1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/classLoaderData.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  31 #include "gc_implementation/concurrentMarkSweep/cmsCollectorPolicy.hpp"
  32 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  33 #include "gc_implementation/concurrentMarkSweep/cmsOopClosures.inline.hpp"
  34 #include "gc_implementation/concurrentMarkSweep/compactibleFreeListSpace.hpp"
  35 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepGeneration.inline.hpp"
  36 #include "gc_implementation/concurrentMarkSweep/concurrentMarkSweepThread.hpp"
  37 #include "gc_implementation/concurrentMarkSweep/vmCMSOperations.hpp"
  38 #include "gc_implementation/parNew/parNewGeneration.hpp"
  39 #include "gc_implementation/shared/collectorCounters.hpp"
  40 #include "gc_implementation/shared/gcTimer.hpp"
  41 #include "gc_implementation/shared/gcTrace.hpp"
  42 #include "gc_implementation/shared/gcTraceTime.hpp"
  43 #include "gc_implementation/shared/isGCActiveMark.hpp"
  44 #include "gc_interface/collectedHeap.inline.hpp"
  45 #include "memory/allocation.hpp"
  46 #include "memory/cardTableRS.hpp"
  47 #include "memory/collectorPolicy.hpp"
  48 #include "memory/gcLocker.inline.hpp"
  49 #include "memory/genCollectedHeap.hpp"
  50 #include "memory/genMarkSweep.hpp"
  51 #include "memory/genOopClosures.inline.hpp"
  52 #include "memory/iterator.hpp"
  53 #include "memory/padded.hpp"
  54 #include "memory/referencePolicy.hpp"
  55 #include "memory/resourceArea.hpp"
  56 #include "memory/tenuredGeneration.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "prims/jvmtiExport.hpp"
  59 #include "runtime/globals_extension.hpp"
  60 #include "runtime/handles.inline.hpp"
  61 #include "runtime/java.hpp"
  62 #include "runtime/vmThread.hpp"
  63 #include "services/memoryService.hpp"
  64 #include "services/runtimeService.hpp"
  65 
  66 // statics
  67 CMSCollector* ConcurrentMarkSweepGeneration::_collector = NULL;
  68 bool CMSCollector::_full_gc_requested = false;
  69 GCCause::Cause CMSCollector::_full_gc_cause = GCCause::_no_gc;
  70 
  71 //////////////////////////////////////////////////////////////////
  72 // In support of CMS/VM thread synchronization
  73 //////////////////////////////////////////////////////////////////
  74 // We split use of the CGC_lock into 2 "levels".
  75 // The low-level locking is of the usual CGC_lock monitor. We introduce
  76 // a higher level "token" (hereafter "CMS token") built on top of the
  77 // low level monitor (hereafter "CGC lock").
  78 // The token-passing protocol gives priority to the VM thread. The
  79 // CMS-lock doesn't provide any fairness guarantees, but clients
  80 // should ensure that it is only held for very short, bounded
  81 // durations.
  82 //
  83 // When either of the CMS thread or the VM thread is involved in
  84 // collection operations during which it does not want the other
  85 // thread to interfere, it obtains the CMS token.
  86 //
  87 // If either thread tries to get the token while the other has
  88 // it, that thread waits. However, if the VM thread and CMS thread
  89 // both want the token, then the VM thread gets priority while the
  90 // CMS thread waits. This ensures, for instance, that the "concurrent"
  91 // phases of the CMS thread's work do not block out the VM thread
  92 // for long periods of time as the CMS thread continues to hog
  93 // the token. (See bug 4616232).
  94 //
  95 // The baton-passing functions are, however, controlled by the
  96 // flags _foregroundGCShouldWait and _foregroundGCIsActive,
  97 // and here the low-level CMS lock, not the high level token,
  98 // ensures mutual exclusion.
  99 //
 100 // Two important conditions that we have to satisfy:
 101 // 1. if a thread does a low-level wait on the CMS lock, then it
 102 //    relinquishes the CMS token if it were holding that token
 103 //    when it acquired the low-level CMS lock.
 104 // 2. any low-level notifications on the low-level lock
 105 //    should only be sent when a thread has relinquished the token.
 106 //
 107 // In the absence of either property, we'd have potential deadlock.
 108 //
 109 // We protect each of the CMS (concurrent and sequential) phases
 110 // with the CMS _token_, not the CMS _lock_.
 111 //
 112 // The only code protected by CMS lock is the token acquisition code
 113 // itself, see ConcurrentMarkSweepThread::[de]synchronize(), and the
 114 // baton-passing code.
 115 //
 116 // Unfortunately, i couldn't come up with a good abstraction to factor and
 117 // hide the naked CGC_lock manipulation in the baton-passing code
 118 // further below. That's something we should try to do. Also, the proof
 119 // of correctness of this 2-level locking scheme is far from obvious,
 120 // and potentially quite slippery. We have an uneasy supsicion, for instance,
 121 // that there may be a theoretical possibility of delay/starvation in the
 122 // low-level lock/wait/notify scheme used for the baton-passing because of
 123 // potential intereference with the priority scheme embodied in the
 124 // CMS-token-passing protocol. See related comments at a CGC_lock->wait()
 125 // invocation further below and marked with "XXX 20011219YSR".
 126 // Indeed, as we note elsewhere, this may become yet more slippery
 127 // in the presence of multiple CMS and/or multiple VM threads. XXX
 128 
 129 class CMSTokenSync: public StackObj {
 130  private:
 131   bool _is_cms_thread;
 132  public:
 133   CMSTokenSync(bool is_cms_thread):
 134     _is_cms_thread(is_cms_thread) {
 135     assert(is_cms_thread == Thread::current()->is_ConcurrentGC_thread(),
 136            "Incorrect argument to constructor");
 137     ConcurrentMarkSweepThread::synchronize(_is_cms_thread);
 138   }
 139 
 140   ~CMSTokenSync() {
 141     assert(_is_cms_thread ?
 142              ConcurrentMarkSweepThread::cms_thread_has_cms_token() :
 143              ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
 144           "Incorrect state");
 145     ConcurrentMarkSweepThread::desynchronize(_is_cms_thread);
 146   }
 147 };
 148 
 149 // Convenience class that does a CMSTokenSync, and then acquires
 150 // upto three locks.
 151 class CMSTokenSyncWithLocks: public CMSTokenSync {
 152  private:
 153   // Note: locks are acquired in textual declaration order
 154   // and released in the opposite order
 155   MutexLockerEx _locker1, _locker2, _locker3;
 156  public:
 157   CMSTokenSyncWithLocks(bool is_cms_thread, Mutex* mutex1,
 158                         Mutex* mutex2 = NULL, Mutex* mutex3 = NULL):
 159     CMSTokenSync(is_cms_thread),
 160     _locker1(mutex1, Mutex::_no_safepoint_check_flag),
 161     _locker2(mutex2, Mutex::_no_safepoint_check_flag),
 162     _locker3(mutex3, Mutex::_no_safepoint_check_flag)
 163   { }
 164 };
 165 
 166 
 167 // Wrapper class to temporarily disable icms during a foreground cms collection.
 168 class ICMSDisabler: public StackObj {
 169  public:
 170   // The ctor disables icms and wakes up the thread so it notices the change;
 171   // the dtor re-enables icms.  Note that the CMSCollector methods will check
 172   // CMSIncrementalMode.
 173   ICMSDisabler()  { CMSCollector::disable_icms(); CMSCollector::start_icms(); }
 174   ~ICMSDisabler() { CMSCollector::enable_icms(); }
 175 };
 176 
 177 //////////////////////////////////////////////////////////////////
 178 //  Concurrent Mark-Sweep Generation /////////////////////////////
 179 //////////////////////////////////////////////////////////////////
 180 
 181 NOT_PRODUCT(CompactibleFreeListSpace* debug_cms_space;)
 182 
 183 // This struct contains per-thread things necessary to support parallel
 184 // young-gen collection.
 185 class CMSParGCThreadState: public CHeapObj<mtGC> {
 186  public:
 187   CFLS_LAB lab;
 188   PromotionInfo promo;
 189 
 190   // Constructor.
 191   CMSParGCThreadState(CompactibleFreeListSpace* cfls) : lab(cfls) {
 192     promo.setSpace(cfls);
 193   }
 194 };
 195 
 196 ConcurrentMarkSweepGeneration::ConcurrentMarkSweepGeneration(
 197      ReservedSpace rs, size_t initial_byte_size, int level,
 198      CardTableRS* ct, bool use_adaptive_freelists,
 199      FreeBlockDictionary<FreeChunk>::DictionaryChoice dictionaryChoice) :
 200   CardGeneration(rs, initial_byte_size, level, ct),
 201   _dilatation_factor(((double)MinChunkSize)/((double)(CollectedHeap::min_fill_size()))),
 202   _debug_collection_type(Concurrent_collection_type),
 203   _did_compact(false)
 204 {
 205   HeapWord* bottom = (HeapWord*) _virtual_space.low();
 206   HeapWord* end    = (HeapWord*) _virtual_space.high();
 207 
 208   _direct_allocated_words = 0;
 209   NOT_PRODUCT(
 210     _numObjectsPromoted = 0;
 211     _numWordsPromoted = 0;
 212     _numObjectsAllocated = 0;
 213     _numWordsAllocated = 0;
 214   )
 215 
 216   _cmsSpace = new CompactibleFreeListSpace(_bts, MemRegion(bottom, end),
 217                                            use_adaptive_freelists,
 218                                            dictionaryChoice);
 219   NOT_PRODUCT(debug_cms_space = _cmsSpace;)
 220   if (_cmsSpace == NULL) {
 221     vm_exit_during_initialization(
 222       "CompactibleFreeListSpace allocation failure");
 223   }
 224   _cmsSpace->_gen = this;
 225 
 226   _gc_stats = new CMSGCStats();
 227 
 228   // Verify the assumption that FreeChunk::_prev and OopDesc::_klass
 229   // offsets match. The ability to tell free chunks from objects
 230   // depends on this property.
 231   debug_only(
 232     FreeChunk* junk = NULL;
 233     assert(UseCompressedClassPointers ||
 234            junk->prev_addr() == (void*)(oop(junk)->klass_addr()),
 235            "Offset of FreeChunk::_prev within FreeChunk must match"
 236            "  that of OopDesc::_klass within OopDesc");
 237   )
 238   if (CollectedHeap::use_parallel_gc_threads()) {
 239     typedef CMSParGCThreadState* CMSParGCThreadStatePtr;
 240     _par_gc_thread_states =
 241       NEW_C_HEAP_ARRAY(CMSParGCThreadStatePtr, ParallelGCThreads, mtGC);
 242     if (_par_gc_thread_states == NULL) {
 243       vm_exit_during_initialization("Could not allocate par gc structs");
 244     }
 245     for (uint i = 0; i < ParallelGCThreads; i++) {
 246       _par_gc_thread_states[i] = new CMSParGCThreadState(cmsSpace());
 247       if (_par_gc_thread_states[i] == NULL) {
 248         vm_exit_during_initialization("Could not allocate par gc structs");
 249       }
 250     }
 251   } else {
 252     _par_gc_thread_states = NULL;
 253   }
 254   _incremental_collection_failed = false;
 255   // The "dilatation_factor" is the expansion that can occur on
 256   // account of the fact that the minimum object size in the CMS
 257   // generation may be larger than that in, say, a contiguous young
 258   //  generation.
 259   // Ideally, in the calculation below, we'd compute the dilatation
 260   // factor as: MinChunkSize/(promoting_gen's min object size)
 261   // Since we do not have such a general query interface for the
 262   // promoting generation, we'll instead just use the mimimum
 263   // object size (which today is a header's worth of space);
 264   // note that all arithmetic is in units of HeapWords.
 265   assert(MinChunkSize >= CollectedHeap::min_fill_size(), "just checking");
 266   assert(_dilatation_factor >= 1.0, "from previous assert");
 267 }
 268 
 269 
 270 // The field "_initiating_occupancy" represents the occupancy percentage
 271 // at which we trigger a new collection cycle.  Unless explicitly specified
 272 // via CMSInitiatingOccupancyFraction (argument "io" below), it
 273 // is calculated by:
 274 //
 275 //   Let "f" be MinHeapFreeRatio in
 276 //
 277 //    _intiating_occupancy = 100-f +
 278 //                           f * (CMSTriggerRatio/100)
 279 //   where CMSTriggerRatio is the argument "tr" below.
 280 //
 281 // That is, if we assume the heap is at its desired maximum occupancy at the
 282 // end of a collection, we let CMSTriggerRatio of the (purported) free
 283 // space be allocated before initiating a new collection cycle.
 284 //
 285 void ConcurrentMarkSweepGeneration::init_initiating_occupancy(intx io, uintx tr) {
 286   assert(io <= 100 && tr <= 100, "Check the arguments");
 287   if (io >= 0) {
 288     _initiating_occupancy = (double)io / 100.0;
 289   } else {
 290     _initiating_occupancy = ((100 - MinHeapFreeRatio) +
 291                              (double)(tr * MinHeapFreeRatio) / 100.0)
 292                             / 100.0;
 293   }
 294 }
 295 
 296 void ConcurrentMarkSweepGeneration::ref_processor_init() {
 297   assert(collector() != NULL, "no collector");
 298   collector()->ref_processor_init();
 299 }
 300 
 301 void CMSCollector::ref_processor_init() {
 302   if (_ref_processor == NULL) {
 303     // Allocate and initialize a reference processor
 304     _ref_processor =
 305       new ReferenceProcessor(_span,                               // span
 306                              (ParallelGCThreads > 1) && ParallelRefProcEnabled, // mt processing
 307                              (int) ParallelGCThreads,             // mt processing degree
 308                              _cmsGen->refs_discovery_is_mt(),     // mt discovery
 309                              (int) MAX2(ConcGCThreads, ParallelGCThreads), // mt discovery degree
 310                              _cmsGen->refs_discovery_is_atomic(), // discovery is not atomic
 311                              &_is_alive_closure,                  // closure for liveness info
 312                              false);                              // next field updates do not need write barrier
 313     // Initialize the _ref_processor field of CMSGen
 314     _cmsGen->set_ref_processor(_ref_processor);
 315 
 316   }
 317 }
 318 
 319 CMSAdaptiveSizePolicy* CMSCollector::size_policy() {
 320   GenCollectedHeap* gch = GenCollectedHeap::heap();
 321   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
 322     "Wrong type of heap");
 323   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
 324     gch->gen_policy()->size_policy();
 325   assert(sp->is_gc_cms_adaptive_size_policy(),
 326     "Wrong type of size policy");
 327   return sp;
 328 }
 329 
 330 CMSGCAdaptivePolicyCounters* CMSCollector::gc_adaptive_policy_counters() {
 331   CMSGCAdaptivePolicyCounters* results =
 332     (CMSGCAdaptivePolicyCounters*) collector_policy()->counters();
 333   assert(
 334     results->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
 335     "Wrong gc policy counter kind");
 336   return results;
 337 }
 338 
 339 
 340 void ConcurrentMarkSweepGeneration::initialize_performance_counters() {
 341 
 342   const char* gen_name = "old";
 343 
 344   // Generation Counters - generation 1, 1 subspace
 345   _gen_counters = new GenerationCounters(gen_name, 1, 1, &_virtual_space);
 346 
 347   _space_counters = new GSpaceCounters(gen_name, 0,
 348                                        _virtual_space.reserved_size(),
 349                                        this, _gen_counters);
 350 }
 351 
 352 CMSStats::CMSStats(ConcurrentMarkSweepGeneration* cms_gen, unsigned int alpha):
 353   _cms_gen(cms_gen)
 354 {
 355   assert(alpha <= 100, "bad value");
 356   _saved_alpha = alpha;
 357 
 358   // Initialize the alphas to the bootstrap value of 100.
 359   _gc0_alpha = _cms_alpha = 100;
 360 
 361   _cms_begin_time.update();
 362   _cms_end_time.update();
 363 
 364   _gc0_duration = 0.0;
 365   _gc0_period = 0.0;
 366   _gc0_promoted = 0;
 367 
 368   _cms_duration = 0.0;
 369   _cms_period = 0.0;
 370   _cms_allocated = 0;
 371 
 372   _cms_used_at_gc0_begin = 0;
 373   _cms_used_at_gc0_end = 0;
 374   _allow_duty_cycle_reduction = false;
 375   _valid_bits = 0;
 376   _icms_duty_cycle = CMSIncrementalDutyCycle;
 377 }
 378 
 379 double CMSStats::cms_free_adjustment_factor(size_t free) const {
 380   // TBD: CR 6909490
 381   return 1.0;
 382 }
 383 
 384 void CMSStats::adjust_cms_free_adjustment_factor(bool fail, size_t free) {
 385 }
 386 
 387 // If promotion failure handling is on use
 388 // the padded average size of the promotion for each
 389 // young generation collection.
 390 double CMSStats::time_until_cms_gen_full() const {
 391   size_t cms_free = _cms_gen->cmsSpace()->free();
 392   GenCollectedHeap* gch = GenCollectedHeap::heap();
 393   size_t expected_promotion = MIN2(gch->get_gen(0)->capacity(),
 394                                    (size_t) _cms_gen->gc_stats()->avg_promoted()->padded_average());
 395   if (cms_free > expected_promotion) {
 396     // Start a cms collection if there isn't enough space to promote
 397     // for the next minor collection.  Use the padded average as
 398     // a safety factor.
 399     cms_free -= expected_promotion;
 400 
 401     // Adjust by the safety factor.
 402     double cms_free_dbl = (double)cms_free;
 403     double cms_adjustment = (100.0 - CMSIncrementalSafetyFactor)/100.0;
 404     // Apply a further correction factor which tries to adjust
 405     // for recent occurance of concurrent mode failures.
 406     cms_adjustment = cms_adjustment * cms_free_adjustment_factor(cms_free);
 407     cms_free_dbl = cms_free_dbl * cms_adjustment;
 408 
 409     if (PrintGCDetails && Verbose) {
 410       gclog_or_tty->print_cr("CMSStats::time_until_cms_gen_full: cms_free "
 411         SIZE_FORMAT " expected_promotion " SIZE_FORMAT,
 412         cms_free, expected_promotion);
 413       gclog_or_tty->print_cr("  cms_free_dbl %f cms_consumption_rate %f",
 414         cms_free_dbl, cms_consumption_rate() + 1.0);
 415     }
 416     // Add 1 in case the consumption rate goes to zero.
 417     return cms_free_dbl / (cms_consumption_rate() + 1.0);
 418   }
 419   return 0.0;
 420 }
 421 
 422 // Compare the duration of the cms collection to the
 423 // time remaining before the cms generation is empty.
 424 // Note that the time from the start of the cms collection
 425 // to the start of the cms sweep (less than the total
 426 // duration of the cms collection) can be used.  This
 427 // has been tried and some applications experienced
 428 // promotion failures early in execution.  This was
 429 // possibly because the averages were not accurate
 430 // enough at the beginning.
 431 double CMSStats::time_until_cms_start() const {
 432   // We add "gc0_period" to the "work" calculation
 433   // below because this query is done (mostly) at the
 434   // end of a scavenge, so we need to conservatively
 435   // account for that much possible delay
 436   // in the query so as to avoid concurrent mode failures
 437   // due to starting the collection just a wee bit too
 438   // late.
 439   double work = cms_duration() + gc0_period();
 440   double deadline = time_until_cms_gen_full();
 441   // If a concurrent mode failure occurred recently, we want to be
 442   // more conservative and halve our expected time_until_cms_gen_full()
 443   if (work > deadline) {
 444     if (Verbose && PrintGCDetails) {
 445       gclog_or_tty->print(
 446         " CMSCollector: collect because of anticipated promotion "
 447         "before full %3.7f + %3.7f > %3.7f ", cms_duration(),
 448         gc0_period(), time_until_cms_gen_full());
 449     }
 450     return 0.0;
 451   }
 452   return work - deadline;
 453 }
 454 
 455 // Return a duty cycle based on old_duty_cycle and new_duty_cycle, limiting the
 456 // amount of change to prevent wild oscillation.
 457 unsigned int CMSStats::icms_damped_duty_cycle(unsigned int old_duty_cycle,
 458                                               unsigned int new_duty_cycle) {
 459   assert(old_duty_cycle <= 100, "bad input value");
 460   assert(new_duty_cycle <= 100, "bad input value");
 461 
 462   // Note:  use subtraction with caution since it may underflow (values are
 463   // unsigned).  Addition is safe since we're in the range 0-100.
 464   unsigned int damped_duty_cycle = new_duty_cycle;
 465   if (new_duty_cycle < old_duty_cycle) {
 466     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 5U);
 467     if (new_duty_cycle + largest_delta < old_duty_cycle) {
 468       damped_duty_cycle = old_duty_cycle - largest_delta;
 469     }
 470   } else if (new_duty_cycle > old_duty_cycle) {
 471     const unsigned int largest_delta = MAX2(old_duty_cycle / 4, 15U);
 472     if (new_duty_cycle > old_duty_cycle + largest_delta) {
 473       damped_duty_cycle = MIN2(old_duty_cycle + largest_delta, 100U);
 474     }
 475   }
 476   assert(damped_duty_cycle <= 100, "invalid duty cycle computed");
 477 
 478   if (CMSTraceIncrementalPacing) {
 479     gclog_or_tty->print(" [icms_damped_duty_cycle(%d,%d) = %d] ",
 480                            old_duty_cycle, new_duty_cycle, damped_duty_cycle);
 481   }
 482   return damped_duty_cycle;
 483 }
 484 
 485 unsigned int CMSStats::icms_update_duty_cycle_impl() {
 486   assert(CMSIncrementalPacing && valid(),
 487          "should be handled in icms_update_duty_cycle()");
 488 
 489   double cms_time_so_far = cms_timer().seconds();
 490   double scaled_duration = cms_duration_per_mb() * _cms_used_at_gc0_end / M;
 491   double scaled_duration_remaining = fabsd(scaled_duration - cms_time_so_far);
 492 
 493   // Avoid division by 0.
 494   double time_until_full = MAX2(time_until_cms_gen_full(), 0.01);
 495   double duty_cycle_dbl = 100.0 * scaled_duration_remaining / time_until_full;
 496 
 497   unsigned int new_duty_cycle = MIN2((unsigned int)duty_cycle_dbl, 100U);
 498   if (new_duty_cycle > _icms_duty_cycle) {
 499     // Avoid very small duty cycles (1 or 2); 0 is allowed.
 500     if (new_duty_cycle > 2) {
 501       _icms_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle,
 502                                                 new_duty_cycle);
 503     }
 504   } else if (_allow_duty_cycle_reduction) {
 505     // The duty cycle is reduced only once per cms cycle (see record_cms_end()).
 506     new_duty_cycle = icms_damped_duty_cycle(_icms_duty_cycle, new_duty_cycle);
 507     // Respect the minimum duty cycle.
 508     unsigned int min_duty_cycle = (unsigned int)CMSIncrementalDutyCycleMin;
 509     _icms_duty_cycle = MAX2(new_duty_cycle, min_duty_cycle);
 510   }
 511 
 512   if (PrintGCDetails || CMSTraceIncrementalPacing) {
 513     gclog_or_tty->print(" icms_dc=%d ", _icms_duty_cycle);
 514   }
 515 
 516   _allow_duty_cycle_reduction = false;
 517   return _icms_duty_cycle;
 518 }
 519 
 520 #ifndef PRODUCT
 521 void CMSStats::print_on(outputStream *st) const {
 522   st->print(" gc0_alpha=%d,cms_alpha=%d", _gc0_alpha, _cms_alpha);
 523   st->print(",gc0_dur=%g,gc0_per=%g,gc0_promo=" SIZE_FORMAT,
 524                gc0_duration(), gc0_period(), gc0_promoted());
 525   st->print(",cms_dur=%g,cms_dur_per_mb=%g,cms_per=%g,cms_alloc=" SIZE_FORMAT,
 526             cms_duration(), cms_duration_per_mb(),
 527             cms_period(), cms_allocated());
 528   st->print(",cms_since_beg=%g,cms_since_end=%g",
 529             cms_time_since_begin(), cms_time_since_end());
 530   st->print(",cms_used_beg=" SIZE_FORMAT ",cms_used_end=" SIZE_FORMAT,
 531             _cms_used_at_gc0_begin, _cms_used_at_gc0_end);
 532   if (CMSIncrementalMode) {
 533     st->print(",dc=%d", icms_duty_cycle());
 534   }
 535 
 536   if (valid()) {
 537     st->print(",promo_rate=%g,cms_alloc_rate=%g",
 538               promotion_rate(), cms_allocation_rate());
 539     st->print(",cms_consumption_rate=%g,time_until_full=%g",
 540               cms_consumption_rate(), time_until_cms_gen_full());
 541   }
 542   st->print(" ");
 543 }
 544 #endif // #ifndef PRODUCT
 545 
 546 CMSCollector::CollectorState CMSCollector::_collectorState =
 547                              CMSCollector::Idling;
 548 bool CMSCollector::_foregroundGCIsActive = false;
 549 bool CMSCollector::_foregroundGCShouldWait = false;
 550 
 551 CMSCollector::CMSCollector(ConcurrentMarkSweepGeneration* cmsGen,
 552                            CardTableRS*                   ct,
 553                            ConcurrentMarkSweepPolicy*     cp):
 554   _cmsGen(cmsGen),
 555   _ct(ct),
 556   _ref_processor(NULL),    // will be set later
 557   _conc_workers(NULL),     // may be set later
 558   _abort_preclean(false),
 559   _start_sampling(false),
 560   _between_prologue_and_epilogue(false),
 561   _markBitMap(0, Mutex::leaf + 1, "CMS_markBitMap_lock"),
 562   _modUnionTable((CardTableModRefBS::card_shift - LogHeapWordSize),
 563                  -1 /* lock-free */, "No_lock" /* dummy */),
 564   _modUnionClosure(&_modUnionTable),
 565   _modUnionClosurePar(&_modUnionTable),
 566   // Adjust my span to cover old (cms) gen
 567   _span(cmsGen->reserved()),
 568   // Construct the is_alive_closure with _span & markBitMap
 569   _is_alive_closure(_span, &_markBitMap),
 570   _restart_addr(NULL),
 571   _overflow_list(NULL),
 572   _stats(cmsGen),
 573   _eden_chunk_lock(new Mutex(Mutex::leaf + 1, "CMS_eden_chunk_lock", true)),
 574   _eden_chunk_array(NULL),     // may be set in ctor body
 575   _eden_chunk_capacity(0),     // -- ditto --
 576   _eden_chunk_index(0),        // -- ditto --
 577   _survivor_plab_array(NULL),  // -- ditto --
 578   _survivor_chunk_array(NULL), // -- ditto --
 579   _survivor_chunk_capacity(0), // -- ditto --
 580   _survivor_chunk_index(0),    // -- ditto --
 581   _ser_pmc_preclean_ovflw(0),
 582   _ser_kac_preclean_ovflw(0),
 583   _ser_pmc_remark_ovflw(0),
 584   _par_pmc_remark_ovflw(0),
 585   _ser_kac_ovflw(0),
 586   _par_kac_ovflw(0),
 587 #ifndef PRODUCT
 588   _num_par_pushes(0),
 589 #endif
 590   _collection_count_start(0),
 591   _verifying(false),
 592   _icms_start_limit(NULL),
 593   _icms_stop_limit(NULL),
 594   _verification_mark_bm(0, Mutex::leaf + 1, "CMS_verification_mark_bm_lock"),
 595   _completed_initialization(false),
 596   _collector_policy(cp),
 597   _should_unload_classes(false),
 598   _concurrent_cycles_since_last_unload(0),
 599   _roots_scanning_options(0),
 600   _inter_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 601   _intra_sweep_estimate(CMS_SweepWeight, CMS_SweepPadding),
 602   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) CMSTracer()),
 603   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
 604   _cms_start_registered(false)
 605 {
 606   if (ExplicitGCInvokesConcurrentAndUnloadsClasses) {
 607     ExplicitGCInvokesConcurrent = true;
 608   }
 609   // Now expand the span and allocate the collection support structures
 610   // (MUT, marking bit map etc.) to cover both generations subject to
 611   // collection.
 612 
 613   // For use by dirty card to oop closures.
 614   _cmsGen->cmsSpace()->set_collector(this);
 615 
 616   // Allocate MUT and marking bit map
 617   {
 618     MutexLockerEx x(_markBitMap.lock(), Mutex::_no_safepoint_check_flag);
 619     if (!_markBitMap.allocate(_span)) {
 620       warning("Failed to allocate CMS Bit Map");
 621       return;
 622     }
 623     assert(_markBitMap.covers(_span), "_markBitMap inconsistency?");
 624   }
 625   {
 626     _modUnionTable.allocate(_span);
 627     assert(_modUnionTable.covers(_span), "_modUnionTable inconsistency?");
 628   }
 629 
 630   if (!_markStack.allocate(MarkStackSize)) {
 631     warning("Failed to allocate CMS Marking Stack");
 632     return;
 633   }
 634 
 635   // Support for multi-threaded concurrent phases
 636   if (CMSConcurrentMTEnabled) {
 637     if (FLAG_IS_DEFAULT(ConcGCThreads)) {
 638       // just for now
 639       FLAG_SET_DEFAULT(ConcGCThreads, (ParallelGCThreads + 3)/4);
 640     }
 641     if (ConcGCThreads > 1) {
 642       _conc_workers = new YieldingFlexibleWorkGang("Parallel CMS Threads",
 643                                  ConcGCThreads, true);
 644       if (_conc_workers == NULL) {
 645         warning("GC/CMS: _conc_workers allocation failure: "
 646               "forcing -CMSConcurrentMTEnabled");
 647         CMSConcurrentMTEnabled = false;
 648       } else {
 649         _conc_workers->initialize_workers();
 650       }
 651     } else {
 652       CMSConcurrentMTEnabled = false;
 653     }
 654   }
 655   if (!CMSConcurrentMTEnabled) {
 656     ConcGCThreads = 0;
 657   } else {
 658     // Turn off CMSCleanOnEnter optimization temporarily for
 659     // the MT case where it's not fixed yet; see 6178663.
 660     CMSCleanOnEnter = false;
 661   }
 662   assert((_conc_workers != NULL) == (ConcGCThreads > 1),
 663          "Inconsistency");
 664 
 665   // Parallel task queues; these are shared for the
 666   // concurrent and stop-world phases of CMS, but
 667   // are not shared with parallel scavenge (ParNew).
 668   {
 669     uint i;
 670     uint num_queues = (uint) MAX2(ParallelGCThreads, ConcGCThreads);
 671 
 672     if ((CMSParallelRemarkEnabled || CMSConcurrentMTEnabled
 673          || ParallelRefProcEnabled)
 674         && num_queues > 0) {
 675       _task_queues = new OopTaskQueueSet(num_queues);
 676       if (_task_queues == NULL) {
 677         warning("task_queues allocation failure.");
 678         return;
 679       }
 680       _hash_seed = NEW_C_HEAP_ARRAY(int, num_queues, mtGC);
 681       if (_hash_seed == NULL) {
 682         warning("_hash_seed array allocation failure");
 683         return;
 684       }
 685 
 686       typedef Padded<OopTaskQueue> PaddedOopTaskQueue;
 687       for (i = 0; i < num_queues; i++) {
 688         PaddedOopTaskQueue *q = new PaddedOopTaskQueue();
 689         if (q == NULL) {
 690           warning("work_queue allocation failure.");
 691           return;
 692         }
 693         _task_queues->register_queue(i, q);
 694       }
 695       for (i = 0; i < num_queues; i++) {
 696         _task_queues->queue(i)->initialize();
 697         _hash_seed[i] = 17;  // copied from ParNew
 698       }
 699     }
 700   }
 701 
 702   _cmsGen ->init_initiating_occupancy(CMSInitiatingOccupancyFraction, CMSTriggerRatio);
 703 
 704   // Clip CMSBootstrapOccupancy between 0 and 100.
 705   _bootstrap_occupancy = ((double)CMSBootstrapOccupancy)/(double)100;
 706 
 707   _full_gcs_since_conc_gc = 0;
 708 
 709   // Now tell CMS generations the identity of their collector
 710   ConcurrentMarkSweepGeneration::set_collector(this);
 711 
 712   // Create & start a CMS thread for this CMS collector
 713   _cmsThread = ConcurrentMarkSweepThread::start(this);
 714   assert(cmsThread() != NULL, "CMS Thread should have been created");
 715   assert(cmsThread()->collector() == this,
 716          "CMS Thread should refer to this gen");
 717   assert(CGC_lock != NULL, "Where's the CGC_lock?");
 718 
 719   // Support for parallelizing young gen rescan
 720   GenCollectedHeap* gch = GenCollectedHeap::heap();
 721   _young_gen = gch->prev_gen(_cmsGen);
 722   if (gch->supports_inline_contig_alloc()) {
 723     _top_addr = gch->top_addr();
 724     _end_addr = gch->end_addr();
 725     assert(_young_gen != NULL, "no _young_gen");
 726     _eden_chunk_index = 0;
 727     _eden_chunk_capacity = (_young_gen->max_capacity()+CMSSamplingGrain)/CMSSamplingGrain;
 728     _eden_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, _eden_chunk_capacity, mtGC);
 729     if (_eden_chunk_array == NULL) {
 730       _eden_chunk_capacity = 0;
 731       warning("GC/CMS: _eden_chunk_array allocation failure");
 732     }
 733   }
 734   assert(_eden_chunk_array != NULL || _eden_chunk_capacity == 0, "Error");
 735 
 736   // Support for parallelizing survivor space rescan
 737   if ((CMSParallelRemarkEnabled && CMSParallelSurvivorRemarkEnabled) || CMSParallelInitialMarkEnabled) {
 738     const size_t max_plab_samples =
 739       ((DefNewGeneration*)_young_gen)->max_survivor_size()/MinTLABSize;
 740 
 741     _survivor_plab_array  = NEW_C_HEAP_ARRAY(ChunkArray, ParallelGCThreads, mtGC);
 742     _survivor_chunk_array = NEW_C_HEAP_ARRAY(HeapWord*, 2*max_plab_samples, mtGC);
 743     _cursor               = NEW_C_HEAP_ARRAY(size_t, ParallelGCThreads, mtGC);
 744     if (_survivor_plab_array == NULL || _survivor_chunk_array == NULL
 745         || _cursor == NULL) {
 746       warning("Failed to allocate survivor plab/chunk array");
 747       if (_survivor_plab_array  != NULL) {
 748         FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 749         _survivor_plab_array = NULL;
 750       }
 751       if (_survivor_chunk_array != NULL) {
 752         FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 753         _survivor_chunk_array = NULL;
 754       }
 755       if (_cursor != NULL) {
 756         FREE_C_HEAP_ARRAY(size_t, _cursor, mtGC);
 757         _cursor = NULL;
 758       }
 759     } else {
 760       _survivor_chunk_capacity = 2*max_plab_samples;
 761       for (uint i = 0; i < ParallelGCThreads; i++) {
 762         HeapWord** vec = NEW_C_HEAP_ARRAY(HeapWord*, max_plab_samples, mtGC);
 763         if (vec == NULL) {
 764           warning("Failed to allocate survivor plab array");
 765           for (int j = i; j > 0; j--) {
 766             FREE_C_HEAP_ARRAY(HeapWord*, _survivor_plab_array[j-1].array(), mtGC);
 767           }
 768           FREE_C_HEAP_ARRAY(ChunkArray, _survivor_plab_array, mtGC);
 769           FREE_C_HEAP_ARRAY(HeapWord*, _survivor_chunk_array, mtGC);
 770           _survivor_plab_array = NULL;
 771           _survivor_chunk_array = NULL;
 772           _survivor_chunk_capacity = 0;
 773           break;
 774         } else {
 775           ChunkArray* cur =
 776             ::new (&_survivor_plab_array[i]) ChunkArray(vec,
 777                                                         max_plab_samples);
 778           assert(cur->end() == 0, "Should be 0");
 779           assert(cur->array() == vec, "Should be vec");
 780           assert(cur->capacity() == max_plab_samples, "Error");
 781         }
 782       }
 783     }
 784   }
 785   assert(   (   _survivor_plab_array  != NULL
 786              && _survivor_chunk_array != NULL)
 787          || (   _survivor_chunk_capacity == 0
 788              && _survivor_chunk_index == 0),
 789          "Error");
 790 
 791   // Choose what strong roots should be scanned depending on verification options
 792   if (!CMSClassUnloadingEnabled) {
 793     // If class unloading is disabled we want to include all classes into the root set.
 794     add_root_scanning_option(SharedHeap::SO_AllClasses);
 795   } else {
 796     add_root_scanning_option(SharedHeap::SO_SystemClasses);
 797   }
 798 
 799   NOT_PRODUCT(_overflow_counter = CMSMarkStackOverflowInterval;)
 800   _gc_counters = new CollectorCounters("CMS", 1);
 801   _completed_initialization = true;
 802   _inter_sweep_timer.start();  // start of time
 803 }
 804 
 805 const char* ConcurrentMarkSweepGeneration::name() const {
 806   return "concurrent mark-sweep generation";
 807 }
 808 void ConcurrentMarkSweepGeneration::update_counters() {
 809   if (UsePerfData) {
 810     _space_counters->update_all();
 811     _gen_counters->update_all();
 812   }
 813 }
 814 
 815 // this is an optimized version of update_counters(). it takes the
 816 // used value as a parameter rather than computing it.
 817 //
 818 void ConcurrentMarkSweepGeneration::update_counters(size_t used) {
 819   if (UsePerfData) {
 820     _space_counters->update_used(used);
 821     _space_counters->update_capacity();
 822     _gen_counters->update_all();
 823   }
 824 }
 825 
 826 void ConcurrentMarkSweepGeneration::print() const {
 827   Generation::print();
 828   cmsSpace()->print();
 829 }
 830 
 831 #ifndef PRODUCT
 832 void ConcurrentMarkSweepGeneration::print_statistics() {
 833   cmsSpace()->printFLCensus(0);
 834 }
 835 #endif
 836 
 837 void ConcurrentMarkSweepGeneration::printOccupancy(const char *s) {
 838   GenCollectedHeap* gch = GenCollectedHeap::heap();
 839   if (PrintGCDetails) {
 840     if (Verbose) {
 841       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"("SIZE_FORMAT")]",
 842         level(), short_name(), s, used(), capacity());
 843     } else {
 844       gclog_or_tty->print("[%d %s-%s: "SIZE_FORMAT"K("SIZE_FORMAT"K)]",
 845         level(), short_name(), s, used() / K, capacity() / K);
 846     }
 847   }
 848   if (Verbose) {
 849     gclog_or_tty->print(" "SIZE_FORMAT"("SIZE_FORMAT")",
 850               gch->used(), gch->capacity());
 851   } else {
 852     gclog_or_tty->print(" "SIZE_FORMAT"K("SIZE_FORMAT"K)",
 853               gch->used() / K, gch->capacity() / K);
 854   }
 855 }
 856 
 857 size_t
 858 ConcurrentMarkSweepGeneration::contiguous_available() const {
 859   // dld proposes an improvement in precision here. If the committed
 860   // part of the space ends in a free block we should add that to
 861   // uncommitted size in the calculation below. Will make this
 862   // change later, staying with the approximation below for the
 863   // time being. -- ysr.
 864   return MAX2(_virtual_space.uncommitted_size(), unsafe_max_alloc_nogc());
 865 }
 866 
 867 size_t
 868 ConcurrentMarkSweepGeneration::unsafe_max_alloc_nogc() const {
 869   return _cmsSpace->max_alloc_in_words() * HeapWordSize;
 870 }
 871 
 872 size_t ConcurrentMarkSweepGeneration::max_available() const {
 873   return free() + _virtual_space.uncommitted_size();
 874 }
 875 
 876 bool ConcurrentMarkSweepGeneration::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 877   size_t available = max_available();
 878   size_t av_promo  = (size_t)gc_stats()->avg_promoted()->padded_average();
 879   bool   res = (available >= av_promo) || (available >= max_promotion_in_bytes);
 880   if (Verbose && PrintGCDetails) {
 881     gclog_or_tty->print_cr(
 882       "CMS: promo attempt is%s safe: available("SIZE_FORMAT") %s av_promo("SIZE_FORMAT"),"
 883       "max_promo("SIZE_FORMAT")",
 884       res? "":" not", available, res? ">=":"<",
 885       av_promo, max_promotion_in_bytes);
 886   }
 887   return res;
 888 }
 889 
 890 // At a promotion failure dump information on block layout in heap
 891 // (cms old generation).
 892 void ConcurrentMarkSweepGeneration::promotion_failure_occurred() {
 893   if (CMSDumpAtPromotionFailure) {
 894     cmsSpace()->dump_at_safepoint_with_locks(collector(), gclog_or_tty);
 895   }
 896 }
 897 
 898 CompactibleSpace*
 899 ConcurrentMarkSweepGeneration::first_compaction_space() const {
 900   return _cmsSpace;
 901 }
 902 
 903 void ConcurrentMarkSweepGeneration::reset_after_compaction() {
 904   // Clear the promotion information.  These pointers can be adjusted
 905   // along with all the other pointers into the heap but
 906   // compaction is expected to be a rare event with
 907   // a heap using cms so don't do it without seeing the need.
 908   if (CollectedHeap::use_parallel_gc_threads()) {
 909     for (uint i = 0; i < ParallelGCThreads; i++) {
 910       _par_gc_thread_states[i]->promo.reset();
 911     }
 912   }
 913 }
 914 
 915 void ConcurrentMarkSweepGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) {
 916   blk->do_space(_cmsSpace);
 917 }
 918 
 919 void ConcurrentMarkSweepGeneration::compute_new_size() {
 920   assert_locked_or_safepoint(Heap_lock);
 921 
 922   // If incremental collection failed, we just want to expand
 923   // to the limit.
 924   if (incremental_collection_failed()) {
 925     clear_incremental_collection_failed();
 926     grow_to_reserved();
 927     return;
 928   }
 929 
 930   // The heap has been compacted but not reset yet.
 931   // Any metric such as free() or used() will be incorrect.
 932 
 933   CardGeneration::compute_new_size();
 934 
 935   // Reset again after a possible resizing
 936   if (did_compact()) {
 937     cmsSpace()->reset_after_compaction();
 938   }
 939 }
 940 
 941 void ConcurrentMarkSweepGeneration::compute_new_size_free_list() {
 942   assert_locked_or_safepoint(Heap_lock);
 943 
 944   // If incremental collection failed, we just want to expand
 945   // to the limit.
 946   if (incremental_collection_failed()) {
 947     clear_incremental_collection_failed();
 948     grow_to_reserved();
 949     return;
 950   }
 951 
 952   double free_percentage = ((double) free()) / capacity();
 953   double desired_free_percentage = (double) MinHeapFreeRatio / 100;
 954   double maximum_free_percentage = (double) MaxHeapFreeRatio / 100;
 955 
 956   // compute expansion delta needed for reaching desired free percentage
 957   if (free_percentage < desired_free_percentage) {
 958     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 959     assert(desired_capacity >= capacity(), "invalid expansion size");
 960     size_t expand_bytes = MAX2(desired_capacity - capacity(), MinHeapDeltaBytes);
 961     if (PrintGCDetails && Verbose) {
 962       size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 963       gclog_or_tty->print_cr("\nFrom compute_new_size: ");
 964       gclog_or_tty->print_cr("  Free fraction %f", free_percentage);
 965       gclog_or_tty->print_cr("  Desired free fraction %f",
 966         desired_free_percentage);
 967       gclog_or_tty->print_cr("  Maximum free fraction %f",
 968         maximum_free_percentage);
 969       gclog_or_tty->print_cr("  Capactiy "SIZE_FORMAT, capacity()/1000);
 970       gclog_or_tty->print_cr("  Desired capacity "SIZE_FORMAT,
 971         desired_capacity/1000);
 972       int prev_level = level() - 1;
 973       if (prev_level >= 0) {
 974         size_t prev_size = 0;
 975         GenCollectedHeap* gch = GenCollectedHeap::heap();
 976         Generation* prev_gen = gch->_gens[prev_level];
 977         prev_size = prev_gen->capacity();
 978           gclog_or_tty->print_cr("  Younger gen size "SIZE_FORMAT,
 979                                  prev_size/1000);
 980       }
 981       gclog_or_tty->print_cr("  unsafe_max_alloc_nogc "SIZE_FORMAT,
 982         unsafe_max_alloc_nogc()/1000);
 983       gclog_or_tty->print_cr("  contiguous available "SIZE_FORMAT,
 984         contiguous_available()/1000);
 985       gclog_or_tty->print_cr("  Expand by "SIZE_FORMAT" (bytes)",
 986         expand_bytes);
 987     }
 988     // safe if expansion fails
 989     expand(expand_bytes, 0, CMSExpansionCause::_satisfy_free_ratio);
 990     if (PrintGCDetails && Verbose) {
 991       gclog_or_tty->print_cr("  Expanded free fraction %f",
 992         ((double) free()) / capacity());
 993     }
 994   } else {
 995     size_t desired_capacity = (size_t)(used() / ((double) 1 - desired_free_percentage));
 996     assert(desired_capacity <= capacity(), "invalid expansion size");
 997     size_t shrink_bytes = capacity() - desired_capacity;
 998     // Don't shrink unless the delta is greater than the minimum shrink we want
 999     if (shrink_bytes >= MinHeapDeltaBytes) {
1000       shrink_free_list_by(shrink_bytes);
1001     }
1002   }
1003 }
1004 
1005 Mutex* ConcurrentMarkSweepGeneration::freelistLock() const {
1006   return cmsSpace()->freelistLock();
1007 }
1008 
1009 HeapWord* ConcurrentMarkSweepGeneration::allocate(size_t size,
1010                                                   bool   tlab) {
1011   CMSSynchronousYieldRequest yr;
1012   MutexLockerEx x(freelistLock(),
1013                   Mutex::_no_safepoint_check_flag);
1014   return have_lock_and_allocate(size, tlab);
1015 }
1016 
1017 HeapWord* ConcurrentMarkSweepGeneration::have_lock_and_allocate(size_t size,
1018                                                   bool   tlab /* ignored */) {
1019   assert_lock_strong(freelistLock());
1020   size_t adjustedSize = CompactibleFreeListSpace::adjustObjectSize(size);
1021   HeapWord* res = cmsSpace()->allocate(adjustedSize);
1022   // Allocate the object live (grey) if the background collector has
1023   // started marking. This is necessary because the marker may
1024   // have passed this address and consequently this object will
1025   // not otherwise be greyed and would be incorrectly swept up.
1026   // Note that if this object contains references, the writing
1027   // of those references will dirty the card containing this object
1028   // allowing the object to be blackened (and its references scanned)
1029   // either during a preclean phase or at the final checkpoint.
1030   if (res != NULL) {
1031     // We may block here with an uninitialized object with
1032     // its mark-bit or P-bits not yet set. Such objects need
1033     // to be safely navigable by block_start().
1034     assert(oop(res)->klass_or_null() == NULL, "Object should be uninitialized here.");
1035     assert(!((FreeChunk*)res)->is_free(), "Error, block will look free but show wrong size");
1036     collector()->direct_allocated(res, adjustedSize);
1037     _direct_allocated_words += adjustedSize;
1038     // allocation counters
1039     NOT_PRODUCT(
1040       _numObjectsAllocated++;
1041       _numWordsAllocated += (int)adjustedSize;
1042     )
1043   }
1044   return res;
1045 }
1046 
1047 // In the case of direct allocation by mutators in a generation that
1048 // is being concurrently collected, the object must be allocated
1049 // live (grey) if the background collector has started marking.
1050 // This is necessary because the marker may
1051 // have passed this address and consequently this object will
1052 // not otherwise be greyed and would be incorrectly swept up.
1053 // Note that if this object contains references, the writing
1054 // of those references will dirty the card containing this object
1055 // allowing the object to be blackened (and its references scanned)
1056 // either during a preclean phase or at the final checkpoint.
1057 void CMSCollector::direct_allocated(HeapWord* start, size_t size) {
1058   assert(_markBitMap.covers(start, size), "Out of bounds");
1059   if (_collectorState >= Marking) {
1060     MutexLockerEx y(_markBitMap.lock(),
1061                     Mutex::_no_safepoint_check_flag);
1062     // [see comments preceding SweepClosure::do_blk() below for details]
1063     //
1064     // Can the P-bits be deleted now?  JJJ
1065     //
1066     // 1. need to mark the object as live so it isn't collected
1067     // 2. need to mark the 2nd bit to indicate the object may be uninitialized
1068     // 3. need to mark the end of the object so marking, precleaning or sweeping
1069     //    can skip over uninitialized or unparsable objects. An allocated
1070     //    object is considered uninitialized for our purposes as long as
1071     //    its klass word is NULL.  All old gen objects are parsable
1072     //    as soon as they are initialized.)
1073     _markBitMap.mark(start);          // object is live
1074     _markBitMap.mark(start + 1);      // object is potentially uninitialized?
1075     _markBitMap.mark(start + size - 1);
1076                                       // mark end of object
1077   }
1078   // check that oop looks uninitialized
1079   assert(oop(start)->klass_or_null() == NULL, "_klass should be NULL");
1080 }
1081 
1082 void CMSCollector::promoted(bool par, HeapWord* start,
1083                             bool is_obj_array, size_t obj_size) {
1084   assert(_markBitMap.covers(start), "Out of bounds");
1085   // See comment in direct_allocated() about when objects should
1086   // be allocated live.
1087   if (_collectorState >= Marking) {
1088     // we already hold the marking bit map lock, taken in
1089     // the prologue
1090     if (par) {
1091       _markBitMap.par_mark(start);
1092     } else {
1093       _markBitMap.mark(start);
1094     }
1095     // We don't need to mark the object as uninitialized (as
1096     // in direct_allocated above) because this is being done with the
1097     // world stopped and the object will be initialized by the
1098     // time the marking, precleaning or sweeping get to look at it.
1099     // But see the code for copying objects into the CMS generation,
1100     // where we need to ensure that concurrent readers of the
1101     // block offset table are able to safely navigate a block that
1102     // is in flux from being free to being allocated (and in
1103     // transition while being copied into) and subsequently
1104     // becoming a bona-fide object when the copy/promotion is complete.
1105     assert(SafepointSynchronize::is_at_safepoint(),
1106            "expect promotion only at safepoints");
1107 
1108     if (_collectorState < Sweeping) {
1109       // Mark the appropriate cards in the modUnionTable, so that
1110       // this object gets scanned before the sweep. If this is
1111       // not done, CMS generation references in the object might
1112       // not get marked.
1113       // For the case of arrays, which are otherwise precisely
1114       // marked, we need to dirty the entire array, not just its head.
1115       if (is_obj_array) {
1116         // The [par_]mark_range() method expects mr.end() below to
1117         // be aligned to the granularity of a bit's representation
1118         // in the heap. In the case of the MUT below, that's a
1119         // card size.
1120         MemRegion mr(start,
1121                      (HeapWord*)round_to((intptr_t)(start + obj_size),
1122                         CardTableModRefBS::card_size /* bytes */));
1123         if (par) {
1124           _modUnionTable.par_mark_range(mr);
1125         } else {
1126           _modUnionTable.mark_range(mr);
1127         }
1128       } else {  // not an obj array; we can just mark the head
1129         if (par) {
1130           _modUnionTable.par_mark(start);
1131         } else {
1132           _modUnionTable.mark(start);
1133         }
1134       }
1135     }
1136   }
1137 }
1138 
1139 static inline size_t percent_of_space(Space* space, HeapWord* addr)
1140 {
1141   size_t delta = pointer_delta(addr, space->bottom());
1142   return (size_t)(delta * 100.0 / (space->capacity() / HeapWordSize));
1143 }
1144 
1145 void CMSCollector::icms_update_allocation_limits()
1146 {
1147   Generation* gen0 = GenCollectedHeap::heap()->get_gen(0);
1148   EdenSpace* eden = gen0->as_DefNewGeneration()->eden();
1149 
1150   const unsigned int duty_cycle = stats().icms_update_duty_cycle();
1151   if (CMSTraceIncrementalPacing) {
1152     stats().print();
1153   }
1154 
1155   assert(duty_cycle <= 100, "invalid duty cycle");
1156   if (duty_cycle != 0) {
1157     // The duty_cycle is a percentage between 0 and 100; convert to words and
1158     // then compute the offset from the endpoints of the space.
