 
 814   // Used to record the GC number for interval checking when
 815   // determining whether G1EvaucationFailureALot is in effect
 816   // for the current GC.
 817   size_t _evacuation_failure_alot_gc_number;
 818 
 819   // Count of the number of evacuations between failures.
 820   volatile size_t _evacuation_failure_alot_count;
 821 
 822   // Set whether G1EvacuationFailureALot should be in effect
 823   // for the current GC (based upon the type of GC and which
 824   // command line flags are set);
 825   inline bool evacuation_failure_alot_for_gc_type(bool gcs_are_young,
 826                                                   bool during_initial_mark,
 827                                                   bool during_marking);
 828 
 829   inline void set_evacuation_failure_alot_for_current_gc();
 830 
 831   // Return true if it's time to cause an evacuation failure.
 832   inline bool evacuation_should_fail();
 833 
 834   // Reset the G1EvacuationFailureALot counters.  Should be called at
 835   // the end of an evacuation pause in which an evacuation failure occurred.
 836   inline void reset_evacuation_should_fail();
 837 #endif // !PRODUCT
 838 
 839   // ("Weak") Reference processing support.
 840   //
 841   // G1 has 2 instances of the reference processor class. One
 842   // (_ref_processor_cm) handles reference object discovery
 843   // and subsequent processing during concurrent marking cycles.
 844   //
 845   // The other (_ref_processor_stw) handles reference object
 846   // discovery and processing during full GCs and incremental
 847   // evacuation pauses.
 848   //
 849   // During an incremental pause, reference discovery will be
 850   // temporarily disabled for _ref_processor_cm and will be
 851   // enabled for _ref_processor_stw. At the end of the evacuation
 852   // pause references discovered by _ref_processor_stw will be
 853   // processed and discovery will be disabled. The previous
 854   // setting for reference object discovery for _ref_processor_cm
 855   // will be re-instated.
 856   //
 857   // At the start of marking:
 858   //  * Discovery by the CM ref processor is verified to be inactive
 859   //    and it's discovered lists are empty.
 860   //  * Discovery by the CM ref processor is then enabled.
 861   //
 862   // At the end of marking:
 863   //  * Any references on the CM ref processor's discovered
 864   //    lists are processed (possibly MT).
 865   //
 866   // At the start of full GC we:
 867   //  * Disable discovery by the CM ref processor and
 868   //    empty CM ref processor's discovered lists
 869   //    (without processing any entries).
 870   //  * Verify that the STW ref processor is inactive and it's
 871   //    discovered lists are empty.
 872   //  * Temporarily set STW ref processor discovery as single threaded.
 873   //  * Temporarily clear the STW ref processor's _is_alive_non_header
 874   //    field.
 875   //  * Finally enable discovery by the STW ref processor.
 876   //
 877   // The STW ref processor is used to record any discovered
 878   // references during the full GC.
 879   //
 880   // At the end of a full GC we:
 881   //  * Enqueue any reference objects discovered by the STW ref processor
 882   //    that have non-live referents. This has the side-effect of
 883   //    making the STW ref processor inactive by disabling discovery.
 884   //  * Verify that the CM ref processor is still inactive
 885   //    and no references have been placed on it's discovered
 886   //    lists (also checked as a precondition during initial marking).
 887 
 888   // The (stw) reference processor...
 889   ReferenceProcessor* _ref_processor_stw;
 890 
 891   STWGCTimer* _gc_timer_stw;
 892   ConcurrentGCTimer* _gc_timer_cm;
 893 
 894   G1OldTracer* _gc_tracer_cm;
 895   G1NewTracer* _gc_tracer_stw;
 896 
 897   // During reference object discovery, the _is_alive_non_header
 898   // closure (if non-null) is applied to the referent object to
 899   // determine whether the referent is live. If so then the
 900   // reference object does not need to be 'discovered' and can
 901   // be treated as a regular oop. This has the benefit of reducing
 902   // the number of 'discovered' reference objects that need to
 903   // be processed.
