1 /*
   2  * Copyright (c) 1999, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 // if RUSAGE_THREAD for getrusage() has not been defined, do it here. The code calling
 105 // getrusage() is prepared to handle the associated failure.
 106 #ifndef RUSAGE_THREAD
 107 #define RUSAGE_THREAD   (1)               /* only the calling thread */
 108 #endif
 109 
 110 #define MAX_PATH    (2 * K)
 111 
 112 // for timer info max values which include all bits
 113 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 114 
 115 #define LARGEPAGES_BIT (1 << 6)
 116 ////////////////////////////////////////////////////////////////////////////////
 117 // global variables
 118 julong os::Linux::_physical_memory = 0;
 119 
 120 address   os::Linux::_initial_thread_stack_bottom = NULL;
 121 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 122 
 123 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 124 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 125 Mutex* os::Linux::_createThread_lock = NULL;
 126 pthread_t os::Linux::_main_thread;
 127 int os::Linux::_page_size = -1;
 128 const int os::Linux::_vm_default_page_size = (8 * K);
 129 bool os::Linux::_is_floating_stack = false;
 130 bool os::Linux::_is_NPTL = false;
 131 bool os::Linux::_supports_fast_thread_cpu_time = false;
 132 const char * os::Linux::_glibc_version = NULL;
 133 const char * os::Linux::_libpthread_version = NULL;
 134 pthread_condattr_t os::Linux::_condattr[1];
 135 
 136 static jlong initial_time_count=0;
 137 
 138 static int clock_tics_per_sec = 100;
 139 
 140 // For diagnostics to print a message once. see run_periodic_checks
 141 static sigset_t check_signal_done;
 142 static bool check_signals = true;
 143 
 144 static pid_t _initial_pid = 0;
 145 
 146 /* Signal number used to suspend/resume a thread */
 147 
 148 /* do not use any signal number less than SIGSEGV, see 4355769 */
 149 static int SR_signum = SIGUSR2;
 150 sigset_t SR_sigset;
 151 
 152 /* Used to protect dlsym() calls */
 153 static pthread_mutex_t dl_mutex;
 154 
 155 // Declarations
 156 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time);
 157 static void absoluteRealTimeForRelativeTime(timespec* absTime, jlong relTime);
 158 
 159 #ifdef JAVASE_EMBEDDED
 160 class MemNotifyThread: public Thread {
 161   friend class VMStructs;
 162  public:
 163   virtual void run();
 164 
 165  private:
 166   static MemNotifyThread* _memnotify_thread;
 167   int _fd;
 168 
 169  public:
 170 
 171   // Constructor
 172   MemNotifyThread(int fd);
 173 
 174   // Tester
 175   bool is_memnotify_thread() const { return true; }
 176 
 177   // Printing
 178   char* name() const { return (char*)"Linux MemNotify Thread"; }
 179 
 180   // Returns the single instance of the MemNotifyThread
 181   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 182 
 183   // Create and start the single instance of MemNotifyThread
 184   static void start();
 185 };
 186 #endif // JAVASE_EMBEDDED
 187 
 188 // utility functions
 189 
 190 static int SR_initialize();
 191 
 192 julong os::available_memory() {
 193   return Linux::available_memory();
 194 }
 195 
 196 julong os::Linux::available_memory() {
 197   // values in struct sysinfo are "unsigned long"
 198   struct sysinfo si;
 199   sysinfo(&si);
 200 
 201   return (julong)si.freeram * si.mem_unit;
 202 }
 203 
 204 julong os::physical_memory() {
 205   return Linux::physical_memory();
 206 }
 207 
 208 ////////////////////////////////////////////////////////////////////////////////
 209 // environment support
 210 
 211 bool os::getenv(const char* name, char* buf, int len) {
 212   const char* val = ::getenv(name);
 213   if (val != NULL && strlen(val) < (size_t)len) {
 214     strcpy(buf, val);
 215     return true;
 216   }
 217   if (len > 0) buf[0] = 0;  // return a null string
 218   return false;
 219 }
 220 
 221 
 222 // Return true if user is running as root.
 223 
 224 bool os::have_special_privileges() {
 225   static bool init = false;
 226   static bool privileges = false;
 227   if (!init) {
 228     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 229     init = true;
 230   }
 231   return privileges;
 232 }
 233 
 234 
 235 #ifndef SYS_gettid
 236 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 237 #ifdef __ia64__
 238 #define SYS_gettid 1105
 239 #elif __i386__
 240 #define SYS_gettid 224
 241 #elif __amd64__
 242 #define SYS_gettid 186
 243 #elif __sparc__
 244 #define SYS_gettid 143
 245 #else
 246 #error define gettid for the arch
 247 #endif
 248 #endif
 249 
 250 // Cpu architecture string
 251 #if   defined(ZERO)
 252 static char cpu_arch[] = ZERO_LIBARCH;
 253 #elif defined(IA64)
 254 static char cpu_arch[] = "ia64";
 255 #elif defined(IA32)
 256 static char cpu_arch[] = "i386";
 257 #elif defined(AMD64)
 258 static char cpu_arch[] = "amd64";
 259 #elif defined(ARM)
 260 static char cpu_arch[] = "arm";
 261 #elif defined(PPC32)
 262 static char cpu_arch[] = "ppc";
 263 #elif defined(PPC64)
 264 static char cpu_arch[] = "ppc64";
 265 #elif defined(SPARC)
 266 #  ifdef _LP64
 267 static char cpu_arch[] = "sparcv9";
 268 #  else
 269 static char cpu_arch[] = "sparc";
 270 #  endif
 271 #else
 272 #error Add appropriate cpu_arch setting
 273 #endif
 274 
 275 
 276 // pid_t gettid()
 277 //
 278 // Returns the kernel thread id of the currently running thread. Kernel
 279 // thread id is used to access /proc.
 280 //
 281 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 282 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 283 //
 284 pid_t os::Linux::gettid() {
 285   int rslt = syscall(SYS_gettid);
 286   if (rslt == -1) {
 287      // old kernel, no NPTL support
 288      return getpid();
 289   } else {
 290      return (pid_t)rslt;
 291   }
 292 }
 293 
 294 // Most versions of linux have a bug where the number of processors are
 295 // determined by looking at the /proc file system.  In a chroot environment,
 296 // the system call returns 1.  This causes the VM to act as if it is
 297 // a single processor and elide locking (see is_MP() call).
 298 static bool unsafe_chroot_detected = false;
 299 static const char *unstable_chroot_error = "/proc file system not found.\n"
 300                      "Java may be unstable running multithreaded in a chroot "
 301                      "environment on Linux when /proc filesystem is not mounted.";
 302 
 303 void os::Linux::initialize_system_info() {
 304   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 305   if (processor_count() == 1) {
 306     pid_t pid = os::Linux::gettid();
 307     char fname[32];
 308     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 309     FILE *fp = fopen(fname, "r");
 310     if (fp == NULL) {
 311       unsafe_chroot_detected = true;
 312     } else {
 313       fclose(fp);
 314     }
 315   }
 316   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 317   assert(processor_count() > 0, "linux error");
 318 }
 319 
 320 void os::init_system_properties_values() {
 321 //  char arch[12];
 322 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 323 
 324   // The next steps are taken in the product version:
 325   //
 326   // Obtain the JAVA_HOME value from the location of libjvm.so.
 327   // This library should be located at:
 328   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 329   //
 330   // If "/jre/lib/" appears at the right place in the path, then we
 331   // assume libjvm.so is installed in a JDK and we use this path.
 332   //
 333   // Otherwise exit with message: "Could not create the Java virtual machine."
 334   //
 335   // The following extra steps are taken in the debugging version:
 336   //
 337   // If "/jre/lib/" does NOT appear at the right place in the path
 338   // instead of exit check for $JAVA_HOME environment variable.
 339   //
 340   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 341   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 342   // it looks like libjvm.so is installed there
 343   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 344   //
 345   // Otherwise exit.
 346   //
 347   // Important note: if the location of libjvm.so changes this
 348   // code needs to be changed accordingly.
 349 
 350   // The next few definitions allow the code to be verbatim:
 351 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 352 #define getenv(n) ::getenv(n)
 353 
 354 /*
 355  * See ld(1):
 356  *      The linker uses the following search paths to locate required
 357  *      shared libraries:
 358  *        1: ...
 359  *        ...
 360  *        7: The default directories, normally /lib and /usr/lib.
 361  */
 362 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 363 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 364 #else
 365 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 366 #endif
 367 
 368 #define EXTENSIONS_DIR  "/lib/ext"
 369 #define ENDORSED_DIR    "/lib/endorsed"
 370 #define REG_DIR         "/usr/java/packages"
 371 
 372   {
 373     /* sysclasspath, java_home, dll_dir */
 374     {
 375         char *home_path;
 376         char *dll_path;
 377         char *pslash;
 378         char buf[MAXPATHLEN];
 379         os::jvm_path(buf, sizeof(buf));
 380 
 381         // Found the full path to libjvm.so.
 382         // Now cut the path to <java_home>/jre if we can.