1159     size_t free_words = eden->free() / HeapWordSize;
1160     double free_words_dbl = (double)free_words;
1161     size_t duty_cycle_words = (size_t)(free_words_dbl * duty_cycle / 100.0);
1162     size_t offset_words = (free_words - duty_cycle_words) / 2;
1163 
1164     _icms_start_limit = eden->top() + offset_words;
1165     _icms_stop_limit = eden->end() - offset_words;
1166 
1167     // The limits may be adjusted (shifted to the right) by
1168     // CMSIncrementalOffset, to allow the application more mutator time after a
1169     // young gen gc (when all mutators were stopped) and before CMS starts and
1170     // takes away one or more cpus.
1171     if (CMSIncrementalOffset != 0) {
1172       double adjustment_dbl = free_words_dbl * CMSIncrementalOffset / 100.0;
1173       size_t adjustment = (size_t)adjustment_dbl;
1174       HeapWord* tmp_stop = _icms_stop_limit + adjustment;
1175       if (tmp_stop > _icms_stop_limit && tmp_stop < eden->end()) {
1176         _icms_start_limit += adjustment;
1177         _icms_stop_limit = tmp_stop;
1178       }
1179     }
1180   }
1181   if (duty_cycle == 0 || (_icms_start_limit == _icms_stop_limit)) {
1182     _icms_start_limit = _icms_stop_limit = eden->end();
1183   }
1184 
1185   // Install the new start limit.
1186   eden->set_soft_end(_icms_start_limit);
1187 
1188   if (CMSTraceIncrementalMode) {
1189     gclog_or_tty->print(" icms alloc limits:  "
1190                            PTR_FORMAT "," PTR_FORMAT
1191                            " (" SIZE_FORMAT "%%," SIZE_FORMAT "%%) ",
1192                            _icms_start_limit, _icms_stop_limit,
1193                            percent_of_space(eden, _icms_start_limit),
1194                            percent_of_space(eden, _icms_stop_limit));
1195     if (Verbose) {
1196       gclog_or_tty->print("eden:  ");
1197       eden->print_on(gclog_or_tty);
1198     }
1199   }
1200 }
1201 
1202 // Any changes here should try to maintain the invariant
1203 // that if this method is called with _icms_start_limit
1204 // and _icms_stop_limit both NULL, then it should return NULL
1205 // and not notify the icms thread.
1206 HeapWord*
1207 CMSCollector::allocation_limit_reached(Space* space, HeapWord* top,
1208                                        size_t word_size)
1209 {
1210   // A start_limit equal to end() means the duty cycle is 0, so treat that as a
1211   // nop.
1212   if (CMSIncrementalMode && _icms_start_limit != space->end()) {
1213     if (top <= _icms_start_limit) {
1214       if (CMSTraceIncrementalMode) {
1215         space->print_on(gclog_or_tty);
1216         gclog_or_tty->stamp();
1217         gclog_or_tty->print_cr(" start limit top=" PTR_FORMAT
1218                                ", new limit=" PTR_FORMAT
1219                                " (" SIZE_FORMAT "%%)",
1220                                top, _icms_stop_limit,
1221                                percent_of_space(space, _icms_stop_limit));
1222       }
1223       ConcurrentMarkSweepThread::start_icms();
1224       assert(top < _icms_stop_limit, "Tautology");
1225       if (word_size < pointer_delta(_icms_stop_limit, top)) {
1226         return _icms_stop_limit;
1227       }
1228 
1229       // The allocation will cross both the _start and _stop limits, so do the
1230       // stop notification also and return end().
1231       if (CMSTraceIncrementalMode) {
1232         space->print_on(gclog_or_tty);
1233         gclog_or_tty->stamp();
1234         gclog_or_tty->print_cr(" +stop limit top=" PTR_FORMAT
1235                                ", new limit=" PTR_FORMAT
1236                                " (" SIZE_FORMAT "%%)",
1237                                top, space->end(),
1238                                percent_of_space(space, space->end()));
1239       }
1240       ConcurrentMarkSweepThread::stop_icms();
1241       return space->end();
1242     }
1243 
1244     if (top <= _icms_stop_limit) {
1245       if (CMSTraceIncrementalMode) {
1246         space->print_on(gclog_or_tty);
1247         gclog_or_tty->stamp();
1248         gclog_or_tty->print_cr(" stop limit top=" PTR_FORMAT
1249                                ", new limit=" PTR_FORMAT
1250                                " (" SIZE_FORMAT "%%)",
1251                                top, space->end(),
1252                                percent_of_space(space, space->end()));
1253       }
1254       ConcurrentMarkSweepThread::stop_icms();
1255       return space->end();
1256     }
1257 
1258     if (CMSTraceIncrementalMode) {
1259       space->print_on(gclog_or_tty);
1260       gclog_or_tty->stamp();
1261       gclog_or_tty->print_cr(" end limit top=" PTR_FORMAT
1262                              ", new limit=" PTR_FORMAT,
1263                              top, NULL);
1264     }
1265   }
1266 
1267   return NULL;
1268 }
1269 
1270 oop ConcurrentMarkSweepGeneration::promote(oop obj, size_t obj_size) {
1271   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
1272   // allocate, copy and if necessary update promoinfo --
1273   // delegate to underlying space.
1274   assert_lock_strong(freelistLock());
1275 
1276 #ifndef PRODUCT
1277   if (Universe::heap()->promotion_should_fail()) {
1278     return NULL;
1279   }
1280 #endif  // #ifndef PRODUCT
1281 
1282   oop res = _cmsSpace->promote(obj, obj_size);
1283   if (res == NULL) {
1284     // expand and retry
1285     size_t s = _cmsSpace->expansionSpaceRequired(obj_size);  // HeapWords
1286     expand(s*HeapWordSize, MinHeapDeltaBytes,
1287       CMSExpansionCause::_satisfy_promotion);
1288     // Since there's currently no next generation, we don't try to promote
1289     // into a more senior generation.
1290     assert(next_gen() == NULL, "assumption, based upon which no attempt "
1291                                "is made to pass on a possibly failing "
1292                                "promotion to next generation");
1293     res = _cmsSpace->promote(obj, obj_size);
1294   }
1295   if (res != NULL) {
1296     // See comment in allocate() about when objects should
1297     // be allocated live.
1298     assert(obj->is_oop(), "Will dereference klass pointer below");
1299     collector()->promoted(false,           // Not parallel
1300                           (HeapWord*)res, obj->is_objArray(), obj_size);
1301     // promotion counters
1302     NOT_PRODUCT(
1303       _numObjectsPromoted++;
1304       _numWordsPromoted +=
1305         (int)(CompactibleFreeListSpace::adjustObjectSize(obj->size()));
1306     )
1307   }
1308   return res;
1309 }
1310 
1311 
1312 HeapWord*
1313 ConcurrentMarkSweepGeneration::allocation_limit_reached(Space* space,
1314                                              HeapWord* top,
1315                                              size_t word_sz)
1316 {
1317   return collector()->allocation_limit_reached(space, top, word_sz);
1318 }
1319 
1320 // IMPORTANT: Notes on object size recognition in CMS.
1321 // ---------------------------------------------------
1322 // A block of storage in the CMS generation is always in
1323 // one of three states. A free block (FREE), an allocated
1324 // object (OBJECT) whose size() method reports the correct size,
1325 // and an intermediate state (TRANSIENT) in which its size cannot
1326 // be accurately determined.
1327 // STATE IDENTIFICATION:   (32 bit and 64 bit w/o COOPS)
1328 // -----------------------------------------------------
1329 // FREE:      klass_word & 1 == 1; mark_word holds block size
1330 //
1331 // OBJECT:    klass_word installed; klass_word != 0 && klass_word & 1 == 0;
1332 //            obj->size() computes correct size
1333 //
1334 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1335 //
1336 // STATE IDENTIFICATION: (64 bit+COOPS)
1337 // ------------------------------------
1338 // FREE:      mark_word & CMS_FREE_BIT == 1; mark_word & ~CMS_FREE_BIT gives block_size
1339 //
1340 // OBJECT:    klass_word installed; klass_word != 0;
1341 //            obj->size() computes correct size
1342 //
1343 // TRANSIENT: klass_word == 0; size is indeterminate until we become an OBJECT
1344 //
1345 //
1346 // STATE TRANSITION DIAGRAM
1347 //
1348 //        mut / parnew                     mut  /  parnew
1349 // FREE --------------------> TRANSIENT ---------------------> OBJECT --|
1350 //  ^                                                                   |
1351 //  |------------------------ DEAD <------------------------------------|
1352 //         sweep                            mut
1353 //
1354 // While a block is in TRANSIENT state its size cannot be determined
1355 // so readers will either need to come back later or stall until
1356 // the size can be determined. Note that for the case of direct
1357 // allocation, P-bits, when available, may be used to determine the
1358 // size of an object that may not yet have been initialized.
1359 
1360 // Things to support parallel young-gen collection.
1361 oop
1362 ConcurrentMarkSweepGeneration::par_promote(int thread_num,
1363                                            oop old, markOop m,
1364                                            size_t word_sz) {
1365 #ifndef PRODUCT
1366   if (Universe::heap()->promotion_should_fail()) {
1367     return NULL;
1368   }
1369 #endif  // #ifndef PRODUCT
1370 
1371   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1372   PromotionInfo* promoInfo = &ps->promo;
1373   // if we are tracking promotions, then first ensure space for
1374   // promotion (including spooling space for saving header if necessary).
1375   // then allocate and copy, then track promoted info if needed.
1376   // When tracking (see PromotionInfo::track()), the mark word may
1377   // be displaced and in this case restoration of the mark word
1378   // occurs in the (oop_since_save_marks_)iterate phase.
1379   if (promoInfo->tracking() && !promoInfo->ensure_spooling_space()) {
1380     // Out of space for allocating spooling buffers;
1381     // try expanding and allocating spooling buffers.
1382     if (!expand_and_ensure_spooling_space(promoInfo)) {
1383       return NULL;
1384     }
1385   }
1386   assert(promoInfo->has_spooling_space(), "Control point invariant");
1387   const size_t alloc_sz = CompactibleFreeListSpace::adjustObjectSize(word_sz);
1388   HeapWord* obj_ptr = ps->lab.alloc(alloc_sz);
1389   if (obj_ptr == NULL) {
1390      obj_ptr = expand_and_par_lab_allocate(ps, alloc_sz);
1391      if (obj_ptr == NULL) {
1392        return NULL;
1393      }
1394   }
1395   oop obj = oop(obj_ptr);
1396   OrderAccess::storestore();
1397   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1398   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1399   // IMPORTANT: See note on object initialization for CMS above.
1400   // Otherwise, copy the object.  Here we must be careful to insert the
1401   // klass pointer last, since this marks the block as an allocated object.
1402   // Except with compressed oops it's the mark word.
1403   HeapWord* old_ptr = (HeapWord*)old;
1404   // Restore the mark word copied above.
1405   obj->set_mark(m);
1406   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1407   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1408   OrderAccess::storestore();
1409 
1410   if (UseCompressedClassPointers) {
1411     // Copy gap missed by (aligned) header size calculation below
1412     obj->set_klass_gap(old->klass_gap());
1413   }
1414   if (word_sz > (size_t)oopDesc::header_size()) {
1415     Copy::aligned_disjoint_words(old_ptr + oopDesc::header_size(),
1416                                  obj_ptr + oopDesc::header_size(),
1417                                  word_sz - oopDesc::header_size());
1418   }
1419 
1420   // Now we can track the promoted object, if necessary.  We take care
1421   // to delay the transition from uninitialized to full object
1422   // (i.e., insertion of klass pointer) until after, so that it
1423   // atomically becomes a promoted object.
1424   if (promoInfo->tracking()) {
1425     promoInfo->track((PromotedObject*)obj, old->klass());
1426   }
1427   assert(obj->klass_or_null() == NULL, "Object should be uninitialized here.");
1428   assert(!((FreeChunk*)obj_ptr)->is_free(), "Error, block will look free but show wrong size");
1429   assert(old->is_oop(), "Will use and dereference old klass ptr below");
1430 
1431   // Finally, install the klass pointer (this should be volatile).
1432   OrderAccess::storestore();
1433   obj->set_klass(old->klass());
1434   // We should now be able to calculate the right size for this object
1435   assert(obj->is_oop() && obj->size() == (int)word_sz, "Error, incorrect size computed for promoted object");
1436 
1437   collector()->promoted(true,          // parallel
1438                         obj_ptr, old->is_objArray(), word_sz);
1439 
1440   NOT_PRODUCT(
1441     Atomic::inc_ptr(&_numObjectsPromoted);
1442     Atomic::add_ptr(alloc_sz, &_numWordsPromoted);
1443   )
1444 
1445   return obj;
1446 }
1447 
1448 void
1449 ConcurrentMarkSweepGeneration::
1450 par_promote_alloc_undo(int thread_num,
1451                        HeapWord* obj, size_t word_sz) {
1452   // CMS does not support promotion undo.
1453   ShouldNotReachHere();
1454 }
1455 
1456 void
1457 ConcurrentMarkSweepGeneration::
1458 par_promote_alloc_done(int thread_num) {
1459   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1460   ps->lab.retire(thread_num);
1461 }
1462 
1463 void
1464 ConcurrentMarkSweepGeneration::
1465 par_oop_since_save_marks_iterate_done(int thread_num) {
1466   CMSParGCThreadState* ps = _par_gc_thread_states[thread_num];
1467   ParScanWithoutBarrierClosure* dummy_cl = NULL;
1468   ps->promo.promoted_oops_iterate_nv(dummy_cl);
1469 }
1470 
1471 bool ConcurrentMarkSweepGeneration::should_collect(bool   full,
1472                                                    size_t size,
1473                                                    bool   tlab)
1474 {
1475   // We allow a STW collection only if a full
1476   // collection was requested.
1477   return full || should_allocate(size, tlab); // FIX ME !!!
1478   // This and promotion failure handling are connected at the
1479   // hip and should be fixed by untying them.
1480 }
1481 
1482 bool CMSCollector::shouldConcurrentCollect() {
1483   if (_full_gc_requested) {
1484     if (Verbose && PrintGCDetails) {
1485       gclog_or_tty->print_cr("CMSCollector: collect because of explicit "
1486                              " gc request (or gc_locker)");
1487     }
1488     return true;
1489   }
1490 
1491   // For debugging purposes, change the type of collection.
1492   // If the rotation is not on the concurrent collection
1493   // type, don't start a concurrent collection.
1494   NOT_PRODUCT(
1495     if (RotateCMSCollectionTypes &&
1496         (_cmsGen->debug_collection_type() !=
1497           ConcurrentMarkSweepGeneration::Concurrent_collection_type)) {
1498       assert(_cmsGen->debug_collection_type() !=
1499         ConcurrentMarkSweepGeneration::Unknown_collection_type,
1500         "Bad cms collection type");
1501       return false;
1502     }
1503   )
1504 
1505   FreelistLocker x(this);
1506   // ------------------------------------------------------------------
1507   // Print out lots of information which affects the initiation of
1508   // a collection.
1509   if (PrintCMSInitiationStatistics && stats().valid()) {
1510     gclog_or_tty->print("CMSCollector shouldConcurrentCollect: ");
1511     gclog_or_tty->stamp();
1512     gclog_or_tty->print_cr("");
1513     stats().print_on(gclog_or_tty);
1514     gclog_or_tty->print_cr("time_until_cms_gen_full %3.7f",
1515       stats().time_until_cms_gen_full());
1516     gclog_or_tty->print_cr("free="SIZE_FORMAT, _cmsGen->free());
1517     gclog_or_tty->print_cr("contiguous_available="SIZE_FORMAT,
1518                            _cmsGen->contiguous_available());
1519     gclog_or_tty->print_cr("promotion_rate=%g", stats().promotion_rate());
1520     gclog_or_tty->print_cr("cms_allocation_rate=%g", stats().cms_allocation_rate());
1521     gclog_or_tty->print_cr("occupancy=%3.7f", _cmsGen->occupancy());
1522     gclog_or_tty->print_cr("initiatingOccupancy=%3.7f", _cmsGen->initiating_occupancy());
1523     gclog_or_tty->print_cr("metadata initialized %d",
1524       MetaspaceGC::should_concurrent_collect());
1525   }
1526   // ------------------------------------------------------------------
1527 
1528   // If the estimated time to complete a cms collection (cms_duration())
1529   // is less than the estimated time remaining until the cms generation
1530   // is full, start a collection.
1531   if (!UseCMSInitiatingOccupancyOnly) {
1532     if (stats().valid()) {
1533       if (stats().time_until_cms_start() == 0.0) {
1534         return true;
1535       }
1536     } else {
1537       // We want to conservatively collect somewhat early in order
1538       // to try and "bootstrap" our CMS/promotion statistics;
1539       // this branch will not fire after the first successful CMS
1540       // collection because the stats should then be valid.
1541       if (_cmsGen->occupancy() >= _bootstrap_occupancy) {
1542         if (Verbose && PrintGCDetails) {
1543           gclog_or_tty->print_cr(
1544             " CMSCollector: collect for bootstrapping statistics:"
1545             " occupancy = %f, boot occupancy = %f", _cmsGen->occupancy(),
1546             _bootstrap_occupancy);
1547         }
1548         return true;
1549       }
1550     }
1551   }
1552 
1553   // Otherwise, we start a collection cycle if
1554   // old gen want a collection cycle started. Each may use
1555   // an appropriate criterion for making this decision.
1556   // XXX We need to make sure that the gen expansion
1557   // criterion dovetails well with this. XXX NEED TO FIX THIS
1558   if (_cmsGen->should_concurrent_collect()) {
1559     if (Verbose && PrintGCDetails) {
1560       gclog_or_tty->print_cr("CMS old gen initiated");
1561     }
1562     return true;
1563   }
1564 
1565   // We start a collection if we believe an incremental collection may fail;
1566   // this is not likely to be productive in practice because it's probably too
1567   // late anyway.
1568   GenCollectedHeap* gch = GenCollectedHeap::heap();
1569   assert(gch->collector_policy()->is_two_generation_policy(),
1570          "You may want to check the correctness of the following");
1571   if (gch->incremental_collection_will_fail(true /* consult_young */)) {
1572     if (Verbose && PrintGCDetails) {
1573       gclog_or_tty->print("CMSCollector: collect because incremental collection will fail ");
1574     }
1575     return true;
1576   }
1577 
1578   if (MetaspaceGC::should_concurrent_collect()) {
1579       if (Verbose && PrintGCDetails) {
1580       gclog_or_tty->print("CMSCollector: collect for metadata allocation ");
1581       }
1582       return true;
1583     }
1584 
1585   return false;
1586 }
1587 
1588 void CMSCollector::set_did_compact(bool v) { _cmsGen->set_did_compact(v); }
1589 
1590 // Clear _expansion_cause fields of constituent generations
1591 void CMSCollector::clear_expansion_cause() {
1592   _cmsGen->clear_expansion_cause();
1593 }
1594 
1595 // We should be conservative in starting a collection cycle.  To
1596 // start too eagerly runs the risk of collecting too often in the
1597 // extreme.  To collect too rarely falls back on full collections,
1598 // which works, even if not optimum in terms of concurrent work.
1599 // As a work around for too eagerly collecting, use the flag
1600 // UseCMSInitiatingOccupancyOnly.  This also has the advantage of
1601 // giving the user an easily understandable way of controlling the
1602 // collections.
1603 // We want to start a new collection cycle if any of the following
1604 // conditions hold:
1605 // . our current occupancy exceeds the configured initiating occupancy
1606 //   for this generation, or
1607 // . we recently needed to expand this space and have not, since that
1608 //   expansion, done a collection of this generation, or
1609 // . the underlying space believes that it may be a good idea to initiate
1610 //   a concurrent collection (this may be based on criteria such as the
1611 //   following: the space uses linear allocation and linear allocation is
1612 //   going to fail, or there is believed to be excessive fragmentation in
1613 //   the generation, etc... or ...
1614 // [.(currently done by CMSCollector::shouldConcurrentCollect() only for
1615 //   the case of the old generation; see CR 6543076):
1616 //   we may be approaching a point at which allocation requests may fail because
1617 //   we will be out of sufficient free space given allocation rate estimates.]
1618 bool ConcurrentMarkSweepGeneration::should_concurrent_collect() const {
1619 
1620   assert_lock_strong(freelistLock());
1621   if (occupancy() > initiating_occupancy()) {
1622     if (PrintGCDetails && Verbose) {
1623       gclog_or_tty->print(" %s: collect because of occupancy %f / %f  ",
1624         short_name(), occupancy(), initiating_occupancy());
1625     }
1626     return true;
1627   }
1628   if (UseCMSInitiatingOccupancyOnly) {
1629     return false;
1630   }
1631   if (expansion_cause() == CMSExpansionCause::_satisfy_allocation) {
1632     if (PrintGCDetails && Verbose) {
1633       gclog_or_tty->print(" %s: collect because expanded for allocation ",
1634         short_name());
1635     }
1636     return true;
1637   }
1638   if (_cmsSpace->should_concurrent_collect()) {
1639     if (PrintGCDetails && Verbose) {
1640       gclog_or_tty->print(" %s: collect because cmsSpace says so ",
1641         short_name());
1642     }
1643     return true;
1644   }
1645   return false;
1646 }
1647 
1648 void ConcurrentMarkSweepGeneration::collect(bool   full,
1649                                             bool   clear_all_soft_refs,
1650                                             size_t size,
1651                                             bool   tlab)
1652 {
1653   collector()->collect(full, clear_all_soft_refs, size, tlab);
1654 }
1655 
1656 void CMSCollector::collect(bool   full,
1657                            bool   clear_all_soft_refs,
1658                            size_t size,
1659                            bool   tlab)
1660 {
1661   if (!UseCMSCollectionPassing && _collectorState > Idling) {
1662     // For debugging purposes skip the collection if the state
1663     // is not currently idle
1664     if (TraceCMSState) {
1665       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " skipped full:%d CMS state %d",
1666         Thread::current(), full, _collectorState);
1667     }
1668     return;
1669   }
1670 
1671   // The following "if" branch is present for defensive reasons.
1672   // In the current uses of this interface, it can be replaced with:
1673   // assert(!GC_locker.is_active(), "Can't be called otherwise");
1674   // But I am not placing that assert here to allow future
1675   // generality in invoking this interface.
1676   if (GC_locker::is_active()) {
1677     // A consistency test for GC_locker
1678     assert(GC_locker::needs_gc(), "Should have been set already");
1679     // Skip this foreground collection, instead
1680     // expanding the heap if necessary.
1681     // Need the free list locks for the call to free() in compute_new_size()
1682     compute_new_size();
1683     return;
1684   }
1685   acquire_control_and_collect(full, clear_all_soft_refs);
1686   _full_gcs_since_conc_gc++;
1687 }
1688 
1689 void CMSCollector::request_full_gc(unsigned int full_gc_count, GCCause::Cause cause) {
1690   GenCollectedHeap* gch = GenCollectedHeap::heap();
1691   unsigned int gc_count = gch->total_full_collections();
1692   if (gc_count == full_gc_count) {
1693     MutexLockerEx y(CGC_lock, Mutex::_no_safepoint_check_flag);
1694     _full_gc_requested = true;
1695     _full_gc_cause = cause;
1696     CGC_lock->notify();   // nudge CMS thread
1697   } else {
1698     assert(gc_count > full_gc_count, "Error: causal loop");
1699   }
1700 }
1701 
1702 bool CMSCollector::is_external_interruption() {
1703   GCCause::Cause cause = GenCollectedHeap::heap()->gc_cause();
1704   return GCCause::is_user_requested_gc(cause) ||
1705          GCCause::is_serviceability_requested_gc(cause);
1706 }
1707 
1708 void CMSCollector::report_concurrent_mode_interruption() {
1709   if (is_external_interruption()) {
1710     if (PrintGCDetails) {
1711       gclog_or_tty->print(" (concurrent mode interrupted)");
1712     }
1713   } else {
1714     if (PrintGCDetails) {
1715       gclog_or_tty->print(" (concurrent mode failure)");
1716     }
1717     _gc_tracer_cm->report_concurrent_mode_failure();
1718   }
1719 }
1720 
1721 
1722 // The foreground and background collectors need to coordinate in order
1723 // to make sure that they do not mutually interfere with CMS collections.
1724 // When a background collection is active,
1725 // the foreground collector may need to take over (preempt) and
1726 // synchronously complete an ongoing collection. Depending on the
1727 // frequency of the background collections and the heap usage
1728 // of the application, this preemption can be seldom or frequent.
1729 // There are only certain
1730 // points in the background collection that the "collection-baton"
1731 // can be passed to the foreground collector.
1732 //
1733 // The foreground collector will wait for the baton before
1734 // starting any part of the collection.  The foreground collector
1735 // will only wait at one location.
1736 //
1737 // The background collector will yield the baton before starting a new
1738 // phase of the collection (e.g., before initial marking, marking from roots,
1739 // precleaning, final re-mark, sweep etc.)  This is normally done at the head
1740 // of the loop which switches the phases. The background collector does some
1741 // of the phases (initial mark, final re-mark) with the world stopped.
1742 // Because of locking involved in stopping the world,
1743 // the foreground collector should not block waiting for the background
1744 // collector when it is doing a stop-the-world phase.  The background
1745 // collector will yield the baton at an additional point just before
1746 // it enters a stop-the-world phase.  Once the world is stopped, the
1747 // background collector checks the phase of the collection.  If the
1748 // phase has not changed, it proceeds with the collection.  If the
1749 // phase has changed, it skips that phase of the collection.  See
1750 // the comments on the use of the Heap_lock in collect_in_background().
1751 //
1752 // Variable used in baton passing.
1753 //   _foregroundGCIsActive - Set to true by the foreground collector when
1754 //      it wants the baton.  The foreground clears it when it has finished
1755 //      the collection.
1756 //   _foregroundGCShouldWait - Set to true by the background collector
1757 //        when it is running.  The foreground collector waits while
1758 //      _foregroundGCShouldWait is true.
1759 //  CGC_lock - monitor used to protect access to the above variables
1760 //      and to notify the foreground and background collectors.
1761 //  _collectorState - current state of the CMS collection.
1762 //
1763 // The foreground collector
1764 //   acquires the CGC_lock
1765 //   sets _foregroundGCIsActive
1766 //   waits on the CGC_lock for _foregroundGCShouldWait to be false
1767 //     various locks acquired in preparation for the collection
1768 //     are released so as not to block the background collector
1769 //     that is in the midst of a collection
1770 //   proceeds with the collection
1771 //   clears _foregroundGCIsActive
1772 //   returns
1773 //
1774 // The background collector in a loop iterating on the phases of the
1775 //      collection
1776 //   acquires the CGC_lock
1777 //   sets _foregroundGCShouldWait
1778 //   if _foregroundGCIsActive is set
1779 //     clears _foregroundGCShouldWait, notifies _CGC_lock
1780 //     waits on _CGC_lock for _foregroundGCIsActive to become false
1781 //     and exits the loop.
1782 //   otherwise
1783 //     proceed with that phase of the collection
1784 //     if the phase is a stop-the-world phase,
1785 //       yield the baton once more just before enqueueing
1786 //       the stop-world CMS operation (executed by the VM thread).
1787 //   returns after all phases of the collection are done
1788 //
1789 
1790 void CMSCollector::acquire_control_and_collect(bool full,
1791         bool clear_all_soft_refs) {
1792   assert(SafepointSynchronize::is_at_safepoint(), "should be at safepoint");
1793   assert(!Thread::current()->is_ConcurrentGC_thread(),
1794          "shouldn't try to acquire control from self!");
1795 
1796   // Start the protocol for acquiring control of the
1797   // collection from the background collector (aka CMS thread).
1798   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1799          "VM thread should have CMS token");
1800   // Remember the possibly interrupted state of an ongoing
1801   // concurrent collection
1802   CollectorState first_state = _collectorState;
1803 
1804   // Signal to a possibly ongoing concurrent collection that
1805   // we want to do a foreground collection.
1806   _foregroundGCIsActive = true;
1807 
1808   // Disable incremental mode during a foreground collection.
1809   ICMSDisabler icms_disabler;
1810 
1811   // release locks and wait for a notify from the background collector
1812   // releasing the locks in only necessary for phases which
1813   // do yields to improve the granularity of the collection.
1814   assert_lock_strong(bitMapLock());
1815   // We need to lock the Free list lock for the space that we are
1816   // currently collecting.
1817   assert(haveFreelistLocks(), "Must be holding free list locks");
1818   bitMapLock()->unlock();
1819   releaseFreelistLocks();
1820   {
1821     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
1822     if (_foregroundGCShouldWait) {
1823       // We are going to be waiting for action for the CMS thread;
1824       // it had better not be gone (for instance at shutdown)!
1825       assert(ConcurrentMarkSweepThread::cmst() != NULL,
1826              "CMS thread must be running");
1827       // Wait here until the background collector gives us the go-ahead
1828       ConcurrentMarkSweepThread::clear_CMS_flag(
1829         ConcurrentMarkSweepThread::CMS_vm_has_token);  // release token
1830       // Get a possibly blocked CMS thread going:
1831       //   Note that we set _foregroundGCIsActive true above,
1832       //   without protection of the CGC_lock.
1833       CGC_lock->notify();
1834       assert(!ConcurrentMarkSweepThread::vm_thread_wants_cms_token(),
1835              "Possible deadlock");
1836       while (_foregroundGCShouldWait) {
1837         // wait for notification
1838         CGC_lock->wait(Mutex::_no_safepoint_check_flag);
1839         // Possibility of delay/starvation here, since CMS token does
1840         // not know to give priority to VM thread? Actually, i think
1841         // there wouldn't be any delay/starvation, but the proof of
1842         // that "fact" (?) appears non-trivial. XXX 20011219YSR
1843       }
1844       ConcurrentMarkSweepThread::set_CMS_flag(
1845         ConcurrentMarkSweepThread::CMS_vm_has_token);
1846     }
1847   }
1848   // The CMS_token is already held.  Get back the other locks.
1849   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
1850          "VM thread should have CMS token");
1851   getFreelistLocks();
1852   bitMapLock()->lock_without_safepoint_check();
1853   if (TraceCMSState) {
1854     gclog_or_tty->print_cr("CMS foreground collector has asked for control "
1855       INTPTR_FORMAT " with first state %d", Thread::current(), first_state);
1856     gclog_or_tty->print_cr("    gets control with state %d", _collectorState);
1857   }
1858 
1859   // Check if we need to do a compaction, or if not, whether
1860   // we need to start the mark-sweep from scratch.
1861   bool should_compact    = false;
1862   bool should_start_over = false;
1863   decide_foreground_collection_type(clear_all_soft_refs,
1864     &should_compact, &should_start_over);
1865 
1866 NOT_PRODUCT(
1867   if (RotateCMSCollectionTypes) {
1868     if (_cmsGen->debug_collection_type() ==
1869         ConcurrentMarkSweepGeneration::MSC_foreground_collection_type) {
1870       should_compact = true;
1871     } else if (_cmsGen->debug_collection_type() ==
1872                ConcurrentMarkSweepGeneration::MS_foreground_collection_type) {
1873       should_compact = false;
1874     }
1875   }
1876 )
1877 
1878   if (first_state > Idling) {
1879     report_concurrent_mode_interruption();
1880   }
1881 
1882   set_did_compact(should_compact);
1883   if (should_compact) {
1884     // If the collection is being acquired from the background
1885     // collector, there may be references on the discovered
1886     // references lists that have NULL referents (being those
1887     // that were concurrently cleared by a mutator) or
1888     // that are no longer active (having been enqueued concurrently
1889     // by the mutator).
1890     // Scrub the list of those references because Mark-Sweep-Compact
1891     // code assumes referents are not NULL and that all discovered
1892     // Reference objects are active.
1893     ref_processor()->clean_up_discovered_references();
1894 
1895     if (first_state > Idling) {
1896       save_heap_summary();
1897     }
1898 
1899     do_compaction_work(clear_all_soft_refs);
1900 
1901     // Has the GC time limit been exceeded?
1902     DefNewGeneration* young_gen = _young_gen->as_DefNewGeneration();
1903     size_t max_eden_size = young_gen->max_capacity() -
1904                            young_gen->to()->capacity() -
1905                            young_gen->from()->capacity();
1906     GenCollectedHeap* gch = GenCollectedHeap::heap();
1907     GCCause::Cause gc_cause = gch->gc_cause();
1908     size_policy()->check_gc_overhead_limit(_young_gen->used(),
1909                                            young_gen->eden()->used(),
1910                                            _cmsGen->max_capacity(),
1911                                            max_eden_size,
1912                                            full,
1913                                            gc_cause,
1914                                            gch->collector_policy());
1915   } else {
1916     do_mark_sweep_work(clear_all_soft_refs, first_state,
1917       should_start_over);
1918   }
1919   // Reset the expansion cause, now that we just completed
1920   // a collection cycle.
1921   clear_expansion_cause();
1922   _foregroundGCIsActive = false;
1923   return;
1924 }
1925 
1926 // Resize the tenured generation
1927 // after obtaining the free list locks for the
1928 // two generations.
1929 void CMSCollector::compute_new_size() {
1930   assert_locked_or_safepoint(Heap_lock);
1931   FreelistLocker z(this);
1932   MetaspaceGC::compute_new_size();
1933   _cmsGen->compute_new_size_free_list();
1934 }
1935 
1936 // A work method used by foreground collection to determine
1937 // what type of collection (compacting or not, continuing or fresh)
1938 // it should do.
1939 // NOTE: the intent is to make UseCMSCompactAtFullCollection
1940 // and CMSCompactWhenClearAllSoftRefs the default in the future
1941 // and do away with the flags after a suitable period.
1942 void CMSCollector::decide_foreground_collection_type(
1943   bool clear_all_soft_refs, bool* should_compact,
1944   bool* should_start_over) {
1945   // Normally, we'll compact only if the UseCMSCompactAtFullCollection
1946   // flag is set, and we have either requested a System.gc() or
1947   // the number of full gc's since the last concurrent cycle
1948   // has exceeded the threshold set by CMSFullGCsBeforeCompaction,
1949   // or if an incremental collection has failed
1950   GenCollectedHeap* gch = GenCollectedHeap::heap();
1951   assert(gch->collector_policy()->is_two_generation_policy(),
1952          "You may want to check the correctness of the following");
1953   // Inform cms gen if this was due to partial collection failing.
1954   // The CMS gen may use this fact to determine its expansion policy.
1955   if (gch->incremental_collection_will_fail(false /* don't consult_young */)) {
1956     assert(!_cmsGen->incremental_collection_failed(),
1957            "Should have been noticed, reacted to and cleared");
1958     _cmsGen->set_incremental_collection_failed();
1959   }
1960   *should_compact =
1961     UseCMSCompactAtFullCollection &&
1962     ((_full_gcs_since_conc_gc >= CMSFullGCsBeforeCompaction) ||
1963      GCCause::is_user_requested_gc(gch->gc_cause()) ||
1964      gch->incremental_collection_will_fail(true /* consult_young */));
1965   *should_start_over = false;
1966   if (clear_all_soft_refs && !*should_compact) {
1967     // We are about to do a last ditch collection attempt
1968     // so it would normally make sense to do a compaction
1969     // to reclaim as much space as possible.
1970     if (CMSCompactWhenClearAllSoftRefs) {
1971       // Default: The rationale is that in this case either
1972       // we are past the final marking phase, in which case
1973       // we'd have to start over, or so little has been done
1974       // that there's little point in saving that work. Compaction
1975       // appears to be the sensible choice in either case.
1976       *should_compact = true;
1977     } else {
1978       // We have been asked to clear all soft refs, but not to
1979       // compact. Make sure that we aren't past the final checkpoint
1980       // phase, for that is where we process soft refs. If we are already
1981       // past that phase, we'll need to redo the refs discovery phase and
1982       // if necessary clear soft refs that weren't previously
1983       // cleared. We do so by remembering the phase in which
1984       // we came in, and if we are past the refs processing
1985       // phase, we'll choose to just redo the mark-sweep
1986       // collection from scratch.
1987       if (_collectorState > FinalMarking) {
1988         // We are past the refs processing phase;
1989         // start over and do a fresh synchronous CMS cycle
1990         _collectorState = Resetting; // skip to reset to start new cycle
1991         reset(false /* == !asynch */);
1992         *should_start_over = true;
1993       } // else we can continue a possibly ongoing current cycle
1994     }
1995   }
1996 }
1997 
1998 // A work method used by the foreground collector to do
1999 // a mark-sweep-compact.
2000 void CMSCollector::do_compaction_work(bool clear_all_soft_refs) {
2001   GenCollectedHeap* gch = GenCollectedHeap::heap();
2002 
2003   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
2004   gc_timer->register_gc_start();
2005 
2006   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
2007   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
2008 
2009   GCTraceTime t("CMS:MSC ", PrintGCDetails && Verbose, true, NULL);
2010   if (PrintGC && Verbose && !(GCCause::is_user_requested_gc(gch->gc_cause()))) {
2011     gclog_or_tty->print_cr("Compact ConcurrentMarkSweepGeneration after %d "
2012       "collections passed to foreground collector", _full_gcs_since_conc_gc);
2013   }
2014 
2015   // Sample collection interval time and reset for collection pause.
2016   if (UseAdaptiveSizePolicy) {
2017     size_policy()->msc_collection_begin();
2018   }
2019 
2020   // Temporarily widen the span of the weak reference processing to
2021   // the entire heap.
2022   MemRegion new_span(GenCollectedHeap::heap()->reserved_region());
2023   ReferenceProcessorSpanMutator rp_mut_span(ref_processor(), new_span);
2024   // Temporarily, clear the "is_alive_non_header" field of the
2025   // reference processor.
2026   ReferenceProcessorIsAliveMutator rp_mut_closure(ref_processor(), NULL);
2027   // Temporarily make reference _processing_ single threaded (non-MT).
2028   ReferenceProcessorMTProcMutator rp_mut_mt_processing(ref_processor(), false);
2029   // Temporarily make refs discovery atomic
2030   ReferenceProcessorAtomicMutator rp_mut_atomic(ref_processor(), true);
2031   // Temporarily make reference _discovery_ single threaded (non-MT)
2032   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
2033 
2034   ref_processor()->set_enqueuing_is_done(false);
2035   ref_processor()->enable_discovery(false /*verify_disabled*/, false /*check_no_refs*/);
2036   ref_processor()->setup_policy(clear_all_soft_refs);
2037   // If an asynchronous collection finishes, the _modUnionTable is
2038   // all clear.  If we are assuming the collection from an asynchronous
2039   // collection, clear the _modUnionTable.
2040   assert(_collectorState != Idling || _modUnionTable.isAllClear(),
2041     "_modUnionTable should be clear if the baton was not passed");
2042   _modUnionTable.clear_all();
2043   assert(_collectorState != Idling || _ct->klass_rem_set()->mod_union_is_clear(),
2044     "mod union for klasses should be clear if the baton was passed");
2045   _ct->klass_rem_set()->clear_mod_union();
2046 
2047   // We must adjust the allocation statistics being maintained
2048   // in the free list space. We do so by reading and clearing
2049   // the sweep timer and updating the block flux rate estimates below.
2050   assert(!_intra_sweep_timer.is_active(), "_intra_sweep_timer should be inactive");
2051   if (_inter_sweep_timer.is_active()) {
2052     _inter_sweep_timer.stop();
2053     // Note that we do not use this sample to update the _inter_sweep_estimate.
2054     _cmsGen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
2055                                             _inter_sweep_estimate.padded_average(),
2056                                             _intra_sweep_estimate.padded_average());
2057   }
2058 
2059   GenMarkSweep::invoke_at_safepoint(_cmsGen->level(),
2060     ref_processor(), clear_all_soft_refs);
2061   #ifdef ASSERT
2062     CompactibleFreeListSpace* cms_space = _cmsGen->cmsSpace();
2063     size_t free_size = cms_space->free();
2064     assert(free_size ==
2065            pointer_delta(cms_space->end(), cms_space->compaction_top())
2066            * HeapWordSize,
2067       "All the free space should be compacted into one chunk at top");
2068     assert(cms_space->dictionary()->total_chunk_size(
2069                                       debug_only(cms_space->freelistLock())) == 0 ||
2070            cms_space->totalSizeInIndexedFreeLists() == 0,
2071       "All the free space should be in a single chunk");
2072     size_t num = cms_space->totalCount();
2073     assert((free_size == 0 && num == 0) ||
2074            (free_size > 0  && (num == 1 || num == 2)),
2075          "There should be at most 2 free chunks after compaction");
2076   #endif // ASSERT
2077   _collectorState = Resetting;
2078   assert(_restart_addr == NULL,
2079          "Should have been NULL'd before baton was passed");
2080   reset(false /* == !asynch */);
2081   _cmsGen->reset_after_compaction();
2082   _concurrent_cycles_since_last_unload = 0;
2083 
2084   // Clear any data recorded in the PLAB chunk arrays.
2085   if (_survivor_plab_array != NULL) {
2086     reset_survivor_plab_arrays();
2087   }
2088 
2089   // Adjust the per-size allocation stats for the next epoch.
2090   _cmsGen->cmsSpace()->endSweepFLCensus(sweep_count() /* fake */);
2091   // Restart the "inter sweep timer" for the next epoch.
2092   _inter_sweep_timer.reset();
2093   _inter_sweep_timer.start();
2094 
2095   // Sample collection pause time and reset for collection interval.
2096   if (UseAdaptiveSizePolicy) {
2097     size_policy()->msc_collection_end(gch->gc_cause());
2098   }
2099 
2100   gc_timer->register_gc_end();
2101 
2102   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
2103 
2104   // For a mark-sweep-compact, compute_new_size() will be called
2105   // in the heap's do_collection() method.
2106 }
2107 
2108 // A work method used by the foreground collector to do
2109 // a mark-sweep, after taking over from a possibly on-going
2110 // concurrent mark-sweep collection.
2111 void CMSCollector::do_mark_sweep_work(bool clear_all_soft_refs,
2112   CollectorState first_state, bool should_start_over) {
2113   if (PrintGC && Verbose) {
2114     gclog_or_tty->print_cr("Pass concurrent collection to foreground "
2115       "collector with count %d",
2116       _full_gcs_since_conc_gc);
2117   }
2118   switch (_collectorState) {
2119     case Idling:
2120       if (first_state == Idling || should_start_over) {
2121         // The background GC was not active, or should
2122         // restarted from scratch;  start the cycle.
2123         _collectorState = InitialMarking;
2124       }
2125       // If first_state was not Idling, then a background GC
2126       // was in progress and has now finished.  No need to do it
2127       // again.  Leave the state as Idling.
2128       break;
2129     case Precleaning:
2130       // In the foreground case don't do the precleaning since
2131       // it is not done concurrently and there is extra work
2132       // required.
2133       _collectorState = FinalMarking;
2134   }
2135   collect_in_foreground(clear_all_soft_refs, GenCollectedHeap::heap()->gc_cause());
2136 
2137   // For a mark-sweep, compute_new_size() will be called
2138   // in the heap's do_collection() method.
2139 }
2140 
2141 
2142 void CMSCollector::print_eden_and_survivor_chunk_arrays() {
2143   DefNewGeneration* dng = _young_gen->as_DefNewGeneration();
2144   EdenSpace* eden_space = dng->eden();
2145   ContiguousSpace* from_space = dng->from();
2146   ContiguousSpace* to_space   = dng->to();
2147   // Eden
2148   if (_eden_chunk_array != NULL) {
2149     gclog_or_tty->print_cr("eden " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2150                            eden_space->bottom(), eden_space->top(),
2151                            eden_space->end(), eden_space->capacity());
2152     gclog_or_tty->print_cr("_eden_chunk_index=" SIZE_FORMAT ", "
2153                            "_eden_chunk_capacity=" SIZE_FORMAT,
2154                            _eden_chunk_index, _eden_chunk_capacity);
2155     for (size_t i = 0; i < _eden_chunk_index; i++) {
2156       gclog_or_tty->print_cr("_eden_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2157                              i, _eden_chunk_array[i]);
2158     }
2159   }
2160   // Survivor
2161   if (_survivor_chunk_array != NULL) {
2162     gclog_or_tty->print_cr("survivor " PTR_FORMAT "-" PTR_FORMAT "-" PTR_FORMAT "(" SIZE_FORMAT ")",
2163                            from_space->bottom(), from_space->top(),
2164                            from_space->end(), from_space->capacity());
2165     gclog_or_tty->print_cr("_survivor_chunk_index=" SIZE_FORMAT ", "
2166                            "_survivor_chunk_capacity=" SIZE_FORMAT,
2167                            _survivor_chunk_index, _survivor_chunk_capacity);
2168     for (size_t i = 0; i < _survivor_chunk_index; i++) {
2169       gclog_or_tty->print_cr("_survivor_chunk_array[" SIZE_FORMAT "]=" PTR_FORMAT,
2170                              i, _survivor_chunk_array[i]);
2171     }
2172   }
2173 }
2174 
2175 void CMSCollector::getFreelistLocks() const {
2176   // Get locks for all free lists in all generations that this
2177   // collector is responsible for
2178   _cmsGen->freelistLock()->lock_without_safepoint_check();
2179 }
2180 
2181 void CMSCollector::releaseFreelistLocks() const {
2182   // Release locks for all free lists in all generations that this
2183   // collector is responsible for
2184   _cmsGen->freelistLock()->unlock();
2185 }
2186 
2187 bool CMSCollector::haveFreelistLocks() const {
2188   // Check locks for all free lists in all generations that this
2189   // collector is responsible for
2190   assert_lock_strong(_cmsGen->freelistLock());
2191   PRODUCT_ONLY(ShouldNotReachHere());
2192   return true;
2193 }
2194 
2195 // A utility class that is used by the CMS collector to
2196 // temporarily "release" the foreground collector from its
2197 // usual obligation to wait for the background collector to
2198 // complete an ongoing phase before proceeding.
2199 class ReleaseForegroundGC: public StackObj {
2200  private:
2201   CMSCollector* _c;
2202  public:
2203   ReleaseForegroundGC(CMSCollector* c) : _c(c) {
2204     assert(_c->_foregroundGCShouldWait, "Else should not need to call");
2205     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2206     // allow a potentially blocked foreground collector to proceed
2207     _c->_foregroundGCShouldWait = false;
2208     if (_c->_foregroundGCIsActive) {
2209       CGC_lock->notify();
2210     }
2211     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2212            "Possible deadlock");
2213   }
2214 
2215   ~ReleaseForegroundGC() {
2216     assert(!_c->_foregroundGCShouldWait, "Usage protocol violation?");
2217     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2218     _c->_foregroundGCShouldWait = true;
2219   }
2220 };
2221 
2222 // There are separate collect_in_background and collect_in_foreground because of
2223 // the different locking requirements of the background collector and the
2224 // foreground collector.  There was originally an attempt to share
2225 // one "collect" method between the background collector and the foreground
2226 // collector but the if-then-else required made it cleaner to have
2227 // separate methods.
2228 void CMSCollector::collect_in_background(bool clear_all_soft_refs, GCCause::Cause cause) {
2229   assert(Thread::current()->is_ConcurrentGC_thread(),
2230     "A CMS asynchronous collection is only allowed on a CMS thread.");
2231 
2232   GenCollectedHeap* gch = GenCollectedHeap::heap();
2233   {
2234     bool safepoint_check = Mutex::_no_safepoint_check_flag;
2235     MutexLockerEx hl(Heap_lock, safepoint_check);
2236     FreelistLocker fll(this);
2237     MutexLockerEx x(CGC_lock, safepoint_check);
2238     if (_foregroundGCIsActive || !UseAsyncConcMarkSweepGC) {
2239       // The foreground collector is active or we're
2240       // not using asynchronous collections.  Skip this
2241       // background collection.
2242       assert(!_foregroundGCShouldWait, "Should be clear");
2243       return;
2244     } else {
2245       assert(_collectorState == Idling, "Should be idling before start.");
2246       _collectorState = InitialMarking;
2247       register_gc_start(cause);
2248       // Reset the expansion cause, now that we are about to begin
2249       // a new cycle.
2250       clear_expansion_cause();
2251 
2252       // Clear the MetaspaceGC flag since a concurrent collection
2253       // is starting but also clear it after the collection.
2254       MetaspaceGC::set_should_concurrent_collect(false);
2255     }
2256     // Decide if we want to enable class unloading as part of the
2257     // ensuing concurrent GC cycle.
2258     update_should_unload_classes();
2259     _full_gc_requested = false;           // acks all outstanding full gc requests
2260     _full_gc_cause = GCCause::_no_gc;
2261     // Signal that we are about to start a collection
2262     gch->increment_total_full_collections();  // ... starting a collection cycle
2263     _collection_count_start = gch->total_full_collections();
2264   }
2265 
2266   // Used for PrintGC
2267   size_t prev_used;
2268   if (PrintGC && Verbose) {
2269     prev_used = _cmsGen->used(); // XXXPERM
2270   }
2271 
2272   // The change of the collection state is normally done at this level;
2273   // the exceptions are phases that are executed while the world is
2274   // stopped.  For those phases the change of state is done while the
2275   // world is stopped.  For baton passing purposes this allows the
2276   // background collector to finish the phase and change state atomically.
2277   // The foreground collector cannot wait on a phase that is done
2278   // while the world is stopped because the foreground collector already
2279   // has the world stopped and would deadlock.
2280   while (_collectorState != Idling) {
2281     if (TraceCMSState) {
2282       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2283         Thread::current(), _collectorState);
2284     }
2285     // The foreground collector
2286     //   holds the Heap_lock throughout its collection.
2287     //   holds the CMS token (but not the lock)
2288     //     except while it is waiting for the background collector to yield.
2289     //
2290     // The foreground collector should be blocked (not for long)
2291     //   if the background collector is about to start a phase
2292     //   executed with world stopped.  If the background
2293     //   collector has already started such a phase, the
2294     //   foreground collector is blocked waiting for the
2295     //   Heap_lock.  The stop-world phases (InitialMarking and FinalMarking)
2296     //   are executed in the VM thread.
2297     //
2298     // The locking order is
2299     //   PendingListLock (PLL)  -- if applicable (FinalMarking)
2300     //   Heap_lock  (both this & PLL locked in VM_CMS_Operation::prologue())
2301     //   CMS token  (claimed in
2302     //                stop_world_and_do() -->
2303     //                  safepoint_synchronize() -->
2304     //                    CMSThread::synchronize())
2305 
2306     {
2307       // Check if the FG collector wants us to yield.
2308       CMSTokenSync x(true); // is cms thread
2309       if (waitForForegroundGC()) {
2310         // We yielded to a foreground GC, nothing more to be
2311         // done this round.
2312         assert(_foregroundGCShouldWait == false, "We set it to false in "
2313                "waitForForegroundGC()");
2314         if (TraceCMSState) {
2315           gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2316             " exiting collection CMS state %d",
2317             Thread::current(), _collectorState);
2318         }
2319         return;
2320       } else {
2321         // The background collector can run but check to see if the
2322         // foreground collector has done a collection while the
2323         // background collector was waiting to get the CGC_lock
2324         // above.  If yes, break so that _foregroundGCShouldWait
2325         // is cleared before returning.
2326         if (_collectorState == Idling) {
2327           break;
2328         }
2329       }
2330     }
2331 
2332     assert(_foregroundGCShouldWait, "Foreground collector, if active, "
2333       "should be waiting");
2334 
2335     switch (_collectorState) {
2336       case InitialMarking:
2337         {
2338           ReleaseForegroundGC x(this);
2339           stats().record_cms_begin();
2340           VM_CMS_Initial_Mark initial_mark_op(this);
2341           VMThread::execute(&initial_mark_op);
2342         }
2343         // The collector state may be any legal state at this point
2344         // since the background collector may have yielded to the
2345         // foreground collector.
