1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/gcTimer.hpp"
  27 #include "gc_implementation/shared/gcTrace.hpp"
  28 #include "gc_implementation/shared/spaceDecorator.hpp"
  29 #include "gc_interface/collectedHeap.inline.hpp"
  30 #include "memory/allocation.inline.hpp"
  31 #include "memory/blockOffsetTable.inline.hpp"
  32 #include "memory/cardTableRS.hpp"
  33 #include "memory/gcLocker.inline.hpp"
  34 #include "memory/genCollectedHeap.hpp"
  35 #include "memory/genMarkSweep.hpp"
  36 #include "memory/genOopClosures.hpp"
  37 #include "memory/genOopClosures.inline.hpp"
  38 #include "memory/generation.hpp"
  39 #include "memory/generation.inline.hpp"
  40 #include "memory/space.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/java.hpp"
  43 #include "utilities/copy.hpp"
  44 #include "utilities/events.hpp"
  45 
  46 Generation::Generation(ReservedSpace rs, size_t initial_size, int level) :
  47   _level(level),
  48   _ref_processor(NULL) {
  49   if (!_virtual_space.initialize(rs, initial_size)) {
  50     vm_exit_during_initialization("Could not reserve enough space for "
  51                     "object heap");
  52   }
  53   // Mangle all of the the initial generation.
  54   if (ZapUnusedHeapArea) {
  55     MemRegion mangle_region((HeapWord*)_virtual_space.low(),
  56       (HeapWord*)_virtual_space.high());
  57     SpaceMangler::mangle_region(mangle_region);
  58   }
  59   _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(),
  60           (HeapWord*)_virtual_space.high_boundary());
  61 }
  62 
  63 GenerationSpec* Generation::spec() {
  64   GenCollectedHeap* gch = GenCollectedHeap::heap();
  65   assert(0 <= level() && level() < gch->_n_gens, "Bad gen level");
  66   return gch->_gen_specs[level()];
  67 }
  68 
  69 size_t Generation::max_capacity() const {
  70   return reserved().byte_size();
  71 }
  72 
  73 void Generation::print_heap_change(size_t prev_used) const {
  74   if (PrintGCDetails && Verbose) {
  75     gclog_or_tty->print(" "  SIZE_FORMAT
  76                         "->" SIZE_FORMAT
  77                         "("  SIZE_FORMAT ")",
  78                         prev_used, used(), capacity());
  79   } else {
  80     gclog_or_tty->print(" "  SIZE_FORMAT "K"
  81                         "->" SIZE_FORMAT "K"
  82                         "("  SIZE_FORMAT "K)",
  83                         prev_used / K, used() / K, capacity() / K);
  84   }
  85 }
  86 
  87 // By default we get a single threaded default reference processor;
  88 // generations needing multi-threaded refs processing or discovery override this method.
  89 void Generation::ref_processor_init() {
  90   assert(_ref_processor == NULL, "a reference processor already exists");
  91   assert(!_reserved.is_empty(), "empty generation?");
  92   _ref_processor = new ReferenceProcessor(_reserved);    // a vanilla reference processor
  93   if (_ref_processor == NULL) {
  94     vm_exit_during_initialization("Could not allocate ReferenceProcessor object");
  95   }
  96 }
  97 
  98 void Generation::print() const { print_on(tty); }
  99 
 100 void Generation::print_on(outputStream* st)  const {
 101   st->print(" %-20s", name());
 102   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
 103              capacity()/K, used()/K);
 104   st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
 105               _virtual_space.low_boundary(),
 106               _virtual_space.high(),
 107               _virtual_space.high_boundary());
 108 }
 109 
 110 void Generation::print_summary_info() { print_summary_info_on(tty); }
 111 
 112 void Generation::print_summary_info_on(outputStream* st) {
 113   StatRecord* sr = stat_record();
 114   double time = sr->accumulated_time.seconds();
 115   st->print_cr("[Accumulated GC generation %d time %3.7f secs, "
 116                "%d GC's, avg GC time %3.7f]",
 117                level(), time, sr->invocations,
