1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/concurrentG1Refine.hpp"
  27 #include "gc/g1/concurrentMark.hpp"
  28 #include "gc/g1/concurrentMarkThread.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1CollectorPolicy.hpp"
  31 #include "gc/g1/g1IHOPControl.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/heapRegion.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/shared/gcPolicyCounters.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/java.hpp"
  38 #include "runtime/mutexLocker.hpp"
  39 #include "utilities/debug.hpp"
  40 #include "utilities/pair.hpp"
  41 
  42 // Different defaults for different number of GC threads
  43 // They were chosen by running GCOld and SPECjbb on debris with different
  44 //   numbers of GC threads and choosing them based on the results
  45 
  46 // all the same
  47 static double rs_length_diff_defaults[] = {
  48   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  49 };
  50 
  51 static double cost_per_card_ms_defaults[] = {
  52   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  53 };
  54 
  55 // all the same
  56 static double young_cards_per_entry_ratio_defaults[] = {
  57   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  58 };
  59 
  60 static double cost_per_entry_ms_defaults[] = {
  61   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  62 };
  63 
  64 static double cost_per_byte_ms_defaults[] = {
  65   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  66 };
  67 
  68 // these should be pretty consistent
  69 static double constant_other_time_ms_defaults[] = {
  70   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  71 };
  72 
  73 
  74 static double young_other_cost_per_region_ms_defaults[] = {
  75   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  76 };
  77 
  78 static double non_young_other_cost_per_region_ms_defaults[] = {
  79   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  80 };
  81 
  82 G1CollectorPolicy::G1CollectorPolicy() :
  83   _predictor(G1ConfidencePercent / 100.0),
  84 
  85   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  86 
  87   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  88   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  89 
  90   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  91   _prev_collection_pause_end_ms(0.0),
  92   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
  93   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  94   _cost_scan_hcc_seq(new TruncatedSeq(TruncatedSeqLength)),
  95   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  96   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
  97   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  99   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _non_young_other_cost_per_region_ms_seq(
 104                                          new TruncatedSeq(TruncatedSeqLength)),
 105 
 106   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 108 
 109   _pause_time_target_ms((double) MaxGCPauseMillis),
 110 
 111   _recent_prev_end_times_for_all_gcs_sec(
 112                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 113 
 114   _recent_avg_pause_time_ratio(0.0),
 115   _rs_lengths_prediction(0),
 116   _max_survivor_regions(0),
 117 
 118   _eden_cset_region_length(0),
 119   _survivor_cset_region_length(0),
 120   _old_cset_region_length(0),
 121 
 122   _collection_set(NULL),
 123   _collection_set_bytes_used_before(0),
 124 
 125   // Incremental CSet attributes
 126   _inc_cset_build_state(Inactive),
 127   _inc_cset_head(NULL),
 128   _inc_cset_tail(NULL),
 129   _inc_cset_bytes_used_before(0),
 130   _inc_cset_recorded_rs_lengths(0),
 131   _inc_cset_recorded_rs_lengths_diffs(0),
 132   _inc_cset_predicted_elapsed_time_ms(0.0),
 133   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 134 
 135   // add here any more surv rate groups
 136   _recorded_survivor_regions(0),
 137   _recorded_survivor_head(NULL),
 138   _recorded_survivor_tail(NULL),
 139   _survivors_age_table(true),
 140 
 141   _gc_overhead_perc(0.0),
 142 
 143   _bytes_allocated_in_old_since_last_gc(0),
 144   _ihop_control(NULL),
 145   _initial_mark_to_mixed() {
 146 
 147   // SurvRateGroups below must be initialized after the predictor because they
 148   // indirectly use it through this object passed to their constructor.
 149   _short_lived_surv_rate_group =
 150     new SurvRateGroup(&_predictor, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 151   _survivor_surv_rate_group =
 152     new SurvRateGroup(&_predictor, "Survivor", G1YoungSurvRateNumRegionsSummary);
 153 
 154   // Set up the region size and associated fields. Given that the
 155   // policy is created before the heap, we have to set this up here,
 156   // so it's done as soon as possible.
 157 
 158   // It would have been natural to pass initial_heap_byte_size() and
 159   // max_heap_byte_size() to setup_heap_region_size() but those have
 160   // not been set up at this point since they should be aligned with
 161   // the region size. So, there is a circular dependency here. We base
 162   // the region size on the heap size, but the heap size should be
 163   // aligned with the region size. To get around this we use the
 164   // unaligned values for the heap.
 165   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 166   HeapRegionRemSet::setup_remset_size();
 167 
 168   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 169   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 170   clear_ratio_check_data();
 171 
 172   _phase_times = new G1GCPhaseTimes(ParallelGCThreads);
 173 
 174   int index = MIN2(ParallelGCThreads - 1, 7u);
 175 
 176   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 177   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 178   _cost_scan_hcc_seq->add(0.0);
 179   _young_cards_per_entry_ratio_seq->add(
 180                                   young_cards_per_entry_ratio_defaults[index]);
 181   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 182   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 183   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 184   _young_other_cost_per_region_ms_seq->add(
 185                                young_other_cost_per_region_ms_defaults[index]);
 186   _non_young_other_cost_per_region_ms_seq->add(
 187                            non_young_other_cost_per_region_ms_defaults[index]);
 188 
 189   // Below, we might need to calculate the pause time target based on
 190   // the pause interval. When we do so we are going to give G1 maximum
 191   // flexibility and allow it to do pauses when it needs to. So, we'll
 192   // arrange that the pause interval to be pause time target + 1 to
 193   // ensure that a) the pause time target is maximized with respect to
 194   // the pause interval and b) we maintain the invariant that pause
 195   // time target < pause interval. If the user does not want this
 196   // maximum flexibility, they will have to set the pause interval
 197   // explicitly.
 198 
 199   // First make sure that, if either parameter is set, its value is
 200   // reasonable.
 201   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 202     if (MaxGCPauseMillis < 1) {
 203       vm_exit_during_initialization("MaxGCPauseMillis should be "
 204                                     "greater than 0");
 205     }
 206   }
 207   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 208     if (GCPauseIntervalMillis < 1) {
 209       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 210                                     "greater than 0");
 211     }
 212   }
 213 
 214   // Then, if the pause time target parameter was not set, set it to
 215   // the default value.
 216   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 217     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 218       // The default pause time target in G1 is 200ms
 219       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 220     } else {
 221       // We do not allow the pause interval to be set without the
 222       // pause time target
 223       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 224                                     "without setting MaxGCPauseMillis");
 225     }
 226   }
 227 
 228   // Then, if the interval parameter was not set, set it according to
 229   // the pause time target (this will also deal with the case when the
 230   // pause time target is the default value).
 231   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 232     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 233   }
 234 
 235   // Finally, make sure that the two parameters are consistent.
 236   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 237     char buffer[256];
 238     jio_snprintf(buffer, 256,
 239                  "MaxGCPauseMillis (%u) should be less than "
 240                  "GCPauseIntervalMillis (%u)",
 241                  MaxGCPauseMillis, GCPauseIntervalMillis);
 242     vm_exit_during_initialization(buffer);
 243   }
 244 
 245   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 246   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 247   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 248 
 249   // start conservatively (around 50ms is about right)
 250   _concurrent_mark_remark_times_ms->add(0.05);
 251   _concurrent_mark_cleanup_times_ms->add(0.20);
 252   _tenuring_threshold = MaxTenuringThreshold;
 253 
 254   assert(GCTimeRatio > 0,
 255          "we should have set it to a default value set_g1_gc_flags() "
 256          "if a user set it to 0");
 257   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 258 
 259   uintx reserve_perc = G1ReservePercent;
 260   // Put an artificial ceiling on this so that it's not set to a silly value.
 261   if (reserve_perc > 50) {
 262     reserve_perc = 50;
 263     warning("G1ReservePercent is set to a value that is too large, "
 264             "it's been updated to " UINTX_FORMAT, reserve_perc);
 265   }
 266   _reserve_factor = (double) reserve_perc / 100.0;
 267   // This will be set when the heap is expanded
 268   // for the first time during initialization.
 269   _reserve_regions = 0;
 270 
 271   _cset_chooser = new CollectionSetChooser();
 272 }
 273 
 274 G1CollectorPolicy::~G1CollectorPolicy() {
 275   delete _ihop_control;
 276 }
 277 
 278 double G1CollectorPolicy::get_new_prediction(TruncatedSeq const* seq) const {
 279   return _predictor.get_new_prediction(seq);
 280 }
 281 
 282 size_t G1CollectorPolicy::get_new_size_prediction(TruncatedSeq const* seq) const {
 283   return (size_t)get_new_prediction(seq);
 284 }
 285 
 286 void G1CollectorPolicy::initialize_alignments() {
 287   _space_alignment = HeapRegion::GrainBytes;
 288   size_t card_table_alignment = CardTableRS::ct_max_alignment_constraint();
 289   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 290   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 291 }
 292 
 293 void G1CollectorPolicy::initialize_flags() {
 294   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 295     FLAG_SET_ERGO(size_t, G1HeapRegionSize, HeapRegion::GrainBytes);
 296   }
 297 
 298   if (SurvivorRatio < 1) {
 299     vm_exit_during_initialization("Invalid survivor ratio specified");
 300   }
 301   CollectorPolicy::initialize_flags();
 302   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 303 }
 304 
 305 void G1CollectorPolicy::post_heap_initialize() {
 306   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 307   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 308   if (max_young_size != MaxNewSize) {
 309     FLAG_SET_ERGO(size_t, MaxNewSize, max_young_size);
 310   }
 311 
 312   _ihop_control = create_ihop_control();
 313 }
 314 
 315 G1CollectorState* G1CollectorPolicy::collector_state() const { return _g1->collector_state(); }
 316 
 317 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 318         _min_desired_young_length(0), _max_desired_young_length(0) {
 319   if (FLAG_IS_CMDLINE(NewRatio)) {
 320     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 321       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 322     } else {
 323       _sizer_kind = SizerNewRatio;
 324       _adaptive_size = false;
 325       return;
 326     }
 327   }
 328 
 329   if (NewSize > MaxNewSize) {
 330     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 331       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 332               "A new max generation size of " SIZE_FORMAT "k will be used.",
 333               NewSize/K, MaxNewSize/K, NewSize/K);
 334     }
 335     MaxNewSize = NewSize;
 336   }
 337 
 338   if (FLAG_IS_CMDLINE(NewSize)) {
 339     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 340                                      1U);
 341     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 342       _max_desired_young_length =
 343                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 344                                   1U);
 345       _sizer_kind = SizerMaxAndNewSize;
 346       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 347     } else {
 348       _sizer_kind = SizerNewSizeOnly;
 349     }
 350   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 351     _max_desired_young_length =
 352                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 353                                   1U);
 354     _sizer_kind = SizerMaxNewSizeOnly;
 355   }
 356 }
 357 
 358 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 359   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 360   return MAX2(1U, default_value);
 361 }
 362 
 363 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 364   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 365   return MAX2(1U, default_value);
 366 }
 367 
 368 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 369   assert(number_of_heap_regions > 0, "Heap must be initialized");
 370 
 371   switch (_sizer_kind) {
 372     case SizerDefaults:
 373       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 374       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 375       break;
 376     case SizerNewSizeOnly:
 377       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 378       *max_young_length = MAX2(*min_young_length, *max_young_length);
 379       break;
 380     case SizerMaxNewSizeOnly:
 381       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 382       *min_young_length = MIN2(*min_young_length, *max_young_length);
 383       break;
 384     case SizerMaxAndNewSize:
 385       // Do nothing. Values set on the command line, don't update them at runtime.
