/* * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "gc_implementation/shared/gcTimer.hpp" #include "gc_implementation/shared/gcTrace.hpp" #include "gc_implementation/shared/spaceDecorator.hpp" #include "gc_interface/collectedHeap.inline.hpp" #include "memory/allocation.inline.hpp" #include "memory/blockOffsetTable.inline.hpp" #include "memory/cardTableRS.hpp" #include "memory/gcLocker.inline.hpp" #include "memory/genCollectedHeap.hpp" #include "memory/genMarkSweep.hpp" #include "memory/genOopClosures.hpp" #include "memory/genOopClosures.inline.hpp" #include "memory/generation.hpp" #include "memory/generation.inline.hpp" #include "memory/space.inline.hpp" #include "oops/oop.inline.hpp" #include "runtime/java.hpp" #include "utilities/copy.hpp" #include "utilities/events.hpp" Generation::Generation(ReservedSpace rs, size_t initial_size, int level) : _level(level), _ref_processor(NULL) { if (!_virtual_space.initialize(rs, initial_size)) { vm_exit_during_initialization("Could not reserve enough space for " "object heap"); } // Mangle all of the the initial generation. if (ZapUnusedHeapArea) { MemRegion mangle_region((HeapWord*)_virtual_space.low(), (HeapWord*)_virtual_space.high()); SpaceMangler::mangle_region(mangle_region); } _reserved = MemRegion((HeapWord*)_virtual_space.low_boundary(), (HeapWord*)_virtual_space.high_boundary()); } GenerationSpec* Generation::spec() { GenCollectedHeap* gch = GenCollectedHeap::heap(); assert(0 <= level() && level() < gch->_n_gens, "Bad gen level"); return gch->_gen_specs[level()]; } size_t Generation::max_capacity() const { return reserved().byte_size(); } void Generation::print_heap_change(size_t prev_used) const { if (PrintGCDetails && Verbose) { gclog_or_tty->print(" " SIZE_FORMAT "->" SIZE_FORMAT "(" SIZE_FORMAT ")", prev_used, used(), capacity()); } else { gclog_or_tty->print(" " SIZE_FORMAT "K" "->" SIZE_FORMAT "K" "(" SIZE_FORMAT "K)", prev_used / K, used() / K, capacity() / K); } } // By default we get a single threaded default reference processor; // generations needing multi-threaded refs processing or discovery override this method. void Generation::ref_processor_init() { assert(_ref_processor == NULL, "a reference processor already exists"); assert(!_reserved.is_empty(), "empty generation?"); _ref_processor = new ReferenceProcessor(_reserved); // a vanilla reference processor if (_ref_processor == NULL) { vm_exit_during_initialization("Could not allocate ReferenceProcessor object"); } } void Generation::print() const { print_on(tty); } void Generation::print_on(outputStream* st) const { st->print(" %-20s", name()); st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K", capacity()/K, used()/K); st->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")", _virtual_space.low_boundary(), _virtual_space.high(), _virtual_space.high_boundary()); } void Generation::print_summary_info() { print_summary_info_on(tty); } void Generation::print_summary_info_on(outputStream* st) { StatRecord* sr = stat_record(); double time = sr->accumulated_time.seconds(); st->print_cr("[Accumulated GC generation %d time %3.7f secs, " "%d GC's, avg GC time %3.7f]", level(), time, sr->invocations, sr->invocations > 0 ? time / sr->invocations : 0.0); } // Utility iterator classes class GenerationIsInReservedClosure : public SpaceClosure { public: const void* _p; Space* sp; virtual void do_space(Space* s) { if (sp == NULL) { if (s->is_in_reserved(_p)) sp = s; } } GenerationIsInReservedClosure(const void* p) : _p(p), sp(NULL) {} }; class GenerationIsInClosure : public SpaceClosure { public: const void* _p; Space* sp; virtual void