2346         break;
2347       case Marking:
2348         // initial marking in checkpointRootsInitialWork has been completed
2349         if (markFromRoots(true)) { // we were successful
2350           assert(_collectorState == Precleaning, "Collector state should "
2351             "have changed");
2352         } else {
2353           assert(_foregroundGCIsActive, "Internal state inconsistency");
2354         }
2355         break;
2356       case Precleaning:
2357         if (UseAdaptiveSizePolicy) {
2358           size_policy()->concurrent_precleaning_begin();
2359         }
2360         // marking from roots in markFromRoots has been completed
2361         preclean();
2362         if (UseAdaptiveSizePolicy) {
2363           size_policy()->concurrent_precleaning_end();
2364         }
2365         assert(_collectorState == AbortablePreclean ||
2366                _collectorState == FinalMarking,
2367                "Collector state should have changed");
2368         break;
2369       case AbortablePreclean:
2370         if (UseAdaptiveSizePolicy) {
2371         size_policy()->concurrent_phases_resume();
2372         }
2373         abortable_preclean();
2374         if (UseAdaptiveSizePolicy) {
2375           size_policy()->concurrent_precleaning_end();
2376         }
2377         assert(_collectorState == FinalMarking, "Collector state should "
2378           "have changed");
2379         break;
2380       case FinalMarking:
2381         {
2382           ReleaseForegroundGC x(this);
2383 
2384           VM_CMS_Final_Remark final_remark_op(this);
2385           VMThread::execute(&final_remark_op);
2386         }
2387         assert(_foregroundGCShouldWait, "block post-condition");
2388         break;
2389       case Sweeping:
2390         if (UseAdaptiveSizePolicy) {
2391           size_policy()->concurrent_sweeping_begin();
2392         }
2393         // final marking in checkpointRootsFinal has been completed
2394         sweep(true);
2395         assert(_collectorState == Resizing, "Collector state change "
2396           "to Resizing must be done under the free_list_lock");
2397         _full_gcs_since_conc_gc = 0;
2398 
2399         // Stop the timers for adaptive size policy for the concurrent phases
2400         if (UseAdaptiveSizePolicy) {
2401           size_policy()->concurrent_sweeping_end();
2402           size_policy()->concurrent_phases_end(gch->gc_cause(),
2403                                              gch->prev_gen(_cmsGen)->capacity(),
2404                                              _cmsGen->free());
2405         }
2406 
2407       case Resizing: {
2408         // Sweeping has been completed...
2409         // At this point the background collection has completed.
2410         // Don't move the call to compute_new_size() down
2411         // into code that might be executed if the background
2412         // collection was preempted.
2413         {
2414           ReleaseForegroundGC x(this);   // unblock FG collection
2415           MutexLockerEx       y(Heap_lock, Mutex::_no_safepoint_check_flag);
2416           CMSTokenSync        z(true);   // not strictly needed.
2417           if (_collectorState == Resizing) {
2418             compute_new_size();
2419             save_heap_summary();
2420             _collectorState = Resetting;
2421           } else {
2422             assert(_collectorState == Idling, "The state should only change"
2423                    " because the foreground collector has finished the collection");
2424           }
2425         }
2426         break;
2427       }
2428       case Resetting:
2429         // CMS heap resizing has been completed
2430         reset(true);
2431         assert(_collectorState == Idling, "Collector state should "
2432           "have changed");
2433 
2434         MetaspaceGC::set_should_concurrent_collect(false);
2435 
2436         stats().record_cms_end();
2437         // Don't move the concurrent_phases_end() and compute_new_size()
2438         // calls to here because a preempted background collection
2439         // has it's state set to "Resetting".
2440         break;
2441       case Idling:
2442       default:
2443         ShouldNotReachHere();
2444         break;
2445     }
2446     if (TraceCMSState) {
2447       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2448         Thread::current(), _collectorState);
2449     }
2450     assert(_foregroundGCShouldWait, "block post-condition");
2451   }
2452 
2453   // Should this be in gc_epilogue?
2454   collector_policy()->counters()->update_counters();
2455 
2456   {
2457     // Clear _foregroundGCShouldWait and, in the event that the
2458     // foreground collector is waiting, notify it, before
2459     // returning.
2460     MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2461     _foregroundGCShouldWait = false;
2462     if (_foregroundGCIsActive) {
2463       CGC_lock->notify();
2464     }
2465     assert(!ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2466            "Possible deadlock");
2467   }
2468   if (TraceCMSState) {
2469     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2470       " exiting collection CMS state %d",
2471       Thread::current(), _collectorState);
2472   }
2473   if (PrintGC && Verbose) {
2474     _cmsGen->print_heap_change(prev_used);
2475   }
2476 }
2477 
2478 void CMSCollector::register_foreground_gc_start(GCCause::Cause cause) {
2479   if (!_cms_start_registered) {
2480     register_gc_start(cause);
2481   }
2482 }
2483 
2484 void CMSCollector::register_gc_start(GCCause::Cause cause) {
2485   _cms_start_registered = true;
2486   _gc_timer_cm->register_gc_start();
2487   _gc_tracer_cm->report_gc_start(cause, _gc_timer_cm->gc_start());
2488 }
2489 
2490 void CMSCollector::register_gc_end() {
2491   if (_cms_start_registered) {
2492     report_heap_summary(GCWhen::AfterGC);
2493 
2494     _gc_timer_cm->register_gc_end();
2495     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2496     _cms_start_registered = false;
2497   }
2498 }
2499 
2500 void CMSCollector::save_heap_summary() {
2501   GenCollectedHeap* gch = GenCollectedHeap::heap();
2502   _last_heap_summary = gch->create_heap_summary();
2503   _last_metaspace_summary = gch->create_metaspace_summary();
2504 }
2505 
2506 void CMSCollector::report_heap_summary(GCWhen::Type when) {
2507   _gc_tracer_cm->report_gc_heap_summary(when, _last_heap_summary, _last_metaspace_summary);
2508 }
2509 
2510 void CMSCollector::collect_in_foreground(bool clear_all_soft_refs, GCCause::Cause cause) {
2511   assert(_foregroundGCIsActive && !_foregroundGCShouldWait,
2512          "Foreground collector should be waiting, not executing");
2513   assert(Thread::current()->is_VM_thread(), "A foreground collection"
2514     "may only be done by the VM Thread with the world stopped");
2515   assert(ConcurrentMarkSweepThread::vm_thread_has_cms_token(),
2516          "VM thread should have CMS token");
2517 
2518   NOT_PRODUCT(GCTraceTime t("CMS:MS (foreground) ", PrintGCDetails && Verbose,
2519     true, NULL);)
2520   if (UseAdaptiveSizePolicy) {
2521     size_policy()->ms_collection_begin();
2522   }
2523   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact);
2524 
2525   HandleMark hm;  // Discard invalid handles created during verification
2526 
2527   if (VerifyBeforeGC &&
2528       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2529     Universe::verify();
2530   }
2531 
2532   // Snapshot the soft reference policy to be used in this collection cycle.
2533   ref_processor()->setup_policy(clear_all_soft_refs);
2534 
2535   bool init_mark_was_synchronous = false; // until proven otherwise
2536   while (_collectorState != Idling) {
2537     if (TraceCMSState) {
2538       gclog_or_tty->print_cr("Thread " INTPTR_FORMAT " in CMS state %d",
2539         Thread::current(), _collectorState);
2540     }
2541     switch (_collectorState) {
2542       case InitialMarking:
2543         register_foreground_gc_start(cause);
2544         init_mark_was_synchronous = true;  // fact to be exploited in re-mark
2545         checkpointRootsInitial(false);
2546         assert(_collectorState == Marking, "Collector state should have changed"
2547           " within checkpointRootsInitial()");
2548         break;
2549       case Marking:
2550         // initial marking in checkpointRootsInitialWork has been completed
2551         if (VerifyDuringGC &&
2552             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2553           Universe::verify("Verify before initial mark: ");
2554         }
2555         {
2556           bool res = markFromRoots(false);
2557           assert(res && _collectorState == FinalMarking, "Collector state should "
2558             "have changed");
2559           break;
2560         }
2561       case FinalMarking:
2562         if (VerifyDuringGC &&
2563             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2564           Universe::verify("Verify before re-mark: ");
2565         }
2566         checkpointRootsFinal(false, clear_all_soft_refs,
2567                              init_mark_was_synchronous);
2568         assert(_collectorState == Sweeping, "Collector state should not "
2569           "have changed within checkpointRootsFinal()");
2570         break;
2571       case Sweeping:
2572         // final marking in checkpointRootsFinal has been completed
2573         if (VerifyDuringGC &&
2574             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2575           Universe::verify("Verify before sweep: ");
2576         }
2577         sweep(false);
2578         assert(_collectorState == Resizing, "Incorrect state");
2579         break;
2580       case Resizing: {
2581         // Sweeping has been completed; the actual resize in this case
2582         // is done separately; nothing to be done in this state.
2583         _collectorState = Resetting;
2584         break;
2585       }
2586       case Resetting:
2587         // The heap has been resized.
2588         if (VerifyDuringGC &&
2589             GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2590           Universe::verify("Verify before reset: ");
2591         }
2592         save_heap_summary();
2593         reset(false);
2594         assert(_collectorState == Idling, "Collector state should "
2595           "have changed");
2596         break;
2597       case Precleaning:
2598       case AbortablePreclean:
2599         // Elide the preclean phase
2600         _collectorState = FinalMarking;
2601         break;
2602       default:
2603         ShouldNotReachHere();
2604     }
2605     if (TraceCMSState) {
2606       gclog_or_tty->print_cr("  Thread " INTPTR_FORMAT " done - next CMS state %d",
2607         Thread::current(), _collectorState);
2608     }
2609   }
2610 
2611   if (UseAdaptiveSizePolicy) {
2612     GenCollectedHeap* gch = GenCollectedHeap::heap();
2613     size_policy()->ms_collection_end(gch->gc_cause());
2614   }
2615 
2616   if (VerifyAfterGC &&
2617       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
2618     Universe::verify();
2619   }
2620   if (TraceCMSState) {
2621     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT
2622       " exiting collection CMS state %d",
2623       Thread::current(), _collectorState);
2624   }
2625 }
2626 
2627 bool CMSCollector::waitForForegroundGC() {
2628   bool res = false;
2629   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
2630          "CMS thread should have CMS token");
2631   // Block the foreground collector until the
2632   // background collectors decides whether to
2633   // yield.
2634   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
2635   _foregroundGCShouldWait = true;
2636   if (_foregroundGCIsActive) {
2637     // The background collector yields to the
2638     // foreground collector and returns a value
2639     // indicating that it has yielded.  The foreground
2640     // collector can proceed.
2641     res = true;
2642     _foregroundGCShouldWait = false;
2643     ConcurrentMarkSweepThread::clear_CMS_flag(
2644       ConcurrentMarkSweepThread::CMS_cms_has_token);
2645     ConcurrentMarkSweepThread::set_CMS_flag(
2646       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2647     // Get a possibly blocked foreground thread going
2648     CGC_lock->notify();
2649     if (TraceCMSState) {
2650       gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " waiting at CMS state %d",
2651         Thread::current(), _collectorState);
2652     }
2653     while (_foregroundGCIsActive) {
2654       CGC_lock->wait(Mutex::_no_safepoint_check_flag);
2655     }
2656     ConcurrentMarkSweepThread::set_CMS_flag(
2657       ConcurrentMarkSweepThread::CMS_cms_has_token);
2658     ConcurrentMarkSweepThread::clear_CMS_flag(
2659       ConcurrentMarkSweepThread::CMS_cms_wants_token);
2660   }
2661   if (TraceCMSState) {
2662     gclog_or_tty->print_cr("CMS Thread " INTPTR_FORMAT " continuing at CMS state %d",
2663       Thread::current(), _collectorState);
2664   }
2665   return res;
2666 }
2667 
2668 // Because of the need to lock the free lists and other structures in
2669 // the collector, common to all the generations that the collector is
2670 // collecting, we need the gc_prologues of individual CMS generations
2671 // delegate to their collector. It may have been simpler had the
2672 // current infrastructure allowed one to call a prologue on a
2673 // collector. In the absence of that we have the generation's
2674 // prologue delegate to the collector, which delegates back
2675 // some "local" work to a worker method in the individual generations
2676 // that it's responsible for collecting, while itself doing any
2677 // work common to all generations it's responsible for. A similar
2678 // comment applies to the  gc_epilogue()'s.
2679 // The role of the varaible _between_prologue_and_epilogue is to
2680 // enforce the invocation protocol.
2681 void CMSCollector::gc_prologue(bool full) {
2682   // Call gc_prologue_work() for the CMSGen
2683   // we are responsible for.
2684 
2685   // The following locking discipline assumes that we are only called
2686   // when the world is stopped.
2687   assert(SafepointSynchronize::is_at_safepoint(), "world is stopped assumption");
2688 
2689   // The CMSCollector prologue must call the gc_prologues for the
2690   // "generations" that it's responsible
2691   // for.
2692 
2693   assert(   Thread::current()->is_VM_thread()
2694          || (   CMSScavengeBeforeRemark
2695              && Thread::current()->is_ConcurrentGC_thread()),
2696          "Incorrect thread type for prologue execution");
2697 
2698   if (_between_prologue_and_epilogue) {
2699     // We have already been invoked; this is a gc_prologue delegation
2700     // from yet another CMS generation that we are responsible for, just
2701     // ignore it since all relevant work has already been done.
2702     return;
2703   }
2704 
2705   // set a bit saying prologue has been called; cleared in epilogue
2706   _between_prologue_and_epilogue = true;
2707   // Claim locks for common data structures, then call gc_prologue_work()
2708   // for each CMSGen.
2709 
2710   getFreelistLocks();   // gets free list locks on constituent spaces
2711   bitMapLock()->lock_without_safepoint_check();
2712 
2713   // Should call gc_prologue_work() for all cms gens we are responsible for
2714   bool duringMarking =    _collectorState >= Marking
2715                          && _collectorState < Sweeping;
2716 
2717   // The young collections clear the modified oops state, which tells if
2718   // there are any modified oops in the class. The remark phase also needs
2719   // that information. Tell the young collection to save the union of all
2720   // modified klasses.
2721   if (duringMarking) {
2722     _ct->klass_rem_set()->set_accumulate_modified_oops(true);
2723   }
2724 
2725   bool registerClosure = duringMarking;
2726 
2727   ModUnionClosure* muc = CollectedHeap::use_parallel_gc_threads() ?
2728                                                &_modUnionClosurePar
2729                                                : &_modUnionClosure;
2730   _cmsGen->gc_prologue_work(full, registerClosure, muc);
2731 
2732   if (!full) {
2733     stats().record_gc0_begin();
2734   }
2735 }
2736 
2737 void ConcurrentMarkSweepGeneration::gc_prologue(bool full) {
2738 
2739   _capacity_at_prologue = capacity();
2740   _used_at_prologue = used();
2741 
2742   // Delegate to CMScollector which knows how to coordinate between
2743   // this and any other CMS generations that it is responsible for
2744   // collecting.
2745   collector()->gc_prologue(full);
2746 }
2747 
2748 // This is a "private" interface for use by this generation's CMSCollector.
2749 // Not to be called directly by any other entity (for instance,
2750 // GenCollectedHeap, which calls the "public" gc_prologue method above).
2751 void ConcurrentMarkSweepGeneration::gc_prologue_work(bool full,
2752   bool registerClosure, ModUnionClosure* modUnionClosure) {
2753   assert(!incremental_collection_failed(), "Shouldn't be set yet");
2754   assert(cmsSpace()->preconsumptionDirtyCardClosure() == NULL,
2755     "Should be NULL");
2756   if (registerClosure) {
2757     cmsSpace()->setPreconsumptionDirtyCardClosure(modUnionClosure);
2758   }
2759   cmsSpace()->gc_prologue();
2760   // Clear stat counters
2761   NOT_PRODUCT(
2762     assert(_numObjectsPromoted == 0, "check");
2763     assert(_numWordsPromoted   == 0, "check");
2764     if (Verbose && PrintGC) {
2765       gclog_or_tty->print("Allocated "SIZE_FORMAT" objects, "
2766                           SIZE_FORMAT" bytes concurrently",
2767       _numObjectsAllocated, _numWordsAllocated*sizeof(HeapWord));
2768     }
2769     _numObjectsAllocated = 0;
2770     _numWordsAllocated   = 0;
2771   )
2772 }
2773 
2774 void CMSCollector::gc_epilogue(bool full) {
2775   // The following locking discipline assumes that we are only called
2776   // when the world is stopped.
2777   assert(SafepointSynchronize::is_at_safepoint(),
2778          "world is stopped assumption");
2779 
2780   // Currently the CMS epilogue (see CompactibleFreeListSpace) merely checks
2781   // if linear allocation blocks need to be appropriately marked to allow the
2782   // the blocks to be parsable. We also check here whether we need to nudge the
2783   // CMS collector thread to start a new cycle (if it's not already active).
2784   assert(   Thread::current()->is_VM_thread()
2785          || (   CMSScavengeBeforeRemark
2786              && Thread::current()->is_ConcurrentGC_thread()),
2787          "Incorrect thread type for epilogue execution");
2788 
2789   if (!_between_prologue_and_epilogue) {
2790     // We have already been invoked; this is a gc_epilogue delegation
2791     // from yet another CMS generation that we are responsible for, just
2792     // ignore it since all relevant work has already been done.
2793     return;
2794   }
2795   assert(haveFreelistLocks(), "must have freelist locks");
2796   assert_lock_strong(bitMapLock());
2797 
2798   _ct->klass_rem_set()->set_accumulate_modified_oops(false);
2799 
2800   _cmsGen->gc_epilogue_work(full);
2801 
2802   if (_collectorState == AbortablePreclean || _collectorState == Precleaning) {
2803     // in case sampling was not already enabled, enable it
2804     _start_sampling = true;
2805   }
2806   // reset _eden_chunk_array so sampling starts afresh
2807   _eden_chunk_index = 0;
2808 
2809   size_t cms_used   = _cmsGen->cmsSpace()->used();
2810 
2811   // update performance counters - this uses a special version of
2812   // update_counters() that allows the utilization to be passed as a
2813   // parameter, avoiding multiple calls to used().
2814   //
2815   _cmsGen->update_counters(cms_used);
2816 
2817   if (CMSIncrementalMode) {
2818     icms_update_allocation_limits();
2819   }
2820 
2821   bitMapLock()->unlock();
2822   releaseFreelistLocks();
2823 
2824   if (!CleanChunkPoolAsync) {
2825     Chunk::clean_chunk_pool();
2826   }
2827 
2828   set_did_compact(false);
2829   _between_prologue_and_epilogue = false;  // ready for next cycle
2830 }
2831 
2832 void ConcurrentMarkSweepGeneration::gc_epilogue(bool full) {
2833   collector()->gc_epilogue(full);
2834 
2835   // Also reset promotion tracking in par gc thread states.
2836   if (CollectedHeap::use_parallel_gc_threads()) {
2837     for (uint i = 0; i < ParallelGCThreads; i++) {
2838       _par_gc_thread_states[i]->promo.stopTrackingPromotions(i);
2839     }
2840   }
2841 }
2842 
2843 void ConcurrentMarkSweepGeneration::gc_epilogue_work(bool full) {
2844   assert(!incremental_collection_failed(), "Should have been cleared");
2845   cmsSpace()->setPreconsumptionDirtyCardClosure(NULL);
2846   cmsSpace()->gc_epilogue();
2847     // Print stat counters
2848   NOT_PRODUCT(
2849     assert(_numObjectsAllocated == 0, "check");
2850     assert(_numWordsAllocated == 0, "check");
2851     if (Verbose && PrintGC) {
2852       gclog_or_tty->print("Promoted "SIZE_FORMAT" objects, "
2853                           SIZE_FORMAT" bytes",
2854                  _numObjectsPromoted, _numWordsPromoted*sizeof(HeapWord));
2855     }
2856     _numObjectsPromoted = 0;
2857     _numWordsPromoted   = 0;
2858   )
2859 
2860   if (PrintGC && Verbose) {
2861     // Call down the chain in contiguous_available needs the freelistLock
2862     // so print this out before releasing the freeListLock.
2863     gclog_or_tty->print(" Contiguous available "SIZE_FORMAT" bytes ",
2864                         contiguous_available());
2865   }
2866 }
2867 
2868 #ifndef PRODUCT
2869 bool CMSCollector::have_cms_token() {
2870   Thread* thr = Thread::current();
2871   if (thr->is_VM_thread()) {
2872     return ConcurrentMarkSweepThread::vm_thread_has_cms_token();
2873   } else if (thr->is_ConcurrentGC_thread()) {
2874     return ConcurrentMarkSweepThread::cms_thread_has_cms_token();
2875   } else if (thr->is_GC_task_thread()) {
2876     return ConcurrentMarkSweepThread::vm_thread_has_cms_token() &&
2877            ParGCRareEvent_lock->owned_by_self();
2878   }
2879   return false;
2880 }
2881 #endif
2882 
2883 // Check reachability of the given heap address in CMS generation,
2884 // treating all other generations as roots.
2885 bool CMSCollector::is_cms_reachable(HeapWord* addr) {
2886   // We could "guarantee" below, rather than assert, but i'll
2887   // leave these as "asserts" so that an adventurous debugger
2888   // could try this in the product build provided some subset of
2889   // the conditions were met, provided they were intersted in the
2890   // results and knew that the computation below wouldn't interfere
2891   // with other concurrent computations mutating the structures
2892   // being read or written.
2893   assert(SafepointSynchronize::is_at_safepoint(),
2894          "Else mutations in object graph will make answer suspect");
2895   assert(have_cms_token(), "Should hold cms token");
2896   assert(haveFreelistLocks(), "must hold free list locks");
2897   assert_lock_strong(bitMapLock());
2898 
2899   // Clear the marking bit map array before starting, but, just
2900   // for kicks, first report if the given address is already marked
2901   gclog_or_tty->print_cr("Start: Address 0x%x is%s marked", addr,
2902                 _markBitMap.isMarked(addr) ? "" : " not");
2903 
2904   if (verify_after_remark()) {
2905     MutexLockerEx x(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2906     bool result = verification_mark_bm()->isMarked(addr);
2907     gclog_or_tty->print_cr("TransitiveMark: Address 0x%x %s marked", addr,
2908                            result ? "IS" : "is NOT");
2909     return result;
2910   } else {
2911     gclog_or_tty->print_cr("Could not compute result");
2912     return false;
2913   }
2914 }
2915 
2916 
2917 void
2918 CMSCollector::print_on_error(outputStream* st) {
2919   CMSCollector* collector = ConcurrentMarkSweepGeneration::_collector;
2920   if (collector != NULL) {
2921     CMSBitMap* bitmap = &collector->_markBitMap;
2922     st->print_cr("Marking Bits: (CMSBitMap*) " PTR_FORMAT, bitmap);
2923     bitmap->print_on_error(st, " Bits: ");
2924 
2925     st->cr();
2926 
2927     CMSBitMap* mut_bitmap = &collector->_modUnionTable;
2928     st->print_cr("Mod Union Table: (CMSBitMap*) " PTR_FORMAT, mut_bitmap);
2929     mut_bitmap->print_on_error(st, " Bits: ");
2930   }
2931 }
2932 
2933 ////////////////////////////////////////////////////////
2934 // CMS Verification Support
2935 ////////////////////////////////////////////////////////
2936 // Following the remark phase, the following invariant
2937 // should hold -- each object in the CMS heap which is
2938 // marked in markBitMap() should be marked in the verification_mark_bm().
2939 
2940 class VerifyMarkedClosure: public BitMapClosure {
2941   CMSBitMap* _marks;
2942   bool       _failed;
2943 
2944  public:
2945   VerifyMarkedClosure(CMSBitMap* bm): _marks(bm), _failed(false) {}
2946 
2947   bool do_bit(size_t offset) {
2948     HeapWord* addr = _marks->offsetToHeapWord(offset);
2949     if (!_marks->isMarked(addr)) {
2950       oop(addr)->print_on(gclog_or_tty);
2951       gclog_or_tty->print_cr(" ("INTPTR_FORMAT" should have been marked)", addr);
2952       _failed = true;
2953     }
2954     return true;
2955   }
2956 
2957   bool failed() { return _failed; }
2958 };
2959 
2960 bool CMSCollector::verify_after_remark(bool silent) {
2961   if (!silent) gclog_or_tty->print(" [Verifying CMS Marking... ");
2962   MutexLockerEx ml(verification_mark_bm()->lock(), Mutex::_no_safepoint_check_flag);
2963   static bool init = false;
2964 
2965   assert(SafepointSynchronize::is_at_safepoint(),
2966          "Else mutations in object graph will make answer suspect");
2967   assert(have_cms_token(),
2968          "Else there may be mutual interference in use of "
2969          " verification data structures");
2970   assert(_collectorState > Marking && _collectorState <= Sweeping,
2971          "Else marking info checked here may be obsolete");
2972   assert(haveFreelistLocks(), "must hold free list locks");
2973   assert_lock_strong(bitMapLock());
2974 
2975 
2976   // Allocate marking bit map if not already allocated
2977   if (!init) { // first time
2978     if (!verification_mark_bm()->allocate(_span)) {
2979       return false;
2980     }
2981     init = true;
2982   }
2983 
2984   assert(verification_mark_stack()->isEmpty(), "Should be empty");
2985 
2986   // Turn off refs discovery -- so we will be tracing through refs.
2987   // This is as intended, because by this time
2988   // GC must already have cleared any refs that need to be cleared,
2989   // and traced those that need to be marked; moreover,
2990   // the marking done here is not going to intefere in any
2991   // way with the marking information used by GC.
2992   NoRefDiscovery no_discovery(ref_processor());
2993 
2994   COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
2995 
2996   // Clear any marks from a previous round
2997   verification_mark_bm()->clear_all();
2998   assert(verification_mark_stack()->isEmpty(), "markStack should be empty");
2999   verify_work_stacks_empty();
3000 
3001   GenCollectedHeap* gch = GenCollectedHeap::heap();
3002   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3003   // Update the saved marks which may affect the root scans.
3004   gch->save_marks();
3005 
3006   if (CMSRemarkVerifyVariant == 1) {
3007     // In this first variant of verification, we complete
3008     // all marking, then check if the new marks-verctor is
3009     // a subset of the CMS marks-vector.
3010     verify_after_remark_work_1();
3011   } else if (CMSRemarkVerifyVariant == 2) {
3012     // In this second variant of verification, we flag an error
3013     // (i.e. an object reachable in the new marks-vector not reachable
3014     // in the CMS marks-vector) immediately, also indicating the
3015     // identify of an object (A) that references the unmarked object (B) --
3016     // presumably, a mutation to A failed to be picked up by preclean/remark?
3017     verify_after_remark_work_2();
3018   } else {
3019     warning("Unrecognized value %d for CMSRemarkVerifyVariant",
3020             CMSRemarkVerifyVariant);
3021   }
3022   if (!silent) gclog_or_tty->print(" done] ");
3023   return true;
3024 }
3025 
3026 void CMSCollector::verify_after_remark_work_1() {
3027   ResourceMark rm;
3028   HandleMark  hm;
3029   GenCollectedHeap* gch = GenCollectedHeap::heap();
3030 
3031   // Get a clear set of claim bits for the strong roots processing to work with.
3032   ClassLoaderDataGraph::clear_claimed_marks();
3033 
3034   // Mark from roots one level into CMS
3035   MarkRefsIntoClosure notOlder(_span, verification_mark_bm());
3036   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3037 
3038   gch->gen_process_strong_roots(_cmsGen->level(),
3039                                 true,   // younger gens are roots
3040                                 true,   // activate StrongRootsScope
3041                                 false,  // not scavenging
3042                                 SharedHeap::ScanningOption(roots_scanning_options()),
3043                                 &notOlder,
3044                                 true,   // walk code active on stacks
3045                                 NULL,
3046                                 NULL); // SSS: Provide correct closure
3047 
3048   // Now mark from the roots
3049   MarkFromRootsClosure markFromRootsClosure(this, _span,
3050     verification_mark_bm(), verification_mark_stack(),
3051     false /* don't yield */, true /* verifying */);
3052   assert(_restart_addr == NULL, "Expected pre-condition");
3053   verification_mark_bm()->iterate(&markFromRootsClosure);
3054   while (_restart_addr != NULL) {
3055     // Deal with stack overflow: by restarting at the indicated
3056     // address.
3057     HeapWord* ra = _restart_addr;
3058     markFromRootsClosure.reset(ra);
3059     _restart_addr = NULL;
3060     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3061   }
3062   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3063   verify_work_stacks_empty();
3064 
3065   // Marking completed -- now verify that each bit marked in
3066   // verification_mark_bm() is also marked in markBitMap(); flag all
3067   // errors by printing corresponding objects.
3068   VerifyMarkedClosure vcl(markBitMap());
3069   verification_mark_bm()->iterate(&vcl);
3070   if (vcl.failed()) {
3071     gclog_or_tty->print("Verification failed");
3072     Universe::heap()->print_on(gclog_or_tty);
3073     fatal("CMS: failed marking verification after remark");
3074   }
3075 }
3076 
3077 class VerifyKlassOopsKlassClosure : public KlassClosure {
3078   class VerifyKlassOopsClosure : public OopClosure {
3079     CMSBitMap* _bitmap;
3080    public:
3081     VerifyKlassOopsClosure(CMSBitMap* bitmap) : _bitmap(bitmap) { }
3082     void do_oop(oop* p)       { guarantee(*p == NULL || _bitmap->isMarked((HeapWord*) *p), "Should be marked"); }
3083     void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3084   } _oop_closure;
3085  public:
3086   VerifyKlassOopsKlassClosure(CMSBitMap* bitmap) : _oop_closure(bitmap) {}
3087   void do_klass(Klass* k) {
3088     k->oops_do(&_oop_closure);
3089   }
3090 };
3091 
3092 void CMSCollector::verify_after_remark_work_2() {
3093   ResourceMark rm;
3094   HandleMark  hm;
3095   GenCollectedHeap* gch = GenCollectedHeap::heap();
3096 
3097   // Get a clear set of claim bits for the strong roots processing to work with.
3098   ClassLoaderDataGraph::clear_claimed_marks();
3099 
3100   // Mark from roots one level into CMS
3101   MarkRefsIntoVerifyClosure notOlder(_span, verification_mark_bm(),
3102                                      markBitMap());
3103   CMKlassClosure klass_closure(&notOlder);
3104 
3105   gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3106   gch->gen_process_strong_roots(_cmsGen->level(),
3107                                 true,   // younger gens are roots
3108                                 true,   // activate StrongRootsScope
3109                                 false,  // not scavenging
3110                                 SharedHeap::ScanningOption(roots_scanning_options()),
3111                                 &notOlder,
3112                                 true,   // walk code active on stacks
3113                                 NULL,
3114                                 &klass_closure);
3115 
3116   // Now mark from the roots
3117   MarkFromRootsVerifyClosure markFromRootsClosure(this, _span,
3118     verification_mark_bm(), markBitMap(), verification_mark_stack());
3119   assert(_restart_addr == NULL, "Expected pre-condition");
3120   verification_mark_bm()->iterate(&markFromRootsClosure);
3121   while (_restart_addr != NULL) {
3122     // Deal with stack overflow: by restarting at the indicated
3123     // address.
3124     HeapWord* ra = _restart_addr;
3125     markFromRootsClosure.reset(ra);
3126     _restart_addr = NULL;
3127     verification_mark_bm()->iterate(&markFromRootsClosure, ra, _span.end());
3128   }
3129   assert(verification_mark_stack()->isEmpty(), "Should have been drained");
3130   verify_work_stacks_empty();
3131 
3132   VerifyKlassOopsKlassClosure verify_klass_oops(verification_mark_bm());
3133   ClassLoaderDataGraph::classes_do(&verify_klass_oops);
3134 
3135   // Marking completed -- now verify that each bit marked in
3136   // verification_mark_bm() is also marked in markBitMap(); flag all
3137   // errors by printing corresponding objects.
3138   VerifyMarkedClosure vcl(markBitMap());
3139   verification_mark_bm()->iterate(&vcl);
3140   assert(!vcl.failed(), "Else verification above should not have succeeded");
3141 }
3142 
3143 void ConcurrentMarkSweepGeneration::save_marks() {
3144   // delegate to CMS space
3145   cmsSpace()->save_marks();
3146   for (uint i = 0; i < ParallelGCThreads; i++) {
3147     _par_gc_thread_states[i]->promo.startTrackingPromotions();
3148   }
3149 }
3150 
3151 bool ConcurrentMarkSweepGeneration::no_allocs_since_save_marks() {
3152   return cmsSpace()->no_allocs_since_save_marks();
3153 }
3154 
3155 #define CMS_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix)    \
3156                                                                 \
3157 void ConcurrentMarkSweepGeneration::                            \
3158 oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) {   \
3159   cl->set_generation(this);                                     \
3160   cmsSpace()->oop_since_save_marks_iterate##nv_suffix(cl);      \
3161   cl->reset_generation();                                       \
3162   save_marks();                                                 \
3163 }
3164 
3165 ALL_SINCE_SAVE_MARKS_CLOSURES(CMS_SINCE_SAVE_MARKS_DEFN)
3166 
3167 void
3168 ConcurrentMarkSweepGeneration::younger_refs_iterate(OopsInGenClosure* cl) {
3169   cl->set_generation(this);
3170   younger_refs_in_space_iterate(_cmsSpace, cl);
3171   cl->reset_generation();
3172 }
3173 
3174 void
3175 ConcurrentMarkSweepGeneration::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
3176   if (freelistLock()->owned_by_self()) {
3177     Generation::oop_iterate(mr, cl);
3178   } else {
3179     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3180     Generation::oop_iterate(mr, cl);
3181   }
3182 }
3183 
3184 void
3185 ConcurrentMarkSweepGeneration::oop_iterate(ExtendedOopClosure* cl) {
3186   if (freelistLock()->owned_by_self()) {
3187     Generation::oop_iterate(cl);
3188   } else {
3189     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3190     Generation::oop_iterate(cl);
3191   }
3192 }
3193 
3194 void
3195 ConcurrentMarkSweepGeneration::object_iterate(ObjectClosure* cl) {
3196   if (freelistLock()->owned_by_self()) {
3197     Generation::object_iterate(cl);
3198   } else {
3199     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3200     Generation::object_iterate(cl);
3201   }
3202 }
3203 
3204 void
3205 ConcurrentMarkSweepGeneration::safe_object_iterate(ObjectClosure* cl) {
3206   if (freelistLock()->owned_by_self()) {
3207     Generation::safe_object_iterate(cl);
3208   } else {
3209     MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3210     Generation::safe_object_iterate(cl);
3211   }
3212 }
3213 
3214 void
3215 ConcurrentMarkSweepGeneration::post_compact() {
3216 }
3217 
3218 void
3219 ConcurrentMarkSweepGeneration::prepare_for_verify() {
3220   // Fix the linear allocation blocks to look like free blocks.
3221 
3222   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3223   // are not called when the heap is verified during universe initialization and
3224   // at vm shutdown.
3225   if (freelistLock()->owned_by_self()) {
3226     cmsSpace()->prepare_for_verify();
3227   } else {
3228     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3229     cmsSpace()->prepare_for_verify();
3230   }
3231 }
3232 
3233 void
3234 ConcurrentMarkSweepGeneration::verify() {
3235   // Locks are normally acquired/released in gc_prologue/gc_epilogue, but those
3236   // are not called when the heap is verified during universe initialization and
3237   // at vm shutdown.
3238   if (freelistLock()->owned_by_self()) {
3239     cmsSpace()->verify();
3240   } else {
3241     MutexLockerEx fll(freelistLock(), Mutex::_no_safepoint_check_flag);
3242     cmsSpace()->verify();
3243   }
3244 }
3245 
3246 void CMSCollector::verify() {
3247   _cmsGen->verify();
3248 }
3249 
3250 #ifndef PRODUCT
3251 bool CMSCollector::overflow_list_is_empty() const {
3252   assert(_num_par_pushes >= 0, "Inconsistency");
3253   if (_overflow_list == NULL) {
3254     assert(_num_par_pushes == 0, "Inconsistency");
3255   }
3256   return _overflow_list == NULL;
3257 }
3258 
3259 // The methods verify_work_stacks_empty() and verify_overflow_empty()
3260 // merely consolidate assertion checks that appear to occur together frequently.
3261 void CMSCollector::verify_work_stacks_empty() const {
3262   assert(_markStack.isEmpty(), "Marking stack should be empty");
3263   assert(overflow_list_is_empty(), "Overflow list should be empty");
3264 }
3265 
3266 void CMSCollector::verify_overflow_empty() const {
3267   assert(overflow_list_is_empty(), "Overflow list should be empty");
3268   assert(no_preserved_marks(), "No preserved marks");
3269 }
3270 #endif // PRODUCT
3271 
3272 // Decide if we want to enable class unloading as part of the
3273 // ensuing concurrent GC cycle. We will collect and
3274 // unload classes if it's the case that:
3275 // (1) an explicit gc request has been made and the flag
3276 //     ExplicitGCInvokesConcurrentAndUnloadsClasses is set, OR
3277 // (2) (a) class unloading is enabled at the command line, and
3278 //     (b) old gen is getting really full
3279 // NOTE: Provided there is no change in the state of the heap between
3280 // calls to this method, it should have idempotent results. Moreover,
3281 // its results should be monotonically increasing (i.e. going from 0 to 1,
3282 // but not 1 to 0) between successive calls between which the heap was
3283 // not collected. For the implementation below, it must thus rely on
3284 // the property that concurrent_cycles_since_last_unload()
3285 // will not decrease unless a collection cycle happened and that
3286 // _cmsGen->is_too_full() are
3287 // themselves also monotonic in that sense. See check_monotonicity()
3288 // below.
3289 void CMSCollector::update_should_unload_classes() {
3290   _should_unload_classes = false;
3291   // Condition 1 above
3292   if (_full_gc_requested && ExplicitGCInvokesConcurrentAndUnloadsClasses) {
3293     _should_unload_classes = true;
3294   } else if (CMSClassUnloadingEnabled) { // Condition 2.a above
3295     // Disjuncts 2.b.(i,ii,iii) above
3296     _should_unload_classes = (concurrent_cycles_since_last_unload() >=
3297                               CMSClassUnloadingMaxInterval)
3298                            || _cmsGen->is_too_full();
3299   }
3300 }
3301 
3302 bool ConcurrentMarkSweepGeneration::is_too_full() const {
3303   bool res = should_concurrent_collect();
3304   res = res && (occupancy() > (double)CMSIsTooFullPercentage/100.0);
3305   return res;
3306 }
3307 
3308 void CMSCollector::setup_cms_unloading_and_verification_state() {
3309   const  bool should_verify =   VerifyBeforeGC || VerifyAfterGC || VerifyDuringGC
3310                              || VerifyBeforeExit;
3311   const  int  rso           =   SharedHeap::SO_Strings | SharedHeap::SO_CodeCache;
3312 
3313   if (should_unload_classes()) {   // Should unload classes this cycle
3314     remove_root_scanning_option(rso);  // Shrink the root set appropriately
3315     set_verifying(should_verify);    // Set verification state for this cycle
3316     return;                            // Nothing else needs to be done at this time
3317   }
3318 
3319   // Not unloading classes this cycle
3320   assert(!should_unload_classes(), "Inconsitency!");
3321   if ((!verifying() || unloaded_classes_last_cycle()) && should_verify) {
3322     // Include symbols, strings and code cache elements to prevent their resurrection.
3323     add_root_scanning_option(rso);
3324     set_verifying(true);
3325   } else if (verifying() && !should_verify) {
3326     // We were verifying, but some verification flags got disabled.
3327     set_verifying(false);
3328     // Exclude symbols, strings and code cache elements from root scanning to
3329     // reduce IM and RM pauses.
3330     remove_root_scanning_option(rso);
3331   }
3332 }
3333 
3334 
3335 #ifndef PRODUCT
3336 HeapWord* CMSCollector::block_start(const void* p) const {
3337   const HeapWord* addr = (HeapWord*)p;
3338   if (_span.contains(p)) {
3339     if (_cmsGen->cmsSpace()->is_in_reserved(addr)) {
3340       return _cmsGen->cmsSpace()->block_start(p);
3341     }
3342   }
3343   return NULL;
3344 }
3345 #endif
3346 
3347 HeapWord*
3348 ConcurrentMarkSweepGeneration::expand_and_allocate(size_t word_size,
3349                                                    bool   tlab,
3350                                                    bool   parallel) {
3351   CMSSynchronousYieldRequest yr;
3352   assert(!tlab, "Can't deal with TLAB allocation");
3353   MutexLockerEx x(freelistLock(), Mutex::_no_safepoint_check_flag);
3354   expand(word_size*HeapWordSize, MinHeapDeltaBytes,
3355     CMSExpansionCause::_satisfy_allocation);
3356   if (GCExpandToAllocateDelayMillis > 0) {
3357     os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3358   }
3359   return have_lock_and_allocate(word_size, tlab);
3360 }
3361 
3362 // YSR: All of this generation expansion/shrinking stuff is an exact copy of
3363 // OneContigSpaceCardGeneration, which makes me wonder if we should move this
3364 // to CardGeneration and share it...
3365 bool ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes) {
3366   return CardGeneration::expand(bytes, expand_bytes);
3367 }
3368 
3369 void ConcurrentMarkSweepGeneration::expand(size_t bytes, size_t expand_bytes,
3370   CMSExpansionCause::Cause cause)
3371 {
3372 
3373   bool success = expand(bytes, expand_bytes);
3374 
3375   // remember why we expanded; this information is used
3376   // by shouldConcurrentCollect() when making decisions on whether to start
3377   // a new CMS cycle.
3378   if (success) {
3379     set_expansion_cause(cause);
3380     if (PrintGCDetails && Verbose) {
3381       gclog_or_tty->print_cr("Expanded CMS gen for %s",
3382         CMSExpansionCause::to_string(cause));
3383     }
3384   }
3385 }
3386 
3387 HeapWord* ConcurrentMarkSweepGeneration::expand_and_par_lab_allocate(CMSParGCThreadState* ps, size_t word_sz) {
3388   HeapWord* res = NULL;
3389   MutexLocker x(ParGCRareEvent_lock);
3390   while (true) {
3391     // Expansion by some other thread might make alloc OK now:
3392     res = ps->lab.alloc(word_sz);
3393     if (res != NULL) return res;
3394     // If there's not enough expansion space available, give up.
3395     if (_virtual_space.uncommitted_size() < (word_sz * HeapWordSize)) {
3396       return NULL;
3397     }
3398     // Otherwise, we try expansion.
3399     expand(word_sz*HeapWordSize, MinHeapDeltaBytes,
3400       CMSExpansionCause::_allocate_par_lab);
3401     // Now go around the loop and try alloc again;
3402     // A competing par_promote might beat us to the expansion space,
3403     // so we may go around the loop again if promotion fails agaion.
3404     if (GCExpandToAllocateDelayMillis > 0) {
3405       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3406     }
3407   }
3408 }
3409 
3410 
3411 bool ConcurrentMarkSweepGeneration::expand_and_ensure_spooling_space(
3412   PromotionInfo* promo) {
3413   MutexLocker x(ParGCRareEvent_lock);
3414   size_t refill_size_bytes = promo->refillSize() * HeapWordSize;
3415   while (true) {
3416     // Expansion by some other thread might make alloc OK now:
3417     if (promo->ensure_spooling_space()) {
3418       assert(promo->has_spooling_space(),
3419              "Post-condition of successful ensure_spooling_space()");
3420       return true;
3421     }
3422     // If there's not enough expansion space available, give up.
3423     if (_virtual_space.uncommitted_size() < refill_size_bytes) {
3424       return false;
3425     }
3426     // Otherwise, we try expansion.
3427     expand(refill_size_bytes, MinHeapDeltaBytes,
3428       CMSExpansionCause::_allocate_par_spooling_space);
3429     // Now go around the loop and try alloc again;
3430     // A competing allocation might beat us to the expansion space,
3431     // so we may go around the loop again if allocation fails again.
3432     if (GCExpandToAllocateDelayMillis > 0) {
3433       os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
3434     }
3435   }
3436 }
3437 
3438 
3439 void ConcurrentMarkSweepGeneration::shrink_by(size_t bytes) {
3440   assert_locked_or_safepoint(ExpandHeap_lock);
3441   // Shrink committed space
3442   _virtual_space.shrink_by(bytes);
3443   // Shrink space; this also shrinks the space's BOT
3444   _cmsSpace->set_end((HeapWord*) _virtual_space.high());
3445   size_t new_word_size = heap_word_size(_cmsSpace->capacity());
3446   // Shrink the shared block offset array
3447   _bts->resize(new_word_size);
3448   MemRegion mr(_cmsSpace->bottom(), new_word_size);
3449   // Shrink the card table
3450   Universe::heap()->barrier_set()->resize_covered_region(mr);
3451 
3452   if (Verbose && PrintGC) {
3453     size_t new_mem_size = _virtual_space.committed_size();
3454     size_t old_mem_size = new_mem_size + bytes;
3455     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3456                   name(), old_mem_size/K, new_mem_size/K);
3457   }
3458 }
3459 
3460 void ConcurrentMarkSweepGeneration::shrink(size_t bytes) {
3461   assert_locked_or_safepoint(Heap_lock);
3462   size_t size = ReservedSpace::page_align_size_down(bytes);
3463   // Only shrink if a compaction was done so that all the free space
3464   // in the generation is in a contiguous block at the end.
3465   if (size > 0 && did_compact()) {
3466     shrink_by(size);
3467   }
3468 }
3469 
3470 bool ConcurrentMarkSweepGeneration::grow_by(size_t bytes) {
3471   assert_locked_or_safepoint(Heap_lock);
3472   bool result = _virtual_space.expand_by(bytes);
3473   if (result) {
3474     size_t new_word_size =
3475       heap_word_size(_virtual_space.committed_size());
3476     MemRegion mr(_cmsSpace->bottom(), new_word_size);
3477     _bts->resize(new_word_size);  // resize the block offset shared array
3478     Universe::heap()->barrier_set()->resize_covered_region(mr);
3479     // Hmmmm... why doesn't CFLS::set_end verify locking?
3480     // This is quite ugly; FIX ME XXX
3481     _cmsSpace->assert_locked(freelistLock());
3482     _cmsSpace->set_end((HeapWord*)_virtual_space.high());
3483 
3484     // update the space and generation capacity counters
3485     if (UsePerfData) {
3486       _space_counters->update_capacity();
3487       _gen_counters->update_all();
3488     }
3489 
3490     if (Verbose && PrintGC) {
3491       size_t new_mem_size = _virtual_space.committed_size();
3492       size_t old_mem_size = new_mem_size - bytes;
3493       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
3494                     name(), old_mem_size/K, bytes/K, new_mem_size/K);
3495     }
3496   }
3497   return result;
3498 }
3499 
3500 bool ConcurrentMarkSweepGeneration::grow_to_reserved() {
3501   assert_locked_or_safepoint(Heap_lock);
3502   bool success = true;
3503   const size_t remaining_bytes = _virtual_space.uncommitted_size();
3504   if (remaining_bytes > 0) {
3505     success = grow_by(remaining_bytes);
3506     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
3507   }
3508   return success;
3509 }
3510 
3511 void ConcurrentMarkSweepGeneration::shrink_free_list_by(size_t bytes) {
3512   assert_locked_or_safepoint(Heap_lock);
3513   assert_lock_strong(freelistLock());
3514   if (PrintGCDetails && Verbose) {
3515     warning("Shrinking of CMS not yet implemented");
3516   }
3517   return;
3518 }
3519 
3520 
3521 // Simple ctor/dtor wrapper for accounting & timer chores around concurrent
3522 // phases.
3523 class CMSPhaseAccounting: public StackObj {
3524  public:
3525   CMSPhaseAccounting(CMSCollector *collector,
3526                      const char *phase,
3527                      bool print_cr = true);
3528   ~CMSPhaseAccounting();
3529 
3530  private:
3531   CMSCollector *_collector;
3532   const char *_phase;
3533   elapsedTimer _wallclock;
3534   bool _print_cr;
3535 
3536  public:
3537   // Not MT-safe; so do not pass around these StackObj's
3538   // where they may be accessed by other threads.
3539   jlong wallclock_millis() {
3540     assert(_wallclock.is_active(), "Wall clock should not stop");
3541     _wallclock.stop();  // to record time
3542     jlong ret = _wallclock.milliseconds();
3543     _wallclock.start(); // restart
3544     return ret;
3545   }
3546 };
3547 
3548 CMSPhaseAccounting::CMSPhaseAccounting(CMSCollector *collector,
3549                                        const char *phase,
3550                                        bool print_cr) :
3551   _collector(collector), _phase(phase), _print_cr(print_cr) {
3552 
3553   if (PrintCMSStatistics != 0) {
3554     _collector->resetYields();
3555   }
3556   if (PrintGCDetails) {
3557     gclog_or_tty->date_stamp(PrintGCDateStamps);
3558     gclog_or_tty->stamp(PrintGCTimeStamps);
3559     gclog_or_tty->print_cr("[%s-concurrent-%s-start]",
3560       _collector->cmsGen()->short_name(), _phase);
3561   }
3562   _collector->resetTimer();
3563   _wallclock.start();
3564   _collector->startTimer();
3565 }
3566 
3567 CMSPhaseAccounting::~CMSPhaseAccounting() {
3568   assert(_wallclock.is_active(), "Wall clock should not have stopped");
3569   _collector->stopTimer();
3570   _wallclock.stop();
3571   if (PrintGCDetails) {
3572     gclog_or_tty->date_stamp(PrintGCDateStamps);
3573     gclog_or_tty->stamp(PrintGCTimeStamps);
3574     gclog_or_tty->print("[%s-concurrent-%s: %3.3f/%3.3f secs]",
3575                  _collector->cmsGen()->short_name(),
3576                  _phase, _collector->timerValue(), _wallclock.seconds());
3577     if (_print_cr) {
3578       gclog_or_tty->print_cr("");
3579     }
3580     if (PrintCMSStatistics != 0) {
3581       gclog_or_tty->print_cr(" (CMS-concurrent-%s yielded %d times)", _phase,
3582                     _collector->yields());
3583     }
3584   }
3585 }
3586 
3587 // CMS work
3588 
3589 // The common parts of CMSParInitialMarkTask and CMSParRemarkTask.
3590 class CMSParMarkTask : public AbstractGangTask {
3591  protected:
3592   CMSCollector*     _collector;
3593   int               _n_workers;
3594   CMSParMarkTask(const char* name, CMSCollector* collector, int n_workers) :
3595       AbstractGangTask(name),
3596       _collector(collector),
3597       _n_workers(n_workers) {}
3598   // Work method in support of parallel rescan ... of young gen spaces
3599   void do_young_space_rescan(uint worker_id, OopsInGenClosure* cl,
3600                              ContiguousSpace* space,
3601                              HeapWord** chunk_array, size_t chunk_top);
3602   void work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl);
3603 };
3604 
3605 // Parallel initial mark task
3606 class CMSParInitialMarkTask: public CMSParMarkTask {
3607  public:
3608   CMSParInitialMarkTask(CMSCollector* collector, int n_workers) :
3609       CMSParMarkTask("Scan roots and young gen for initial mark in parallel",
3610                      collector, n_workers) {}
3611   void work(uint worker_id);
3612 };
3613 
3614 // Checkpoint the roots into this generation from outside
3615 // this generation. [Note this initial checkpoint need only
3616 // be approximate -- we'll do a catch up phase subsequently.]
3617 void CMSCollector::checkpointRootsInitial(bool asynch) {
3618   assert(_collectorState == InitialMarking, "Wrong collector state");
3619   check_correct_thread_executing();
3620   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
3621 
3622   save_heap_summary();
3623   report_heap_summary(GCWhen::BeforeGC);
3624 
3625   ReferenceProcessor* rp = ref_processor();
3626   SpecializationStats::clear();
3627   assert(_restart_addr == NULL, "Control point invariant");
3628   if (asynch) {
3629     // acquire locks for subsequent manipulations
3630     MutexLockerEx x(bitMapLock(),
3631                     Mutex::_no_safepoint_check_flag);
3632     checkpointRootsInitialWork(asynch);
3633     // enable ("weak") refs discovery
3634     rp->enable_discovery(true /*verify_disabled*/, true /*check_no_refs*/);
3635     _collectorState = Marking;
3636   } else {
3637     // (Weak) Refs discovery: this is controlled from genCollectedHeap::do_collection
3638     // which recognizes if we are a CMS generation, and doesn't try to turn on
3639     // discovery; verify that they aren't meddling.