 386       break;
 387     case SizerNewRatio:
 388       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 389       *max_young_length = *min_young_length;
 390       break;
 391     default:
 392       ShouldNotReachHere();
 393   }
 394 
 395   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 396 }
 397 
 398 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 399   // We need to pass the desired values because recalculation may not update these
 400   // values in some cases.
 401   uint temp = _min_desired_young_length;
 402   uint result = _max_desired_young_length;
 403   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 404   return result;
 405 }
 406 
 407 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 408   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 409           &_max_desired_young_length);
 410 }
 411 
 412 void G1CollectorPolicy::init() {
 413   // Set aside an initial future to_space.
 414   _g1 = G1CollectedHeap::heap();
 415 
 416   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 417 
 418   initialize_gc_policy_counters();
 419 
 420   if (adaptive_young_list_length()) {
 421     _young_list_fixed_length = 0;
 422   } else {
 423     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 424   }
 425   _free_regions_at_end_of_collection = _g1->num_free_regions();
 426 
 427   update_young_list_max_and_target_length();
 428   // We may immediately start allocating regions and placing them on the
 429   // collection set list. Initialize the per-collection set info
 430   start_incremental_cset_building();
 431 }
 432 
 433 void G1CollectorPolicy::note_gc_start(uint num_active_workers) {
 434   phase_times()->note_gc_start(num_active_workers);
 435 }
 436 
 437 // Create the jstat counters for the policy.
 438 void G1CollectorPolicy::initialize_gc_policy_counters() {
 439   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 440 }
 441 
 442 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 443                                          double base_time_ms,
 444                                          uint base_free_regions,
 445                                          double target_pause_time_ms) const {
 446   if (young_length >= base_free_regions) {
 447     // end condition 1: not enough space for the young regions
 448     return false;
 449   }
 450 
 451   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 452   size_t bytes_to_copy =
 453                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 454   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 455   double young_other_time_ms = predict_young_other_time_ms(young_length);
 456   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 457   if (pause_time_ms > target_pause_time_ms) {
 458     // end condition 2: prediction is over the target pause time
 459     return false;
 460   }
 461 
 462   size_t free_bytes = (base_free_regions - young_length) * HeapRegion::GrainBytes;
 463 
 464   // When copying, we will likely need more bytes free than is live in the region.
 465   // Add some safety margin to factor in the confidence of our guess, and the
 466   // natural expected waste.
 467   // (100.0 / G1ConfidencePercent) is a scale factor that expresses the uncertainty
 468   // of the calculation: the lower the confidence, the more headroom.
 469   // (100 + TargetPLABWastePct) represents the increase in expected bytes during
 470   // copying due to anticipated waste in the PLABs.
 471   double safety_factor = (100.0 / G1ConfidencePercent) * (100 + TargetPLABWastePct) / 100.0;
 472   size_t expected_bytes_to_copy = (size_t)(safety_factor * bytes_to_copy);
 473 
 474   if (expected_bytes_to_copy > free_bytes) {
 475     // end condition 3: out-of-space
 476     return false;
 477   }
 478 
 479   // success!
 480   return true;
 481 }
 482 
 483 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 484   // re-calculate the necessary reserve
 485   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 486   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 487   // smaller than 1.0) we'll get 1.
 488   _reserve_regions = (uint) ceil(reserve_regions_d);
 489 
 490   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 491 }
 492 
 493 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 494                                                        uint base_min_length) const {
 495   uint desired_min_length = 0;
 496   if (adaptive_young_list_length()) {
 497     if (_alloc_rate_ms_seq->num() > 3) {
 498       double now_sec = os::elapsedTime();
 499       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 500       double alloc_rate_ms = predict_alloc_rate_ms();
 501       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 502     } else {
 503       // otherwise we don't have enough info to make the prediction
 504     }
 505   }
 506   desired_min_length += base_min_length;
 507   // make sure we don't go below any user-defined minimum bound
 508   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 509 }
 510 
 511 uint G1CollectorPolicy::calculate_young_list_desired_max_length() const {
 512   // Here, we might want to also take into account any additional
 513   // constraints (i.e., user-defined minimum bound). Currently, we
 514   // effectively don't set this bound.
 515   return _young_gen_sizer->max_desired_young_length();
 516 }
 517 
 518 uint G1CollectorPolicy::update_young_list_max_and_target_length() {
 519   return update_young_list_max_and_target_length(get_new_size_prediction(_rs_lengths_seq));
 520 }
 521 
 522 uint G1CollectorPolicy::update_young_list_max_and_target_length(size_t rs_lengths) {
 523   uint unbounded_target_length = update_young_list_target_length(rs_lengths);
 524   update_max_gc_locker_expansion();
 525   return unbounded_target_length;
 526 }
 527 
 528 uint G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 529   YoungTargetLengths young_lengths = young_list_target_lengths(rs_lengths);
 530   _young_list_target_length = young_lengths.first;
 531   return young_lengths.second;
 532 }
 533 
 534 G1CollectorPolicy::YoungTargetLengths G1CollectorPolicy::young_list_target_lengths(size_t rs_lengths) const {
 535   YoungTargetLengths result;
 536 
 537   // Calculate the absolute and desired min bounds first.
 538 
 539   // This is how many young regions we already have (currently: the survivors).
 540   uint base_min_length = recorded_survivor_regions();
 541   uint desired_min_length = calculate_young_list_desired_min_length(base_min_length);
 542   // This is the absolute minimum young length. Ensure that we
 543   // will at least have one eden region available for allocation.
 544   uint absolute_min_length = base_min_length + MAX2(_g1->young_list()->eden_length(), (uint)1);
 545   // If we shrank the young list target it should not shrink below the current size.
 546   desired_min_length = MAX2(desired_min_length, absolute_min_length);
 547   // Calculate the absolute and desired max bounds.
 548 
 549   uint desired_max_length = calculate_young_list_desired_max_length();
 550 
 551   uint young_list_target_length = 0;
 552   if (adaptive_young_list_length()) {
 553     if (collector_state()->gcs_are_young()) {
 554       young_list_target_length =
 555                         calculate_young_list_target_length(rs_lengths,
 556                                                            base_min_length,
 557                                                            desired_min_length,
 558                                                            desired_max_length);
 559     } else {
 560       // Don't calculate anything and let the code below bound it to
 561       // the desired_min_length, i.e., do the next GC as soon as
 562       // possible to maximize how many old regions we can add to it.
 563     }
 564   } else {
 565     // The user asked for a fixed young gen so we'll fix the young gen
 566     // whether the next GC is young or mixed.
 567     young_list_target_length = _young_list_fixed_length;
 568   }
 569 
 570   result.second = young_list_target_length;
 571 
 572   // We will try our best not to "eat" into the reserve.
 573   uint absolute_max_length = 0;
 574   if (_free_regions_at_end_of_collection > _reserve_regions) {
 575     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 576   }
 577   if (desired_max_length > absolute_max_length) {
 578     desired_max_length = absolute_max_length;
 579   }
 580 
 581   // Make sure we don't go over the desired max length, nor under the
 582   // desired min length. In case they clash, desired_min_length wins
 583   // which is why that test is second.
 584   if (young_list_target_length > desired_max_length) {
 585     young_list_target_length = desired_max_length;
 586   }
 587   if (young_list_target_length < desired_min_length) {
 588     young_list_target_length = desired_min_length;
 589   }
 590 
 591   assert(young_list_target_length > recorded_survivor_regions(),
 592          "we should be able to allocate at least one eden region");
 593   assert(young_list_target_length >= absolute_min_length, "post-condition");
 594 
 595   result.first = young_list_target_length;
 596   return result;
 597 }
 598 
 599 uint
 600 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 601                                                      uint base_min_length,
 602                                                      uint desired_min_length,
 603                                                      uint desired_max_length) const {
 604   assert(adaptive_young_list_length(), "pre-condition");
 605   assert(collector_state()->gcs_are_young(), "only call this for young GCs");
 606 
 607   // In case some edge-condition makes the desired max length too small...
 608   if (desired_max_length <= desired_min_length) {
 609     return desired_min_length;
 610   }
 611 
 612   // We'll adjust min_young_length and max_young_length not to include
 613   // the already allocated young regions (i.e., so they reflect the
 614   // min and max eden regions we'll allocate). The base_min_length
 615   // will be reflected in the predictions by the
 616   // survivor_regions_evac_time prediction.
 617   assert(desired_min_length > base_min_length, "invariant");
 618   uint min_young_length = desired_min_length - base_min_length;
 619   assert(desired_max_length > base_min_length, "invariant");
 620   uint max_young_length = desired_max_length - base_min_length;
 621 
 622   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 623   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 624   size_t pending_cards = get_new_size_prediction(_pending_cards_seq);
 625   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 626   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 627   double base_time_ms =
 628     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 629     survivor_regions_evac_time;
 630   uint available_free_regions = _free_regions_at_end_of_collection;
 631   uint base_free_regions = 0;
 632   if (available_free_regions > _reserve_regions) {
 633     base_free_regions = available_free_regions - _reserve_regions;
 634   }
 635 
 636   // Here, we will make sure that the shortest young length that
 637   // makes sense fits within the target pause time.
 638 
 639   if (predict_will_fit(min_young_length, base_time_ms,
 640                        base_free_regions, target_pause_time_ms)) {
 641     // The shortest young length will fit into the target pause time;
 642     // we'll now check whether the absolute maximum number of young
 643     // regions will fit in the target pause time. If not, we'll do
 644     // a binary search between min_young_length and max_young_length.
 645     if (predict_will_fit(max_young_length, base_time_ms,
 646                          base_free_regions, target_pause_time_ms)) {
 647       // The maximum young length will fit into the target pause time.
 648       // We are done so set min young length to the maximum length (as
 649       // the result is assumed to be returned in min_young_length).
