1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 #include "utilities/pair.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86 
  87   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89 
  90   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  91   _prev_collection_pause_end_ms(0.0),
  92   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _recent_prev_end_times_for_all_gcs_sec(
 112                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 113 
 114   _recent_avg_pause_time_ratio(0.0),
 115   _rs_lengths_prediction(0),
 116   _max_survivor_regions(0),
 117 
 118   _eden_cset_region_length(0),
 119   _survivor_cset_region_length(0),
 120   _old_cset_region_length(0),
 121 
 122   _collection_set(NULL),
 123   _collection_set_bytes_used_before(0),
 124 
 125   // Incremental CSet attributes
 126   _inc_cset_build_state(Inactive),
 127   _inc_cset_head(NULL),
 128   _inc_cset_tail(NULL),
 129   _inc_cset_bytes_used_before(0),
 130   _inc_cset_max_finger(NULL),
 131   _inc_cset_recorded_rs_lengths(0),
 132   _inc_cset_recorded_rs_lengths_diffs(0),
 133   _inc_cset_predicted_elapsed_time_ms(0.0),
 134   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 135 
 136   // add here any more surv rate groups
 137   _recorded_survivor_regions(0),
 138   _recorded_survivor_head(NULL),
 139   _recorded_survivor_tail(NULL),
 140   _survivors_age_table(true),
 141 
 142   _gc_overhead_perc(0.0),
 143 
 144   _bytes_allocated_in_old_since_last_gc(0),
 145   _ihop_control(NULL),
 146   _initial_mark_to_mixed() {
 147 
 148   // SurvRateGroups below must be initialized after the predictor because they
 149   // indirectly use it through this object passed to their constructor.
 150   _short_lived_surv_rate_group =
 151     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 152   _survivor_surv_rate_group =
 153     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 154 
 155   // Set up the region size and associated fields. Given that the
 156   // policy is created before the heap, we have to set this up here,
 157   // so it's done as soon as possible.
 158 
 159   // It would have been natural to pass initial_heap_byte_size() and
 160   // max_heap_byte_size() to setup_heap_region_size() but those have
 161   // not been set up at this point since they should be aligned with
 162   // the region size. So, there is a circular dependency here. We base
 163   // the region size on the heap size, but the heap size should be
 164   // aligned with the region size. To get around this we use the
 165   // unaligned values for the heap.
 166   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 167   HeapRegionRemSet::setup_remset_size();
 168 
 169   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 170   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 171   clear_ratio_check_data();
 172 
 173   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
 174 
 175   int index = MIN2(ParallelGCThreads - 1, 7u);
 176 
 177   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 178   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 179   _cost_scan_hcc_seq->add(0.0);
 180   _young_cards_per_entry_ratio_seq->add(
 181                                   young_cards_per_entry_ratio_defaults[index]);
 182   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 183   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 184   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 185   _young_other_cost_per_region_ms_seq->add(
 186                                young_other_cost_per_region_ms_defaults[index]);
 187   _non_young_other_cost_per_region_ms_seq->add(
 188                            non_young_other_cost_per_region_ms_defaults[index]);
 189 
 190   // Below, we might need to calculate the pause time target based on
 191   // the pause interval. When we do so we are going to give G1 maximum
 192   // flexibility and allow it to do pauses when it needs to. So, we'll
 193   // arrange that the pause interval to be pause time target + 1 to
 194   // ensure that a) the pause time target is maximized with respect to
 195   // the pause interval and b) we maintain the invariant that pause
 196   // time target < pause interval. If the user does not want this
 197   // maximum flexibility, they will have to set the pause interval
 198   // explicitly.
 199 
 200   // First make sure that, if either parameter is set, its value is
 201   // reasonable.
 202   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 203     if (MaxGCPauseMillis < 1) {
 204       vm_exit_during_initialization("MaxGCPauseMillis should be "
 205                                     "greater than 0");
 206     }
 207   }
 208   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 209     if (GCPauseIntervalMillis < 1) {
 210       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 211                                     "greater than 0");
 212     }
 213   }
 214 
 215   // Then, if the pause time target parameter was not set, set it to
 216   // the default value.
 217   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 218     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 219       // The default pause time target in G1 is 200ms
 220       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 221     } else {
 222       // We do not allow the pause interval to be set without the
 223       // pause time target
 224       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 225                                     "without setting MaxGCPauseMillis");
 226     }
 227   }
 228 
 229   // Then, if the interval parameter was not set, set it according to
 230   // the pause time target (this will also deal with the case when the
 231   // pause time target is the default value).
 232   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 233     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 234   }
 235 
 236   // Finally, make sure that the two parameters are consistent.
 237   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 238     char buffer[256];
 239     jio_snprintf(buffer, 256,
 240                  "MaxGCPauseMillis (%u) should be less than "
 241                  "GCPauseIntervalMillis (%u)",
 242                  MaxGCPauseMillis, GCPauseIntervalMillis);
 243     vm_exit_during_initialization(buffer);
 244   }
 245 
 246   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 247   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 248   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 249 
 250   // start conservatively (around 50ms is about right)
 251   _concurrent_mark_remark_times_ms->add(0.05);
 252   _concurrent_mark_cleanup_times_ms->add(0.20);
 253   _tenuring_threshold = MaxTenuringThreshold;
 254 
 255   assert(GCTimeRatio > 0,
 256          "we should have set it to a default value set_g1_gc_flags() "
 257          "if a user set it to 0");
 258   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 259 
 260   uintx reserve_perc = G1ReservePercent;
 261   // Put an artificial ceiling on this so that it's not set to a silly value.
 262   if (reserve_perc > 50) {
 263     reserve_perc = 50;
 264     warning("G1ReservePercent is set to a value that is too large, "
 265             "it's been updated to " UINTX_FORMAT, reserve_perc);
 266   }
 267   _reserve_factor = (double) reserve_perc / 100.0;
 268   // This will be set when the heap is expanded
 269   // for the first time during initialization.
 270   _reserve_regions = 0;
 271 
 272   _cset_chooser = new CollectionSetChooser();
 273 }
 274 
 275 G1CollectorPolicy::~G1CollectorPolicy() {
 276   delete _ihop_control;
 277 }
 278 
 279 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 280   return _predictor.get_new_prediction(seq);
 281 }
 282 
 283 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 284   return (size_t)get_new_prediction(seq);
 285 }
 286 
 287 void G1CollectorPolicy::initialize_alignments() {
 288   _space_alignment = HeapRegion::GrainBytes;
 289   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 290   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 291   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 292 }
 293 
 294 void G1CollectorPolicy::initialize_flags() {
 295   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 296     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 297   }
 298 
 299   if (SurvivorRatio < 1) {
 300     vm_exit_during_initialization("Invalid survivor ratio specified");
 301   }
 302   CollectorPolicy::initialize_flags();
 303   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 304 }
 305 
 306 void G1CollectorPolicy::post_heap_initialize() {
 307   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 308   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 309   if (max_young_size != MaxNewSize) {
 310     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 311   }
 312 
 313   _ihop_control = create_ihop_control();
 314 }
 315 
 316 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 317 
 318 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 319         _min_desired_young_length(0), _max_desired_young_length(0) {
 320   if (FLAG_IS_CMDLINE(NewRatio)) {
 321     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 322       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 323     } else {
 324       _sizer_kind = SizerNewRatio;
 325       _adaptive_size = false;
 326       return;
 327     }
 328   }
 329 
 330   if (NewSize > MaxNewSize) {
 331     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 332       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 333               "A new max generation size of " SIZE_FORMAT "k will be used.",
 334               NewSize/K, MaxNewSize/K, NewSize/K);
 335     }
 336     MaxNewSize = NewSize;
 337   }
 338 
 339   if (FLAG_IS_CMDLINE(NewSize)) {
 340     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 341                                      1U);
 342     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 343       _max_desired_young_length =
 344                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 345                                   1U);
 346       _sizer_kind = SizerMaxAndNewSize;
 347       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 348     } else {
 349       _sizer_kind = SizerNewSizeOnly;
 350     }
 351   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 352     _max_desired_young_length =
 353                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 354                                   1U);
 355     _sizer_kind = SizerMaxNewSizeOnly;
 356   }
 357 }
 358 
 359 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 360   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 361   return MAX2(1U, default_value);
 362 }
 363 
 364 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 365   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 366   return MAX2(1U, default_value);
 367 }
 368 
 369 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 370   assert(number_of_heap_regions > 0, "Heap must be initialized");
 371 
 372   switch (_sizer_kind) {
 373     case SizerDefaults:
 374       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 375       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 376       break;
 377     case SizerNewSizeOnly:
 378       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 379       *max_young_length = MAX2(*min_young_length, *max_young_length);
 380       break;
 381     case SizerMaxNewSizeOnly:
 382       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 383       *min_young_length = MIN2(*min_young_length, *max_young_length);
 384       break;
 385     case SizerMaxAndNewSize:
 386       // Do nothing. Values set on the command line, don't update them at runtime.