 118                sr->invocations > 0 ? time / sr->invocations : 0.0);
 119 }
 120 
 121 // Utility iterator classes
 122 
 123 class GenerationIsInReservedClosure : public SpaceClosure {
 124  public:
 125   const void* _p;
 126   Space* sp;
 127   virtual void do_space(Space* s) {
 128     if (sp == NULL) {
 129       if (s->is_in_reserved(_p)) sp = s;
 130     }
 131   }
 132   GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {}
 133 };
 134 
 135 class GenerationIsInClosure : public SpaceClosure {
 136  public:
 137   const void* _p;
 138   Space* sp;
 139   virtual void do_space(Space* s) {
 140     if (sp == NULL) {
 141       if (s->is_in(_p)) sp = s;
 142     }
 143   }
 144   GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {}
 145 };
 146 
 147 bool Generation::is_in(const void* p) const {
 148   GenerationIsInClosure blk(p);
 149   ((Generation*)this)->space_iterate(&blk);
 150   return blk.sp != NULL;
 151 }
 152 
 153 DefNewGeneration* Generation::as_DefNewGeneration() {
 154   assert((kind() == Generation::DefNew) ||
 155          (kind() == Generation::ParNew) ||
 156          (kind() == Generation::ASParNew),
 157     "Wrong youngest generation type");
 158   return (DefNewGeneration*) this;
 159 }
 160 
 161 Generation* Generation::next_gen() const {
 162   GenCollectedHeap* gch = GenCollectedHeap::heap();
 163   int next = level() + 1;
 164   if (next < gch->_n_gens) {
 165     return gch->_gens[next];
 166   } else {
 167     return NULL;
 168   }
 169 }
 170 
 171 size_t Generation::max_contiguous_available() const {
 172   // The largest number of contiguous free words in this or any higher generation.
 173   size_t max = 0;
 174   for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) {
 175     size_t avail = gen->contiguous_available();
 176     if (avail > max) {
 177       max = avail;
 178     }
 179   }
 180   return max;
 181 }
 182 
 183 bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const {
 184   size_t available = max_contiguous_available();
 185   bool   res = (available >= max_promotion_in_bytes);
 186   if (PrintGC && Verbose) {
 187     gclog_or_tty->print_cr(
 188       "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")",
 189       res? "":" not", available, res? ">=":"<",
 190       max_promotion_in_bytes);
 191   }
 192   return res;
 193 }
 194 
 195 // Ignores "ref" and calls allocate().
 196 oop Generation::promote(oop obj, size_t obj_size) {
 197   assert(obj_size == (size_t)obj->size(), "bad obj_size passed in");
 198 
 199 #ifndef PRODUCT
 200   if (Universe::heap()->promotion_should_fail()) {
 201     return NULL;
 202   }
 203 #endif  // #ifndef PRODUCT
 204 
 205   HeapWord* result = allocate(obj_size, false);
 206   if (result != NULL) {
 207     Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size);
 208     return oop(result);
 209   } else {
 210     GenCollectedHeap* gch = GenCollectedHeap::heap();
 211     return gch->handle_failed_promotion(this, obj, obj_size);
 212   }
 213 }
 214 
 215 oop Generation::par_promote(int thread_num,
 216                             oop obj, markOop m, size_t word_sz) {
 217   // Could do a bad general impl here that gets a lock.  But no.
 218   ShouldNotCallThis();
 219   return NULL;
 220 }
 221 
 222 void Generation::par_promote_alloc_undo(int thread_num,
 223                                         HeapWord* obj, size_t word_sz) {
 224   // Could do a bad general impl here that gets a lock.  But no.
 225   guarantee(false, "No good general implementation.");
 226 }
 227 
 228 Space* Generation::space_containing(const void* p) const {
 229   GenerationIsInReservedClosure blk(p);
 230   // Cast away const
 231   ((Generation*)this)->space_iterate(&blk);
 232   return blk.sp;
 233 }
 234 
 235 // Some of these are mediocre general implementations.  Should be
 236 // overridden to get better performance.