do_space(Space* s) { if (sp == NULL) { if (s->is_in(_p)) sp = s; } } GenerationIsInClosure(const void* p) : _p(p), sp(NULL) {} }; bool Generation::is_in(const void* p) const { GenerationIsInClosure blk(p); ((Generation*)this)->space_iterate(&blk); return blk.sp != NULL; } DefNewGeneration* Generation::as_DefNewGeneration() { assert((kind() == Generation::DefNew) || (kind() == Generation::ParNew) || (kind() == Generation::ASParNew), "Wrong youngest generation type"); return (DefNewGeneration*) this; } Generation* Generation::next_gen() const { GenCollectedHeap* gch = GenCollectedHeap::heap(); int next = level() + 1; if (next < gch->_n_gens) { return gch->_gens[next]; } else { return NULL; } } size_t Generation::max_contiguous_available() const { // The largest number of contiguous free words in this or any higher generation. size_t max = 0; for (const Generation* gen = this; gen != NULL; gen = gen->next_gen()) { size_t avail = gen->contiguous_available(); if (avail > max) { max = avail; } } return max; } bool Generation::promotion_attempt_is_safe(size_t max_promotion_in_bytes) const { size_t available = max_contiguous_available(); bool res = (available >= max_promotion_in_bytes); if (PrintGC && Verbose) { gclog_or_tty->print_cr( "Generation: promo attempt is%s safe: available("SIZE_FORMAT") %s max_promo("SIZE_FORMAT")", res? "":" not", available, res? ">=":"<", max_promotion_in_bytes); } return res; } // Ignores "ref" and calls allocate(). oop Generation::promote(oop obj, size_t obj_size) { assert(obj_size == (size_t)obj->size(), "bad obj_size passed in"); #ifndef PRODUCT if (Universe::heap()->promotion_should_fail()) { return NULL; } #endif // #ifndef PRODUCT HeapWord* result = allocate(obj_size, false); if (result != NULL) { Copy::aligned_disjoint_words((HeapWord*)obj, result, obj_size); return oop(result); } else { GenCollectedHeap* gch = GenCollectedHeap::heap(); return gch->handle_failed_promotion(this, obj, obj_size); } } oop Generation::par_promote(int thread_num, oop obj, markOop m, size_t word_sz) { // Could do a bad general impl here that gets a lock. But no. ShouldNotCallThis(); return NULL; } void Generation::par_promote_alloc_undo(int thread_num, HeapWord* obj, size_t word_sz) { // Could do a bad general impl here that gets a lock. But no. guarantee(false, "No good general implementation."); } Space* Generation::space_containing(const void* p) const { GenerationIsInReservedClosure blk(p); // Cast away const ((Generation*)this)->space_iterate(&blk); return blk.sp; } // Some of these are mediocre general implementations. Should be // overridden to get better performance. class GenerationBlockStartClosure : public SpaceClosure { public: const void* _p; HeapWord* _start; virtual void do_space(Space* s) { if (_start == NULL && s->is_in_reserved(_p)) { _start = s->block_start(_p); } } GenerationBlockStartClosure(const void* p) { _p = p; _start = NULL; } }; HeapWord* Generation::block_start(const void* p) const { GenerationBlockStartClosure blk(p); // Cast away const ((Generation*)this)->space_iterate(&blk); return blk._start; } class GenerationBlockSizeClosure : public SpaceClosure { public: const HeapWord* _p; size_t size; virtual void do_space(Space* s) { if (size == 0 && s->is_in_reserved(_p)) { size = s->block_size(_p); } } GenerationBlockSizeClosure(const HeapWord* p) { _p = p; size = 0; } }; size_t Generation::block_size(const HeapWord* p) const { GenerationBlockSizeClosure blk(p); // Cast away const ((Generation*)this)->space_iterate(&blk); assert(blk.size > 0, "seems reasonable"); return blk.size; } class GenerationBlockIsObjClosure : public