3640     assert(!rp->discovery_is_atomic(),
3641            "incorrect setting of discovery predicate");
3642     assert(!rp->discovery_enabled(), "genCollectedHeap shouldn't control "
3643            "ref discovery for this generation kind");
3644     // already have locks
3645     checkpointRootsInitialWork(asynch);
3646     // now enable ("weak") refs discovery
3647     rp->enable_discovery(true /*verify_disabled*/, false /*verify_no_refs*/);
3648     _collectorState = Marking;
3649   }
3650   SpecializationStats::print();
3651 }
3652 
3653 void CMSCollector::checkpointRootsInitialWork(bool asynch) {
3654   assert(SafepointSynchronize::is_at_safepoint(), "world should be stopped");
3655   assert(_collectorState == InitialMarking, "just checking");
3656 
3657   // If there has not been a GC[n-1] since last GC[n] cycle completed,
3658   // precede our marking with a collection of all
3659   // younger generations to keep floating garbage to a minimum.
3660   // XXX: we won't do this for now -- it's an optimization to be done later.
3661 
3662   // already have locks
3663   assert_lock_strong(bitMapLock());
3664   assert(_markBitMap.isAllClear(), "was reset at end of previous cycle");
3665 
3666   // Setup the verification and class unloading state for this
3667   // CMS collection cycle.
3668   setup_cms_unloading_and_verification_state();
3669 
3670   NOT_PRODUCT(GCTraceTime t("\ncheckpointRootsInitialWork",
3671     PrintGCDetails && Verbose, true, _gc_timer_cm);)
3672   if (UseAdaptiveSizePolicy) {
3673     size_policy()->checkpoint_roots_initial_begin();
3674   }
3675 
3676   // Reset all the PLAB chunk arrays if necessary.
3677   if (_survivor_plab_array != NULL && !CMSPLABRecordAlways) {
3678     reset_survivor_plab_arrays();
3679   }
3680 
3681   ResourceMark rm;
3682   HandleMark  hm;
3683 
3684   FalseClosure falseClosure;
3685   // In the case of a synchronous collection, we will elide the
3686   // remark step, so it's important to catch all the nmethod oops
3687   // in this step.
3688   // The final 'true' flag to gen_process_strong_roots will ensure this.
3689   // If 'async' is true, we can relax the nmethod tracing.
3690   MarkRefsIntoClosure notOlder(_span, &_markBitMap);
3691   GenCollectedHeap* gch = GenCollectedHeap::heap();
3692 
3693   verify_work_stacks_empty();
3694   verify_overflow_empty();
3695 
3696   gch->ensure_parsability(false);  // fill TLABs, but no need to retire them
3697   // Update the saved marks which may affect the root scans.
3698   gch->save_marks();
3699 
3700   // weak reference processing has not started yet.
3701   ref_processor()->set_enqueuing_is_done(false);
3702 
3703   // Need to remember all newly created CLDs,
3704   // so that we can guarantee that the remark finds them.
3705   ClassLoaderDataGraph::remember_new_clds(true);
3706 
3707   // Whenever a CLD is found, it will be claimed before proceeding to mark
3708   // the klasses. The claimed marks need to be cleared before marking starts.
3709   ClassLoaderDataGraph::clear_claimed_marks();
3710 
3711   if (CMSPrintEdenSurvivorChunks) {
3712     print_eden_and_survivor_chunk_arrays();
3713   }
3714 
3715   {
3716     COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
3717     if (CMSParallelInitialMarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
3718       // The parallel version.
3719       FlexibleWorkGang* workers = gch->workers();
3720       assert(workers != NULL, "Need parallel worker threads.");
3721       int n_workers = workers->active_workers();
3722       CMSParInitialMarkTask tsk(this, n_workers);
3723       gch->set_par_threads(n_workers);
3724       initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
3725       if (n_workers > 1) {
3726         GenCollectedHeap::StrongRootsScope srs(gch);
3727         workers->run_task(&tsk);
3728       } else {
3729         GenCollectedHeap::StrongRootsScope srs(gch);
3730         tsk.work(0);
3731       }
3732       gch->set_par_threads(0);
3733     } else {
3734       // The serial version.
3735       CMKlassClosure klass_closure(&notOlder);
3736       gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
3737       gch->gen_process_strong_roots(_cmsGen->level(),
3738                                     true,   // younger gens are roots
3739                                     true,   // activate StrongRootsScope
3740                                     false,  // not scavenging
3741                                     SharedHeap::ScanningOption(roots_scanning_options()),
3742                                     &notOlder,
3743                                     true,   // walk all of code cache if (so & SO_CodeCache)
3744                                     NULL,
3745                                     &klass_closure);
3746     }
3747   }
3748 
3749   // Clear mod-union table; it will be dirtied in the prologue of
3750   // CMS generation per each younger generation collection.
3751 
3752   assert(_modUnionTable.isAllClear(),
3753        "Was cleared in most recent final checkpoint phase"
3754        " or no bits are set in the gc_prologue before the start of the next "
3755        "subsequent marking phase.");
3756 
3757   assert(_ct->klass_rem_set()->mod_union_is_clear(), "Must be");
3758 
3759   // Save the end of the used_region of the constituent generations
3760   // to be used to limit the extent of sweep in each generation.
3761   save_sweep_limits();
3762   if (UseAdaptiveSizePolicy) {
3763     size_policy()->checkpoint_roots_initial_end(gch->gc_cause());
3764   }
3765   verify_overflow_empty();
3766 }
3767 
3768 bool CMSCollector::markFromRoots(bool asynch) {
3769   // we might be tempted to assert that:
3770   // assert(asynch == !SafepointSynchronize::is_at_safepoint(),
3771   //        "inconsistent argument?");
3772   // However that wouldn't be right, because it's possible that
3773   // a safepoint is indeed in progress as a younger generation
3774   // stop-the-world GC happens even as we mark in this generation.
3775   assert(_collectorState == Marking, "inconsistent state?");
3776   check_correct_thread_executing();
3777   verify_overflow_empty();
3778 
3779   bool res;
3780   if (asynch) {
3781 
3782     // Start the timers for adaptive size policy for the concurrent phases
3783     // Do it here so that the foreground MS can use the concurrent
3784     // timer since a foreground MS might has the sweep done concurrently
3785     // or STW.
3786     if (UseAdaptiveSizePolicy) {
3787       size_policy()->concurrent_marking_begin();
3788     }
3789 
3790     // Weak ref discovery note: We may be discovering weak
3791     // refs in this generation concurrent (but interleaved) with
3792     // weak ref discovery by a younger generation collector.
3793 
3794     CMSTokenSyncWithLocks ts(true, bitMapLock());
3795     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
3796     CMSPhaseAccounting pa(this, "mark", !PrintGCDetails);
3797     res = markFromRootsWork(asynch);
3798     if (res) {
3799       _collectorState = Precleaning;
3800     } else { // We failed and a foreground collection wants to take over
3801       assert(_foregroundGCIsActive, "internal state inconsistency");
3802       assert(_restart_addr == NULL,  "foreground will restart from scratch");
3803       if (PrintGCDetails) {
3804         gclog_or_tty->print_cr("bailing out to foreground collection");
3805       }
3806     }
3807     if (UseAdaptiveSizePolicy) {
3808       size_policy()->concurrent_marking_end();
3809     }
3810   } else {
3811     assert(SafepointSynchronize::is_at_safepoint(),
3812            "inconsistent with asynch == false");
3813     if (UseAdaptiveSizePolicy) {
3814       size_policy()->ms_collection_marking_begin();
3815     }
3816     // already have locks
3817     res = markFromRootsWork(asynch);
3818     _collectorState = FinalMarking;
3819     if (UseAdaptiveSizePolicy) {
3820       GenCollectedHeap* gch = GenCollectedHeap::heap();
3821       size_policy()->ms_collection_marking_end(gch->gc_cause());
3822     }
3823   }
3824   verify_overflow_empty();
3825   return res;
3826 }
3827 
3828 bool CMSCollector::markFromRootsWork(bool asynch) {
3829   // iterate over marked bits in bit map, doing a full scan and mark
3830   // from these roots using the following algorithm:
3831   // . if oop is to the right of the current scan pointer,
3832   //   mark corresponding bit (we'll process it later)
3833   // . else (oop is to left of current scan pointer)
3834   //   push oop on marking stack
3835   // . drain the marking stack
3836 
3837   // Note that when we do a marking step we need to hold the
3838   // bit map lock -- recall that direct allocation (by mutators)
3839   // and promotion (by younger generation collectors) is also
3840   // marking the bit map. [the so-called allocate live policy.]
3841   // Because the implementation of bit map marking is not
3842   // robust wrt simultaneous marking of bits in the same word,
3843   // we need to make sure that there is no such interference
3844   // between concurrent such updates.
3845 
3846   // already have locks
3847   assert_lock_strong(bitMapLock());
3848 
3849   verify_work_stacks_empty();
3850   verify_overflow_empty();
3851   bool result = false;
3852   if (CMSConcurrentMTEnabled && ConcGCThreads > 0) {
3853     result = do_marking_mt(asynch);
3854   } else {
3855     result = do_marking_st(asynch);
3856   }
3857   return result;
3858 }
3859 
3860 // Forward decl
3861 class CMSConcMarkingTask;
3862 
3863 class CMSConcMarkingTerminator: public ParallelTaskTerminator {
3864   CMSCollector*       _collector;
3865   CMSConcMarkingTask* _task;
3866  public:
3867   virtual void yield();
3868 
3869   // "n_threads" is the number of threads to be terminated.
3870   // "queue_set" is a set of work queues of other threads.
3871   // "collector" is the CMS collector associated with this task terminator.
3872   // "yield" indicates whether we need the gang as a whole to yield.
3873   CMSConcMarkingTerminator(int n_threads, TaskQueueSetSuper* queue_set, CMSCollector* collector) :
3874     ParallelTaskTerminator(n_threads, queue_set),
3875     _collector(collector) { }
3876 
3877   void set_task(CMSConcMarkingTask* task) {
3878     _task = task;
3879   }
3880 };
3881 
3882 class CMSConcMarkingTerminatorTerminator: public TerminatorTerminator {
3883   CMSConcMarkingTask* _task;
3884  public:
3885   bool should_exit_termination();
3886   void set_task(CMSConcMarkingTask* task) {
3887     _task = task;
3888   }
3889 };
3890 
3891 // MT Concurrent Marking Task
3892 class CMSConcMarkingTask: public YieldingFlexibleGangTask {
3893   CMSCollector* _collector;
3894   int           _n_workers;                  // requested/desired # workers
3895   bool          _asynch;
3896   bool          _result;
3897   CompactibleFreeListSpace*  _cms_space;
3898   char          _pad_front[64];   // padding to ...
3899   HeapWord*     _global_finger;   // ... avoid sharing cache line
3900   char          _pad_back[64];
3901   HeapWord*     _restart_addr;
3902 
3903   //  Exposed here for yielding support
3904   Mutex* const _bit_map_lock;
3905 
3906   // The per thread work queues, available here for stealing
3907   OopTaskQueueSet*  _task_queues;
3908 
3909   // Termination (and yielding) support
3910   CMSConcMarkingTerminator _term;
3911   CMSConcMarkingTerminatorTerminator _term_term;
3912 
3913  public:
3914   CMSConcMarkingTask(CMSCollector* collector,
3915                  CompactibleFreeListSpace* cms_space,
3916                  bool asynch,
3917                  YieldingFlexibleWorkGang* workers,
3918                  OopTaskQueueSet* task_queues):
3919     YieldingFlexibleGangTask("Concurrent marking done multi-threaded"),
3920     _collector(collector),
3921     _cms_space(cms_space),
3922     _asynch(asynch), _n_workers(0), _result(true),
3923     _task_queues(task_queues),
3924     _term(_n_workers, task_queues, _collector),
3925     _bit_map_lock(collector->bitMapLock())
3926   {
3927     _requested_size = _n_workers;
3928     _term.set_task(this);
3929     _term_term.set_task(this);
3930     _restart_addr = _global_finger = _cms_space->bottom();
3931   }
3932 
3933 
3934   OopTaskQueueSet* task_queues()  { return _task_queues; }
3935 
3936   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
3937 
3938   HeapWord** global_finger_addr() { return &_global_finger; }
3939 
3940   CMSConcMarkingTerminator* terminator() { return &_term; }
3941 
3942   virtual void set_for_termination(int active_workers) {
3943     terminator()->reset_for_reuse(active_workers);
3944   }
3945 
3946   void work(uint worker_id);
3947   bool should_yield() {
3948     return    ConcurrentMarkSweepThread::should_yield()
3949            && !_collector->foregroundGCIsActive()
3950            && _asynch;
3951   }
3952 
3953   virtual void coordinator_yield();  // stuff done by coordinator
3954   bool result() { return _result; }
3955 
3956   void reset(HeapWord* ra) {
3957     assert(_global_finger >= _cms_space->end(),  "Postcondition of ::work(i)");
3958     _restart_addr = _global_finger = ra;
3959     _term.reset_for_reuse();
3960   }
3961 
3962   static bool get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
3963                                            OopTaskQueue* work_q);
3964 
3965  private:
3966   void do_scan_and_mark(int i, CompactibleFreeListSpace* sp);
3967   void do_work_steal(int i);
3968   void bump_global_finger(HeapWord* f);
3969 };
3970 
3971 bool CMSConcMarkingTerminatorTerminator::should_exit_termination() {
3972   assert(_task != NULL, "Error");
3973   return _task->yielding();
3974   // Note that we do not need the disjunct || _task->should_yield() above
3975   // because we want terminating threads to yield only if the task
3976   // is already in the midst of yielding, which happens only after at least one
3977   // thread has yielded.
3978 }
3979 
3980 void CMSConcMarkingTerminator::yield() {
3981   if (_task->should_yield()) {
3982     _task->yield();
3983   } else {
3984     ParallelTaskTerminator::yield();
3985   }
3986 }
3987 
3988 ////////////////////////////////////////////////////////////////
3989 // Concurrent Marking Algorithm Sketch
3990 ////////////////////////////////////////////////////////////////
3991 // Until all tasks exhausted (both spaces):
3992 // -- claim next available chunk
3993 // -- bump global finger via CAS
3994 // -- find first object that starts in this chunk
3995 //    and start scanning bitmap from that position
3996 // -- scan marked objects for oops
3997 // -- CAS-mark target, and if successful:
3998 //    . if target oop is above global finger (volatile read)
3999 //      nothing to do
4000 //    . if target oop is in chunk and above local finger
4001 //        then nothing to do
4002 //    . else push on work-queue
4003 // -- Deal with possible overflow issues:
4004 //    . local work-queue overflow causes stuff to be pushed on
4005 //      global (common) overflow queue
4006 //    . always first empty local work queue
4007 //    . then get a batch of oops from global work queue if any
4008 //    . then do work stealing
4009 // -- When all tasks claimed (both spaces)
4010 //    and local work queue empty,
4011 //    then in a loop do:
4012 //    . check global overflow stack; steal a batch of oops and trace
4013 //    . try to steal from other threads oif GOS is empty
4014 //    . if neither is available, offer termination
4015 // -- Terminate and return result
4016 //
4017 void CMSConcMarkingTask::work(uint worker_id) {
4018   elapsedTimer _timer;
4019   ResourceMark rm;
4020   HandleMark hm;
4021 
4022   DEBUG_ONLY(_collector->verify_overflow_empty();)
4023 
4024   // Before we begin work, our work queue should be empty
4025   assert(work_queue(worker_id)->size() == 0, "Expected to be empty");
4026   // Scan the bitmap covering _cms_space, tracing through grey objects.
4027   _timer.start();
4028   do_scan_and_mark(worker_id, _cms_space);
4029   _timer.stop();
4030   if (PrintCMSStatistics != 0) {
4031     gclog_or_tty->print_cr("Finished cms space scanning in %dth thread: %3.3f sec",
4032       worker_id, _timer.seconds());
4033       // XXX: need xxx/xxx type of notation, two timers
4034   }
4035 
4036   // ... do work stealing
4037   _timer.reset();
4038   _timer.start();
4039   do_work_steal(worker_id);
4040   _timer.stop();
4041   if (PrintCMSStatistics != 0) {
4042     gclog_or_tty->print_cr("Finished work stealing in %dth thread: %3.3f sec",
4043       worker_id, _timer.seconds());
4044       // XXX: need xxx/xxx type of notation, two timers
4045   }
4046   assert(_collector->_markStack.isEmpty(), "Should have been emptied");
4047   assert(work_queue(worker_id)->size() == 0, "Should have been emptied");
4048   // Note that under the current task protocol, the
4049   // following assertion is true even of the spaces
4050   // expanded since the completion of the concurrent
4051   // marking. XXX This will likely change under a strict
4052   // ABORT semantics.
4053   // After perm removal the comparison was changed to
4054   // greater than or equal to from strictly greater than.
4055   // Before perm removal the highest address sweep would
4056   // have been at the end of perm gen but now is at the
4057   // end of the tenured gen.
4058   assert(_global_finger >=  _cms_space->end(),
4059          "All tasks have been completed");
4060   DEBUG_ONLY(_collector->verify_overflow_empty();)
4061 }
4062 
4063 void CMSConcMarkingTask::bump_global_finger(HeapWord* f) {
4064   HeapWord* read = _global_finger;
4065   HeapWord* cur  = read;
4066   while (f > read) {
4067     cur = read;
4068     read = (HeapWord*) Atomic::cmpxchg_ptr(f, &_global_finger, cur);
4069     if (cur == read) {
4070       // our cas succeeded
4071       assert(_global_finger >= f, "protocol consistency");
4072       break;
4073     }
4074   }
4075 }
4076 
4077 // This is really inefficient, and should be redone by
4078 // using (not yet available) block-read and -write interfaces to the
4079 // stack and the work_queue. XXX FIX ME !!!
4080 bool CMSConcMarkingTask::get_work_from_overflow_stack(CMSMarkStack* ovflw_stk,
4081                                                       OopTaskQueue* work_q) {
4082   // Fast lock-free check
4083   if (ovflw_stk->length() == 0) {
4084     return false;
4085   }
4086   assert(work_q->size() == 0, "Shouldn't steal");
4087   MutexLockerEx ml(ovflw_stk->par_lock(),
4088                    Mutex::_no_safepoint_check_flag);
4089   // Grab up to 1/4 the size of the work queue
4090   size_t num = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
4091                     (size_t)ParGCDesiredObjsFromOverflowList);
4092   num = MIN2(num, ovflw_stk->length());
4093   for (int i = (int) num; i > 0; i--) {
4094     oop cur = ovflw_stk->pop();
4095     assert(cur != NULL, "Counted wrong?");
4096     work_q->push(cur);
4097   }
4098   return num > 0;
4099 }
4100 
4101 void CMSConcMarkingTask::do_scan_and_mark(int i, CompactibleFreeListSpace* sp) {
4102   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
4103   int n_tasks = pst->n_tasks();
4104   // We allow that there may be no tasks to do here because
4105   // we are restarting after a stack overflow.
4106   assert(pst->valid() || n_tasks == 0, "Uninitialized use?");
4107   uint nth_task = 0;
4108 
4109   HeapWord* aligned_start = sp->bottom();
4110   if (sp->used_region().contains(_restart_addr)) {
4111     // Align down to a card boundary for the start of 0th task
4112     // for this space.
4113     aligned_start =
4114       (HeapWord*)align_size_down((uintptr_t)_restart_addr,
4115                                  CardTableModRefBS::card_size);
4116   }
4117 
4118   size_t chunk_size = sp->marking_task_size();
4119   while (!pst->is_task_claimed(/* reference */ nth_task)) {
4120     // Having claimed the nth task in this space,
4121     // compute the chunk that it corresponds to:
4122     MemRegion span = MemRegion(aligned_start + nth_task*chunk_size,
4123                                aligned_start + (nth_task+1)*chunk_size);
4124     // Try and bump the global finger via a CAS;
4125     // note that we need to do the global finger bump
4126     // _before_ taking the intersection below, because
4127     // the task corresponding to that region will be
4128     // deemed done even if the used_region() expands
4129     // because of allocation -- as it almost certainly will
4130     // during start-up while the threads yield in the
4131     // closure below.
4132     HeapWord* finger = span.end();
4133     bump_global_finger(finger);   // atomically
4134     // There are null tasks here corresponding to chunks
4135     // beyond the "top" address of the space.
4136     span = span.intersection(sp->used_region());
4137     if (!span.is_empty()) {  // Non-null task
4138       HeapWord* prev_obj;
4139       assert(!span.contains(_restart_addr) || nth_task == 0,
4140              "Inconsistency");
4141       if (nth_task == 0) {
4142         // For the 0th task, we'll not need to compute a block_start.
4143         if (span.contains(_restart_addr)) {
4144           // In the case of a restart because of stack overflow,
4145           // we might additionally skip a chunk prefix.
4146           prev_obj = _restart_addr;
4147         } else {
4148           prev_obj = span.start();
4149         }
4150       } else {
4151         // We want to skip the first object because
4152         // the protocol is to scan any object in its entirety
4153         // that _starts_ in this span; a fortiori, any
4154         // object starting in an earlier span is scanned
4155         // as part of an earlier claimed task.
4156         // Below we use the "careful" version of block_start
4157         // so we do not try to navigate uninitialized objects.
4158         prev_obj = sp->block_start_careful(span.start());
4159         // Below we use a variant of block_size that uses the
4160         // Printezis bits to avoid waiting for allocated
4161         // objects to become initialized/parsable.
4162         while (prev_obj < span.start()) {
4163           size_t sz = sp->block_size_no_stall(prev_obj, _collector);
4164           if (sz > 0) {
4165             prev_obj += sz;
4166           } else {
4167             // In this case we may end up doing a bit of redundant
4168             // scanning, but that appears unavoidable, short of
4169             // locking the free list locks; see bug 6324141.
4170             break;
4171           }
4172         }
4173       }
4174       if (prev_obj < span.end()) {
4175         MemRegion my_span = MemRegion(prev_obj, span.end());
4176         // Do the marking work within a non-empty span --
4177         // the last argument to the constructor indicates whether the
4178         // iteration should be incremental with periodic yields.
4179         Par_MarkFromRootsClosure cl(this, _collector, my_span,
4180                                     &_collector->_markBitMap,
4181                                     work_queue(i),
4182                                     &_collector->_markStack,
4183                                     _asynch);
4184         _collector->_markBitMap.iterate(&cl, my_span.start(), my_span.end());
4185       } // else nothing to do for this task
4186     }   // else nothing to do for this task
4187   }
4188   // We'd be tempted to assert here that since there are no
4189   // more tasks left to claim in this space, the global_finger
4190   // must exceed space->top() and a fortiori space->end(). However,
4191   // that would not quite be correct because the bumping of
4192   // global_finger occurs strictly after the claiming of a task,
4193   // so by the time we reach here the global finger may not yet
4194   // have been bumped up by the thread that claimed the last
4195   // task.
4196   pst->all_tasks_completed();
4197 }
4198 
4199 class Par_ConcMarkingClosure: public CMSOopClosure {
4200  private:
4201   CMSCollector* _collector;
4202   CMSConcMarkingTask* _task;
4203   MemRegion     _span;
4204   CMSBitMap*    _bit_map;
4205   CMSMarkStack* _overflow_stack;
4206   OopTaskQueue* _work_queue;
4207  protected:
4208   DO_OOP_WORK_DEFN
4209  public:
4210   Par_ConcMarkingClosure(CMSCollector* collector, CMSConcMarkingTask* task, OopTaskQueue* work_queue,
4211                          CMSBitMap* bit_map, CMSMarkStack* overflow_stack):
4212     CMSOopClosure(collector->ref_processor()),
4213     _collector(collector),
4214     _task(task),
4215     _span(collector->_span),
4216     _work_queue(work_queue),
4217     _bit_map(bit_map),
4218     _overflow_stack(overflow_stack)
4219   { }
4220   virtual void do_oop(oop* p);
4221   virtual void do_oop(narrowOop* p);
4222 
4223   void trim_queue(size_t max);
4224   void handle_stack_overflow(HeapWord* lost);
4225   void do_yield_check() {
4226     if (_task->should_yield()) {
4227       _task->yield();
4228     }
4229   }
4230 };
4231 
4232 // Grey object scanning during work stealing phase --
4233 // the salient assumption here is that any references
4234 // that are in these stolen objects being scanned must
4235 // already have been initialized (else they would not have
4236 // been published), so we do not need to check for
4237 // uninitialized objects before pushing here.
4238 void Par_ConcMarkingClosure::do_oop(oop obj) {
4239   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
4240   HeapWord* addr = (HeapWord*)obj;
4241   // Check if oop points into the CMS generation
4242   // and is not marked
4243   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
4244     // a white object ...
4245     // If we manage to "claim" the object, by being the
4246     // first thread to mark it, then we push it on our
4247     // marking stack
4248     if (_bit_map->par_mark(addr)) {     // ... now grey
4249       // push on work queue (grey set)
4250       bool simulate_overflow = false;
4251       NOT_PRODUCT(
4252         if (CMSMarkStackOverflowALot &&
4253             _collector->simulate_overflow()) {
4254           // simulate a stack overflow
4255           simulate_overflow = true;
4256         }
4257       )
4258       if (simulate_overflow ||
4259           !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
4260         // stack overflow
4261         if (PrintCMSStatistics != 0) {
4262           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
4263                                  SIZE_FORMAT, _overflow_stack->capacity());
4264         }
4265         // We cannot assert that the overflow stack is full because
4266         // it may have been emptied since.
4267         assert(simulate_overflow ||
4268                _work_queue->size() == _work_queue->max_elems(),
4269               "Else push should have succeeded");
4270         handle_stack_overflow(addr);
4271       }
4272     } // Else, some other thread got there first
4273     do_yield_check();
4274   }
4275 }
4276 
4277 void Par_ConcMarkingClosure::do_oop(oop* p)       { Par_ConcMarkingClosure::do_oop_work(p); }
4278 void Par_ConcMarkingClosure::do_oop(narrowOop* p) { Par_ConcMarkingClosure::do_oop_work(p); }
4279 
4280 void Par_ConcMarkingClosure::trim_queue(size_t max) {
4281   while (_work_queue->size() > max) {
4282     oop new_oop;
4283     if (_work_queue->pop_local(new_oop)) {
4284       assert(new_oop->is_oop(), "Should be an oop");
4285       assert(_bit_map->isMarked((HeapWord*)new_oop), "Grey object");
4286       assert(_span.contains((HeapWord*)new_oop), "Not in span");
4287       new_oop->oop_iterate(this);  // do_oop() above
4288       do_yield_check();
4289     }
4290   }
4291 }
4292 
4293 // Upon stack overflow, we discard (part of) the stack,
4294 // remembering the least address amongst those discarded
4295 // in CMSCollector's _restart_address.
4296 void Par_ConcMarkingClosure::handle_stack_overflow(HeapWord* lost) {
4297   // We need to do this under a mutex to prevent other
4298   // workers from interfering with the work done below.
4299   MutexLockerEx ml(_overflow_stack->par_lock(),
4300                    Mutex::_no_safepoint_check_flag);
4301   // Remember the least grey address discarded
4302   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
4303   _collector->lower_restart_addr(ra);
4304   _overflow_stack->reset();  // discard stack contents
4305   _overflow_stack->expand(); // expand the stack if possible
4306 }
4307 
4308 
4309 void CMSConcMarkingTask::do_work_steal(int i) {
4310   OopTaskQueue* work_q = work_queue(i);
4311   oop obj_to_scan;
4312   CMSBitMap* bm = &(_collector->_markBitMap);
4313   CMSMarkStack* ovflw = &(_collector->_markStack);
4314   int* seed = _collector->hash_seed(i);
4315   Par_ConcMarkingClosure cl(_collector, this, work_q, bm, ovflw);
4316   while (true) {
4317     cl.trim_queue(0);
4318     assert(work_q->size() == 0, "Should have been emptied above");
4319     if (get_work_from_overflow_stack(ovflw, work_q)) {
4320       // Can't assert below because the work obtained from the
4321       // overflow stack may already have been stolen from us.
4322       // assert(work_q->size() > 0, "Work from overflow stack");
4323       continue;
4324     } else if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
4325       assert(obj_to_scan->is_oop(), "Should be an oop");
4326       assert(bm->isMarked((HeapWord*)obj_to_scan), "Grey object");
4327       obj_to_scan->oop_iterate(&cl);
4328     } else if (terminator()->offer_termination(&_term_term)) {
4329       assert(work_q->size() == 0, "Impossible!");
4330       break;
4331     } else if (yielding() || should_yield()) {
4332       yield();
4333     }
4334   }
4335 }
4336 
4337 // This is run by the CMS (coordinator) thread.
4338 void CMSConcMarkingTask::coordinator_yield() {
4339   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4340          "CMS thread should hold CMS token");
4341   // First give up the locks, then yield, then re-lock
4342   // We should probably use a constructor/destructor idiom to
4343   // do this unlock/lock or modify the MutexUnlocker class to
4344   // serve our purpose. XXX
4345   assert_lock_strong(_bit_map_lock);
4346   _bit_map_lock->unlock();
4347   ConcurrentMarkSweepThread::desynchronize(true);
4348   ConcurrentMarkSweepThread::acknowledge_yield_request();
4349   _collector->stopTimer();
4350   if (PrintCMSStatistics != 0) {
4351     _collector->incrementYields();
4352   }
4353   _collector->icms_wait();
4354 
4355   // It is possible for whichever thread initiated the yield request
4356   // not to get a chance to wake up and take the bitmap lock between
4357   // this thread releasing it and reacquiring it. So, while the
4358   // should_yield() flag is on, let's sleep for a bit to give the
4359   // other thread a chance to wake up. The limit imposed on the number
4360   // of iterations is defensive, to avoid any unforseen circumstances
4361   // putting us into an infinite loop. Since it's always been this
4362   // (coordinator_yield()) method that was observed to cause the
4363   // problem, we are using a parameter (CMSCoordinatorYieldSleepCount)
4364   // which is by default non-zero. For the other seven methods that
4365   // also perform the yield operation, as are using a different
4366   // parameter (CMSYieldSleepCount) which is by default zero. This way we
4367   // can enable the sleeping for those methods too, if necessary.
4368   // See 6442774.
4369   //
4370   // We really need to reconsider the synchronization between the GC
4371   // thread and the yield-requesting threads in the future and we
4372   // should really use wait/notify, which is the recommended
4373   // way of doing this type of interaction. Additionally, we should
4374   // consolidate the eight methods that do the yield operation and they
4375   // are almost identical into one for better maintenability and
4376   // readability. See 6445193.
4377   //
4378   // Tony 2006.06.29
4379   for (unsigned i = 0; i < CMSCoordinatorYieldSleepCount &&
4380                    ConcurrentMarkSweepThread::should_yield() &&
4381                    !CMSCollector::foregroundGCIsActive(); ++i) {
4382     os::sleep(Thread::current(), 1, false);
4383     ConcurrentMarkSweepThread::acknowledge_yield_request();
4384   }
4385 
4386   ConcurrentMarkSweepThread::synchronize(true);
4387   _bit_map_lock->lock_without_safepoint_check();
4388   _collector->startTimer();
4389 }
4390 
4391 bool CMSCollector::do_marking_mt(bool asynch) {
4392   assert(ConcGCThreads > 0 && conc_workers() != NULL, "precondition");
4393   int num_workers = AdaptiveSizePolicy::calc_active_conc_workers(
4394                                        conc_workers()->total_workers(),
4395                                        conc_workers()->active_workers(),
4396                                        Threads::number_of_non_daemon_threads());
4397   conc_workers()->set_active_workers(num_workers);
4398 
4399   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
4400 
4401   CMSConcMarkingTask tsk(this,
4402                          cms_space,
4403                          asynch,
4404                          conc_workers(),
4405                          task_queues());
4406 
4407   // Since the actual number of workers we get may be different
4408   // from the number we requested above, do we need to do anything different
4409   // below? In particular, may be we need to subclass the SequantialSubTasksDone
4410   // class?? XXX
4411   cms_space ->initialize_sequential_subtasks_for_marking(num_workers);
4412 
4413   // Refs discovery is already non-atomic.
4414   assert(!ref_processor()->discovery_is_atomic(), "Should be non-atomic");
4415   assert(ref_processor()->discovery_is_mt(), "Discovery should be MT");
4416   conc_workers()->start_task(&tsk);
4417   while (tsk.yielded()) {
4418     tsk.coordinator_yield();
4419     conc_workers()->continue_task(&tsk);
4420   }
4421   // If the task was aborted, _restart_addr will be non-NULL
4422   assert(tsk.completed() || _restart_addr != NULL, "Inconsistency");
4423   while (_restart_addr != NULL) {
4424     // XXX For now we do not make use of ABORTED state and have not
4425     // yet implemented the right abort semantics (even in the original
4426     // single-threaded CMS case). That needs some more investigation
4427     // and is deferred for now; see CR# TBF. 07252005YSR. XXX
4428     assert(!CMSAbortSemantics || tsk.aborted(), "Inconsistency");
4429     // If _restart_addr is non-NULL, a marking stack overflow
4430     // occurred; we need to do a fresh marking iteration from the
4431     // indicated restart address.
4432     if (_foregroundGCIsActive && asynch) {
4433       // We may be running into repeated stack overflows, having
4434       // reached the limit of the stack size, while making very
4435       // slow forward progress. It may be best to bail out and
4436       // let the foreground collector do its job.
4437       // Clear _restart_addr, so that foreground GC
4438       // works from scratch. This avoids the headache of
4439       // a "rescan" which would otherwise be needed because
4440       // of the dirty mod union table & card table.
4441       _restart_addr = NULL;
4442       return false;
4443     }
4444     // Adjust the task to restart from _restart_addr
4445     tsk.reset(_restart_addr);
4446     cms_space ->initialize_sequential_subtasks_for_marking(num_workers,
4447                   _restart_addr);
4448     _restart_addr = NULL;
4449     // Get the workers going again
4450     conc_workers()->start_task(&tsk);
4451     while (tsk.yielded()) {
4452       tsk.coordinator_yield();
4453       conc_workers()->continue_task(&tsk);
4454     }
4455   }
4456   assert(tsk.completed(), "Inconsistency");
4457   assert(tsk.result() == true, "Inconsistency");
4458   return true;
4459 }
4460 
4461 bool CMSCollector::do_marking_st(bool asynch) {
4462   ResourceMark rm;
4463   HandleMark   hm;
4464 
4465   // Temporarily make refs discovery single threaded (non-MT)
4466   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(ref_processor(), false);
4467   MarkFromRootsClosure markFromRootsClosure(this, _span, &_markBitMap,
4468     &_markStack, CMSYield && asynch);
4469   // the last argument to iterate indicates whether the iteration
4470   // should be incremental with periodic yields.
4471   _markBitMap.iterate(&markFromRootsClosure);
4472   // If _restart_addr is non-NULL, a marking stack overflow
4473   // occurred; we need to do a fresh iteration from the
4474   // indicated restart address.
4475   while (_restart_addr != NULL) {
4476     if (_foregroundGCIsActive && asynch) {
4477       // We may be running into repeated stack overflows, having
4478       // reached the limit of the stack size, while making very
4479       // slow forward progress. It may be best to bail out and
4480       // let the foreground collector do its job.
4481       // Clear _restart_addr, so that foreground GC
4482       // works from scratch. This avoids the headache of
4483       // a "rescan" which would otherwise be needed because
4484       // of the dirty mod union table & card table.
4485       _restart_addr = NULL;
4486       return false;  // indicating failure to complete marking
4487     }
4488     // Deal with stack overflow:
4489     // we restart marking from _restart_addr
4490     HeapWord* ra = _restart_addr;
4491     markFromRootsClosure.reset(ra);
4492     _restart_addr = NULL;
4493     _markBitMap.iterate(&markFromRootsClosure, ra, _span.end());
4494   }
4495   return true;
4496 }
4497 
4498 void CMSCollector::preclean() {
4499   check_correct_thread_executing();
4500   assert(Thread::current()->is_ConcurrentGC_thread(), "Wrong thread");
4501   verify_work_stacks_empty();
4502   verify_overflow_empty();
4503   _abort_preclean = false;
4504   if (CMSPrecleaningEnabled) {
4505     if (!CMSEdenChunksRecordAlways) {
4506       _eden_chunk_index = 0;
4507     }
4508     size_t used = get_eden_used();
4509     size_t capacity = get_eden_capacity();
4510     // Don't start sampling unless we will get sufficiently
4511     // many samples.
4512     if (used < (capacity/(CMSScheduleRemarkSamplingRatio * 100)
4513                 * CMSScheduleRemarkEdenPenetration)) {
4514       _start_sampling = true;
4515     } else {
4516       _start_sampling = false;
4517     }
4518     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4519     CMSPhaseAccounting pa(this, "preclean", !PrintGCDetails);
4520     preclean_work(CMSPrecleanRefLists1, CMSPrecleanSurvivors1);
4521   }
4522   CMSTokenSync x(true); // is cms thread
4523   if (CMSPrecleaningEnabled) {
4524     sample_eden();
4525     _collectorState = AbortablePreclean;
4526   } else {
4527     _collectorState = FinalMarking;
4528   }
4529   verify_work_stacks_empty();
4530   verify_overflow_empty();
4531 }
4532 
4533 // Try and schedule the remark such that young gen
4534 // occupancy is CMSScheduleRemarkEdenPenetration %.
4535 void CMSCollector::abortable_preclean() {
4536   check_correct_thread_executing();
4537   assert(CMSPrecleaningEnabled,  "Inconsistent control state");
4538   assert(_collectorState == AbortablePreclean, "Inconsistent control state");
4539 
4540   // If Eden's current occupancy is below this threshold,
4541   // immediately schedule the remark; else preclean
4542   // past the next scavenge in an effort to
4543   // schedule the pause as described avove. By choosing
4544   // CMSScheduleRemarkEdenSizeThreshold >= max eden size
4545   // we will never do an actual abortable preclean cycle.
4546   if (get_eden_used() > CMSScheduleRemarkEdenSizeThreshold) {
4547     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
4548     CMSPhaseAccounting pa(this, "abortable-preclean", !PrintGCDetails);
4549     // We need more smarts in the abortable preclean
4550     // loop below to deal with cases where allocation
4551     // in young gen is very very slow, and our precleaning
4552     // is running a losing race against a horde of
4553     // mutators intent on flooding us with CMS updates
4554     // (dirty cards).
4555     // One, admittedly dumb, strategy is to give up
4556     // after a certain number of abortable precleaning loops
4557     // or after a certain maximum time. We want to make
4558     // this smarter in the next iteration.
4559     // XXX FIX ME!!! YSR
4560     size_t loops = 0, workdone = 0, cumworkdone = 0, waited = 0;
4561     while (!(should_abort_preclean() ||
4562              ConcurrentMarkSweepThread::should_terminate())) {
4563       workdone = preclean_work(CMSPrecleanRefLists2, CMSPrecleanSurvivors2);
4564       cumworkdone += workdone;
4565       loops++;
4566       // Voluntarily terminate abortable preclean phase if we have
4567       // been at it for too long.
4568       if ((CMSMaxAbortablePrecleanLoops != 0) &&
4569           loops >= CMSMaxAbortablePrecleanLoops) {
4570         if (PrintGCDetails) {
4571           gclog_or_tty->print(" CMS: abort preclean due to loops ");
4572         }
4573         break;
4574       }
4575       if (pa.wallclock_millis() > CMSMaxAbortablePrecleanTime) {
4576         if (PrintGCDetails) {
4577           gclog_or_tty->print(" CMS: abort preclean due to time ");
4578         }
4579         break;
4580       }
4581       // If we are doing little work each iteration, we should
4582       // take a short break.
4583       if (workdone < CMSAbortablePrecleanMinWorkPerIteration) {
4584         // Sleep for some time, waiting for work to accumulate
4585         stopTimer();
4586         cmsThread()->wait_on_cms_lock(CMSAbortablePrecleanWaitMillis);
4587         startTimer();
4588         waited++;
4589       }
4590     }
4591     if (PrintCMSStatistics > 0) {
4592       gclog_or_tty->print(" [%d iterations, %d waits, %d cards)] ",
4593                           loops, waited, cumworkdone);
4594     }
4595   }
4596   CMSTokenSync x(true); // is cms thread
4597   if (_collectorState != Idling) {
4598     assert(_collectorState == AbortablePreclean,
4599            "Spontaneous state transition?");
4600     _collectorState = FinalMarking;
4601   } // Else, a foreground collection completed this CMS cycle.
4602   return;
4603 }
4604 
4605 // Respond to an Eden sampling opportunity
4606 void CMSCollector::sample_eden() {
4607   // Make sure a young gc cannot sneak in between our
4608   // reading and recording of a sample.
4609   assert(Thread::current()->is_ConcurrentGC_thread(),
4610          "Only the cms thread may collect Eden samples");
4611   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
4612          "Should collect samples while holding CMS token");
4613   if (!_start_sampling) {
4614     return;
4615   }
4616   // When CMSEdenChunksRecordAlways is true, the eden chunk array
4617   // is populated by the young generation.
4618   if (_eden_chunk_array != NULL && !CMSEdenChunksRecordAlways) {
4619     if (_eden_chunk_index < _eden_chunk_capacity) {
4620       _eden_chunk_array[_eden_chunk_index] = *_top_addr;   // take sample
4621       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
4622              "Unexpected state of Eden");
4623       // We'd like to check that what we just sampled is an oop-start address;
4624       // however, we cannot do that here since the object may not yet have been
4625       // initialized. So we'll instead do the check when we _use_ this sample
4626       // later.
4627       if (_eden_chunk_index == 0 ||
4628           (pointer_delta(_eden_chunk_array[_eden_chunk_index],
4629                          _eden_chunk_array[_eden_chunk_index-1])
4630            >= CMSSamplingGrain)) {
4631         _eden_chunk_index++;  // commit sample
4632       }
4633     }
4634   }
4635   if ((_collectorState == AbortablePreclean) && !_abort_preclean) {
4636     size_t used = get_eden_used();
4637     size_t capacity = get_eden_capacity();
4638     assert(used <= capacity, "Unexpected state of Eden");
4639     if (used >  (capacity/100 * CMSScheduleRemarkEdenPenetration)) {
4640       _abort_preclean = true;
4641     }
4642   }
4643 }
4644 
4645 
4646 size_t CMSCollector::preclean_work(bool clean_refs, bool clean_survivor) {
4647   assert(_collectorState == Precleaning ||
4648          _collectorState == AbortablePreclean, "incorrect state");
4649   ResourceMark rm;
4650   HandleMark   hm;
4651 
4652   // Precleaning is currently not MT but the reference processor
4653   // may be set for MT.  Disable it temporarily here.
4654   ReferenceProcessor* rp = ref_processor();
4655   ReferenceProcessorMTDiscoveryMutator rp_mut_discovery(rp, false);
4656 
4657   // Do one pass of scrubbing the discovered reference lists
4658   // to remove any reference objects with strongly-reachable
4659   // referents.
4660   if (clean_refs) {
4661     CMSPrecleanRefsYieldClosure yield_cl(this);
4662     assert(rp->span().equals(_span), "Spans should be equal");
4663     CMSKeepAliveClosure keep_alive(this, _span, &_markBitMap,
4664                                    &_markStack, true /* preclean */);
4665     CMSDrainMarkingStackClosure complete_trace(this,
4666                                    _span, &_markBitMap, &_markStack,
4667                                    &keep_alive, true /* preclean */);
4668 
4669     // We don't want this step to interfere with a young
4670     // collection because we don't want to take CPU
4671     // or memory bandwidth away from the young GC threads
4672     // (which may be as many as there are CPUs).
4673     // Note that we don't need to protect ourselves from
4674     // interference with mutators because they can't
4675     // manipulate the discovered reference lists nor affect
4676     // the computed reachability of the referents, the
4677     // only properties manipulated by the precleaning
4678     // of these reference lists.
4679     stopTimer();
4680     CMSTokenSyncWithLocks x(true /* is cms thread */,
4681                             bitMapLock());
4682     startTimer();
4683     sample_eden();
4684 
4685     // The following will yield to allow foreground
4686     // collection to proceed promptly. XXX YSR:
4687     // The code in this method may need further
4688     // tweaking for better performance and some restructuring
4689     // for cleaner interfaces.
4690     GCTimer *gc_timer = NULL; // Currently not tracing concurrent phases
4691     rp->preclean_discovered_references(
4692           rp->is_alive_non_header(), &keep_alive, &complete_trace, &yield_cl,
4693           gc_timer);
4694   }
4695 
4696   if (clean_survivor) {  // preclean the active survivor space(s)
4697     assert(_young_gen->kind() == Generation::DefNew ||
4698            _young_gen->kind() == Generation::ParNew ||
4699            _young_gen->kind() == Generation::ASParNew,
4700          "incorrect type for cast");
4701     DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
4702     PushAndMarkClosure pam_cl(this, _span, ref_processor(),
4703                              &_markBitMap, &_modUnionTable,
4704                              &_markStack, true /* precleaning phase */);
4705     stopTimer();
4706     CMSTokenSyncWithLocks ts(true /* is cms thread */,
4707                              bitMapLock());
4708     startTimer();
4709     unsigned int before_count =
4710       GenCollectedHeap::heap()->total_collections();
4711     SurvivorSpacePrecleanClosure
4712       sss_cl(this, _span, &_markBitMap, &_markStack,
4713              &pam_cl, before_count, CMSYield);
4714     dng->from()->object_iterate_careful(&sss_cl);
4715     dng->to()->object_iterate_careful(&sss_cl);
4716   }
4717   MarkRefsIntoAndScanClosure
4718     mrias_cl(_span, ref_processor(), &_markBitMap, &_modUnionTable,
4719              &_markStack, this, CMSYield,
4720              true /* precleaning phase */);
4721   // CAUTION: The following closure has persistent state that may need to
4722   // be reset upon a decrease in the sequence of addresses it
4723   // processes.
4724   ScanMarkedObjectsAgainCarefullyClosure
4725     smoac_cl(this, _span,
4726       &_markBitMap, &_markStack, &mrias_cl, CMSYield);
4727 
4728   // Preclean dirty cards in ModUnionTable and CardTable using
4729   // appropriate convergence criterion;
4730   // repeat CMSPrecleanIter times unless we find that
4731   // we are losing.
4732   assert(CMSPrecleanIter < 10, "CMSPrecleanIter is too large");
4733   assert(CMSPrecleanNumerator < CMSPrecleanDenominator,
4734          "Bad convergence multiplier");
4735   assert(CMSPrecleanThreshold >= 100,
4736          "Unreasonably low CMSPrecleanThreshold");
4737 
4738   size_t numIter, cumNumCards, lastNumCards, curNumCards;
4739   for (numIter = 0, cumNumCards = lastNumCards = curNumCards = 0;
4740        numIter < CMSPrecleanIter;
4741        numIter++, lastNumCards = curNumCards, cumNumCards += curNumCards) {
4742     curNumCards  = preclean_mod_union_table(_cmsGen, &smoac_cl);
4743     if (Verbose && PrintGCDetails) {
4744       gclog_or_tty->print(" (modUnionTable: %d cards)", curNumCards);
4745     }
4746     // Either there are very few dirty cards, so re-mark
4747     // pause will be small anyway, or our pre-cleaning isn't
4748     // that much faster than the rate at which cards are being
4749     // dirtied, so we might as well stop and re-mark since
4750     // precleaning won't improve our re-mark time by much.
4751     if (curNumCards <= CMSPrecleanThreshold ||
4752         (numIter > 0 &&
4753          (curNumCards * CMSPrecleanDenominator >
4754          lastNumCards * CMSPrecleanNumerator))) {
4755       numIter++;
4756       cumNumCards += curNumCards;
4757       break;
4758     }
4759   }
4760 
4761   preclean_klasses(&mrias_cl, _cmsGen->freelistLock());
4762 
4763   curNumCards = preclean_card_table(_cmsGen, &smoac_cl);
4764   cumNumCards += curNumCards;
4765   if (PrintGCDetails && PrintCMSStatistics != 0) {
4766     gclog_or_tty->print_cr(" (cardTable: %d cards, re-scanned %d cards, %d iterations)",
4767                   curNumCards, cumNumCards, numIter);
4768   }
4769   return cumNumCards;   // as a measure of useful work done
4770 }
4771 
4772 // PRECLEANING NOTES:
4773 // Precleaning involves:
4774 // . reading the bits of the modUnionTable and clearing the set bits.
4775 // . For the cards corresponding to the set bits, we scan the
4776 //   objects on those cards. This means we need the free_list_lock
4777 //   so that we can safely iterate over the CMS space when scanning
4778 //   for oops.
4779 // . When we scan the objects, we'll be both reading and setting
4780 //   marks in the marking bit map, so we'll need the marking bit map.
4781 // . For protecting _collector_state transitions, we take the CGC_lock.
4782 //   Note that any races in the reading of of card table entries by the
4783 //   CMS thread on the one hand and the clearing of those entries by the
4784 //   VM thread or the setting of those entries by the mutator threads on the
4785 //   other are quite benign. However, for efficiency it makes sense to keep
4786 //   the VM thread from racing with the CMS thread while the latter is
4787 //   dirty card info to the modUnionTable. We therefore also use the
4788 //   CGC_lock to protect the reading of the card table and the mod union
4789 //   table by the CM thread.
4790 // . We run concurrently with mutator updates, so scanning
4791 //   needs to be done carefully  -- we should not try to scan
4792 //   potentially uninitialized objects.
4793 //
4794 // Locking strategy: While holding the CGC_lock, we scan over and
4795 // reset a maximal dirty range of the mod union / card tables, then lock
4796 // the free_list_lock and bitmap lock to do a full marking, then
4797 // release these locks; and repeat the cycle. This allows for a
4798 // certain amount of fairness in the sharing of these locks between
4799 // the CMS collector on the one hand, and the VM thread and the
4800 // mutators on the other.
4801 
4802 // NOTE: preclean_mod_union_table() and preclean_card_table()
4803 // further below are largely identical; if you need to modify
4804 // one of these methods, please check the other method too.
4805 
4806 size_t CMSCollector::preclean_mod_union_table(
4807   ConcurrentMarkSweepGeneration* gen,
4808   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4809   verify_work_stacks_empty();
4810   verify_overflow_empty();
4811 
4812   // strategy: starting with the first card, accumulate contiguous
4813   // ranges of dirty cards; clear these cards, then scan the region
4814   // covered by these cards.
4815 
4816   // Since all of the MUT is committed ahead, we can just use
4817   // that, in case the generations expand while we are precleaning.
4818   // It might also be fine to just use the committed part of the
4819   // generation, but we might potentially miss cards when the
4820   // generation is rapidly expanding while we are in the midst
4821   // of precleaning.
4822   HeapWord* startAddr = gen->reserved().start();
4823   HeapWord* endAddr   = gen->reserved().end();
4824 
4825   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4826 
4827   size_t numDirtyCards, cumNumDirtyCards;
4828   HeapWord *nextAddr, *lastAddr;
4829   for (cumNumDirtyCards = numDirtyCards = 0,
4830        nextAddr = lastAddr = startAddr;
4831        nextAddr < endAddr;
4832        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4833 
4834     ResourceMark rm;
4835     HandleMark   hm;
4836 
4837     MemRegion dirtyRegion;
4838     {
4839       stopTimer();
4840       // Potential yield point
4841       CMSTokenSync ts(true);
4842       startTimer();
4843       sample_eden();
4844       // Get dirty region starting at nextOffset (inclusive),
4845       // simultaneously clearing it.
4846       dirtyRegion =
4847         _modUnionTable.getAndClearMarkedRegion(nextAddr, endAddr);
4848       assert(dirtyRegion.start() >= nextAddr,
4849              "returned region inconsistent?");
4850     }
4851     // Remember where the next search should begin.
4852     // The returned region (if non-empty) is a right open interval,
4853     // so lastOffset is obtained from the right end of that
4854     // interval.
4855     lastAddr = dirtyRegion.end();
4856     // Should do something more transparent and less hacky XXX
4857     numDirtyCards =
4858       _modUnionTable.heapWordDiffToOffsetDiff(dirtyRegion.word_size());
4859 
4860     // We'll scan the cards in the dirty region (with periodic
4861     // yields for foreground GC as needed).
4862     if (!dirtyRegion.is_empty()) {
4863       assert(numDirtyCards > 0, "consistency check");
4864       HeapWord* stop_point = NULL;
4865       stopTimer();
4866       // Potential yield point
4867       CMSTokenSyncWithLocks ts(true, gen->freelistLock(),
4868                                bitMapLock());
4869       startTimer();
4870       {
4871         verify_work_stacks_empty();
4872         verify_overflow_empty();
4873         sample_eden();
4874         stop_point =
4875           gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4876       }
4877       if (stop_point != NULL) {
4878         // The careful iteration stopped early either because it found an
4879         // uninitialized object, or because we were in the midst of an
4880         // "abortable preclean", which should now be aborted. Redirty
4881         // the bits corresponding to the partially-scanned or unscanned
4882         // cards. We'll either restart at the next block boundary or
4883         // abort the preclean.