 237 
 238 class GenerationBlockStartClosure : public SpaceClosure {
 239  public:
 240   const void* _p;
 241   HeapWord* _start;
 242   virtual void do_space(Space* s) {
 243     if (_start == NULL && s->is_in_reserved(_p)) {
 244       _start = s->block_start(_p);
 245     }
 246   }
 247   GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; }
 248 };
 249 
 250 HeapWord* Generation::block_start(const void* p) const {
 251   GenerationBlockStartClosure blk(p);
 252   // Cast away const
 253   ((Generation*)this)->space_iterate(&blk);
 254   return blk._start;
 255 }
 256 
 257 class GenerationBlockSizeClosure : public SpaceClosure {
 258  public:
 259   const HeapWord* _p;
 260   size_t size;
 261   virtual void do_space(Space* s) {
 262     if (size == 0 && s->is_in_reserved(_p)) {
 263       size = s->block_size(_p);
 264     }
 265   }
 266   GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; }
 267 };
 268 
 269 size_t Generation::block_size(const HeapWord* p) const {
 270   GenerationBlockSizeClosure blk(p);
 271   // Cast away const
 272   ((Generation*)this)->space_iterate(&blk);
 273   assert(blk.size > 0, "seems reasonable");
 274   return blk.size;
 275 }
 276 
 277 class GenerationBlockIsObjClosure : public SpaceClosure {
 278  public:
 279   const HeapWord* _p;
 280   bool is_obj;
 281   virtual void do_space(Space* s) {
 282     if (!is_obj && s->is_in_reserved(_p)) {
 283       is_obj |= s->block_is_obj(_p);
 284     }
 285   }
 286   GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; }
 287 };
 288 
 289 bool Generation::block_is_obj(const HeapWord* p) const {
 290   GenerationBlockIsObjClosure blk(p);
 291   // Cast away const
 292   ((Generation*)this)->space_iterate(&blk);
 293   return blk.is_obj;
 294 }
 295 
 296 class GenerationOopIterateClosure : public SpaceClosure {
 297  public:
 298   ExtendedOopClosure* cl;
 299   MemRegion mr;
 300   virtual void do_space(Space* s) {
 301     s->oop_iterate(mr, cl);
 302   }
 303   GenerationOopIterateClosure(ExtendedOopClosure* _cl, MemRegion _mr) :
 304     cl(_cl), mr(_mr) {}
 305 };
 306 
 307 void Generation::oop_iterate(ExtendedOopClosure* cl) {
 308   GenerationOopIterateClosure blk(cl, _reserved);
 309   space_iterate(&blk);
 310 }
 311 
 312 void Generation::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 313   GenerationOopIterateClosure blk(cl, mr);
 314   space_iterate(&blk);
 315 }
 316 
 317 void Generation::younger_refs_in_space_iterate(Space* sp,
 318                                                OopsInGenClosure* cl) {
 319   GenRemSet* rs = SharedHeap::heap()->rem_set();
 320   rs->younger_refs_in_space_iterate(sp, cl);
 321 }
 322 
 323 class GenerationObjIterateClosure : public SpaceClosure {
 324  private:
 325   ObjectClosure* _cl;
 326  public:
 327   virtual void do_space(Space* s) {
 328     s->object_iterate(_cl);
 329   }
 330   GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 331 };
 332 
 333 void Generation::object_iterate(ObjectClosure* cl) {
 334   GenerationObjIterateClosure blk(cl);
 335   space_iterate(&blk);
 336 }
 337 
 338 class GenerationSafeObjIterateClosure : public SpaceClosure {
 339  private:
 340   ObjectClosure* _cl;
 341  public:
 342   virtual void do_space(Space* s) {
 343     s->safe_object_iterate(_cl);
 344   }
 345   GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {}
 346 };
 347 
 348 void Generation::safe_object_iterate(ObjectClosure* cl) {
 349   GenerationSafeObjIterateClosure blk(cl);
 350   space_iterate(&blk);
 351 }
 352 
 353 void Generation::prepare_for_compaction(CompactPoint* cp) {
 354   // Generic implementation, can be specialized
 355   CompactibleSpace* space = first_compaction_space();
 356   while (space != NULL) {
 357     space->prepare_for_compaction(cp);
 358     space = space->next_compaction_space();
 359   }
 360 }
 361 
 362 class AdjustPointersClosure: public SpaceClosure {
 363  public:
 364   void do_space(Space* sp) {
 365     sp->adjust_pointers();
 366   }
 367 };
 368 
 369 void Generation::adjust_pointers() {
 370   // Note that this is done over all spaces, not just the compactible
 371   // ones.