SpaceClosure { public: const HeapWord* _p; bool is_obj; virtual void do_space(Space* s) { if (!is_obj && s->is_in_reserved(_p)) { is_obj |= s->block_is_obj(_p); } } GenerationBlockIsObjClosure(const HeapWord* p) { _p = p; is_obj = false; } }; bool Generation::block_is_obj(const HeapWord* p) const { GenerationBlockIsObjClosure blk(p); // Cast away const ((Generation*)this)->space_iterate(&blk); return blk.is_obj; } class GenerationOopIterateClosure : public SpaceClosure { public: ExtendedOopClosure* cl; MemRegion mr; virtual void do_space(Space* s) { s->oop_iterate(mr, cl); } GenerationOopIterateClosure(ExtendedOopClosure* _cl, MemRegion _mr) : cl(_cl), mr(_mr) {} }; void Generation::oop_iterate(ExtendedOopClosure* cl) { GenerationOopIterateClosure blk(cl, _reserved); space_iterate(&blk); } void Generation::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) { GenerationOopIterateClosure blk(cl, mr); space_iterate(&blk); } void Generation::younger_refs_in_space_iterate(Space* sp, OopsInGenClosure* cl) { GenRemSet* rs = SharedHeap::heap()->rem_set(); rs->younger_refs_in_space_iterate(sp, cl); } class GenerationObjIterateClosure : public SpaceClosure { private: ObjectClosure* _cl; public: virtual void do_space(Space* s) { s->object_iterate(_cl); } GenerationObjIterateClosure(ObjectClosure* cl) : _cl(cl) {} }; void Generation::object_iterate(ObjectClosure* cl) { GenerationObjIterateClosure blk(cl); space_iterate(&blk); } class GenerationSafeObjIterateClosure : public SpaceClosure { private: ObjectClosure* _cl; public: virtual void do_space(Space* s) { s->safe_object_iterate(_cl); } GenerationSafeObjIterateClosure(ObjectClosure* cl) : _cl(cl) {} }; void Generation::safe_object_iterate(ObjectClosure* cl) { GenerationSafeObjIterateClosure blk(cl); space_iterate(&blk); } void Generation::prepare_for_compaction(CompactPoint* cp) { // Generic implementation, can be specialized CompactibleSpace* space = first_compaction_space(); while (space != NULL) { space->prepare_for_compaction(cp); space = space->next_compaction_space(); } } class AdjustPointersClosure: public SpaceClosure { public: void do_space(Space* sp) { sp->adjust_pointers(); } }; void Generation::adjust_pointers() { // Note that this is done over all spaces, not just the compactible // ones. AdjustPointersClosure blk; space_iterate(&blk, true); } void Generation::compact() { CompactibleSpace* sp = first_compaction_space(); while (sp != NULL) { sp->compact(); sp = sp->next_compaction_space(); } } CardGeneration::CardGeneration(ReservedSpace rs, size_t initial_byte_size, int level, GenRemSet* remset) : Generation(rs, initial_byte_size, level), _rs(remset), _shrink_factor(0), _min_heap_delta_bytes(), _capacity_at_prologue(), _used_at_prologue() { HeapWord* start = (HeapWord*)rs.base(); size_t reserved_byte_size = rs.size(); assert((uintptr_t(start) & 3) == 0, "bad alignment"); assert((reserved_byte_size & 3) == 0, "bad alignment"); MemRegion reserved_mr(start, heap_word_size(reserved_byte_size)); _bts = new BlockOffsetSharedArray(reserved_mr, heap_word_size(initial_byte_size)); MemRegion committed_mr(start, heap_word_size(initial_byte_size)); _rs->resize_covered_region(committed_mr); if (_bts == NULL) vm_exit_during_initialization("Could not allocate a BlockOffsetArray"); // Verify that the start and end of this generation is the start of a card. // If this wasn't true, a single card could span more than on generation, // which would cause problems when we commit/uncommit memory, and when we // clear and dirty cards. guarantee(_rs->is_aligned(reserved_mr.start()), "generation must be card aligned"); if (reserved_mr.end() != Universe::heap()->reserved_region().end()) { // Don't check at the very end of the heap as we'll assert that we're probing off // the end if we try. guarantee(_rs->is_aligned(reserved_mr.end()), "generation must be card aligned"); } _min_heap_delta_bytes = MinHeapDeltaBytes; _capacity_at_prologue = initial_byte_size; _used_at_prologue = 0; } bool CardGeneration::expand(size_t bytes, size_t expand_bytes) { assert_locked_or_safepoint(Heap_lock); if (bytes == 0) { return true; // That's what grow_by(0) would return } size_t aligned_bytes = ReservedSpace::page_align_size_up(bytes); if (aligned_bytes == 0){ // The alignment caused the number of bytes to wrap. An expand_by(0) will // return true with the implication that an expansion was done when it // was not. A call to expand implies a best effort to expand by "bytes" // but not a guarantee. Align down to give a best effort. This is likely // the most that the generation can expand since it has some capacity to // start with. aligned_bytes = ReservedSpace::page_align_size_down(bytes); } size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes); bool success = false; if (aligned_expand_bytes > aligned_bytes) { success = grow_by(aligned_expand_bytes); } if (!success) { success = grow_by(aligned_bytes); } if (!success) { success = grow_to_reserved(); } if (PrintGC && Verbose) { if (success && GC_locker::is_active_and_needs_gc()) { gclog_or_tty->print_cr("Garbage collection disabled, expanded heap instead"); } } return success; } // No young generation references, clear this generation's cards. void CardGeneration::clear_remembered_set() { _rs->clear(reserved()); } // Objects in this generation may have moved, invalidate this // generation's cards. void CardGeneration::invalidate_remembered_set() { _rs->invalidate(used_region()); } void CardGeneration::compute_new_size() { assert(_shrink_factor <= 100, "invalid shrink factor"); size_t current_shrink_factor = _shrink_factor; _shrink_factor = 0; // We don't have floating point command-line arguments // Note: argument processing ensures that MinHeapFreeRatio < 100. const double minimum_free_percentage = MinHeapFreeRatio / 100.0; const double maximum_used_percentage = 1.0 - minimum_free_percentage; // Compute some numbers about the state of the heap. const size_t used_after_gc = used(); const size_t capacity_after_gc = capacity(); const double min_tmp = used_after_gc / maximum_used_percentage; size_t minimum_desired_capacity = (size_t)MIN2(min_tmp, double(max_uintx)); // Don't shrink less than the initial generation size minimum_desired_capacity = MAX2(minimum_desired_capacity, spec()->init_size()); assert(used_after_gc <= minimum_desired_capacity, "sanity check"); if (PrintGC && Verbose) { const size_t free_after_gc = free(); const double free_percentage = ((double)free_after_gc) / capacity_after_gc; gclog_or_tty->print_cr("TenuredGeneration::compute_new_size: "); gclog_or_tty->print_cr(" " " minimum_free_percentage: %6.2f" " maximum_used_percentage: %6.2f", minimum_free_percentage, maximum_used_percentage); gclog_or_tty->print_cr(" " " free_after_gc : %6.1fK" " used_after_gc : %6.1fK" " capacity_after_gc : %6.1fK", free_after_gc / (double) K, used_after_gc / (double) K, capacity_after_gc / (double) K); gclog_or_tty->print_cr(" " " free_percentage: %6.2f", free_percentage); } if (capacity_after_gc < minimum_desired_capacity) { // If we have less free space than we want then expand size_t expand_bytes = minimum_desired_capacity - capacity_after_gc; // Don't expand unless it's significant if (expand_bytes >= _min_heap_delta_bytes) { expand(expand_bytes, 