1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "interpreter/interpreter.hpp"
  27 #include "memory/resourceArea.hpp"
  28 #include "oops/markOop.hpp"
  29 #include "oops/method.hpp"
  30 #include "oops/oop.inline.hpp"
  31 #include "prims/methodHandles.hpp"
  32 #include "runtime/frame.inline.hpp"
  33 #include "runtime/handles.inline.hpp"
  34 #include "runtime/javaCalls.hpp"
  35 #include "runtime/monitorChunk.hpp"
  36 #include "runtime/os.hpp"
  37 #include "runtime/signature.hpp"
  38 #include "runtime/stubCodeGenerator.hpp"
  39 #include "runtime/stubRoutines.hpp"
  40 #include "vmreg_x86.inline.hpp"
  41 #ifdef COMPILER1
  42 #include "c1/c1_Runtime1.hpp"
  43 #include "runtime/vframeArray.hpp"
  44 #endif
  45 
  46 #ifdef ASSERT
  47 void RegisterMap::check_location_valid() {
  48 }
  49 #endif
  50 
  51 
  52 // Profiling/safepoint support
  53 
  54 bool frame::safe_for_sender(JavaThread *thread) {
  55   address   sp = (address)_sp;
  56   address   fp = (address)_fp;
  57   address   unextended_sp = (address)_unextended_sp;
  58 
  59   // consider stack guards when trying to determine "safe" stack pointers
  60   static size_t stack_guard_size = os::uses_stack_guard_pages() ? (StackYellowPages + StackRedPages) * os::vm_page_size() : 0;
  61   size_t usable_stack_size = thread->stack_size() - stack_guard_size;
  62 
  63   // sp must be within the usable part of the stack (not in guards)
  64   bool sp_safe = (sp < thread->stack_base()) &&
  65                  (sp >= thread->stack_base() - usable_stack_size);
  66 
  67 
  68   if (!sp_safe) {
  69     return false;
  70   }
  71 
  72   // unextended sp must be within the stack and above or equal sp
  73   bool unextended_sp_safe = (unextended_sp < thread->stack_base()) &&
  74                             (unextended_sp >= sp);
  75 
  76   if (!unextended_sp_safe) {
  77     return false;
  78   }
  79 
  80   // an fp must be within the stack and above (but not equal) sp
  81   // second evaluation on fp+ is added to handle situation where fp is -1
  82   bool fp_safe = (fp < thread->stack_base() && (fp > sp) && (((fp + (return_addr_offset * sizeof(void*))) < thread->stack_base())));
  83 
  84   // We know sp/unextended_sp are safe only fp is questionable here
  85 
  86   // If the current frame is known to the code cache then we can attempt to
  87   // to construct the sender and do some validation of it. This goes a long way
  88   // toward eliminating issues when we get in frame construction code
  89 
  90   if (_cb != NULL ) {
  91 
  92     // First check if frame is complete and tester is reliable
  93     // Unfortunately we can only check frame complete for runtime stubs and nmethod
  94     // other generic buffer blobs are more problematic so we just assume they are
  95     // ok. adapter blobs never have a frame complete and are never ok.
  96 
  97     if (!_cb->is_frame_complete_at(_pc)) {
  98       if (_cb->is_nmethod() || _cb->is_adapter_blob() || _cb->is_runtime_stub()) {
  99         return false;
 100       }
 101     }
 102 
 103     // Could just be some random pointer within the codeBlob
 104     if (!_cb->code_contains(_pc)) {
 105       return false;
 106     }
 107 
 108     // Entry frame checks
 109     if (is_entry_frame()) {
 110       // an entry frame must have a valid fp.
 111 
 112       if (!fp_safe) return false;
 113 
 114       // Validate the JavaCallWrapper an entry frame must have
 115 
 116       address jcw = (address)entry_frame_call_wrapper();
 117 
 118       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > fp);
 119 
 120       return jcw_safe;
 121 
 122     }
 123 
 124     intptr_t* sender_sp = NULL;
 125     address   sender_pc = NULL;
 126 
 127     if (is_interpreted_frame()) {
 128       // fp must be safe
 129       if (!fp_safe) {
 130         return false;
 131       }
 132 
 133       sender_pc = (address) this->fp()[return_addr_offset];
 134       sender_sp = (intptr_t*) addr_at(sender_sp_offset);
 135 
 136     } else {
 137       // must be some sort of compiled/runtime frame
 138       // fp does not have to be safe (although it could be check for c1?)