 372   AdjustPointersClosure blk;
 373   space_iterate(&blk, true);
 374 }
 375 
 376 void Generation::compact() {
 377   CompactibleSpace* sp = first_compaction_space();
 378   while (sp != NULL) {
 379     sp->compact();
 380     sp = sp->next_compaction_space();
 381   }
 382 }
 383 
 384 CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size,
 385                                int level,
 386                                GenRemSet* remset) :
 387   Generation(rs, initial_byte_size, level), _rs(remset),
 388   _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(),
 389   _used_at_prologue()
 390 {
 391   HeapWord* start = (HeapWord*)rs.base();
 392   size_t reserved_byte_size = rs.size();
 393   assert((uintptr_t(start) & 3) == 0, "bad alignment");
 394   assert((reserved_byte_size & 3) == 0, "bad alignment");
 395   MemRegion reserved_mr(start, heap_word_size(reserved_byte_size));
 396   _bts = new BlockOffsetSharedArray(reserved_mr,
 397                                     heap_word_size(initial_byte_size));
 398   MemRegion committed_mr(start, heap_word_size(initial_byte_size));
 399   _rs->resize_covered_region(committed_mr);
 400   if (_bts == NULL)
 401     vm_exit_during_initialization("Could not allocate a BlockOffsetArray");
 402 
 403   // Verify that the start and end of this generation is the start of a card.
 404   // If this wasn't true, a single card could span more than on generation,
 405   // which would cause problems when we commit/uncommit memory, and when we
 406   // clear and dirty cards.
 407   guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned");
 408   if (reserved_mr.end() != Universe::heap()->reserved_region().end()) {
 409     // Don't check at the very end of the heap as we'll assert that we're probing off
 410     // the end if we try.
 411     guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned");
 412   }
 413   _min_heap_delta_bytes = MinHeapDeltaBytes;
 414   _capacity_at_prologue = initial_byte_size;
 415   _used_at_prologue = 0;
 416 }
 417 
 418 bool CardGeneration::expand(size_t bytes, size_t expand_bytes) {
 419   assert_locked_or_safepoint(Heap_lock);
 420   if (bytes == 0) {
 421     return true;  // That's what grow_by(0) would return
 422   }
 423   size_t aligned_bytes  = ReservedSpace::page_align_size_up(bytes);
 424   if (aligned_bytes == 0){
 425     // The alignment caused the number of bytes to wrap.  An expand_by(0) will
 426     // return true with the implication that an expansion was done when it
 427     // was not.  A call to expand implies a best effort to expand by "bytes"
 428     // but not a guarantee.  Align down to give a best effort.  This is likely
 429     // the most that the generation can expand since it has some capacity to
 430     // start with.
 431     aligned_bytes = ReservedSpace::page_align_size_down(bytes);
 432   }
 433   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
 434   bool success = false;
 435   if (aligned_expand_bytes > aligned_bytes) {
 436     success = grow_by(aligned_expand_bytes);
 437   }
 438   if (!success) {
 439     success = grow_by(aligned_bytes);
 440   }
 441   if (!success) {
 442     success = grow_to_reserved();
 443   }
 444   if (PrintGC && Verbose) {
 445     if (success && GC_locker::is_active_and_needs_gc()) {
 446       gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead");
 447     }
 448   }
 449 
 450   return success;
 451 }
 452 
 453 
 454 // No young generation references, clear this generation's cards.