0); // safe if expansion fails } if (PrintGC && Verbose) { gclog_or_tty->print_cr(" expanding:" " minimum_desired_capacity: %6.1fK" " expand_bytes: %6.1fK" " _min_heap_delta_bytes: %6.1fK", minimum_desired_capacity / (double) K, expand_bytes / (double) K, _min_heap_delta_bytes / (double) K); } return; } // No expansion, now see if we want to shrink size_t shrink_bytes = 0; // We would never want to shrink more than this size_t max_shrink_bytes = capacity_after_gc - minimum_desired_capacity; if (MaxHeapFreeRatio < 100) { const double maximum_free_percentage = MaxHeapFreeRatio / 100.0; const double minimum_used_percentage = 1.0 - maximum_free_percentage; const double max_tmp = used_after_gc / minimum_used_percentage; size_t maximum_desired_capacity = (size_t)MIN2(max_tmp, double(max_uintx)); maximum_desired_capacity = MAX2(maximum_desired_capacity, spec()->init_size()); if (PrintGC && Verbose) { gclog_or_tty->print_cr(" " " maximum_free_percentage: %6.2f" " minimum_used_percentage: %6.2f", maximum_free_percentage, minimum_used_percentage); gclog_or_tty->print_cr(" " " _capacity_at_prologue: %6.1fK" " minimum_desired_capacity: %6.1fK" " maximum_desired_capacity: %6.1fK", _capacity_at_prologue / (double) K, minimum_desired_capacity / (double) K, maximum_desired_capacity / (double) K); } assert(minimum_desired_capacity <= maximum_desired_capacity, "sanity check"); if (capacity_after_gc > maximum_desired_capacity) { // Capacity too large, compute shrinking size shrink_bytes = capacity_after_gc - maximum_desired_capacity; // We don't want shrink all the way back to initSize if people call // System.gc(), because some programs do that between "phases" and then // we'd just have to grow the heap up again for the next phase. So we // damp the shrinking: 0% on the first call, 10% on the second call, 40% // on the third call, and 100% by the fourth call. But if we recompute // size without shrinking, it goes back to 0%. shrink_bytes = shrink_bytes / 100 * current_shrink_factor; assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size"); if (current_shrink_factor == 0) { _shrink_factor = 10; } else { _shrink_factor = MIN2(current_shrink_factor * 4, (size_t) 100); } if (PrintGC && Verbose) { gclog_or_tty->print_cr(" " " shrinking:" " initSize: %.1fK" " maximum_desired_capacity: %.1fK", spec()->init_size() / (double) K, maximum_desired_capacity / (double) K); gclog_or_tty->print_cr(" " " shrink_bytes: %.1fK" " current_shrink_factor: %d" " new shrink factor: %d" " _min_heap_delta_bytes: %.1fK", shrink_bytes / (double) K, current_shrink_factor, _shrink_factor, _min_heap_delta_bytes / (double) K); } } } if (capacity_after_gc > _capacity_at_prologue) { // We might have expanded for promotions, in which case we might want to // take back that expansion if there's room after GC. That keeps us from // stretching the heap with promotions when there's plenty of room. size_t expansion_for_promotion = capacity_after_gc - _capacity_at_prologue; expansion_for_promotion = MIN2(expansion_for_promotion, max_shrink_bytes); // We have two shrinking computations, take the largest shrink_bytes = MAX2(shrink_bytes, expansion_for_promotion); assert(shrink_bytes <= max_shrink_bytes, "invalid shrink size"); if (PrintGC && Verbose) { gclog_or_tty->print_cr(" " " aggressive shrinking:" " _capacity_at_prologue: %.1fK" " capacity_after_gc: %.1fK" " expansion_for_promotion: %.1fK" " shrink_bytes: %.1fK", capacity_after_gc / (double) K, _capacity_at_prologue / (double) K, expansion_for_promotion / (double) K, shrink_bytes / (double) K); } } // Don't shrink unless it's significant