 387       break;
 388     case SizerNewRatio:
 389       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 390       *max_young_length = *min_young_length;
 391       break;
 392     default:
 393       ShouldNotReachHere();
 394   }
 395 
 396   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 397 }
 398 
 399 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 400   // We need to pass the desired values because recalculation may not update these
 401   // values in some cases.
 402   uint temp = _min_desired_young_length;
 403   uint result = _max_desired_young_length;
 404   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 405   return result;
 406 }
 407 
 408 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 409   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 410           &_max_desired_young_length);
 411 }
 412 
 413 void G1CollectorPolicy::init() {
 414   // Set aside an initial future to_space.
 415   _g1 = G1CollectedHeap::heap();
 416 
 417   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 418 
 419   initialize_gc_policy_counters();
 420 
 421   if (adaptive_young_list_length()) {
 422     _young_list_fixed_length = 0;
 423   } else {
 424     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 425   }
 426   _free_regions_at_end_of_collection = _g1->num_free_regions();
 427 
 428   update_young_list_max_and_target_length();
 429   // We may immediately start allocating regions and placing them on the
 430   // collection set list. Initialize the per-collection set info
 431   start_incremental_cset_building();
 432 }
 433 
 434 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 435   phase_times()->note_gc_start(num_active_workers);
 436 }
 437 
 438 // Create the jstat counters for the policy.
 439 void G1CollectorPolicy::initialize_gc_policy_counters() {
 440   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 441 }
 442 
 443 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 444                                          double base_time_ms,
 445                                          uint base_free_regions,
 446                                          double target_pause_time_ms) const {
 447   if (young_length >= base_free_regions) {
 448     // end condition 1: not enough space for the young regions
 449     return false;
 450   }
 451 
 452   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 453   size_t bytes_to_copy =
 454                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 455   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 456   double young_other_time_ms = predict_young_other_time_ms(young_length);
 457   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 458   if (pause_time_ms > target_pause_time_ms) {
 459     // end condition 2: prediction is over the target pause time
 460     return false;
 461   }
 462 
 463   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 464 
 465   // When copying, we will likely need more bytes free than is live in the region.
 466   // Add some safety margin to factor in the confidence of our guess, and the
 467   // natural expected waste.
 468   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 469   // of the calculation: the lower the confidence, the more headroom.
 470   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 471   // copying due to anticipated waste in the PLABs.
 472   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 473   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 474 
 475   if (expected_bytes_to_copy > free_bytes) {
 476     // end condition 3: out-of-space
 477     return false;
 478   }
 479 
 480   // success!
 481   return true;
 482 }
 483 
 484 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 485   // re-calculate the necessary reserve
 486   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 487   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 488   // smaller than 1.0) we'll get 1.
 489   _reserve_regions = (uint) ceil(reserve_regions_d);
 490 
 491   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 492 }
 493 
 494 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 495                                                        uint base_min_length) const {
 496   uint desired_min_length = 0;
 497   if (adaptive_young_list_length()) {
 498     if (_alloc_rate_ms_seq->num() > 3) {
 499       double now_sec = os::elapsedTime();
 500       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 501       double alloc_rate_ms = predict_alloc_rate_ms();
 502       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 503     } else {
 504       // otherwise we don't have enough info to make the prediction
 505     }
 506   }
 507   desired_min_length += base_min_length;
 508   // make sure we don't go below any user-defined minimum bound
 509   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 510 }
 511 
 512 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 513   // Here, we might want to also take into account any additional
 514   // constraints (i.e., user-defined minimum bound). Currently, we
 515   // effectively don't set this bound.
 516   return _young_gen_sizer->max_desired_young_length();
 517 }
 518 
 519 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 520   return update_young_list_max_and_target_length(get_new_size_prediction(_rs_lengths_seq));
 521 }
 522 
 523 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 524   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 525   update_max_gc_locker_expansion();
 526   return unbounded_target_length;
 527 }
 528 
 529 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 530   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 531   _young_list_target_length = young_lengths.first;
 532   return young_lengths.second;
 533 }
 534 
 535 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 536   YoungTargetLengths result;
 537 
 538   // Calculate the absolute and desired min bounds first.
 539 
 540   // This is how many young regions we already have (currently: the survivors).
 541   uint base_min_length = recorded_survivor_regions();
 542   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 543   // This is the absolute minimum young length. Ensure that we
 544   // will at least have one eden region available for allocation.
 545   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 546   // If we shrank the young list target it should not shrink below the current size.
 547   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 548   // Calculate the absolute and desired max bounds.
 549 
 550   uint desired_max_length = calculate_young_list_desired_max_length();
 551 
 552   uint young_list_target_length = 0;
 553   if (adaptive_young_list_length()) {
 554     if (collector_state()->gcs_are_young()) {
 555       young_list_target_length =
 556                         calculate_young_list_target_length(rs_lengths,
 557                                                            base_min_length,
 558                                                            desired_min_length,
 559                                                            desired_max_length);
 560     } else {
 561       // Don't calculate anything and let the code below bound it to
 562       // the desired_min_length, i.e., do the next GC as soon as
 563       // possible to maximize how many old regions we can add to it.
 564     }
 565   } else {
 566     // The user asked for a fixed young gen so we'll fix the young gen
 567     // whether the next GC is young or mixed.
 568     young_list_target_length = _young_list_fixed_length;
 569   }
 570 
 571   result.second = young_list_target_length;
 572 
 573   // We will try our best not to "eat" into the reserve.
 574   uint absolute_max_length = 0;
 575   if (_free_regions_at_end_of_collection > _reserve_regions) {
 576     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 577   }
 578   if (desired_max_length > absolute_max_length) {
 579     desired_max_length = absolute_max_length;
 580   }
 581 
 582   // Make sure we don't go over the desired max length, nor under the
 583   // desired min length. In case they clash, desired_min_length wins
 584   // which is why that test is second.
 585   if (young_list_target_length > desired_max_length) {
 586     young_list_target_length = desired_max_length;
 587   }
 588   if (young_list_target_length < desired_min_length) {
 589     young_list_target_length = desired_min_length;
 590   }
 591 
 592   assert(young_list_target_length > recorded_survivor_regions(),
 593          "we should be able to allocate at least one eden region");
 594   assert(young_list_target_length >= absolute_min_length, "post-condition");
 595 
 596   result.first = young_list_target_length;
 597   return result;
 598 }
 599 
 600 uint
 601 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 602                                                      uint base_min_length,
 603                                                      uint desired_min_length,
 604                                                      uint desired_max_length) const {
 605   assert(adaptive_young_list_length(), "pre-condition");
 606   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 607 
 608   // In case some edge-condition makes the desired max length too small...
 609   if (desired_max_length <= desired_min_length) {
 610     return desired_min_length;
 611   }
 612 
 613   // We'll adjust min_young_length and max_young_length not to include
 614   // the already allocated young regions (i.e., so they reflect the
 615   // min and max eden regions we'll allocate). The base_min_length
 616   // will be reflected in the predictions by the
 617   // survivor_regions_evac_time prediction.
 618   assert(desired_min_length > base_min_length, "invariant");
 619   uint min_young_length = desired_min_length - base_min_length;
 620   assert(desired_max_length > base_min_length, "invariant");
 621   uint max_young_length = desired_max_length - base_min_length;
 622 
 623   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 624   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 625   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 626   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 627   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 628   double base_time_ms =
 629     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 630     survivor_regions_evac_time;
 631   uint available_free_regions = _free_regions_at_end_of_collection;
 632   uint base_free_regions = 0;
 633   if (available_free_regions > _reserve_regions) {
 634     base_free_regions = available_free_regions - _reserve_regions;
 635   }
 636 
 637   // Here, we will make sure that the shortest young length that
 638   // makes sense fits within the target pause time.
 639 
 640   if (predict_will_fit(min_young_length, base_time_ms,
 641                        base_free_regions, target_pause_time_ms)) {
 642     // The shortest young length will fit into the target pause time;
 643     // we'll now check whether the absolute maximum number of young
 644     // regions will fit in the target pause time. If not, we'll do
 645     // a binary search between min_young_length and max_young_length.