4884         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4885                "Should only be AbortablePreclean.");
4886         _modUnionTable.mark_range(MemRegion(stop_point, dirtyRegion.end()));
4887         if (should_abort_preclean()) {
4888           break; // out of preclean loop
4889         } else {
4890           // Compute the next address at which preclean should pick up;
4891           // might need bitMapLock in order to read P-bits.
4892           lastAddr = next_card_start_after_block(stop_point);
4893         }
4894       }
4895     } else {
4896       assert(lastAddr == endAddr, "consistency check");
4897       assert(numDirtyCards == 0, "consistency check");
4898       break;
4899     }
4900   }
4901   verify_work_stacks_empty();
4902   verify_overflow_empty();
4903   return cumNumDirtyCards;
4904 }
4905 
4906 // NOTE: preclean_mod_union_table() above and preclean_card_table()
4907 // below are largely identical; if you need to modify
4908 // one of these methods, please check the other method too.
4909 
4910 size_t CMSCollector::preclean_card_table(ConcurrentMarkSweepGeneration* gen,
4911   ScanMarkedObjectsAgainCarefullyClosure* cl) {
4912   // strategy: it's similar to precleamModUnionTable above, in that
4913   // we accumulate contiguous ranges of dirty cards, mark these cards
4914   // precleaned, then scan the region covered by these cards.
4915   HeapWord* endAddr   = (HeapWord*)(gen->_virtual_space.high());
4916   HeapWord* startAddr = (HeapWord*)(gen->_virtual_space.low());
4917 
4918   cl->setFreelistLock(gen->freelistLock());   // needed for yielding
4919 
4920   size_t numDirtyCards, cumNumDirtyCards;
4921   HeapWord *lastAddr, *nextAddr;
4922 
4923   for (cumNumDirtyCards = numDirtyCards = 0,
4924        nextAddr = lastAddr = startAddr;
4925        nextAddr < endAddr;
4926        nextAddr = lastAddr, cumNumDirtyCards += numDirtyCards) {
4927 
4928     ResourceMark rm;
4929     HandleMark   hm;
4930 
4931     MemRegion dirtyRegion;
4932     {
4933       // See comments in "Precleaning notes" above on why we
4934       // do this locking. XXX Could the locking overheads be
4935       // too high when dirty cards are sparse? [I don't think so.]
4936       stopTimer();
4937       CMSTokenSync x(true); // is cms thread
4938       startTimer();
4939       sample_eden();
4940       // Get and clear dirty region from card table
4941       dirtyRegion = _ct->ct_bs()->dirty_card_range_after_reset(
4942                                     MemRegion(nextAddr, endAddr),
4943                                     true,
4944                                     CardTableModRefBS::precleaned_card_val());
4945 
4946       assert(dirtyRegion.start() >= nextAddr,
4947              "returned region inconsistent?");
4948     }
4949     lastAddr = dirtyRegion.end();
4950     numDirtyCards =
4951       dirtyRegion.word_size()/CardTableModRefBS::card_size_in_words;
4952 
4953     if (!dirtyRegion.is_empty()) {
4954       stopTimer();
4955       CMSTokenSyncWithLocks ts(true, gen->freelistLock(), bitMapLock());
4956       startTimer();
4957       sample_eden();
4958       verify_work_stacks_empty();
4959       verify_overflow_empty();
4960       HeapWord* stop_point =
4961         gen->cmsSpace()->object_iterate_careful_m(dirtyRegion, cl);
4962       if (stop_point != NULL) {
4963         assert((_collectorState == AbortablePreclean && should_abort_preclean()),
4964                "Should only be AbortablePreclean.");
4965         _ct->ct_bs()->invalidate(MemRegion(stop_point, dirtyRegion.end()));
4966         if (should_abort_preclean()) {
4967           break; // out of preclean loop
4968         } else {
4969           // Compute the next address at which preclean should pick up.
4970           lastAddr = next_card_start_after_block(stop_point);
4971         }
4972       }
4973     } else {
4974       break;
4975     }
4976   }
4977   verify_work_stacks_empty();
4978   verify_overflow_empty();
4979   return cumNumDirtyCards;
4980 }
4981 
4982 class PrecleanKlassClosure : public KlassClosure {
4983   CMKlassClosure _cm_klass_closure;
4984  public:
4985   PrecleanKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
4986   void do_klass(Klass* k) {
4987     if (k->has_accumulated_modified_oops()) {
4988       k->clear_accumulated_modified_oops();
4989 
4990       _cm_klass_closure.do_klass(k);
4991     }
4992   }
4993 };
4994 
4995 // The freelist lock is needed to prevent asserts, is it really needed?
4996 void CMSCollector::preclean_klasses(MarkRefsIntoAndScanClosure* cl, Mutex* freelistLock) {
4997 
4998   cl->set_freelistLock(freelistLock);
4999 
5000   CMSTokenSyncWithLocks ts(true, freelistLock, bitMapLock());
5001 
5002   // SSS: Add equivalent to ScanMarkedObjectsAgainCarefullyClosure::do_yield_check and should_abort_preclean?
5003   // SSS: We should probably check if precleaning should be aborted, at suitable intervals?
5004   PrecleanKlassClosure preclean_klass_closure(cl);
5005   ClassLoaderDataGraph::classes_do(&preclean_klass_closure);
5006 
5007   verify_work_stacks_empty();
5008   verify_overflow_empty();
5009 }
5010 
5011 void CMSCollector::checkpointRootsFinal(bool asynch,
5012   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5013   assert(_collectorState == FinalMarking, "incorrect state transition?");
5014   check_correct_thread_executing();
5015   // world is stopped at this checkpoint
5016   assert(SafepointSynchronize::is_at_safepoint(),
5017          "world should be stopped");
5018   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
5019 
5020   verify_work_stacks_empty();
5021   verify_overflow_empty();
5022 
5023   SpecializationStats::clear();
5024   if (PrintGCDetails) {
5025     gclog_or_tty->print("[YG occupancy: "SIZE_FORMAT" K ("SIZE_FORMAT" K)]",
5026                         _young_gen->used() / K,
5027                         _young_gen->capacity() / K);
5028   }
5029   if (asynch) {
5030     if (CMSScavengeBeforeRemark) {
5031       GenCollectedHeap* gch = GenCollectedHeap::heap();
5032       // Temporarily set flag to false, GCH->do_collection will
5033       // expect it to be false and set to true
5034       FlagSetting fl(gch->_is_gc_active, false);
5035       NOT_PRODUCT(GCTraceTime t("Scavenge-Before-Remark",
5036         PrintGCDetails && Verbose, true, _gc_timer_cm);)
5037       int level = _cmsGen->level() - 1;
5038       if (level >= 0) {
5039         gch->do_collection(true,        // full (i.e. force, see below)
5040                            false,       // !clear_all_soft_refs
5041                            0,           // size
5042                            false,       // is_tlab
5043                            level        // max_level
5044                           );
5045       }
5046     }
5047     FreelistLocker x(this);
5048     MutexLockerEx y(bitMapLock(),
5049                     Mutex::_no_safepoint_check_flag);
5050     assert(!init_mark_was_synchronous, "but that's impossible!");
5051     checkpointRootsFinalWork(asynch, clear_all_soft_refs, false);
5052   } else {
5053     // already have all the locks
5054     checkpointRootsFinalWork(asynch, clear_all_soft_refs,
5055                              init_mark_was_synchronous);
5056   }
5057   verify_work_stacks_empty();
5058   verify_overflow_empty();
5059   SpecializationStats::print();
5060 }
5061 
5062 void CMSCollector::checkpointRootsFinalWork(bool asynch,
5063   bool clear_all_soft_refs, bool init_mark_was_synchronous) {
5064 
5065   NOT_PRODUCT(GCTraceTime tr("checkpointRootsFinalWork", PrintGCDetails, false, _gc_timer_cm);)
5066 
5067   assert(haveFreelistLocks(), "must have free list locks");
5068   assert_lock_strong(bitMapLock());
5069 
5070   if (UseAdaptiveSizePolicy) {
5071     size_policy()->checkpoint_roots_final_begin();
5072   }
5073 
5074   ResourceMark rm;
5075   HandleMark   hm;
5076 
5077   GenCollectedHeap* gch = GenCollectedHeap::heap();
5078 
5079   if (should_unload_classes()) {
5080     CodeCache::gc_prologue();
5081   }
5082   assert(haveFreelistLocks(), "must have free list locks");
5083   assert_lock_strong(bitMapLock());
5084 
5085   if (!init_mark_was_synchronous) {
5086     // We might assume that we need not fill TLAB's when
5087     // CMSScavengeBeforeRemark is set, because we may have just done
5088     // a scavenge which would have filled all TLAB's -- and besides
5089     // Eden would be empty. This however may not always be the case --
5090     // for instance although we asked for a scavenge, it may not have
5091     // happened because of a JNI critical section. We probably need
5092     // a policy for deciding whether we can in that case wait until
5093     // the critical section releases and then do the remark following
5094     // the scavenge, and skip it here. In the absence of that policy,
5095     // or of an indication of whether the scavenge did indeed occur,
5096     // we cannot rely on TLAB's having been filled and must do
5097     // so here just in case a scavenge did not happen.
5098     gch->ensure_parsability(false);  // fill TLAB's, but no need to retire them
5099     // Update the saved marks which may affect the root scans.
5100     gch->save_marks();
5101 
5102     if (CMSPrintEdenSurvivorChunks) {
5103       print_eden_and_survivor_chunk_arrays();
5104     }
5105 
5106     {
5107       COMPILER2_PRESENT(DerivedPointerTableDeactivate dpt_deact;)
5108 
5109       // Note on the role of the mod union table:
5110       // Since the marker in "markFromRoots" marks concurrently with
5111       // mutators, it is possible for some reachable objects not to have been
5112       // scanned. For instance, an only reference to an object A was
5113       // placed in object B after the marker scanned B. Unless B is rescanned,
5114       // A would be collected. Such updates to references in marked objects
5115       // are detected via the mod union table which is the set of all cards
5116       // dirtied since the first checkpoint in this GC cycle and prior to
5117       // the most recent young generation GC, minus those cleaned up by the
5118       // concurrent precleaning.
5119       if (CMSParallelRemarkEnabled && CollectedHeap::use_parallel_gc_threads()) {
5120         GCTraceTime t("Rescan (parallel) ", PrintGCDetails, false, _gc_timer_cm);
5121         do_remark_parallel();
5122       } else {
5123         GCTraceTime t("Rescan (non-parallel) ", PrintGCDetails, false,
5124                     _gc_timer_cm);
5125         do_remark_non_parallel();
5126       }
5127     }
5128   } else {
5129     assert(!asynch, "Can't have init_mark_was_synchronous in asynch mode");
5130     // The initial mark was stop-world, so there's no rescanning to
5131     // do; go straight on to the next step below.
5132   }
5133   verify_work_stacks_empty();
5134   verify_overflow_empty();
5135 
5136   {
5137     NOT_PRODUCT(GCTraceTime ts("refProcessingWork", PrintGCDetails, false, _gc_timer_cm);)
5138     refProcessingWork(asynch, clear_all_soft_refs);
5139   }
5140   verify_work_stacks_empty();
5141   verify_overflow_empty();
5142 
5143   if (should_unload_classes()) {
5144     CodeCache::gc_epilogue();
5145   }
5146   JvmtiExport::gc_epilogue();
5147 
5148   // If we encountered any (marking stack / work queue) overflow
5149   // events during the current CMS cycle, take appropriate
5150   // remedial measures, where possible, so as to try and avoid
5151   // recurrence of that condition.
5152   assert(_markStack.isEmpty(), "No grey objects");
5153   size_t ser_ovflw = _ser_pmc_remark_ovflw + _ser_pmc_preclean_ovflw +
5154                      _ser_kac_ovflw        + _ser_kac_preclean_ovflw;
5155   if (ser_ovflw > 0) {
5156     if (PrintCMSStatistics != 0) {
5157       gclog_or_tty->print_cr("Marking stack overflow (benign) "
5158         "(pmc_pc="SIZE_FORMAT", pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT
5159         ", kac_preclean="SIZE_FORMAT")",
5160         _ser_pmc_preclean_ovflw, _ser_pmc_remark_ovflw,
5161         _ser_kac_ovflw, _ser_kac_preclean_ovflw);
5162     }
5163     _markStack.expand();
5164     _ser_pmc_remark_ovflw = 0;
5165     _ser_pmc_preclean_ovflw = 0;
5166     _ser_kac_preclean_ovflw = 0;
5167     _ser_kac_ovflw = 0;
5168   }
5169   if (_par_pmc_remark_ovflw > 0 || _par_kac_ovflw > 0) {
5170     if (PrintCMSStatistics != 0) {
5171       gclog_or_tty->print_cr("Work queue overflow (benign) "
5172         "(pmc_rm="SIZE_FORMAT", kac="SIZE_FORMAT")",
5173         _par_pmc_remark_ovflw, _par_kac_ovflw);
5174     }
5175     _par_pmc_remark_ovflw = 0;
5176     _par_kac_ovflw = 0;
5177   }
5178   if (PrintCMSStatistics != 0) {
5179      if (_markStack._hit_limit > 0) {
5180        gclog_or_tty->print_cr(" (benign) Hit max stack size limit ("SIZE_FORMAT")",
5181                               _markStack._hit_limit);
5182      }
5183      if (_markStack._failed_double > 0) {
5184        gclog_or_tty->print_cr(" (benign) Failed stack doubling ("SIZE_FORMAT"),"
5185                               " current capacity "SIZE_FORMAT,
5186                               _markStack._failed_double,
5187                               _markStack.capacity());
5188      }
5189   }
5190   _markStack._hit_limit = 0;
5191   _markStack._failed_double = 0;
5192 
5193   if ((VerifyAfterGC || VerifyDuringGC) &&
5194       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5195     verify_after_remark();
5196   }
5197 
5198   _gc_tracer_cm->report_object_count_after_gc(&_is_alive_closure);
5199 
5200   // Change under the freelistLocks.
5201   _collectorState = Sweeping;
5202   // Call isAllClear() under bitMapLock
5203   assert(_modUnionTable.isAllClear(),
5204       "Should be clear by end of the final marking");
5205   assert(_ct->klass_rem_set()->mod_union_is_clear(),
5206       "Should be clear by end of the final marking");
5207   if (UseAdaptiveSizePolicy) {
5208     size_policy()->checkpoint_roots_final_end(gch->gc_cause());
5209   }
5210 }
5211 
5212 void CMSParInitialMarkTask::work(uint worker_id) {
5213   elapsedTimer _timer;
5214   ResourceMark rm;
5215   HandleMark   hm;
5216 
5217   // ---------- scan from roots --------------
5218   _timer.start();
5219   GenCollectedHeap* gch = GenCollectedHeap::heap();
5220   Par_MarkRefsIntoClosure par_mri_cl(_collector->_span, &(_collector->_markBitMap));
5221   CMKlassClosure klass_closure(&par_mri_cl);
5222 
5223   // ---------- young gen roots --------------
5224   {
5225     work_on_young_gen_roots(worker_id, &par_mri_cl);
5226     _timer.stop();
5227     if (PrintCMSStatistics != 0) {
5228       gclog_or_tty->print_cr(
5229         "Finished young gen initial mark scan work in %dth thread: %3.3f sec",
5230         worker_id, _timer.seconds());
5231     }
5232   }
5233 
5234   // ---------- remaining roots --------------
5235   _timer.reset();
5236   _timer.start();
5237   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5238                                 false,     // yg was scanned above
5239                                 false,     // this is parallel code
5240                                 false,     // not scavenging
5241                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5242                                 &par_mri_cl,
5243                                 true,   // walk all of code cache if (so & SO_CodeCache)
5244                                 NULL,
5245                                 &klass_closure);
5246   assert(_collector->should_unload_classes()
5247          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5248          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5249   _timer.stop();
5250   if (PrintCMSStatistics != 0) {
5251     gclog_or_tty->print_cr(
5252       "Finished remaining root initial mark scan work in %dth thread: %3.3f sec",
5253       worker_id, _timer.seconds());
5254   }
5255 }
5256 
5257 // Parallel remark task
5258 class CMSParRemarkTask: public CMSParMarkTask {
5259   CompactibleFreeListSpace* _cms_space;
5260 
5261   // The per-thread work queues, available here for stealing.
5262   OopTaskQueueSet*       _task_queues;
5263   ParallelTaskTerminator _term;
5264 
5265  public:
5266   // A value of 0 passed to n_workers will cause the number of
5267   // workers to be taken from the active workers in the work gang.
5268   CMSParRemarkTask(CMSCollector* collector,
5269                    CompactibleFreeListSpace* cms_space,
5270                    int n_workers, FlexibleWorkGang* workers,
5271                    OopTaskQueueSet* task_queues):
5272     CMSParMarkTask("Rescan roots and grey objects in parallel",
5273                    collector, n_workers),
5274     _cms_space(cms_space),
5275     _task_queues(task_queues),
5276     _term(n_workers, task_queues) { }
5277 
5278   OopTaskQueueSet* task_queues() { return _task_queues; }
5279 
5280   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
5281 
5282   ParallelTaskTerminator* terminator() { return &_term; }
5283   int n_workers() { return _n_workers; }
5284 
5285   void work(uint worker_id);
5286 
5287  private:
5288   // ... of  dirty cards in old space
5289   void do_dirty_card_rescan_tasks(CompactibleFreeListSpace* sp, int i,
5290                                   Par_MarkRefsIntoAndScanClosure* cl);
5291 
5292   // ... work stealing for the above
5293   void do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl, int* seed);
5294 };
5295 
5296 class RemarkKlassClosure : public KlassClosure {
5297   CMKlassClosure _cm_klass_closure;
5298  public:
5299   RemarkKlassClosure(OopClosure* oop_closure) : _cm_klass_closure(oop_closure) {}
5300   void do_klass(Klass* k) {
5301     // Check if we have modified any oops in the Klass during the concurrent marking.
5302     if (k->has_accumulated_modified_oops()) {
5303       k->clear_accumulated_modified_oops();
5304 
5305       // We could have transfered the current modified marks to the accumulated marks,
5306       // like we do with the Card Table to Mod Union Table. But it's not really necessary.
5307     } else if (k->has_modified_oops()) {
5308       // Don't clear anything, this info is needed by the next young collection.
5309     } else {
5310       // No modified oops in the Klass.
5311       return;
5312     }
5313 
5314     // The klass has modified fields, need to scan the klass.
5315     _cm_klass_closure.do_klass(k);
5316   }
5317 };
5318 
5319 void CMSParMarkTask::work_on_young_gen_roots(uint worker_id, OopsInGenClosure* cl) {
5320   DefNewGeneration* dng = _collector->_young_gen->as_DefNewGeneration();
5321   EdenSpace* eden_space = dng->eden();
5322   ContiguousSpace* from_space = dng->from();
5323   ContiguousSpace* to_space   = dng->to();
5324 
5325   HeapWord** eca = _collector->_eden_chunk_array;
5326   size_t     ect = _collector->_eden_chunk_index;
5327   HeapWord** sca = _collector->_survivor_chunk_array;
5328   size_t     sct = _collector->_survivor_chunk_index;
5329 
5330   assert(ect <= _collector->_eden_chunk_capacity, "out of bounds");
5331   assert(sct <= _collector->_survivor_chunk_capacity, "out of bounds");
5332 
5333   do_young_space_rescan(worker_id, cl, to_space, NULL, 0);
5334   do_young_space_rescan(worker_id, cl, from_space, sca, sct);
5335   do_young_space_rescan(worker_id, cl, eden_space, eca, ect);
5336 }
5337 
5338 // work_queue(i) is passed to the closure
5339 // Par_MarkRefsIntoAndScanClosure.  The "i" parameter
5340 // also is passed to do_dirty_card_rescan_tasks() and to
5341 // do_work_steal() to select the i-th task_queue.
5342 
5343 void CMSParRemarkTask::work(uint worker_id) {
5344   elapsedTimer _timer;
5345   ResourceMark rm;
5346   HandleMark   hm;
5347 
5348   // ---------- rescan from roots --------------
5349   _timer.start();
5350   GenCollectedHeap* gch = GenCollectedHeap::heap();
5351   Par_MarkRefsIntoAndScanClosure par_mrias_cl(_collector,
5352     _collector->_span, _collector->ref_processor(),
5353     &(_collector->_markBitMap),
5354     work_queue(worker_id));
5355 
5356   // Rescan young gen roots first since these are likely
5357   // coarsely partitioned and may, on that account, constitute
5358   // the critical path; thus, it's best to start off that
5359   // work first.
5360   // ---------- young gen roots --------------
5361   {
5362     work_on_young_gen_roots(worker_id, &par_mrias_cl);
5363     _timer.stop();
5364     if (PrintCMSStatistics != 0) {
5365       gclog_or_tty->print_cr(
5366         "Finished young gen rescan work in %dth thread: %3.3f sec",
5367         worker_id, _timer.seconds());
5368     }
5369   }
5370 
5371   // ---------- remaining roots --------------
5372   _timer.reset();
5373   _timer.start();
5374   gch->gen_process_strong_roots(_collector->_cmsGen->level(),
5375                                 false,     // yg was scanned above
5376                                 false,     // this is parallel code
5377                                 false,     // not scavenging
5378                                 SharedHeap::ScanningOption(_collector->CMSCollector::roots_scanning_options()),
5379                                 &par_mrias_cl,
5380                                 true,   // walk all of code cache if (so & SO_CodeCache)
5381                                 NULL,
5382                                 NULL);     // The dirty klasses will be handled below
5383   assert(_collector->should_unload_classes()
5384          || (_collector->CMSCollector::roots_scanning_options() & SharedHeap::SO_CodeCache),
5385          "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5386   _timer.stop();
5387   if (PrintCMSStatistics != 0) {
5388     gclog_or_tty->print_cr(
5389       "Finished remaining root rescan work in %dth thread: %3.3f sec",
5390       worker_id, _timer.seconds());
5391   }
5392 
5393   // ---------- unhandled CLD scanning ----------
5394   if (worker_id == 0) { // Single threaded at the moment.
5395     _timer.reset();
5396     _timer.start();
5397 
5398     // Scan all new class loader data objects and new dependencies that were
5399     // introduced during concurrent marking.
5400     ResourceMark rm;
5401     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5402     for (int i = 0; i < array->length(); i++) {
5403       par_mrias_cl.do_class_loader_data(array->at(i));
5404     }
5405 
5406     // We don't need to keep track of new CLDs anymore.
5407     ClassLoaderDataGraph::remember_new_clds(false);
5408 
5409     _timer.stop();
5410     if (PrintCMSStatistics != 0) {
5411       gclog_or_tty->print_cr(
5412           "Finished unhandled CLD scanning work in %dth thread: %3.3f sec",
5413           worker_id, _timer.seconds());
5414     }
5415   }
5416 
5417   // ---------- dirty klass scanning ----------
5418   if (worker_id == 0) { // Single threaded at the moment.
5419     _timer.reset();
5420     _timer.start();
5421 
5422     // Scan all classes that was dirtied during the concurrent marking phase.
5423     RemarkKlassClosure remark_klass_closure(&par_mrias_cl);
5424     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
5425 
5426     _timer.stop();
5427     if (PrintCMSStatistics != 0) {
5428       gclog_or_tty->print_cr(
5429           "Finished dirty klass scanning work in %dth thread: %3.3f sec",
5430           worker_id, _timer.seconds());
5431     }
5432   }
5433 
5434   // We might have added oops to ClassLoaderData::_handles during the
5435   // concurrent marking phase. These oops point to newly allocated objects
5436   // that are guaranteed to be kept alive. Either by the direct allocation
5437   // code, or when the young collector processes the strong roots. Hence,
5438   // we don't have to revisit the _handles block during the remark phase.
5439 
5440   // ---------- rescan dirty cards ------------
5441   _timer.reset();
5442   _timer.start();
5443 
5444   // Do the rescan tasks for each of the two spaces
5445   // (cms_space) in turn.
5446   // "worker_id" is passed to select the task_queue for "worker_id"
5447   do_dirty_card_rescan_tasks(_cms_space, worker_id, &par_mrias_cl);
5448   _timer.stop();
5449   if (PrintCMSStatistics != 0) {
5450     gclog_or_tty->print_cr(
5451       "Finished dirty card rescan work in %dth thread: %3.3f sec",
5452       worker_id, _timer.seconds());
5453   }
5454 
5455   // ---------- steal work from other threads ...
5456   // ---------- ... and drain overflow list.
5457   _timer.reset();
5458   _timer.start();
5459   do_work_steal(worker_id, &par_mrias_cl, _collector->hash_seed(worker_id));
5460   _timer.stop();
5461   if (PrintCMSStatistics != 0) {
5462     gclog_or_tty->print_cr(
5463       "Finished work stealing in %dth thread: %3.3f sec",
5464       worker_id, _timer.seconds());
5465   }
5466 }
5467 
5468 // Note that parameter "i" is not used.
5469 void
5470 CMSParMarkTask::do_young_space_rescan(uint worker_id,
5471   OopsInGenClosure* cl, ContiguousSpace* space,
5472   HeapWord** chunk_array, size_t chunk_top) {
5473   // Until all tasks completed:
5474   // . claim an unclaimed task
5475   // . compute region boundaries corresponding to task claimed
5476   //   using chunk_array
5477   // . par_oop_iterate(cl) over that region
5478 
5479   ResourceMark rm;
5480   HandleMark   hm;
5481 
5482   SequentialSubTasksDone* pst = space->par_seq_tasks();
5483 
5484   uint nth_task = 0;
5485   uint n_tasks  = pst->n_tasks();
5486 
5487   if (n_tasks > 0) {
5488     assert(pst->valid(), "Uninitialized use?");
5489     HeapWord *start, *end;
5490     while (!pst->is_task_claimed(/* reference */ nth_task)) {
5491       // We claimed task # nth_task; compute its boundaries.
5492       if (chunk_top == 0) {  // no samples were taken
5493         assert(nth_task == 0 && n_tasks == 1, "Can have only 1 EdenSpace task");
5494         start = space->bottom();
5495         end   = space->top();
5496       } else if (nth_task == 0) {
5497         start = space->bottom();
5498         end   = chunk_array[nth_task];
5499       } else if (nth_task < (uint)chunk_top) {
5500         assert(nth_task >= 1, "Control point invariant");
5501         start = chunk_array[nth_task - 1];
5502         end   = chunk_array[nth_task];
5503       } else {
5504         assert(nth_task == (uint)chunk_top, "Control point invariant");
5505         start = chunk_array[chunk_top - 1];
5506         end   = space->top();
5507       }
5508       MemRegion mr(start, end);
5509       // Verify that mr is in space
5510       assert(mr.is_empty() || space->used_region().contains(mr),
5511              "Should be in space");
5512       // Verify that "start" is an object boundary
5513       assert(mr.is_empty() || oop(mr.start())->is_oop(),
5514              "Should be an oop");
5515       space->par_oop_iterate(mr, cl);
5516     }
5517     pst->all_tasks_completed();
5518   }
5519 }
5520 
5521 void
5522 CMSParRemarkTask::do_dirty_card_rescan_tasks(
5523   CompactibleFreeListSpace* sp, int i,
5524   Par_MarkRefsIntoAndScanClosure* cl) {
5525   // Until all tasks completed:
5526   // . claim an unclaimed task
5527   // . compute region boundaries corresponding to task claimed
5528   // . transfer dirty bits ct->mut for that region
5529   // . apply rescanclosure to dirty mut bits for that region
5530 
5531   ResourceMark rm;
5532   HandleMark   hm;
5533 
5534   OopTaskQueue* work_q = work_queue(i);
5535   ModUnionClosure modUnionClosure(&(_collector->_modUnionTable));
5536   // CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION! CAUTION!
5537   // CAUTION: This closure has state that persists across calls to
5538   // the work method dirty_range_iterate_clear() in that it has
5539   // imbedded in it a (subtype of) UpwardsObjectClosure. The
5540   // use of that state in the imbedded UpwardsObjectClosure instance
5541   // assumes that the cards are always iterated (even if in parallel
5542   // by several threads) in monotonically increasing order per each
5543   // thread. This is true of the implementation below which picks
5544   // card ranges (chunks) in monotonically increasing order globally
5545   // and, a-fortiori, in monotonically increasing order per thread
5546   // (the latter order being a subsequence of the former).
5547   // If the work code below is ever reorganized into a more chaotic
5548   // work-partitioning form than the current "sequential tasks"
5549   // paradigm, the use of that persistent state will have to be
5550   // revisited and modified appropriately. See also related
5551   // bug 4756801 work on which should examine this code to make
5552   // sure that the changes there do not run counter to the
5553   // assumptions made here and necessary for correctness and
5554   // efficiency. Note also that this code might yield inefficient
5555   // behaviour in the case of very large objects that span one or
5556   // more work chunks. Such objects would potentially be scanned
5557   // several times redundantly. Work on 4756801 should try and
5558   // address that performance anomaly if at all possible. XXX
5559   MemRegion  full_span  = _collector->_span;
5560   CMSBitMap* bm    = &(_collector->_markBitMap);     // shared
5561   MarkFromDirtyCardsClosure
5562     greyRescanClosure(_collector, full_span, // entire span of interest
5563                       sp, bm, work_q, cl);
5564 
5565   SequentialSubTasksDone* pst = sp->conc_par_seq_tasks();
5566   assert(pst->valid(), "Uninitialized use?");
5567   uint nth_task = 0;
5568   const int alignment = CardTableModRefBS::card_size * BitsPerWord;
5569   MemRegion span = sp->used_region();
5570   HeapWord* start_addr = span.start();
5571   HeapWord* end_addr = (HeapWord*)round_to((intptr_t)span.end(),
5572                                            alignment);
5573   const size_t chunk_size = sp->rescan_task_size(); // in HeapWord units
5574   assert((HeapWord*)round_to((intptr_t)start_addr, alignment) ==
5575          start_addr, "Check alignment");
5576   assert((size_t)round_to((intptr_t)chunk_size, alignment) ==
5577          chunk_size, "Check alignment");
5578 
5579   while (!pst->is_task_claimed(/* reference */ nth_task)) {
5580     // Having claimed the nth_task, compute corresponding mem-region,
5581     // which is a-fortiori aligned correctly (i.e. at a MUT bopundary).
5582     // The alignment restriction ensures that we do not need any
5583     // synchronization with other gang-workers while setting or
5584     // clearing bits in thus chunk of the MUT.
5585     MemRegion this_span = MemRegion(start_addr + nth_task*chunk_size,
5586                                     start_addr + (nth_task+1)*chunk_size);
5587     // The last chunk's end might be way beyond end of the
5588     // used region. In that case pull back appropriately.
5589     if (this_span.end() > end_addr) {
5590       this_span.set_end(end_addr);
5591       assert(!this_span.is_empty(), "Program logic (calculation of n_tasks)");
5592     }
5593     // Iterate over the dirty cards covering this chunk, marking them
5594     // precleaned, and setting the corresponding bits in the mod union
5595     // table. Since we have been careful to partition at Card and MUT-word
5596     // boundaries no synchronization is needed between parallel threads.
5597     _collector->_ct->ct_bs()->dirty_card_iterate(this_span,
5598                                                  &modUnionClosure);
5599 
5600     // Having transferred these marks into the modUnionTable,
5601     // rescan the marked objects on the dirty cards in the modUnionTable.
5602     // Even if this is at a synchronous collection, the initial marking
5603     // may have been done during an asynchronous collection so there
5604     // may be dirty bits in the mod-union table.
5605     _collector->_modUnionTable.dirty_range_iterate_clear(
5606                   this_span, &greyRescanClosure);
5607     _collector->_modUnionTable.verifyNoOneBitsInRange(
5608                                  this_span.start(),
5609                                  this_span.end());
5610   }
5611   pst->all_tasks_completed();  // declare that i am done
5612 }
5613 
5614 // . see if we can share work_queues with ParNew? XXX
5615 void
5616 CMSParRemarkTask::do_work_steal(int i, Par_MarkRefsIntoAndScanClosure* cl,
5617                                 int* seed) {
5618   OopTaskQueue* work_q = work_queue(i);
5619   NOT_PRODUCT(int num_steals = 0;)
5620   oop obj_to_scan;
5621   CMSBitMap* bm = &(_collector->_markBitMap);
5622 
5623   while (true) {
5624     // Completely finish any left over work from (an) earlier round(s)
5625     cl->trim_queue(0);
5626     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
5627                                          (size_t)ParGCDesiredObjsFromOverflowList);
5628     // Now check if there's any work in the overflow list
5629     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
5630     // only affects the number of attempts made to get work from the
5631     // overflow list and does not affect the number of workers.  Just
5632     // pass ParallelGCThreads so this behavior is unchanged.
5633     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
5634                                                 work_q,
5635                                                 ParallelGCThreads)) {
5636       // found something in global overflow list;
5637       // not yet ready to go stealing work from others.
5638       // We'd like to assert(work_q->size() != 0, ...)
5639       // because we just took work from the overflow list,
5640       // but of course we can't since all of that could have
5641       // been already stolen from us.
5642       // "He giveth and He taketh away."
5643       continue;
5644     }
5645     // Verify that we have no work before we resort to stealing
5646     assert(work_q->size() == 0, "Have work, shouldn't steal");
5647     // Try to steal from other queues that have work
5648     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
5649       NOT_PRODUCT(num_steals++;)
5650       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
5651       assert(bm->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
5652       // Do scanning work
5653       obj_to_scan->oop_iterate(cl);
5654       // Loop around, finish this work, and try to steal some more
5655     } else if (terminator()->offer_termination()) {
5656         break;  // nirvana from the infinite cycle
5657     }
5658   }
5659   NOT_PRODUCT(
5660     if (PrintCMSStatistics != 0) {
5661       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
5662     }
5663   )
5664   assert(work_q->size() == 0 && _collector->overflow_list_is_empty(),
5665          "Else our work is not yet done");
5666 }
5667 
5668 // Record object boundaries in _eden_chunk_array by sampling the eden
5669 // top in the slow-path eden object allocation code path and record
5670 // the boundaries, if CMSEdenChunksRecordAlways is true. If
5671 // CMSEdenChunksRecordAlways is false, we use the other asynchronous
5672 // sampling in sample_eden() that activates during the part of the
5673 // preclean phase.
5674 void CMSCollector::sample_eden_chunk() {
5675   if (CMSEdenChunksRecordAlways && _eden_chunk_array != NULL) {
5676     if (_eden_chunk_lock->try_lock()) {
5677       // Record a sample. This is the critical section. The contents
5678       // of the _eden_chunk_array have to be non-decreasing in the
5679       // address order.
5680       _eden_chunk_array[_eden_chunk_index] = *_top_addr;
5681       assert(_eden_chunk_array[_eden_chunk_index] <= *_end_addr,
5682              "Unexpected state of Eden");
5683       if (_eden_chunk_index == 0 ||
5684           ((_eden_chunk_array[_eden_chunk_index] > _eden_chunk_array[_eden_chunk_index-1]) &&
5685            (pointer_delta(_eden_chunk_array[_eden_chunk_index],
5686                           _eden_chunk_array[_eden_chunk_index-1]) >= CMSSamplingGrain))) {
5687         _eden_chunk_index++;  // commit sample
5688       }
5689       _eden_chunk_lock->unlock();
5690     }
5691   }
5692 }
5693 
5694 // Return a thread-local PLAB recording array, as appropriate.
5695 void* CMSCollector::get_data_recorder(int thr_num) {
5696   if (_survivor_plab_array != NULL &&
5697       (CMSPLABRecordAlways ||
5698        (_collectorState > Marking && _collectorState < FinalMarking))) {
5699     assert(thr_num < (int)ParallelGCThreads, "thr_num is out of bounds");
5700     ChunkArray* ca = &_survivor_plab_array[thr_num];
5701     ca->reset();   // clear it so that fresh data is recorded
5702     return (void*) ca;
5703   } else {
5704     return NULL;
5705   }
5706 }
5707 
5708 // Reset all the thread-local PLAB recording arrays
5709 void CMSCollector::reset_survivor_plab_arrays() {
5710   for (uint i = 0; i < ParallelGCThreads; i++) {
5711     _survivor_plab_array[i].reset();
5712   }
5713 }
5714 
5715 // Merge the per-thread plab arrays into the global survivor chunk
5716 // array which will provide the partitioning of the survivor space
5717 // for CMS initial scan and rescan.
5718 void CMSCollector::merge_survivor_plab_arrays(ContiguousSpace* surv,
5719                                               int no_of_gc_threads) {
5720   assert(_survivor_plab_array  != NULL, "Error");
5721   assert(_survivor_chunk_array != NULL, "Error");
5722   assert(_collectorState == FinalMarking ||
5723          (CMSParallelInitialMarkEnabled && _collectorState == InitialMarking), "Error");
5724   for (int j = 0; j < no_of_gc_threads; j++) {
5725     _cursor[j] = 0;
5726   }
5727   HeapWord* top = surv->top();
5728   size_t i;
5729   for (i = 0; i < _survivor_chunk_capacity; i++) {  // all sca entries
5730     HeapWord* min_val = top;          // Higher than any PLAB address
5731     uint      min_tid = 0;            // position of min_val this round
5732     for (int j = 0; j < no_of_gc_threads; j++) {
5733       ChunkArray* cur_sca = &_survivor_plab_array[j];
5734       if (_cursor[j] == cur_sca->end()) {
5735         continue;
5736       }
5737       assert(_cursor[j] < cur_sca->end(), "ctl pt invariant");
5738       HeapWord* cur_val = cur_sca->nth(_cursor[j]);
5739       assert(surv->used_region().contains(cur_val), "Out of bounds value");
5740       if (cur_val < min_val) {
5741         min_tid = j;
5742         min_val = cur_val;
5743       } else {
5744         assert(cur_val < top, "All recorded addresses should be less");
5745       }
5746     }
5747     // At this point min_val and min_tid are respectively
5748     // the least address in _survivor_plab_array[j]->nth(_cursor[j])
5749     // and the thread (j) that witnesses that address.
5750     // We record this address in the _survivor_chunk_array[i]
5751     // and increment _cursor[min_tid] prior to the next round i.
5752     if (min_val == top) {
5753       break;
5754     }
5755     _survivor_chunk_array[i] = min_val;
5756     _cursor[min_tid]++;
5757   }
5758   // We are all done; record the size of the _survivor_chunk_array
5759   _survivor_chunk_index = i; // exclusive: [0, i)
5760   if (PrintCMSStatistics > 0) {
5761     gclog_or_tty->print(" (Survivor:" SIZE_FORMAT "chunks) ", i);
5762   }
5763   // Verify that we used up all the recorded entries
5764   #ifdef ASSERT
5765     size_t total = 0;
5766     for (int j = 0; j < no_of_gc_threads; j++) {
5767       assert(_cursor[j] == _survivor_plab_array[j].end(), "Ctl pt invariant");
5768       total += _cursor[j];
5769     }
5770     assert(total == _survivor_chunk_index, "Ctl Pt Invariant");
5771     // Check that the merged array is in sorted order
5772     if (total > 0) {
5773       for (size_t i = 0; i < total - 1; i++) {
5774         if (PrintCMSStatistics > 0) {
5775           gclog_or_tty->print(" (chunk" SIZE_FORMAT ":" INTPTR_FORMAT ") ",
5776                               i, _survivor_chunk_array[i]);
5777         }
5778         assert(_survivor_chunk_array[i] < _survivor_chunk_array[i+1],
5779                "Not sorted");
5780       }
5781     }
5782   #endif // ASSERT
5783 }
5784 
5785 // Set up the space's par_seq_tasks structure for work claiming
5786 // for parallel initial scan and rescan of young gen.
5787 // See ParRescanTask where this is currently used.
5788 void
5789 CMSCollector::
5790 initialize_sequential_subtasks_for_young_gen_rescan(int n_threads) {
5791   assert(n_threads > 0, "Unexpected n_threads argument");
5792   DefNewGeneration* dng = (DefNewGeneration*)_young_gen;
5793 
5794   // Eden space
5795   if (!dng->eden()->is_empty()) {
5796     SequentialSubTasksDone* pst = dng->eden()->par_seq_tasks();
5797     assert(!pst->valid(), "Clobbering existing data?");
5798     // Each valid entry in [0, _eden_chunk_index) represents a task.
5799     size_t n_tasks = _eden_chunk_index + 1;
5800     assert(n_tasks == 1 || _eden_chunk_array != NULL, "Error");
5801     // Sets the condition for completion of the subtask (how many threads
5802     // need to finish in order to be done).
5803     pst->set_n_threads(n_threads);
5804     pst->set_n_tasks((int)n_tasks);
5805   }
5806 
5807   // Merge the survivor plab arrays into _survivor_chunk_array
5808   if (_survivor_plab_array != NULL) {
5809     merge_survivor_plab_arrays(dng->from(), n_threads);
5810   } else {
5811     assert(_survivor_chunk_index == 0, "Error");
5812   }
5813 
5814   // To space
5815   {
5816     SequentialSubTasksDone* pst = dng->to()->par_seq_tasks();
5817     assert(!pst->valid(), "Clobbering existing data?");
5818     // Sets the condition for completion of the subtask (how many threads
5819     // need to finish in order to be done).
5820     pst->set_n_threads(n_threads);
5821     pst->set_n_tasks(1);
5822     assert(pst->valid(), "Error");
5823   }
5824 
5825   // From space
5826   {
5827     SequentialSubTasksDone* pst = dng->from()->par_seq_tasks();
5828     assert(!pst->valid(), "Clobbering existing data?");
5829     size_t n_tasks = _survivor_chunk_index + 1;
5830     assert(n_tasks == 1 || _survivor_chunk_array != NULL, "Error");
5831     // Sets the condition for completion of the subtask (how many threads
5832     // need to finish in order to be done).
5833     pst->set_n_threads(n_threads);
5834     pst->set_n_tasks((int)n_tasks);
5835     assert(pst->valid(), "Error");
5836   }
5837 }
5838 
5839 // Parallel version of remark
5840 void CMSCollector::do_remark_parallel() {
5841   GenCollectedHeap* gch = GenCollectedHeap::heap();
5842   FlexibleWorkGang* workers = gch->workers();
5843   assert(workers != NULL, "Need parallel worker threads.");
5844   // Choose to use the number of GC workers most recently set
5845   // into "active_workers".  If active_workers is not set, set it
5846   // to ParallelGCThreads.
5847   int n_workers = workers->active_workers();
5848   if (n_workers == 0) {
5849     assert(n_workers > 0, "Should have been set during scavenge");
5850     n_workers = ParallelGCThreads;
5851     workers->set_active_workers(n_workers);
5852   }
5853   CompactibleFreeListSpace* cms_space  = _cmsGen->cmsSpace();
5854 
5855   CMSParRemarkTask tsk(this,
5856     cms_space,
5857     n_workers, workers, task_queues());
5858 
5859   // Set up for parallel process_strong_roots work.
5860   gch->set_par_threads(n_workers);
5861   // We won't be iterating over the cards in the card table updating
5862   // the younger_gen cards, so we shouldn't call the following else
5863   // the verification code as well as subsequent younger_refs_iterate
5864   // code would get confused. XXX
5865   // gch->rem_set()->prepare_for_younger_refs_iterate(true); // parallel
5866 
5867   // The young gen rescan work will not be done as part of
5868   // process_strong_roots (which currently doesn't knw how to
5869   // parallelize such a scan), but rather will be broken up into
5870   // a set of parallel tasks (via the sampling that the [abortable]
5871   // preclean phase did of EdenSpace, plus the [two] tasks of
5872   // scanning the [two] survivor spaces. Further fine-grain
5873   // parallelization of the scanning of the survivor spaces
5874   // themselves, and of precleaning of the younger gen itself
5875   // is deferred to the future.
5876   initialize_sequential_subtasks_for_young_gen_rescan(n_workers);
5877 
5878   // The dirty card rescan work is broken up into a "sequence"
5879   // of parallel tasks (per constituent space) that are dynamically
5880   // claimed by the parallel threads.
5881   cms_space->initialize_sequential_subtasks_for_rescan(n_workers);
5882 
5883   // It turns out that even when we're using 1 thread, doing the work in a
5884   // separate thread causes wide variance in run times.  We can't help this
5885   // in the multi-threaded case, but we special-case n=1 here to get
5886   // repeatable measurements of the 1-thread overhead of the parallel code.
5887   if (n_workers > 1) {
5888     // Make refs discovery MT-safe, if it isn't already: it may not
5889     // necessarily be so, since it's possible that we are doing
5890     // ST marking.
5891     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), true);
5892     GenCollectedHeap::StrongRootsScope srs(gch);
5893     workers->run_task(&tsk);
5894   } else {
5895     ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5896     GenCollectedHeap::StrongRootsScope srs(gch);
5897     tsk.work(0);
5898   }
5899 
5900   gch->set_par_threads(0);  // 0 ==> non-parallel.
5901   // restore, single-threaded for now, any preserved marks
5902   // as a result of work_q overflow
5903   restore_preserved_marks_if_any();
5904 }
5905 
5906 // Non-parallel version of remark
5907 void CMSCollector::do_remark_non_parallel() {
5908   ResourceMark rm;
5909   HandleMark   hm;
5910   GenCollectedHeap* gch = GenCollectedHeap::heap();
5911   ReferenceProcessorMTDiscoveryMutator mt(ref_processor(), false);
5912 
5913   MarkRefsIntoAndScanClosure
5914     mrias_cl(_span, ref_processor(), &_markBitMap, NULL /* not precleaning */,
5915              &_markStack, this,
5916              false /* should_yield */, false /* not precleaning */);
5917   MarkFromDirtyCardsClosure
5918     markFromDirtyCardsClosure(this, _span,
5919                               NULL,  // space is set further below
5920                               &_markBitMap, &_markStack, &mrias_cl);
5921   {
5922     GCTraceTime t("grey object rescan", PrintGCDetails, false, _gc_timer_cm);
5923     // Iterate over the dirty cards, setting the corresponding bits in the
5924     // mod union table.
5925     {
5926       ModUnionClosure modUnionClosure(&_modUnionTable);
5927       _ct->ct_bs()->dirty_card_iterate(
5928                       _cmsGen->used_region(),
5929                       &modUnionClosure);
5930     }
5931     // Having transferred these marks into the modUnionTable, we just need
5932     // to rescan the marked objects on the dirty cards in the modUnionTable.
5933     // The initial marking may have been done during an asynchronous
5934     // collection so there may be dirty bits in the mod-union table.
5935     const int alignment =
5936       CardTableModRefBS::card_size * BitsPerWord;
5937     {
5938       // ... First handle dirty cards in CMS gen
5939       markFromDirtyCardsClosure.set_space(_cmsGen->cmsSpace());
5940       MemRegion ur = _cmsGen->used_region();
5941       HeapWord* lb = ur.start();
5942       HeapWord* ub = (HeapWord*)round_to((intptr_t)ur.end(), alignment);
5943       MemRegion cms_span(lb, ub);
5944       _modUnionTable.dirty_range_iterate_clear(cms_span,
5945                                                &markFromDirtyCardsClosure);
5946       verify_work_stacks_empty();
5947       if (PrintCMSStatistics != 0) {
5948         gclog_or_tty->print(" (re-scanned "SIZE_FORMAT" dirty cards in cms gen) ",
5949           markFromDirtyCardsClosure.num_dirty_cards());
5950       }
5951     }
5952   }
5953   if (VerifyDuringGC &&
5954       GenCollectedHeap::heap()->total_collections() >= VerifyGCStartAt) {
5955     HandleMark hm;  // Discard invalid handles created during verification
5956     Universe::verify();
5957   }
5958   {
5959     GCTraceTime t("root rescan", PrintGCDetails, false, _gc_timer_cm);
5960 
5961     verify_work_stacks_empty();
5962 
5963     gch->rem_set()->prepare_for_younger_refs_iterate(false); // Not parallel.
5964     GenCollectedHeap::StrongRootsScope srs(gch);
5965     gch->gen_process_strong_roots(_cmsGen->level(),
5966                                   true,  // younger gens as roots
5967                                   false, // use the local StrongRootsScope
5968                                   false, // not scavenging
5969                                   SharedHeap::ScanningOption(roots_scanning_options()),
5970                                   &mrias_cl,
5971                                   true,   // walk code active on stacks
5972                                   NULL,
5973                                   NULL);  // The dirty klasses will be handled below
5974 
5975     assert(should_unload_classes()
5976            || (roots_scanning_options() & SharedHeap::SO_CodeCache),
5977            "if we didn't scan the code cache, we have to be ready to drop nmethods with expired weak oops");
5978   }
5979 
5980   {
5981     GCTraceTime t("visit unhandled CLDs", PrintGCDetails, false, _gc_timer_cm);
5982 
5983     verify_work_stacks_empty();
5984 
5985     // Scan all class loader data objects that might have been introduced
5986     // during concurrent marking.
5987     ResourceMark rm;
5988     GrowableArray<ClassLoaderData*>* array = ClassLoaderDataGraph::new_clds();
5989     for (int i = 0; i < array->length(); i++) {
5990       mrias_cl.do_class_loader_data(array->at(i));
5991     }
5992 
5993     // We don't need to keep track of new CLDs anymore.
5994     ClassLoaderDataGraph::remember_new_clds(false);
5995 
5996     verify_work_stacks_empty();
5997   }
5998 
5999   {
6000     GCTraceTime t("dirty klass scan", PrintGCDetails, false, _gc_timer_cm);
6001 
6002     verify_work_stacks_empty();
6003 
6004     RemarkKlassClosure remark_klass_closure(&mrias_cl);
6005     ClassLoaderDataGraph::classes_do(&remark_klass_closure);
6006 
6007     verify_work_stacks_empty();
6008   }
6009 
6010   // We might have added oops to ClassLoaderData::_handles during the
6011   // concurrent marking phase. These oops point to newly allocated objects
6012   // that are guaranteed to be kept alive. Either by the direct allocation
6013   // code, or when the young collector processes the strong roots. Hence,
6014   // we don't have to revisit the _handles block during the remark phase.
6015 
6016   verify_work_stacks_empty();
6017   // Restore evacuated mark words, if any, used for overflow list links
6018   if (!CMSOverflowEarlyRestoration) {
6019     restore_preserved_marks_if_any();
6020   }
6021   verify_overflow_empty();
6022 }
6023 
6024 ////////////////////////////////////////////////////////
6025 // Parallel Reference Processing Task Proxy Class
6026 ////////////////////////////////////////////////////////
6027 class CMSRefProcTaskProxy: public AbstractGangTaskWOopQueues {
6028   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
6029   CMSCollector*          _collector;
6030   CMSBitMap*             _mark_bit_map;
6031   const MemRegion        _span;
6032   ProcessTask&           _task;
6033 
6034 public:
6035   CMSRefProcTaskProxy(ProcessTask&     task,
6036                       CMSCollector*    collector,
6037                       const MemRegion& span,
6038                       CMSBitMap*       mark_bit_map,
6039                       AbstractWorkGang* workers,
6040                       OopTaskQueueSet* task_queues):
6041     // XXX Should superclass AGTWOQ also know about AWG since it knows
6042     // about the task_queues used by the AWG? Then it could initialize
6043     // the terminator() object. See 6984287. The set_for_termination()
6044     // below is a temporary band-aid for the regression in 6984287.