 383         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 384         pslash = strrchr(buf, '/');
 385         if (pslash != NULL)
 386             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 387         dll_path = malloc(strlen(buf) + 1);
 388         if (dll_path == NULL)
 389             return;
 390         strcpy(dll_path, buf);
 391         Arguments::set_dll_dir(dll_path);
 392 
 393         if (pslash != NULL) {
 394             pslash = strrchr(buf, '/');
 395             if (pslash != NULL) {
 396                 *pslash = '\0';       /* get rid of /<arch> */
 397                 pslash = strrchr(buf, '/');
 398                 if (pslash != NULL)
 399                     *pslash = '\0';   /* get rid of /lib */
 400             }
 401         }
 402 
 403         home_path = malloc(strlen(buf) + 1);
 404         if (home_path == NULL)
 405             return;
 406         strcpy(home_path, buf);
 407         Arguments::set_java_home(home_path);
 408 
 409         if (!set_boot_path('/', ':'))
 410             return;
 411     }
 412 
 413     /*
 414      * Where to look for native libraries
 415      *
 416      * Note: Due to a legacy implementation, most of the library path
 417      * is set in the launcher.  This was to accomodate linking restrictions
 418      * on legacy Linux implementations (which are no longer supported).
 419      * Eventually, all the library path setting will be done here.
 420      *
 421      * However, to prevent the proliferation of improperly built native
 422      * libraries, the new path component /usr/java/packages is added here.
 423      * Eventually, all the library path setting will be done here.
 424      */
 425     {
 426         char *ld_library_path;
 427 
 428         /*
 429          * Construct the invariant part of ld_library_path. Note that the
 430          * space for the colon and the trailing null are provided by the
 431          * nulls included by the sizeof operator (so actually we allocate
 432          * a byte more than necessary).
 433          */
 434         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 435             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 436         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 437 
 438         /*
 439          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 440          * should always exist (until the legacy problem cited above is
 441          * addressed).
 442          */
 443         char *v = getenv("LD_LIBRARY_PATH");
 444         if (v != NULL) {
 445             char *t = ld_library_path;
 446             /* That's +1 for the colon and +1 for the trailing '\0' */
 447             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 448             sprintf(ld_library_path, "%s:%s", v, t);
 449         }
 450         Arguments::set_library_path(ld_library_path);
 451     }
 452 
 453     /*
 454      * Extensions directories.
 455      *
 456      * Note that the space for the colon and the trailing null are provided
 457      * by the nulls included by the sizeof operator (so actually one byte more
 458      * than necessary is allocated).
 459      */
 460     {
 461         char *buf = malloc(strlen(Arguments::get_java_home()) +
 462             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 463         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 464             Arguments::get_java_home());
 465         Arguments::set_ext_dirs(buf);
 466     }
 467 
 468     /* Endorsed standards default directory. */
 469     {
 470         char * buf;
 471         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 472         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 473         Arguments::set_endorsed_dirs(buf);
 474     }
 475   }
 476 
 477 #undef malloc
 478 #undef getenv
 479 #undef EXTENSIONS_DIR
 480 #undef ENDORSED_DIR
 481 
 482   // Done
 483   return;
 484 }
 485 
 486 ////////////////////////////////////////////////////////////////////////////////
 487 // breakpoint support
 488 
 489 void os::breakpoint() {
 490   BREAKPOINT;
 491 }
 492 
 493 extern "C" void breakpoint() {
 494   // use debugger to set breakpoint here
 495 }
 496 
 497 ////////////////////////////////////////////////////////////////////////////////
 498 // signal support
 499 
 500 debug_only(static bool signal_sets_initialized = false);
 501 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 502 
 503 bool os::Linux::is_sig_ignored(int sig) {
 504       struct sigaction oact;
 505       sigaction(sig, (struct sigaction*)NULL, &oact);
 506       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 507                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 508       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 509            return true;
 510       else
 511            return false;
 512 }
 513 
 514 void os::Linux::signal_sets_init() {
 515   // Should also have an assertion stating we are still single-threaded.
 516   assert(!signal_sets_initialized, "Already initialized");
 517   // Fill in signals that are necessarily unblocked for all threads in
 518   // the VM. Currently, we unblock the following signals:
 519   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 520   //                         by -Xrs (=ReduceSignalUsage));
 521   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 522   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 523   // the dispositions or masks wrt these signals.
 524   // Programs embedding the VM that want to use the above signals for their
 525   // own purposes must, at this time, use the "-Xrs" option to prevent
 526   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 527   // (See bug 4345157, and other related bugs).
 528   // In reality, though, unblocking these signals is really a nop, since
 529   // these signals are not blocked by default.
 530   sigemptyset(&unblocked_sigs);
 531   sigemptyset(&allowdebug_blocked_sigs);
 532   sigaddset(&unblocked_sigs, SIGILL);
 533   sigaddset(&unblocked_sigs, SIGSEGV);
 534   sigaddset(&unblocked_sigs, SIGBUS);
 535   sigaddset(&unblocked_sigs, SIGFPE);
 536 #if defined(PPC64)
 537   sigaddset(&unblocked_sigs, SIGTRAP);
 538 #endif
 539   sigaddset(&unblocked_sigs, SR_signum);
 540 
 541   if (!ReduceSignalUsage) {
 542    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 543       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 544       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 545    }
 546    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 547       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 548       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 549    }
 550    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 551       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 552       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 553    }
 554   }
 555   // Fill in signals that are blocked by all but the VM thread.
 556   sigemptyset(&vm_sigs);
 557   if (!ReduceSignalUsage)
 558     sigaddset(&vm_sigs, BREAK_SIGNAL);
 559   debug_only(signal_sets_initialized = true);
 560 
 561 }
 562 
 563 // These are signals that are unblocked while a thread is running Java.
 564 // (For some reason, they get blocked by default.)
 565 sigset_t* os::Linux::unblocked_signals() {
 566   assert(signal_sets_initialized, "Not initialized");
 567   return &unblocked_sigs;
 568 }
 569 
 570 // These are the signals that are blocked while a (non-VM) thread is
 571 // running Java. Only the VM thread handles these signals.
 572 sigset_t* os::Linux::vm_signals() {
 573   assert(signal_sets_initialized, "Not initialized");
 574   return &vm_sigs;
 575 }
 576 
 577 // These are signals that are blocked during cond_wait to allow debugger in
 578 sigset_t* os::Linux::allowdebug_blocked_signals() {
 579   assert(signal_sets_initialized, "Not initialized");
 580   return &allowdebug_blocked_sigs;
 581 }
 582 
 583 void os::Linux::hotspot_sigmask(Thread* thread) {
 584 
 585   //Save caller's signal mask before setting VM signal mask
 586   sigset_t caller_sigmask;
 587   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 588 
 589   OSThread* osthread = thread->osthread();
 590   osthread->set_caller_sigmask(caller_sigmask);
 591 
 592   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 593 
 594   if (!ReduceSignalUsage) {
 595     if (thread->is_VM_thread()) {
 596       // Only the VM thread handles BREAK_SIGNAL ...
 597       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 598     } else {
 599       // ... all other threads block BREAK_SIGNAL
 600       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 601     }
 602   }
 603 }
 604 
 605 //////////////////////////////////////////////////////////////////////////////
 606 // detecting pthread library
 607 
 608 void os::Linux::libpthread_init() {
 609   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 610   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 611   // generic name for earlier versions.
 612   // Define macros here so we can build HotSpot on old systems.
 613 # ifndef _CS_GNU_LIBC_VERSION
 614 # define _CS_GNU_LIBC_VERSION 2
 615 # endif
 616 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 617 # define _CS_GNU_LIBPTHREAD_VERSION 3
 618 # endif
 619 
 620   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 621   if (n > 0) {
 622      char *str = (char *)malloc(n, mtInternal);
 623      confstr(_CS_GNU_LIBC_VERSION, str, n);
 624      os::Linux::set_glibc_version(str);
 625   } else {
 626      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 627      static char _gnu_libc_version[32];
 628      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 629               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 630      os::Linux::set_glibc_version(_gnu_libc_version);
 631   }
 632 
 633   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 634   if (n > 0) {
 635      char *str = (char *)malloc(n, mtInternal);
 636      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 637      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 638      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 639      // is the case. LinuxThreads has a hard limit on max number of threads.
 640      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 641      // On the other hand, NPTL does not have such a limit, sysconf()
 642      // will return -1 and errno is not changed. Check if it is really NPTL.
 643      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 644          strstr(str, "NPTL") &&
 645          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 646        free(str);
 647        os::Linux::set_libpthread_version("linuxthreads");
 648      } else {
 649        os::Linux::set_libpthread_version(str);
 650      }
 651   } else {
 652     // glibc before 2.3.2 only has LinuxThreads.
 653     os::Linux::set_libpthread_version("linuxthreads");
 654   }
 655 
 656   if (strstr(libpthread_version(), "NPTL")) {
 657      os::Linux::set_is_NPTL();
 658   } else {
 659      os::Linux::set_is_LinuxThreads();
 660   }
 661 
 662   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 663   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 664   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 665      os::Linux::set_is_floating_stack();
 666   }
 667 }
 668 
 669 /////////////////////////////////////////////////////////////////////////////
 670 // thread stack
 671 
 672 // Force Linux kernel to expand current thread stack. If "bottom" is close
 673 // to the stack guard, caller should block all signals.
 674 //
 675 // MAP_GROWSDOWN:
 676 //   A special mmap() flag that is used to implement thread stacks. It tells
 677 //   kernel that the memory region should extend downwards when needed. This
 678 //   allows early versions of LinuxThreads to only mmap the first few pages
 679 //   when creating a new thread. Linux kernel will automatically expand thread
 680 //   stack as needed (on page faults).