 455 void CardGeneration::clear_remembered_set() {
 456   _rs->clear(reserved());
 457 }
 458 
 459 
 460 // Objects in this generation may have moved, invalidate this
 461 // generation's cards.
 462 void CardGeneration::invalidate_remembered_set() {
 463   _rs->invalidate(used_region());
 464 }
 465 
 466 
 467 void CardGeneration::compute_new_size() {
 468   assert(_shrink_factor <= 100, "invalid shrink factor");
 469   size_t current_shrink_factor = _shrink_factor;
 470   _shrink_factor = 0;
 471 
 472   // We don't have floating point command-line arguments
 473   // Note:  argument processing ensures that MinHeapFreeRatio < 100.
 474   const double minimum_free_percentage = MinHeapFreeRatio / 100.0;
 475   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
 476 
 477   // Compute some numbers about the state of the heap.
 478   const size_t used_after_gc = used();
 479   const size_t capacity_after_gc = capacity();
 480 
 481   const double min_tmp = used_after_gc / maximum_used_percentage;
 482   size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx));
 483   // Don't shrink less than the initial generation size
 484   minimum_desired_capacity = MAX2(minimum_desired_capacity,
 485                                   spec()->init_size());
 486   assert(used_after_gc <= minimum_desired_capacity, "sanity check");
 487 
 488   if (PrintGC && Verbose) {
 489     const size_t free_after_gc = free();
 490     const double free_percentage = ((double)free_after_gc) / capacity_after_gc;
 491     gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: ");
 492     gclog_or_tty->print_cr("  "
 493                   "  minimum_free_percentage: %6.2f"
 494                   "  maximum_used_percentage: %6.2f",
 495                   minimum_free_percentage,
 496                   maximum_used_percentage);
 497     gclog_or_tty->print_cr("  "
 498                   "   free_after_gc   : %6.1fK"
 499                   "   used_after_gc   : %6.1fK"
 500                   "   capacity_after_gc   : %6.1fK",
 501                   free_after_gc / (double) K,
 502                   used_after_gc / (double) K,
 503                   capacity_after_gc / (double) K);
 504     gclog_or_tty->print_cr("  "
 505                   "   free_percentage: %6.2f",
 506                   free_percentage);
 507   }
 508 
 509   if (capacity_after_gc < minimum_desired_capacity) {
 510     // If we have less free space than we want then expand
 511     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
 512     // Don't expand unless it's significant
 513     if (expand_bytes >= _min_heap_delta_bytes) {
 514       expand(expand_bytes, 0); // safe if expansion fails
 515     }
 516     if (PrintGC && Verbose) {
 517       gclog_or_tty->print_cr("    expanding:"
 518                     "  minimum_desired_capacity: %6.1fK"
 519                     "  expand_bytes: %6.1fK"
 520                     "  _min_heap_delta_bytes: %6.1fK",
 521                     minimum_desired_capacity / (double) K,
 522                     expand_bytes / (double) K,
 523                     _min_heap_delta_bytes / (double) K);
 524     }
 525     return;
 526   }
 527 
 528   // No expansion, now see if we want to shrink
 529   size_t shrink_bytes = 0;
 530   // We would never want to shrink more than this
 531   size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity;
 532 
 533   if (MaxHeapFreeRatio < 100) {
 534     const double maximum_free_percentage = MaxHeapFreeRatio / 100.0;
 535     const double minimum_used_percentage = 1.0 - maximum_free_percentage;
 536     const double max_tmp = used_after_gc / minimum_used_percentage;
 537     size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx));
 538     maximum_desired_capacity = MAX2(maximum_desired_capacity,
 539                                     spec()->init_size());
 540     if (PrintGC && Verbose) {
 541       gclog_or_tty->print_cr("  "
 542                              "  maximum_free_percentage: %6.2f"
 543                              "  minimum_used_percentage: %6.2f",
 544                              maximum_free_percentage,
 545                              minimum_used_percentage);
 546       gclog_or_tty->print_cr("  "
 547                              "  _capacity_at_prologue: %6.1fK"
 548                              "  minimum_desired_capacity: %6.1fK"
 549                              "  maximum_desired_capacity: %6.1fK",
 550                              _capacity_at_prologue / (double) K,
 551                              minimum_desired_capacity / (double) K,
 552                              maximum_desired_capacity / (double) K);
 553     }
 554     assert(minimum_desired_capacity <= maximum_desired_capacity,
 555            "sanity check");
 556 
 557     if (capacity_after_gc > maximum_desired_capacity) {
 558       // Capacity too large, compute shrinking size
 559       shrink_bytes = capacity_after_gc - maximum_desired_capacity;
 560       // We don't want shrink all the way back to initSize if people call
 561       // System.gc(), because some programs do that between "phases" and then
 562       // we'd just have to grow the heap up again for the next phase.  So we
 563       // damp the shrinking: 0% on the first call, 10% on the second call, 40%
 564       // on the third call, and 100% by the fourth call.  But if we recompute
 565       // size without shrinking, it goes back to 0%.