 646     if (predict_will_fit(max_young_length, base_time_ms,
 647                          base_free_regions, target_pause_time_ms)) {
 648       // The maximum young length will fit into the target pause time.
 649       // We are done so set min young length to the maximum length (as
 650       // the result is assumed to be returned in min_young_length).
 651       min_young_length = max_young_length;
 652     } else {
 653       // The maximum possible number of young regions will not fit within
 654       // the target pause time so we'll search for the optimal
 655       // length. The loop invariants are:
 656       //
 657       // min_young_length < max_young_length
 658       // min_young_length is known to fit into the target pause time
 659       // max_young_length is known not to fit into the target pause time
 660       //
 661       // Going into the loop we know the above hold as we've just
 662       // checked them. Every time around the loop we check whether
 663       // the middle value between min_young_length and
 664       // max_young_length fits into the target pause time. If it
 665       // does, it becomes the new min. If it doesn't, it becomes
 666       // the new max. This way we maintain the loop invariants.
 667 
 668       assert(min_young_length < max_young_length, "invariant");
 669       uint diff = (max_young_length - min_young_length) / 2;
 670       while (diff > 0) {
 671         uint young_length = min_young_length + diff;
 672         if (predict_will_fit(young_length, base_time_ms,
 673                              base_free_regions, target_pause_time_ms)) {
 674           min_young_length = young_length;
 675         } else {
 676           max_young_length = young_length;
 677         }
 678         assert(min_young_length <  max_young_length, "invariant");
 679         diff = (max_young_length - min_young_length) / 2;
 680       }
 681       // The results is min_young_length which, according to the
 682       // loop invariants, should fit within the target pause time.
 683 
 684       // These are the post-conditions of the binary search above:
 685       assert(min_young_length < max_young_length,
 686              "otherwise we should have discovered that max_young_length "
 687              "fits into the pause target and not done the binary search");
 688       assert(predict_will_fit(min_young_length, base_time_ms,
 689                               base_free_regions, target_pause_time_ms),
 690              "min_young_length, the result of the binary search, should "
 691              "fit into the pause target");
 692       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 693                                base_free_regions, target_pause_time_ms),
 694              "min_young_length, the result of the binary search, should be "
 695              "optimal, so no larger length should fit into the pause target");
 696     }
 697   } else {
 698     // Even the minimum length doesn't fit into the pause time
 699     // target, return it as the result nevertheless.
 700   }
 701   return base_min_length + min_young_length;
 702 }
 703 
 704 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 705   double survivor_regions_evac_time = 0.0;
 706   for (HeapRegion * r = _recorded_survivor_head;
 707        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 708        r = r->get_next_young_region()) {
 709     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 710   }
 711   return survivor_regions_evac_time;
 712 }
 713 
 714 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 715   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 716 
 717   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 718   if (rs_lengths > _rs_lengths_prediction) {
 719     // add 10% to avoid having to recalculate often
 720     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 721     update_rs_lengths_prediction(rs_lengths_prediction);
 722 
 723     update_young_list_max_and_target_length(rs_lengths_prediction);
 724   }
 725 }
 726 
 727 void G1CollectorPolicy::update_rs_lengths_prediction() {
 728   update_rs_lengths_prediction(get_new_size_prediction(_rs_lengths_seq));
 729 }
 730 
 731 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 732   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 733     _rs_lengths_prediction = prediction;
 734   }
 735 }
 736 
 737 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 738                                                bool is_tlab,
 739                                                bool* gc_overhead_limit_was_exceeded) {
 740   guarantee(false, "Not using this policy feature yet.");
 741   return NULL;
 742 }
 743 
 744 // This method controls how a collector handles one or more
 745 // of its generations being fully allocated.
 746 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 747                                                        bool is_tlab) {
 748   guarantee(false, "Not using this policy feature yet.");
 749   return NULL;
 750 }
 751 
 752 
 753 #ifndef PRODUCT
 754 bool G1CollectorPolicy::verify_young_ages() {
 755   HeapRegion* head = _g1->young_list()->first_region();
 756   return
 757     verify_young_ages(head, _short_lived_surv_rate_group);
 758   // also call verify_young_ages on any additional surv rate groups
 759 }
 760 
 761 bool
 762 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 763                                      SurvRateGroup *surv_rate_group) {
 764   guarantee( surv_rate_group != NULL, "pre-condition" );
 765 
 766   const char* name = surv_rate_group->name();
 767   bool ret = true;
 768   int prev_age = -1;
 769 
 770   for (HeapRegion* curr = head;
 771        curr != NULL;
 772        curr = curr->get_next_young_region()) {
 773     SurvRateGroup* group = curr->surv_rate_group();
 774     if (group == NULL && !curr->is_survivor()) {
 775       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 776       ret = false;
 777     }
 778 
 779     if (surv_rate_group == group) {
 780       int age = curr->age_in_surv_rate_group();
 781 
 782       if (age < 0) {
 783         log_info(gc, verify)("## %s: encountered negative age", name);
 784         ret = false;
 785       }
 786 
 787       if (age <= prev_age) {
 788         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 789         ret = false;
 790       }
 791       prev_age = age;
 792     }
 793   }
 794 
 795   return ret;
 796 }
 797 #endif // PRODUCT
 798 
 799 void G1CollectorPolicy::record_full_collection_start() {
 800   _full_collection_start_sec = os::elapsedTime();
 801   // Release the future to-space so that it is available for compaction into.
 802   collector_state()->set_full_collection(true);
 803 }
 804 
 805 void G1CollectorPolicy::record_full_collection_end() {
 806   // Consider this like a collection pause for the purposes of allocation
 807   // since last pause.
 808   double end_sec = os::elapsedTime();
 809   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 810   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 811 
 812   update_recent_gc_times(end_sec, full_gc_time_ms);
 813 
 814   collector_state()->set_full_collection(false);
 815 
 816   // "Nuke" the heuristics that control the young/mixed GC
 817   // transitions and make sure we start with young GCs after the Full GC.
 818   collector_state()->set_gcs_are_young(true);
 819   collector_state()->set_last_young_gc(false);
 820   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 821   collector_state()->set_during_initial_mark_pause(false);
 822   collector_state()->set_in_marking_window(false);
 823   collector_state()->set_in_marking_window_im(false);
 824 
 825   _short_lived_surv_rate_group->start_adding_regions();
 826   // also call this on any additional surv rate groups
 827 
 828   record_survivor_regions(0, NULL, NULL);
 829 
 830   _free_regions_at_end_of_collection = _g1->num_free_regions();
 831   // Reset survivors SurvRateGroup.
 832   _survivor_surv_rate_group->reset();
 833   update_young_list_max_and_target_length();
 834   update_rs_lengths_prediction();
 835   cset_chooser()->clear();
 836 
 837   _bytes_allocated_in_old_since_last_gc = 0;
 838 
 839   record_pause(FullGC, _full_collection_start_sec, end_sec);
 840 }
 841 
 842 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 843   // We only need to do this here as the policy will only be applied
 844   // to the GC we're about to start. so, no point is calculating this
 845   // every time we calculate / recalculate the target young length.
 846   update_survivors_policy();
 847 
 848   assert(_g1->used() == _g1->recalculate_used(),
 849          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 850          _g1->used(), _g1->recalculate_used());
 851 
 852   phase_times()->record_cur_collection_start_sec(start_time_sec);
 853   _pending_cards = _g1->pending_card_num();
 854 
 855   _collection_set_bytes_used_before = 0;
 856   _bytes_copied_during_gc = 0;
 857 
 858   collector_state()->set_last_gc_was_young(false);
 859 
 860   // do that for any other surv rate groups
 861   _short_lived_surv_rate_group->stop_adding_regions();
 862   _survivors_age_table.clear();
 863 
 864   assert( verify_young_ages(), "region age verification" );
 865 }
 866 
 867 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 868                                                    mark_init_elapsed_time_ms) {
 869   collector_state()->set_during_marking(true);
 870   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 871   collector_state()->set_during_initial_mark_pause(false);
 872 }
 873 
 874 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 875   _mark_remark_start_sec = os::elapsedTime();
 876   collector_state()->set_during_marking(false);
 877 }
 878 
 879 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 880   double end_time_sec = os::elapsedTime();
 881   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 882   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 883   _prev_collection_pause_end_ms += elapsed_time_ms;
 884 
 885   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 886 }
 887 
 888 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 889   _mark_cleanup_start_sec = os::elapsedTime();
 890 }
 891 
 892 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 893   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 894                                                               "skip last young-only gc");
 895   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 896   // We skip the marking phase.