 681 //
 682 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 683 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 684 //   region, it's hard to tell if the fault is due to a legitimate stack
 685 //   access or because of reading/writing non-exist memory (e.g. buffer
 686 //   overrun). As a rule, if the fault happens below current stack pointer,
 687 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 688 //   application (see Linux kernel fault.c).
 689 //
 690 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 691 //   stack overflow detection.
 692 //
 693 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 694 //   not use this flag. However, the stack of initial thread is not created
 695 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 696 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 697 //   and then attach the thread to JVM.
 698 //
 699 // To get around the problem and allow stack banging on Linux, we need to
 700 // manually expand thread stack after receiving the SIGSEGV.
 701 //
 702 // There are two ways to expand thread stack to address "bottom", we used
 703 // both of them in JVM before 1.5:
 704 //   1. adjust stack pointer first so that it is below "bottom", and then
 705 //      touch "bottom"
 706 //   2. mmap() the page in question
 707 //
 708 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 709 // if current sp is already near the lower end of page 101, and we need to
 710 // call mmap() to map page 100, it is possible that part of the mmap() frame
 711 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 712 // That will destroy the mmap() frame and cause VM to crash.
 713 //
 714 // The following code works by adjusting sp first, then accessing the "bottom"
 715 // page to force a page fault. Linux kernel will then automatically expand the
 716 // stack mapping.
 717 //
 718 // _expand_stack_to() assumes its frame size is less than page size, which
 719 // should always be true if the function is not inlined.
 720 
 721 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 722 #define NOINLINE
 723 #else
 724 #define NOINLINE __attribute__ ((noinline))
 725 #endif
 726 
 727 static void _expand_stack_to(address bottom) NOINLINE;
 728 
 729 static void _expand_stack_to(address bottom) {
 730   address sp;
 731   size_t size;
 732   volatile char *p;
 733 
 734   // Adjust bottom to point to the largest address within the same page, it
 735   // gives us a one-page buffer if alloca() allocates slightly more memory.
 736   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 737   bottom += os::Linux::page_size() - 1;
 738 
 739   // sp might be slightly above current stack pointer; if that's the case, we
 740   // will alloca() a little more space than necessary, which is OK. Don't use
 741   // os::current_stack_pointer(), as its result can be slightly below current
 742   // stack pointer, causing us to not alloca enough to reach "bottom".
 743   sp = (address)&sp;
 744 
 745   if (sp > bottom) {
 746     size = sp - bottom;
 747     p = (volatile char *)alloca(size);
 748     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 749     p[0] = '\0';
 750   }
 751 }
 752 
 753 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 754   assert(t!=NULL, "just checking");
 755   assert(t->osthread()->expanding_stack(), "expand should be set");
 756   assert(t->stack_base() != NULL, "stack_base was not initialized");
 757 
 758   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 759     sigset_t mask_all, old_sigset;
 760     sigfillset(&mask_all);
 761     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 762     _expand_stack_to(addr);
 763     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 764     return true;
 765   }
 766   return false;
 767 }
 768 
 769 //////////////////////////////////////////////////////////////////////////////
 770 // create new thread
 771 
 772 static address highest_vm_reserved_address();
 773 
 774 // check if it's safe to start a new thread
 775 static bool _thread_safety_check(Thread* thread) {
 776   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 777     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 778     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 779     //   allocated (MAP_FIXED) from high address space. Every thread stack
 780     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 781     //   it to other values if they rebuild LinuxThreads).
 782     //
 783     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 784     // the memory region has already been mmap'ed. That means if we have too
 785     // many threads and/or very large heap, eventually thread stack will
 786     // collide with heap.
 787     //
 788     // Here we try to prevent heap/stack collision by comparing current
 789     // stack bottom with the highest address that has been mmap'ed by JVM
 790     // plus a safety margin for memory maps created by native code.
 791     //
 792     // This feature can be disabled by setting ThreadSafetyMargin to 0
 793     //
 794     if (ThreadSafetyMargin > 0) {
 795       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 796 
 797       // not safe if our stack extends below the safety margin
 798       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 799     } else {
 800       return true;
 801     }
 802   } else {
 803     // Floating stack LinuxThreads or NPTL:
 804     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 805     //   there's not enough space left, pthread_create() will fail. If we come
 806     //   here, that means enough space has been reserved for stack.
 807     return true;
 808   }
 809 }
 810 
 811 // Thread start routine for all newly created threads
 812 static void *java_start(Thread *thread) {
 813   // Try to randomize the cache line index of hot stack frames.
 814   // This helps when threads of the same stack traces evict each other's
 815   // cache lines. The threads can be either from the same JVM instance, or
 816   // from different JVM instances. The benefit is especially true for
 817   // processors with hyperthreading technology.
 818   static int counter = 0;
 819   int pid = os::current_process_id();
 820   alloca(((pid ^ counter++) & 7) * 128);
 821 
 822   ThreadLocalStorage::set_thread(thread);
 823 
 824   OSThread* osthread = thread->osthread();
 825   Monitor* sync = osthread->startThread_lock();
 826 
 827   // non floating stack LinuxThreads needs extra check, see above
 828   if (!_thread_safety_check(thread)) {
 829     // notify parent thread
 830     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 831     osthread->set_state(ZOMBIE);
 832     sync->notify_all();
 833     return NULL;
 834   }
 835 
 836   // thread_id is kernel thread id (similar to Solaris LWP id)
 837   osthread->set_thread_id(os::Linux::gettid());
 838 
 839   if (UseNUMA) {
 840     int lgrp_id = os::numa_get_group_id();
 841     if (lgrp_id != -1) {
 842       thread->set_lgrp_id(lgrp_id);
 843     }
 844   }
 845   // initialize signal mask for this thread
 846   os::Linux::hotspot_sigmask(thread);
 847 
 848   // initialize floating point control register
 849   os::Linux::init_thread_fpu_state();
 850 
 851   // handshaking with parent thread
 852   {
 853     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 854 
 855     // notify parent thread
 856     osthread->set_state(INITIALIZED);
 857     sync->notify_all();
 858 
 859     // wait until os::start_thread()
 860     while (osthread->get_state() == INITIALIZED) {
 861       sync->wait(Mutex::_no_safepoint_check_flag);
 862     }
 863   }
 864 
 865   // call one more level start routine
 866   thread->run();
 867 
 868   return 0;
 869 }
 870 
 871 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 872   assert(thread->osthread() == NULL, "caller responsible");
 873 
 874   // Allocate the OSThread object
 875   OSThread* osthread = new OSThread(NULL, NULL);
 876   if (osthread == NULL) {
 877     return false;
 878   }
 879 
 880   // set the correct thread state
 881   osthread->set_thread_type(thr_type);
 882 
 883   // Initial state is ALLOCATED but not INITIALIZED
 884   osthread->set_state(ALLOCATED);
 885 
 886   thread->set_osthread(osthread);
 887 
 888   // init thread attributes
 889   pthread_attr_t attr;
 890   pthread_attr_init(&attr);
 891   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 892 
 893   // stack size
 894   if (os::Linux::supports_variable_stack_size()) {
 895     // calculate stack size if it's not specified by caller
 896     if (stack_size == 0) {
 897       stack_size = os::Linux::default_stack_size(thr_type);
 898 
 899       switch (thr_type) {
 900       case os::java_thread:
 901         // Java threads use ThreadStackSize which default value can be
 902         // changed with the flag -Xss
 903         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 904         stack_size = JavaThread::stack_size_at_create();
 905         break;
 906       case os::compiler_thread:
 907         if (CompilerThreadStackSize > 0) {
 908           stack_size = (size_t)(CompilerThreadStackSize * K);
 909           break;
 910         } // else fall through:
 911           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 912       case os::vm_thread:
 913       case os::pgc_thread:
 914       case os::cgc_thread:
 915       case os::watcher_thread:
 916         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 917         break;
 918       }
 919     }
 920 
 921     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 922     pthread_attr_setstacksize(&attr, stack_size);
 923   } else {
 924     // let pthread_create() pick the default value.