 650       min_young_length = max_young_length;
 651     } else {
 652       // The maximum possible number of young regions will not fit within
 653       // the target pause time so we'll search for the optimal
 654       // length. The loop invariants are:
 655       //
 656       // min_young_length < max_young_length
 657       // min_young_length is known to fit into the target pause time
 658       // max_young_length is known not to fit into the target pause time
 659       //
 660       // Going into the loop we know the above hold as we've just
 661       // checked them. Every time around the loop we check whether
 662       // the middle value between min_young_length and
 663       // max_young_length fits into the target pause time. If it
 664       // does, it becomes the new min. If it doesn't, it becomes
 665       // the new max. This way we maintain the loop invariants.
 666 
 667       assert(min_young_length < max_young_length, "invariant");
 668       uint diff = (max_young_length - min_young_length) / 2;
 669       while (diff > 0) {
 670         uint young_length = min_young_length + diff;
 671         if (predict_will_fit(young_length, base_time_ms,
 672                              base_free_regions, target_pause_time_ms)) {
 673           min_young_length = young_length;
 674         } else {
 675           max_young_length = young_length;
 676         }
 677         assert(min_young_length <  max_young_length, "invariant");
 678         diff = (max_young_length - min_young_length) / 2;
 679       }
 680       // The results is min_young_length which, according to the
 681       // loop invariants, should fit within the target pause time.
 682 
 683       // These are the post-conditions of the binary search above:
 684       assert(min_young_length < max_young_length,
 685              "otherwise we should have discovered that max_young_length "
 686              "fits into the pause target and not done the binary search");
 687       assert(predict_will_fit(min_young_length, base_time_ms,
 688                               base_free_regions, target_pause_time_ms),
 689              "min_young_length, the result of the binary search, should "
 690              "fit into the pause target");
 691       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 692                                base_free_regions, target_pause_time_ms),
 693              "min_young_length, the result of the binary search, should be "
 694              "optimal, so no larger length should fit into the pause target");
 695     }
 696   } else {
 697     // Even the minimum length doesn't fit into the pause time
 698     // target, return it as the result nevertheless.
 699   }
 700   return base_min_length + min_young_length;
 701 }
 702 
 703 double G1CollectorPolicy::predict_survivor_regions_evac_time() const {
 704   double survivor_regions_evac_time = 0.0;
 705   for (HeapRegion * r = _recorded_survivor_head;
 706        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 707        r = r->get_next_young_region()) {
 708     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, collector_state()->gcs_are_young());
 709   }
 710   return survivor_regions_evac_time;
 711 }
 712 
 713 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 714   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 715 
 716   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 717   if (rs_lengths > _rs_lengths_prediction) {
 718     // add 10% to avoid having to recalculate often
 719     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 720     update_rs_lengths_prediction(rs_lengths_prediction);
 721 
 722     update_young_list_max_and_target_length(rs_lengths_prediction);
 723   }
 724 }
 725 
 726 void G1CollectorPolicy::update_rs_lengths_prediction() {
 727   update_rs_lengths_prediction(get_new_size_prediction(_rs_lengths_seq));
 728 }
 729 
 730 void G1CollectorPolicy::update_rs_lengths_prediction(size_t prediction) {
 731   if (collector_state()->gcs_are_young() && adaptive_young_list_length()) {
 732     _rs_lengths_prediction = prediction;
 733   }
 734 }
 735 
 736 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 737                                                bool is_tlab,
 738                                                bool* gc_overhead_limit_was_exceeded) {
 739   guarantee(false, "Not using this policy feature yet.");
 740   return NULL;
 741 }
 742 
 743 // This method controls how a collector handles one or more
 744 // of its generations being fully allocated.
 745 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 746                                                        bool is_tlab) {
 747   guarantee(false, "Not using this policy feature yet.");
 748   return NULL;
 749 }
 750 
 751 
 752 #ifndef PRODUCT
 753 bool G1CollectorPolicy::verify_young_ages() {
 754   HeapRegion* head = _g1->young_list()->first_region();
 755   return
 756     verify_young_ages(head, _short_lived_surv_rate_group);
 757   // also call verify_young_ages on any additional surv rate groups
 758 }
 759 
 760 bool
 761 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 762                                      SurvRateGroup *surv_rate_group) {
 763   guarantee( surv_rate_group != NULL, "pre-condition" );
 764 
 765   const char* name = surv_rate_group->name();
 766   bool ret = true;
 767   int prev_age = -1;
 768 
 769   for (HeapRegion* curr = head;
 770        curr != NULL;
 771        curr = curr->get_next_young_region()) {
 772     SurvRateGroup* group = curr->surv_rate_group();
 773     if (group == NULL && !curr->is_survivor()) {
 774       log_info(gc, verify)("## %s: encountered NULL surv_rate_group", name);
 775       ret = false;
 776     }
 777 
 778     if (surv_rate_group == group) {
 779       int age = curr->age_in_surv_rate_group();
 780 
 781       if (age < 0) {
 782         log_info(gc, verify)("## %s: encountered negative age", name);
 783         ret = false;
 784       }
 785 
 786       if (age <= prev_age) {
 787         log_info(gc, verify)("## %s: region ages are not strictly increasing (%d, %d)", name, age, prev_age);
 788         ret = false;
 789       }
 790       prev_age = age;
 791     }
 792   }
 793 
 794   return ret;
 795 }
 796 #endif // PRODUCT
 797 
 798 void G1CollectorPolicy::record_full_collection_start() {
 799   _full_collection_start_sec = os::elapsedTime();
 800   // Release the future to-space so that it is available for compaction into.
 801   collector_state()->set_full_collection(true);
 802 }
 803 
 804 void G1CollectorPolicy::record_full_collection_end() {
 805   // Consider this like a collection pause for the purposes of allocation
 806   // since last pause.
 807   double end_sec = os::elapsedTime();
 808   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 809   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 810 
 811   update_recent_gc_times(end_sec, full_gc_time_ms);
 812 
 813   collector_state()->set_full_collection(false);
 814 
 815   // "Nuke" the heuristics that control the young/mixed GC
 816   // transitions and make sure we start with young GCs after the Full GC.
 817   collector_state()->set_gcs_are_young(true);
 818   collector_state()->set_last_young_gc(false);
 819   collector_state()->set_initiate_conc_mark_if_possible(need_to_start_conc_mark("end of Full GC", 0));
 820   collector_state()->set_during_initial_mark_pause(false);
 821   collector_state()->set_in_marking_window(false);
 822   collector_state()->set_in_marking_window_im(false);
 823 
 824   _short_lived_surv_rate_group->start_adding_regions();
 825   // also call this on any additional surv rate groups
 826 
 827   record_survivor_regions(0, NULL, NULL);
 828 
 829   _free_regions_at_end_of_collection = _g1->num_free_regions();
 830   // Reset survivors SurvRateGroup.
 831   _survivor_surv_rate_group->reset();
 832   update_young_list_max_and_target_length();
 833   update_rs_lengths_prediction();
 834   cset_chooser()->clear();
 835 
 836   _bytes_allocated_in_old_since_last_gc = 0;
 837 
 838   record_pause(FullGC, _full_collection_start_sec, end_sec);
 839 }
 840 
 841 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 842   // We only need to do this here as the policy will only be applied
 843   // to the GC we're about to start. so, no point is calculating this
 844   // every time we calculate / recalculate the target young length.
 845   update_survivors_policy();
 846 
 847   assert(_g1->used() == _g1->recalculate_used(),
 848          "sanity, used: " SIZE_FORMAT " recalculate_used: " SIZE_FORMAT,
 849          _g1->used(), _g1->recalculate_used());
 850 
 851   phase_times()->record_cur_collection_start_sec(start_time_sec);
 852   _pending_cards = _g1->pending_card_num();
 853 
 854   _collection_set_bytes_used_before = 0;
 855   _bytes_copied_during_gc = 0;
 856 
 857   collector_state()->set_last_gc_was_young(false);
 858 
 859   // do that for any other surv rate groups
 860   _short_lived_surv_rate_group->stop_adding_regions();
 861   _survivors_age_table.clear();
 862 
 863   assert( verify_young_ages(), "region age verification" );
 864 }
 865 
 866 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 867                                                    mark_init_elapsed_time_ms) {
 868   collector_state()->set_during_marking(true);
 869   assert(!collector_state()->initiate_conc_mark_if_possible(), "we should have cleared it by now");
 870   collector_state()->set_during_initial_mark_pause(false);
 871 }
 872 
 873 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 874   _mark_remark_start_sec = os::elapsedTime();
 875   collector_state()->set_during_marking(false);
 876 }
 877 
 878 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 879   double end_time_sec = os::elapsedTime();
 880   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 881   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 882   _prev_collection_pause_end_ms += elapsed_time_ms;
 883 
 884   record_pause(Remark, _mark_remark_start_sec, end_time_sec);
 885 }
 886 
 887 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 888   _mark_cleanup_start_sec = os::elapsedTime();
 889 }
 890 
 891 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 892   bool should_continue_with_reclaim = next_gc_should_be_mixed("request last young-only gc",
 893                                                               "skip last young-only gc");
 894   collector_state()->set_last_young_gc(should_continue_with_reclaim);
 895   // We skip the marking phase.