 897   if (!should_continue_with_reclaim) {
 898     abort_time_to_mixed_tracking();
 899   }
 900   collector_state()->set_in_marking_window(false);
 901 }
 902 
 903 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 904   return phase_times()->average_time_ms(phase);
 905 }
 906 
 907 double G1CollectorPolicy::young_other_time_ms() const {
 908   return phase_times()->young_cset_choice_time_ms() +
 909          phase_times()->young_free_cset_time_ms();
 910 }
 911 
 912 double G1CollectorPolicy::non_young_other_time_ms() const {
 913   return phase_times()->non_young_cset_choice_time_ms() +
 914          phase_times()->non_young_free_cset_time_ms();
 915 
 916 }
 917 
 918 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 919   return pause_time_ms -
 920          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 921          average_time_ms(G1GCPhaseTimes::ScanRS) -
 922          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 923          average_time_ms(G1GCPhaseTimes::Termination);
 924 }
 925 
 926 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 927   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 928 }
 929 
 930 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 931   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 932 }
 933 
 934 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 935   if (about_to_start_mixed_phase()) {
 936     return false;
 937   }
 938 
 939   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 940 
 941   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 942   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 943   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 944 
 945   bool result = false;
 946   if (marking_request_bytes > marking_initiating_used_threshold) {
 947     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 948     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 949                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 950                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 951   }
 952 
 953   return result;
 954 }
 955 
 956 // Anything below that is considered to be zero
 957 #define MIN_TIMER_GRANULARITY 0.0000001
 958 
 959 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 960   double end_time_sec = os::elapsedTime();
 961 
 962   size_t cur_used_bytes = _g1->used();
 963   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 964   bool last_pause_included_initial_mark = false;
 965   bool update_stats = !_g1->evacuation_failed();
 966 
 967   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 968 
 969   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 970 
 971   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 972   if (last_pause_included_initial_mark) {
 973     record_concurrent_mark_init_end(0.0);
 974   } else {
 975     maybe_start_marking();
 976   }
 977 
 978   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 979   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 980     // This usually happens due to the timer not having the required
 981     // granularity. Some Linuxes are the usual culprits.
 982     // We'll just set it to something (arbitrarily) small.
 983     app_time_ms = 1.0;
 984   }
 985 
 986   if (update_stats) {
 987     // We maintain the invariant that all objects allocated by mutator
 988     // threads will be allocated out of eden regions. So, we can use
 989     // the eden region number allocated since the previous GC to
 990     // calculate the application's allocate rate. The only exception
 991     // to that is humongous objects that are allocated separately. But
 992     // given that humongous object allocations do not really affect
 993     // either the pause's duration nor when the next pause will take
 994     // place we can safely ignore them here.
 995     uint regions_allocated = eden_cset_region_length();
 996     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 997     _alloc_rate_ms_seq->add(alloc_rate_ms);
 998 
 999     double interval_ms =
1000       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1001     update_recent_gc_times(end_time_sec, pause_time_ms);
1002     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1003     if (recent_avg_pause_time_ratio() < 0.0 ||
1004         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1005       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1006       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1007       if (_recent_avg_pause_time_ratio < 0.0) {
1008         _recent_avg_pause_time_ratio = 0.0;
1009       } else {
1010         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1011         _recent_avg_pause_time_ratio = 1.0;
1012       }
1013     }
1014 
1015     // Compute the ratio of just this last pause time to the entire time range stored
1016     // in the vectors. Comparing this pause to the entire range, rather than only the
1017     // most recent interval, has the effect of smoothing over a possible transient 'burst'
1018     // of more frequent pauses that don't really reflect a change in heap occupancy.
1019     // This reduces the likelihood of a needless heap expansion being triggered.
1020     _last_pause_time_ratio =
1021       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
1022   }
1023 
1024   bool new_in_marking_window = collector_state()->in_marking_window();
1025   bool new_in_marking_window_im = false;
1026   if (last_pause_included_initial_mark) {
1027     new_in_marking_window = true;
1028     new_in_marking_window_im = true;
1029   }
1030 
1031   if (collector_state()->last_young_gc()) {
1032     // This is supposed to to be the "last young GC" before we start
1033     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1034     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1035 
1036     if (next_gc_should_be_mixed("start mixed GCs",
1037                                 "do not start mixed GCs")) {
1038       collector_state()->set_gcs_are_young(false);
1039     } else {
1040       // We aborted the mixed GC phase early.
1041       abort_time_to_mixed_tracking();
1042     }
1043 
1044     collector_state()->set_last_young_gc(false);
1045   }
1046 
1047   if (!collector_state()->last_gc_was_young()) {
1048     // This is a mixed GC. Here we decide whether to continue doing
1049     // mixed GCs or not.
1050     if (!next_gc_should_be_mixed("continue mixed GCs",
1051                                  "do not continue mixed GCs")) {
1052       collector_state()->set_gcs_are_young(true);
1053 
1054       maybe_start_marking();
1055     }
1056   }
1057 
1058   _short_lived_surv_rate_group->start_adding_regions();
1059   // Do that for any other surv rate groups
1060 
1061   if (update_stats) {
1062     double cost_per_card_ms = 0.0;
1063     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1064     if (_pending_cards > 0) {
1065       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1066       _cost_per_card_ms_seq->add(cost_per_card_ms);
1067     }
1068     _cost_scan_hcc_seq->add(cost_scan_hcc);
1069 
1070     double cost_per_entry_ms = 0.0;
1071     if (cards_scanned > 10) {
1072       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1073       if (collector_state()->last_gc_was_young()) {
1074         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1075       } else {
1076         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1077       }
1078     }
1079 
1080     if (_max_rs_lengths > 0) {
1081       double cards_per_entry_ratio =
1082         (double) cards_scanned / (double) _max_rs_lengths;
1083       if (collector_state()->last_gc_was_young()) {
1084         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1085       } else {
1086         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1087       }
1088     }
1089 
1090     // This is defensive. For a while _max_rs_lengths could get
1091     // smaller than _recorded_rs_lengths which was causing
1092     // rs_length_diff to get very large and mess up the RSet length
1093     // predictions. The reason was unsafe concurrent updates to the
1094     // _inc_cset_recorded_rs_lengths field which the code below guards
1095     // against (see CR 7118202). This bug has now been fixed (see CR
1096     // 7119027). However, I'm still worried that
1097     // _inc_cset_recorded_rs_lengths might still end up somewhat
1098     // inaccurate. The concurrent refinement thread calculates an
1099     // RSet's length concurrently with other CR threads updating it
1100     // which might cause it to calculate the length incorrectly (if,
1101     // say, it's in mid-coarsening). So I'll leave in the defensive
1102     // conditional below just in case.
1103     size_t rs_length_diff = 0;
1104     if (_max_rs_lengths > _recorded_rs_lengths) {
1105       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1106     }
1107     _rs_length_diff_seq->add((double) rs_length_diff);
1108 
1109     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
1110     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1111     double cost_per_byte_ms = 0.0;
1112 
1113     if (copied_bytes > 0) {
1114       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1115       if (collector_state()->in_marking_window()) {
1116         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1117       } else {
1118         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1119       }
1120     }
1121 
1122     if (young_cset_region_length() > 0) {
1123       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1124                                                young_cset_region_length());
1125     }
1126 
1127     if (old_cset_region_length() > 0) {
1128       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1129                                                    old_cset_region_length());
1130     }
1131 
1132     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1133 
1134     _pending_cards_seq->add((double) _pending_cards);
1135     _rs_lengths_seq->add((double) _max_rs_lengths);
1136   }
1137 
1138   collector_state()->set_in_marking_window(new_in_marking_window);
1139   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1140   _free_regions_at_end_of_collection = _g1->num_free_regions();
1141   // IHOP control wants to know the expected young gen length if it were not
1142   // restrained by the heap reserve. Using the actual length would make the
1143   // prediction too small and the limit the young gen every time we get to the
1144   // predicted target occupancy.