 904   //
 905   // Instance of the is_alive closure for embedding into the
 906   // STW reference processor as the _is_alive_non_header field.
 907   // Supplying a value for the _is_alive_non_header field is
 908   // optional but doing so prevents unnecessary additions to
 909   // the discovered lists during reference discovery.
 910   G1STWIsAliveClosure _is_alive_closure_stw;
 911 
 912   // The (concurrent marking) reference processor...
 913   ReferenceProcessor* _ref_processor_cm;
 914 
 915   // Instance of the concurrent mark is_alive closure for embedding
 916   // into the Concurrent Marking reference processor as the
 917   // _is_alive_non_header field. Supplying a value for the
 918   // _is_alive_non_header field is optional but doing so prevents
 919   // unnecessary additions to the discovered lists during reference
 920   // discovery.
 921   G1CMIsAliveClosure _is_alive_closure_cm;
 922 
 923   // Cache used by G1CollectedHeap::start_cset_region_for_worker().
 924   HeapRegion** _worker_cset_start_region;
 925 
 926   // Time stamp to validate the regions recorded in the cache
 927   // used by G1CollectedHeap::start_cset_region_for_worker().
 928   // The heap region entry for a given worker is valid iff
 929   // the associated time stamp value matches the current value
 930   // of G1CollectedHeap::_gc_time_stamp.
 931   uint* _worker_cset_start_region_time_stamp;
 932 
 933   volatile bool _free_regions_coming;
 934 
 935 public:
 936 
 937   void set_refine_cte_cl_concurrency(bool concurrent);
 938 
 939   RefToScanQueue *task_queue(uint i) const;
 940 
 941   uint num_task_queues() const;
 942 
 943   // A set of cards where updates happened during the GC
 944   DirtyCardQueueSet& dirty_card_queue_set() { return _dirty_card_queue_set; }
 945 
 946   // Create a G1CollectedHeap with the specified policy.
 947   // Must call the initialize method afterwards.
 948   // May not return if something goes wrong.
 949   G1CollectedHeap(G1CollectorPolicy* policy);
 950 
 951   // Initialize the G1CollectedHeap to have the initial and
 952   // maximum sizes and remembered and barrier sets
 953   // specified by the policy object.
 954   jint initialize();
 955 
 956   virtual void stop();
 957 
 958   // Return the (conservative) maximum heap alignment for any G1 heap
 959   static size_t conservative_max_heap_alignment();
 960 
 961   // Does operations required after initialization has been done.
 962   void post_initialize();
 963 
 964   // Initialize weak reference processing.
 965   void ref_processing_init();
 966 
 967   virtual Name kind() const {
 968     return CollectedHeap::G1CollectedHeap;
 969   }
 970 
 971   const G1CollectorState* collector_state() const { return &_collector_state; }
 972   G1CollectorState* collector_state() { return &_collector_state; }
 973 
 974   // The current policy object for the collector.
 975   G1CollectorPolicy* g1_policy() const { return _g1_policy; }
 976 
 977   virtual CollectorPolicy* collector_policy() const;
 978 
 979   // Adaptive size policy.  No such thing for g1.
 980   virtual AdaptiveSizePolicy* size_policy() { return NULL; }
 981 
 982   // The rem set and barrier set.
 983   G1RemSet* g1_rem_set() const { return _g1_rem_set; }
 984 
 985   unsigned get_gc_time_stamp() {
 986     return _gc_time_stamp;
 987   }
 988 
 989   inline void reset_gc_time_stamp();
 990 
 991   void check_gc_time_stamps() PRODUCT_RETURN;
 992 
 993   inline void increment_gc_time_stamp();
 994 
 995   // Reset the given region's GC timestamp. If it's starts humongous,
 996   // also reset the GC timestamp of its corresponding
 997   // continues humongous regions too.
 998   void reset_gc_time_stamps(HeapRegion* hr);
 999 
1000   // Apply the given closure on all cards in the Hot Card Cache, emptying it.