 925   }
 926 
 927   // glibc guard page
 928   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 929 
 930   ThreadState state;
 931 
 932   {
 933     // Serialize thread creation if we are running with fixed stack LinuxThreads
 934     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 935     if (lock) {
 936       os::Linux::createThread_lock()->lock_without_safepoint_check();
 937     }
 938 
 939     pthread_t tid;
 940     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 941 
 942     pthread_attr_destroy(&attr);
 943 
 944     if (ret != 0) {
 945       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 946         perror("pthread_create()");
 947       }
 948       // Need to clean up stuff we've allocated so far
 949       thread->set_osthread(NULL);
 950       delete osthread;
 951       if (lock) os::Linux::createThread_lock()->unlock();
 952       return false;
 953     }
 954 
 955     // Store pthread info into the OSThread
 956     osthread->set_pthread_id(tid);
 957 
 958     // Wait until child thread is either initialized or aborted
 959     {
 960       Monitor* sync_with_child = osthread->startThread_lock();
 961       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 962       while ((state = osthread->get_state()) == ALLOCATED) {
 963         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 964       }
 965     }
 966 
 967     if (lock) {
 968       os::Linux::createThread_lock()->unlock();
 969     }
 970   }
 971 
 972   // Aborted due to thread limit being reached
 973   if (state == ZOMBIE) {
 974       thread->set_osthread(NULL);
 975       delete osthread;
 976       return false;
 977   }
 978 
 979   // The thread is returned suspended (in state INITIALIZED),
 980   // and is started higher up in the call chain
 981   assert(state == INITIALIZED, "race condition");
 982   return true;
 983 }
 984 
 985 /////////////////////////////////////////////////////////////////////////////
 986 // attach existing thread
 987 
 988 // bootstrap the main thread
 989 bool os::create_main_thread(JavaThread* thread) {
 990   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 991   return create_attached_thread(thread);
 992 }
 993 
 994 bool os::create_attached_thread(JavaThread* thread) {
 995 #ifdef ASSERT
 996     thread->verify_not_published();
 997 #endif
 998 
 999   // Allocate the OSThread object
1000   OSThread* osthread = new OSThread(NULL, NULL);
1001 
1002   if (osthread == NULL) {
1003     return false;
1004   }
1005 
1006   // Store pthread info into the OSThread
1007   osthread->set_thread_id(os::Linux::gettid());
1008   osthread->set_pthread_id(::pthread_self());
1009 
1010   // initialize floating point control register
1011   os::Linux::init_thread_fpu_state();
1012 
1013   // Initial thread state is RUNNABLE
1014   osthread->set_state(RUNNABLE);
1015 
1016   thread->set_osthread(osthread);
1017 
1018   if (UseNUMA) {
1019     int lgrp_id = os::numa_get_group_id();
1020     if (lgrp_id != -1) {
1021       thread->set_lgrp_id(lgrp_id);
1022     }
1023   }
1024 
1025   if (os::Linux::is_initial_thread()) {
1026     // If current thread is initial thread, its stack is mapped on demand,
1027     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1028     // the entire stack region to avoid SEGV in stack banging.
1029     // It is also useful to get around the heap-stack-gap problem on SuSE
1030     // kernel (see 4821821 for details). We first expand stack to the top
1031     // of yellow zone, then enable stack yellow zone (order is significant,
1032     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1033     // is no gap between the last two virtual memory regions.
1034 
1035     JavaThread *jt = (JavaThread *)thread;
1036     address addr = jt->stack_yellow_zone_base();
1037     assert(addr != NULL, "initialization problem?");
1038     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1039 
1040     osthread->set_expanding_stack();
1041     os::Linux::manually_expand_stack(jt, addr);
1042     osthread->clear_expanding_stack();
1043   }
1044 
1045   // initialize signal mask for this thread
1046   // and save the caller's signal mask
1047   os::Linux::hotspot_sigmask(thread);
1048 
1049   return true;
1050 }
1051 
1052 void os::pd_start_thread(Thread* thread) {
1053   OSThread * osthread = thread->osthread();
1054   assert(osthread->get_state() != INITIALIZED, "just checking");
1055   Monitor* sync_with_child = osthread->startThread_lock();
1056   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1057   sync_with_child->notify();
1058 }
1059 
1060 // Free Linux resources related to the OSThread
1061 void os::free_thread(OSThread* osthread) {
1062   assert(osthread != NULL, "osthread not set");
1063 
1064   if (Thread::current()->osthread() == osthread) {
1065     // Restore caller's signal mask
1066     sigset_t sigmask = osthread->caller_sigmask();
1067     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1068    }
1069 
1070   delete osthread;
1071 }
1072 
1073 //////////////////////////////////////////////////////////////////////////////
1074 // thread local storage
1075 
1076 int os::allocate_thread_local_storage() {
1077   pthread_key_t key;
1078   int rslt = pthread_key_create(&key, NULL);
1079   assert(rslt == 0, "cannot allocate thread local storage");
1080   return (int)key;
1081 }
1082 
1083 // Note: This is currently not used by VM, as we don't destroy TLS key
1084 // on VM exit.
1085 void os::free_thread_local_storage(int index) {
1086   int rslt = pthread_key_delete((pthread_key_t)index);
1087   assert(rslt == 0, "invalid index");
1088 }
1089 
1090 void os::thread_local_storage_at_put(int index, void* value) {
1091   int rslt = pthread_setspecific((pthread_key_t)index, value);
1092   assert(rslt == 0, "pthread_setspecific failed");
1093 }
1094 
1095 extern "C" Thread* get_thread() {
1096   return ThreadLocalStorage::thread();
1097 }
1098 
1099 //////////////////////////////////////////////////////////////////////////////
1100 // initial thread
1101 
1102 // Check if current thread is the initial thread, similar to Solaris thr_main.
1103 bool os::Linux::is_initial_thread(void) {
1104   char dummy;
1105   // If called before init complete, thread stack bottom will be null.
1106   // Can be called if fatal error occurs before initialization.
1107   if (initial_thread_stack_bottom() == NULL) return false;
1108   assert(initial_thread_stack_bottom() != NULL &&
1109          initial_thread_stack_size()   != 0,
1110          "os::init did not locate initial thread's stack region");
1111   if ((address)&dummy >= initial_thread_stack_bottom() &&
1112       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1113        return true;
1114   else return false;
1115 }
1116 
1117 // Find the virtual memory area that contains addr
1118 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1119   FILE *fp = fopen("/proc/self/maps", "r");
1120   if (fp) {
1121     address low, high;
1122     while (!feof(fp)) {
1123       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1124         if (low <= addr && addr < high) {
1125            if (vma_low)  *vma_low  = low;
1126            if (vma_high) *vma_high = high;
1127            fclose (fp);
1128            return true;
1129         }
1130       }
1131       for (;;) {
1132         int ch = fgetc(fp);
1133         if (ch == EOF || ch == (int)'\n') break;
1134       }
1135     }
1136     fclose(fp);
1137   }
1138   return false;
1139 }
1140 
1141 // Locate initial thread stack. This special handling of initial thread stack
1142 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1143 // bogus value for initial thread.
1144 void os::Linux::capture_initial_stack(size_t max_size) {
1145   // stack size is the easy part, get it from RLIMIT_STACK
1146   size_t stack_size;
1147   struct rlimit rlim;
1148   getrlimit(RLIMIT_STACK, &rlim);
1149   stack_size = rlim.rlim_cur;
1150 
1151   // 6308388: a bug in ld.so will relocate its own .data section to the
1152   //   lower end of primordial stack; reduce ulimit -s value a little bit
1153   //   so we won't install guard page on ld.so's data section.
1154   stack_size -= 2 * page_size();
1155 
1156   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1157   //   7.1, in both cases we will get 2G in return value.
1158   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1159   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1160   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1161   //   in case other parts in glibc still assumes 2M max stack size.
1162   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1163   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1164   if (stack_size > 2 * K * K IA64_ONLY(*2))
1165       stack_size = 2 * K * K IA64_ONLY(*2);
1166   // Try to figure out where the stack base (top) is. This is harder.
1167   //
1168   // When an application is started, glibc saves the initial stack pointer in
1169   // a global variable "__libc_stack_end", which is then used by system
1170   // libraries. __libc_stack_end should be pretty close to stack top. The
1171   // variable is available since the very early days. However, because it is
1172   // a private interface, it could disappear in the future.
1173   //
1174   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1175   // to __libc_stack_end, it is very close to stack top, but isn't the real
1176   // stack top. Note that /proc may not exist if VM is running as a chroot
1177   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1178   // /proc/<pid>/stat could change in the future (though unlikely).
1179   //
1180   // We try __libc_stack_end first. If that doesn't work, look for
1181   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1182   // as a hint, which should work well in most cases.
1183 
1184   uintptr_t stack_start;
1185 
1186   // try __libc_stack_end first
1187   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1188   if (p && *p) {
1189     stack_start = *p;
1190   } else {
1191     // see if we can get the start_stack field from /proc/self/stat
1192     FILE *fp;
1193     int pid;
1194     char state;
1195     int ppid;
1196     int pgrp;
1197     int session;
1198     int nr;
1199     int tpgrp;
1200     unsigned long flags;
1201     unsigned long minflt;
1202     unsigned long cminflt;
1203     unsigned long majflt;
1204     unsigned long cmajflt;
1205     unsigned long utime;
1206     unsigned long stime;
1207     long cutime;
1208     long cstime;
1209     long prio;
1210     long nice;
1211     long junk;
1212     long it_real;
1213     uintptr_t start;
1214     uintptr_t vsize;
1215     intptr_t rss;
1216     uintptr_t rsslim;
1217     uintptr_t scodes;
1218     uintptr_t ecode;
1219     int i;
1220 
1221     // Figure what the primordial thread stack base is. Code is inspired
1222     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1223     // followed by command name surrounded by parentheses, state, etc.
1224     char stat[2048];
1225     int statlen;
1226 
1227     fp = fopen("/proc/self/stat", "r");
1228     if (fp) {
1229       statlen = fread(stat, 1, 2047, fp);
1230       stat[statlen] = '\0';
1231       fclose(fp);
1232 
1233       // Skip pid and the command string. Note that we could be dealing with
1234       // weird command names, e.g. user could decide to rename java launcher
1235       // to "java 1.4.2 :)", then the stat file would look like
1236       //                1234 (java 1.4.2 :)) R ... ...
1237       // We don't really need to know the command string, just find the last
1238       // occurrence of ")" and then start parsing from there. See bug 4726580.