1145   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1146   update_rs_lengths_prediction();
1147 
1148   update_ihop_prediction(app_time_ms / 1000.0,
1149                          _bytes_allocated_in_old_since_last_gc,
1150                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1151   _bytes_allocated_in_old_since_last_gc = 0;
1152 
1153   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1154 
1155   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1156   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1157 
1158   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1159 
1160   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1161     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1162                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1163                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1164 
1165     update_rs_time_goal_ms = 0;
1166   } else {
1167     update_rs_time_goal_ms -= scan_hcc_time_ms;
1168   }
1169   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1170                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1171                                update_rs_time_goal_ms);
1172 
1173   cset_chooser()->verify();
1174 }
1175 
1176 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1177   if (G1UseAdaptiveIHOP) {
1178     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1179                                      G1CollectedHeap::heap()->max_capacity(),
1180                                      &_predictor,
1181                                      G1ReservePercent,
1182                                      G1HeapWastePercent);
1183   } else {
1184     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1185                                    G1CollectedHeap::heap()->max_capacity());
1186   }
1187 }
1188 
1189 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1190                                                size_t mutator_alloc_bytes,
1191                                                size_t young_gen_size) {
1192   // Always try to update IHOP prediction. Even evacuation failures give information
1193   // about e.g. whether to start IHOP earlier next time.
1194 
1195   // Avoid using really small application times that might create samples with
1196   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1197   double const min_valid_time = 1e-6;
1198 
1199   bool report = false;
1200 
1201   double marking_to_mixed_time = -1.0;
1202   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1203     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1204     assert(marking_to_mixed_time > 0.0,
1205            "Initial mark to mixed time must be larger than zero but is %.3f",
1206            marking_to_mixed_time);
1207     if (marking_to_mixed_time > min_valid_time) {
1208       _ihop_control->update_marking_length(marking_to_mixed_time);
1209       report = true;
1210     }
1211   }
1212 
1213   // As an approximation for the young gc promotion rates during marking we use
1214   // all of them. In many applications there are only a few if any young gcs during
1215   // marking, which makes any prediction useless. This increases the accuracy of the
1216   // prediction.
1217   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1218     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1219     report = true;
1220   }
1221 
1222   if (report) {
1223     report_ihop_statistics();
1224   }
1225 }
1226 
1227 void G1CollectorPolicy::report_ihop_statistics() {
1228   _ihop_control->print();
1229 }
1230 
1231 void G1CollectorPolicy::print_phases() {
1232   phase_times()->print();
1233 }
1234 
1235 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1236                                                      double update_rs_processed_buffers,
1237                                                      double goal_ms) {
1238   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1239   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1240 
1241   if (G1UseAdaptiveConcRefinement) {
1242     const int k_gy = 3, k_gr = 6;
1243     const double inc_k = 1.1, dec_k = 0.9;
1244 
1245     int g = cg1r->green_zone();
1246     if (update_rs_time > goal_ms) {
1247       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1248     } else {
1249       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1250         g = (int)MAX2(g * inc_k, g + 1.0);
1251       }
1252     }
1253     // Change the refinement threads params
1254     cg1r->set_green_zone(g);
1255     cg1r->set_yellow_zone(g * k_gy);
1256     cg1r->set_red_zone(g * k_gr);
1257     cg1r->reinitialize_threads();
1258 
1259     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1260     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1261                                     cg1r->yellow_zone());
1262     // Change the barrier params
1263     dcqs.set_process_completed_threshold(processing_threshold);
1264     dcqs.set_max_completed_queue(cg1r->red_zone());
1265   }
1266 
1267   int curr_queue_size = dcqs.completed_buffers_num();
1268   if (curr_queue_size >= cg1r->yellow_zone()) {
1269     dcqs.set_completed_queue_padding(curr_queue_size);
1270   } else {
1271     dcqs.set_completed_queue_padding(0);
1272   }
1273   dcqs.notify_if_necessary();
1274 }
1275 
1276 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1277   return get_new_size_prediction(_rs_length_diff_seq);
1278 }
1279 
1280 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1281   return get_new_prediction(_alloc_rate_ms_seq);
1282 }
1283 
1284 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1285   return get_new_prediction(_cost_per_card_ms_seq);
1286 }
1287 
1288 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1289   return get_new_prediction(_cost_scan_hcc_seq);
1290 }
1291 
1292 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1293   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1294 }
1295 
1296 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1297   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1298 }
1299 
1300 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1301   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1302     return predict_young_cards_per_entry_ratio();
1303   } else {
1304     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1305   }
1306 }
1307 
1308 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1309   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1310 }
1311 
1312 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1313   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1314 }
1315 
1316 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1317   if (collector_state()->gcs_are_young()) {
1318     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1319   } else {
1320     return predict_mixed_rs_scan_time_ms(card_num);
1321   }
1322 }
1323 
1324 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1325   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1326     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1327   } else {
1328     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1329   }
1330 }
1331 
1332 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1333   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1334     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1335   } else {
1336     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1337   }
1338 }
1339 
1340 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1341   if (collector_state()->during_concurrent_mark()) {
1342     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1343   } else {
1344     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1345   }
1346 }
1347 
1348 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1349   return get_new_prediction(_constant_other_time_ms_seq);
1350 }
1351 
1352 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1353   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1354 }
1355 
1356 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1357   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1358 }
1359 
1360 double G1CollectorPolicy::predict_remark_time_ms() const {
1361   return get_new_prediction(_concurrent_mark_remark_times_ms);
1362 }
1363 
1364 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1365   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1366 }
1367 
1368 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1369   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1370   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1371   double pred = get_new_prediction(seq);
1372   if (pred > 1.0) {
1373     pred = 1.0;
1374   }
1375   return pred;
1376 }
1377 
1378 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1379   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1380 }
1381 
1382 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1383   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1384 }
1385 
1386 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1387                                                        size_t scanned_cards) const {
1388   return
1389     predict_rs_update_time_ms(pending_cards) +
1390     predict_rs_scan_time_ms(scanned_cards) +
1391     predict_constant_other_time_ms();
1392 }
1393 
1394 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1395   size_t rs_length = predict_rs_length_diff();
1396   size_t card_num;
1397   if (collector_state()->gcs_are_young()) {
1398     card_num = predict_young_card_num(rs_length);
1399   } else {
1400     card_num = predict_non_young_card_num(rs_length);
1401   }
1402   return predict_base_elapsed_time_ms(pending_cards, card_num);
1403 }
1404 
1405 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1406   size_t bytes_to_copy;
1407   if (hr->is_marked())
1408     bytes_to_copy = hr->max_live_bytes();
1409   else {
1410     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1411     int age = hr->age_in_surv_rate_group();
1412     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1413     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1414   }
1415   return bytes_to_copy;
1416 }
1417 
1418 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1419                                                          bool for_young_gc) const {
1420   size_t rs_length = hr->rem_set()->occupied();
1421   size_t card_num;
1422 
1423   // Predicting the number of cards is based on which type of GC
1424   // we're predicting for.
1425   if (for_young_gc) {
1426     card_num = predict_young_card_num(rs_length);
1427   } else {
1428     card_num = predict_non_young_card_num(rs_length);
1429   }
1430   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1431 
1432   double region_elapsed_time_ms =
1433     predict_rs_scan_time_ms(card_num) +
1434     predict_object_copy_time_ms(bytes_to_copy);
1435 
1436   // The prediction of the "other" time for this region is based
1437   // upon the region type and NOT the GC type.
1438   if (hr->is_young()) {
1439     region_elapsed_time_ms += predict_young_other_time_ms(1);
1440   } else {
1441     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1442   }
1443   return region_elapsed_time_ms;
1444 }
1445 
1446 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1447                                                  uint survivor_cset_region_length) {
1448   _eden_cset_region_length     = eden_cset_region_length;
1449   _survivor_cset_region_length = survivor_cset_region_length;
1450   _old_cset_region_length      = 0;
1451 }
1452 
1453 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1454   _recorded_rs_lengths = rs_lengths;
1455 }
1456 
1457 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1458                                                double elapsed_ms) {
1459   _recent_gc_times_ms->add(elapsed_ms);
1460   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1461   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1462 }
1463 
1464 void G1CollectorPolicy::clear_ratio_check_data() {
1465   _ratio_over_threshold_count = 0;
1466   _ratio_over_threshold_sum = 0.0;
1467   _pauses_since_start = 0;
1468 }
1469 
1470 size_t G1CollectorPolicy::expansion_amount() {
1471   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1472   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1473   double threshold = _gc_overhead_perc;
1474   size_t expand_bytes = 0;
1475 
1476   // If the heap is at less than half its maximum size, scale the threshold down,
1477   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1478   // though the scaling code will likely keep the increase small.