 896   if (!should_continue_with_reclaim) {
 897     abort_time_to_mixed_tracking();
 898   }
 899   collector_state()->set_in_marking_window(false);
 900 }
 901 
 902 double G1CollectorPolicy::average_time_ms(G1GCPhaseTimes::GCParPhases phase) const {
 903   return phase_times()->average_time_ms(phase);
 904 }
 905 
 906 double G1CollectorPolicy::young_other_time_ms() const {
 907   return phase_times()->young_cset_choice_time_ms() +
 908          phase_times()->young_free_cset_time_ms();
 909 }
 910 
 911 double G1CollectorPolicy::non_young_other_time_ms() const {
 912   return phase_times()->non_young_cset_choice_time_ms() +
 913          phase_times()->non_young_free_cset_time_ms();
 914 
 915 }
 916 
 917 double G1CollectorPolicy::other_time_ms(double pause_time_ms) const {
 918   return pause_time_ms -
 919          average_time_ms(G1GCPhaseTimes::UpdateRS) -
 920          average_time_ms(G1GCPhaseTimes::ScanRS) -
 921          average_time_ms(G1GCPhaseTimes::ObjCopy) -
 922          average_time_ms(G1GCPhaseTimes::Termination);
 923 }
 924 
 925 double G1CollectorPolicy::constant_other_time_ms(double pause_time_ms) const {
 926   return other_time_ms(pause_time_ms) - young_other_time_ms() - non_young_other_time_ms();
 927 }
 928 
 929 bool G1CollectorPolicy::about_to_start_mixed_phase() const {
 930   return _g1->concurrent_mark()->cmThread()->during_cycle() || collector_state()->last_young_gc();
 931 }
 932 
 933 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 934   if (about_to_start_mixed_phase()) {
 935     return false;
 936   }
 937 
 938   size_t marking_initiating_used_threshold = _ihop_control->get_conc_mark_start_threshold();
 939 
 940   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 941   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 942   size_t marking_request_bytes = cur_used_bytes + alloc_byte_size;
 943 
 944   bool result = false;
 945   if (marking_request_bytes > marking_initiating_used_threshold) {
 946     result = collector_state()->gcs_are_young() && !collector_state()->last_young_gc();
 947     log_debug(gc, ergo, ihop)("%s occupancy: " SIZE_FORMAT "B allocation request: " SIZE_FORMAT "B threshold: " SIZE_FORMAT "B (%1.2f) source: %s",
 948                               result ? "Request concurrent cycle initiation (occupancy higher than threshold)" : "Do not request concurrent cycle initiation (still doing mixed collections)",
 949                               cur_used_bytes, alloc_byte_size, marking_initiating_used_threshold, (double) marking_initiating_used_threshold / _g1->capacity() * 100, source);
 950   }
 951 
 952   return result;
 953 }
 954 
 955 // Anything below that is considered to be zero
 956 #define MIN_TIMER_GRANULARITY 0.0000001
 957 
 958 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, size_t cards_scanned, size_t heap_used_bytes_before_gc) {
 959   double end_time_sec = os::elapsedTime();
 960 
 961   size_t cur_used_bytes = _g1->used();
 962   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 963   bool last_pause_included_initial_mark = false;
 964   bool update_stats = !_g1->evacuation_failed();
 965 
 966   NOT_PRODUCT(_short_lived_surv_rate_group->print());
 967 
 968   record_pause(young_gc_pause_kind(), end_time_sec - pause_time_ms / 1000.0, end_time_sec);
 969 
 970   last_pause_included_initial_mark = collector_state()->during_initial_mark_pause();
 971   if (last_pause_included_initial_mark) {
 972     record_concurrent_mark_init_end(0.0);
 973   } else {
 974     maybe_start_marking();
 975   }
 976 
 977   double app_time_ms = (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 978   if (app_time_ms < MIN_TIMER_GRANULARITY) {
 979     // This usually happens due to the timer not having the required
 980     // granularity. Some Linuxes are the usual culprits.
 981     // We'll just set it to something (arbitrarily) small.
 982     app_time_ms = 1.0;
 983   }
 984 
 985   if (update_stats) {
 986     // We maintain the invariant that all objects allocated by mutator
 987     // threads will be allocated out of eden regions. So, we can use
 988     // the eden region number allocated since the previous GC to
 989     // calculate the application's allocate rate. The only exception
 990     // to that is humongous objects that are allocated separately. But
 991     // given that humongous object allocations do not really affect
 992     // either the pause's duration nor when the next pause will take
 993     // place we can safely ignore them here.
 994     uint regions_allocated = eden_cset_region_length();
 995     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
 996     _alloc_rate_ms_seq->add(alloc_rate_ms);
 997 
 998     double interval_ms =
 999       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1000     update_recent_gc_times(end_time_sec, pause_time_ms);
1001     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1002     if (recent_avg_pause_time_ratio() < 0.0 ||
1003         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1004       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1005       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1006       if (_recent_avg_pause_time_ratio < 0.0) {
1007         _recent_avg_pause_time_ratio = 0.0;
1008       } else {
1009         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1010         _recent_avg_pause_time_ratio = 1.0;
1011       }
1012     }
1013 
1014     // Compute the ratio of just this last pause time to the entire time range stored
1015     // in the vectors. Comparing this pause to the entire range, rather than only the
1016     // most recent interval, has the effect of smoothing over a possible transient 'burst'
1017     // of more frequent pauses that don't really reflect a change in heap occupancy.
1018     // This reduces the likelihood of a needless heap expansion being triggered.
1019     _last_pause_time_ratio =
1020       (pause_time_ms * _recent_prev_end_times_for_all_gcs_sec->num()) / interval_ms;
1021   }
1022 
1023   bool new_in_marking_window = collector_state()->in_marking_window();
1024   bool new_in_marking_window_im = false;
1025   if (last_pause_included_initial_mark) {
1026     new_in_marking_window = true;
1027     new_in_marking_window_im = true;
1028   }
1029 
1030   if (collector_state()->last_young_gc()) {
1031     // This is supposed to to be the "last young GC" before we start
1032     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1033     assert(!last_pause_included_initial_mark, "The last young GC is not allowed to be an initial mark GC");
1034 
1035     if (next_gc_should_be_mixed("start mixed GCs",
1036                                 "do not start mixed GCs")) {
1037       collector_state()->set_gcs_are_young(false);
1038     } else {
1039       // We aborted the mixed GC phase early.
1040       abort_time_to_mixed_tracking();
1041     }
1042 
1043     collector_state()->set_last_young_gc(false);
1044   }
1045 
1046   if (!collector_state()->last_gc_was_young()) {
1047     // This is a mixed GC. Here we decide whether to continue doing
1048     // mixed GCs or not.
1049     if (!next_gc_should_be_mixed("continue mixed GCs",
1050                                  "do not continue mixed GCs")) {
1051       collector_state()->set_gcs_are_young(true);
1052 
1053       maybe_start_marking();
1054     }
1055   }
1056 
1057   _short_lived_surv_rate_group->start_adding_regions();
1058   // Do that for any other surv rate groups
1059 
1060   if (update_stats) {
1061     double cost_per_card_ms = 0.0;
1062     double cost_scan_hcc = average_time_ms(G1GCPhaseTimes::ScanHCC);
1063     if (_pending_cards > 0) {
1064       cost_per_card_ms = (average_time_ms(G1GCPhaseTimes::UpdateRS) - cost_scan_hcc) / (double) _pending_cards;
1065       _cost_per_card_ms_seq->add(cost_per_card_ms);
1066     }
1067     _cost_scan_hcc_seq->add(cost_scan_hcc);
1068 
1069     double cost_per_entry_ms = 0.0;
1070     if (cards_scanned > 10) {
1071       cost_per_entry_ms = average_time_ms(G1GCPhaseTimes::ScanRS) / (double) cards_scanned;
1072       if (collector_state()->last_gc_was_young()) {
1073         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1074       } else {
1075         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1076       }
1077     }
1078 
1079     if (_max_rs_lengths > 0) {
1080       double cards_per_entry_ratio =
1081         (double) cards_scanned / (double) _max_rs_lengths;
1082       if (collector_state()->last_gc_was_young()) {
1083         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1084       } else {
1085         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1086       }
1087     }
1088 
1089     // This is defensive. For a while _max_rs_lengths could get
1090     // smaller than _recorded_rs_lengths which was causing
1091     // rs_length_diff to get very large and mess up the RSet length
1092     // predictions. The reason was unsafe concurrent updates to the
1093     // _inc_cset_recorded_rs_lengths field which the code below guards
1094     // against (see CR 7118202). This bug has now been fixed (see CR
1095     // 7119027). However, I'm still worried that
1096     // _inc_cset_recorded_rs_lengths might still end up somewhat
1097     // inaccurate. The concurrent refinement thread calculates an
1098     // RSet's length concurrently with other CR threads updating it
1099     // which might cause it to calculate the length incorrectly (if,
1100     // say, it's in mid-coarsening). So I'll leave in the defensive
1101     // conditional below just in case.
1102     size_t rs_length_diff = 0;
1103     if (_max_rs_lengths > _recorded_rs_lengths) {
1104       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1105     }
1106     _rs_length_diff_seq->add((double) rs_length_diff);
1107 
1108     size_t freed_bytes = heap_used_bytes_before_gc - cur_used_bytes;
1109     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1110     double cost_per_byte_ms = 0.0;
1111 
1112     if (copied_bytes > 0) {
1113       cost_per_byte_ms = average_time_ms(G1GCPhaseTimes::ObjCopy) / (double) copied_bytes;
1114       if (collector_state()->in_marking_window()) {
1115         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1116       } else {
1117         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1118       }
1119     }
1120 
1121     if (young_cset_region_length() > 0) {
1122       _young_other_cost_per_region_ms_seq->add(young_other_time_ms() /
1123                                                young_cset_region_length());
1124     }
1125 
1126     if (old_cset_region_length() > 0) {
1127       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms() /
1128                                                    old_cset_region_length());
1129     }
1130 
1131     _constant_other_time_ms_seq->add(constant_other_time_ms(pause_time_ms));
1132 
1133     _pending_cards_seq->add((double) _pending_cards);
1134     _rs_lengths_seq->add((double) _max_rs_lengths);
1135   }
1136 
1137   collector_state()->set_in_marking_window(new_in_marking_window);
1138   collector_state()->set_in_marking_window_im(new_in_marking_window_im);
1139   _free_regions_at_end_of_collection = _g1->num_free_regions();
1140   // IHOP control wants to know the expected young gen length if it were not
1141   // restrained by the heap reserve. Using the actual length would make the
1142   // prediction too small and the limit the young gen every time we get to the
1143   // predicted target occupancy.
1144   size_t last_unrestrained_young_length = update_young_list_max_and_target_length();
1145   update_rs_lengths_prediction();
1146 
1147   update_ihop_prediction(app_time_ms / 1000.0,
1148                          _bytes_allocated_in_old_since_last_gc,
1149                          last_unrestrained_young_length * HeapRegion::GrainBytes);
1150   _bytes_allocated_in_old_since_last_gc = 0;
1151 
1152   _ihop_control->send_trace_event(_g1->gc_tracer_stw());
1153 
1154   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1155   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1156 
1157   double scan_hcc_time_ms = average_time_ms(G1GCPhaseTimes::ScanHCC);
1158 
1159   if (update_rs_time_goal_ms < scan_hcc_time_ms) {
1160     log_debug(gc, ergo, refine)("Adjust concurrent refinement thresholds (scanning the HCC expected to take longer than Update RS time goal)."
1161                                 "Update RS time goal: %1.2fms Scan HCC time: %1.2fms",
1162                                 update_rs_time_goal_ms, scan_hcc_time_ms);
1163 
1164     update_rs_time_goal_ms = 0;
1165   } else {
1166     update_rs_time_goal_ms -= scan_hcc_time_ms;
1167   }
1168   adjust_concurrent_refinement(average_time_ms(G1GCPhaseTimes::UpdateRS) - scan_hcc_time_ms,
1169                                phase_times()->sum_thread_work_items(G1GCPhaseTimes::UpdateRS),
1170                                update_rs_time_goal_ms);
1171 
1172   cset_chooser()->verify();
1173 }
1174 
1175 G1IHOPControl* G1CollectorPolicy::create_ihop_control() const {
1176   if (G1UseAdaptiveIHOP) {
1177     return new G1AdaptiveIHOPControl(InitiatingHeapOccupancyPercent,
1178                                      G1CollectedHeap::heap()->max_capacity(),
1179                                      &_predictor,
1180                                      G1ReservePercent,
1181                                      G1HeapWastePercent);
1182   } else {
1183     return new G1StaticIHOPControl(InitiatingHeapOccupancyPercent,
1184                                    G1CollectedHeap::heap()->max_capacity());
1185   }
1186 }
1187 
1188 void G1CollectorPolicy::update_ihop_prediction(double mutator_time_s,
1189                                                size_t mutator_alloc_bytes,
1190                                                size_t young_gen_size) {
1191   // Always try to update IHOP prediction. Even evacuation failures give information
1192   // about e.g. whether to start IHOP earlier next time.