 139 
 140       // check for a valid frame_size, otherwise we are unlikely to get a valid sender_pc
 141       if (_cb->frame_size() <= 0) {
 142         return false;
 143       }
 144 
 145       sender_sp = _unextended_sp + _cb->frame_size();
 146       // On Intel the return_address is always the word on the stack
 147       sender_pc = (address) *(sender_sp-1);
 148     }
 149 
 150 
 151     // If the potential sender is the interpreter then we can do some more checking
 152     if (Interpreter::contains(sender_pc)) {
 153 
 154       // ebp is always saved in a recognizable place in any code we generate. However
 155       // only if the sender is interpreted/call_stub (c1 too?) are we certain that the saved ebp
 156       // is really a frame pointer.
 157 
 158       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
 159       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 160 
 161       if (!saved_fp_safe) {
 162         return false;
 163       }
 164 
 165       // construct the potential sender
 166 
 167       frame sender(sender_sp, saved_fp, sender_pc);
 168 
 169       return sender.is_interpreted_frame_valid(thread);
 170 
 171     }
 172 
 173     // We must always be able to find a recognizable pc
 174     CodeBlob* sender_blob = CodeCache::find_blob_unsafe(sender_pc);
 175     if (sender_pc == NULL ||  sender_blob == NULL) {
 176       return false;
 177     }
 178 
 179     // Could be a zombie method
 180     if (sender_blob->is_zombie() || sender_blob->is_unloaded()) {
 181       return false;
 182     }
 183 
 184     // Could just be some random pointer within the codeBlob
 185     if (!sender_blob->code_contains(sender_pc)) {
 186       return false;
 187     }
 188 
 189     // We should never be able to see an adapter if the current frame is something from code cache
 190     if (sender_blob->is_adapter_blob()) {
 191       return false;
 192     }
 193 
 194     // Could be the call_stub
 195     if (StubRoutines::returns_to_call_stub(sender_pc)) {
 196       intptr_t *saved_fp = (intptr_t*)*(sender_sp - frame::sender_sp_offset);
 197       bool saved_fp_safe = ((address)saved_fp < thread->stack_base()) && (saved_fp > sender_sp);
 198 
 199       if (!saved_fp_safe) {
 200         return false;
 201       }
 202 
 203       // construct the potential sender
 204 
 205       frame sender(sender_sp, saved_fp, sender_pc);
 206 
 207       // Validate the JavaCallWrapper an entry frame must have
 208       address jcw = (address)sender.entry_frame_call_wrapper();
 209 
 210       bool jcw_safe = (jcw < thread->stack_base()) && ( jcw > (address)sender.fp());
 211 
 212       return jcw_safe;
 213     }
 214 
 215     if (sender_blob->is_nmethod()) {
 216         nmethod* nm = sender_blob->as_nmethod_or_null();
 217         if (nm != NULL) {
 218             if (nm->is_deopt_mh_entry(sender_pc) || nm->is_deopt_entry(sender_pc)) {
 219                 return false;
 220             }
 221         }
 222     }
 223 
 224     // If the frame size is 0 something (or less) is bad because every nmethod has a non-zero frame size
 225     // because the return address counts against the callee's frame.
 226 
 227     if (sender_blob->frame_size() <= 0) {
 228       assert(!sender_blob->is_nmethod(), "should count return address at least");
 229       return false;
 230     }
 231 
 232     // We should never be able to see anything here except an nmethod. If something in the
 233     // code cache (current frame) is called by an entity within the code cache that entity
 234     // should not be anything but the call stub (already covered), the interpreter (already covered)
 235     // or an nmethod.
 236 
 237     if (!sender_blob->is_nmethod()) {
 238         return false;
 239     }
 240 
 241     // Could put some more validation for the potential non-interpreted sender
 242     // frame we'd create by calling sender if I could think of any. Wait for next crash in forte...