1001   void iterate_hcc_closure(CardTableEntryClosure* cl, uint worker_i);
1002 
1003   // Apply the given closure on all cards in the Dirty Card Queue Set, emptying it.
1004   void iterate_dirty_card_closure(CardTableEntryClosure* cl, uint worker_i);
1005 
1006   // The shared block offset table array.
1007   G1BlockOffsetSharedArray* bot_shared() const { return _bot_shared; }
1008 
1009   // Reference Processing accessors
1010 
1011   // The STW reference processor....
1012   ReferenceProcessor* ref_processor_stw() const { return _ref_processor_stw; }
1013 
1014   G1NewTracer* gc_tracer_stw() const { return _gc_tracer_stw; }
1015 
1016   // The Concurrent Marking reference processor...
1017   ReferenceProcessor* ref_processor_cm() const { return _ref_processor_cm; }
1018 
1019   ConcurrentGCTimer* gc_timer_cm() const { return _gc_timer_cm; }
1020   G1OldTracer* gc_tracer_cm() const { return _gc_tracer_cm; }
1021 
1022   virtual size_t capacity() const;
1023   virtual size_t used() const;
1024   // This should be called when we're not holding the heap lock. The
1025   // result might be a bit inaccurate.
1026   size_t used_unlocked() const;
1027   size_t recalculate_used() const;
1028 
1029   // These virtual functions do the actual allocation.
1030   // Some heaps may offer a contiguous region for shared non-blocking
1031   // allocation, via inlined code (by exporting the address of the top and
1032   // end fields defining the extent of the contiguous allocation region.)
1033   // But G1CollectedHeap doesn't yet support this.
1034 
1035   virtual bool is_maximal_no_gc() const {
1036     return _hrm.available() == 0;
1037   }
1038 
1039   // The current number of regions in the heap.
1040   uint num_regions() const { return _hrm.length(); }
1041 
1042   // The max number of regions in the heap.
1043   uint max_regions() const { return _hrm.max_length(); }
1044 
1045   // The number of regions that are completely free.
1046   uint num_free_regions() const { return _hrm.num_free_regions(); }
1047 
1048   MemoryUsage get_auxiliary_data_memory_usage() const {
1049     return _hrm.get_auxiliary_data_memory_usage();
1050   }
1051 
1052   // The number of regions that are not completely free.
1053   uint num_used_regions() const { return num_regions() - num_free_regions(); }
1054 
1055   void verify_not_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1056   void verify_dirty_region(HeapRegion* hr) PRODUCT_RETURN;
1057   void verify_dirty_young_list(HeapRegion* head) PRODUCT_RETURN;
1058   void verify_dirty_young_regions() PRODUCT_RETURN;
1059 
1060 #ifndef PRODUCT
1061   // Make sure that the given bitmap has no marked objects in the
1062   // range [from,limit). If it does, print an error message and return
1063   // false. Otherwise, just return true. bitmap_name should be "prev"
1064   // or "next".
1065   bool verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
1066                                 HeapWord* from, HeapWord* limit);
1067 
1068   // Verify that the prev / next bitmap range [tams,end) for the given
1069   // region has no marks. Return true if all is well, false if errors
1070   // are detected.
1071   bool verify_bitmaps(const char* caller, HeapRegion* hr);
1072 #endif // PRODUCT
1073 
1074   // If G1VerifyBitmaps is set, verify that the marking bitmaps for
1075   // the given region do not have any spurious marks. If errors are
1076   // detected, print appropriate error messages and crash.
1077   void check_bitmaps(const char* caller, HeapRegion* hr) PRODUCT_RETURN;
1078 
1079   // If G1VerifyBitmaps is set, verify that the marking bitmaps do not
1080   // have any spurious marks. If errors are detected, print
1081   // appropriate error messages and crash.
1082   void check_bitmaps(const char* caller) PRODUCT_RETURN;
1083 
1084   // Do sanity check on the contents of the in-cset fast test table.
1085   bool check_cset_fast_test() PRODUCT_RETURN_( return true; );
1086 
1087   // verify_region_sets() performs verification over the region
1088   // lists. It will be compiled in the product code to be used when
1089   // necessary (i.e., during heap verification).