6045     AbstractGangTaskWOopQueues("Process referents by policy in parallel",
6046       task_queues),
6047     _task(task),
6048     _collector(collector), _span(span), _mark_bit_map(mark_bit_map)
6049   {
6050     assert(_collector->_span.equals(_span) && !_span.is_empty(),
6051            "Inconsistency in _span");
6052     set_for_termination(workers->active_workers());
6053   }
6054 
6055   OopTaskQueueSet* task_queues() { return queues(); }
6056 
6057   OopTaskQueue* work_queue(int i) { return task_queues()->queue(i); }
6058 
6059   void do_work_steal(int i,
6060                      CMSParDrainMarkingStackClosure* drain,
6061                      CMSParKeepAliveClosure* keep_alive,
6062                      int* seed);
6063 
6064   virtual void work(uint worker_id);
6065 };
6066 
6067 void CMSRefProcTaskProxy::work(uint worker_id) {
6068   assert(_collector->_span.equals(_span), "Inconsistency in _span");
6069   CMSParKeepAliveClosure par_keep_alive(_collector, _span,
6070                                         _mark_bit_map,
6071                                         work_queue(worker_id));
6072   CMSParDrainMarkingStackClosure par_drain_stack(_collector, _span,
6073                                                  _mark_bit_map,
6074                                                  work_queue(worker_id));
6075   CMSIsAliveClosure is_alive_closure(_span, _mark_bit_map);
6076   _task.work(worker_id, is_alive_closure, par_keep_alive, par_drain_stack);
6077   if (_task.marks_oops_alive()) {
6078     do_work_steal(worker_id, &par_drain_stack, &par_keep_alive,
6079                   _collector->hash_seed(worker_id));
6080   }
6081   assert(work_queue(worker_id)->size() == 0, "work_queue should be empty");
6082   assert(_collector->_overflow_list == NULL, "non-empty _overflow_list");
6083 }
6084 
6085 class CMSRefEnqueueTaskProxy: public AbstractGangTask {
6086   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
6087   EnqueueTask& _task;
6088 
6089 public:
6090   CMSRefEnqueueTaskProxy(EnqueueTask& task)
6091     : AbstractGangTask("Enqueue reference objects in parallel"),
6092       _task(task)
6093   { }
6094 
6095   virtual void work(uint worker_id)
6096   {
6097     _task.work(worker_id);
6098   }
6099 };
6100 
6101 CMSParKeepAliveClosure::CMSParKeepAliveClosure(CMSCollector* collector,
6102   MemRegion span, CMSBitMap* bit_map, OopTaskQueue* work_queue):
6103    _span(span),
6104    _bit_map(bit_map),
6105    _work_queue(work_queue),
6106    _mark_and_push(collector, span, bit_map, work_queue),
6107    _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
6108                         (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads)))
6109 { }
6110 
6111 // . see if we can share work_queues with ParNew? XXX
6112 void CMSRefProcTaskProxy::do_work_steal(int i,
6113   CMSParDrainMarkingStackClosure* drain,
6114   CMSParKeepAliveClosure* keep_alive,
6115   int* seed) {
6116   OopTaskQueue* work_q = work_queue(i);
6117   NOT_PRODUCT(int num_steals = 0;)
6118   oop obj_to_scan;
6119 
6120   while (true) {
6121     // Completely finish any left over work from (an) earlier round(s)
6122     drain->trim_queue(0);
6123     size_t num_from_overflow_list = MIN2((size_t)(work_q->max_elems() - work_q->size())/4,
6124                                          (size_t)ParGCDesiredObjsFromOverflowList);
6125     // Now check if there's any work in the overflow list
6126     // Passing ParallelGCThreads as the third parameter, no_of_gc_threads,
6127     // only affects the number of attempts made to get work from the
6128     // overflow list and does not affect the number of workers.  Just
6129     // pass ParallelGCThreads so this behavior is unchanged.
6130     if (_collector->par_take_from_overflow_list(num_from_overflow_list,
6131                                                 work_q,
6132                                                 ParallelGCThreads)) {
6133       // Found something in global overflow list;
6134       // not yet ready to go stealing work from others.
6135       // We'd like to assert(work_q->size() != 0, ...)
6136       // because we just took work from the overflow list,
6137       // but of course we can't, since all of that might have
6138       // been already stolen from us.
6139       continue;
6140     }
6141     // Verify that we have no work before we resort to stealing
6142     assert(work_q->size() == 0, "Have work, shouldn't steal");
6143     // Try to steal from other queues that have work
6144     if (task_queues()->steal(i, seed, /* reference */ obj_to_scan)) {
6145       NOT_PRODUCT(num_steals++;)
6146       assert(obj_to_scan->is_oop(), "Oops, not an oop!");
6147       assert(_mark_bit_map->isMarked((HeapWord*)obj_to_scan), "Stole an unmarked oop?");
6148       // Do scanning work
6149       obj_to_scan->oop_iterate(keep_alive);
6150       // Loop around, finish this work, and try to steal some more
6151     } else if (terminator()->offer_termination()) {
6152       break;  // nirvana from the infinite cycle
6153     }
6154   }
6155   NOT_PRODUCT(
6156     if (PrintCMSStatistics != 0) {
6157       gclog_or_tty->print("\n\t(%d: stole %d oops)", i, num_steals);
6158     }
6159   )
6160 }
6161 
6162 void CMSRefProcTaskExecutor::execute(ProcessTask& task)
6163 {
6164   GenCollectedHeap* gch = GenCollectedHeap::heap();
6165   FlexibleWorkGang* workers = gch->workers();
6166   assert(workers != NULL, "Need parallel worker threads.");
6167   CMSRefProcTaskProxy rp_task(task, &_collector,
6168                               _collector.ref_processor()->span(),
6169                               _collector.markBitMap(),
6170                               workers, _collector.task_queues());
6171   workers->run_task(&rp_task);
6172 }
6173 
6174 void CMSRefProcTaskExecutor::execute(EnqueueTask& task)
6175 {
6176 
6177   GenCollectedHeap* gch = GenCollectedHeap::heap();
6178   FlexibleWorkGang* workers = gch->workers();
6179   assert(workers != NULL, "Need parallel worker threads.");
6180   CMSRefEnqueueTaskProxy enq_task(task);
6181   workers->run_task(&enq_task);
6182 }
6183 
6184 void CMSCollector::refProcessingWork(bool asynch, bool clear_all_soft_refs) {
6185 
6186   ResourceMark rm;
6187   HandleMark   hm;
6188 
6189   ReferenceProcessor* rp = ref_processor();
6190   assert(rp->span().equals(_span), "Spans should be equal");
6191   assert(!rp->enqueuing_is_done(), "Enqueuing should not be complete");
6192   // Process weak references.
6193   rp->setup_policy(clear_all_soft_refs);
6194   verify_work_stacks_empty();
6195 
6196   CMSKeepAliveClosure cmsKeepAliveClosure(this, _span, &_markBitMap,
6197                                           &_markStack, false /* !preclean */);
6198   CMSDrainMarkingStackClosure cmsDrainMarkingStackClosure(this,
6199                                 _span, &_markBitMap, &_markStack,
6200                                 &cmsKeepAliveClosure, false /* !preclean */);
6201   {
6202     GCTraceTime t("weak refs processing", PrintGCDetails, false, _gc_timer_cm);
6203 
6204     ReferenceProcessorStats stats;
6205     if (rp->processing_is_mt()) {
6206       // Set the degree of MT here.  If the discovery is done MT, there
6207       // may have been a different number of threads doing the discovery
6208       // and a different number of discovered lists may have Ref objects.
6209       // That is OK as long as the Reference lists are balanced (see
6210       // balance_all_queues() and balance_queues()).
6211       GenCollectedHeap* gch = GenCollectedHeap::heap();
6212       int active_workers = ParallelGCThreads;
6213       FlexibleWorkGang* workers = gch->workers();
6214       if (workers != NULL) {
6215         active_workers = workers->active_workers();
6216         // The expectation is that active_workers will have already
6217         // been set to a reasonable value.  If it has not been set,
6218         // investigate.
6219         assert(active_workers > 0, "Should have been set during scavenge");
6220       }
6221       rp->set_active_mt_degree(active_workers);
6222       CMSRefProcTaskExecutor task_executor(*this);
6223       stats = rp->process_discovered_references(&_is_alive_closure,
6224                                         &cmsKeepAliveClosure,
6225                                         &cmsDrainMarkingStackClosure,
6226                                         &task_executor,
6227                                         _gc_timer_cm);
6228     } else {
6229       stats = rp->process_discovered_references(&_is_alive_closure,
6230                                         &cmsKeepAliveClosure,
6231                                         &cmsDrainMarkingStackClosure,
6232                                         NULL,
6233                                         _gc_timer_cm);
6234     }
6235     _gc_tracer_cm->report_gc_reference_stats(stats);
6236 
6237   }
6238 
6239   // This is the point where the entire marking should have completed.
6240   verify_work_stacks_empty();
6241 
6242   if (should_unload_classes()) {
6243     {
6244       GCTraceTime t("class unloading", PrintGCDetails, false, _gc_timer_cm);
6245 
6246       // Unload classes and purge the SystemDictionary.
6247       bool purged_class = SystemDictionary::do_unloading(&_is_alive_closure);
6248 
6249       // Unload nmethods.
6250       CodeCache::do_unloading(&_is_alive_closure, purged_class);
6251 
6252       // Prune dead klasses from subklass/sibling/implementor lists.
6253       Klass::clean_weak_klass_links(&_is_alive_closure);
6254     }
6255 
6256     {
6257       GCTraceTime t("scrub symbol table", PrintGCDetails, false, _gc_timer_cm);
6258       // Clean up unreferenced symbols in symbol table.
6259       SymbolTable::unlink();
6260     }
6261   }
6262 
6263   // CMS doesn't use the StringTable as hard roots when class unloading is turned off.
6264   // Need to check if we really scanned the StringTable.
6265   if ((roots_scanning_options() & SharedHeap::SO_Strings) == 0) {
6266     GCTraceTime t("scrub string table", PrintGCDetails, false, _gc_timer_cm);
6267     // Delete entries for dead interned strings.
6268     StringTable::unlink(&_is_alive_closure);
6269   }
6270 
6271   // Restore any preserved marks as a result of mark stack or
6272   // work queue overflow
6273   restore_preserved_marks_if_any();  // done single-threaded for now
6274 
6275   rp->set_enqueuing_is_done(true);
6276   if (rp->processing_is_mt()) {
6277     rp->balance_all_queues();
6278     CMSRefProcTaskExecutor task_executor(*this);
6279     rp->enqueue_discovered_references(&task_executor);
6280   } else {
6281     rp->enqueue_discovered_references(NULL);
6282   }
6283   rp->verify_no_references_recorded();
6284   assert(!rp->discovery_enabled(), "should have been disabled");
6285 }
6286 
6287 #ifndef PRODUCT
6288 void CMSCollector::check_correct_thread_executing() {
6289   Thread* t = Thread::current();
6290   // Only the VM thread or the CMS thread should be here.
6291   assert(t->is_ConcurrentGC_thread() || t->is_VM_thread(),
6292          "Unexpected thread type");
6293   // If this is the vm thread, the foreground process
6294   // should not be waiting.  Note that _foregroundGCIsActive is
6295   // true while the foreground collector is waiting.
6296   if (_foregroundGCShouldWait) {
6297     // We cannot be the VM thread
6298     assert(t->is_ConcurrentGC_thread(),
6299            "Should be CMS thread");
6300   } else {
6301     // We can be the CMS thread only if we are in a stop-world
6302     // phase of CMS collection.
6303     if (t->is_ConcurrentGC_thread()) {
6304       assert(_collectorState == InitialMarking ||
6305              _collectorState == FinalMarking,
6306              "Should be a stop-world phase");
6307       // The CMS thread should be holding the CMS_token.
6308       assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6309              "Potential interference with concurrently "
6310              "executing VM thread");
6311     }
6312   }
6313 }
6314 #endif
6315 
6316 void CMSCollector::sweep(bool asynch) {
6317   assert(_collectorState == Sweeping, "just checking");
6318   check_correct_thread_executing();
6319   verify_work_stacks_empty();
6320   verify_overflow_empty();
6321   increment_sweep_count();
6322   TraceCMSMemoryManagerStats tms(_collectorState,GenCollectedHeap::heap()->gc_cause());
6323 
6324   _inter_sweep_timer.stop();
6325   _inter_sweep_estimate.sample(_inter_sweep_timer.seconds());
6326   size_policy()->avg_cms_free_at_sweep()->sample(_cmsGen->free());
6327 
6328   assert(!_intra_sweep_timer.is_active(), "Should not be active");
6329   _intra_sweep_timer.reset();
6330   _intra_sweep_timer.start();
6331   if (asynch) {
6332     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6333     CMSPhaseAccounting pa(this, "sweep", !PrintGCDetails);
6334     // First sweep the old gen
6335     {
6336       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock(),
6337                                bitMapLock());
6338       sweepWork(_cmsGen, asynch);
6339     }
6340 
6341     // Update Universe::_heap_*_at_gc figures.
6342     // We need all the free list locks to make the abstract state
6343     // transition from Sweeping to Resetting. See detailed note
6344     // further below.
6345     {
6346       CMSTokenSyncWithLocks ts(true, _cmsGen->freelistLock());
6347       // Update heap occupancy information which is used as
6348       // input to soft ref clearing policy at the next gc.
6349       Universe::update_heap_info_at_gc();
6350       _collectorState = Resizing;
6351     }
6352   } else {
6353     // already have needed locks
6354     sweepWork(_cmsGen,  asynch);
6355     // Update heap occupancy information which is used as
6356     // input to soft ref clearing policy at the next gc.
6357     Universe::update_heap_info_at_gc();
6358     _collectorState = Resizing;
6359   }
6360   verify_work_stacks_empty();
6361   verify_overflow_empty();
6362 
6363   if (should_unload_classes()) {
6364     ClassLoaderDataGraph::purge();
6365   }
6366 
6367   _intra_sweep_timer.stop();
6368   _intra_sweep_estimate.sample(_intra_sweep_timer.seconds());
6369 
6370   _inter_sweep_timer.reset();
6371   _inter_sweep_timer.start();
6372 
6373   // We need to use a monotonically non-deccreasing time in ms
6374   // or we will see time-warp warnings and os::javaTimeMillis()
6375   // does not guarantee monotonicity.
6376   jlong now = os::javaTimeNanos() / NANOSECS_PER_MILLISEC;
6377   update_time_of_last_gc(now);
6378 
6379   // NOTE on abstract state transitions:
6380   // Mutators allocate-live and/or mark the mod-union table dirty
6381   // based on the state of the collection.  The former is done in
6382   // the interval [Marking, Sweeping] and the latter in the interval
6383   // [Marking, Sweeping).  Thus the transitions into the Marking state
6384   // and out of the Sweeping state must be synchronously visible
6385   // globally to the mutators.
6386   // The transition into the Marking state happens with the world
6387   // stopped so the mutators will globally see it.  Sweeping is
6388   // done asynchronously by the background collector so the transition
6389   // from the Sweeping state to the Resizing state must be done
6390   // under the freelistLock (as is the check for whether to
6391   // allocate-live and whether to dirty the mod-union table).
6392   assert(_collectorState == Resizing, "Change of collector state to"
6393     " Resizing must be done under the freelistLocks (plural)");
6394 
6395   // Now that sweeping has been completed, we clear
6396   // the incremental_collection_failed flag,
6397   // thus inviting a younger gen collection to promote into
6398   // this generation. If such a promotion may still fail,
6399   // the flag will be set again when a young collection is
6400   // attempted.
6401   GenCollectedHeap* gch = GenCollectedHeap::heap();
6402   gch->clear_incremental_collection_failed();  // Worth retrying as fresh space may have been freed up
6403   gch->update_full_collections_completed(_collection_count_start);
6404 }
6405 
6406 // FIX ME!!! Looks like this belongs in CFLSpace, with
6407 // CMSGen merely delegating to it.
6408 void ConcurrentMarkSweepGeneration::setNearLargestChunk() {
6409   double nearLargestPercent = FLSLargestBlockCoalesceProximity;
6410   HeapWord*  minAddr        = _cmsSpace->bottom();
6411   HeapWord*  largestAddr    =
6412     (HeapWord*) _cmsSpace->dictionary()->find_largest_dict();
6413   if (largestAddr == NULL) {
6414     // The dictionary appears to be empty.  In this case
6415     // try to coalesce at the end of the heap.
6416     largestAddr = _cmsSpace->end();
6417   }
6418   size_t largestOffset     = pointer_delta(largestAddr, minAddr);
6419   size_t nearLargestOffset =
6420     (size_t)((double)largestOffset * nearLargestPercent) - MinChunkSize;
6421   if (PrintFLSStatistics != 0) {
6422     gclog_or_tty->print_cr(
6423       "CMS: Large Block: " PTR_FORMAT ";"
6424       " Proximity: " PTR_FORMAT " -> " PTR_FORMAT,
6425       largestAddr,
6426       _cmsSpace->nearLargestChunk(), minAddr + nearLargestOffset);
6427   }
6428   _cmsSpace->set_nearLargestChunk(minAddr + nearLargestOffset);
6429 }
6430 
6431 bool ConcurrentMarkSweepGeneration::isNearLargestChunk(HeapWord* addr) {
6432   return addr >= _cmsSpace->nearLargestChunk();
6433 }
6434 
6435 FreeChunk* ConcurrentMarkSweepGeneration::find_chunk_at_end() {
6436   return _cmsSpace->find_chunk_at_end();
6437 }
6438 
6439 void ConcurrentMarkSweepGeneration::update_gc_stats(int current_level,
6440                                                     bool full) {
6441   // The next lower level has been collected.  Gather any statistics
6442   // that are of interest at this point.
6443   if (!full && (current_level + 1) == level()) {
6444     // Gather statistics on the young generation collection.
6445     collector()->stats().record_gc0_end(used());
6446   }
6447 }
6448 
6449 CMSAdaptiveSizePolicy* ConcurrentMarkSweepGeneration::size_policy() {
6450   GenCollectedHeap* gch = GenCollectedHeap::heap();
6451   assert(gch->kind() == CollectedHeap::GenCollectedHeap,
6452     "Wrong type of heap");
6453   CMSAdaptiveSizePolicy* sp = (CMSAdaptiveSizePolicy*)
6454     gch->gen_policy()->size_policy();
6455   assert(sp->is_gc_cms_adaptive_size_policy(),
6456     "Wrong type of size policy");
6457   return sp;
6458 }
6459 
6460 void ConcurrentMarkSweepGeneration::rotate_debug_collection_type() {
6461   if (PrintGCDetails && Verbose) {
6462     gclog_or_tty->print("Rotate from %d ", _debug_collection_type);
6463   }
6464   _debug_collection_type = (CollectionTypes) (_debug_collection_type + 1);
6465   _debug_collection_type =
6466     (CollectionTypes) (_debug_collection_type % Unknown_collection_type);
6467   if (PrintGCDetails && Verbose) {
6468     gclog_or_tty->print_cr("to %d ", _debug_collection_type);
6469   }
6470 }
6471 
6472 void CMSCollector::sweepWork(ConcurrentMarkSweepGeneration* gen,
6473   bool asynch) {
6474   // We iterate over the space(s) underlying this generation,
6475   // checking the mark bit map to see if the bits corresponding
6476   // to specific blocks are marked or not. Blocks that are
6477   // marked are live and are not swept up. All remaining blocks
6478   // are swept up, with coalescing on-the-fly as we sweep up
6479   // contiguous free and/or garbage blocks:
6480   // We need to ensure that the sweeper synchronizes with allocators
6481   // and stop-the-world collectors. In particular, the following
6482   // locks are used:
6483   // . CMS token: if this is held, a stop the world collection cannot occur
6484   // . freelistLock: if this is held no allocation can occur from this
6485   //                 generation by another thread
6486   // . bitMapLock: if this is held, no other thread can access or update
6487   //
6488 
6489   // Note that we need to hold the freelistLock if we use
6490   // block iterate below; else the iterator might go awry if
6491   // a mutator (or promotion) causes block contents to change
6492   // (for instance if the allocator divvies up a block).
6493   // If we hold the free list lock, for all practical purposes
6494   // young generation GC's can't occur (they'll usually need to
6495   // promote), so we might as well prevent all young generation
6496   // GC's while we do a sweeping step. For the same reason, we might
6497   // as well take the bit map lock for the entire duration
6498 
6499   // check that we hold the requisite locks
6500   assert(have_cms_token(), "Should hold cms token");
6501   assert(   (asynch && ConcurrentMarkSweepThread::cms_thread_has_cms_token())
6502          || (!asynch && ConcurrentMarkSweepThread::vm_thread_has_cms_token()),
6503         "Should possess CMS token to sweep");
6504   assert_lock_strong(gen->freelistLock());
6505   assert_lock_strong(bitMapLock());
6506 
6507   assert(!_inter_sweep_timer.is_active(), "Was switched off in an outer context");
6508   assert(_intra_sweep_timer.is_active(),  "Was switched on  in an outer context");
6509   gen->cmsSpace()->beginSweepFLCensus((float)(_inter_sweep_timer.seconds()),
6510                                       _inter_sweep_estimate.padded_average(),
6511                                       _intra_sweep_estimate.padded_average());
6512   gen->setNearLargestChunk();
6513 
6514   {
6515     SweepClosure sweepClosure(this, gen, &_markBitMap,
6516                             CMSYield && asynch);
6517     gen->cmsSpace()->blk_iterate_careful(&sweepClosure);
6518     // We need to free-up/coalesce garbage/blocks from a
6519     // co-terminal free run. This is done in the SweepClosure
6520     // destructor; so, do not remove this scope, else the
6521     // end-of-sweep-census below will be off by a little bit.
6522   }
6523   gen->cmsSpace()->sweep_completed();
6524   gen->cmsSpace()->endSweepFLCensus(sweep_count());
6525   if (should_unload_classes()) {                // unloaded classes this cycle,
6526     _concurrent_cycles_since_last_unload = 0;   // ... reset count
6527   } else {                                      // did not unload classes,
6528     _concurrent_cycles_since_last_unload++;     // ... increment count
6529   }
6530 }
6531 
6532 // Reset CMS data structures (for now just the marking bit map)
6533 // preparatory for the next cycle.
6534 void CMSCollector::reset(bool asynch) {
6535   GenCollectedHeap* gch = GenCollectedHeap::heap();
6536   CMSAdaptiveSizePolicy* sp = size_policy();
6537   AdaptiveSizePolicyOutput(sp, gch->total_collections());
6538   if (asynch) {
6539     CMSTokenSyncWithLocks ts(true, bitMapLock());
6540 
6541     // If the state is not "Resetting", the foreground  thread
6542     // has done a collection and the resetting.
6543     if (_collectorState != Resetting) {
6544       assert(_collectorState == Idling, "The state should only change"
6545         " because the foreground collector has finished the collection");
6546       return;
6547     }
6548 
6549     // Clear the mark bitmap (no grey objects to start with)
6550     // for the next cycle.
6551     TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6552     CMSPhaseAccounting cmspa(this, "reset", !PrintGCDetails);
6553 
6554     HeapWord* curAddr = _markBitMap.startWord();
6555     while (curAddr < _markBitMap.endWord()) {
6556       size_t remaining  = pointer_delta(_markBitMap.endWord(), curAddr);
6557       MemRegion chunk(curAddr, MIN2(CMSBitMapYieldQuantum, remaining));
6558       _markBitMap.clear_large_range(chunk);
6559       if (ConcurrentMarkSweepThread::should_yield() &&
6560           !foregroundGCIsActive() &&
6561           CMSYield) {
6562         assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
6563                "CMS thread should hold CMS token");
6564         assert_lock_strong(bitMapLock());
6565         bitMapLock()->unlock();
6566         ConcurrentMarkSweepThread::desynchronize(true);
6567         ConcurrentMarkSweepThread::acknowledge_yield_request();
6568         stopTimer();
6569         if (PrintCMSStatistics != 0) {
6570           incrementYields();
6571         }
6572         icms_wait();
6573 
6574         // See the comment in coordinator_yield()
6575         for (unsigned i = 0; i < CMSYieldSleepCount &&
6576                          ConcurrentMarkSweepThread::should_yield() &&
6577                          !CMSCollector::foregroundGCIsActive(); ++i) {
6578           os::sleep(Thread::current(), 1, false);
6579           ConcurrentMarkSweepThread::acknowledge_yield_request();
6580         }
6581 
6582         ConcurrentMarkSweepThread::synchronize(true);
6583         bitMapLock()->lock_without_safepoint_check();
6584         startTimer();
6585       }
6586       curAddr = chunk.end();
6587     }
6588     // A successful mostly concurrent collection has been done.
6589     // Because only the full (i.e., concurrent mode failure) collections
6590     // are being measured for gc overhead limits, clean the "near" flag
6591     // and count.
6592     sp->reset_gc_overhead_limit_count();
6593     _collectorState = Idling;
6594   } else {
6595     // already have the lock
6596     assert(_collectorState == Resetting, "just checking");
6597     assert_lock_strong(bitMapLock());
6598     _markBitMap.clear_all();
6599     _collectorState = Idling;
6600   }
6601 
6602   // Stop incremental mode after a cycle completes, so that any future cycles
6603   // are triggered by allocation.
6604   stop_icms();
6605 
6606   NOT_PRODUCT(
6607     if (RotateCMSCollectionTypes) {
6608       _cmsGen->rotate_debug_collection_type();
6609     }
6610   )
6611 
6612   register_gc_end();
6613 }
6614 
6615 void CMSCollector::do_CMS_operation(CMS_op_type op, GCCause::Cause gc_cause) {
6616   gclog_or_tty->date_stamp(PrintGC && PrintGCDateStamps);
6617   TraceCPUTime tcpu(PrintGCDetails, true, gclog_or_tty);
6618   GCTraceTime t(GCCauseString("GC", gc_cause), PrintGC, !PrintGCDetails, NULL);
6619   TraceCollectorStats tcs(counters());
6620 
6621   switch (op) {
6622     case CMS_op_checkpointRootsInitial: {
6623       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6624       checkpointRootsInitial(true);       // asynch
6625       if (PrintGC) {
6626         _cmsGen->printOccupancy("initial-mark");
6627       }
6628       break;
6629     }
6630     case CMS_op_checkpointRootsFinal: {
6631       SvcGCMarker sgcm(SvcGCMarker::OTHER);
6632       checkpointRootsFinal(true,    // asynch
6633                            false,   // !clear_all_soft_refs
6634                            false);  // !init_mark_was_synchronous
6635       if (PrintGC) {
6636         _cmsGen->printOccupancy("remark");
6637       }
6638       break;
6639     }
6640     default:
6641       fatal("No such CMS_op");
6642   }
6643 }
6644 
6645 #ifndef PRODUCT
6646 size_t const CMSCollector::skip_header_HeapWords() {
6647   return FreeChunk::header_size();
6648 }
6649 
6650 // Try and collect here conditions that should hold when
6651 // CMS thread is exiting. The idea is that the foreground GC
6652 // thread should not be blocked if it wants to terminate
6653 // the CMS thread and yet continue to run the VM for a while
6654 // after that.
6655 void CMSCollector::verify_ok_to_terminate() const {
6656   assert(Thread::current()->is_ConcurrentGC_thread(),
6657          "should be called by CMS thread");
6658   assert(!_foregroundGCShouldWait, "should be false");
6659   // We could check here that all the various low-level locks
6660   // are not held by the CMS thread, but that is overkill; see
6661   // also CMSThread::verify_ok_to_terminate() where the CGC_lock
6662   // is checked.
6663 }
6664 #endif
6665 
6666 size_t CMSCollector::block_size_using_printezis_bits(HeapWord* addr) const {
6667    assert(_markBitMap.isMarked(addr) && _markBitMap.isMarked(addr + 1),
6668           "missing Printezis mark?");
6669   HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6670   size_t size = pointer_delta(nextOneAddr + 1, addr);
6671   assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6672          "alignment problem");
6673   assert(size >= 3, "Necessary for Printezis marks to work");
6674   return size;
6675 }
6676 
6677 // A variant of the above (block_size_using_printezis_bits()) except
6678 // that we return 0 if the P-bits are not yet set.
6679 size_t CMSCollector::block_size_if_printezis_bits(HeapWord* addr) const {
6680   if (_markBitMap.isMarked(addr + 1)) {
6681     assert(_markBitMap.isMarked(addr), "P-bit can be set only for marked objects");
6682     HeapWord* nextOneAddr = _markBitMap.getNextMarkedWordAddress(addr + 2);
6683     size_t size = pointer_delta(nextOneAddr + 1, addr);
6684     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
6685            "alignment problem");
6686     assert(size >= 3, "Necessary for Printezis marks to work");
6687     return size;
6688   }
6689   return 0;
6690 }
6691 
6692 HeapWord* CMSCollector::next_card_start_after_block(HeapWord* addr) const {
6693   size_t sz = 0;
6694   oop p = (oop)addr;
6695   if (p->klass_or_null() != NULL) {
6696     sz = CompactibleFreeListSpace::adjustObjectSize(p->size());
6697   } else {
6698     sz = block_size_using_printezis_bits(addr);
6699   }
6700   assert(sz > 0, "size must be nonzero");
6701   HeapWord* next_block = addr + sz;
6702   HeapWord* next_card  = (HeapWord*)round_to((uintptr_t)next_block,
6703                                              CardTableModRefBS::card_size);
6704   assert(round_down((uintptr_t)addr,      CardTableModRefBS::card_size) <
6705          round_down((uintptr_t)next_card, CardTableModRefBS::card_size),
6706          "must be different cards");
6707   return next_card;
6708 }
6709 
6710 
6711 // CMS Bit Map Wrapper /////////////////////////////////////////
6712 
6713 // Construct a CMS bit map infrastructure, but don't create the
6714 // bit vector itself. That is done by a separate call CMSBitMap::allocate()
6715 // further below.
6716 CMSBitMap::CMSBitMap(int shifter, int mutex_rank, const char* mutex_name):
6717   _bm(),
6718   _shifter(shifter),
6719   _lock(mutex_rank >= 0 ? new Mutex(mutex_rank, mutex_name, true) : NULL)
6720 {
6721   _bmStartWord = 0;
6722   _bmWordSize  = 0;
6723 }
6724 
6725 bool CMSBitMap::allocate(MemRegion mr) {
6726   _bmStartWord = mr.start();
6727   _bmWordSize  = mr.word_size();
6728   ReservedSpace brs(ReservedSpace::allocation_align_size_up(
6729                      (_bmWordSize >> (_shifter + LogBitsPerByte)) + 1));
6730   if (!brs.is_reserved()) {
6731     warning("CMS bit map allocation failure");
6732     return false;
6733   }
6734   // For now we'll just commit all of the bit map up fromt.
6735   // Later on we'll try to be more parsimonious with swap.
6736   if (!_virtual_space.initialize(brs, brs.size())) {
6737     warning("CMS bit map backing store failure");
6738     return false;
6739   }
6740   assert(_virtual_space.committed_size() == brs.size(),
6741          "didn't reserve backing store for all of CMS bit map?");
6742   _bm.set_map((BitMap::bm_word_t*)_virtual_space.low());
6743   assert(_virtual_space.committed_size() << (_shifter + LogBitsPerByte) >=
6744          _bmWordSize, "inconsistency in bit map sizing");
6745   _bm.set_size(_bmWordSize >> _shifter);
6746 
6747   // bm.clear(); // can we rely on getting zero'd memory? verify below
6748   assert(isAllClear(),
6749          "Expected zero'd memory from ReservedSpace constructor");
6750   assert(_bm.size() == heapWordDiffToOffsetDiff(sizeInWords()),
6751          "consistency check");
6752   return true;
6753 }
6754 
6755 void CMSBitMap::dirty_range_iterate_clear(MemRegion mr, MemRegionClosure* cl) {
6756   HeapWord *next_addr, *end_addr, *last_addr;
6757   assert_locked();
6758   assert(covers(mr), "out-of-range error");
6759   // XXX assert that start and end are appropriately aligned
6760   for (next_addr = mr.start(), end_addr = mr.end();
6761        next_addr < end_addr; next_addr = last_addr) {
6762     MemRegion dirty_region = getAndClearMarkedRegion(next_addr, end_addr);
6763     last_addr = dirty_region.end();
6764     if (!dirty_region.is_empty()) {
6765       cl->do_MemRegion(dirty_region);
6766     } else {
6767       assert(last_addr == end_addr, "program logic");
6768       return;
6769     }
6770   }
6771 }
6772 
6773 void CMSBitMap::print_on_error(outputStream* st, const char* prefix) const {
6774   _bm.print_on_error(st, prefix);
6775 }
6776 
6777 #ifndef PRODUCT
6778 void CMSBitMap::assert_locked() const {
6779   CMSLockVerifier::assert_locked(lock());
6780 }
6781 
6782 bool CMSBitMap::covers(MemRegion mr) const {
6783   // assert(_bm.map() == _virtual_space.low(), "map inconsistency");
6784   assert((size_t)_bm.size() == (_bmWordSize >> _shifter),
6785          "size inconsistency");
6786   return (mr.start() >= _bmStartWord) &&
6787          (mr.end()   <= endWord());
6788 }
6789 
6790 bool CMSBitMap::covers(HeapWord* start, size_t size) const {
6791     return (start >= _bmStartWord && (start + size) <= endWord());
6792 }
6793 
6794 void CMSBitMap::verifyNoOneBitsInRange(HeapWord* left, HeapWord* right) {
6795   // verify that there are no 1 bits in the interval [left, right)
6796   FalseBitMapClosure falseBitMapClosure;
6797   iterate(&falseBitMapClosure, left, right);
6798 }
6799 
6800 void CMSBitMap::region_invariant(MemRegion mr)
6801 {
6802   assert_locked();
6803   // mr = mr.intersection(MemRegion(_bmStartWord, _bmWordSize));
6804   assert(!mr.is_empty(), "unexpected empty region");
6805   assert(covers(mr), "mr should be covered by bit map");
6806   // convert address range into offset range
6807   size_t start_ofs = heapWordToOffset(mr.start());
6808   // Make sure that end() is appropriately aligned
6809   assert(mr.end() == (HeapWord*)round_to((intptr_t)mr.end(),
6810                         (1 << (_shifter+LogHeapWordSize))),
6811          "Misaligned mr.end()");
6812   size_t end_ofs   = heapWordToOffset(mr.end());
6813   assert(end_ofs > start_ofs, "Should mark at least one bit");
6814 }
6815 
6816 #endif
6817 
6818 bool CMSMarkStack::allocate(size_t size) {
6819   // allocate a stack of the requisite depth
6820   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6821                    size * sizeof(oop)));
6822   if (!rs.is_reserved()) {
6823     warning("CMSMarkStack allocation failure");
6824     return false;
6825   }
6826   if (!_virtual_space.initialize(rs, rs.size())) {
6827     warning("CMSMarkStack backing store failure");
6828     return false;
6829   }
6830   assert(_virtual_space.committed_size() == rs.size(),
6831          "didn't reserve backing store for all of CMS stack?");
6832   _base = (oop*)(_virtual_space.low());
6833   _index = 0;
6834   _capacity = size;
6835   NOT_PRODUCT(_max_depth = 0);
6836   return true;
6837 }
6838 
6839 // XXX FIX ME !!! In the MT case we come in here holding a
6840 // leaf lock. For printing we need to take a further lock
6841 // which has lower rank. We need to recallibrate the two
6842 // lock-ranks involved in order to be able to rpint the
6843 // messages below. (Or defer the printing to the caller.
6844 // For now we take the expedient path of just disabling the
6845 // messages for the problematic case.)
6846 void CMSMarkStack::expand() {
6847   assert(_capacity <= MarkStackSizeMax, "stack bigger than permitted");
6848   if (_capacity == MarkStackSizeMax) {
6849     if (_hit_limit++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6850       // We print a warning message only once per CMS cycle.
6851       gclog_or_tty->print_cr(" (benign) Hit CMSMarkStack max size limit");
6852     }
6853     return;
6854   }
6855   // Double capacity if possible
6856   size_t new_capacity = MIN2(_capacity*2, MarkStackSizeMax);
6857   // Do not give up existing stack until we have managed to
6858   // get the double capacity that we desired.
6859   ReservedSpace rs(ReservedSpace::allocation_align_size_up(
6860                    new_capacity * sizeof(oop)));
6861   if (rs.is_reserved()) {
6862     // Release the backing store associated with old stack
6863     _virtual_space.release();
6864     // Reinitialize virtual space for new stack
6865     if (!_virtual_space.initialize(rs, rs.size())) {
6866       fatal("Not enough swap for expanded marking stack");
6867     }
6868     _base = (oop*)(_virtual_space.low());
6869     _index = 0;
6870     _capacity = new_capacity;
6871   } else if (_failed_double++ == 0 && !CMSConcurrentMTEnabled && PrintGCDetails) {
6872     // Failed to double capacity, continue;
6873     // we print a detail message only once per CMS cycle.
6874     gclog_or_tty->print(" (benign) Failed to expand marking stack from "SIZE_FORMAT"K to "
6875             SIZE_FORMAT"K",
6876             _capacity / K, new_capacity / K);
6877   }
6878 }
6879 
6880 
6881 // Closures
6882 // XXX: there seems to be a lot of code  duplication here;
6883 // should refactor and consolidate common code.
6884 
6885 // This closure is used to mark refs into the CMS generation in
6886 // the CMS bit map. Called at the first checkpoint. This closure
6887 // assumes that we do not need to re-mark dirty cards; if the CMS
6888 // generation on which this is used is not an oldest
6889 // generation then this will lose younger_gen cards!
6890 
6891 MarkRefsIntoClosure::MarkRefsIntoClosure(
6892   MemRegion span, CMSBitMap* bitMap):
6893     _span(span),
6894     _bitMap(bitMap)
6895 {
6896     assert(_ref_processor == NULL, "deliberately left NULL");
6897     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6898 }
6899 
6900 void MarkRefsIntoClosure::do_oop(oop obj) {
6901   // if p points into _span, then mark corresponding bit in _markBitMap
6902   assert(obj->is_oop(), "expected an oop");
6903   HeapWord* addr = (HeapWord*)obj;
6904   if (_span.contains(addr)) {
6905     // this should be made more efficient
6906     _bitMap->mark(addr);
6907   }
6908 }
6909 
6910 void MarkRefsIntoClosure::do_oop(oop* p)       { MarkRefsIntoClosure::do_oop_work(p); }
6911 void MarkRefsIntoClosure::do_oop(narrowOop* p) { MarkRefsIntoClosure::do_oop_work(p); }
6912 
6913 Par_MarkRefsIntoClosure::Par_MarkRefsIntoClosure(
6914   MemRegion span, CMSBitMap* bitMap):
6915     _span(span),
6916     _bitMap(bitMap)
6917 {
6918     assert(_ref_processor == NULL, "deliberately left NULL");
6919     assert(_bitMap->covers(_span), "_bitMap/_span mismatch");
6920 }
6921 
6922 void Par_MarkRefsIntoClosure::do_oop(oop obj) {
6923   // if p points into _span, then mark corresponding bit in _markBitMap
6924   assert(obj->is_oop(), "expected an oop");
6925   HeapWord* addr = (HeapWord*)obj;
6926   if (_span.contains(addr)) {
6927     // this should be made more efficient
6928     _bitMap->par_mark(addr);
6929   }
6930 }
6931 
6932 void Par_MarkRefsIntoClosure::do_oop(oop* p)       { Par_MarkRefsIntoClosure::do_oop_work(p); }
6933 void Par_MarkRefsIntoClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoClosure::do_oop_work(p); }
6934 
6935 // A variant of the above, used for CMS marking verification.
6936 MarkRefsIntoVerifyClosure::MarkRefsIntoVerifyClosure(
6937   MemRegion span, CMSBitMap* verification_bm, CMSBitMap* cms_bm):
6938     _span(span),
6939     _verification_bm(verification_bm),
6940     _cms_bm(cms_bm)
6941 {
6942     assert(_ref_processor == NULL, "deliberately left NULL");
6943     assert(_verification_bm->covers(_span), "_verification_bm/_span mismatch");
6944 }
6945 
6946 void MarkRefsIntoVerifyClosure::do_oop(oop obj) {
6947   // if p points into _span, then mark corresponding bit in _markBitMap
6948   assert(obj->is_oop(), "expected an oop");
6949   HeapWord* addr = (HeapWord*)obj;
6950   if (_span.contains(addr)) {
6951     _verification_bm->mark(addr);
6952     if (!_cms_bm->isMarked(addr)) {
6953       oop(addr)->print();
6954       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)", addr);
6955       fatal("... aborting");
6956     }
6957   }
6958 }
6959 
6960 void MarkRefsIntoVerifyClosure::do_oop(oop* p)       { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6961 void MarkRefsIntoVerifyClosure::do_oop(narrowOop* p) { MarkRefsIntoVerifyClosure::do_oop_work(p); }
6962 
6963 //////////////////////////////////////////////////
6964 // MarkRefsIntoAndScanClosure
6965 //////////////////////////////////////////////////
6966 
6967 MarkRefsIntoAndScanClosure::MarkRefsIntoAndScanClosure(MemRegion span,
6968                                                        ReferenceProcessor* rp,
6969                                                        CMSBitMap* bit_map,
6970                                                        CMSBitMap* mod_union_table,
6971                                                        CMSMarkStack*  mark_stack,
6972                                                        CMSCollector* collector,
6973                                                        bool should_yield,
6974                                                        bool concurrent_precleaning):
6975   _collector(collector),
6976   _span(span),
6977   _bit_map(bit_map),
6978   _mark_stack(mark_stack),
6979   _pushAndMarkClosure(collector, span, rp, bit_map, mod_union_table,
6980                       mark_stack, concurrent_precleaning),
6981   _yield(should_yield),
6982   _concurrent_precleaning(concurrent_precleaning),
6983   _freelistLock(NULL)
6984 {
6985   _ref_processor = rp;
6986   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
6987 }
6988 
6989 // This closure is used to mark refs into the CMS generation at the
6990 // second (final) checkpoint, and to scan and transitively follow
6991 // the unmarked oops. It is also used during the concurrent precleaning
6992 // phase while scanning objects on dirty cards in the CMS generation.
6993 // The marks are made in the marking bit map and the marking stack is
6994 // used for keeping the (newly) grey objects during the scan.
6995 // The parallel version (Par_...) appears further below.
6996 void MarkRefsIntoAndScanClosure::do_oop(oop obj) {
6997   if (obj != NULL) {
6998     assert(obj->is_oop(), "expected an oop");
6999     HeapWord* addr = (HeapWord*)obj;
7000     assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7001     assert(_collector->overflow_list_is_empty(),
7002            "overflow list should be empty");
7003     if (_span.contains(addr) &&
7004         !_bit_map->isMarked(addr)) {
7005       // mark bit map (object is now grey)
7006       _bit_map->mark(addr);
7007       // push on marking stack (stack should be empty), and drain the
7008       // stack by applying this closure to the oops in the oops popped
7009       // from the stack (i.e. blacken the grey objects)
7010       bool res = _mark_stack->push(obj);
7011       assert(res, "Should have space to push on empty stack");
7012       do {
7013         oop new_oop = _mark_stack->pop();
7014         assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7015         assert(_bit_map->isMarked((HeapWord*)new_oop),
7016                "only grey objects on this stack");
7017         // iterate over the oops in this oop, marking and pushing
7018         // the ones in CMS heap (i.e. in _span).
7019         new_oop->oop_iterate(&_pushAndMarkClosure);
7020         // check if it's time to yield
7021         do_yield_check();
7022       } while (!_mark_stack->isEmpty() ||
7023                (!_concurrent_precleaning && take_from_overflow_list()));
7024         // if marking stack is empty, and we are not doing this
7025         // during precleaning, then check the overflow list
7026     }
7027     assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7028     assert(_collector->overflow_list_is_empty(),
7029            "overflow list was drained above");
7030     // We could restore evacuated mark words, if any, used for
7031     // overflow list links here because the overflow list is
7032     // provably empty here. That would reduce the maximum
7033     // size requirements for preserved_{oop,mark}_stack.
7034     // But we'll just postpone it until we are all done
7035     // so we can just stream through.
7036     if (!_concurrent_precleaning && CMSOverflowEarlyRestoration) {
7037       _collector->restore_preserved_marks_if_any();
7038       assert(_collector->no_preserved_marks(), "No preserved marks");
7039     }
7040     assert(!CMSOverflowEarlyRestoration || _collector->no_preserved_marks(),
7041            "All preserved marks should have been restored above");
7042   }
7043 }
7044 
7045 void MarkRefsIntoAndScanClosure::do_oop(oop* p)       { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7046 void MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { MarkRefsIntoAndScanClosure::do_oop_work(p); }
7047 
7048 void MarkRefsIntoAndScanClosure::do_yield_work() {
7049   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7050          "CMS thread should hold CMS token");
7051   assert_lock_strong(_freelistLock);
7052   assert_lock_strong(_bit_map->lock());
7053   // relinquish the free_list_lock and bitMaplock()
7054   _bit_map->lock()->unlock();
7055   _freelistLock->unlock();
7056   ConcurrentMarkSweepThread::desynchronize(true);
7057   ConcurrentMarkSweepThread::acknowledge_yield_request();
7058   _collector->stopTimer();
7059   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7060   if (PrintCMSStatistics != 0) {
7061     _collector->incrementYields();
7062   }
7063   _collector->icms_wait();
7064 
7065   // See the comment in coordinator_yield()
7066   for (unsigned i = 0;
7067        i < CMSYieldSleepCount &&
7068        ConcurrentMarkSweepThread::should_yield() &&
7069        !CMSCollector::foregroundGCIsActive();
7070        ++i) {
7071     os::sleep(Thread::current(), 1, false);
7072     ConcurrentMarkSweepThread::acknowledge_yield_request();
7073   }
7074 
7075   ConcurrentMarkSweepThread::synchronize(true);
7076   _freelistLock->lock_without_safepoint_check();
7077   _bit_map->lock()->lock_without_safepoint_check();
7078   _collector->startTimer();
7079 }
7080 
7081 ///////////////////////////////////////////////////////////
7082 // Par_MarkRefsIntoAndScanClosure: a parallel version of
7083 //                                 MarkRefsIntoAndScanClosure
7084 ///////////////////////////////////////////////////////////
7085 Par_MarkRefsIntoAndScanClosure::Par_MarkRefsIntoAndScanClosure(
7086   CMSCollector* collector, MemRegion span, ReferenceProcessor* rp,
7087   CMSBitMap* bit_map, OopTaskQueue* work_queue):
7088   _span(span),
7089   _bit_map(bit_map),
7090   _work_queue(work_queue),
7091   _low_water_mark(MIN2((uint)(work_queue->max_elems()/4),
7092                        (uint)(CMSWorkQueueDrainThreshold * ParallelGCThreads))),
7093   _par_pushAndMarkClosure(collector, span, rp, bit_map, work_queue)
7094 {
7095   _ref_processor = rp;
7096   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7097 }
7098 
7099 // This closure is used to mark refs into the CMS generation at the
7100 // second (final) checkpoint, and to scan and transitively follow
7101 // the unmarked oops. The marks are made in the marking bit map and
7102 // the work_queue is used for keeping the (newly) grey objects during
7103 // the scan phase whence they are also available for stealing by parallel
7104 // threads. Since the marking bit map is shared, updates are
7105 // synchronized (via CAS).
7106 void Par_MarkRefsIntoAndScanClosure::do_oop(oop obj) {
7107   if (obj != NULL) {
7108     // Ignore mark word because this could be an already marked oop
7109     // that may be chained at the end of the overflow list.
7110     assert(obj->is_oop(true), "expected an oop");
7111     HeapWord* addr = (HeapWord*)obj;
7112     if (_span.contains(addr) &&
7113         !_bit_map->isMarked(addr)) {
7114       // mark bit map (object will become grey):
7115       // It is possible for several threads to be
7116       // trying to "claim" this object concurrently;
7117       // the unique thread that succeeds in marking the
7118       // object first will do the subsequent push on
7119       // to the work queue (or overflow list).
7120       if (_bit_map->par_mark(addr)) {
7121         // push on work_queue (which may not be empty), and trim the
7122         // queue to an appropriate length by applying this closure to
7123         // the oops in the oops popped from the stack (i.e. blacken the
7124         // grey objects)
7125         bool res = _work_queue->push(obj);
7126         assert(res, "Low water mark should be less than capacity?");
7127         trim_queue(_low_water_mark);
7128       } // Else, another thread claimed the object
7129     }
7130   }
7131 }
7132 
7133 void Par_MarkRefsIntoAndScanClosure::do_oop(oop* p)       { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7134 void Par_MarkRefsIntoAndScanClosure::do_oop(narrowOop* p) { Par_MarkRefsIntoAndScanClosure::do_oop_work(p); }
7135 
7136 // This closure is used to rescan the marked objects on the dirty cards
7137 // in the mod union table and the card table proper.
7138 size_t ScanMarkedObjectsAgainCarefullyClosure::do_object_careful_m(
7139   oop p, MemRegion mr) {
7140 
7141   size_t size = 0;
7142   HeapWord* addr = (HeapWord*)p;
7143   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7144   assert(_span.contains(addr), "we are scanning the CMS generation");
7145   // check if it's time to yield
7146   if (do_yield_check()) {
7147     // We yielded for some foreground stop-world work,
7148     // and we have been asked to abort this ongoing preclean cycle.
7149     return 0;
7150   }
7151   if (_bitMap->isMarked(addr)) {
7152     // it's marked; is it potentially uninitialized?
7153     if (p->klass_or_null() != NULL) {
7154         // an initialized object; ignore mark word in verification below
7155         // since we are running concurrent with mutators
7156         assert(p->is_oop(true), "should be an oop");
7157         if (p->is_objArray()) {
7158           // objArrays are precisely marked; restrict scanning
7159           // to dirty cards only.
7160           size = CompactibleFreeListSpace::adjustObjectSize(
7161                    p->oop_iterate(_scanningClosure, mr));
7162         } else {
7163           // A non-array may have been imprecisely marked; we need
7164           // to scan object in its entirety.
7165           size = CompactibleFreeListSpace::adjustObjectSize(
7166                    p->oop_iterate(_scanningClosure));
7167         }
7168         #ifdef ASSERT
7169           size_t direct_size =
7170             CompactibleFreeListSpace::adjustObjectSize(p->size());
7171           assert(size == direct_size, "Inconsistency in size");
7172           assert(size >= 3, "Necessary for Printezis marks to work");
7173           if (!_bitMap->isMarked(addr+1)) {
7174             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size);
7175           } else {
7176             _bitMap->verifyNoOneBitsInRange(addr+2, addr+size-1);
7177             assert(_bitMap->isMarked(addr+size-1),
7178                    "inconsistent Printezis mark");
7179           }
7180         #endif // ASSERT
7181     } else {
7182       // an unitialized object
7183       assert(_bitMap->isMarked(addr+1), "missing Printezis mark?");
7184       HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
7185       size = pointer_delta(nextOneAddr + 1, addr);
7186       assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
7187              "alignment problem");
7188       // Note that pre-cleaning needn't redirty the card. OopDesc::set_klass()
7189       // will dirty the card when the klass pointer is installed in the
7190       // object (signalling the completion of initialization).
7191     }
7192   } else {
7193     // Either a not yet marked object or an uninitialized object
7194     if (p->klass_or_null() == NULL) {
7195       // An uninitialized object, skip to the next card, since
7196       // we may not be able to read its P-bits yet.
7197       assert(size == 0, "Initial value");
7198     } else {
7199       // An object not (yet) reached by marking: we merely need to
7200       // compute its size so as to go look at the next block.
7201       assert(p->is_oop(true), "should be an oop");
7202       size = CompactibleFreeListSpace::adjustObjectSize(p->size());
7203     }
7204   }
7205   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7206   return size;
7207 }
7208 
7209 void ScanMarkedObjectsAgainCarefullyClosure::do_yield_work() {
7210   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7211          "CMS thread should hold CMS token");
7212   assert_lock_strong(_freelistLock);
7213   assert_lock_strong(_bitMap->lock());
7214   // relinquish the free_list_lock and bitMaplock()
7215   _bitMap->lock()->unlock();
7216   _freelistLock->unlock();
7217   ConcurrentMarkSweepThread::desynchronize(true);
7218   ConcurrentMarkSweepThread::acknowledge_yield_request();
7219   _collector->stopTimer();
7220   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7221   if (PrintCMSStatistics != 0) {
7222     _collector->incrementYields();
7223   }
7224   _collector->icms_wait();
7225 
7226   // See the comment in coordinator_yield()
7227   for (unsigned i = 0; i < CMSYieldSleepCount &&
7228                    ConcurrentMarkSweepThread::should_yield() &&
7229                    !CMSCollector::foregroundGCIsActive(); ++i) {
7230     os::sleep(Thread::current(), 1, false);
7231     ConcurrentMarkSweepThread::acknowledge_yield_request();
7232   }
7233 
7234   ConcurrentMarkSweepThread::synchronize(true);
7235   _freelistLock->lock_without_safepoint_check();
7236   _bitMap->lock()->lock_without_safepoint_check();
7237   _collector->startTimer();
7238 }
7239 
7240 
7241 //////////////////////////////////////////////////////////////////
7242 // SurvivorSpacePrecleanClosure
7243 //////////////////////////////////////////////////////////////////
7244 // This (single-threaded) closure is used to preclean the oops in
7245 // the survivor spaces.