 243 
 244     // One idea is seeing if the sender_pc we have is one that we'd expect to call to current cb
 245 
 246     // We've validated the potential sender that would be created
 247     return true;
 248   }
 249 
 250   // Must be native-compiled frame. Since sender will try and use fp to find
 251   // linkages it must be safe
 252 
 253   if (!fp_safe) {
 254     return false;
 255   }
 256 
 257   // Will the pc we fetch be non-zero (which we'll find at the oldest frame)
 258 
 259   if ( (address) this->fp()[return_addr_offset] == NULL) return false;
 260 
 261 
 262   // could try and do some more potential verification of native frame if we could think of some...
 263 
 264   return true;
 265 
 266 }
 267 
 268 
 269 void frame::patch_pc(Thread* thread, address pc) {
 270   address* pc_addr = &(((address*) sp())[-1]);
 271   if (TracePcPatching) {
 272     tty->print_cr("patch_pc at address " INTPTR_FORMAT " [" INTPTR_FORMAT " -> " INTPTR_FORMAT "]",
 273                   pc_addr, *pc_addr, pc);
 274   }
 275   // Either the return address is the original one or we are going to
 276   // patch in the same address that's already there.
 277   assert(_pc == *pc_addr || pc == *pc_addr, "must be");
 278   *pc_addr = pc;
 279   _cb = CodeCache::find_blob(pc);
 280   address original_pc = nmethod::get_deopt_original_pc(this);
 281   if (original_pc != NULL) {
 282     assert(original_pc == _pc, "expected original PC to be stored before patching");
 283     _deopt_state = is_deoptimized;
 284     // leave _pc as is
 285   } else {
 286     _deopt_state = not_deoptimized;
 287     _pc = pc;
 288   }
 289 }
 290 
 291 bool frame::is_interpreted_frame() const  {
 292   return Interpreter::contains(pc());
 293 }
 294 
 295 int frame::frame_size(RegisterMap* map) const {
 296   frame sender = this->sender(map);
 297   return sender.sp() - sp();
 298 }
 299 
 300 intptr_t* frame::entry_frame_argument_at(int offset) const {
 301   // convert offset to index to deal with tsi
 302   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 303   // Entry frame's arguments are always in relation to unextended_sp()
 304   return &unextended_sp()[index];
 305 }
 306 
 307 // sender_sp
 308 #ifdef CC_INTERP
 309 intptr_t* frame::interpreter_frame_sender_sp() const {
 310   assert(is_interpreted_frame(), "interpreted frame expected");
 311   // QQQ why does this specialize method exist if frame::sender_sp() does same thing?
 312   // seems odd and if we always know interpreted vs. non then sender_sp() is really
 313   // doing too much work.
 314   return get_interpreterState()->sender_sp();
 315 }
 316 
 317 // monitor elements
 318 
 319 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 320   return get_interpreterState()->monitor_base();
 321 }
 322 
 323 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 324   return (BasicObjectLock*) get_interpreterState()->stack_base();
 325 }
 326 
 327 #else // CC_INTERP
 328 
 329 intptr_t* frame::interpreter_frame_sender_sp() const {
 330   assert(is_interpreted_frame(), "interpreted frame expected");
 331   return (intptr_t*) at(interpreter_frame_sender_sp_offset);
 332 }
 333 
 334 void frame::set_interpreter_frame_sender_sp(intptr_t* sender_sp) {
 335   assert(is_interpreted_frame(), "interpreted frame expected");
 336   ptr_at_put(interpreter_frame_sender_sp_offset, (intptr_t) sender_sp);
 337 }
 338 
 339 
 340 // monitor elements
 341 
 342 BasicObjectLock* frame::interpreter_frame_monitor_begin() const {
 343   return (BasicObjectLock*) addr_at(interpreter_frame_monitor_block_bottom_offset);
 344 }
 345 
 346 BasicObjectLock* frame::interpreter_frame_monitor_end() const {
 347   BasicObjectLock* result = (BasicObjectLock*) *addr_at(interpreter_frame_monitor_block_top_offset);
 348   // make sure the pointer points inside the frame
 349   assert(sp() <= (intptr_t*) result, "monitor end should be above the stack pointer");