1090   void verify_region_sets();
1091 
1092   // verify_region_sets_optional() is planted in the code for
1093   // list verification in non-product builds (and it can be enabled in
1094   // product builds by defining HEAP_REGION_SET_FORCE_VERIFY to be 1).
1095 #if HEAP_REGION_SET_FORCE_VERIFY
1096   void verify_region_sets_optional() {
1097     verify_region_sets();
1098   }
1099 #else // HEAP_REGION_SET_FORCE_VERIFY
1100   void verify_region_sets_optional() { }
1101 #endif // HEAP_REGION_SET_FORCE_VERIFY
1102 
1103 #ifdef ASSERT
1104   bool is_on_master_free_list(HeapRegion* hr) {
1105     return _hrm.is_free(hr);
1106   }
1107 #endif // ASSERT
1108 
1109   // Wrapper for the region list operations that can be called from
1110   // methods outside this class.
1111 
1112   void secondary_free_list_add(FreeRegionList* list) {
1113     _secondary_free_list.add_ordered(list);
1114   }
1115 
1116   void append_secondary_free_list() {
1117     _hrm.insert_list_into_free_list(&_secondary_free_list);
1118   }
1119 
1120   void append_secondary_free_list_if_not_empty_with_lock() {
1121     // If the secondary free list looks empty there's no reason to
1122     // take the lock and then try to append it.
1123     if (!_secondary_free_list.is_empty()) {
1124       MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
1125       append_secondary_free_list();
1126     }
1127   }
1128 
1129   inline void old_set_add(HeapRegion* hr);
1130   inline void old_set_remove(HeapRegion* hr);
1131 
1132   size_t non_young_capacity_bytes() {
1133     return _old_set.total_capacity_bytes() + _humongous_set.total_capacity_bytes();
1134   }
1135 
1136   void set_free_regions_coming();
1137   void reset_free_regions_coming();
1138   bool free_regions_coming() { return _free_regions_coming; }
1139   void wait_while_free_regions_coming();
1140 
1141   // Determine whether the given region is one that we are using as an
1142   // old GC alloc region.
1143   bool is_old_gc_alloc_region(HeapRegion* hr);
1144 
1145   // Perform a collection of the heap; intended for use in implementing
1146   // "System.gc".  This probably implies as full a collection as the
1147   // "CollectedHeap" supports.
1148   virtual void collect(GCCause::Cause cause);
1149 
1150   virtual bool copy_allocation_context_stats(const jint* contexts,
1151                                              jlong* totals,
1152                                              jbyte* accuracy,
1153                                              jint len);
1154 
1155   // True iff an evacuation has failed in the most-recent collection.
1156   bool evacuation_failed() { return _evacuation_failed; }
1157 
1158   void remove_from_old_sets(const HeapRegionSetCount& old_regions_removed, const HeapRegionSetCount& humongous_regions_removed);
1159   void prepend_to_freelist(FreeRegionList* list);
1160   void decrement_summary_bytes(size_t bytes);
1161 
1162   virtual bool is_in(const void* p) const;
1163 #ifdef ASSERT
1164   // Returns whether p is in one of the available areas of the heap. Slow but
1165   // extensive version.
1166   bool is_in_exact(const void* p) const;
1167 #endif
1168 
1169   // Return "TRUE" iff the given object address is within the collection
1170   // set. Slow implementation.
1171   bool obj_in_cs(oop obj);
1172 
1173   inline bool is_in_cset(const HeapRegion *hr);
1174   inline bool is_in_cset(oop obj);
1175 
1176   inline bool is_in_cset_or_humongous(const oop obj);
1177 
1178  private:
1179   // This array is used for a quick test on whether a reference points into
1180   // the collection set or not. Each of the array's elements denotes whether the
1181   // corresponding region is in the collection set or not.