1193 
1194   // Avoid using really small application times that might create samples with
1195   // very high or very low values. They may be caused by e.g. back-to-back gcs.
1196   double const min_valid_time = 1e-6;
1197 
1198   bool report = false;
1199 
1200   double marking_to_mixed_time = -1.0;
1201   if (!collector_state()->last_gc_was_young() && _initial_mark_to_mixed.has_result()) {
1202     marking_to_mixed_time = _initial_mark_to_mixed.last_marking_time();
1203     assert(marking_to_mixed_time > 0.0,
1204            "Initial mark to mixed time must be larger than zero but is %.3f",
1205            marking_to_mixed_time);
1206     if (marking_to_mixed_time > min_valid_time) {
1207       _ihop_control->update_marking_length(marking_to_mixed_time);
1208       report = true;
1209     }
1210   }
1211 
1212   // As an approximation for the young gc promotion rates during marking we use
1213   // all of them. In many applications there are only a few if any young gcs during
1214   // marking, which makes any prediction useless. This increases the accuracy of the
1215   // prediction.
1216   if (collector_state()->last_gc_was_young() && mutator_time_s > min_valid_time) {
1217     _ihop_control->update_allocation_info(mutator_time_s, mutator_alloc_bytes, young_gen_size);
1218     report = true;
1219   }
1220 
1221   if (report) {
1222     report_ihop_statistics();
1223   }
1224 }
1225 
1226 void G1CollectorPolicy::report_ihop_statistics() {
1227   _ihop_control->print();
1228 }
1229 
1230 void G1CollectorPolicy::print_phases() {
1231   phase_times()->print();
1232 }
1233 
1234 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1235                                                      double update_rs_processed_buffers,
1236                                                      double goal_ms) {
1237   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1238   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1239 
1240   if (G1UseAdaptiveConcRefinement) {
1241     const int k_gy = 3, k_gr = 6;
1242     const double inc_k = 1.1, dec_k = 0.9;
1243 
1244     int g = cg1r->green_zone();
1245     if (update_rs_time > goal_ms) {
1246       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1247     } else {
1248       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1249         g = (int)MAX2(g * inc_k, g + 1.0);
1250       }
1251     }
1252     // Change the refinement threads params
1253     cg1r->set_green_zone(g);
1254     cg1r->set_yellow_zone(g * k_gy);
1255     cg1r->set_red_zone(g * k_gr);
1256     cg1r->reinitialize_threads();
1257 
1258     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * _predictor.sigma()), 1);
1259     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1260                                     cg1r->yellow_zone());
1261     // Change the barrier params
1262     dcqs.set_process_completed_threshold(processing_threshold);
1263     dcqs.set_max_completed_queue(cg1r->red_zone());
1264   }
1265 
1266   int curr_queue_size = dcqs.completed_buffers_num();
1267   if (curr_queue_size >= cg1r->yellow_zone()) {
1268     dcqs.set_completed_queue_padding(curr_queue_size);
1269   } else {
1270     dcqs.set_completed_queue_padding(0);
1271   }
1272   dcqs.notify_if_necessary();
1273 }
1274 
1275 size_t G1CollectorPolicy::predict_rs_length_diff() const {
1276   return get_new_size_prediction(_rs_length_diff_seq);
1277 }
1278 
1279 double G1CollectorPolicy::predict_alloc_rate_ms() const {
1280   return get_new_prediction(_alloc_rate_ms_seq);
1281 }
1282 
1283 double G1CollectorPolicy::predict_cost_per_card_ms() const {
1284   return get_new_prediction(_cost_per_card_ms_seq);
1285 }
1286 
1287 double G1CollectorPolicy::predict_scan_hcc_ms() const {
1288   return get_new_prediction(_cost_scan_hcc_seq);
1289 }
1290 
1291 double G1CollectorPolicy::predict_rs_update_time_ms(size_t pending_cards) const {
1292   return pending_cards * predict_cost_per_card_ms() + predict_scan_hcc_ms();
1293 }
1294 
1295 double G1CollectorPolicy::predict_young_cards_per_entry_ratio() const {
1296   return get_new_prediction(_young_cards_per_entry_ratio_seq);
1297 }
1298 
1299 double G1CollectorPolicy::predict_mixed_cards_per_entry_ratio() const {
1300   if (_mixed_cards_per_entry_ratio_seq->num() < 2) {
1301     return predict_young_cards_per_entry_ratio();
1302   } else {
1303     return get_new_prediction(_mixed_cards_per_entry_ratio_seq);
1304   }
1305 }
1306 
1307 size_t G1CollectorPolicy::predict_young_card_num(size_t rs_length) const {
1308   return (size_t) (rs_length * predict_young_cards_per_entry_ratio());
1309 }
1310 
1311 size_t G1CollectorPolicy::predict_non_young_card_num(size_t rs_length) const {
1312   return (size_t)(rs_length * predict_mixed_cards_per_entry_ratio());
1313 }
1314 
1315 double G1CollectorPolicy::predict_rs_scan_time_ms(size_t card_num) const {
1316   if (collector_state()->gcs_are_young()) {
1317     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1318   } else {
1319     return predict_mixed_rs_scan_time_ms(card_num);
1320   }
1321 }
1322 
1323 double G1CollectorPolicy::predict_mixed_rs_scan_time_ms(size_t card_num) const {
1324   if (_mixed_cost_per_entry_ms_seq->num() < 3) {
1325     return card_num * get_new_prediction(_cost_per_entry_ms_seq);
1326   } else {
1327     return card_num * get_new_prediction(_mixed_cost_per_entry_ms_seq);
1328   }
1329 }
1330 
1331 double G1CollectorPolicy::predict_object_copy_time_ms_during_cm(size_t bytes_to_copy) const {
1332   if (_cost_per_byte_ms_during_cm_seq->num() < 3) {
1333     return (1.1 * bytes_to_copy) * get_new_prediction(_cost_per_byte_ms_seq);
1334   } else {
1335     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_during_cm_seq);
1336   }
1337 }
1338 
1339 double G1CollectorPolicy::predict_object_copy_time_ms(size_t bytes_to_copy) const {
1340   if (collector_state()->during_concurrent_mark()) {
1341     return predict_object_copy_time_ms_during_cm(bytes_to_copy);
1342   } else {
1343     return bytes_to_copy * get_new_prediction(_cost_per_byte_ms_seq);
1344   }
1345 }
1346 
1347 double G1CollectorPolicy::predict_constant_other_time_ms() const {
1348   return get_new_prediction(_constant_other_time_ms_seq);
1349 }
1350 
1351 double G1CollectorPolicy::predict_young_other_time_ms(size_t young_num) const {
1352   return young_num * get_new_prediction(_young_other_cost_per_region_ms_seq);
1353 }
1354 
1355 double G1CollectorPolicy::predict_non_young_other_time_ms(size_t non_young_num) const {
1356   return non_young_num * get_new_prediction(_non_young_other_cost_per_region_ms_seq);
1357 }
1358 
1359 double G1CollectorPolicy::predict_remark_time_ms() const {
1360   return get_new_prediction(_concurrent_mark_remark_times_ms);
1361 }
1362 
1363 double G1CollectorPolicy::predict_cleanup_time_ms() const {
1364   return get_new_prediction(_concurrent_mark_cleanup_times_ms);
1365 }
1366 
1367 double G1CollectorPolicy::predict_yg_surv_rate(int age, SurvRateGroup* surv_rate_group) const {
1368   TruncatedSeq* seq = surv_rate_group->get_seq(age);
1369   guarantee(seq->num() > 0, "There should be some young gen survivor samples available. Tried to access with age %d", age);
1370   double pred = get_new_prediction(seq);
1371   if (pred > 1.0) {
1372     pred = 1.0;
1373   }
1374   return pred;
1375 }
1376 
1377 double G1CollectorPolicy::predict_yg_surv_rate(int age) const {
1378   return predict_yg_surv_rate(age, _short_lived_surv_rate_group);
1379 }
1380 
1381 double G1CollectorPolicy::accum_yg_surv_rate_pred(int age) const {
1382   return _short_lived_surv_rate_group->accum_surv_rate_pred(age);
1383 }
1384 
1385 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1386                                                        size_t scanned_cards) const {
1387   return
1388     predict_rs_update_time_ms(pending_cards) +
1389     predict_rs_scan_time_ms(scanned_cards) +
1390     predict_constant_other_time_ms();
1391 }
1392 
1393 double G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) const {
1394   size_t rs_length = predict_rs_length_diff();
1395   size_t card_num;
1396   if (collector_state()->gcs_are_young()) {
1397     card_num = predict_young_card_num(rs_length);
1398   } else {
1399     card_num = predict_non_young_card_num(rs_length);
1400   }
1401   return predict_base_elapsed_time_ms(pending_cards, card_num);
1402 }
1403 
1404 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) const {
1405   size_t bytes_to_copy;
1406   if (hr->is_marked())
1407     bytes_to_copy = hr->max_live_bytes();
1408   else {
1409     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1410     int age = hr->age_in_surv_rate_group();
1411     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1412     bytes_to_copy = (size_t) (hr->used() * yg_surv_rate);
1413   }
1414   return bytes_to_copy;
1415 }
1416 
1417 double G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1418                                                          bool for_young_gc) const {
1419   size_t rs_length = hr->rem_set()->occupied();
1420   size_t card_num;
1421 
1422   // Predicting the number of cards is based on which type of GC
1423   // we're predicting for.
1424   if (for_young_gc) {
1425     card_num = predict_young_card_num(rs_length);
1426   } else {
1427     card_num = predict_non_young_card_num(rs_length);
1428   }
1429   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1430 
1431   double region_elapsed_time_ms =
1432     predict_rs_scan_time_ms(card_num) +
1433     predict_object_copy_time_ms(bytes_to_copy);
1434 
1435   // The prediction of the "other" time for this region is based
1436   // upon the region type and NOT the GC type.