1479   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1480     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1481     threshold = MAX2(threshold, 1.0);
1482   }
1483 
1484   // If the last GC time ratio is over the threshold, increment the count of
1485   // times it has been exceeded, and add this ratio to the sum of exceeded
1486   // ratios.
1487   if (last_gc_overhead > threshold) {
1488     _ratio_over_threshold_count++;
1489     _ratio_over_threshold_sum += last_gc_overhead;
1490   }
1491 
1492   // Check if we've had enough GC time ratio checks that were over the
1493   // threshold to trigger an expansion. We'll also expand if we've
1494   // reached the end of the history buffer and the average of all entries
1495   // is still over the threshold. This indicates a smaller number of GCs were
1496   // long enough to make the average exceed the threshold.
1497   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1498   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1499       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1500     size_t min_expand_bytes = HeapRegion::GrainBytes;
1501     size_t reserved_bytes = _g1->max_capacity();
1502     size_t committed_bytes = _g1->capacity();
1503     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1504     size_t expand_bytes_via_pct =
1505       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1506     double scale_factor = 1.0;
1507 
1508     // If the current size is less than 1/4 of the Initial heap size, expand
1509     // by half of the delta between the current and Initial sizes. IE, grow
1510     // back quickly.
1511     //
1512     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1513     // the available expansion space, whichever is smaller, as the base
1514     // expansion size. Then possibly scale this size according to how much the
1515     // threshold has (on average) been exceeded by. If the delta is small
1516     // (less than the StartScaleDownAt value), scale the size down linearly, but
1517     // not by less than MinScaleDownFactor. If the delta is large (greater than
1518     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1519     // times the base size. The scaling will be linear in the range from
1520     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1521     // ScaleUpRange sets the rate of scaling up.
1522     if (committed_bytes < InitialHeapSize / 4) {
1523       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1524     } else {
1525       double const MinScaleDownFactor = 0.2;
1526       double const MaxScaleUpFactor = 2;
1527       double const StartScaleDownAt = _gc_overhead_perc;
1528       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1529       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1530 
1531       double ratio_delta;
1532       if (filled_history_buffer) {
1533         ratio_delta = recent_gc_overhead - threshold;
1534       } else {
1535         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1536       }
1537 
1538       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1539       if (ratio_delta < StartScaleDownAt) {
1540         scale_factor = ratio_delta / StartScaleDownAt;
1541         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1542       } else if (ratio_delta > StartScaleUpAt) {
1543         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1544         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1545       }
1546     }
1547 
1548     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1549                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1550                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1551 
1552     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1553 
1554     // Ensure the expansion size is at least the minimum growth amount
1555     // and at most the remaining uncommitted byte size.
1556     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1557     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1558 
1559     clear_ratio_check_data();
1560   } else {
1561     // An expansion was not triggered. If we've started counting, increment
1562     // the number of checks we've made in the current window.  If we've
1563     // reached the end of the window without resizing, clear the counters to
1564     // start again the next time we see a ratio above the threshold.
1565     if (_ratio_over_threshold_count > 0) {
1566       _pauses_since_start++;
1567       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1568         clear_ratio_check_data();
1569       }
1570     }
1571   }
1572 
1573   return expand_bytes;
1574 }
1575 
1576 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1577 #ifndef PRODUCT
1578   _short_lived_surv_rate_group->print_surv_rate_summary();
1579   // add this call for any other surv rate groups
1580 #endif // PRODUCT
1581 }
1582 
1583 bool G1CollectorPolicy::is_young_list_full() const {
1584   uint young_list_length = _g1->young_list()->length();
1585   uint young_list_target_length = _young_list_target_length;
1586   return young_list_length >= young_list_target_length;
1587 }
1588 
1589 bool G1CollectorPolicy::can_expand_young_list() const {
1590   uint young_list_length = _g1->young_list()->length();
1591   uint young_list_max_length = _young_list_max_length;
1592   return young_list_length < young_list_max_length;
1593 }
1594 
1595 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1596   uint expansion_region_num = 0;
1597   if (GCLockerEdenExpansionPercent > 0) {
1598     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1599     double expansion_region_num_d = perc * (double) _young_list_target_length;
1600     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1601     // less than 1.0) we'll get 1.
1602     expansion_region_num = (uint) ceil(expansion_region_num_d);
1603   } else {
1604     assert(expansion_region_num == 0, "sanity");
1605   }
1606   _young_list_max_length = _young_list_target_length + expansion_region_num;
1607   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1608 }
1609 
1610 // Calculates survivor space parameters.
1611 void G1CollectorPolicy::update_survivors_policy() {
1612   double max_survivor_regions_d =
1613                  (double) _young_list_target_length / (double) SurvivorRatio;
1614   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1615   // smaller than 1.0) we'll get 1.
1616   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1617 
1618   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1619         HeapRegion::GrainWords * _max_survivor_regions, counters());
1620 }
1621 
1622 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1623   // We actually check whether we are marking here and not if we are in a
1624   // reclamation phase. This means that we will schedule a concurrent mark
1625   // even while we are still in the process of reclaiming memory.
1626   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1627   if (!during_cycle) {
1628     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1629     collector_state()->set_initiate_conc_mark_if_possible(true);
1630     return true;
1631   } else {
1632     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1633     return false;
1634   }
1635 }
1636 
1637 void G1CollectorPolicy::initiate_conc_mark() {
1638   collector_state()->set_during_initial_mark_pause(true);
1639   collector_state()->set_initiate_conc_mark_if_possible(false);
1640 }
1641 
1642 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1643   // We are about to decide on whether this pause will be an
1644   // initial-mark pause.
1645 
1646   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1647   // will set it here if we have to. However, it should be cleared by
1648   // the end of the pause (it's only set for the duration of an
1649   // initial-mark pause).
1650   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1651 
1652   if (collector_state()->initiate_conc_mark_if_possible()) {
1653     // We had noticed on a previous pause that the heap occupancy has
1654     // gone over the initiating threshold and we should start a
1655     // concurrent marking cycle. So we might initiate one.
1656 
1657     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1658       // Initiate a new initial mark if there is no marking or reclamation going on.
1659       initiate_conc_mark();
1660       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1661     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1662       // Initiate a user requested initial mark. An initial mark must be young only
1663       // GC, so the collector state must be updated to reflect this.
1664       collector_state()->set_gcs_are_young(true);
1665       collector_state()->set_last_young_gc(false);
1666 
1667       abort_time_to_mixed_tracking();
1668       initiate_conc_mark();
1669       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1670     } else {
1671       // The concurrent marking thread is still finishing up the
1672       // previous cycle. If we start one right now the two cycles
1673       // overlap. In particular, the concurrent marking thread might
1674       // be in the process of clearing the next marking bitmap (which
1675       // we will use for the next cycle if we start one). Starting a
1676       // cycle now will be bad given that parts of the marking
1677       // information might get cleared by the marking thread. And we
1678       // cannot wait for the marking thread to finish the cycle as it
1679       // periodically yields while clearing the next marking bitmap
1680       // and, if it's in a yield point, it's waiting for us to
1681       // finish. So, at this point we will not start a cycle and we'll
1682       // let the concurrent marking thread complete the last one.
1683       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1684     }
1685   }
1686 }
1687 
1688 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1689   G1CollectedHeap* _g1h;
1690   CSetChooserParUpdater _cset_updater;
1691 
1692 public:
1693   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1694                            uint chunk_size) :
1695     _g1h(G1CollectedHeap::heap()),
1696     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1697 
1698   bool doHeapRegion(HeapRegion* r) {
1699     // Do we have any marking information for this region?
1700     if (r->is_marked()) {
1701       // We will skip any region that's currently used as an old GC
1702       // alloc region (we should not consider those for collection
1703       // before we fill them up).