1182   G1InCSetStateFastTestBiasedMappedArray _in_cset_fast_test;
1183 
1184  public:
1185 
1186   inline InCSetState in_cset_state(const oop obj);
1187 
1188   // Return "TRUE" iff the given object address is in the reserved
1189   // region of g1.
1190   bool is_in_g1_reserved(const void* p) const {
1191     return _hrm.reserved().contains(p);
1192   }
1193 
1194   // Returns a MemRegion that corresponds to the space that has been
1195   // reserved for the heap
1196   MemRegion g1_reserved() const {
1197     return _hrm.reserved();
1198   }
1199 
1200   virtual bool is_in_closed_subset(const void* p) const;
1201 
1202   G1SATBCardTableLoggingModRefBS* g1_barrier_set() {
1203     return barrier_set_cast<G1SATBCardTableLoggingModRefBS>(barrier_set());
1204   }
1205 
1206   // This resets the card table to all zeros.  It is used after
1207   // a collection pause which used the card table to claim cards.
1208   void cleanUpCardTable();
1209 
1210   // Iteration functions.
1211 
1212   // Iterate over all objects, calling "cl.do_object" on each.
1213   virtual void object_iterate(ObjectClosure* cl);
1214 
1215   virtual void safe_object_iterate(ObjectClosure* cl) {
1216     object_iterate(cl);
1217   }
1218 
1219   // Iterate over heap regions, in address order, terminating the
1220   // iteration early if the "doHeapRegion" method returns "true".
1221   void heap_region_iterate(HeapRegionClosure* blk) const;
1222 
1223   // Return the region with the given index. It assumes the index is valid.
1224   inline HeapRegion* region_at(uint index) const;
1225 
1226   // Return the next region (by index) that is part of the same
1227   // humongous object that hr is part of.
1228   inline HeapRegion* next_region_in_humongous(HeapRegion* hr) const;
1229 
1230   // Calculate the region index of the given address. Given address must be
1231   // within the heap.
1232   inline uint addr_to_region(HeapWord* addr) const;
1233 
1234   inline HeapWord* bottom_addr_for_region(uint index) const;
1235 
1236   // Iterate over the heap regions in parallel. Assumes that this will be called
1237   // in parallel by ParallelGCThreads worker threads with distinct worker ids
1238   // in the range [0..max(ParallelGCThreads-1, 1)]. Applies "blk->doHeapRegion"
1239   // to each of the regions, by attempting to claim the region using the
1240   // HeapRegionClaimer and, if successful, applying the closure to the claimed
1241   // region. The concurrent argument should be set to true if iteration is
1242   // performed concurrently, during which no assumptions are made for consistent
1243   // attributes of the heap regions (as they might be modified while iterating).
1244   void heap_region_par_iterate(HeapRegionClosure* cl,
1245                                uint worker_id,
1246                                HeapRegionClaimer* hrclaimer,
1247                                bool concurrent = false) const;
1248 
1249   // Clear the cached cset start regions and (more importantly)
1250   // the time stamps. Called when we reset the GC time stamp.
1251   void clear_cset_start_regions();
1252 
1253   // Given the id of a worker, obtain or calculate a suitable
1254   // starting region for iterating over the current collection set.
1255   HeapRegion* start_cset_region_for_worker(uint worker_i);
1256 
1257   // Iterate over the regions (if any) in the current collection set.
1258   void collection_set_iterate(HeapRegionClosure* blk);
1259 
1260   // As above but starting from region r
1261   void collection_set_iterate_from(HeapRegion* r, HeapRegionClosure *blk);
1262 
1263   HeapRegion* next_compaction_region(const HeapRegion* from) const;
1264 
1265   // Returns the HeapRegion that contains addr. addr must not be NULL.
1266   template <class T>
1267   inline HeapRegion* heap_region_containing(const T addr) const;
1268 
1269   // A CollectedHeap is divided into a dense sequence of "blocks"; that is,
1270   // each address in the (reserved) heap is a member of exactly
1271   // one block.  The defining characteristic of a block is that it is
1272   // possible to find its size, and thus to progress forward to the next
1273   // block.  (Blocks may be of different sizes.)  Thus, blocks may
1274   // represent Java objects, or they might be free blocks in a
1275   // free-list-based heap (or subheap), as long as the two kinds are
1276   // distinguishable and the size of each is determinable.