1239       char * s = strrchr(stat, ')');
1240 
1241       i = 0;
1242       if (s) {
1243         // Skip blank chars
1244         do s++; while (isspace(*s));
1245 
1246 #define _UFM UINTX_FORMAT
1247 #define _DFM INTX_FORMAT
1248 
1249         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1250         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1251         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1252              &state,          /* 3  %c  */
1253              &ppid,           /* 4  %d  */
1254              &pgrp,           /* 5  %d  */
1255              &session,        /* 6  %d  */
1256              &nr,             /* 7  %d  */
1257              &tpgrp,          /* 8  %d  */
1258              &flags,          /* 9  %lu  */
1259              &minflt,         /* 10 %lu  */
1260              &cminflt,        /* 11 %lu  */
1261              &majflt,         /* 12 %lu  */
1262              &cmajflt,        /* 13 %lu  */
1263              &utime,          /* 14 %lu  */
1264              &stime,          /* 15 %lu  */
1265              &cutime,         /* 16 %ld  */
1266              &cstime,         /* 17 %ld  */
1267              &prio,           /* 18 %ld  */
1268              &nice,           /* 19 %ld  */
1269              &junk,           /* 20 %ld  */
1270              &it_real,        /* 21 %ld  */
1271              &start,          /* 22 UINTX_FORMAT */
1272              &vsize,          /* 23 UINTX_FORMAT */
1273              &rss,            /* 24 INTX_FORMAT  */
1274              &rsslim,         /* 25 UINTX_FORMAT */
1275              &scodes,         /* 26 UINTX_FORMAT */
1276              &ecode,          /* 27 UINTX_FORMAT */
1277              &stack_start);   /* 28 UINTX_FORMAT */
1278       }
1279 
1280 #undef _UFM
1281 #undef _DFM
1282 
1283       if (i != 28 - 2) {
1284          assert(false, "Bad conversion from /proc/self/stat");
1285          // product mode - assume we are the initial thread, good luck in the
1286          // embedded case.
1287          warning("Can't detect initial thread stack location - bad conversion");
1288          stack_start = (uintptr_t) &rlim;
1289       }
1290     } else {
1291       // For some reason we can't open /proc/self/stat (for example, running on
1292       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1293       // most cases, so don't abort:
1294       warning("Can't detect initial thread stack location - no /proc/self/stat");
1295       stack_start = (uintptr_t) &rlim;
1296     }
1297   }
1298 
1299   // Now we have a pointer (stack_start) very close to the stack top, the
1300   // next thing to do is to figure out the exact location of stack top. We
1301   // can find out the virtual memory area that contains stack_start by
1302   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1303   // and its upper limit is the real stack top. (again, this would fail if
1304   // running inside chroot, because /proc may not exist.)
1305 
1306   uintptr_t stack_top;
1307   address low, high;
1308   if (find_vma((address)stack_start, &low, &high)) {
1309     // success, "high" is the true stack top. (ignore "low", because initial
1310     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1311     stack_top = (uintptr_t)high;
1312   } else {
1313     // failed, likely because /proc/self/maps does not exist
1314     warning("Can't detect initial thread stack location - find_vma failed");
1315     // best effort: stack_start is normally within a few pages below the real
1316     // stack top, use it as stack top, and reduce stack size so we won't put
1317     // guard page outside stack.
1318     stack_top = stack_start;
1319     stack_size -= 16 * page_size();
1320   }
1321 
1322   // stack_top could be partially down the page so align it
1323   stack_top = align_size_up(stack_top, page_size());
1324 
1325   if (max_size && stack_size > max_size) {
1326      _initial_thread_stack_size = max_size;
1327   } else {
1328      _initial_thread_stack_size = stack_size;
1329   }
1330 
1331   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1332   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1333 }
1334 
1335 ////////////////////////////////////////////////////////////////////////////////
1336 // time support
1337 
1338 // Time since start-up in seconds to a fine granularity.
1339 // Used by VMSelfDestructTimer and the MemProfiler.
1340 double os::elapsedTime() {
1341 
1342   return ((double)os::elapsed_counter()) / os::elapsed_frequency(); // nanosecond resolution
1343 }
1344 
1345 jlong os::elapsed_counter() {
1346   return javaTimeNanos() - initial_time_count;
1347 }
1348 
1349 jlong os::elapsed_frequency() {
1350   return NANOSECS_PER_SEC; // nanosecond resolution
1351 }
1352 
1353 bool os::supports_vtime() { return true; }
1354 bool os::enable_vtime()   { return false; }
1355 bool os::vtime_enabled()  { return false; }
1356 
1357 double os::elapsedVTime() {
1358   struct rusage usage;
1359   int retval = getrusage(RUSAGE_THREAD, &usage);
1360   if (retval == 0) {
1361     return (double) (usage.ru_utime.tv_sec + usage.ru_stime.tv_sec) + (double) (usage.ru_utime.tv_usec + usage.ru_stime.tv_usec) / (1000 * 1000);
1362   } else {
1363     // better than nothing, but not much
1364     return elapsedTime();
1365   }
1366 }
1367 
1368 jlong os::javaTimeMillis() {
1369   timeval time;
1370   int status = gettimeofday(&time, NULL);
1371   assert(status != -1, "linux error");
1372   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1373 }
1374 
1375 #ifndef CLOCK_MONOTONIC
1376 #define CLOCK_MONOTONIC (1)
1377 #endif
1378 
1379 void os::Linux::clock_init() {
1380   // we do dlopen's in this particular order due to bug in linux
1381   // dynamical loader (see 6348968) leading to crash on exit
1382   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1383   if (handle == NULL) {
1384     handle = dlopen("librt.so", RTLD_LAZY);
1385   }
1386 
1387   if (handle) {
1388     int (*clock_getres_func)(clockid_t, struct timespec*) =
1389            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1390     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1391            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1392     if (clock_getres_func && clock_gettime_func) {
1393       // See if monotonic clock is supported by the kernel. Note that some
1394       // early implementations simply return kernel jiffies (updated every
1395       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1396       // for nano time (though the monotonic property is still nice to have).
1397       // It's fixed in newer kernels, however clock_getres() still returns
1398       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1399       // resolution for now. Hopefully as people move to new kernels, this
1400       // won't be a problem.
1401       struct timespec res;
1402       struct timespec tp;
1403       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1404           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1405         // yes, monotonic clock is supported
1406         _clock_gettime = clock_gettime_func;
1407         return;
1408       } else {
1409         // close librt if there is no monotonic clock
1410         dlclose(handle);
1411       }
1412     }
1413   }
1414   warning("No monotonic clock was available - timed services may " \
1415           "be adversely affected if the time-of-day clock changes");
1416 }
1417 
1418 #ifndef SYS_clock_getres
1419 
1420 #if defined(IA32) || defined(AMD64)
1421 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1422 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1423 #else
1424 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1425 #define sys_clock_getres(x,y)  -1
1426 #endif
1427 
1428 #else
1429 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1430 #endif
1431 
1432 void os::Linux::fast_thread_clock_init() {
1433   if (!UseLinuxPosixThreadCPUClocks) {
1434     return;
1435   }
1436   clockid_t clockid;
1437   struct timespec tp;
1438   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1439       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1440 
1441   // Switch to using fast clocks for thread cpu time if
1442   // the sys_clock_getres() returns 0 error code.
1443   // Note, that some kernels may support the current thread
1444   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1445   // returned by the pthread_getcpuclockid().
1446   // If the fast Posix clocks are supported then the sys_clock_getres()
1447   // must return at least tp.tv_sec == 0 which means a resolution
1448   // better than 1 sec. This is extra check for reliability.
1449 
1450   if(pthread_getcpuclockid_func &&
1451      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1452      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1453 
1454     _supports_fast_thread_cpu_time = true;
1455     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1456   }
1457 }
1458 
1459 jlong os::javaTimeNanos() {
1460   if (os::supports_monotonic_clock()) {
1461     struct timespec tp;
1462     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1463     assert(status == 0, "gettime error");
1464     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1465     return result;
1466   } else {
1467     timeval time;
1468     int status = gettimeofday(&time, NULL);
1469     assert(status != -1, "linux error");
1470     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1471     return 1000 * usecs;
1472   }
1473 }
1474 
1475 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1476   if (os::supports_monotonic_clock()) {
1477     info_ptr->max_value = ALL_64_BITS;
1478 
1479     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1480     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1481     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1482   } else {
1483     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1484     info_ptr->max_value = ALL_64_BITS;
1485 
1486     // gettimeofday is a real time clock so it skips
1487     info_ptr->may_skip_backward = true;
1488     info_ptr->may_skip_forward = true;
1489   }
1490 
1491   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1492 }
1493 
1494 // Return the real, user, and system times in seconds from an
1495 // arbitrary fixed point in the past.