1437   if (hr->is_young()) {
1438     region_elapsed_time_ms += predict_young_other_time_ms(1);
1439   } else {
1440     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1441   }
1442   return region_elapsed_time_ms;
1443 }
1444 
1445 void G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1446                                                  uint survivor_cset_region_length) {
1447   _eden_cset_region_length     = eden_cset_region_length;
1448   _survivor_cset_region_length = survivor_cset_region_length;
1449   _old_cset_region_length      = 0;
1450 }
1451 
1452 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1453   _recorded_rs_lengths = rs_lengths;
1454 }
1455 
1456 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1457                                                double elapsed_ms) {
1458   _recent_gc_times_ms->add(elapsed_ms);
1459   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1460   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1461 }
1462 
1463 void G1CollectorPolicy::clear_ratio_check_data() {
1464   _ratio_over_threshold_count = 0;
1465   _ratio_over_threshold_sum = 0.0;
1466   _pauses_since_start = 0;
1467 }
1468 
1469 size_t G1CollectorPolicy::expansion_amount() {
1470   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1471   double last_gc_overhead = _last_pause_time_ratio * 100.0;
1472   double threshold = _gc_overhead_perc;
1473   size_t expand_bytes = 0;
1474 
1475   // If the heap is at less than half its maximum size, scale the threshold down,
1476   // to a limit of 1. Thus the smaller the heap is, the more likely it is to expand,
1477   // though the scaling code will likely keep the increase small.
1478   if (_g1->capacity() <= _g1->max_capacity() / 2) {
1479     threshold *= (double)_g1->capacity() / (double)(_g1->max_capacity() / 2);
1480     threshold = MAX2(threshold, 1.0);
1481   }
1482 
1483   // If the last GC time ratio is over the threshold, increment the count of
1484   // times it has been exceeded, and add this ratio to the sum of exceeded
1485   // ratios.
1486   if (last_gc_overhead > threshold) {
1487     _ratio_over_threshold_count++;
1488     _ratio_over_threshold_sum += last_gc_overhead;
1489   }
1490 
1491   // Check if we've had enough GC time ratio checks that were over the
1492   // threshold to trigger an expansion. We'll also expand if we've
1493   // reached the end of the history buffer and the average of all entries
1494   // is still over the threshold. This indicates a smaller number of GCs were
1495   // long enough to make the average exceed the threshold.
1496   bool filled_history_buffer = _pauses_since_start == NumPrevPausesForHeuristics;
1497   if ((_ratio_over_threshold_count == MinOverThresholdForGrowth) ||
1498       (filled_history_buffer && (recent_gc_overhead > threshold))) {
1499     size_t min_expand_bytes = HeapRegion::GrainBytes;
1500     size_t reserved_bytes = _g1->max_capacity();
1501     size_t committed_bytes = _g1->capacity();
1502     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1503     size_t expand_bytes_via_pct =
1504       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1505     double scale_factor = 1.0;
1506 
1507     // If the current size is less than 1/4 of the Initial heap size, expand
1508     // by half of the delta between the current and Initial sizes. IE, grow
1509     // back quickly.
1510     //
1511     // Otherwise, take the current size, or G1ExpandByPercentOfAvailable % of
1512     // the available expansion space, whichever is smaller, as the base
1513     // expansion size. Then possibly scale this size according to how much the
1514     // threshold has (on average) been exceeded by. If the delta is small
1515     // (less than the StartScaleDownAt value), scale the size down linearly, but
1516     // not by less than MinScaleDownFactor. If the delta is large (greater than
1517     // the StartScaleUpAt value), scale up, but adding no more than MaxScaleUpFactor
1518     // times the base size. The scaling will be linear in the range from
1519     // StartScaleUpAt to (StartScaleUpAt + ScaleUpRange). In other words,
1520     // ScaleUpRange sets the rate of scaling up.
1521     if (committed_bytes < InitialHeapSize / 4) {
1522       expand_bytes = (InitialHeapSize - committed_bytes) / 2;
1523     } else {
1524       double const MinScaleDownFactor = 0.2;
1525       double const MaxScaleUpFactor = 2;
1526       double const StartScaleDownAt = _gc_overhead_perc;
1527       double const StartScaleUpAt = _gc_overhead_perc * 1.5;
1528       double const ScaleUpRange = _gc_overhead_perc * 2.0;
1529 
1530       double ratio_delta;
1531       if (filled_history_buffer) {
1532         ratio_delta = recent_gc_overhead - threshold;
1533       } else {
1534         ratio_delta = (_ratio_over_threshold_sum/_ratio_over_threshold_count) - threshold;
1535       }
1536 
1537       expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1538       if (ratio_delta < StartScaleDownAt) {
1539         scale_factor = ratio_delta / StartScaleDownAt;
1540         scale_factor = MAX2(scale_factor, MinScaleDownFactor);
1541       } else if (ratio_delta > StartScaleUpAt) {
1542         scale_factor = 1 + ((ratio_delta - StartScaleUpAt) / ScaleUpRange);
1543         scale_factor = MIN2(scale_factor, MaxScaleUpFactor);
1544       }
1545     }
1546 
1547     log_debug(gc, ergo, heap)("Attempt heap expansion (recent GC overhead higher than threshold after GC) "
1548                               "recent GC overhead: %1.2f %% threshold: %1.2f %% uncommitted: " SIZE_FORMAT "B base expansion amount and scale: " SIZE_FORMAT "B (%1.2f%%)",
1549                               recent_gc_overhead, threshold, uncommitted_bytes, expand_bytes, scale_factor * 100);
1550 
1551     expand_bytes = static_cast<size_t>(expand_bytes * scale_factor);
1552 
1553     // Ensure the expansion size is at least the minimum growth amount
1554     // and at most the remaining uncommitted byte size.
1555     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1556     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1557 
1558     clear_ratio_check_data();
1559   } else {
1560     // An expansion was not triggered. If we've started counting, increment
1561     // the number of checks we've made in the current window.  If we've
1562     // reached the end of the window without resizing, clear the counters to
1563     // start again the next time we see a ratio above the threshold.
1564     if (_ratio_over_threshold_count > 0) {
1565       _pauses_since_start++;
1566       if (_pauses_since_start > NumPrevPausesForHeuristics) {
1567         clear_ratio_check_data();
1568       }
1569     }
1570   }
1571 
1572   return expand_bytes;
1573 }
1574 
1575 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1576 #ifndef PRODUCT
1577   _short_lived_surv_rate_group->print_surv_rate_summary();
1578   // add this call for any other surv rate groups
1579 #endif // PRODUCT
1580 }
1581 
1582 bool G1CollectorPolicy::is_young_list_full() const {
1583   uint young_list_length = _g1->young_list()->length();
1584   uint young_list_target_length = _young_list_target_length;
1585   return young_list_length >= young_list_target_length;
1586 }
1587 
1588 bool G1CollectorPolicy::can_expand_young_list() const {
1589   uint young_list_length = _g1->young_list()->length();
1590   uint young_list_max_length = _young_list_max_length;
1591   return young_list_length < young_list_max_length;
1592 }
1593 
1594 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1595   uint expansion_region_num = 0;
1596   if (GCLockerEdenExpansionPercent > 0) {
1597     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1598     double expansion_region_num_d = perc * (double) _young_list_target_length;
1599     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1600     // less than 1.0) we'll get 1.
1601     expansion_region_num = (uint) ceil(expansion_region_num_d);
1602   } else {
1603     assert(expansion_region_num == 0, "sanity");
1604   }
1605   _young_list_max_length = _young_list_target_length + expansion_region_num;
1606   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1607 }
1608 
1609 // Calculates survivor space parameters.
1610 void G1CollectorPolicy::update_survivors_policy() {
1611   double max_survivor_regions_d =
1612                  (double) _young_list_target_length / (double) SurvivorRatio;
1613   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1614   // smaller than 1.0) we'll get 1.
1615   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1616 
1617   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1618         HeapRegion::GrainWords * _max_survivor_regions, counters());
1619 }
1620 
1621 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(GCCause::Cause gc_cause) {
1622   // We actually check whether we are marking here and not if we are in a
1623   // reclamation phase. This means that we will schedule a concurrent mark
1624   // even while we are still in the process of reclaiming memory.
1625   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1626   if (!during_cycle) {
1627     log_debug(gc, ergo)("Request concurrent cycle initiation (requested by GC cause). GC cause: %s", GCCause::to_string(gc_cause));
1628     collector_state()->set_initiate_conc_mark_if_possible(true);
1629     return true;
1630   } else {
1631     log_debug(gc, ergo)("Do not request concurrent cycle initiation (concurrent cycle already in progress). GC cause: %s", GCCause::to_string(gc_cause));
1632     return false;
1633   }
1634 }
1635 
1636 void G1CollectorPolicy::initiate_conc_mark() {
1637   collector_state()->set_during_initial_mark_pause(true);
1638   collector_state()->set_initiate_conc_mark_if_possible(false);
1639 }
1640 
1641 void G1CollectorPolicy::decide_on_conc_mark_initiation() {
1642   // We are about to decide on whether this pause will be an
1643   // initial-mark pause.
1644 
1645   // First, collector_state()->during_initial_mark_pause() should not be already set. We
1646   // will set it here if we have to. However, it should be cleared by
1647   // the end of the pause (it's only set for the duration of an
1648   // initial-mark pause).
1649   assert(!collector_state()->during_initial_mark_pause(), "pre-condition");
1650 
1651   if (collector_state()->initiate_conc_mark_if_possible()) {
1652     // We had noticed on a previous pause that the heap occupancy has
1653     // gone over the initiating threshold and we should start a
1654     // concurrent marking cycle. So we might initiate one.
1655 
1656     if (!about_to_start_mixed_phase() && collector_state()->gcs_are_young()) {
1657       // Initiate a new initial mark if there is no marking or reclamation going on.
1658       initiate_conc_mark();
1659       log_debug(gc, ergo)("Initiate concurrent cycle (concurrent cycle initiation requested)");
1660     } else if (_g1->is_user_requested_concurrent_full_gc(_g1->gc_cause())) {
1661       // Initiate a user requested initial mark. An initial mark must be young only
1662       // GC, so the collector state must be updated to reflect this.
1663       collector_state()->set_gcs_are_young(true);
1664       collector_state()->set_last_young_gc(false);
1665 
1666       abort_time_to_mixed_tracking();
1667       initiate_conc_mark();
1668       log_debug(gc, ergo)("Initiate concurrent cycle (user requested concurrent cycle)");
1669     } else {
1670       // The concurrent marking thread is still finishing up the
1671       // previous cycle. If we start one right now the two cycles
1672       // overlap. In particular, the concurrent marking thread might
1673       // be in the process of clearing the next marking bitmap (which
1674       // we will use for the next cycle if we start one). Starting a
1675       // cycle now will be bad given that parts of the marking
1676       // information might get cleared by the marking thread. And we
1677       // cannot wait for the marking thread to finish the cycle as it
1678       // periodically yields while clearing the next marking bitmap
1679       // and, if it's in a yield point, it's waiting for us to
1680       // finish. So, at this point we will not start a cycle and we'll
1681       // let the concurrent marking thread complete the last one.
1682       log_debug(gc, ergo)("Do not initiate concurrent cycle (concurrent cycle already in progress)");
1683     }
1684   }
1685 }
1686 
1687 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1688   G1CollectedHeap* _g1h;
1689   CSetChooserParUpdater _cset_updater;
1690 
1691 public:
1692   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1693                            uint chunk_size) :
1694     _g1h(G1CollectedHeap::heap()),
1695     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1696 
1697   bool doHeapRegion(HeapRegion* r) {
1698     // Do we have any marking information for this region?