 350   assert((intptr_t*) result < fp(),  "monitor end should be strictly below the frame pointer");
 351   return result;
 352 }
 353 
 354 void frame::interpreter_frame_set_monitor_end(BasicObjectLock* value) {
 355   *((BasicObjectLock**)addr_at(interpreter_frame_monitor_block_top_offset)) = value;
 356 }
 357 
 358 // Used by template based interpreter deoptimization
 359 void frame::interpreter_frame_set_last_sp(intptr_t* sp) {
 360     *((intptr_t**)addr_at(interpreter_frame_last_sp_offset)) = sp;
 361 }
 362 #endif // CC_INTERP
 363 
 364 frame frame::sender_for_entry_frame(RegisterMap* map) const {
 365   assert(map != NULL, "map must be set");
 366   // Java frame called from C; skip all C frames and return top C
 367   // frame of that chunk as the sender
 368   JavaFrameAnchor* jfa = entry_frame_call_wrapper()->anchor();
 369   assert(!entry_frame_is_first(), "next Java fp must be non zero");
 370   assert(jfa->last_Java_sp() > sp(), "must be above this frame on stack");
 371   map->clear();
 372   assert(map->include_argument_oops(), "should be set by clear");
 373   if (jfa->last_Java_pc() != NULL ) {
 374     frame fr(jfa->last_Java_sp(), jfa->last_Java_fp(), jfa->last_Java_pc());
 375     return fr;
 376   }
 377   frame fr(jfa->last_Java_sp(), jfa->last_Java_fp());
 378   return fr;
 379 }
 380 
 381 //------------------------------------------------------------------------------
 382 // frame::verify_deopt_original_pc
 383 //
 384 // Verifies the calculated original PC of a deoptimization PC for the
 385 // given unextended SP.  The unextended SP might also be the saved SP
 386 // for MethodHandle call sites.
 387 #ifdef ASSERT
 388 void frame::verify_deopt_original_pc(nmethod* nm, intptr_t* unextended_sp, bool is_method_handle_return) {
 389   frame fr;
 390 
 391   // This is ugly but it's better than to change {get,set}_original_pc
 392   // to take an SP value as argument.  And it's only a debugging
 393   // method anyway.
 394   fr._unextended_sp = unextended_sp;
 395 
 396   address original_pc = nm->get_original_pc(&fr);
 397   assert(nm->insts_contains(original_pc), "original PC must be in nmethod");
 398   assert(nm->is_method_handle_return(original_pc) == is_method_handle_return, "must be");
 399 }
 400 #endif
 401 
 402 //------------------------------------------------------------------------------
 403 // frame::adjust_unextended_sp
 404 void frame::adjust_unextended_sp() {
 405   // If we are returning to a compiled MethodHandle call site, the
 406   // saved_fp will in fact be a saved value of the unextended SP.  The
 407   // simplest way to tell whether we are returning to such a call site
 408   // is as follows:
 409 
 410   nmethod* sender_nm = (_cb == NULL) ? NULL : _cb->as_nmethod_or_null();
 411   if (sender_nm != NULL) {
 412     // If the sender PC is a deoptimization point, get the original
 413     // PC.  For MethodHandle call site the unextended_sp is stored in
 414     // saved_fp.
 415     if (sender_nm->is_deopt_mh_entry(_pc)) {
 416       DEBUG_ONLY(verify_deopt_mh_original_pc(sender_nm, _fp));
 417       _unextended_sp = _fp;
 418     }
 419     else if (sender_nm->is_deopt_entry(_pc)) {
 420       DEBUG_ONLY(verify_deopt_original_pc(sender_nm, _unextended_sp));
 421     }
 422     else if (sender_nm->is_method_handle_return(_pc)) {
 423       _unextended_sp = _fp;
 424     }
 425   }
 426 }
 427 
 428 //------------------------------------------------------------------------------
 429 // frame::update_map_with_saved_link
 430 void frame::update_map_with_saved_link(RegisterMap* map, intptr_t** link_addr) {
 431   // The interpreter and compiler(s) always save EBP/RBP in a known
 432   // location on entry. We must record where that location is
 433   // so this if EBP/RBP was live on callout from c2 we can find
 434   // the saved copy no matter what it called.