1704       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1705         _cset_updater.add_region(r);
1706       }
1707     }
1708     return false;
1709   }
1710 };
1711 
1712 class ParKnownGarbageTask: public AbstractGangTask {
1713   CollectionSetChooser* _hrSorted;
1714   uint _chunk_size;
1715   G1CollectedHeap* _g1;
1716   HeapRegionClaimer _hrclaimer;
1717 
1718 public:
1719   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1720       AbstractGangTask("ParKnownGarbageTask"),
1721       _hrSorted(hrSorted), _chunk_size(chunk_size),
1722       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1723 
1724   void work(uint worker_id) {
1725     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1726     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1727   }
1728 };
1729 
1730 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1731   assert(n_workers > 0, "Active gc workers should be greater than 0");
1732   const uint overpartition_factor = 4;
1733   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1734   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1735 }
1736 
1737 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1738   cset_chooser()->clear();
1739 
1740   WorkGang* workers = _g1->workers();
1741   uint n_workers = workers->active_workers();
1742 
1743   uint n_regions = _g1->num_regions();
1744   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1745   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1746   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1747   workers->run_task(&par_known_garbage_task);
1748 
1749   cset_chooser()->sort_regions();
1750 
1751   double end_sec = os::elapsedTime();
1752   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1753   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1754   _prev_collection_pause_end_ms += elapsed_time_ms;
1755 
1756   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1757 }
1758 
1759 // Add the heap region at the head of the non-incremental collection set
1760 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1761   assert(_inc_cset_build_state == Active, "Precondition");
1762   assert(hr->is_old(), "the region should be old");
1763 
1764   assert(!hr->in_collection_set(), "should not already be in the CSet");
1765   _g1->register_old_region_with_cset(hr);
1766   hr->set_next_in_collection_set(_collection_set);
1767   _collection_set = hr;
1768   _collection_set_bytes_used_before += hr->used();
1769   size_t rs_length = hr->rem_set()->occupied();
1770   _recorded_rs_lengths += rs_length;
1771   _old_cset_region_length += 1;
1772 }
1773 
1774 // Initialize the per-collection-set information
1775 void G1CollectorPolicy::start_incremental_cset_building() {
1776   assert(_inc_cset_build_state == Inactive, "Precondition");
1777 
1778   _inc_cset_head = NULL;
1779   _inc_cset_tail = NULL;
1780   _inc_cset_bytes_used_before = 0;
1781 
1782   _inc_cset_max_finger = 0;
1783   _inc_cset_recorded_rs_lengths = 0;
1784   _inc_cset_recorded_rs_lengths_diffs = 0;
1785   _inc_cset_predicted_elapsed_time_ms = 0.0;
1786   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1787   _inc_cset_build_state = Active;
1788 }
1789 
1790 void G1CollectorPolicy::finalize_incremental_cset_building() {
1791   assert(_inc_cset_build_state == Active, "Precondition");
1792   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1793 
1794   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1795   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1796   // that adds a new region to the CSet. Further updates by the
1797   // concurrent refinement thread that samples the young RSet lengths
1798   // are accumulated in the *_diffs fields. Here we add the diffs to
1799   // the "main" fields.
1800 
1801   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1802     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1803   } else {
1804     // This is defensive. The diff should in theory be always positive
1805     // as RSets can only grow between GCs. However, given that we
1806     // sample their size concurrently with other threads updating them
1807     // it's possible that we might get the wrong size back, which
1808     // could make the calculations somewhat inaccurate.
1809     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1810     if (_inc_cset_recorded_rs_lengths >= diffs) {
1811       _inc_cset_recorded_rs_lengths -= diffs;
1812     } else {
1813       _inc_cset_recorded_rs_lengths = 0;
1814     }
1815   }
1816   _inc_cset_predicted_elapsed_time_ms +=
1817                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1818 
1819   _inc_cset_recorded_rs_lengths_diffs = 0;
1820   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1821 }
1822 
1823 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1824   // This routine is used when:
1825   // * adding survivor regions to the incremental cset at the end of an
1826   //   evacuation pause,
1827   // * adding the current allocation region to the incremental cset
1828   //   when it is retired, and
1829   // * updating existing policy information for a region in the
1830   //   incremental cset via young list RSet sampling.
1831   // Therefore this routine may be called at a safepoint by the
1832   // VM thread, or in-between safepoints by mutator threads (when
1833   // retiring the current allocation region) or a concurrent
1834   // refine thread (RSet sampling).
1835 
1836   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1837   size_t used_bytes = hr->used();
1838   _inc_cset_recorded_rs_lengths += rs_length;
1839   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1840   _inc_cset_bytes_used_before += used_bytes;
1841 
1842   // Cache the values we have added to the aggregated information
1843   // in the heap region in case we have to remove this region from
1844   // the incremental collection set, or it is updated by the
1845   // rset sampling code
1846   hr->set_recorded_rs_length(rs_length);
1847   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1848 }
1849 
1850 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1851                                                      size_t new_rs_length) {
1852   // Update the CSet information that is dependent on the new RS length
1853   assert(hr->is_young(), "Precondition");
1854   assert(!SafepointSynchronize::is_at_safepoint(),
1855                                                "should not be at a safepoint");
1856 
1857   // We could have updated _inc_cset_recorded_rs_lengths and
1858   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1859   // that atomically, as this code is executed by a concurrent
1860   // refinement thread, potentially concurrently with a mutator thread
1861   // allocating a new region and also updating the same fields. To
1862   // avoid the atomic operations we accumulate these updates on two
1863   // separate fields (*_diffs) and we'll just add them to the "main"
1864   // fields at the start of a GC.
1865 
1866   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1867   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1868   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1869 
1870   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1871   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1872   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1873   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1874 
1875   hr->set_recorded_rs_length(new_rs_length);
1876   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1877 }
1878 
1879 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1880   assert(hr->is_young(), "invariant");
1881   assert(hr->young_index_in_cset() > -1, "should have already been set");
1882   assert(_inc_cset_build_state == Active, "Precondition");
1883 
1884   // We need to clear and set the cached recorded/cached collection set
1885   // information in the heap region here (before the region gets added
1886   // to the collection set). An individual heap region's cached values
1887   // are calculated, aggregated with the policy collection set info,
1888   // and cached in the heap region here (initially) and (subsequently)
1889   // by the Young List sampling code.
1890 
1891   size_t rs_length = hr->rem_set()->occupied();
1892   add_to_incremental_cset_info(hr, rs_length);
1893 
1894   HeapWord* hr_end = hr->end();
1895   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1896 
1897   assert(!hr->in_collection_set(), "invariant");
1898   _g1->register_young_region_with_cset(hr);
1899   assert(hr->next_in_collection_set() == NULL, "invariant");
1900 }
1901 
1902 // Add the region at the RHS of the incremental cset
1903 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1904   // We should only ever be appending survivors at the end of a pause
1905   assert(hr->is_survivor(), "Logic");
1906 
1907   // Do the 'common' stuff
1908   add_region_to_incremental_cset_common(hr);
1909 
1910   // Now add the region at the right hand side
1911   if (_inc_cset_tail == NULL) {
1912     assert(_inc_cset_head == NULL, "invariant");
1913     _inc_cset_head = hr;
1914   } else {
1915     _inc_cset_tail->set_next_in_collection_set(hr);
1916   }
1917   _inc_cset_tail = hr;
1918 }
1919 
1920 // Add the region to the LHS of the incremental cset
1921 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1922   // Survivors should be added to the RHS at the end of a pause
1923   assert(hr->is_eden(), "Logic");
1924 
1925   // Do the 'common' stuff
1926   add_region_to_incremental_cset_common(hr);
1927 
1928   // Add the region at the left hand side
1929   hr->set_next_in_collection_set(_inc_cset_head);
1930   if (_inc_cset_head == NULL) {
1931     assert(_inc_cset_tail == NULL, "Invariant");
1932     _inc_cset_tail = hr;
1933   }
1934   _inc_cset_head = hr;
1935 }
1936 
1937 #ifndef PRODUCT
1938 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1939   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1940 
1941   st->print_cr("\nCollection_set:");
1942   HeapRegion* csr = list_head;
1943   while (csr != NULL) {
1944     HeapRegion* next = csr->next_in_collection_set();
1945     assert(csr->in_collection_set(), "bad CS");
1946     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1947                  HR_FORMAT_PARAMS(csr),
1948                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1949                  csr->age_in_surv_rate_group_cond());
1950     csr = next;
1951   }
1952 }
1953 #endif // !PRODUCT
1954 
1955 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1956   // Returns the given amount of reclaimable bytes (that represents
1957   // the amount of reclaimable space still to be collected) as a
1958   // percentage of the current heap capacity.
1959   size_t capacity_bytes = _g1->capacity();
1960   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1961 }
1962 
1963 void G1CollectorPolicy::maybe_start_marking() {
1964   if (need_to_start_conc_mark("end of GC")) {
1965     // Note: this might have already been set, if during the last
1966     // pause we decided to start a cycle but at the beginning of
1967     // this pause we decided to postpone it. That's OK.