1699     if (r->is_marked()) {
1700       // We will skip any region that's currently used as an old GC
1701       // alloc region (we should not consider those for collection
1702       // before we fill them up).
1703       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1704         _cset_updater.add_region(r);
1705       }
1706     }
1707     return false;
1708   }
1709 };
1710 
1711 class ParKnownGarbageTask: public AbstractGangTask {
1712   CollectionSetChooser* _hrSorted;
1713   uint _chunk_size;
1714   G1CollectedHeap* _g1;
1715   HeapRegionClaimer _hrclaimer;
1716 
1717 public:
1718   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1719       AbstractGangTask("ParKnownGarbageTask"),
1720       _hrSorted(hrSorted), _chunk_size(chunk_size),
1721       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1722 
1723   void work(uint worker_id) {
1724     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1725     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1726   }
1727 };
1728 
1729 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) const {
1730   assert(n_workers > 0, "Active gc workers should be greater than 0");
1731   const uint overpartition_factor = 4;
1732   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1733   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1734 }
1735 
1736 void G1CollectorPolicy::record_concurrent_mark_cleanup_end() {
1737   cset_chooser()->clear();
1738 
1739   WorkGang* workers = _g1->workers();
1740   uint n_workers = workers->active_workers();
1741 
1742   uint n_regions = _g1->num_regions();
1743   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1744   cset_chooser()->prepare_for_par_region_addition(n_workers, n_regions, chunk_size);
1745   ParKnownGarbageTask par_known_garbage_task(cset_chooser(), chunk_size, n_workers);
1746   workers->run_task(&par_known_garbage_task);
1747 
1748   cset_chooser()->sort_regions();
1749 
1750   double end_sec = os::elapsedTime();
1751   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1752   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1753   _prev_collection_pause_end_ms += elapsed_time_ms;
1754 
1755   record_pause(Cleanup, _mark_cleanup_start_sec, end_sec);
1756 }
1757 
1758 // Add the heap region at the head of the non-incremental collection set
1759 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1760   assert(_inc_cset_build_state == Active, "Precondition");
1761   assert(hr->is_old(), "the region should be old");
1762 
1763   assert(!hr->in_collection_set(), "should not already be in the CSet");
1764   _g1->register_old_region_with_cset(hr);
1765   hr->set_next_in_collection_set(_collection_set);
1766   _collection_set = hr;
1767   _collection_set_bytes_used_before += hr->used();
1768   size_t rs_length = hr->rem_set()->occupied();
1769   _recorded_rs_lengths += rs_length;
1770   _old_cset_region_length += 1;
1771 }
1772 
1773 // Initialize the per-collection-set information
1774 void G1CollectorPolicy::start_incremental_cset_building() {
1775   assert(_inc_cset_build_state == Inactive, "Precondition");
1776 
1777   _inc_cset_head = NULL;
1778   _inc_cset_tail = NULL;
1779   _inc_cset_bytes_used_before = 0;
1780 
1781   _inc_cset_recorded_rs_lengths = 0;
1782   _inc_cset_recorded_rs_lengths_diffs = 0;
1783   _inc_cset_predicted_elapsed_time_ms = 0.0;
1784   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1785   _inc_cset_build_state = Active;
1786 }
1787 
1788 void G1CollectorPolicy::finalize_incremental_cset_building() {
1789   assert(_inc_cset_build_state == Active, "Precondition");
1790   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1791 
1792   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1793   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1794   // that adds a new region to the CSet. Further updates by the
1795   // concurrent refinement thread that samples the young RSet lengths
1796   // are accumulated in the *_diffs fields. Here we add the diffs to
1797   // the "main" fields.
1798 
1799   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1800     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1801   } else {
1802     // This is defensive. The diff should in theory be always positive
1803     // as RSets can only grow between GCs. However, given that we
1804     // sample their size concurrently with other threads updating them
1805     // it's possible that we might get the wrong size back, which
1806     // could make the calculations somewhat inaccurate.
1807     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1808     if (_inc_cset_recorded_rs_lengths >= diffs) {
1809       _inc_cset_recorded_rs_lengths -= diffs;
1810     } else {
1811       _inc_cset_recorded_rs_lengths = 0;
1812     }
1813   }
1814   _inc_cset_predicted_elapsed_time_ms +=
1815                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1816 
1817   _inc_cset_recorded_rs_lengths_diffs = 0;
1818   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1819 }
1820 
1821 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1822   // This routine is used when:
1823   // * adding survivor regions to the incremental cset at the end of an
1824   //   evacuation pause,
1825   // * adding the current allocation region to the incremental cset
1826   //   when it is retired, and
1827   // * updating existing policy information for a region in the
1828   //   incremental cset via young list RSet sampling.
1829   // Therefore this routine may be called at a safepoint by the
1830   // VM thread, or in-between safepoints by mutator threads (when
1831   // retiring the current allocation region) or a concurrent
1832   // refine thread (RSet sampling).
1833 
1834   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1835   size_t used_bytes = hr->used();
1836   _inc_cset_recorded_rs_lengths += rs_length;
1837   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1838   _inc_cset_bytes_used_before += used_bytes;
1839 
1840   // Cache the values we have added to the aggregated information
1841   // in the heap region in case we have to remove this region from
1842   // the incremental collection set, or it is updated by the
1843   // rset sampling code
1844   hr->set_recorded_rs_length(rs_length);
1845   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1846 }
1847 
1848 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1849                                                      size_t new_rs_length) {
1850   // Update the CSet information that is dependent on the new RS length
1851   assert(hr->is_young(), "Precondition");
1852   assert(!SafepointSynchronize::is_at_safepoint(),
1853                                                "should not be at a safepoint");
1854 
1855   // We could have updated _inc_cset_recorded_rs_lengths and
1856   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1857   // that atomically, as this code is executed by a concurrent
1858   // refinement thread, potentially concurrently with a mutator thread
1859   // allocating a new region and also updating the same fields. To
1860   // avoid the atomic operations we accumulate these updates on two
1861   // separate fields (*_diffs) and we'll just add them to the "main"
1862   // fields at the start of a GC.
1863 
1864   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1865   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1866   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1867 
1868   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1869   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
1870   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1871   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1872 
1873   hr->set_recorded_rs_length(new_rs_length);
1874   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1875 }
1876 
1877 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1878   assert(hr->is_young(), "invariant");
1879   assert(hr->young_index_in_cset() > -1, "should have already been set");
1880   assert(_inc_cset_build_state == Active, "Precondition");
1881 
1882   // We need to clear and set the cached recorded/cached collection set
1883   // information in the heap region here (before the region gets added
1884   // to the collection set). An individual heap region's cached values
1885   // are calculated, aggregated with the policy collection set info,
1886   // and cached in the heap region here (initially) and (subsequently)
1887   // by the Young List sampling code.
1888 
1889   size_t rs_length = hr->rem_set()->occupied();
1890   add_to_incremental_cset_info(hr, rs_length);
1891 
1892   assert(!hr->in_collection_set(), "invariant");
1893   _g1->register_young_region_with_cset(hr);
1894   assert(hr->next_in_collection_set() == NULL, "invariant");
1895 }
1896 
1897 // Add the region at the RHS of the incremental cset
1898 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1899   // We should only ever be appending survivors at the end of a pause
1900   assert(hr->is_survivor(), "Logic");
1901 
1902   // Do the 'common' stuff
1903   add_region_to_incremental_cset_common(hr);
1904 
1905   // Now add the region at the right hand side
1906   if (_inc_cset_tail == NULL) {
1907     assert(_inc_cset_head == NULL, "invariant");
1908     _inc_cset_head = hr;
1909   } else {
1910     _inc_cset_tail->set_next_in_collection_set(hr);
1911   }
1912   _inc_cset_tail = hr;
1913 }
1914 
1915 // Add the region to the LHS of the incremental cset
1916 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1917   // Survivors should be added to the RHS at the end of a pause
1918   assert(hr->is_eden(), "Logic");
1919 
1920   // Do the 'common' stuff
1921   add_region_to_incremental_cset_common(hr);
1922 
1923   // Add the region at the left hand side
1924   hr->set_next_in_collection_set(_inc_cset_head);
1925   if (_inc_cset_head == NULL) {
1926     assert(_inc_cset_tail == NULL, "Invariant");
1927     _inc_cset_tail = hr;
1928   }
1929   _inc_cset_head = hr;
1930 }
1931 
1932 #ifndef PRODUCT
1933 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1934   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1935 
1936   st->print_cr("\nCollection_set:");
1937   HeapRegion* csr = list_head;
1938   while (csr != NULL) {
1939     HeapRegion* next = csr->next_in_collection_set();
1940     assert(csr->in_collection_set(), "bad CS");
1941     st->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT "N: " PTR_FORMAT ", age: %4d",
1942                  HR_FORMAT_PARAMS(csr),
1943                  p2i(csr->prev_top_at_mark_start()), p2i(csr->next_top_at_mark_start()),
1944                  csr->age_in_surv_rate_group_cond());
1945     csr = next;
1946   }
1947 }
1948 #endif // !PRODUCT
1949 
1950 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) const {
1951   // Returns the given amount of reclaimable bytes (that represents
1952   // the amount of reclaimable space still to be collected) as a
1953   // percentage of the current heap capacity.
1954   size_t capacity_bytes = _g1->capacity();
1955   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1956 }
1957 
1958 void G1CollectorPolicy::maybe_start_marking() {
1959   if (need_to_start_conc_mark("end of GC")) {
1960     // Note: this might have already been set, if during the last
1961     // pause we decided to start a cycle but at the beginning of
1962     // this pause we decided to postpone it. That's OK.
1963     collector_state()->set_initiate_conc_mark_if_possible(true);
1964   }
1965 }
1966 
1967 G1CollectorPolicy::PauseKind G1CollectorPolicy::young_gc_pause_kind() const {
1968   assert(!collector_state()->full_collection(), "must be");
1969   if (collector_state()->during_initial_mark_pause()) {
1970     assert(collector_state()->last_gc_was_young(), "must be");
1971     assert(!collector_state()->last_young_gc(), "must be");
1972     return InitialMarkGC;
1973   } else if (collector_state()->last_young_gc()) {
1974     assert(!collector_state()->during_initial_mark_pause(), "must be");
1975     assert(collector_state()->last_gc_was_young(), "must be");
1976     return LastYoungGC;
1977   } else if (!collector_state()->last_gc_was_young()) {
1978     assert(!collector_state()->during_initial_mark_pause(), "must be");
1979     assert(!collector_state()->last_young_gc(), "must be");
1980     return MixedGC;
1981   } else {
1982     assert(collector_state()->last_gc_was_young(), "must be");
1983     assert(!collector_state()->during_initial_mark_pause(), "must be");
1984     assert(!collector_state()->last_young_gc(), "must be");
1985     return YoungOnlyGC;
1986   }
1987 }
1988 
1989 void G1CollectorPolicy::record_pause(PauseKind kind, double start, double end) {
1990   // Manage the MMU tracker. For some reason it ignores Full GCs.