 566       shrink_bytes = shrink_bytes / 100 * current_shrink_factor;
 567       assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 568       if (current_shrink_factor == 0) {
 569         _shrink_factor = 10;
 570       } else {
 571         _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100);
 572       }
 573       if (PrintGC && Verbose) {
 574         gclog_or_tty->print_cr("  "
 575                       "  shrinking:"
 576                       "  initSize: %.1fK"
 577                       "  maximum_desired_capacity: %.1fK",
 578                       spec()->init_size() / (double) K,
 579                       maximum_desired_capacity / (double) K);
 580         gclog_or_tty->print_cr("  "
 581                       "  shrink_bytes: %.1fK"
 582                       "  current_shrink_factor: %d"
 583                       "  new shrink factor: %d"
 584                       "  _min_heap_delta_bytes: %.1fK",
 585                       shrink_bytes / (double) K,
 586                       current_shrink_factor,
 587                       _shrink_factor,
 588                       _min_heap_delta_bytes / (double) K);
 589       }
 590     }
 591   }
 592 
 593   if (capacity_after_gc > _capacity_at_prologue) {
 594     // We might have expanded for promotions, in which case we might want to
 595     // take back that expansion if there's room after GC.  That keeps us from
 596     // stretching the heap with promotions when there's plenty of room.
 597     size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue;
 598     expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes);
 599     // We have two shrinking computations, take the largest
 600     shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion);
 601     assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size");
 602     if (PrintGC && Verbose) {
 603       gclog_or_tty->print_cr("  "
 604                              "  aggressive shrinking:"
 605                              "  _capacity_at_prologue: %.1fK"
 606                              "  capacity_after_gc: %.1fK"
 607                              "  expansion_for_promotion: %.1fK"
 608                              "  shrink_bytes: %.1fK",
 609                              capacity_after_gc / (double) K,
 610                              _capacity_at_prologue / (double) K,
 611                              expansion_for_promotion / (double) K,
 612                              shrink_bytes / (double) K);
 613     }
 614   }
 615   // Don't shrink unless it's significant
 616   if (shrink_bytes >= _min_heap_delta_bytes) {
 617     shrink(shrink_bytes);
 618   }
 619 }
 620 
 621 // Currently nothing to do.
 622 void CardGeneration::prepare_for_verify() {}
 623 
 624 
 625 void OneContigSpaceCardGeneration::collect(bool   full,
 626                                            bool   clear_all_soft_refs,
 627                                            size_t size,
 628                                            bool   is_tlab) {
 629   GenCollectedHeap* gch = GenCollectedHeap::heap();
 630 
 631   SpecializationStats::clear();
 632   // Temporarily expand the span of our ref processor, so
 633   // refs discovery is over the entire heap, not just this generation
 634   ReferenceProcessorSpanMutator
 635     x(ref_processor(), gch->reserved_region());
 636 
 637   STWGCTimer* gc_timer = GenMarkSweep::gc_timer();
 638   gc_timer->register_gc_start();
 639 
 640   SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer();
 641   gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start());
 642 
 643   GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs);
 644 
 645   gc_timer->register_gc_end();
 646 
 647   gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
 648 
 649   SpecializationStats::print();
 650 }
 651 
 652 HeapWord*
 653 OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size,
 654                                                   bool is_tlab,
 655                                                   bool parallel) {
 656   assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation");
 657   if (parallel) {
 658     MutexLocker x(ParGCRareEvent_lock);
 659     HeapWord* result = NULL;
 660     size_t byte_size = word_size * HeapWordSize;
 661     while (true) {
 662       expand(byte_size, _min_heap_delta_bytes);
 663       if (GCExpandToAllocateDelayMillis > 0) {
 664         os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false);
 665       }
 666       result = _the_space->par_allocate(word_size);
 667       if ( result != NULL) {
 668         return result;
 669       } else {
 670         // If there's not enough expansion space available, give up.