1496 bool os::getTimesSecs(double* process_real_time,
1497                       double* process_user_time,
1498                       double* process_system_time) {
1499   struct tms ticks;
1500   clock_t real_ticks = times(&ticks);
1501 
1502   if (real_ticks == (clock_t) (-1)) {
1503     return false;
1504   } else {
1505     double ticks_per_second = (double) clock_tics_per_sec;
1506     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1507     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1508     *process_real_time = ((double) real_ticks) / ticks_per_second;
1509 
1510     return true;
1511   }
1512 }
1513 
1514 
1515 char * os::local_time_string(char *buf, size_t buflen) {
1516   struct tm t;
1517   time_t long_time;
1518   time(&long_time);
1519   localtime_r(&long_time, &t);
1520   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1521                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1522                t.tm_hour, t.tm_min, t.tm_sec);
1523   return buf;
1524 }
1525 
1526 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1527   return localtime_r(clock, res);
1528 }
1529 
1530 ////////////////////////////////////////////////////////////////////////////////
1531 // runtime exit support
1532 
1533 // Note: os::shutdown() might be called very early during initialization, or
1534 // called from signal handler. Before adding something to os::shutdown(), make
1535 // sure it is async-safe and can handle partially initialized VM.
1536 void os::shutdown() {
1537 
1538   // allow PerfMemory to attempt cleanup of any persistent resources
1539   perfMemory_exit();
1540 
1541   // needs to remove object in file system
1542   AttachListener::abort();
1543 
1544   // flush buffered output, finish log files
1545   ostream_abort();
1546 
1547   // Check for abort hook
1548   abort_hook_t abort_hook = Arguments::abort_hook();
1549   if (abort_hook != NULL) {
1550     abort_hook();
1551   }
1552 
1553 }
1554 
1555 // Note: os::abort() might be called very early during initialization, or
1556 // called from signal handler. Before adding something to os::abort(), make
1557 // sure it is async-safe and can handle partially initialized VM.
1558 void os::abort(bool dump_core) {
1559   os::shutdown();
1560   if (dump_core) {
1561 #ifndef PRODUCT
1562     fdStream out(defaultStream::output_fd());
1563     out.print_raw("Current thread is ");
1564     char buf[16];
1565     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1566     out.print_raw_cr(buf);
1567     out.print_raw_cr("Dumping core ...");
1568 #endif
1569     ::abort(); // dump core
1570   }
1571 
1572   ::exit(1);
1573 }
1574 
1575 // Die immediately, no exit hook, no abort hook, no cleanup.
1576 void os::die() {
1577   // _exit() on LinuxThreads only kills current thread
1578   ::abort();
1579 }
1580 
1581 // unused on linux for now.
1582 void os::set_error_file(const char *logfile) {}
1583 
1584 
1585 // This method is a copy of JDK's sysGetLastErrorString
1586 // from src/solaris/hpi/src/system_md.c
1587 
1588 size_t os::lasterror(char *buf, size_t len) {
1589 
1590   if (errno == 0)  return 0;
1591 
1592   const char *s = ::strerror(errno);
1593   size_t n = ::strlen(s);
1594   if (n >= len) {
1595     n = len - 1;
1596   }
1597   ::strncpy(buf, s, n);
1598   buf[n] = '\0';
1599   return n;
1600 }
1601 
1602 intx os::current_thread_id() { return (intx)pthread_self(); }
1603 int os::current_process_id() {
1604 
1605   // Under the old linux thread library, linux gives each thread
1606   // its own process id. Because of this each thread will return
1607   // a different pid if this method were to return the result
1608   // of getpid(2). Linux provides no api that returns the pid
1609   // of the launcher thread for the vm. This implementation
1610   // returns a unique pid, the pid of the launcher thread
1611   // that starts the vm 'process'.
1612 
1613   // Under the NPTL, getpid() returns the same pid as the
1614   // launcher thread rather than a unique pid per thread.
1615   // Use gettid() if you want the old pre NPTL behaviour.
1616 
1617   // if you are looking for the result of a call to getpid() that
1618   // returns a unique pid for the calling thread, then look at the
1619   // OSThread::thread_id() method in osThread_linux.hpp file
1620 
1621   return (int)(_initial_pid ? _initial_pid : getpid());
1622 }
1623 
1624 // DLL functions
1625 
1626 const char* os::dll_file_extension() { return ".so"; }
1627 
1628 // This must be hard coded because it's the system's temporary
1629 // directory not the java application's temp directory, ala java.io.tmpdir.
1630 const char* os::get_temp_directory() { return "/tmp"; }
1631 
1632 static bool file_exists(const char* filename) {
1633   struct stat statbuf;
1634   if (filename == NULL || strlen(filename) == 0) {
1635     return false;
1636   }
1637   return os::stat(filename, &statbuf) == 0;
1638 }
1639 
1640 bool os::dll_build_name(char* buffer, size_t buflen,
1641                         const char* pname, const char* fname) {
1642   bool retval = false;
1643   // Copied from libhpi
1644   const size_t pnamelen = pname ? strlen(pname) : 0;
1645 
1646   // Return error on buffer overflow.
1647   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1648     return retval;
1649   }
1650 
1651   if (pnamelen == 0) {
1652     snprintf(buffer, buflen, "lib%s.so", fname);
1653     retval = true;
1654   } else if (strchr(pname, *os::path_separator()) != NULL) {
1655     int n;
1656     char** pelements = split_path(pname, &n);
1657     if (pelements == NULL) {
1658       return false;
1659     }
1660     for (int i = 0 ; i < n ; i++) {
1661       // Really shouldn't be NULL, but check can't hurt
1662       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1663         continue; // skip the empty path values
1664       }
1665       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1666       if (file_exists(buffer)) {
1667         retval = true;
1668         break;
1669       }
1670     }
1671     // release the storage
1672     for (int i = 0 ; i < n ; i++) {
1673       if (pelements[i] != NULL) {
1674         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1675       }
1676     }
1677     if (pelements != NULL) {
1678       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1679     }
1680   } else {
1681     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1682     retval = true;
1683   }
1684   return retval;
1685 }
1686 
1687 // check if addr is inside libjvm.so
1688 bool os::address_is_in_vm(address addr) {
1689   static address libjvm_base_addr;
1690   Dl_info dlinfo;
1691 
1692   if (libjvm_base_addr == NULL) {
1693     if (dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo) != 0) {
1694       libjvm_base_addr = (address)dlinfo.dli_fbase;
1695     }
1696     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1697   }
1698 
1699   if (dladdr((void *)addr, &dlinfo) != 0) {
1700     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1701   }
1702 
1703   return false;
1704 }
1705 
1706 bool os::dll_address_to_function_name(address addr, char *buf,
1707                                       int buflen, int *offset) {
1708   // buf is not optional, but offset is optional
1709   assert(buf != NULL, "sanity check");
1710 
1711   Dl_info dlinfo;
1712 
1713   if (dladdr((void*)addr, &dlinfo) != 0) {
1714     // see if we have a matching symbol
1715     if (dlinfo.dli_saddr != NULL && dlinfo.dli_sname != NULL) {
1716       if (!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1717         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1718       }
1719       if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1720       return true;
1721     }
1722     // no matching symbol so try for just file info
1723     if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != NULL) {
1724       if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1725                           buf, buflen, offset, dlinfo.dli_fname)) {
1726         return true;
1727       }
1728     }
1729   }
1730 
1731   buf[0] = '\0';
1732   if (offset != NULL) *offset = -1;
1733   return false;
1734 }
1735 
1736 struct _address_to_library_name {
1737   address addr;          // input : memory address
1738   size_t  buflen;        //         size of fname
1739   char*   fname;         // output: library name
1740   address base;          //         library base addr
1741 };
1742 
1743 static int address_to_library_name_callback(struct dl_phdr_info *info,
1744                                             size_t size, void *data) {
1745   int i;
1746   bool found = false;
1747   address libbase = NULL;
1748   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1749 
1750   // iterate through all loadable segments
1751   for (i = 0; i < info->dlpi_phnum; i++) {
1752     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1753     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1754       // base address of a library is the lowest address of its loaded
1755       // segments.
1756       if (libbase == NULL || libbase > segbase) {
1757         libbase = segbase;
1758       }
1759       // see if 'addr' is within current segment
1760       if (segbase <= d->addr &&
1761           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1762         found = true;
1763       }
1764     }
1765   }
1766 
1767   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1768   // so dll_address_to_library_name() can fall through to use dladdr() which
1769   // can figure out executable name from argv[0].
1770   if (found && info->dlpi_name && info->dlpi_name[0]) {
1771     d->base = libbase;
1772     if (d->fname) {
1773       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1774     }
1775     return 1;
1776   }
1777   return 0;
1778 }
1779 
1780 bool os::dll_address_to_library_name(address addr, char* buf,
1781                                      int buflen, int* offset) {
1782   // buf is not optional, but offset is optional
1783   assert(buf != NULL, "sanity check");
1784 
1785   Dl_info dlinfo;
1786   struct _address_to_library_name data;
1787 
1788   // There is a bug in old glibc dladdr() implementation that it could resolve
1789   // to wrong library name if the .so file has a base address != NULL. Here
1790   // we iterate through the program headers of all loaded libraries to find
1791   // out which library 'addr' really belongs to. This workaround can be
1792   // removed once the minimum requirement for glibc is moved to 2.3.x.
1793   data.addr = addr;
1794   data.fname = buf;
1795   data.buflen = buflen;
1796   data.base = NULL;
1797   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1798 
1799   if (rslt) {
1800      // buf already contains library name
1801      if (offset) *offset = addr - data.base;
1802      return true;
1803   }
1804   if (dladdr((void*)addr, &dlinfo) != 0) {
1805     if (dlinfo.dli_fname != NULL) {
1806       jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1807     }
1808     if (dlinfo.dli_fbase != NULL && offset != NULL) {
1809       *offset = addr - (address)dlinfo.dli_fbase;
1810     }
1811     return true;
1812   }
1813 
1814   buf[0] = '\0';
1815   if (offset) *offset = -1;
1816   return false;
1817 }
1818 
1819   // Loads .dll/.so and
1820   // in case of error it checks if .dll/.so was built for the
1821   // same architecture as Hotspot is running on
1822 
1823 
1824 // Remember the stack's state. The Linux dynamic linker will change
1825 // the stack to 'executable' at most once, so we must safepoint only once.