 435 
 436   // Since the interpreter always saves EBP/RBP if we record where it is then
 437   // we don't have to always save EBP/RBP on entry and exit to c2 compiled
 438   // code, on entry will be enough.
 439   map->set_location(rbp->as_VMReg(), (address) link_addr);
 440 #ifdef AMD64
 441   // this is weird "H" ought to be at a higher address however the
 442   // oopMaps seems to have the "H" regs at the same address and the
 443   // vanilla register.
 444   // XXXX make this go away
 445   if (true) {
 446     map->set_location(rbp->as_VMReg()->next(), (address) link_addr);
 447   }
 448 #endif // AMD64
 449 }
 450 
 451 
 452 //------------------------------------------------------------------------------
 453 // frame::sender_for_interpreter_frame
 454 frame frame::sender_for_interpreter_frame(RegisterMap* map) const {
 455   // SP is the raw SP from the sender after adapter or interpreter
 456   // extension.
 457   intptr_t* sender_sp = this->sender_sp();
 458 
 459   // This is the sp before any possible extension (adapter/locals).
 460   intptr_t* unextended_sp = interpreter_frame_sender_sp();
 461 
 462 #ifdef COMPILER2
 463   if (map->update_map()) {
 464     update_map_with_saved_link(map, (intptr_t**) addr_at(link_offset));
 465   }
 466 #endif // COMPILER2
 467 
 468   return frame(sender_sp, unextended_sp, link(), sender_pc());
 469 }
 470 
 471 
 472 //------------------------------------------------------------------------------
 473 // frame::sender_for_compiled_frame
 474 frame frame::sender_for_compiled_frame(RegisterMap* map) const {
 475   assert(map != NULL, "map must be set");
 476 
 477   // frame owned by optimizing compiler
 478   assert(_cb->frame_size() >= 0, "must have non-zero frame size");
 479   intptr_t* sender_sp = unextended_sp() + _cb->frame_size();
 480   intptr_t* unextended_sp = sender_sp;
 481 
 482   // On Intel the return_address is always the word on the stack
 483   address sender_pc = (address) *(sender_sp-1);
 484 
 485   // This is the saved value of EBP which may or may not really be an FP.
 486   // It is only an FP if the sender is an interpreter frame (or C1?).
 487   intptr_t** saved_fp_addr = (intptr_t**) (sender_sp - frame::sender_sp_offset);
 488 
 489   if (map->update_map()) {
 490     // Tell GC to use argument oopmaps for some runtime stubs that need it.
 491     // For C1, the runtime stub might not have oop maps, so set this flag
 492     // outside of update_register_map.
 493     map->set_include_argument_oops(_cb->caller_must_gc_arguments(map->thread()));
 494     if (_cb->oop_maps() != NULL) {
 495       OopMapSet::update_register_map(this, map);
 496     }
 497 
 498     // Since the prolog does the save and restore of EBP there is no oopmap
 499     // for it so we must fill in its location as if there was an oopmap entry
 500     // since if our caller was compiled code there could be live jvm state in it.
 501     update_map_with_saved_link(map, saved_fp_addr);
 502   }
 503 
 504   assert(sender_sp != sp(), "must have changed");
 505   return frame(sender_sp, unextended_sp, *saved_fp_addr, sender_pc);
 506 }
 507 
 508 
 509 //------------------------------------------------------------------------------
 510 // frame::sender
 511 frame frame::sender(RegisterMap* map) const {
 512   // Default is we done have to follow them. The sender_for_xxx will
 513   // update it accordingly
 514   map->set_include_argument_oops(false);
 515 
 516   if (is_entry_frame())       return sender_for_entry_frame(map);
 517   if (is_interpreted_frame()) return sender_for_interpreter_frame(map);
 518   assert(_cb == CodeCache::find_blob(pc()),"Must be the same");
 519 
 520   if (_cb != NULL) {
 521     return sender_for_compiled_frame(map);
 522   }
 523   // Must be native-compiled frame, i.e. the marshaling code for native
 524   // methods that exists in the core system.