7246 size_t SurvivorSpacePrecleanClosure::do_object_careful(oop p) {
7247 
7248   HeapWord* addr = (HeapWord*)p;
7249   DEBUG_ONLY(_collector->verify_work_stacks_empty();)
7250   assert(!_span.contains(addr), "we are scanning the survivor spaces");
7251   assert(p->klass_or_null() != NULL, "object should be initializd");
7252   // an initialized object; ignore mark word in verification below
7253   // since we are running concurrent with mutators
7254   assert(p->is_oop(true), "should be an oop");
7255   // Note that we do not yield while we iterate over
7256   // the interior oops of p, pushing the relevant ones
7257   // on our marking stack.
7258   size_t size = p->oop_iterate(_scanning_closure);
7259   do_yield_check();
7260   // Observe that below, we do not abandon the preclean
7261   // phase as soon as we should; rather we empty the
7262   // marking stack before returning. This is to satisfy
7263   // some existing assertions. In general, it may be a
7264   // good idea to abort immediately and complete the marking
7265   // from the grey objects at a later time.
7266   while (!_mark_stack->isEmpty()) {
7267     oop new_oop = _mark_stack->pop();
7268     assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
7269     assert(_bit_map->isMarked((HeapWord*)new_oop),
7270            "only grey objects on this stack");
7271     // iterate over the oops in this oop, marking and pushing
7272     // the ones in CMS heap (i.e. in _span).
7273     new_oop->oop_iterate(_scanning_closure);
7274     // check if it's time to yield
7275     do_yield_check();
7276   }
7277   unsigned int after_count =
7278     GenCollectedHeap::heap()->total_collections();
7279   bool abort = (_before_count != after_count) ||
7280                _collector->should_abort_preclean();
7281   return abort ? 0 : size;
7282 }
7283 
7284 void SurvivorSpacePrecleanClosure::do_yield_work() {
7285   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7286          "CMS thread should hold CMS token");
7287   assert_lock_strong(_bit_map->lock());
7288   // Relinquish the bit map lock
7289   _bit_map->lock()->unlock();
7290   ConcurrentMarkSweepThread::desynchronize(true);
7291   ConcurrentMarkSweepThread::acknowledge_yield_request();
7292   _collector->stopTimer();
7293   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7294   if (PrintCMSStatistics != 0) {
7295     _collector->incrementYields();
7296   }
7297   _collector->icms_wait();
7298 
7299   // See the comment in coordinator_yield()
7300   for (unsigned i = 0; i < CMSYieldSleepCount &&
7301                        ConcurrentMarkSweepThread::should_yield() &&
7302                        !CMSCollector::foregroundGCIsActive(); ++i) {
7303     os::sleep(Thread::current(), 1, false);
7304     ConcurrentMarkSweepThread::acknowledge_yield_request();
7305   }
7306 
7307   ConcurrentMarkSweepThread::synchronize(true);
7308   _bit_map->lock()->lock_without_safepoint_check();
7309   _collector->startTimer();
7310 }
7311 
7312 // This closure is used to rescan the marked objects on the dirty cards
7313 // in the mod union table and the card table proper. In the parallel
7314 // case, although the bitMap is shared, we do a single read so the
7315 // isMarked() query is "safe".
7316 bool ScanMarkedObjectsAgainClosure::do_object_bm(oop p, MemRegion mr) {
7317   // Ignore mark word because we are running concurrent with mutators
7318   assert(p->is_oop_or_null(true), "expected an oop or null");
7319   HeapWord* addr = (HeapWord*)p;
7320   assert(_span.contains(addr), "we are scanning the CMS generation");
7321   bool is_obj_array = false;
7322   #ifdef ASSERT
7323     if (!_parallel) {
7324       assert(_mark_stack->isEmpty(), "pre-condition (eager drainage)");
7325       assert(_collector->overflow_list_is_empty(),
7326              "overflow list should be empty");
7327 
7328     }
7329   #endif // ASSERT
7330   if (_bit_map->isMarked(addr)) {
7331     // Obj arrays are precisely marked, non-arrays are not;
7332     // so we scan objArrays precisely and non-arrays in their
7333     // entirety.
7334     if (p->is_objArray()) {
7335       is_obj_array = true;
7336       if (_parallel) {
7337         p->oop_iterate(_par_scan_closure, mr);
7338       } else {
7339         p->oop_iterate(_scan_closure, mr);
7340       }
7341     } else {
7342       if (_parallel) {
7343         p->oop_iterate(_par_scan_closure);
7344       } else {
7345         p->oop_iterate(_scan_closure);
7346       }
7347     }
7348   }
7349   #ifdef ASSERT
7350     if (!_parallel) {
7351       assert(_mark_stack->isEmpty(), "post-condition (eager drainage)");
7352       assert(_collector->overflow_list_is_empty(),
7353              "overflow list should be empty");
7354 
7355     }
7356   #endif // ASSERT
7357   return is_obj_array;
7358 }
7359 
7360 MarkFromRootsClosure::MarkFromRootsClosure(CMSCollector* collector,
7361                         MemRegion span,
7362                         CMSBitMap* bitMap, CMSMarkStack*  markStack,
7363                         bool should_yield, bool verifying):
7364   _collector(collector),
7365   _span(span),
7366   _bitMap(bitMap),
7367   _mut(&collector->_modUnionTable),
7368   _markStack(markStack),
7369   _yield(should_yield),
7370   _skipBits(0)
7371 {
7372   assert(_markStack->isEmpty(), "stack should be empty");
7373   _finger = _bitMap->startWord();
7374   _threshold = _finger;
7375   assert(_collector->_restart_addr == NULL, "Sanity check");
7376   assert(_span.contains(_finger), "Out of bounds _finger?");
7377   DEBUG_ONLY(_verifying = verifying;)
7378 }
7379 
7380 void MarkFromRootsClosure::reset(HeapWord* addr) {
7381   assert(_markStack->isEmpty(), "would cause duplicates on stack");
7382   assert(_span.contains(addr), "Out of bounds _finger?");
7383   _finger = addr;
7384   _threshold = (HeapWord*)round_to(
7385                  (intptr_t)_finger, CardTableModRefBS::card_size);
7386 }
7387 
7388 // Should revisit to see if this should be restructured for
7389 // greater efficiency.
7390 bool MarkFromRootsClosure::do_bit(size_t offset) {
7391   if (_skipBits > 0) {
7392     _skipBits--;
7393     return true;
7394   }
7395   // convert offset into a HeapWord*
7396   HeapWord* addr = _bitMap->startWord() + offset;
7397   assert(_bitMap->endWord() && addr < _bitMap->endWord(),
7398          "address out of range");
7399   assert(_bitMap->isMarked(addr), "tautology");
7400   if (_bitMap->isMarked(addr+1)) {
7401     // this is an allocated but not yet initialized object
7402     assert(_skipBits == 0, "tautology");
7403     _skipBits = 2;  // skip next two marked bits ("Printezis-marks")
7404     oop p = oop(addr);
7405     if (p->klass_or_null() == NULL) {
7406       DEBUG_ONLY(if (!_verifying) {)
7407         // We re-dirty the cards on which this object lies and increase
7408         // the _threshold so that we'll come back to scan this object
7409         // during the preclean or remark phase. (CMSCleanOnEnter)
7410         if (CMSCleanOnEnter) {
7411           size_t sz = _collector->block_size_using_printezis_bits(addr);
7412           HeapWord* end_card_addr   = (HeapWord*)round_to(
7413                                          (intptr_t)(addr+sz), CardTableModRefBS::card_size);
7414           MemRegion redirty_range = MemRegion(addr, end_card_addr);
7415           assert(!redirty_range.is_empty(), "Arithmetical tautology");
7416           // Bump _threshold to end_card_addr; note that
7417           // _threshold cannot possibly exceed end_card_addr, anyhow.
7418           // This prevents future clearing of the card as the scan proceeds
7419           // to the right.
7420           assert(_threshold <= end_card_addr,
7421                  "Because we are just scanning into this object");
7422           if (_threshold < end_card_addr) {
7423             _threshold = end_card_addr;
7424           }
7425           if (p->klass_or_null() != NULL) {
7426             // Redirty the range of cards...
7427             _mut->mark_range(redirty_range);
7428           } // ...else the setting of klass will dirty the card anyway.
7429         }
7430       DEBUG_ONLY(})
7431       return true;
7432     }
7433   }
7434   scanOopsInOop(addr);
7435   return true;
7436 }
7437 
7438 // We take a break if we've been at this for a while,
7439 // so as to avoid monopolizing the locks involved.
7440 void MarkFromRootsClosure::do_yield_work() {
7441   // First give up the locks, then yield, then re-lock
7442   // We should probably use a constructor/destructor idiom to
7443   // do this unlock/lock or modify the MutexUnlocker class to
7444   // serve our purpose. XXX
7445   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
7446          "CMS thread should hold CMS token");
7447   assert_lock_strong(_bitMap->lock());
7448   _bitMap->lock()->unlock();
7449   ConcurrentMarkSweepThread::desynchronize(true);
7450   ConcurrentMarkSweepThread::acknowledge_yield_request();
7451   _collector->stopTimer();
7452   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
7453   if (PrintCMSStatistics != 0) {
7454     _collector->incrementYields();
7455   }
7456   _collector->icms_wait();
7457 
7458   // See the comment in coordinator_yield()
7459   for (unsigned i = 0; i < CMSYieldSleepCount &&
7460                        ConcurrentMarkSweepThread::should_yield() &&
7461                        !CMSCollector::foregroundGCIsActive(); ++i) {
7462     os::sleep(Thread::current(), 1, false);
7463     ConcurrentMarkSweepThread::acknowledge_yield_request();
7464   }
7465 
7466   ConcurrentMarkSweepThread::synchronize(true);
7467   _bitMap->lock()->lock_without_safepoint_check();
7468   _collector->startTimer();
7469 }
7470 
7471 void MarkFromRootsClosure::scanOopsInOop(HeapWord* ptr) {
7472   assert(_bitMap->isMarked(ptr), "expected bit to be set");
7473   assert(_markStack->isEmpty(),
7474          "should drain stack to limit stack usage");
7475   // convert ptr to an oop preparatory to scanning
7476   oop obj = oop(ptr);
7477   // Ignore mark word in verification below, since we
7478   // may be running concurrent with mutators.
7479   assert(obj->is_oop(true), "should be an oop");
7480   assert(_finger <= ptr, "_finger runneth ahead");
7481   // advance the finger to right end of this object
7482   _finger = ptr + obj->size();
7483   assert(_finger > ptr, "we just incremented it above");
7484   // On large heaps, it may take us some time to get through
7485   // the marking phase (especially if running iCMS). During
7486   // this time it's possible that a lot of mutations have
7487   // accumulated in the card table and the mod union table --
7488   // these mutation records are redundant until we have
7489   // actually traced into the corresponding card.
7490   // Here, we check whether advancing the finger would make
7491   // us cross into a new card, and if so clear corresponding
7492   // cards in the MUT (preclean them in the card-table in the
7493   // future).
7494 
7495   DEBUG_ONLY(if (!_verifying) {)
7496     // The clean-on-enter optimization is disabled by default,
7497     // until we fix 6178663.
7498     if (CMSCleanOnEnter && (_finger > _threshold)) {
7499       // [_threshold, _finger) represents the interval
7500       // of cards to be cleared  in MUT (or precleaned in card table).
7501       // The set of cards to be cleared is all those that overlap
7502       // with the interval [_threshold, _finger); note that
7503       // _threshold is always kept card-aligned but _finger isn't
7504       // always card-aligned.
7505       HeapWord* old_threshold = _threshold;
7506       assert(old_threshold == (HeapWord*)round_to(
7507               (intptr_t)old_threshold, CardTableModRefBS::card_size),
7508              "_threshold should always be card-aligned");
7509       _threshold = (HeapWord*)round_to(
7510                      (intptr_t)_finger, CardTableModRefBS::card_size);
7511       MemRegion mr(old_threshold, _threshold);
7512       assert(!mr.is_empty(), "Control point invariant");
7513       assert(_span.contains(mr), "Should clear within span");
7514       _mut->clear_range(mr);
7515     }
7516   DEBUG_ONLY(})
7517   // Note: the finger doesn't advance while we drain
7518   // the stack below.
7519   PushOrMarkClosure pushOrMarkClosure(_collector,
7520                                       _span, _bitMap, _markStack,
7521                                       _finger, this);
7522   bool res = _markStack->push(obj);
7523   assert(res, "Empty non-zero size stack should have space for single push");
7524   while (!_markStack->isEmpty()) {
7525     oop new_oop = _markStack->pop();
7526     // Skip verifying header mark word below because we are
7527     // running concurrent with mutators.
7528     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7529     // now scan this oop's oops
7530     new_oop->oop_iterate(&pushOrMarkClosure);
7531     do_yield_check();
7532   }
7533   assert(_markStack->isEmpty(), "tautology, emphasizing post-condition");
7534 }
7535 
7536 Par_MarkFromRootsClosure::Par_MarkFromRootsClosure(CMSConcMarkingTask* task,
7537                        CMSCollector* collector, MemRegion span,
7538                        CMSBitMap* bit_map,
7539                        OopTaskQueue* work_queue,
7540                        CMSMarkStack*  overflow_stack,
7541                        bool should_yield):
7542   _collector(collector),
7543   _whole_span(collector->_span),
7544   _span(span),
7545   _bit_map(bit_map),
7546   _mut(&collector->_modUnionTable),
7547   _work_queue(work_queue),
7548   _overflow_stack(overflow_stack),
7549   _yield(should_yield),
7550   _skip_bits(0),
7551   _task(task)
7552 {
7553   assert(_work_queue->size() == 0, "work_queue should be empty");
7554   _finger = span.start();
7555   _threshold = _finger;     // XXX Defer clear-on-enter optimization for now
7556   assert(_span.contains(_finger), "Out of bounds _finger?");
7557 }
7558 
7559 // Should revisit to see if this should be restructured for
7560 // greater efficiency.
7561 bool Par_MarkFromRootsClosure::do_bit(size_t offset) {
7562   if (_skip_bits > 0) {
7563     _skip_bits--;
7564     return true;
7565   }
7566   // convert offset into a HeapWord*
7567   HeapWord* addr = _bit_map->startWord() + offset;
7568   assert(_bit_map->endWord() && addr < _bit_map->endWord(),
7569          "address out of range");
7570   assert(_bit_map->isMarked(addr), "tautology");
7571   if (_bit_map->isMarked(addr+1)) {
7572     // this is an allocated object that might not yet be initialized
7573     assert(_skip_bits == 0, "tautology");
7574     _skip_bits = 2;  // skip next two marked bits ("Printezis-marks")
7575     oop p = oop(addr);
7576     if (p->klass_or_null() == NULL) {
7577       // in the case of Clean-on-Enter optimization, redirty card
7578       // and avoid clearing card by increasing  the threshold.
7579       return true;
7580     }
7581   }
7582   scan_oops_in_oop(addr);
7583   return true;
7584 }
7585 
7586 void Par_MarkFromRootsClosure::scan_oops_in_oop(HeapWord* ptr) {
7587   assert(_bit_map->isMarked(ptr), "expected bit to be set");
7588   // Should we assert that our work queue is empty or
7589   // below some drain limit?
7590   assert(_work_queue->size() == 0,
7591          "should drain stack to limit stack usage");
7592   // convert ptr to an oop preparatory to scanning
7593   oop obj = oop(ptr);
7594   // Ignore mark word in verification below, since we
7595   // may be running concurrent with mutators.
7596   assert(obj->is_oop(true), "should be an oop");
7597   assert(_finger <= ptr, "_finger runneth ahead");
7598   // advance the finger to right end of this object
7599   _finger = ptr + obj->size();
7600   assert(_finger > ptr, "we just incremented it above");
7601   // On large heaps, it may take us some time to get through
7602   // the marking phase (especially if running iCMS). During
7603   // this time it's possible that a lot of mutations have
7604   // accumulated in the card table and the mod union table --
7605   // these mutation records are redundant until we have
7606   // actually traced into the corresponding card.
7607   // Here, we check whether advancing the finger would make
7608   // us cross into a new card, and if so clear corresponding
7609   // cards in the MUT (preclean them in the card-table in the
7610   // future).
7611 
7612   // The clean-on-enter optimization is disabled by default,
7613   // until we fix 6178663.
7614   if (CMSCleanOnEnter && (_finger > _threshold)) {
7615     // [_threshold, _finger) represents the interval
7616     // of cards to be cleared  in MUT (or precleaned in card table).
7617     // The set of cards to be cleared is all those that overlap
7618     // with the interval [_threshold, _finger); note that
7619     // _threshold is always kept card-aligned but _finger isn't
7620     // always card-aligned.
7621     HeapWord* old_threshold = _threshold;
7622     assert(old_threshold == (HeapWord*)round_to(
7623             (intptr_t)old_threshold, CardTableModRefBS::card_size),
7624            "_threshold should always be card-aligned");
7625     _threshold = (HeapWord*)round_to(
7626                    (intptr_t)_finger, CardTableModRefBS::card_size);
7627     MemRegion mr(old_threshold, _threshold);
7628     assert(!mr.is_empty(), "Control point invariant");
7629     assert(_span.contains(mr), "Should clear within span"); // _whole_span ??
7630     _mut->clear_range(mr);
7631   }
7632 
7633   // Note: the local finger doesn't advance while we drain
7634   // the stack below, but the global finger sure can and will.
7635   HeapWord** gfa = _task->global_finger_addr();
7636   Par_PushOrMarkClosure pushOrMarkClosure(_collector,
7637                                       _span, _bit_map,
7638                                       _work_queue,
7639                                       _overflow_stack,
7640                                       _finger,
7641                                       gfa, this);
7642   bool res = _work_queue->push(obj);   // overflow could occur here
7643   assert(res, "Will hold once we use workqueues");
7644   while (true) {
7645     oop new_oop;
7646     if (!_work_queue->pop_local(new_oop)) {
7647       // We emptied our work_queue; check if there's stuff that can
7648       // be gotten from the overflow stack.
7649       if (CMSConcMarkingTask::get_work_from_overflow_stack(
7650             _overflow_stack, _work_queue)) {
7651         do_yield_check();
7652         continue;
7653       } else {  // done
7654         break;
7655       }
7656     }
7657     // Skip verifying header mark word below because we are
7658     // running concurrent with mutators.
7659     assert(new_oop->is_oop(true), "Oops! expected to pop an oop");
7660     // now scan this oop's oops
7661     new_oop->oop_iterate(&pushOrMarkClosure);
7662     do_yield_check();
7663   }
7664   assert(_work_queue->size() == 0, "tautology, emphasizing post-condition");
7665 }
7666 
7667 // Yield in response to a request from VM Thread or
7668 // from mutators.
7669 void Par_MarkFromRootsClosure::do_yield_work() {
7670   assert(_task != NULL, "sanity");
7671   _task->yield();
7672 }
7673 
7674 // A variant of the above used for verifying CMS marking work.
7675 MarkFromRootsVerifyClosure::MarkFromRootsVerifyClosure(CMSCollector* collector,
7676                         MemRegion span,
7677                         CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7678                         CMSMarkStack*  mark_stack):
7679   _collector(collector),
7680   _span(span),
7681   _verification_bm(verification_bm),
7682   _cms_bm(cms_bm),
7683   _mark_stack(mark_stack),
7684   _pam_verify_closure(collector, span, verification_bm, cms_bm,
7685                       mark_stack)
7686 {
7687   assert(_mark_stack->isEmpty(), "stack should be empty");
7688   _finger = _verification_bm->startWord();
7689   assert(_collector->_restart_addr == NULL, "Sanity check");
7690   assert(_span.contains(_finger), "Out of bounds _finger?");
7691 }
7692 
7693 void MarkFromRootsVerifyClosure::reset(HeapWord* addr) {
7694   assert(_mark_stack->isEmpty(), "would cause duplicates on stack");
7695   assert(_span.contains(addr), "Out of bounds _finger?");
7696   _finger = addr;
7697 }
7698 
7699 // Should revisit to see if this should be restructured for
7700 // greater efficiency.
7701 bool MarkFromRootsVerifyClosure::do_bit(size_t offset) {
7702   // convert offset into a HeapWord*
7703   HeapWord* addr = _verification_bm->startWord() + offset;
7704   assert(_verification_bm->endWord() && addr < _verification_bm->endWord(),
7705          "address out of range");
7706   assert(_verification_bm->isMarked(addr), "tautology");
7707   assert(_cms_bm->isMarked(addr), "tautology");
7708 
7709   assert(_mark_stack->isEmpty(),
7710          "should drain stack to limit stack usage");
7711   // convert addr to an oop preparatory to scanning
7712   oop obj = oop(addr);
7713   assert(obj->is_oop(), "should be an oop");
7714   assert(_finger <= addr, "_finger runneth ahead");
7715   // advance the finger to right end of this object
7716   _finger = addr + obj->size();
7717   assert(_finger > addr, "we just incremented it above");
7718   // Note: the finger doesn't advance while we drain
7719   // the stack below.
7720   bool res = _mark_stack->push(obj);
7721   assert(res, "Empty non-zero size stack should have space for single push");
7722   while (!_mark_stack->isEmpty()) {
7723     oop new_oop = _mark_stack->pop();
7724     assert(new_oop->is_oop(), "Oops! expected to pop an oop");
7725     // now scan this oop's oops
7726     new_oop->oop_iterate(&_pam_verify_closure);
7727   }
7728   assert(_mark_stack->isEmpty(), "tautology, emphasizing post-condition");
7729   return true;
7730 }
7731 
7732 PushAndMarkVerifyClosure::PushAndMarkVerifyClosure(
7733   CMSCollector* collector, MemRegion span,
7734   CMSBitMap* verification_bm, CMSBitMap* cms_bm,
7735   CMSMarkStack*  mark_stack):
7736   CMSOopClosure(collector->ref_processor()),
7737   _collector(collector),
7738   _span(span),
7739   _verification_bm(verification_bm),
7740   _cms_bm(cms_bm),
7741   _mark_stack(mark_stack)
7742 { }
7743 
7744 void PushAndMarkVerifyClosure::do_oop(oop* p)       { PushAndMarkVerifyClosure::do_oop_work(p); }
7745 void PushAndMarkVerifyClosure::do_oop(narrowOop* p) { PushAndMarkVerifyClosure::do_oop_work(p); }
7746 
7747 // Upon stack overflow, we discard (part of) the stack,
7748 // remembering the least address amongst those discarded
7749 // in CMSCollector's _restart_address.
7750 void PushAndMarkVerifyClosure::handle_stack_overflow(HeapWord* lost) {
7751   // Remember the least grey address discarded
7752   HeapWord* ra = (HeapWord*)_mark_stack->least_value(lost);
7753   _collector->lower_restart_addr(ra);
7754   _mark_stack->reset();  // discard stack contents
7755   _mark_stack->expand(); // expand the stack if possible
7756 }
7757 
7758 void PushAndMarkVerifyClosure::do_oop(oop obj) {
7759   assert(obj->is_oop_or_null(), "expected an oop or NULL");
7760   HeapWord* addr = (HeapWord*)obj;
7761   if (_span.contains(addr) && !_verification_bm->isMarked(addr)) {
7762     // Oop lies in _span and isn't yet grey or black
7763     _verification_bm->mark(addr);            // now grey
7764     if (!_cms_bm->isMarked(addr)) {
7765       oop(addr)->print();
7766       gclog_or_tty->print_cr(" (" INTPTR_FORMAT " should have been marked)",
7767                              addr);
7768       fatal("... aborting");
7769     }
7770 
7771     if (!_mark_stack->push(obj)) { // stack overflow
7772       if (PrintCMSStatistics != 0) {
7773         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7774                                SIZE_FORMAT, _mark_stack->capacity());
7775       }
7776       assert(_mark_stack->isFull(), "Else push should have succeeded");
7777       handle_stack_overflow(addr);
7778     }
7779     // anything including and to the right of _finger
7780     // will be scanned as we iterate over the remainder of the
7781     // bit map
7782   }
7783 }
7784 
7785 PushOrMarkClosure::PushOrMarkClosure(CMSCollector* collector,
7786                      MemRegion span,
7787                      CMSBitMap* bitMap, CMSMarkStack*  markStack,
7788                      HeapWord* finger, MarkFromRootsClosure* parent) :
7789   CMSOopClosure(collector->ref_processor()),
7790   _collector(collector),
7791   _span(span),
7792   _bitMap(bitMap),
7793   _markStack(markStack),
7794   _finger(finger),
7795   _parent(parent)
7796 { }
7797 
7798 Par_PushOrMarkClosure::Par_PushOrMarkClosure(CMSCollector* collector,
7799                      MemRegion span,
7800                      CMSBitMap* bit_map,
7801                      OopTaskQueue* work_queue,
7802                      CMSMarkStack*  overflow_stack,
7803                      HeapWord* finger,
7804                      HeapWord** global_finger_addr,
7805                      Par_MarkFromRootsClosure* parent) :
7806   CMSOopClosure(collector->ref_processor()),
7807   _collector(collector),
7808   _whole_span(collector->_span),
7809   _span(span),
7810   _bit_map(bit_map),
7811   _work_queue(work_queue),
7812   _overflow_stack(overflow_stack),
7813   _finger(finger),
7814   _global_finger_addr(global_finger_addr),
7815   _parent(parent)
7816 { }
7817 
7818 // Assumes thread-safe access by callers, who are
7819 // responsible for mutual exclusion.
7820 void CMSCollector::lower_restart_addr(HeapWord* low) {
7821   assert(_span.contains(low), "Out of bounds addr");
7822   if (_restart_addr == NULL) {
7823     _restart_addr = low;
7824   } else {
7825     _restart_addr = MIN2(_restart_addr, low);
7826   }
7827 }
7828 
7829 // Upon stack overflow, we discard (part of) the stack,
7830 // remembering the least address amongst those discarded
7831 // in CMSCollector's _restart_address.
7832 void PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7833   // Remember the least grey address discarded
7834   HeapWord* ra = (HeapWord*)_markStack->least_value(lost);
7835   _collector->lower_restart_addr(ra);
7836   _markStack->reset();  // discard stack contents
7837   _markStack->expand(); // expand the stack if possible
7838 }
7839 
7840 // Upon stack overflow, we discard (part of) the stack,
7841 // remembering the least address amongst those discarded
7842 // in CMSCollector's _restart_address.
7843 void Par_PushOrMarkClosure::handle_stack_overflow(HeapWord* lost) {
7844   // We need to do this under a mutex to prevent other
7845   // workers from interfering with the work done below.
7846   MutexLockerEx ml(_overflow_stack->par_lock(),
7847                    Mutex::_no_safepoint_check_flag);
7848   // Remember the least grey address discarded
7849   HeapWord* ra = (HeapWord*)_overflow_stack->least_value(lost);
7850   _collector->lower_restart_addr(ra);
7851   _overflow_stack->reset();  // discard stack contents
7852   _overflow_stack->expand(); // expand the stack if possible
7853 }
7854 
7855 void CMKlassClosure::do_klass(Klass* k) {
7856   assert(_oop_closure != NULL, "Not initialized?");
7857   k->oops_do(_oop_closure);
7858 }
7859 
7860 void PushOrMarkClosure::do_oop(oop obj) {
7861   // Ignore mark word because we are running concurrent with mutators.
7862   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7863   HeapWord* addr = (HeapWord*)obj;
7864   if (_span.contains(addr) && !_bitMap->isMarked(addr)) {
7865     // Oop lies in _span and isn't yet grey or black
7866     _bitMap->mark(addr);            // now grey
7867     if (addr < _finger) {
7868       // the bit map iteration has already either passed, or
7869       // sampled, this bit in the bit map; we'll need to
7870       // use the marking stack to scan this oop's oops.
7871       bool simulate_overflow = false;
7872       NOT_PRODUCT(
7873         if (CMSMarkStackOverflowALot &&
7874             _collector->simulate_overflow()) {
7875           // simulate a stack overflow
7876           simulate_overflow = true;
7877         }
7878       )
7879       if (simulate_overflow || !_markStack->push(obj)) { // stack overflow
7880         if (PrintCMSStatistics != 0) {
7881           gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7882                                  SIZE_FORMAT, _markStack->capacity());
7883         }
7884         assert(simulate_overflow || _markStack->isFull(), "Else push should have succeeded");
7885         handle_stack_overflow(addr);
7886       }
7887     }
7888     // anything including and to the right of _finger
7889     // will be scanned as we iterate over the remainder of the
7890     // bit map
7891     do_yield_check();
7892   }
7893 }
7894 
7895 void PushOrMarkClosure::do_oop(oop* p)       { PushOrMarkClosure::do_oop_work(p); }
7896 void PushOrMarkClosure::do_oop(narrowOop* p) { PushOrMarkClosure::do_oop_work(p); }
7897 
7898 void Par_PushOrMarkClosure::do_oop(oop obj) {
7899   // Ignore mark word because we are running concurrent with mutators.
7900   assert(obj->is_oop_or_null(true), "expected an oop or NULL");
7901   HeapWord* addr = (HeapWord*)obj;
7902   if (_whole_span.contains(addr) && !_bit_map->isMarked(addr)) {
7903     // Oop lies in _span and isn't yet grey or black
7904     // We read the global_finger (volatile read) strictly after marking oop
7905     bool res = _bit_map->par_mark(addr);    // now grey
7906     volatile HeapWord** gfa = (volatile HeapWord**)_global_finger_addr;
7907     // Should we push this marked oop on our stack?
7908     // -- if someone else marked it, nothing to do
7909     // -- if target oop is above global finger nothing to do
7910     // -- if target oop is in chunk and above local finger
7911     //      then nothing to do
7912     // -- else push on work queue
7913     if (   !res       // someone else marked it, they will deal with it
7914         || (addr >= *gfa)  // will be scanned in a later task
7915         || (_span.contains(addr) && addr >= _finger)) { // later in this chunk
7916       return;
7917     }
7918     // the bit map iteration has already either passed, or
7919     // sampled, this bit in the bit map; we'll need to
7920     // use the marking stack to scan this oop's oops.
7921     bool simulate_overflow = false;
7922     NOT_PRODUCT(
7923       if (CMSMarkStackOverflowALot &&
7924           _collector->simulate_overflow()) {
7925         // simulate a stack overflow
7926         simulate_overflow = true;
7927       }
7928     )
7929     if (simulate_overflow ||
7930         !(_work_queue->push(obj) || _overflow_stack->par_push(obj))) {
7931       // stack overflow
7932       if (PrintCMSStatistics != 0) {
7933         gclog_or_tty->print_cr("CMS marking stack overflow (benign) at "
7934                                SIZE_FORMAT, _overflow_stack->capacity());
7935       }
7936       // We cannot assert that the overflow stack is full because
7937       // it may have been emptied since.
7938       assert(simulate_overflow ||
7939              _work_queue->size() == _work_queue->max_elems(),
7940             "Else push should have succeeded");
7941       handle_stack_overflow(addr);
7942     }
7943     do_yield_check();
7944   }
7945 }
7946 
7947 void Par_PushOrMarkClosure::do_oop(oop* p)       { Par_PushOrMarkClosure::do_oop_work(p); }
7948 void Par_PushOrMarkClosure::do_oop(narrowOop* p) { Par_PushOrMarkClosure::do_oop_work(p); }
7949 
7950 PushAndMarkClosure::PushAndMarkClosure(CMSCollector* collector,
7951                                        MemRegion span,
7952                                        ReferenceProcessor* rp,
7953                                        CMSBitMap* bit_map,
7954                                        CMSBitMap* mod_union_table,
7955                                        CMSMarkStack*  mark_stack,
7956                                        bool           concurrent_precleaning):
7957   CMSOopClosure(rp),
7958   _collector(collector),
7959   _span(span),
7960   _bit_map(bit_map),
7961   _mod_union_table(mod_union_table),
7962   _mark_stack(mark_stack),
7963   _concurrent_precleaning(concurrent_precleaning)
7964 {
7965   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
7966 }
7967 
7968 // Grey object rescan during pre-cleaning and second checkpoint phases --
7969 // the non-parallel version (the parallel version appears further below.)
7970 void PushAndMarkClosure::do_oop(oop obj) {
7971   // Ignore mark word verification. If during concurrent precleaning,
7972   // the object monitor may be locked. If during the checkpoint
7973   // phases, the object may already have been reached by a  different
7974   // path and may be at the end of the global overflow list (so
7975   // the mark word may be NULL).
7976   assert(obj->is_oop_or_null(true /* ignore mark word */),
7977          "expected an oop or NULL");
7978   HeapWord* addr = (HeapWord*)obj;
7979   // Check if oop points into the CMS generation
7980   // and is not marked
7981   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
7982     // a white object ...
7983     _bit_map->mark(addr);         // ... now grey
7984     // push on the marking stack (grey set)
7985     bool simulate_overflow = false;
7986     NOT_PRODUCT(
7987       if (CMSMarkStackOverflowALot &&
7988           _collector->simulate_overflow()) {
7989         // simulate a stack overflow
7990         simulate_overflow = true;
7991       }
7992     )
7993     if (simulate_overflow || !_mark_stack->push(obj)) {
7994       if (_concurrent_precleaning) {
7995          // During precleaning we can just dirty the appropriate card(s)
7996          // in the mod union table, thus ensuring that the object remains
7997          // in the grey set  and continue. In the case of object arrays
7998          // we need to dirty all of the cards that the object spans,
7999          // since the rescan of object arrays will be limited to the
8000          // dirty cards.
8001          // Note that no one can be intefering with us in this action
8002          // of dirtying the mod union table, so no locking or atomics
8003          // are required.
8004          if (obj->is_objArray()) {
8005            size_t sz = obj->size();
8006            HeapWord* end_card_addr = (HeapWord*)round_to(
8007                                         (intptr_t)(addr+sz), CardTableModRefBS::card_size);
8008            MemRegion redirty_range = MemRegion(addr, end_card_addr);
8009            assert(!redirty_range.is_empty(), "Arithmetical tautology");
8010            _mod_union_table->mark_range(redirty_range);
8011          } else {
8012            _mod_union_table->mark(addr);
8013          }
8014          _collector->_ser_pmc_preclean_ovflw++;
8015       } else {
8016          // During the remark phase, we need to remember this oop
8017          // in the overflow list.
8018          _collector->push_on_overflow_list(obj);
8019          _collector->_ser_pmc_remark_ovflw++;
8020       }
8021     }
8022   }
8023 }
8024 
8025 Par_PushAndMarkClosure::Par_PushAndMarkClosure(CMSCollector* collector,
8026                                                MemRegion span,
8027                                                ReferenceProcessor* rp,
8028                                                CMSBitMap* bit_map,
8029                                                OopTaskQueue* work_queue):
8030   CMSOopClosure(rp),
8031   _collector(collector),
8032   _span(span),
8033   _bit_map(bit_map),
8034   _work_queue(work_queue)
8035 {
8036   assert(_ref_processor != NULL, "_ref_processor shouldn't be NULL");
8037 }
8038 
8039 void PushAndMarkClosure::do_oop(oop* p)       { PushAndMarkClosure::do_oop_work(p); }
8040 void PushAndMarkClosure::do_oop(narrowOop* p) { PushAndMarkClosure::do_oop_work(p); }
8041 
8042 // Grey object rescan during second checkpoint phase --
8043 // the parallel version.
8044 void Par_PushAndMarkClosure::do_oop(oop obj) {
8045   // In the assert below, we ignore the mark word because
8046   // this oop may point to an already visited object that is
8047   // on the overflow stack (in which case the mark word has
8048   // been hijacked for chaining into the overflow stack --
8049   // if this is the last object in the overflow stack then
8050   // its mark word will be NULL). Because this object may
8051   // have been subsequently popped off the global overflow
8052   // stack, and the mark word possibly restored to the prototypical
8053   // value, by the time we get to examined this failing assert in
8054   // the debugger, is_oop_or_null(false) may subsequently start
8055   // to hold.
8056   assert(obj->is_oop_or_null(true),
8057          "expected an oop or NULL");
8058   HeapWord* addr = (HeapWord*)obj;
8059   // Check if oop points into the CMS generation
8060   // and is not marked
8061   if (_span.contains(addr) && !_bit_map->isMarked(addr)) {
8062     // a white object ...
8063     // If we manage to "claim" the object, by being the
8064     // first thread to mark it, then we push it on our
8065     // marking stack
8066     if (_bit_map->par_mark(addr)) {     // ... now grey
8067       // push on work queue (grey set)
8068       bool simulate_overflow = false;
8069       NOT_PRODUCT(
8070         if (CMSMarkStackOverflowALot &&
8071             _collector->par_simulate_overflow()) {
8072           // simulate a stack overflow
8073           simulate_overflow = true;
8074         }
8075       )
8076       if (simulate_overflow || !_work_queue->push(obj)) {
8077         _collector->par_push_on_overflow_list(obj);
8078         _collector->_par_pmc_remark_ovflw++; //  imprecise OK: no need to CAS
8079       }
8080     } // Else, some other thread got there first
8081   }
8082 }
8083 
8084 void Par_PushAndMarkClosure::do_oop(oop* p)       { Par_PushAndMarkClosure::do_oop_work(p); }
8085 void Par_PushAndMarkClosure::do_oop(narrowOop* p) { Par_PushAndMarkClosure::do_oop_work(p); }
8086 
8087 void CMSPrecleanRefsYieldClosure::do_yield_work() {
8088   Mutex* bml = _collector->bitMapLock();
8089   assert_lock_strong(bml);
8090   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8091          "CMS thread should hold CMS token");
8092 
8093   bml->unlock();
8094   ConcurrentMarkSweepThread::desynchronize(true);
8095 
8096   ConcurrentMarkSweepThread::acknowledge_yield_request();
8097 
8098   _collector->stopTimer();
8099   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8100   if (PrintCMSStatistics != 0) {
8101     _collector->incrementYields();
8102   }
8103   _collector->icms_wait();
8104 
8105   // See the comment in coordinator_yield()
8106   for (unsigned i = 0; i < CMSYieldSleepCount &&
8107                        ConcurrentMarkSweepThread::should_yield() &&
8108                        !CMSCollector::foregroundGCIsActive(); ++i) {
8109     os::sleep(Thread::current(), 1, false);
8110     ConcurrentMarkSweepThread::acknowledge_yield_request();
8111   }
8112 
8113   ConcurrentMarkSweepThread::synchronize(true);
8114   bml->lock();
8115 
8116   _collector->startTimer();
8117 }
8118 
8119 bool CMSPrecleanRefsYieldClosure::should_return() {
8120   if (ConcurrentMarkSweepThread::should_yield()) {
8121     do_yield_work();
8122   }
8123   return _collector->foregroundGCIsActive();
8124 }
8125 
8126 void MarkFromDirtyCardsClosure::do_MemRegion(MemRegion mr) {
8127   assert(((size_t)mr.start())%CardTableModRefBS::card_size_in_words == 0,
8128          "mr should be aligned to start at a card boundary");
8129   // We'd like to assert:
8130   // assert(mr.word_size()%CardTableModRefBS::card_size_in_words == 0,
8131   //        "mr should be a range of cards");
8132   // However, that would be too strong in one case -- the last
8133   // partition ends at _unallocated_block which, in general, can be
8134   // an arbitrary boundary, not necessarily card aligned.
8135   if (PrintCMSStatistics != 0) {
8136     _num_dirty_cards +=
8137          mr.word_size()/CardTableModRefBS::card_size_in_words;
8138   }
8139   _space->object_iterate_mem(mr, &_scan_cl);
8140 }
8141 
8142 SweepClosure::SweepClosure(CMSCollector* collector,
8143                            ConcurrentMarkSweepGeneration* g,
8144                            CMSBitMap* bitMap, bool should_yield) :
8145   _collector(collector),
8146   _g(g),
8147   _sp(g->cmsSpace()),
8148   _limit(_sp->sweep_limit()),
8149   _freelistLock(_sp->freelistLock()),
8150   _bitMap(bitMap),
8151   _yield(should_yield),
8152   _inFreeRange(false),           // No free range at beginning of sweep
8153   _freeRangeInFreeLists(false),  // No free range at beginning of sweep
8154   _lastFreeRangeCoalesced(false),
8155   _freeFinger(g->used_region().start())
8156 {
8157   NOT_PRODUCT(
8158     _numObjectsFreed = 0;
8159     _numWordsFreed   = 0;
8160     _numObjectsLive = 0;
8161     _numWordsLive = 0;
8162     _numObjectsAlreadyFree = 0;
8163     _numWordsAlreadyFree = 0;
8164     _last_fc = NULL;
8165 
8166     _sp->initializeIndexedFreeListArrayReturnedBytes();
8167     _sp->dictionary()->initialize_dict_returned_bytes();
8168   )
8169   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8170          "sweep _limit out of bounds");
8171   if (CMSTraceSweeper) {
8172     gclog_or_tty->print_cr("\n====================\nStarting new sweep with limit " PTR_FORMAT,
8173                         _limit);
8174   }
8175 }
8176 
8177 void SweepClosure::print_on(outputStream* st) const {
8178   tty->print_cr("_sp = [" PTR_FORMAT "," PTR_FORMAT ")",
8179                 _sp->bottom(), _sp->end());
8180   tty->print_cr("_limit = " PTR_FORMAT, _limit);
8181   tty->print_cr("_freeFinger = " PTR_FORMAT, _freeFinger);
8182   NOT_PRODUCT(tty->print_cr("_last_fc = " PTR_FORMAT, _last_fc);)
8183   tty->print_cr("_inFreeRange = %d, _freeRangeInFreeLists = %d, _lastFreeRangeCoalesced = %d",
8184                 _inFreeRange, _freeRangeInFreeLists, _lastFreeRangeCoalesced);
8185 }
8186 
8187 #ifndef PRODUCT
8188 // Assertion checking only:  no useful work in product mode --
8189 // however, if any of the flags below become product flags,
8190 // you may need to review this code to see if it needs to be
8191 // enabled in product mode.
8192 SweepClosure::~SweepClosure() {
8193   assert_lock_strong(_freelistLock);
8194   assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8195          "sweep _limit out of bounds");
8196   if (inFreeRange()) {
8197     warning("inFreeRange() should have been reset; dumping state of SweepClosure");
8198     print();
8199     ShouldNotReachHere();
8200   }
8201   if (Verbose && PrintGC) {
8202     gclog_or_tty->print("Collected "SIZE_FORMAT" objects, " SIZE_FORMAT " bytes",
8203                         _numObjectsFreed, _numWordsFreed*sizeof(HeapWord));
8204     gclog_or_tty->print_cr("\nLive "SIZE_FORMAT" objects,  "
8205                            SIZE_FORMAT" bytes  "
8206       "Already free "SIZE_FORMAT" objects, "SIZE_FORMAT" bytes",
8207       _numObjectsLive, _numWordsLive*sizeof(HeapWord),
8208       _numObjectsAlreadyFree, _numWordsAlreadyFree*sizeof(HeapWord));
8209     size_t totalBytes = (_numWordsFreed + _numWordsLive + _numWordsAlreadyFree)
8210                         * sizeof(HeapWord);
8211     gclog_or_tty->print_cr("Total sweep: "SIZE_FORMAT" bytes", totalBytes);
8212 
8213     if (PrintCMSStatistics && CMSVerifyReturnedBytes) {
8214       size_t indexListReturnedBytes = _sp->sumIndexedFreeListArrayReturnedBytes();
8215       size_t dict_returned_bytes = _sp->dictionary()->sum_dict_returned_bytes();
8216       size_t returned_bytes = indexListReturnedBytes + dict_returned_bytes;
8217       gclog_or_tty->print("Returned "SIZE_FORMAT" bytes", returned_bytes);
8218       gclog_or_tty->print("   Indexed List Returned "SIZE_FORMAT" bytes",
8219         indexListReturnedBytes);
8220       gclog_or_tty->print_cr("        Dictionary Returned "SIZE_FORMAT" bytes",
8221         dict_returned_bytes);
8222     }
8223   }
8224   if (CMSTraceSweeper) {
8225     gclog_or_tty->print_cr("end of sweep with _limit = " PTR_FORMAT "\n================",
8226                            _limit);
8227   }
8228 }
8229 #endif  // PRODUCT
8230 
8231 void SweepClosure::initialize_free_range(HeapWord* freeFinger,
8232     bool freeRangeInFreeLists) {
8233   if (CMSTraceSweeper) {
8234     gclog_or_tty->print("---- Start free range at 0x%x with free block (%d)\n",
8235                freeFinger, freeRangeInFreeLists);
8236   }
8237   assert(!inFreeRange(), "Trampling existing free range");
8238   set_inFreeRange(true);
8239   set_lastFreeRangeCoalesced(false);
8240 
8241   set_freeFinger(freeFinger);
8242   set_freeRangeInFreeLists(freeRangeInFreeLists);
8243   if (CMSTestInFreeList) {
8244     if (freeRangeInFreeLists) {
8245       FreeChunk* fc = (FreeChunk*) freeFinger;
8246       assert(fc->is_free(), "A chunk on the free list should be free.");
8247       assert(fc->size() > 0, "Free range should have a size");
8248       assert(_sp->verify_chunk_in_free_list(fc), "Chunk is not in free lists");
8249     }
8250   }
8251 }
8252 
8253 // Note that the sweeper runs concurrently with mutators. Thus,
8254 // it is possible for direct allocation in this generation to happen
8255 // in the middle of the sweep. Note that the sweeper also coalesces
8256 // contiguous free blocks. Thus, unless the sweeper and the allocator
8257 // synchronize appropriately freshly allocated blocks may get swept up.
8258 // This is accomplished by the sweeper locking the free lists while
8259 // it is sweeping. Thus blocks that are determined to be free are
8260 // indeed free. There is however one additional complication:
8261 // blocks that have been allocated since the final checkpoint and
8262 // mark, will not have been marked and so would be treated as
8263 // unreachable and swept up. To prevent this, the allocator marks
8264 // the bit map when allocating during the sweep phase. This leads,
8265 // however, to a further complication -- objects may have been allocated
8266 // but not yet initialized -- in the sense that the header isn't yet
8267 // installed. The sweeper can not then determine the size of the block
8268 // in order to skip over it. To deal with this case, we use a technique
8269 // (due to Printezis) to encode such uninitialized block sizes in the
8270 // bit map. Since the bit map uses a bit per every HeapWord, but the
8271 // CMS generation has a minimum object size of 3 HeapWords, it follows
8272 // that "normal marks" won't be adjacent in the bit map (there will
8273 // always be at least two 0 bits between successive 1 bits). We make use
8274 // of these "unused" bits to represent uninitialized blocks -- the bit
8275 // corresponding to the start of the uninitialized object and the next
8276 // bit are both set. Finally, a 1 bit marks the end of the object that
8277 // started with the two consecutive 1 bits to indicate its potentially
8278 // uninitialized state.
8279 
8280 size_t SweepClosure::do_blk_careful(HeapWord* addr) {
8281   FreeChunk* fc = (FreeChunk*)addr;
8282   size_t res;
8283 
8284   // Check if we are done sweeping. Below we check "addr >= _limit" rather
8285   // than "addr == _limit" because although _limit was a block boundary when
8286   // we started the sweep, it may no longer be one because heap expansion
8287   // may have caused us to coalesce the block ending at the address _limit
8288   // with a newly expanded chunk (this happens when _limit was set to the
8289   // previous _end of the space), so we may have stepped past _limit:
8290   // see the following Zeno-like trail of CRs 6977970, 7008136, 7042740.
8291   if (addr >= _limit) { // we have swept up to or past the limit: finish up
8292     assert(_limit >= _sp->bottom() && _limit <= _sp->end(),
8293            "sweep _limit out of bounds");
8294     assert(addr < _sp->end(), "addr out of bounds");
8295     // Flush any free range we might be holding as a single
8296     // coalesced chunk to the appropriate free list.
8297     if (inFreeRange()) {
8298       assert(freeFinger() >= _sp->bottom() && freeFinger() < _limit,
8299              err_msg("freeFinger() " PTR_FORMAT" is out-of-bounds", freeFinger()));
8300       flush_cur_free_chunk(freeFinger(),
8301                            pointer_delta(addr, freeFinger()));
8302       if (CMSTraceSweeper) {
8303         gclog_or_tty->print("Sweep: last chunk: ");
8304         gclog_or_tty->print("put_free_blk 0x%x ("SIZE_FORMAT") "
8305                    "[coalesced:"SIZE_FORMAT"]\n",
8306                    freeFinger(), pointer_delta(addr, freeFinger()),
8307                    lastFreeRangeCoalesced());
8308       }
8309     }
8310 
8311     // help the iterator loop finish
8312     return pointer_delta(_sp->end(), addr);
8313   }
8314 
8315   assert(addr < _limit, "sweep invariant");
8316   // check if we should yield
8317   do_yield_check(addr);
8318   if (fc->is_free()) {
8319     // Chunk that is already free
8320     res = fc->size();
8321     do_already_free_chunk(fc);
8322     debug_only(_sp->verifyFreeLists());
8323     // If we flush the chunk at hand in lookahead_and_flush()
8324     // and it's coalesced with a preceding chunk, then the
8325     // process of "mangling" the payload of the coalesced block
8326     // will cause erasure of the size information from the
8327     // (erstwhile) header of all the coalesced blocks but the
8328     // first, so the first disjunct in the assert will not hold
8329     // in that specific case (in which case the second disjunct
8330     // will hold).
8331     assert(res == fc->size() || ((HeapWord*)fc) + res >= _limit,
8332            "Otherwise the size info doesn't change at this step");
8333     NOT_PRODUCT(
8334       _numObjectsAlreadyFree++;
8335       _numWordsAlreadyFree += res;
8336     )
8337     NOT_PRODUCT(_last_fc = fc;)
8338   } else if (!_bitMap->isMarked(addr)) {
8339     // Chunk is fresh garbage
8340     res = do_garbage_chunk(fc);
8341     debug_only(_sp->verifyFreeLists());
8342     NOT_PRODUCT(
8343       _numObjectsFreed++;
8344       _numWordsFreed += res;
8345     )
8346   } else {
8347     // Chunk that is alive.
8348     res = do_live_chunk(fc);
8349     debug_only(_sp->verifyFreeLists());
8350     NOT_PRODUCT(
8351         _numObjectsLive++;
8352         _numWordsLive += res;
8353     )
8354   }
8355   return res;
8356 }
8357 
8358 // For the smart allocation, record following
8359 //  split deaths - a free chunk is removed from its free list because
8360 //      it is being split into two or more chunks.
8361 //  split birth - a free chunk is being added to its free list because
8362 //      a larger free chunk has been split and resulted in this free chunk.
8363 //  coal death - a free chunk is being removed from its free list because
8364 //      it is being coalesced into a large free chunk.
8365 //  coal birth - a free chunk is being added to its free list because
8366 //      it was created when two or more free chunks where coalesced into
8367 //      this free chunk.
8368 //
8369 // These statistics are used to determine the desired number of free
8370 // chunks of a given size.  The desired number is chosen to be relative
8371 // to the end of a CMS sweep.  The desired number at the end of a sweep
8372 // is the
8373 //      count-at-end-of-previous-sweep (an amount that was enough)
8374 //              - count-at-beginning-of-current-sweep  (the excess)
8375 //              + split-births  (gains in this size during interval)
8376 //              - split-deaths  (demands on this size during interval)
8377 // where the interval is from the end of one sweep to the end of the
8378 // next.
8379 //
8380 // When sweeping the sweeper maintains an accumulated chunk which is
8381 // the chunk that is made up of chunks that have been coalesced.  That
8382 // will be termed the left-hand chunk.  A new chunk of garbage that
8383 // is being considered for coalescing will be referred to as the
8384 // right-hand chunk.
8385 //
8386 // When making a decision on whether to coalesce a right-hand chunk with
8387 // the current left-hand chunk, the current count vs. the desired count
8388 // of the left-hand chunk is considered.  Also if the right-hand chunk
8389 // is near the large chunk at the end of the heap (see
8390 // ConcurrentMarkSweepGeneration::isNearLargestChunk()), then the
8391 // left-hand chunk is coalesced.
8392 //
8393 // When making a decision about whether to split a chunk, the desired count
8394 // vs. the current count of the candidate to be split is also considered.