1277 
1278   // Returns the address of the start of the "block" that contains the
1279   // address "addr".  We say "blocks" instead of "object" since some heaps
1280   // may not pack objects densely; a chunk may either be an object or a
1281   // non-object.
1282   virtual HeapWord* block_start(const void* addr) const;
1283 
1284   // Requires "addr" to be the start of a chunk, and returns its size.
1285   // "addr + size" is required to be the start of a new chunk, or the end
1286   // of the active area of the heap.
1287   virtual size_t block_size(const HeapWord* addr) const;
1288 
1289   // Requires "addr" to be the start of a block, and returns "TRUE" iff
1290   // the block is an object.
1291   virtual bool block_is_obj(const HeapWord* addr) const;
1292 
1293   // Section on thread-local allocation buffers (TLABs)
1294   // See CollectedHeap for semantics.
1295 
1296   bool supports_tlab_allocation() const;
1297   size_t tlab_capacity(Thread* ignored) const;
1298   size_t tlab_used(Thread* ignored) const;
1299   size_t max_tlab_size() const;
1300   size_t unsafe_max_tlab_alloc(Thread* ignored) const;
1301 
1302   // Can a compiler initialize a new object without store barriers?
1303   // This permission only extends from the creation of a new object
1304   // via a TLAB up to the first subsequent safepoint. If such permission
1305   // is granted for this heap type, the compiler promises to call
1306   // defer_store_barrier() below on any slow path allocation of
1307   // a new object for which such initializing store barriers will
1308   // have been elided. G1, like CMS, allows this, but should be
1309   // ready to provide a compensating write barrier as necessary
1310   // if that storage came out of a non-young region. The efficiency
1311   // of this implementation depends crucially on being able to
1312   // answer very efficiently in constant time whether a piece of
1313   // storage in the heap comes from a young region or not.
1314   // See ReduceInitialCardMarks.
1315   virtual bool can_elide_tlab_store_barriers() const {
1316     return true;
1317   }
1318 
1319   virtual bool card_mark_must_follow_store() const {
1320     return true;
1321   }
1322 
1323   inline bool is_in_young(const oop obj);
1324 
1325   virtual bool is_scavengable(const void* addr);
1326 
1327   // We don't need barriers for initializing stores to objects
1328   // in the young gen: for the SATB pre-barrier, there is no
1329   // pre-value that needs to be remembered; for the remembered-set
1330   // update logging post-barrier, we don't maintain remembered set
1331   // information for young gen objects.
1332   virtual inline bool can_elide_initializing_store_barrier(oop new_obj);
1333 
1334   // Returns "true" iff the given word_size is "very large".
1335   static bool is_humongous(size_t word_size) {
1336     // Note this has to be strictly greater-than as the TLABs
1337     // are capped at the humongous threshold and we want to
1338     // ensure that we don't try to allocate a TLAB as
1339     // humongous and that we don't allocate a humongous
1340     // object in a TLAB.
1341     return word_size > _humongous_object_threshold_in_words;
1342   }
1343 
1344   // Returns the humongous threshold for a specific region size
1345   static size_t humongous_threshold_for(size_t region_size) {
1346     return (region_size / 2);
1347   }
1348 
1349   // Returns the number of regions the humongous object of the given word size
1350   // requires.
1351   static size_t humongous_obj_size_in_regions(size_t word_size);
1352 
1353   // Print the maximum heap capacity.
1354   virtual size_t max_capacity() const;
1355 
1356   virtual jlong millis_since_last_gc();
1357 
1358 
1359   // Convenience function to be used in situations where the heap type can be
1360   // asserted to be this type.