 671         if (_virtual_space.uncommitted_size() < byte_size) {
 672           return NULL;
 673         }
 674         // else try again
 675       }
 676     }
 677   } else {
 678     expand(word_size*HeapWordSize, _min_heap_delta_bytes);
 679     return _the_space->allocate(word_size);
 680   }
 681 }
 682 
 683 bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) {
 684   GCMutexLocker x(ExpandHeap_lock);
 685   return CardGeneration::expand(bytes, expand_bytes);
 686 }
 687 
 688 
 689 void OneContigSpaceCardGeneration::shrink(size_t bytes) {
 690   assert_locked_or_safepoint(ExpandHeap_lock);
 691   size_t size = ReservedSpace::page_align_size_down(bytes);
 692   if (size > 0) {
 693     shrink_by(size);
 694   }
 695 }
 696 
 697 
 698 size_t OneContigSpaceCardGeneration::capacity() const {
 699   return _the_space->capacity();
 700 }
 701 
 702 
 703 size_t OneContigSpaceCardGeneration::used() const {
 704   return _the_space->used();
 705 }
 706 
 707 
 708 size_t OneContigSpaceCardGeneration::free() const {
 709   return _the_space->free();
 710 }
 711 
 712 MemRegion OneContigSpaceCardGeneration::used_region() const {
 713   return the_space()->used_region();
 714 }
 715 
 716 size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const {
 717   return _the_space->free();
 718 }
 719 
 720 size_t OneContigSpaceCardGeneration::contiguous_available() const {
 721   return _the_space->free() + _virtual_space.uncommitted_size();
 722 }
 723 
 724 bool OneContigSpaceCardGeneration::grow_by(size_t bytes) {
 725   assert_locked_or_safepoint(ExpandHeap_lock);
 726   bool result = _virtual_space.expand_by(bytes);
 727   if (result) {
 728     size_t new_word_size =
 729        heap_word_size(_virtual_space.committed_size());
 730     MemRegion mr(_the_space->bottom(), new_word_size);
 731     // Expand card table
 732     Universe::heap()->barrier_set()->resize_covered_region(mr);
 733     // Expand shared block offset array
 734     _bts->resize(new_word_size);
 735 
 736     // Fix for bug #4668531
 737     if (ZapUnusedHeapArea) {
 738       MemRegion mangle_region(_the_space->end(),
 739       (HeapWord*)_virtual_space.high());
 740       SpaceMangler::mangle_region(mangle_region);
 741     }
 742 
 743     // Expand space -- also expands space's BOT
 744     // (which uses (part of) shared array above)
 745     _the_space->set_end((HeapWord*)_virtual_space.high());
 746 
 747     // update the space and generation capacity counters
 748     update_counters();
 749 
 750     if (Verbose && PrintGC) {
 751       size_t new_mem_size = _virtual_space.committed_size();
 752       size_t old_mem_size = new_mem_size - bytes;
 753       gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by "
 754                       SIZE_FORMAT "K to " SIZE_FORMAT "K",
 755                       name(), old_mem_size/K, bytes/K, new_mem_size/K);
 756     }
 757   }
 758   return result;
 759 }
 760 
 761 
 762 bool OneContigSpaceCardGeneration::grow_to_reserved() {
 763   assert_locked_or_safepoint(ExpandHeap_lock);
 764   bool success = true;
 765   const size_t remaining_bytes = _virtual_space.uncommitted_size();
 766   if (remaining_bytes > 0) {
 767     success = grow_by(remaining_bytes);
 768     DEBUG_ONLY(if (!success) warning("grow to reserved failed");)
 769   }
 770   return success;
 771 }
 772 
 773 void OneContigSpaceCardGeneration::shrink_by(size_t bytes) {
 774   assert_locked_or_safepoint(ExpandHeap_lock);
 775   // Shrink committed space
 776   _virtual_space.shrink_by(bytes);
 777   // Shrink space; this also shrinks the space's BOT
 778   _the_space->set_end((HeapWord*) _virtual_space.high());