if (shrink_bytes >= _min_heap_delta_bytes) { shrink(shrink_bytes); } } // Currently nothing to do. void CardGeneration::prepare_for_verify() {} void OneContigSpaceCardGeneration::collect(bool full, bool clear_all_soft_refs, size_t size, bool is_tlab) { GenCollectedHeap* gch = GenCollectedHeap::heap(); SpecializationStats::clear(); // Temporarily expand the span of our ref processor, so // refs discovery is over the entire heap, not just this generation ReferenceProcessorSpanMutator x(ref_processor(), gch->reserved_region()); STWGCTimer* gc_timer = GenMarkSweep::gc_timer(); gc_timer->register_gc_start(); SerialOldTracer* gc_tracer = GenMarkSweep::gc_tracer(); gc_tracer->report_gc_start(gch->gc_cause(), gc_timer->gc_start()); GenMarkSweep::invoke_at_safepoint(_level, ref_processor(), clear_all_soft_refs); gc_timer->register_gc_end(); gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions()); SpecializationStats::print(); } HeapWord* OneContigSpaceCardGeneration::expand_and_allocate(size_t word_size, bool is_tlab, bool parallel) { assert(!is_tlab, "OneContigSpaceCardGeneration does not support TLAB allocation"); if (parallel) { MutexLocker x(ParGCRareEvent_lock); HeapWord* result = NULL; size_t byte_size = word_size * HeapWordSize; while (true) { expand(byte_size, _min_heap_delta_bytes); if (GCExpandToAllocateDelayMillis > 0) { os::sleep(Thread::current(), GCExpandToAllocateDelayMillis, false); } result = _the_space->par_allocate(word_size); if ( result != NULL) { return result; } else { // If there's not enough expansion space available, give up. if (_virtual_space.uncommitted_size() < byte_size) { return NULL; } // else try again } } } else { expand(word_size*HeapWordSize, _min_heap_delta_bytes); return _the_space->allocate(word_size); } } bool OneContigSpaceCardGeneration::expand(size_t bytes, size_t expand_bytes) { GCMutexLocker x(ExpandHeap_lock); return CardGeneration::expand(bytes, expand_bytes); } void OneContigSpaceCardGeneration::shrink(size_t bytes) { assert_locked_or_safepoint(ExpandHeap_lock); size_t size = ReservedSpace::page_align_size_down(bytes); if (size > 0) { shrink_by(size); } } size_t OneContigSpaceCardGeneration::capacity() const { return _the_space->capacity(); } size_t OneContigSpaceCardGeneration::used() const { return _the_space->used(); } size_t OneContigSpaceCardGeneration::free() const { return _the_space->free(); } MemRegion OneContigSpaceCardGeneration::used_region() const { return the_space()->used_region(); } size_t OneContigSpaceCardGeneration::unsafe_max_alloc_nogc() const { return _the_space->free(); } size_t OneContigSpaceCardGeneration::contiguous_available() const { return _the_space->free() + _virtual_space.uncommitted_size(); } bool OneContigSpaceCardGeneration::grow_by(size_t bytes) { assert_locked_or_safepoint(ExpandHeap_lock); bool result = _virtual_space.expand_by(bytes); if (result) { size_t new_word_size = heap_word_size(_virtual_space.committed_size()); MemRegion mr(_the_space->bottom(), new_word_size); // Expand card table Universe::heap()->barrier_set()->resize_covered_region(mr); // Expand shared block offset array _bts->resize(new_word_size); // Fix for bug #4668531 if (ZapUnusedHeapArea) { MemRegion mangle_region(_the_space->end(), (HeapWord*)_virtual_space.high()); SpaceMangler::mangle_region(mangle_region); } // Expand space -- also expands space's BOT // (which uses (part of) shared array above) _the_space->set_end((HeapWord*)_virtual_space.high()); // update the space and generation capacity counters update_counters(); if (Verbose && PrintGC) { size_t new_mem_size = _virtual_space.committed_size(); size_t