1826 bool os::Linux::_stack_is_executable = false;
1827 
1828 // VM operation that loads a library.  This is necessary if stack protection
1829 // of the Java stacks can be lost during loading the library.  If we
1830 // do not stop the Java threads, they can stack overflow before the stacks
1831 // are protected again.
1832 class VM_LinuxDllLoad: public VM_Operation {
1833  private:
1834   const char *_filename;
1835   char *_ebuf;
1836   int _ebuflen;
1837   void *_lib;
1838  public:
1839   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1840     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1841   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1842   void doit() {
1843     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1844     os::Linux::_stack_is_executable = true;
1845   }
1846   void* loaded_library() { return _lib; }
1847 };
1848 
1849 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1850 {
1851   void * result = NULL;
1852   bool load_attempted = false;
1853 
1854   // Check whether the library to load might change execution rights
1855   // of the stack. If they are changed, the protection of the stack
1856   // guard pages will be lost. We need a safepoint to fix this.
1857   //
1858   // See Linux man page execstack(8) for more info.
1859   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1860     ElfFile ef(filename);
1861     if (!ef.specifies_noexecstack()) {
1862       if (!is_init_completed()) {
1863         os::Linux::_stack_is_executable = true;
1864         // This is OK - No Java threads have been created yet, and hence no
1865         // stack guard pages to fix.
1866         //
1867         // This should happen only when you are building JDK7 using a very
1868         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1869         //
1870         // Dynamic loader will make all stacks executable after
1871         // this function returns, and will not do that again.
1872         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1873       } else {
1874         warning("You have loaded library %s which might have disabled stack guard. "
1875                 "The VM will try to fix the stack guard now.\n"
1876                 "It's highly recommended that you fix the library with "
1877                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1878                 filename);
1879 
1880         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1881         JavaThread *jt = JavaThread::current();
1882         if (jt->thread_state() != _thread_in_native) {
1883           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1884           // that requires ExecStack. Cannot enter safe point. Let's give up.
1885           warning("Unable to fix stack guard. Giving up.");
1886         } else {
1887           if (!LoadExecStackDllInVMThread) {
1888             // This is for the case where the DLL has an static
1889             // constructor function that executes JNI code. We cannot
1890             // load such DLLs in the VMThread.
1891             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1892           }
1893 
1894           ThreadInVMfromNative tiv(jt);
1895           debug_only(VMNativeEntryWrapper vew;)
1896 
1897           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1898           VMThread::execute(&op);
1899           if (LoadExecStackDllInVMThread) {
1900             result = op.loaded_library();
1901           }
1902           load_attempted = true;
1903         }
1904       }
1905     }
1906   }
1907 
1908   if (!load_attempted) {
1909     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1910   }
1911 
1912   if (result != NULL) {
1913     // Successful loading
1914     return result;
1915   }
1916 
1917   Elf32_Ehdr elf_head;
1918   int diag_msg_max_length=ebuflen-strlen(ebuf);
1919   char* diag_msg_buf=ebuf+strlen(ebuf);
1920 
1921   if (diag_msg_max_length==0) {
1922     // No more space in ebuf for additional diagnostics message
1923     return NULL;
1924   }
1925 
1926 
1927   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1928 
1929   if (file_descriptor < 0) {
1930     // Can't open library, report dlerror() message
1931     return NULL;
1932   }
1933 
1934   bool failed_to_read_elf_head=
1935     (sizeof(elf_head)!=
1936         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1937 
1938   ::close(file_descriptor);
1939   if (failed_to_read_elf_head) {
1940     // file i/o error - report dlerror() msg
1941     return NULL;
1942   }
1943 
1944   typedef struct {
1945     Elf32_Half  code;         // Actual value as defined in elf.h
1946     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1947     char        elf_class;    // 32 or 64 bit
1948     char        endianess;    // MSB or LSB
1949     char*       name;         // String representation
1950   } arch_t;
1951 
1952   #ifndef EM_486
1953   #define EM_486          6               /* Intel 80486 */
1954   #endif
1955 
1956   static const arch_t arch_array[]={
1957     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1958     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1959     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1960     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1961     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1962     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1963     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1964     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1965     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1966     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1967     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1968     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1969     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1970     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1971     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1972     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1973   };
1974 
1975   #if  (defined IA32)
1976     static  Elf32_Half running_arch_code=EM_386;
1977   #elif   (defined AMD64)
1978     static  Elf32_Half running_arch_code=EM_X86_64;
1979   #elif  (defined IA64)
1980     static  Elf32_Half running_arch_code=EM_IA_64;
1981   #elif  (defined __sparc) && (defined _LP64)
1982     static  Elf32_Half running_arch_code=EM_SPARCV9;
1983   #elif  (defined __sparc) && (!defined _LP64)
1984     static  Elf32_Half running_arch_code=EM_SPARC;
1985   #elif  (defined __powerpc64__)
1986     static  Elf32_Half running_arch_code=EM_PPC64;
1987   #elif  (defined __powerpc__)
1988     static  Elf32_Half running_arch_code=EM_PPC;
1989   #elif  (defined ARM)
1990     static  Elf32_Half running_arch_code=EM_ARM;
1991   #elif  (defined S390)
1992     static  Elf32_Half running_arch_code=EM_S390;
1993   #elif  (defined ALPHA)
1994     static  Elf32_Half running_arch_code=EM_ALPHA;
1995   #elif  (defined MIPSEL)
1996     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1997   #elif  (defined PARISC)
1998     static  Elf32_Half running_arch_code=EM_PARISC;
1999   #elif  (defined MIPS)
2000     static  Elf32_Half running_arch_code=EM_MIPS;
2001   #elif  (defined M68K)
2002     static  Elf32_Half running_arch_code=EM_68K;
2003   #else
2004     #error Method os::dll_load requires that one of following is defined:\
2005          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
2006   #endif
2007 
2008   // Identify compatability class for VM's architecture and library's architecture
2009   // Obtain string descriptions for architectures
2010 
2011   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
2012   int running_arch_index=-1;
2013 
2014   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
2015     if (running_arch_code == arch_array[i].code) {
2016       running_arch_index    = i;
2017     }
2018     if (lib_arch.code == arch_array[i].code) {
2019       lib_arch.compat_class = arch_array[i].compat_class;
2020       lib_arch.name         = arch_array[i].name;
2021     }
2022   }
2023 
2024   assert(running_arch_index != -1,
2025     "Didn't find running architecture code (running_arch_code) in arch_array");
2026   if (running_arch_index == -1) {
2027     // Even though running architecture detection failed
2028     // we may still continue with reporting dlerror() message
2029     return NULL;
2030   }
2031 
2032   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
2033     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
2034     return NULL;
2035   }
2036 
2037 #ifndef S390
2038   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2039     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2040     return NULL;
2041   }
2042 #endif // !S390
2043 
2044   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2045     if ( lib_arch.name!=NULL ) {
2046       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2047         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2048         lib_arch.name, arch_array[running_arch_index].name);
2049     } else {
2050       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2051       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2052         lib_arch.code,
2053         arch_array[running_arch_index].name);
2054     }
2055   }
2056 
2057   return NULL;
2058 }
2059 
2060 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2061   void * result = ::dlopen(filename, RTLD_LAZY);
2062   if (result == NULL) {
2063     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2064     ebuf[ebuflen-1] = '\0';
2065   }
2066   return result;
2067 }
2068 
2069 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2070   void * result = NULL;
2071   if (LoadExecStackDllInVMThread) {
2072     result = dlopen_helper(filename, ebuf, ebuflen);
2073   }
2074 
2075   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2076   // library that requires an executable stack, or which does not have this
2077   // stack attribute set, dlopen changes the stack attribute to executable. The
2078   // read protection of the guard pages gets lost.
2079   //
2080   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2081   // may have been queued at the same time.
2082 
2083   if (!_stack_is_executable) {
2084     JavaThread *jt = Threads::first();
2085 
2086     while (jt) {
2087       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2088           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2089         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2090                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2091           warning("Attempt to reguard stack yellow zone failed.");
2092         }
2093       }
2094       jt = jt->next();
2095     }
2096   }
2097 
2098   return result;
2099 }
2100 
2101 /*
2102  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2103  * chances are you might want to run the generated bits against glibc-2.0
2104  * libdl.so, so always use locking for any version of glibc.