 779   size_t new_word_size = heap_word_size(_the_space->capacity());
 780   // Shrink the shared block offset array
 781   _bts->resize(new_word_size);
 782   MemRegion mr(_the_space->bottom(), new_word_size);
 783   // Shrink the card table
 784   Universe::heap()->barrier_set()->resize_covered_region(mr);
 785 
 786   if (Verbose && PrintGC) {
 787     size_t new_mem_size = _virtual_space.committed_size();
 788     size_t old_mem_size = new_mem_size + bytes;
 789     gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K",
 790                   name(), old_mem_size/K, new_mem_size/K);
 791   }
 792 }
 793 
 794 // Currently nothing to do.
 795 void OneContigSpaceCardGeneration::prepare_for_verify() {}
 796 
 797 
 798 // Override for a card-table generation with one contiguous
 799 // space. NOTE: For reasons that are lost in the fog of history,
 800 // this code is used when you iterate over perm gen objects,
 801 // even when one uses CDS, where the perm gen has a couple of
 802 // other spaces; this is because CompactingPermGenGen derives
 803 // from OneContigSpaceCardGeneration. This should be cleaned up,
 804 // see CR 6897789..
 805 void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) {
 806   _the_space->object_iterate(blk);
 807 }
 808 
 809 void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk,
 810                                                  bool usedOnly) {
 811   blk->do_space(_the_space);
 812 }
 813 
 814 void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) {
 815   blk->set_generation(this);
 816   younger_refs_in_space_iterate(_the_space, blk);
 817   blk->reset_generation();
 818 }
 819 
 820 void OneContigSpaceCardGeneration::save_marks() {
 821   _the_space->set_saved_mark();
 822 }
 823 
 824 
 825 void OneContigSpaceCardGeneration::reset_saved_marks() {
 826   _the_space->reset_saved_mark();
 827 }
 828 
 829 
 830 bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() {
 831   return _the_space->saved_mark_at_top();
 832 }
 833 
 834 #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix)      \
 835                                                                                 \
 836 void OneContigSpaceCardGeneration::                                             \
 837 oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) {                  \
 838   blk->set_generation(this);                                                    \
 839   _the_space->oop_since_save_marks_iterate##nv_suffix(blk);                     \
 840   blk->reset_generation();                                                      \
 841   save_marks();                                                                 \
 842 }
 843 
 844 ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN)
 845 
 846 #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN
 847 
 848 
 849 void OneContigSpaceCardGeneration::gc_epilogue(bool full) {
 850   _last_gc = WaterMark(the_space(), the_space()->top());
 851 
 852   // update the generation and space performance counters
 853   update_counters();
 854   if (ZapUnusedHeapArea) {
 855     the_space()->check_mangled_unused_area_complete();
 856   }
 857 }
 858 
 859 void OneContigSpaceCardGeneration::record_spaces_top() {
 860   assert(ZapUnusedHeapArea, "Not mangling unused space");
 861   the_space()->set_top_for_allocations();
 862 }
 863 
 864 void OneContigSpaceCardGeneration::verify() {
 865   the_space()->verify();
 866 }
 867 
 868 void OneContigSpaceCardGeneration::print_on(outputStream* st)  const {
 869   Generation::print_on(st);
 870   st->print("   the");
 871   the_space()->print_on(st);
 872 }