 525   return frame(sender_sp(), link(), sender_pc());
 526 }
 527 
 528 
 529 bool frame::interpreter_frame_equals_unpacked_fp(intptr_t* fp) {
 530   assert(is_interpreted_frame(), "must be interpreter frame");
 531   Method* method = interpreter_frame_method();
 532   // When unpacking an optimized frame the frame pointer is
 533   // adjusted with:
 534   int diff = (method->max_locals() - method->size_of_parameters()) *
 535              Interpreter::stackElementWords;
 536   return _fp == (fp - diff);
 537 }
 538 
 539 void frame::pd_gc_epilog() {
 540   // nothing done here now
 541 }
 542 
 543 bool frame::is_interpreted_frame_valid(JavaThread* thread) const {
 544 // QQQ
 545 #ifdef CC_INTERP
 546 #else
 547   assert(is_interpreted_frame(), "Not an interpreted frame");
 548   // These are reasonable sanity checks
 549   if (fp() == 0 || (intptr_t(fp()) & (wordSize-1)) != 0) {
 550     return false;
 551   }
 552   if (sp() == 0 || (intptr_t(sp()) & (wordSize-1)) != 0) {
 553     return false;
 554   }
 555   if (fp() + interpreter_frame_initial_sp_offset < sp()) {
 556     return false;
 557   }
 558   // These are hacks to keep us out of trouble.
 559   // The problem with these is that they mask other problems
 560   if (fp() <= sp()) {        // this attempts to deal with unsigned comparison above
 561     return false;
 562   }
 563 
 564   // do some validation of frame elements
 565 
 566   // first the method
 567 
 568   Method* m = *interpreter_frame_method_addr();
 569 
 570   // validate the method we'd find in this potential sender
 571   if (!m->is_valid_method()) return false;
 572 
 573   // stack frames shouldn't be much larger than max_stack elements
 574 
 575   if (fp() - sp() > 1024 + m->max_stack()*Interpreter::stackElementSize) {
 576     return false;
 577   }
 578 
 579   // validate bci/bcx
 580 
 581   intptr_t  bcx    = interpreter_frame_bcx();
 582   if (m->validate_bci_from_bcx(bcx) < 0) {
 583     return false;
 584   }
 585 
 586   // validate ConstantPoolCache*
 587   ConstantPoolCache* cp = *interpreter_frame_cache_addr();
 588   if (cp == NULL || !cp->is_metaspace_object()) return false;
 589 
 590   // validate locals
 591 
 592   address locals =  (address) *interpreter_frame_locals_addr();
 593 
 594   if (locals > thread->stack_base() || locals < (address) fp()) return false;
 595 
 596   // We'd have to be pretty unlucky to be mislead at this point
 597 
 598 #endif // CC_INTERP
 599   return true;
 600 }
 601 
 602 BasicType frame::interpreter_frame_result(oop* oop_result, jvalue* value_result) {
 603 #ifdef CC_INTERP
 604   // Needed for JVMTI. The result should always be in the
 605   // interpreterState object
 606   interpreterState istate = get_interpreterState();
 607 #endif // CC_INTERP
 608   assert(is_interpreted_frame(), "interpreted frame expected");
 609   Method* method = interpreter_frame_method();
 610   BasicType type = method->result_type();
 611 
 612   intptr_t* tos_addr;
 613   if (method->is_native()) {
 614     // Prior to calling into the runtime to report the method_exit the possible
 615     // return value is pushed to the native stack. If the result is a jfloat/jdouble
 616     // then ST0 is saved before EAX/EDX. See the note in generate_native_result
 617     tos_addr = (intptr_t*)sp();
 618     if (type == T_FLOAT || type == T_DOUBLE) {
 619     // QQQ seems like this code is equivalent on the two platforms
 620 #ifdef AMD64
 621       // This is times two because we do a push(ltos) after pushing XMM0
 622       // and that takes two interpreter stack slots.