1361   static G1CollectedHeap* heap();
1362 
1363   void set_region_short_lived_locked(HeapRegion* hr);
1364   // add appropriate methods for any other surv rate groups
1365 
1366   YoungList* young_list() const { return _young_list; }
1367 
1368   // debugging
1369   bool check_young_list_well_formed() {
1370     return _young_list->check_list_well_formed();
1371   }
1372 
1373   bool check_young_list_empty(bool check_heap,
1374                               bool check_sample = true);
1375 
1376   // *** Stuff related to concurrent marking.  It's not clear to me that so
1377   // many of these need to be public.
1378 
1379   // The functions below are helper functions that a subclass of
1380   // "CollectedHeap" can use in the implementation of its virtual
1381   // functions.
1382   // This performs a concurrent marking of the live objects in a
1383   // bitmap off to the side.
1384   void doConcurrentMark();
1385 
1386   bool isMarkedPrev(oop obj) const;
1387   bool isMarkedNext(oop obj) const;
1388 
1389   // Determine if an object is dead, given the object and also
1390   // the region to which the object belongs. An object is dead
1391   // iff a) it was not allocated since the last mark, b) it
1392   // is not marked, and c) it is not in an archive region.
1393   bool is_obj_dead(const oop obj, const HeapRegion* hr) const {
1394     return
1395       !hr->obj_allocated_since_prev_marking(obj) &&
1396       !isMarkedPrev(obj) &&
1397       !hr->is_archive();
1398   }
1399 
1400   // This function returns true when an object has been
1401   // around since the previous marking and hasn't yet
1402   // been marked during this marking, and is not in an archive region.
1403   bool is_obj_ill(const oop obj, const HeapRegion* hr) const {
1404     return
1405       !hr->obj_allocated_since_next_marking(obj) &&
1406       !isMarkedNext(obj) &&
1407       !hr->is_archive();
1408   }
1409 
1410   // Determine if an object is dead, given only the object itself.
1411   // This will find the region to which the object belongs and
1412   // then call the region version of the same function.
1413 
1414   // Added if it is NULL it isn't dead.
1415 
1416   inline bool is_obj_dead(const oop obj) const;
1417 
1418   inline bool is_obj_ill(const oop obj) const;
1419 
1420   bool allocated_since_marking(oop obj, HeapRegion* hr, VerifyOption vo);
1421   HeapWord* top_at_mark_start(HeapRegion* hr, VerifyOption vo);
1422   bool is_marked(oop obj, VerifyOption vo);
1423   const char* top_at_mark_start_str(VerifyOption vo);
1424 
1425   ConcurrentMark* concurrent_mark() const { return _cm; }
1426 
1427   // Refinement
1428 
1429   ConcurrentG1Refine* concurrent_g1_refine() const { return _cg1r; }
1430 
1431   // The dirty cards region list is used to record a subset of regions
1432   // whose cards need clearing. The list if populated during the
1433   // remembered set scanning and drained during the card table
1434   // cleanup. Although the methods are reentrant, population/draining
1435   // phases must not overlap. For synchronization purposes the last
1436   // element on the list points to itself.
1437   HeapRegion* _dirty_cards_region_list;
1438   void push_dirty_cards_region(HeapRegion* hr);
1439   HeapRegion* pop_dirty_cards_region();
1440 
1441   // Optimized nmethod scanning support routines
1442 
1443   // Register the given nmethod with the G1 heap.
1444   virtual void register_nmethod(nmethod* nm);
1445 
1446   // Unregister the given nmethod from the G1 heap.
1447   virtual void unregister_nmethod(nmethod* nm);
1448 
1449   // Free up superfluous code root memory.
1450   void purge_code_root_memory();
1451 
1452   // Rebuild the strong code root lists for each region
1453   // after a full GC.
1454   void rebuild_strong_code_roots();
1455 
1456   // Delete entries for dead interned string and clean up unreferenced symbols
1457   // in symbol table, possibly in parallel.
1458   void unlink_string_and_symbol_table(BoolObjectClosure* is_alive, bool unlink_strings = true, bool unlink_symbols = true);
1459 
1460   // Parallel phase of unloading/cleaning after G1 concurrent mark.