1991   if (kind != FullGC) {
1992     _mmu_tracker->add_pause(start, end);
1993   }
1994   // Manage the mutator time tracking from initial mark to first mixed gc.
1995   switch (kind) {
1996     case FullGC:
1997       abort_time_to_mixed_tracking();
1998       break;
1999     case Cleanup:
2000     case Remark:
2001     case YoungOnlyGC:
2002     case LastYoungGC:
2003       _initial_mark_to_mixed.add_pause(end - start);
2004       break;
2005     case InitialMarkGC:
2006       _initial_mark_to_mixed.record_initial_mark_end(end);
2007       break;
2008     case MixedGC:
2009       _initial_mark_to_mixed.record_mixed_gc_start(start);
2010       break;
2011     default:
2012       ShouldNotReachHere();
2013   }
2014 }
2015 
2016 void G1CollectorPolicy::abort_time_to_mixed_tracking() {
2017   _initial_mark_to_mixed.reset();
2018 }
2019 
2020 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
2021                                                 const char* false_action_str) const {
2022   if (cset_chooser()->is_empty()) {
2023     log_debug(gc, ergo)("%s (candidate old regions not available)", false_action_str);
2024     return false;
2025   }
2026 
2027   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
2028   size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2029   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2030   double threshold = (double) G1HeapWastePercent;
2031   if (reclaimable_perc <= threshold) {
2032     log_debug(gc, ergo)("%s (reclaimable percentage not over threshold). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2033                         false_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2034     return false;
2035   }
2036   log_debug(gc, ergo)("%s (candidate old regions available). candidate old regions: %u reclaimable: " SIZE_FORMAT " (%1.2f) threshold: " UINTX_FORMAT,
2037                       true_action_str, cset_chooser()->remaining_regions(), reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2038   return true;
2039 }
2040 
2041 uint G1CollectorPolicy::calc_min_old_cset_length() const {
2042   // The min old CSet region bound is based on the maximum desired
2043   // number of mixed GCs after a cycle. I.e., even if some old regions
2044   // look expensive, we should add them to the CSet anyway to make
2045   // sure we go through the available old regions in no more than the
2046   // maximum desired number of mixed GCs.
2047   //
2048   // The calculation is based on the number of marked regions we added
2049   // to the CSet chooser in the first place, not how many remain, so
2050   // that the result is the same during all mixed GCs that follow a cycle.
2051 
2052   const size_t region_num = (size_t) cset_chooser()->length();
2053   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
2054   size_t result = region_num / gc_num;
2055   // emulate ceiling
2056   if (result * gc_num < region_num) {
2057     result += 1;
2058   }
2059   return (uint) result;
2060 }
2061 
2062 uint G1CollectorPolicy::calc_max_old_cset_length() const {
2063   // The max old CSet region bound is based on the threshold expressed
2064   // as a percentage of the heap size. I.e., it should bound the
2065   // number of old regions added to the CSet irrespective of how many
2066   // of them are available.
2067 
2068   const G1CollectedHeap* g1h = G1CollectedHeap::heap();
2069   const size_t region_num = g1h->num_regions();
2070   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
2071   size_t result = region_num * perc / 100;
2072   // emulate ceiling
2073   if (100 * result < region_num * perc) {
2074     result += 1;
2075   }
2076   return (uint) result;
2077 }
2078 
2079 
2080 double G1CollectorPolicy::finalize_young_cset_part(double target_pause_time_ms) {
2081   double young_start_time_sec = os::elapsedTime();
2082 
2083   YoungList* young_list = _g1->young_list();
2084   finalize_incremental_cset_building();
2085 
2086   guarantee(target_pause_time_ms > 0.0,
2087             "target_pause_time_ms = %1.6lf should be positive", target_pause_time_ms);
2088   guarantee(_collection_set == NULL, "Precondition");
2089 
2090   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
2091   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
2092 
2093   log_trace(gc, ergo, cset)("Start choosing CSet. pending cards: " SIZE_FORMAT " predicted base time: %1.2fms remaining time: %1.2fms target pause time: %1.2fms",
2094                             _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
2095 
2096   collector_state()->set_last_gc_was_young(collector_state()->gcs_are_young());
2097 
2098   // The young list is laid with the survivor regions from the previous
2099   // pause are appended to the RHS of the young list, i.e.
2100   //   [Newly Young Regions ++ Survivors from last pause].
2101 
2102   uint survivor_region_length = young_list->survivor_length();
2103   uint eden_region_length = young_list->eden_length();
2104   init_cset_region_lengths(eden_region_length, survivor_region_length);
2105 
2106   HeapRegion* hr = young_list->first_survivor_region();
2107   while (hr != NULL) {
2108     assert(hr->is_survivor(), "badly formed young list");
2109     // There is a convention that all the young regions in the CSet
2110     // are tagged as "eden", so we do this for the survivors here. We
2111     // use the special set_eden_pre_gc() as it doesn't check that the
2112     // region is free (which is not the case here).
2113     hr->set_eden_pre_gc();
2114     hr = hr->get_next_young_region();
2115   }
2116 
2117   // Clear the fields that point to the survivor list - they are all young now.
2118   young_list->clear_survivors();
2119 
2120   _collection_set = _inc_cset_head;
2121   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
2122   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
2123 
2124   log_trace(gc, ergo, cset)("Add young regions to CSet. eden: %u regions, survivors: %u regions, predicted young region time: %1.2fms, target pause time: %1.2fms",
2125                             eden_region_length, survivor_region_length, _inc_cset_predicted_elapsed_time_ms, target_pause_time_ms);
2126 
2127   // The number of recorded young regions is the incremental
2128   // collection set's current size
2129   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
2130 
2131   double young_end_time_sec = os::elapsedTime();
2132   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
2133 
2134   return time_remaining_ms;
2135 }
2136 
2137 void G1CollectorPolicy::finalize_old_cset_part(double time_remaining_ms) {
2138   double non_young_start_time_sec = os::elapsedTime();
2139   double predicted_old_time_ms = 0.0;
2140 
2141 
2142   if (!collector_state()->gcs_are_young()) {
2143     cset_chooser()->verify();
2144     const uint min_old_cset_length = calc_min_old_cset_length();
2145     const uint max_old_cset_length = calc_max_old_cset_length();
2146 
2147     uint expensive_region_num = 0;
2148     bool check_time_remaining = adaptive_young_list_length();
2149 
2150     HeapRegion* hr = cset_chooser()->peek();
2151     while (hr != NULL) {
2152       if (old_cset_region_length() >= max_old_cset_length) {
2153         // Added maximum number of old regions to the CSet.
2154         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached max). old %u regions, max %u regions",
2155                                   old_cset_region_length(), max_old_cset_length);
2156         break;
2157       }
2158 
2159 
2160       // Stop adding regions if the remaining reclaimable space is
2161       // not above G1HeapWastePercent.
2162       size_t reclaimable_bytes = cset_chooser()->remaining_reclaimable_bytes();
2163       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
2164       double threshold = (double) G1HeapWastePercent;
2165       if (reclaimable_perc <= threshold) {
2166         // We've added enough old regions that the amount of uncollected
2167         // reclaimable space is at or below the waste threshold. Stop
2168         // adding old regions to the CSet.
2169         log_debug(gc, ergo, cset)("Finish adding old regions to CSet (reclaimable percentage not over threshold). "
2170                                   "old %u regions, max %u regions, reclaimable: " SIZE_FORMAT "B (%1.2f%%) threshold: " UINTX_FORMAT "%%",
2171                                   old_cset_region_length(), max_old_cset_length, reclaimable_bytes, reclaimable_perc, G1HeapWastePercent);
2172         break;
2173       }
2174 
2175       double predicted_time_ms = predict_region_elapsed_time_ms(hr, collector_state()->gcs_are_young());
2176       if (check_time_remaining) {
2177         if (predicted_time_ms > time_remaining_ms) {
2178           // Too expensive for the current CSet.
2179 
2180           if (old_cset_region_length() >= min_old_cset_length) {
2181             // We have added the minimum number of old regions to the CSet,
2182             // we are done with this CSet.
2183             log_debug(gc, ergo, cset)("Finish adding old regions to CSet (predicted time is too high). "
2184                                       "predicted time: %1.2fms, remaining time: %1.2fms old %u regions, min %u regions",
2185                                       predicted_time_ms, time_remaining_ms, old_cset_region_length(), min_old_cset_length);
2186             break;
2187           }
2188 
2189           // We'll add it anyway given that we haven't reached the
2190           // minimum number of old regions.
2191           expensive_region_num += 1;
2192         }
2193       } else {
2194         if (old_cset_region_length() >= min_old_cset_length) {
2195           // In the non-auto-tuning case, we'll finish adding regions
2196           // to the CSet if we reach the minimum.
2197 
2198           log_debug(gc, ergo, cset)("Finish adding old regions to CSet (old CSet region num reached min). old %u regions, min %u regions",
2199                                     old_cset_region_length(), min_old_cset_length);
2200           break;
2201         }
2202       }
2203 
2204       // We will add this region to the CSet.
2205       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2206       predicted_old_time_ms += predicted_time_ms;
2207       cset_chooser()->pop(); // already have region via peek()
2208       _g1->old_set_remove(hr);
2209       add_old_region_to_cset(hr);
2210 
2211       hr = cset_chooser()->peek();
2212     }
2213     if (hr == NULL) {
2214       log_debug(gc, ergo, cset)("Finish adding old regions to CSet (candidate old regions not available)");
2215     }
2216 
2217     if (expensive_region_num > 0) {
2218       // We print the information once here at the end, predicated on
2219       // whether we added any apparently expensive regions or not, to
2220       // avoid generating output per region.
2221       log_debug(gc, ergo, cset)("Added expensive regions to CSet (old CSet region num not reached min)."
2222                                 "old: %u regions, expensive: %u regions, min: %u regions, remaining time: %1.2fms",
2223                                 old_cset_region_length(), expensive_region_num, min_old_cset_length, time_remaining_ms);
2224     }
2225 
2226     cset_chooser()->verify();
2227   }
2228 
2229   stop_incremental_cset_building();
2230 
2231   log_debug(gc, ergo, cset)("Finish choosing CSet. old: %u regions, predicted old region time: %1.2fms, time remaining: %1.2f",
2232                             old_cset_region_length(), predicted_old_time_ms, time_remaining_ms);
2233 
2234   double non_young_end_time_sec = os::elapsedTime();
2235   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2236 }