1968     collector_state()->set_initiate_conc_mark_if_possible(true);
1969   }
1970 }
1971 
1972 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
1973   assert(!collector_state()->full_collection(), "must be");
1974   if (collector_state()->during_initial_mark_pause()) {
1975     assert(collector_state()->last_gc_was_young(), "must be");
1976     assert(!collector_state()->last_young_gc(), "must be");
1977     return InitialMarkGC;
1978   } else if (collector_state()->last_young_gc()) {
1979     assert(!collector_state()->during_initial_mark_pause(), "must be");
1980     assert(collector_state()->last_gc_was_young(), "must be");
1981     return LastYoungGC;
1982   } else if (!collector_state()->last_gc_was_young()) {
1983     assert(!collector_state()->during_initial_mark_pause(), "must be");
1984     assert(!collector_state()->last_young_gc(), "must be");
1985     return MixedGC;
1986   } else {
1987     assert(collector_state()->last_gc_was_young(), "must be");
1988     assert(!collector_state()->during_initial_mark_pause(), "must be");
1989     assert(!collector_state()->last_young_gc(), "must be");
1990     return YoungOnlyGC;
1991   }
1992 }
1993 
1994 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
1995   // Manage the MMU tracker. For some reason it ignores Full GCs.
1996   if (kind != FullGC) {
1997     _mmu_tracker->add_pause(start, end);
1998   }
1999   // Manage the mutator time tracking from initial mark to first mixed gc.
2000   switch (kind) {
2001     case FullGC:
2002       abort_time_to_mixed_tracking();
2003       break;
2004     case Cleanup:
2005     case Remark:
2006     case YoungOnlyGC:
2007     case LastYoungGC:
2008       _initial_mark_to_mixed.add_pause(end - start);
2009       break;
2010     case InitialMarkGC:
2011       _initial_mark_to_mixed.record_initial_mark_end(end);
2012       break;
2013     case MixedGC:
2014       _initial_mark_to_mixed.record_mixed_gc_start(start);
2015       break;
2016     default:
2017       ShouldNotReachHere();
2018   }
2019 }
2020 
2021 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2022   _initial_mark_to_mixed.reset();
2023 }
2024 
2025 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2026                                                 const char* false_action_str) const {
2027   if (cset_chooser()->is_empty()) {
2028     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
2029     return false;
2030   }
2031 
2032   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2033   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2034   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2035   double threshold = (double) G1HeapWastePercent;
2036   if (reclaimable_perc <= threshold) {
2037     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2038                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2039     return false;
2040   }
2041   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2042                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2043   return true;
2044 }
2045 
2046 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2047   // The min old CSet region bound is based on the maximum desired
2048   // number of mixed GCs after a cycle. I.e., even if some old regions
2049   // look expensive, we should add them to the CSet anyway to make
2050   // sure we go through the available old regions in no more than the
2051   // maximum desired number of mixed GCs.
2052   //
2053   // The calculation is based on the number of marked regions we added
2054   // to the CSet chooser in the first place, not how many remain, so
2055   // that the result is the same during all mixed GCs that follow a cycle.
2056 
2057   const size_t region_num = (size_t) cset_chooser()->length();
2058   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2059   size_t result = region_num / gc_num;
2060   // emulate ceiling
2061   if (result * gc_num < region_num) {
2062     result += 1;
2063   }
2064   return (uint) result;
2065 }
2066 
2067 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2068   // The max old CSet region bound is based on the threshold expressed
2069   // as a percentage of the heap size. I.e., it should bound the
2070   // number of old regions added to the CSet irrespective of how many
2071   // of them are available.
2072 
2073   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2074   const size_t region_num = g1h->num_regions();
2075   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2076   size_t result = region_num * perc / 100;
2077   // emulate ceiling
2078   if (100 * result < region_num * perc) {
2079     result += 1;
2080   }
2081   return (uint) result;
2082 }
2083 
2084 
2085 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2086   double young_start_time_sec = os::elapsedTime();
2087 
2088   YoungList* young_list = _g1->young_list();
2089   finalize_incremental_cset_building();
2090 
2091   guarantee(target_pause_time_ms > 0.0,
2092             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2093   guarantee(_collection_set == NULL, "Precondition");
2094 
2095   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2096   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2097 
2098   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
2099                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2100 
2101   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2102 
2103   // The young list is laid with the survivor regions from the previous
2104   // pause are appended to the RHS of the young list, i.e.
2105   //   [Newly Young Regions ++ Survivors from last pause].
2106 
2107   uint survivor_region_length = young_list->survivor_length();
2108   uint eden_region_length = young_list->eden_length();
2109   init_cset_region_lengths(eden_region_length, survivor_region_length);
2110 
2111   HeapRegion* hr = young_list->first_survivor_region();
2112   while (hr != NULL) {
2113     assert(hr->is_survivor(), "badly formed young list");
2114     // There is a convention that all the young regions in the CSet
2115     // are tagged as "eden", so we do this for the survivors here. We
2116     // use the special set_eden_pre_gc() as it doesn't check that the
2117     // region is free (which is not the case here).
2118     hr->set_eden_pre_gc();
2119     hr = hr->get_next_young_region();
2120   }
2121 
2122   // Clear the fields that point to the survivor list - they are all young now.
2123   young_list->clear_survivors();
2124 
2125   _collection_set = _inc_cset_head;
2126   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2127   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2128 
2129   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
2130                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
2131 
2132   // The number of recorded young regions is the incremental
2133   // collection set's current size
2134   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2135 
2136   double young_end_time_sec = os::elapsedTime();
2137   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2138 
2139   return time_remaining_ms;
2140 }
2141 
2142 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2143   double non_young_start_time_sec = os::elapsedTime();
2144   double predicted_old_time_ms = 0.0;
2145 
2146 
2147   if (!collector_state()->gcs_are_young()) {
2148     cset_chooser()->verify();
2149     const uint min_old_cset_length = calc_min_old_cset_length();
2150     const uint max_old_cset_length = calc_max_old_cset_length();
2151 
2152     uint expensive_region_num = 0;
2153     bool check_time_remaining = adaptive_young_list_length();
2154 
2155     HeapRegion* hr = cset_chooser()->peek();
2156     while (hr != NULL) {
2157       if (old_cset_region_length() >= max_old_cset_length) {
2158         // Added maximum number of old regions to the CSet.
2159         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2160                                   old_cset_region_length(), max_old_cset_length);
2161         break;
2162       }
2163 
2164 
2165       // Stop adding regions if the remaining reclaimable space is
2166       // not above G1HeapWastePercent.
2167       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2168       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2169       double threshold = (double) G1HeapWastePercent;
2170       if (reclaimable_perc <= threshold) {
2171         // We've added enough old regions that the amount of uncollected
2172         // reclaimable space is at or below the waste threshold. Stop
2173         // adding old regions to the CSet.
2174         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2175                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2176                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2177         break;
2178       }
2179 
2180       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2181       if (check_time_remaining) {
2182         if (predicted_time_ms > time_remaining_ms) {
2183           // Too expensive for the current CSet.
2184 
2185           if (old_cset_region_length() >= min_old_cset_length) {
2186             // We have added the minimum number of old regions to the CSet,
2187             // we are done with this CSet.
2188             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2189                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2190                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2191             break;
2192           }
2193 
2194           // We'll add it anyway given that we haven't reached the
2195           // minimum number of old regions.
2196           expensive_region_num += 1;
2197         }
2198       } else {
2199         if (old_cset_region_length() >= min_old_cset_length) {
2200           // In the non-auto-tuning case, we'll finish adding regions
2201           // to the CSet if we reach the minimum.
2202 
2203           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2204                                     old_cset_region_length(), min_old_cset_length);
2205           break;
2206         }
2207       }
2208 
2209       // We will add this region to the CSet.
2210       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2211       predicted_old_time_ms += predicted_time_ms;
2212       cset_chooser()->pop(); // already have region via peek()
2213       _g1->old_set_remove(hr);
2214       add_old_region_to_cset(hr);
2215 
2216       hr = cset_chooser()->peek();
2217     }
2218     if (hr == NULL) {
2219       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2220     }
2221 
2222     if (expensive_region_num > 0) {
2223       // We print the information once here at the end, predicated on
2224       // whether we added any apparently expensive regions or not, to
2225       // avoid generating output per region.
2226       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2227                                 "old: %u regions, expensive: %u regions, min: %u regions, remaining time: %1.2fms",
2228                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2229     }
2230 
2231     cset_chooser()->verify();
2232   }
2233 
2234   stop_incremental_cset_building();
2235 
2236   log_debug(gc, ergo, cset)("Finish choosing CSet. old: %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2237                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2238 
2239   double non_young_end_time_sec = os::elapsedTime();
2240   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2241 }