 623       tos_addr += 2 * Interpreter::stackElementWords;
 624 #else
 625       tos_addr += 2;
 626 #endif // AMD64
 627     }
 628   } else {
 629     tos_addr = (intptr_t*)interpreter_frame_tos_address();
 630   }
 631 
 632   switch (type) {
 633     case T_OBJECT  :
 634     case T_ARRAY   : {
 635       oop obj;
 636       if (method->is_native()) {
 637 #ifdef CC_INTERP
 638         obj = istate->_oop_temp;
 639 #else
 640         obj = cast_to_oop(at(interpreter_frame_oop_temp_offset));
 641 #endif // CC_INTERP
 642       } else {
 643         oop* obj_p = (oop*)tos_addr;
 644         obj = (obj_p == NULL) ? (oop)NULL : *obj_p;
 645       }
 646       assert(obj == NULL || Universe::heap()->is_in(obj), "sanity check");
 647       *oop_result = obj;
 648       break;
 649     }
 650     case T_BOOLEAN : value_result->z = *(jboolean*)tos_addr; break;
 651     case T_BYTE    : value_result->b = *(jbyte*)tos_addr; break;
 652     case T_CHAR    : value_result->c = *(jchar*)tos_addr; break;
 653     case T_SHORT   : value_result->s = *(jshort*)tos_addr; break;
 654     case T_INT     : value_result->i = *(jint*)tos_addr; break;
 655     case T_LONG    : value_result->j = *(jlong*)tos_addr; break;
 656     case T_FLOAT   : {
 657 #ifdef AMD64
 658         value_result->f = *(jfloat*)tos_addr;
 659 #else
 660       if (method->is_native()) {
 661         jdouble d = *(jdouble*)tos_addr;  // Result was in ST0 so need to convert to jfloat
 662         value_result->f = (jfloat)d;
 663       } else {
 664         value_result->f = *(jfloat*)tos_addr;
 665       }
 666 #endif // AMD64
 667       break;
 668     }
 669     case T_DOUBLE  : value_result->d = *(jdouble*)tos_addr; break;
 670     case T_VOID    : /* Nothing to do */ break;
 671     default        : ShouldNotReachHere();
 672   }
 673 
 674   return type;
 675 }
 676 
 677 
 678 intptr_t* frame::interpreter_frame_tos_at(jint offset) const {
 679   int index = (Interpreter::expr_offset_in_bytes(offset)/wordSize);
 680   return &interpreter_frame_tos_address()[index];
 681 }
 682 
 683 #ifndef PRODUCT
 684 
 685 #define DESCRIBE_FP_OFFSET(name) \
 686   values.describe(frame_no, fp() + frame::name##_offset, #name)
 687 
 688 void frame::describe_pd(FrameValues& values, int frame_no) {
 689   if (is_interpreted_frame()) {
 690     DESCRIBE_FP_OFFSET(interpreter_frame_sender_sp);
 691     DESCRIBE_FP_OFFSET(interpreter_frame_last_sp);
 692     DESCRIBE_FP_OFFSET(interpreter_frame_method);
 693     DESCRIBE_FP_OFFSET(interpreter_frame_mdx);
 694     DESCRIBE_FP_OFFSET(interpreter_frame_cache);
 695     DESCRIBE_FP_OFFSET(interpreter_frame_locals);
 696     DESCRIBE_FP_OFFSET(interpreter_frame_bcx);
 697     DESCRIBE_FP_OFFSET(interpreter_frame_initial_sp);
 698   }
 699 }
 700 #endif
 701 
 702 intptr_t *frame::initial_deoptimization_info() {
 703   // used to reset the saved FP
 704   return fp();
 705 }
 706 
 707 intptr_t* frame::real_fp() const {
 708   if (_cb != NULL) {
 709     // use the frame size if valid
 710     int size = _cb->frame_size();
 711     if (size > 0) {
 712       return unextended_sp() + size;
 713     }
 714   }
 715   // else rely on fp()
 716   assert(! is_compiled_frame(), "unknown compiled frame size");
 717   return fp();
 718 }