8395 // If the candidate is underpopulated (currently fewer chunks than desired)
8396 // a chunk of an overpopulated (currently more chunks than desired) size may
8397 // be chosen.  The "hint" associated with a free list, if non-null, points
8398 // to a free list which may be overpopulated.
8399 //
8400 
8401 void SweepClosure::do_already_free_chunk(FreeChunk* fc) {
8402   const size_t size = fc->size();
8403   // Chunks that cannot be coalesced are not in the
8404   // free lists.
8405   if (CMSTestInFreeList && !fc->cantCoalesce()) {
8406     assert(_sp->verify_chunk_in_free_list(fc),
8407       "free chunk should be in free lists");
8408   }
8409   // a chunk that is already free, should not have been
8410   // marked in the bit map
8411   HeapWord* const addr = (HeapWord*) fc;
8412   assert(!_bitMap->isMarked(addr), "free chunk should be unmarked");
8413   // Verify that the bit map has no bits marked between
8414   // addr and purported end of this block.
8415   _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8416 
8417   // Some chunks cannot be coalesced under any circumstances.
8418   // See the definition of cantCoalesce().
8419   if (!fc->cantCoalesce()) {
8420     // This chunk can potentially be coalesced.
8421     if (_sp->adaptive_freelists()) {
8422       // All the work is done in
8423       do_post_free_or_garbage_chunk(fc, size);
8424     } else {  // Not adaptive free lists
8425       // this is a free chunk that can potentially be coalesced by the sweeper;
8426       if (!inFreeRange()) {
8427         // if the next chunk is a free block that can't be coalesced
8428         // it doesn't make sense to remove this chunk from the free lists
8429         FreeChunk* nextChunk = (FreeChunk*)(addr + size);
8430         assert((HeapWord*)nextChunk <= _sp->end(), "Chunk size out of bounds?");
8431         if ((HeapWord*)nextChunk < _sp->end() &&     // There is another free chunk to the right ...
8432             nextChunk->is_free()               &&     // ... which is free...
8433             nextChunk->cantCoalesce()) {             // ... but can't be coalesced
8434           // nothing to do
8435         } else {
8436           // Potentially the start of a new free range:
8437           // Don't eagerly remove it from the free lists.
8438           // No need to remove it if it will just be put
8439           // back again.  (Also from a pragmatic point of view
8440           // if it is a free block in a region that is beyond
8441           // any allocated blocks, an assertion will fail)
8442           // Remember the start of a free run.
8443           initialize_free_range(addr, true);
8444           // end - can coalesce with next chunk
8445         }
8446       } else {
8447         // the midst of a free range, we are coalescing
8448         print_free_block_coalesced(fc);
8449         if (CMSTraceSweeper) {
8450           gclog_or_tty->print("  -- pick up free block 0x%x (%d)\n", fc, size);
8451         }
8452         // remove it from the free lists
8453         _sp->removeFreeChunkFromFreeLists(fc);
8454         set_lastFreeRangeCoalesced(true);
8455         // If the chunk is being coalesced and the current free range is
8456         // in the free lists, remove the current free range so that it
8457         // will be returned to the free lists in its entirety - all
8458         // the coalesced pieces included.
8459         if (freeRangeInFreeLists()) {
8460           FreeChunk* ffc = (FreeChunk*) freeFinger();
8461           assert(ffc->size() == pointer_delta(addr, freeFinger()),
8462             "Size of free range is inconsistent with chunk size.");
8463           if (CMSTestInFreeList) {
8464             assert(_sp->verify_chunk_in_free_list(ffc),
8465               "free range is not in free lists");
8466           }
8467           _sp->removeFreeChunkFromFreeLists(ffc);
8468           set_freeRangeInFreeLists(false);
8469         }
8470       }
8471     }
8472     // Note that if the chunk is not coalescable (the else arm
8473     // below), we unconditionally flush, without needing to do
8474     // a "lookahead," as we do below.
8475     if (inFreeRange()) lookahead_and_flush(fc, size);
8476   } else {
8477     // Code path common to both original and adaptive free lists.
8478 
8479     // cant coalesce with previous block; this should be treated
8480     // as the end of a free run if any
8481     if (inFreeRange()) {
8482       // we kicked some butt; time to pick up the garbage
8483       assert(freeFinger() < addr, "freeFinger points too high");
8484       flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8485     }
8486     // else, nothing to do, just continue
8487   }
8488 }
8489 
8490 size_t SweepClosure::do_garbage_chunk(FreeChunk* fc) {
8491   // This is a chunk of garbage.  It is not in any free list.
8492   // Add it to a free list or let it possibly be coalesced into
8493   // a larger chunk.
8494   HeapWord* const addr = (HeapWord*) fc;
8495   const size_t size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8496 
8497   if (_sp->adaptive_freelists()) {
8498     // Verify that the bit map has no bits marked between
8499     // addr and purported end of just dead object.
8500     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8501 
8502     do_post_free_or_garbage_chunk(fc, size);
8503   } else {
8504     if (!inFreeRange()) {
8505       // start of a new free range
8506       assert(size > 0, "A free range should have a size");
8507       initialize_free_range(addr, false);
8508     } else {
8509       // this will be swept up when we hit the end of the
8510       // free range
8511       if (CMSTraceSweeper) {
8512         gclog_or_tty->print("  -- pick up garbage 0x%x (%d) \n", fc, size);
8513       }
8514       // If the chunk is being coalesced and the current free range is
8515       // in the free lists, remove the current free range so that it
8516       // will be returned to the free lists in its entirety - all
8517       // the coalesced pieces included.
8518       if (freeRangeInFreeLists()) {
8519         FreeChunk* ffc = (FreeChunk*)freeFinger();
8520         assert(ffc->size() == pointer_delta(addr, freeFinger()),
8521           "Size of free range is inconsistent with chunk size.");
8522         if (CMSTestInFreeList) {
8523           assert(_sp->verify_chunk_in_free_list(ffc),
8524             "free range is not in free lists");
8525         }
8526         _sp->removeFreeChunkFromFreeLists(ffc);
8527         set_freeRangeInFreeLists(false);
8528       }
8529       set_lastFreeRangeCoalesced(true);
8530     }
8531     // this will be swept up when we hit the end of the free range
8532 
8533     // Verify that the bit map has no bits marked between
8534     // addr and purported end of just dead object.
8535     _bitMap->verifyNoOneBitsInRange(addr + 1, addr + size);
8536   }
8537   assert(_limit >= addr + size,
8538          "A freshly garbage chunk can't possibly straddle over _limit");
8539   if (inFreeRange()) lookahead_and_flush(fc, size);
8540   return size;
8541 }
8542 
8543 size_t SweepClosure::do_live_chunk(FreeChunk* fc) {
8544   HeapWord* addr = (HeapWord*) fc;
8545   // The sweeper has just found a live object. Return any accumulated
8546   // left hand chunk to the free lists.
8547   if (inFreeRange()) {
8548     assert(freeFinger() < addr, "freeFinger points too high");
8549     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8550   }
8551 
8552   // This object is live: we'd normally expect this to be
8553   // an oop, and like to assert the following:
8554   // assert(oop(addr)->is_oop(), "live block should be an oop");
8555   // However, as we commented above, this may be an object whose
8556   // header hasn't yet been initialized.
8557   size_t size;
8558   assert(_bitMap->isMarked(addr), "Tautology for this control point");
8559   if (_bitMap->isMarked(addr + 1)) {
8560     // Determine the size from the bit map, rather than trying to
8561     // compute it from the object header.
8562     HeapWord* nextOneAddr = _bitMap->getNextMarkedWordAddress(addr + 2);
8563     size = pointer_delta(nextOneAddr + 1, addr);
8564     assert(size == CompactibleFreeListSpace::adjustObjectSize(size),
8565            "alignment problem");
8566 
8567 #ifdef ASSERT
8568       if (oop(addr)->klass_or_null() != NULL) {
8569         // Ignore mark word because we are running concurrent with mutators
8570         assert(oop(addr)->is_oop(true), "live block should be an oop");
8571         assert(size ==
8572                CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size()),
8573                "P-mark and computed size do not agree");
8574       }
8575 #endif
8576 
8577   } else {
8578     // This should be an initialized object that's alive.
8579     assert(oop(addr)->klass_or_null() != NULL,
8580            "Should be an initialized object");
8581     // Ignore mark word because we are running concurrent with mutators
8582     assert(oop(addr)->is_oop(true), "live block should be an oop");
8583     // Verify that the bit map has no bits marked between
8584     // addr and purported end of this block.
8585     size = CompactibleFreeListSpace::adjustObjectSize(oop(addr)->size());
8586     assert(size >= 3, "Necessary for Printezis marks to work");
8587     assert(!_bitMap->isMarked(addr+1), "Tautology for this control point");
8588     DEBUG_ONLY(_bitMap->verifyNoOneBitsInRange(addr+2, addr+size);)
8589   }
8590   return size;
8591 }
8592 
8593 void SweepClosure::do_post_free_or_garbage_chunk(FreeChunk* fc,
8594                                                  size_t chunkSize) {
8595   // do_post_free_or_garbage_chunk() should only be called in the case
8596   // of the adaptive free list allocator.
8597   const bool fcInFreeLists = fc->is_free();
8598   assert(_sp->adaptive_freelists(), "Should only be used in this case.");
8599   assert((HeapWord*)fc <= _limit, "sweep invariant");
8600   if (CMSTestInFreeList && fcInFreeLists) {
8601     assert(_sp->verify_chunk_in_free_list(fc), "free chunk is not in free lists");
8602   }
8603 
8604   if (CMSTraceSweeper) {
8605     gclog_or_tty->print_cr("  -- pick up another chunk at 0x%x (%d)", fc, chunkSize);
8606   }
8607 
8608   HeapWord* const fc_addr = (HeapWord*) fc;
8609 
8610   bool coalesce;
8611   const size_t left  = pointer_delta(fc_addr, freeFinger());
8612   const size_t right = chunkSize;
8613   switch (FLSCoalescePolicy) {
8614     // numeric value forms a coalition aggressiveness metric
8615     case 0:  { // never coalesce
8616       coalesce = false;
8617       break;
8618     }
8619     case 1: { // coalesce if left & right chunks on overpopulated lists
8620       coalesce = _sp->coalOverPopulated(left) &&
8621                  _sp->coalOverPopulated(right);
8622       break;
8623     }
8624     case 2: { // coalesce if left chunk on overpopulated list (default)
8625       coalesce = _sp->coalOverPopulated(left);
8626       break;
8627     }
8628     case 3: { // coalesce if left OR right chunk on overpopulated list
8629       coalesce = _sp->coalOverPopulated(left) ||
8630                  _sp->coalOverPopulated(right);
8631       break;
8632     }
8633     case 4: { // always coalesce
8634       coalesce = true;
8635       break;
8636     }
8637     default:
8638      ShouldNotReachHere();
8639   }
8640 
8641   // Should the current free range be coalesced?
8642   // If the chunk is in a free range and either we decided to coalesce above
8643   // or the chunk is near the large block at the end of the heap
8644   // (isNearLargestChunk() returns true), then coalesce this chunk.
8645   const bool doCoalesce = inFreeRange()
8646                           && (coalesce || _g->isNearLargestChunk(fc_addr));
8647   if (doCoalesce) {
8648     // Coalesce the current free range on the left with the new
8649     // chunk on the right.  If either is on a free list,
8650     // it must be removed from the list and stashed in the closure.
8651     if (freeRangeInFreeLists()) {
8652       FreeChunk* const ffc = (FreeChunk*)freeFinger();
8653       assert(ffc->size() == pointer_delta(fc_addr, freeFinger()),
8654         "Size of free range is inconsistent with chunk size.");
8655       if (CMSTestInFreeList) {
8656         assert(_sp->verify_chunk_in_free_list(ffc),
8657           "Chunk is not in free lists");
8658       }
8659       _sp->coalDeath(ffc->size());
8660       _sp->removeFreeChunkFromFreeLists(ffc);
8661       set_freeRangeInFreeLists(false);
8662     }
8663     if (fcInFreeLists) {
8664       _sp->coalDeath(chunkSize);
8665       assert(fc->size() == chunkSize,
8666         "The chunk has the wrong size or is not in the free lists");
8667       _sp->removeFreeChunkFromFreeLists(fc);
8668     }
8669     set_lastFreeRangeCoalesced(true);
8670     print_free_block_coalesced(fc);
8671   } else {  // not in a free range and/or should not coalesce
8672     // Return the current free range and start a new one.
8673     if (inFreeRange()) {
8674       // In a free range but cannot coalesce with the right hand chunk.
8675       // Put the current free range into the free lists.
8676       flush_cur_free_chunk(freeFinger(),
8677                            pointer_delta(fc_addr, freeFinger()));
8678     }
8679     // Set up for new free range.  Pass along whether the right hand
8680     // chunk is in the free lists.
8681     initialize_free_range((HeapWord*)fc, fcInFreeLists);
8682   }
8683 }
8684 
8685 // Lookahead flush:
8686 // If we are tracking a free range, and this is the last chunk that
8687 // we'll look at because its end crosses past _limit, we'll preemptively
8688 // flush it along with any free range we may be holding on to. Note that
8689 // this can be the case only for an already free or freshly garbage
8690 // chunk. If this block is an object, it can never straddle
8691 // over _limit. The "straddling" occurs when _limit is set at
8692 // the previous end of the space when this cycle started, and
8693 // a subsequent heap expansion caused the previously co-terminal
8694 // free block to be coalesced with the newly expanded portion,
8695 // thus rendering _limit a non-block-boundary making it dangerous
8696 // for the sweeper to step over and examine.
8697 void SweepClosure::lookahead_and_flush(FreeChunk* fc, size_t chunk_size) {
8698   assert(inFreeRange(), "Should only be called if currently in a free range.");
8699   HeapWord* const eob = ((HeapWord*)fc) + chunk_size;
8700   assert(_sp->used_region().contains(eob - 1),
8701          err_msg("eob = " PTR_FORMAT " eob-1 = " PTR_FORMAT " _limit = " PTR_FORMAT
8702                  " out of bounds wrt _sp = [" PTR_FORMAT "," PTR_FORMAT ")"
8703                  " when examining fc = " PTR_FORMAT "(" SIZE_FORMAT ")",
8704                  eob, eob-1, _limit, _sp->bottom(), _sp->end(), fc, chunk_size));
8705   if (eob >= _limit) {
8706     assert(eob == _limit || fc->is_free(), "Only a free chunk should allow us to cross over the limit");
8707     if (CMSTraceSweeper) {
8708       gclog_or_tty->print_cr("_limit " PTR_FORMAT " reached or crossed by block "
8709                              "[" PTR_FORMAT "," PTR_FORMAT ") in space "
8710                              "[" PTR_FORMAT "," PTR_FORMAT ")",
8711                              _limit, fc, eob, _sp->bottom(), _sp->end());
8712     }
8713     // Return the storage we are tracking back into the free lists.
8714     if (CMSTraceSweeper) {
8715       gclog_or_tty->print_cr("Flushing ... ");
8716     }
8717     assert(freeFinger() < eob, "Error");
8718     flush_cur_free_chunk( freeFinger(), pointer_delta(eob, freeFinger()));
8719   }
8720 }
8721 
8722 void SweepClosure::flush_cur_free_chunk(HeapWord* chunk, size_t size) {
8723   assert(inFreeRange(), "Should only be called if currently in a free range.");
8724   assert(size > 0,
8725     "A zero sized chunk cannot be added to the free lists.");
8726   if (!freeRangeInFreeLists()) {
8727     if (CMSTestInFreeList) {
8728       FreeChunk* fc = (FreeChunk*) chunk;
8729       fc->set_size(size);
8730       assert(!_sp->verify_chunk_in_free_list(fc),
8731         "chunk should not be in free lists yet");
8732     }
8733     if (CMSTraceSweeper) {
8734       gclog_or_tty->print_cr(" -- add free block 0x%x (%d) to free lists",
8735                     chunk, size);
8736     }
8737     // A new free range is going to be starting.  The current
8738     // free range has not been added to the free lists yet or
8739     // was removed so add it back.
8740     // If the current free range was coalesced, then the death
8741     // of the free range was recorded.  Record a birth now.
8742     if (lastFreeRangeCoalesced()) {
8743       _sp->coalBirth(size);
8744     }
8745     _sp->addChunkAndRepairOffsetTable(chunk, size,
8746             lastFreeRangeCoalesced());
8747   } else if (CMSTraceSweeper) {
8748     gclog_or_tty->print_cr("Already in free list: nothing to flush");
8749   }
8750   set_inFreeRange(false);
8751   set_freeRangeInFreeLists(false);
8752 }
8753 
8754 // We take a break if we've been at this for a while,
8755 // so as to avoid monopolizing the locks involved.
8756 void SweepClosure::do_yield_work(HeapWord* addr) {
8757   // Return current free chunk being used for coalescing (if any)
8758   // to the appropriate freelist.  After yielding, the next
8759   // free block encountered will start a coalescing range of
8760   // free blocks.  If the next free block is adjacent to the
8761   // chunk just flushed, they will need to wait for the next
8762   // sweep to be coalesced.
8763   if (inFreeRange()) {
8764     flush_cur_free_chunk(freeFinger(), pointer_delta(addr, freeFinger()));
8765   }
8766 
8767   // First give up the locks, then yield, then re-lock.
8768   // We should probably use a constructor/destructor idiom to
8769   // do this unlock/lock or modify the MutexUnlocker class to
8770   // serve our purpose. XXX
8771   assert_lock_strong(_bitMap->lock());
8772   assert_lock_strong(_freelistLock);
8773   assert(ConcurrentMarkSweepThread::cms_thread_has_cms_token(),
8774          "CMS thread should hold CMS token");
8775   _bitMap->lock()->unlock();
8776   _freelistLock->unlock();
8777   ConcurrentMarkSweepThread::desynchronize(true);
8778   ConcurrentMarkSweepThread::acknowledge_yield_request();
8779   _collector->stopTimer();
8780   GCPauseTimer p(_collector->size_policy()->concurrent_timer_ptr());
8781   if (PrintCMSStatistics != 0) {
8782     _collector->incrementYields();
8783   }
8784   _collector->icms_wait();
8785 
8786   // See the comment in coordinator_yield()
8787   for (unsigned i = 0; i < CMSYieldSleepCount &&
8788                        ConcurrentMarkSweepThread::should_yield() &&
8789                        !CMSCollector::foregroundGCIsActive(); ++i) {
8790     os::sleep(Thread::current(), 1, false);
8791     ConcurrentMarkSweepThread::acknowledge_yield_request();
8792   }
8793 
8794   ConcurrentMarkSweepThread::synchronize(true);
8795   _freelistLock->lock();
8796   _bitMap->lock()->lock_without_safepoint_check();
8797   _collector->startTimer();
8798 }
8799 
8800 #ifndef PRODUCT
8801 // This is actually very useful in a product build if it can
8802 // be called from the debugger.  Compile it into the product
8803 // as needed.
8804 bool debug_verify_chunk_in_free_list(FreeChunk* fc) {
8805   return debug_cms_space->verify_chunk_in_free_list(fc);
8806 }
8807 #endif
8808 
8809 void SweepClosure::print_free_block_coalesced(FreeChunk* fc) const {
8810   if (CMSTraceSweeper) {
8811     gclog_or_tty->print_cr("Sweep:coal_free_blk " PTR_FORMAT " (" SIZE_FORMAT ")",
8812                            fc, fc->size());
8813   }
8814 }
8815 
8816 // CMSIsAliveClosure
8817 bool CMSIsAliveClosure::do_object_b(oop obj) {
8818   HeapWord* addr = (HeapWord*)obj;
8819   return addr != NULL &&
8820          (!_span.contains(addr) || _bit_map->isMarked(addr));
8821 }
8822 
8823 
8824 CMSKeepAliveClosure::CMSKeepAliveClosure( CMSCollector* collector,
8825                       MemRegion span,
8826                       CMSBitMap* bit_map, CMSMarkStack* mark_stack,
8827                       bool cpc):
8828   _collector(collector),
8829   _span(span),
8830   _bit_map(bit_map),
8831   _mark_stack(mark_stack),
8832   _concurrent_precleaning(cpc) {
8833   assert(!_span.is_empty(), "Empty span could spell trouble");
8834 }
8835 
8836 
8837 // CMSKeepAliveClosure: the serial version
8838 void CMSKeepAliveClosure::do_oop(oop obj) {
8839   HeapWord* addr = (HeapWord*)obj;
8840   if (_span.contains(addr) &&
8841       !_bit_map->isMarked(addr)) {
8842     _bit_map->mark(addr);
8843     bool simulate_overflow = false;
8844     NOT_PRODUCT(
8845       if (CMSMarkStackOverflowALot &&
8846           _collector->simulate_overflow()) {
8847         // simulate a stack overflow
8848         simulate_overflow = true;
8849       }
8850     )
8851     if (simulate_overflow || !_mark_stack->push(obj)) {
8852       if (_concurrent_precleaning) {
8853         // We dirty the overflown object and let the remark
8854         // phase deal with it.
8855         assert(_collector->overflow_list_is_empty(), "Error");
8856         // In the case of object arrays, we need to dirty all of
8857         // the cards that the object spans. No locking or atomics
8858         // are needed since no one else can be mutating the mod union
8859         // table.
8860         if (obj->is_objArray()) {
8861           size_t sz = obj->size();
8862           HeapWord* end_card_addr =
8863             (HeapWord*)round_to((intptr_t)(addr+sz), CardTableModRefBS::card_size);
8864           MemRegion redirty_range = MemRegion(addr, end_card_addr);
8865           assert(!redirty_range.is_empty(), "Arithmetical tautology");
8866           _collector->_modUnionTable.mark_range(redirty_range);
8867         } else {
8868           _collector->_modUnionTable.mark(addr);
8869         }
8870         _collector->_ser_kac_preclean_ovflw++;
8871       } else {
8872         _collector->push_on_overflow_list(obj);
8873         _collector->_ser_kac_ovflw++;
8874       }
8875     }
8876   }
8877 }
8878 
8879 void CMSKeepAliveClosure::do_oop(oop* p)       { CMSKeepAliveClosure::do_oop_work(p); }
8880 void CMSKeepAliveClosure::do_oop(narrowOop* p) { CMSKeepAliveClosure::do_oop_work(p); }
8881 
8882 // CMSParKeepAliveClosure: a parallel version of the above.
8883 // The work queues are private to each closure (thread),
8884 // but (may be) available for stealing by other threads.
8885 void CMSParKeepAliveClosure::do_oop(oop obj) {
8886   HeapWord* addr = (HeapWord*)obj;
8887   if (_span.contains(addr) &&
8888       !_bit_map->isMarked(addr)) {
8889     // In general, during recursive tracing, several threads
8890     // may be concurrently getting here; the first one to
8891     // "tag" it, claims it.
8892     if (_bit_map->par_mark(addr)) {
8893       bool res = _work_queue->push(obj);
8894       assert(res, "Low water mark should be much less than capacity");
8895       // Do a recursive trim in the hope that this will keep
8896       // stack usage lower, but leave some oops for potential stealers
8897       trim_queue(_low_water_mark);
8898     } // Else, another thread got there first
8899   }
8900 }
8901 
8902 void CMSParKeepAliveClosure::do_oop(oop* p)       { CMSParKeepAliveClosure::do_oop_work(p); }
8903 void CMSParKeepAliveClosure::do_oop(narrowOop* p) { CMSParKeepAliveClosure::do_oop_work(p); }
8904 
8905 void CMSParKeepAliveClosure::trim_queue(uint max) {
8906   while (_work_queue->size() > max) {
8907     oop new_oop;
8908     if (_work_queue->pop_local(new_oop)) {
8909       assert(new_oop != NULL && new_oop->is_oop(), "Expected an oop");
8910       assert(_bit_map->isMarked((HeapWord*)new_oop),
8911              "no white objects on this stack!");
8912       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
8913       // iterate over the oops in this oop, marking and pushing
8914       // the ones in CMS heap (i.e. in _span).
8915       new_oop->oop_iterate(&_mark_and_push);
8916     }
8917   }
8918 }
8919 
8920 CMSInnerParMarkAndPushClosure::CMSInnerParMarkAndPushClosure(
8921                                 CMSCollector* collector,
8922                                 MemRegion span, CMSBitMap* bit_map,
8923                                 OopTaskQueue* work_queue):
8924   _collector(collector),
8925   _span(span),
8926   _bit_map(bit_map),
8927   _work_queue(work_queue) { }
8928 
8929 void CMSInnerParMarkAndPushClosure::do_oop(oop obj) {
8930   HeapWord* addr = (HeapWord*)obj;
8931   if (_span.contains(addr) &&
8932       !_bit_map->isMarked(addr)) {
8933     if (_bit_map->par_mark(addr)) {
8934       bool simulate_overflow = false;
8935       NOT_PRODUCT(
8936         if (CMSMarkStackOverflowALot &&
8937             _collector->par_simulate_overflow()) {
8938           // simulate a stack overflow
8939           simulate_overflow = true;
8940         }
8941       )
8942       if (simulate_overflow || !_work_queue->push(obj)) {
8943         _collector->par_push_on_overflow_list(obj);
8944         _collector->_par_kac_ovflw++;
8945       }
8946     } // Else another thread got there already
8947   }
8948 }
8949 
8950 void CMSInnerParMarkAndPushClosure::do_oop(oop* p)       { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8951 void CMSInnerParMarkAndPushClosure::do_oop(narrowOop* p) { CMSInnerParMarkAndPushClosure::do_oop_work(p); }
8952 
8953 //////////////////////////////////////////////////////////////////
8954 //  CMSExpansionCause                /////////////////////////////
8955 //////////////////////////////////////////////////////////////////
8956 const char* CMSExpansionCause::to_string(CMSExpansionCause::Cause cause) {
8957   switch (cause) {
8958     case _no_expansion:
8959       return "No expansion";
8960     case _satisfy_free_ratio:
8961       return "Free ratio";
8962     case _satisfy_promotion:
8963       return "Satisfy promotion";
8964     case _satisfy_allocation:
8965       return "allocation";
8966     case _allocate_par_lab:
8967       return "Par LAB";
8968     case _allocate_par_spooling_space:
8969       return "Par Spooling Space";
8970     case _adaptive_size_policy:
8971       return "Ergonomics";
8972     default:
8973       return "unknown";
8974   }
8975 }
8976 
8977 void CMSDrainMarkingStackClosure::do_void() {
8978   // the max number to take from overflow list at a time
8979   const size_t num = _mark_stack->capacity()/4;
8980   assert(!_concurrent_precleaning || _collector->overflow_list_is_empty(),
8981          "Overflow list should be NULL during concurrent phases");
8982   while (!_mark_stack->isEmpty() ||
8983          // if stack is empty, check the overflow list
8984          _collector->take_from_overflow_list(num, _mark_stack)) {
8985     oop obj = _mark_stack->pop();
8986     HeapWord* addr = (HeapWord*)obj;
8987     assert(_span.contains(addr), "Should be within span");
8988     assert(_bit_map->isMarked(addr), "Should be marked");
8989     assert(obj->is_oop(), "Should be an oop");
8990     obj->oop_iterate(_keep_alive);
8991   }
8992 }
8993 
8994 void CMSParDrainMarkingStackClosure::do_void() {
8995   // drain queue
8996   trim_queue(0);
8997 }
8998 
8999 // Trim our work_queue so its length is below max at return
9000 void CMSParDrainMarkingStackClosure::trim_queue(uint max) {
9001   while (_work_queue->size() > max) {
9002     oop new_oop;
9003     if (_work_queue->pop_local(new_oop)) {
9004       assert(new_oop->is_oop(), "Expected an oop");
9005       assert(_bit_map->isMarked((HeapWord*)new_oop),
9006              "no white objects on this stack!");
9007       assert(_span.contains((HeapWord*)new_oop), "Out of bounds oop");
9008       // iterate over the oops in this oop, marking and pushing
9009       // the ones in CMS heap (i.e. in _span).
9010       new_oop->oop_iterate(&_mark_and_push);
9011     }
9012   }
9013 }
9014 
9015 ////////////////////////////////////////////////////////////////////
9016 // Support for Marking Stack Overflow list handling and related code
9017 ////////////////////////////////////////////////////////////////////
9018 // Much of the following code is similar in shape and spirit to the
9019 // code used in ParNewGC. We should try and share that code
9020 // as much as possible in the future.
9021 
9022 #ifndef PRODUCT
9023 // Debugging support for CMSStackOverflowALot
9024 
9025 // It's OK to call this multi-threaded;  the worst thing
9026 // that can happen is that we'll get a bunch of closely
9027 // spaced simulated oveflows, but that's OK, in fact
9028 // probably good as it would exercise the overflow code
9029 // under contention.
9030 bool CMSCollector::simulate_overflow() {
9031   if (_overflow_counter-- <= 0) { // just being defensive
9032     _overflow_counter = CMSMarkStackOverflowInterval;
9033     return true;
9034   } else {
9035     return false;
9036   }
9037 }
9038 
9039 bool CMSCollector::par_simulate_overflow() {
9040   return simulate_overflow();
9041 }
9042 #endif
9043 
9044 // Single-threaded
9045 bool CMSCollector::take_from_overflow_list(size_t num, CMSMarkStack* stack) {
9046   assert(stack->isEmpty(), "Expected precondition");
9047   assert(stack->capacity() > num, "Shouldn't bite more than can chew");
9048   size_t i = num;
9049   oop  cur = _overflow_list;
9050   const markOop proto = markOopDesc::prototype();
9051   NOT_PRODUCT(ssize_t n = 0;)
9052   for (oop next; i > 0 && cur != NULL; cur = next, i--) {
9053     next = oop(cur->mark());
9054     cur->set_mark(proto);   // until proven otherwise
9055     assert(cur->is_oop(), "Should be an oop");
9056     bool res = stack->push(cur);
9057     assert(res, "Bit off more than can chew?");
9058     NOT_PRODUCT(n++;)
9059   }
9060   _overflow_list = cur;
9061 #ifndef PRODUCT
9062   assert(_num_par_pushes >= n, "Too many pops?");
9063   _num_par_pushes -=n;
9064 #endif
9065   return !stack->isEmpty();
9066 }
9067 
9068 #define BUSY  (cast_to_oop<intptr_t>(0x1aff1aff))
9069 // (MT-safe) Get a prefix of at most "num" from the list.
9070 // The overflow list is chained through the mark word of
9071 // each object in the list. We fetch the entire list,
9072 // break off a prefix of the right size and return the
9073 // remainder. If other threads try to take objects from
9074 // the overflow list at that time, they will wait for
9075 // some time to see if data becomes available. If (and
9076 // only if) another thread places one or more object(s)
9077 // on the global list before we have returned the suffix
9078 // to the global list, we will walk down our local list
9079 // to find its end and append the global list to
9080 // our suffix before returning it. This suffix walk can
9081 // prove to be expensive (quadratic in the amount of traffic)
9082 // when there are many objects in the overflow list and
9083 // there is much producer-consumer contention on the list.
9084 // *NOTE*: The overflow list manipulation code here and
9085 // in ParNewGeneration:: are very similar in shape,
9086 // except that in the ParNew case we use the old (from/eden)
9087 // copy of the object to thread the list via its klass word.
9088 // Because of the common code, if you make any changes in
9089 // the code below, please check the ParNew version to see if
9090 // similar changes might be needed.
9091 // CR 6797058 has been filed to consolidate the common code.
9092 bool CMSCollector::par_take_from_overflow_list(size_t num,
9093                                                OopTaskQueue* work_q,
9094                                                int no_of_gc_threads) {
9095   assert(work_q->size() == 0, "First empty local work queue");
9096   assert(num < work_q->max_elems(), "Can't bite more than we can chew");
9097   if (_overflow_list == NULL) {
9098     return false;
9099   }
9100   // Grab the entire list; we'll put back a suffix
9101   oop prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9102   Thread* tid = Thread::current();
9103   // Before "no_of_gc_threads" was introduced CMSOverflowSpinCount was
9104   // set to ParallelGCThreads.
9105   size_t CMSOverflowSpinCount = (size_t) no_of_gc_threads; // was ParallelGCThreads;
9106   size_t sleep_time_millis = MAX2((size_t)1, num/100);
9107   // If the list is busy, we spin for a short while,
9108   // sleeping between attempts to get the list.
9109   for (size_t spin = 0; prefix == BUSY && spin < CMSOverflowSpinCount; spin++) {
9110     os::sleep(tid, sleep_time_millis, false);
9111     if (_overflow_list == NULL) {
9112       // Nothing left to take
9113       return false;
9114     } else if (_overflow_list != BUSY) {
9115       // Try and grab the prefix
9116       prefix = cast_to_oop(Atomic::xchg_ptr(BUSY, &_overflow_list));
9117     }
9118   }
9119   // If the list was found to be empty, or we spun long
9120   // enough, we give up and return empty-handed. If we leave
9121   // the list in the BUSY state below, it must be the case that
9122   // some other thread holds the overflow list and will set it
9123   // to a non-BUSY state in the future.
9124   if (prefix == NULL || prefix == BUSY) {
9125      // Nothing to take or waited long enough
9126      if (prefix == NULL) {
9127        // Write back the NULL in case we overwrote it with BUSY above
9128        // and it is still the same value.
9129        (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9130      }
9131      return false;
9132   }
9133   assert(prefix != NULL && prefix != BUSY, "Error");
9134   size_t i = num;
9135   oop cur = prefix;
9136   // Walk down the first "num" objects, unless we reach the end.
9137   for (; i > 1 && cur->mark() != NULL; cur = oop(cur->mark()), i--);
9138   if (cur->mark() == NULL) {
9139     // We have "num" or fewer elements in the list, so there
9140     // is nothing to return to the global list.
9141     // Write back the NULL in lieu of the BUSY we wrote
9142     // above, if it is still the same value.
9143     if (_overflow_list == BUSY) {
9144       (void) Atomic::cmpxchg_ptr(NULL, &_overflow_list, BUSY);
9145     }
9146   } else {
9147     // Chop off the suffix and rerturn it to the global list.
9148     assert(cur->mark() != BUSY, "Error");
9149     oop suffix_head = cur->mark(); // suffix will be put back on global list
9150     cur->set_mark(NULL);           // break off suffix
9151     // It's possible that the list is still in the empty(busy) state
9152     // we left it in a short while ago; in that case we may be
9153     // able to place back the suffix without incurring the cost
9154     // of a walk down the list.
9155     oop observed_overflow_list = _overflow_list;
9156     oop cur_overflow_list = observed_overflow_list;
9157     bool attached = false;
9158     while (observed_overflow_list == BUSY || observed_overflow_list == NULL) {
9159       observed_overflow_list =
9160         (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9161       if (cur_overflow_list == observed_overflow_list) {
9162         attached = true;
9163         break;
9164       } else cur_overflow_list = observed_overflow_list;
9165     }
9166     if (!attached) {
9167       // Too bad, someone else sneaked in (at least) an element; we'll need
9168       // to do a splice. Find tail of suffix so we can prepend suffix to global
9169       // list.
9170       for (cur = suffix_head; cur->mark() != NULL; cur = (oop)(cur->mark()));
9171       oop suffix_tail = cur;
9172       assert(suffix_tail != NULL && suffix_tail->mark() == NULL,
9173              "Tautology");
9174       observed_overflow_list = _overflow_list;
9175       do {
9176         cur_overflow_list = observed_overflow_list;
9177         if (cur_overflow_list != BUSY) {
9178           // Do the splice ...
9179           suffix_tail->set_mark(markOop(cur_overflow_list));
9180         } else { // cur_overflow_list == BUSY
9181           suffix_tail->set_mark(NULL);
9182         }
9183         // ... and try to place spliced list back on overflow_list ...
9184         observed_overflow_list =
9185           (oop) Atomic::cmpxchg_ptr(suffix_head, &_overflow_list, cur_overflow_list);
9186       } while (cur_overflow_list != observed_overflow_list);
9187       // ... until we have succeeded in doing so.
9188     }
9189   }
9190 
9191   // Push the prefix elements on work_q
9192   assert(prefix != NULL, "control point invariant");
9193   const markOop proto = markOopDesc::prototype();
9194   oop next;
9195   NOT_PRODUCT(ssize_t n = 0;)
9196   for (cur = prefix; cur != NULL; cur = next) {
9197     next = oop(cur->mark());
9198     cur->set_mark(proto);   // until proven otherwise
9199     assert(cur->is_oop(), "Should be an oop");
9200     bool res = work_q->push(cur);
9201     assert(res, "Bit off more than we can chew?");
9202     NOT_PRODUCT(n++;)
9203   }
9204 #ifndef PRODUCT
9205   assert(_num_par_pushes >= n, "Too many pops?");
9206   Atomic::add_ptr(-(intptr_t)n, &_num_par_pushes);
9207 #endif
9208   return true;
9209 }
9210 
9211 // Single-threaded
9212 void CMSCollector::push_on_overflow_list(oop p) {
9213   NOT_PRODUCT(_num_par_pushes++;)
9214   assert(p->is_oop(), "Not an oop");
9215   preserve_mark_if_necessary(p);
9216   p->set_mark((markOop)_overflow_list);
9217   _overflow_list = p;
9218 }
9219 
9220 // Multi-threaded; use CAS to prepend to overflow list
9221 void CMSCollector::par_push_on_overflow_list(oop p) {
9222   NOT_PRODUCT(Atomic::inc_ptr(&_num_par_pushes);)
9223   assert(p->is_oop(), "Not an oop");
9224   par_preserve_mark_if_necessary(p);
9225   oop observed_overflow_list = _overflow_list;
9226   oop cur_overflow_list;
9227   do {
9228     cur_overflow_list = observed_overflow_list;
9229     if (cur_overflow_list != BUSY) {
9230       p->set_mark(markOop(cur_overflow_list));
9231     } else {
9232       p->set_mark(NULL);
9233     }
9234     observed_overflow_list =
9235       (oop) Atomic::cmpxchg_ptr(p, &_overflow_list, cur_overflow_list);
9236   } while (cur_overflow_list != observed_overflow_list);
9237 }
9238 #undef BUSY
9239 
9240 // Single threaded
9241 // General Note on GrowableArray: pushes may silently fail
9242 // because we are (temporarily) out of C-heap for expanding
9243 // the stack. The problem is quite ubiquitous and affects
9244 // a lot of code in the JVM. The prudent thing for GrowableArray
9245 // to do (for now) is to exit with an error. However, that may
9246 // be too draconian in some cases because the caller may be
9247 // able to recover without much harm. For such cases, we
9248 // should probably introduce a "soft_push" method which returns
9249 // an indication of success or failure with the assumption that
9250 // the caller may be able to recover from a failure; code in
9251 // the VM can then be changed, incrementally, to deal with such
9252 // failures where possible, thus, incrementally hardening the VM
9253 // in such low resource situations.
9254 void CMSCollector::preserve_mark_work(oop p, markOop m) {
9255   _preserved_oop_stack.push(p);
9256   _preserved_mark_stack.push(m);
9257   assert(m == p->mark(), "Mark word changed");
9258   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9259          "bijection");
9260 }
9261 
9262 // Single threaded
9263 void CMSCollector::preserve_mark_if_necessary(oop p) {
9264   markOop m = p->mark();
9265   if (m->must_be_preserved(p)) {
9266     preserve_mark_work(p, m);
9267   }
9268 }
9269 
9270 void CMSCollector::par_preserve_mark_if_necessary(oop p) {
9271   markOop m = p->mark();
9272   if (m->must_be_preserved(p)) {
9273     MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
9274     // Even though we read the mark word without holding
9275     // the lock, we are assured that it will not change
9276     // because we "own" this oop, so no other thread can
9277     // be trying to push it on the overflow list; see
9278     // the assertion in preserve_mark_work() that checks
9279     // that m == p->mark().
9280     preserve_mark_work(p, m);
9281   }
9282 }
9283 
9284 // We should be able to do this multi-threaded,
9285 // a chunk of stack being a task (this is
9286 // correct because each oop only ever appears
9287 // once in the overflow list. However, it's
9288 // not very easy to completely overlap this with
9289 // other operations, so will generally not be done
9290 // until all work's been completed. Because we
9291 // expect the preserved oop stack (set) to be small,
9292 // it's probably fine to do this single-threaded.
9293 // We can explore cleverer concurrent/overlapped/parallel
9294 // processing of preserved marks if we feel the
9295 // need for this in the future. Stack overflow should
9296 // be so rare in practice and, when it happens, its
9297 // effect on performance so great that this will
9298 // likely just be in the noise anyway.
9299 void CMSCollector::restore_preserved_marks_if_any() {
9300   assert(SafepointSynchronize::is_at_safepoint(),
9301          "world should be stopped");
9302   assert(Thread::current()->is_ConcurrentGC_thread() ||
9303          Thread::current()->is_VM_thread(),
9304          "should be single-threaded");
9305   assert(_preserved_oop_stack.size() == _preserved_mark_stack.size(),
9306          "bijection");
9307 
9308   while (!_preserved_oop_stack.is_empty()) {
9309     oop p = _preserved_oop_stack.pop();
9310     assert(p->is_oop(), "Should be an oop");
9311     assert(_span.contains(p), "oop should be in _span");
9312     assert(p->mark() == markOopDesc::prototype(),
9313            "Set when taken from overflow list");
9314     markOop m = _preserved_mark_stack.pop();
9315     p->set_mark(m);
9316   }
9317   assert(_preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty(),
9318          "stacks were cleared above");
9319 }
9320 
9321 #ifndef PRODUCT
9322 bool CMSCollector::no_preserved_marks() const {
9323   return _preserved_mark_stack.is_empty() && _preserved_oop_stack.is_empty();
9324 }
9325 #endif
9326 
9327 CMSAdaptiveSizePolicy* ASConcurrentMarkSweepGeneration::cms_size_policy() const
9328 {
9329   GenCollectedHeap* gch = (GenCollectedHeap*) GenCollectedHeap::heap();
9330   CMSAdaptiveSizePolicy* size_policy =
9331     (CMSAdaptiveSizePolicy*) gch->gen_policy()->size_policy();
9332   assert(size_policy->is_gc_cms_adaptive_size_policy(),
9333     "Wrong type for size policy");
9334   return size_policy;
9335 }
9336 
9337 void ASConcurrentMarkSweepGeneration::resize(size_t cur_promo_size,
9338                                            size_t desired_promo_size) {
9339   if (cur_promo_size < desired_promo_size) {
9340     size_t expand_bytes = desired_promo_size - cur_promo_size;
9341     if (PrintAdaptiveSizePolicy && Verbose) {
9342       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9343         "Expanding tenured generation by " SIZE_FORMAT " (bytes)",
9344         expand_bytes);
9345     }
9346     expand(expand_bytes,
9347            MinHeapDeltaBytes,
9348            CMSExpansionCause::_adaptive_size_policy);
9349   } else if (desired_promo_size < cur_promo_size) {
9350     size_t shrink_bytes = cur_promo_size - desired_promo_size;
9351     if (PrintAdaptiveSizePolicy && Verbose) {
9352       gclog_or_tty->print_cr(" ASConcurrentMarkSweepGeneration::resize "
9353         "Shrinking tenured generation by " SIZE_FORMAT " (bytes)",
9354         shrink_bytes);
9355     }
9356     shrink(shrink_bytes);
9357   }
9358 }
9359 
9360 CMSGCAdaptivePolicyCounters* ASConcurrentMarkSweepGeneration::gc_adaptive_policy_counters() {
9361   GenCollectedHeap* gch = GenCollectedHeap::heap();
9362   CMSGCAdaptivePolicyCounters* counters =
9363     (CMSGCAdaptivePolicyCounters*) gch->collector_policy()->counters();
9364   assert(counters->kind() == GCPolicyCounters::CMSGCAdaptivePolicyCountersKind,
9365     "Wrong kind of counters");
9366   return counters;
9367 }
9368 
9369 
9370 void ASConcurrentMarkSweepGeneration::update_counters() {
9371   if (UsePerfData) {
9372     _space_counters->update_all();
9373     _gen_counters->update_all();
9374     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9375     GenCollectedHeap* gch = GenCollectedHeap::heap();
9376     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9377     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9378       "Wrong gc statistics type");
9379     counters->update_counters(gc_stats_l);
9380   }
9381 }
9382 
9383 void ASConcurrentMarkSweepGeneration::update_counters(size_t used) {
9384   if (UsePerfData) {
9385     _space_counters->update_used(used);
9386     _space_counters->update_capacity();
9387     _gen_counters->update_all();
9388 
9389     CMSGCAdaptivePolicyCounters* counters = gc_adaptive_policy_counters();
9390     GenCollectedHeap* gch = GenCollectedHeap::heap();
9391     CMSGCStats* gc_stats_l = (CMSGCStats*) gc_stats();
9392     assert(gc_stats_l->kind() == GCStats::CMSGCStatsKind,
9393       "Wrong gc statistics type");
9394     counters->update_counters(gc_stats_l);
9395   }
9396 }
9397 
9398 void ASConcurrentMarkSweepGeneration::shrink_by(size_t desired_bytes) {
9399   assert_locked_or_safepoint(Heap_lock);
9400   assert_lock_strong(freelistLock());
9401   HeapWord* old_end = _cmsSpace->end();
9402   HeapWord* unallocated_start = _cmsSpace->unallocated_block();
9403   assert(old_end >= unallocated_start, "Miscalculation of unallocated_start");
9404   FreeChunk* chunk_at_end = find_chunk_at_end();
9405   if (chunk_at_end == NULL) {
9406     // No room to shrink
9407     if (PrintGCDetails && Verbose) {
9408       gclog_or_tty->print_cr("No room to shrink: old_end  "
9409         PTR_FORMAT "  unallocated_start  " PTR_FORMAT
9410         " chunk_at_end  " PTR_FORMAT,
9411         old_end, unallocated_start, chunk_at_end);
9412     }
9413     return;
9414   } else {
9415 
9416     // Find the chunk at the end of the space and determine
9417     // how much it can be shrunk.
9418     size_t shrinkable_size_in_bytes = chunk_at_end->size();
9419     size_t aligned_shrinkable_size_in_bytes =
9420       align_size_down(shrinkable_size_in_bytes, os::vm_page_size());
9421     assert(unallocated_start <= (HeapWord*) chunk_at_end->end(),
9422       "Inconsistent chunk at end of space");
9423     size_t bytes = MIN2(desired_bytes, aligned_shrinkable_size_in_bytes);
9424     size_t word_size_before = heap_word_size(_virtual_space.committed_size());
9425 
9426     // Shrink the underlying space
9427     _virtual_space.shrink_by(bytes);
9428     if (PrintGCDetails && Verbose) {
9429       gclog_or_tty->print_cr("ConcurrentMarkSweepGeneration::shrink_by:"
9430         " desired_bytes " SIZE_FORMAT
9431         " shrinkable_size_in_bytes " SIZE_FORMAT
9432         " aligned_shrinkable_size_in_bytes " SIZE_FORMAT
9433         "  bytes  " SIZE_FORMAT,
9434         desired_bytes, shrinkable_size_in_bytes,
9435         aligned_shrinkable_size_in_bytes, bytes);
9436       gclog_or_tty->print_cr("          old_end  " SIZE_FORMAT
9437         "  unallocated_start  " SIZE_FORMAT,
9438         old_end, unallocated_start);
9439     }
9440 
9441     // If the space did shrink (shrinking is not guaranteed),
9442     // shrink the chunk at the end by the appropriate amount.
9443     if (((HeapWord*)_virtual_space.high()) < old_end) {
9444       size_t new_word_size =
9445         heap_word_size(_virtual_space.committed_size());
9446 
9447       // Have to remove the chunk from the dictionary because it is changing
9448       // size and might be someplace elsewhere in the dictionary.
9449 
9450       // Get the chunk at end, shrink it, and put it
9451       // back.
9452       _cmsSpace->removeChunkFromDictionary(chunk_at_end);
9453       size_t word_size_change = word_size_before - new_word_size;
9454       size_t chunk_at_end_old_size = chunk_at_end->size();
9455       assert(chunk_at_end_old_size >= word_size_change,
9456         "Shrink is too large");
9457       chunk_at_end->set_size(chunk_at_end_old_size -
9458                           word_size_change);
9459       _cmsSpace->freed((HeapWord*) chunk_at_end->end(),
9460         word_size_change);
9461 
9462       _cmsSpace->returnChunkToDictionary(chunk_at_end);
9463 
9464       MemRegion mr(_cmsSpace->bottom(), new_word_size);
9465       _bts->resize(new_word_size);  // resize the block offset shared array
9466       Universe::heap()->barrier_set()->resize_covered_region(mr);
9467       _cmsSpace->assert_locked();
9468       _cmsSpace->set_end((HeapWord*)_virtual_space.high());
9469 
9470       NOT_PRODUCT(_cmsSpace->dictionary()->verify());
9471 
9472       // update the space and generation capacity counters
9473       if (UsePerfData) {
9474         _space_counters->update_capacity();
9475         _gen_counters->update_all();
9476       }
9477 
9478       if (Verbose && PrintGCDetails) {
9479         size_t new_mem_size = _virtual_space.committed_size();
9480         size_t old_mem_size = new_mem_size + bytes;
9481         gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K",
9482                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
9483       }
9484     }
9485 
9486     assert(_cmsSpace->unallocated_block() <= _cmsSpace->end(),
9487       "Inconsistency at end of space");
9488     assert(chunk_at_end->end() == (uintptr_t*) _cmsSpace->end(),
9489       "Shrinking is inconsistent");
9490     return;
9491   }
9492 }
9493 // Transfer some number of overflown objects to usual marking
9494 // stack. Return true if some objects were transferred.
9495 bool MarkRefsIntoAndScanClosure::take_from_overflow_list() {
9496   size_t num = MIN2((size_t)(_mark_stack->capacity() - _mark_stack->length())/4,
9497                     (size_t)ParGCDesiredObjsFromOverflowList);
9498 
9499   bool res = _collector->take_from_overflow_list(num, _mark_stack);
9500   assert(_collector->overflow_list_is_empty() || res,
9501          "If list is not empty, we should have taken something");
9502   assert(!res || !_mark_stack->isEmpty(),
9503          "If we took something, it should now be on our stack");
9504   return res;
9505 }
9506 
9507 size_t MarkDeadObjectsClosure::do_blk(HeapWord* addr) {
9508   size_t res = _sp->block_size_no_stall(addr, _collector);
9509   if (_sp->block_is_obj(addr)) {
9510     if (_live_bit_map->isMarked(addr)) {
9511       // It can't have been dead in a previous cycle
9512       guarantee(!_dead_bit_map->isMarked(addr), "No resurrection!");
9513     } else {
9514       _dead_bit_map->mark(addr);      // mark the dead object
9515     }
9516   }
9517   // Could be 0, if the block size could not be computed without stalling.
9518   return res;
9519 }
9520 
9521 TraceCMSMemoryManagerStats::TraceCMSMemoryManagerStats(CMSCollector::CollectorState phase, GCCause::Cause cause): TraceMemoryManagerStats() {
9522 
9523   switch (phase) {
9524     case CMSCollector::InitialMarking:
9525       initialize(true  /* fullGC */ ,
9526                  cause /* cause of the GC */,
9527                  true  /* recordGCBeginTime */,
9528                  true  /* recordPreGCUsage */,
9529                  false /* recordPeakUsage */,
9530                  false /* recordPostGCusage */,
9531                  true  /* recordAccumulatedGCTime */,
9532                  false /* recordGCEndTime */,
9533                  false /* countCollection */  );
9534       break;
9535 
9536     case CMSCollector::FinalMarking:
9537       initialize(true  /* fullGC */ ,
9538                  cause /* cause of the GC */,
9539                  false /* recordGCBeginTime */,
9540                  false /* recordPreGCUsage */,
9541                  false /* recordPeakUsage */,
9542                  false /* recordPostGCusage */,
9543                  true  /* recordAccumulatedGCTime */,
9544                  false /* recordGCEndTime */,
9545                  false /* countCollection */  );
9546       break;
9547 
9548     case CMSCollector::Sweeping:
9549       initialize(true  /* fullGC */ ,
9550                  cause /* cause of the GC */,
9551                  false /* recordGCBeginTime */,
9552                  false /* recordPreGCUsage */,
9553                  true  /* recordPeakUsage */,
9554                  true  /* recordPostGCusage */,
9555                  false /* recordAccumulatedGCTime */,
9556                  true  /* recordGCEndTime */,
9557                  true  /* countCollection */  );
9558       break;
9559 
9560     default:
9561       ShouldNotReachHere();
9562   }
9563 }