1461   void parallel_cleaning(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, bool class_unloading_occurred);
1462 
1463   // Redirty logged cards in the refinement queue.
1464   void redirty_logged_cards();
1465   // Verification
1466 
1467   // Perform any cleanup actions necessary before allowing a verification.
1468   virtual void prepare_for_verify();
1469 
1470   // Perform verification.
1471 
1472   // vo == UsePrevMarking  -> use "prev" marking information,
1473   // vo == UseNextMarking -> use "next" marking information
1474   // vo == UseMarkWord    -> use the mark word in the object header
1475   //
1476   // NOTE: Only the "prev" marking information is guaranteed to be
1477   // consistent most of the time, so most calls to this should use
1478   // vo == UsePrevMarking.
1479   // Currently, there is only one case where this is called with
1480   // vo == UseNextMarking, which is to verify the "next" marking
1481   // information at the end of remark.
1482   // Currently there is only one place where this is called with
1483   // vo == UseMarkWord, which is to verify the marking during a
1484   // full GC.
1485   void verify(bool silent, VerifyOption vo);
1486 
1487   // Override; it uses the "prev" marking information
1488   virtual void verify(bool silent);
1489 
1490   // The methods below are here for convenience and dispatch the
1491   // appropriate method depending on value of the given VerifyOption
1492   // parameter. The values for that parameter, and their meanings,
1493   // are the same as those above.
1494 
1495   bool is_obj_dead_cond(const oop obj,
1496                         const HeapRegion* hr,
1497                         const VerifyOption vo) const;
1498 
1499   bool is_obj_dead_cond(const oop obj,
1500                         const VerifyOption vo) const;
1501 
1502   G1HeapSummary create_g1_heap_summary();
1503   G1EvacSummary create_g1_evac_summary(G1EvacStats* stats);
1504 
1505   // Printing
1506 
1507   virtual void print_on(outputStream* st) const;
1508   virtual void print_extended_on(outputStream* st) const;
1509   virtual void print_on_error(outputStream* st) const;
1510 
1511   virtual void print_gc_threads_on(outputStream* st) const;
1512   virtual void gc_threads_do(ThreadClosure* tc) const;
1513 
1514   // Override
1515   void print_tracing_info() const;
1516 
1517   // The following two methods are helpful for debugging RSet issues.
1518   void print_cset_rsets() PRODUCT_RETURN;
1519   void print_all_rsets() PRODUCT_RETURN;
1520 
1521 public:
1522   size_t pending_card_num();
1523 
1524 protected:
1525   size_t _max_heap_capacity;
1526 };
1527 
1528 class G1ParEvacuateFollowersClosure : public VoidClosure {
1529 private:
1530   double _start_term;
1531   double _term_time;
1532   size_t _term_attempts;
1533 
1534   void start_term_time() { _term_attempts++; _start_term = os::elapsedTime(); }
1535   void end_term_time() { _term_time += os::elapsedTime() - _start_term; }
1536 protected:
1537   G1CollectedHeap*              _g1h;
1538   G1ParScanThreadState*         _par_scan_state;
1539   RefToScanQueueSet*            _queues;
1540   ParallelTaskTerminator*       _terminator;
1541 
1542   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
1543   RefToScanQueueSet*      queues()         { return _queues; }
1544   ParallelTaskTerminator* terminator()     { return _terminator; }
1545 
1546 public:
1547   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
1548                                 G1ParScanThreadState* par_scan_state,
1549                                 RefToScanQueueSet* queues,
1550                                 ParallelTaskTerminator* terminator)
1551     : _g1h(g1h), _par_scan_state(par_scan_state),
1552       _queues(queues), _terminator(terminator),
1553       _start_term(0.0), _term_time(0.0), _term_attempts(0) {}
1554 
1555   void do_void();
1556 
1557   double term_time() const { return _term_time; }
1558   size_t term_attempts() const { return _term_attempts; }
1559 
1560 private:
1561   inline bool offer_termination();
1562 };
1563 
1564 #endif // SHARE_VM_GC_G1_G1COLLECTEDHEAP_HPP