old_mem_size = new_mem_size - bytes; gclog_or_tty->print_cr("Expanding %s from " SIZE_FORMAT "K by " SIZE_FORMAT "K to " SIZE_FORMAT "K", name(), old_mem_size/K, bytes/K, new_mem_size/K); } } return result; } bool OneContigSpaceCardGeneration::grow_to_reserved() { assert_locked_or_safepoint(ExpandHeap_lock); bool success = true; const size_t remaining_bytes = _virtual_space.uncommitted_size(); if (remaining_bytes > 0) { success = grow_by(remaining_bytes); DEBUG_ONLY(if (!success) warning("grow to reserved failed");) } return success; } void OneContigSpaceCardGeneration::shrink_by(size_t bytes) { assert_locked_or_safepoint(ExpandHeap_lock); // Shrink committed space _virtual_space.shrink_by(bytes); // Shrink space; this also shrinks the space's BOT _the_space->set_end((HeapWord*) _virtual_space.high()); size_t new_word_size = heap_word_size(_the_space->capacity()); // Shrink the shared block offset array _bts->resize(new_word_size); MemRegion mr(_the_space->bottom(), new_word_size); // Shrink the card table Universe::heap()->barrier_set()->resize_covered_region(mr); if (Verbose && PrintGC) { size_t new_mem_size = _virtual_space.committed_size(); size_t old_mem_size = new_mem_size + bytes; gclog_or_tty->print_cr("Shrinking %s from " SIZE_FORMAT "K to " SIZE_FORMAT "K", name(), old_mem_size/K, new_mem_size/K); } } // Currently nothing to do. void OneContigSpaceCardGeneration::prepare_for_verify() {} // Override for a card-table generation with one contiguous // space. NOTE: For reasons that are lost in the fog of history, // this code is used when you iterate over perm gen objects, // even when one uses CDS, where the perm gen has a couple of // other spaces; this is because CompactingPermGenGen derives // from OneContigSpaceCardGeneration. This should be cleaned up, // see CR 6897789.. void OneContigSpaceCardGeneration::object_iterate(ObjectClosure* blk) { _the_space->object_iterate(blk); } void OneContigSpaceCardGeneration::space_iterate(SpaceClosure* blk, bool usedOnly) { blk->do_space(_the_space); } void OneContigSpaceCardGeneration::younger_refs_iterate(OopsInGenClosure* blk) { blk->set_generation(this); younger_refs_in_space_iterate(_the_space, blk); blk->reset_generation(); } void OneContigSpaceCardGeneration::save_marks() { _the_space->set_saved_mark(); } void OneContigSpaceCardGeneration::reset_saved_marks() { _the_space->reset_saved_mark(); } bool OneContigSpaceCardGeneration::no_allocs_since_save_marks() { return _the_space->saved_mark_at_top(); } #define OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN(OopClosureType, nv_suffix) \ \ void OneContigSpaceCardGeneration:: \ oop_since_save_marks_iterate##nv_suffix(OopClosureType* blk) { \ blk->set_generation(this); \ _the_space->oop_since_save_marks_iterate##nv_suffix(blk); \ blk->reset_generation(); \ save_marks(); \ } ALL_SINCE_SAVE_MARKS_CLOSURES(OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN) #undef OneContig_SINCE_SAVE_MARKS_ITERATE_DEFN void OneContigSpaceCardGeneration::gc_epilogue(bool full) { _last_gc = WaterMark(the_space(), the_space()->top()); // update the generation and space performance counters update_counters(); if (ZapUnusedHeapArea) { the_space()->check_mangled_unused_area_complete(); } } void OneContigSpaceCardGeneration::record_spaces_top() { assert(ZapUnusedHeapArea, "Not mangling unused space"); the_space()->set_top_for_allocations(); } void OneContigSpaceCardGeneration::verify() { the_space()->verify(); } void OneContigSpaceCardGeneration::print_on(outputStream* st) const { Generation::print_on(st); st->print(" the"); the_space()->print_on(st); }