2105  */
2106 void* os::dll_lookup(void* handle, const char* name) {
2107   pthread_mutex_lock(&dl_mutex);
2108   void* res = dlsym(handle, name);
2109   pthread_mutex_unlock(&dl_mutex);
2110   return res;
2111 }
2112 
2113 void* os::get_default_process_handle() {
2114   return (void*)::dlopen(NULL, RTLD_LAZY);
2115 }
2116 
2117 static bool _print_ascii_file(const char* filename, outputStream* st) {
2118   int fd = ::open(filename, O_RDONLY);
2119   if (fd == -1) {
2120      return false;
2121   }
2122 
2123   char buf[32];
2124   int bytes;
2125   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2126     st->print_raw(buf, bytes);
2127   }
2128 
2129   ::close(fd);
2130 
2131   return true;
2132 }
2133 
2134 void os::print_dll_info(outputStream *st) {
2135    st->print_cr("Dynamic libraries:");
2136 
2137    char fname[32];
2138    pid_t pid = os::Linux::gettid();
2139 
2140    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2141 
2142    if (!_print_ascii_file(fname, st)) {
2143      st->print("Can not get library information for pid = %d\n", pid);
2144    }
2145 }
2146 
2147 void os::print_os_info_brief(outputStream* st) {
2148   os::Linux::print_distro_info(st);
2149 
2150   os::Posix::print_uname_info(st);
2151 
2152   os::Linux::print_libversion_info(st);
2153 
2154 }
2155 
2156 void os::print_os_info(outputStream* st) {
2157   st->print("OS:");
2158 
2159   os::Linux::print_distro_info(st);
2160 
2161   os::Posix::print_uname_info(st);
2162 
2163   // Print warning if unsafe chroot environment detected
2164   if (unsafe_chroot_detected) {
2165     st->print("WARNING!! ");
2166     st->print_cr(unstable_chroot_error);
2167   }
2168 
2169   os::Linux::print_libversion_info(st);
2170 
2171   os::Posix::print_rlimit_info(st);
2172 
2173   os::Posix::print_load_average(st);
2174 
2175   os::Linux::print_full_memory_info(st);
2176 }
2177 
2178 // Try to identify popular distros.
2179 // Most Linux distributions have a /etc/XXX-release file, which contains
2180 // the OS version string. Newer Linux distributions have a /etc/lsb-release
2181 // file that also contains the OS version string. Some have more than one
2182 // /etc/XXX-release file (e.g. Mandrake has both /etc/mandrake-release and
2183 // /etc/redhat-release.), so the order is important.
2184 // Any Linux that is based on Redhat (i.e. Oracle, Mandrake, Sun JDS...) have
2185 // their own specific XXX-release file as well as a redhat-release file.
2186 // Because of this the XXX-release file needs to be searched for before the
2187 // redhat-release file.
2188 // Since Red Hat has a lsb-release file that is not very descriptive the
2189 // search for redhat-release needs to be before lsb-release.
2190 // Since the lsb-release file is the new standard it needs to be searched
2191 // before the older style release files.
2192 // Searching system-release (Red Hat) and os-release (other Linuxes) are a
2193 // next to last resort.  The os-release file is a new standard that contains
2194 // distribution information and the system-release file seems to be an old
2195 // standard that has been replaced by the lsb-release and os-release files.
2196 // Searching for the debian_version file is the last resort.  It contains
2197 // an informative string like "6.0.6" or "wheezy/sid". Because of this
2198 // "Debian " is printed before the contents of the debian_version file.
2199 void os::Linux::print_distro_info(outputStream* st) {
2200    if (!_print_ascii_file("/etc/oracle-release", st) &&
2201        !_print_ascii_file("/etc/mandriva-release", st) &&
2202        !_print_ascii_file("/etc/mandrake-release", st) &&
2203        !_print_ascii_file("/etc/sun-release", st) &&
2204        !_print_ascii_file("/etc/redhat-release", st) &&
2205        !_print_ascii_file("/etc/lsb-release", st) &&
2206        !_print_ascii_file("/etc/SuSE-release", st) &&
2207        !_print_ascii_file("/etc/turbolinux-release", st) &&
2208        !_print_ascii_file("/etc/gentoo-release", st) &&
2209        !_print_ascii_file("/etc/ltib-release", st) &&
2210        !_print_ascii_file("/etc/angstrom-version", st) &&
2211        !_print_ascii_file("/etc/system-release", st) &&
2212        !_print_ascii_file("/etc/os-release", st)) {
2213 
2214        if (file_exists("/etc/debian_version")) {
2215          st->print("Debian ");
2216          _print_ascii_file("/etc/debian_version", st);
2217        } else {
2218          st->print("Linux");
2219        }
2220    }
2221    st->cr();
2222 }
2223 
2224 void os::Linux::print_libversion_info(outputStream* st) {
2225   // libc, pthread
2226   st->print("libc:");
2227   st->print(os::Linux::glibc_version()); st->print(" ");
2228   st->print(os::Linux::libpthread_version()); st->print(" ");
2229   if (os::Linux::is_LinuxThreads()) {
2230      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2231   }
2232   st->cr();
2233 }
2234 
2235 void os::Linux::print_full_memory_info(outputStream* st) {
2236    st->print("\n/proc/meminfo:\n");
2237    _print_ascii_file("/proc/meminfo", st);
2238    st->cr();
2239 }
2240 
2241 void os::print_memory_info(outputStream* st) {
2242 
2243   st->print("Memory:");
2244   st->print(" %dk page", os::vm_page_size()>>10);
2245 
2246   // values in struct sysinfo are "unsigned long"
2247   struct sysinfo si;
2248   sysinfo(&si);
2249 
2250   st->print(", physical " UINT64_FORMAT "k",
2251             os::physical_memory() >> 10);
2252   st->print("(" UINT64_FORMAT "k free)",
2253             os::available_memory() >> 10);
2254   st->print(", swap " UINT64_FORMAT "k",
2255             ((jlong)si.totalswap * si.mem_unit) >> 10);
2256   st->print("(" UINT64_FORMAT "k free)",
2257             ((jlong)si.freeswap * si.mem_unit) >> 10);
2258   st->cr();
2259 }
2260 
2261 void os::pd_print_cpu_info(outputStream* st) {
2262   st->print("\n/proc/cpuinfo:\n");
2263   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2264     st->print("  <Not Available>");
2265   }
2266   st->cr();
2267 }
2268 
2269 void os::print_siginfo(outputStream* st, void* siginfo) {
2270   const siginfo_t* si = (const siginfo_t*)siginfo;
2271 
2272   os::Posix::print_siginfo_brief(st, si);
2273 
2274   if (si && (si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2275       UseSharedSpaces) {
2276     FileMapInfo* mapinfo = FileMapInfo::current_info();
2277     if (mapinfo->is_in_shared_space(si->si_addr)) {
2278       st->print("\n\nError accessing class data sharing archive."   \
2279                 " Mapped file inaccessible during execution, "      \
2280                 " possible disk/network problem.");
2281     }
2282   }
2283   st->cr();
2284 }
2285 
2286 
2287 static void print_signal_handler(outputStream* st, int sig,
2288                                  char* buf, size_t buflen);
2289 
2290 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2291   st->print_cr("Signal Handlers:");
2292   print_signal_handler(st, SIGSEGV, buf, buflen);
2293   print_signal_handler(st, SIGBUS , buf, buflen);
2294   print_signal_handler(st, SIGFPE , buf, buflen);
2295   print_signal_handler(st, SIGPIPE, buf, buflen);
2296   print_signal_handler(st, SIGXFSZ, buf, buflen);
2297   print_signal_handler(st, SIGILL , buf, buflen);
2298   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2299   print_signal_handler(st, SR_signum, buf, buflen);
2300   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2301   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2302   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2303   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2304 #if defined(PPC64)
2305   print_signal_handler(st, SIGTRAP, buf, buflen);
2306 #endif
2307 }
2308 
2309 static char saved_jvm_path[MAXPATHLEN] = {0};
2310 
2311 // Find the full path to the current module, libjvm.so
2312 void os::jvm_path(char *buf, jint buflen) {
2313   // Error checking.
2314   if (buflen < MAXPATHLEN) {
2315     assert(false, "must use a large-enough buffer");
2316     buf[0] = '\0';
2317     return;
2318   }
2319   // Lazy resolve the path to current module.
2320   if (saved_jvm_path[0] != 0) {
2321     strcpy(buf, saved_jvm_path);
2322     return;
2323   }
2324 
2325   char dli_fname[MAXPATHLEN];
2326   bool ret = dll_address_to_library_name(
2327                 CAST_FROM_FN_PTR(address, os::jvm_path),
2328                 dli_fname, sizeof(dli_fname), NULL);
2329   assert(ret, "cannot locate libjvm");
2330   char *rp = NULL;
2331   if (ret && dli_fname[0] != '\0') {
2332     rp = realpath(dli_fname, buf);
2333   }
2334   if (rp == NULL)
2335     return;
2336 
2337   if (Arguments::sun_java_launcher_is_altjvm()) {
2338     // Support for the java launcher's '-XXaltjvm=<path>' option. Typical
2339     // value for buf is "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".
2340     // If "/jre/lib/" appears at the right place in the string, then
2341     // assume we are installed in a JDK and we're done. Otherwise, check
2342     // for a JAVA_HOME environment variable and fix up the path so it
2343     // looks like libjvm.so is installed there (append a fake suffix
2344     // hotspot/libjvm.so).
2345     const char *p = buf + strlen(buf) - 1;
2346     for (int count = 0; p > buf && count < 5; ++count) {
2347       for (--p; p > buf && *p != '/'; --p)
2348         /* empty */ ;
2349     }
2350 
2351     if (strncmp(p, "/jre/lib/", 9) != 0) {
2352       // Look for JAVA_HOME in the environment.
2353       char* java_home_var = ::getenv("JAVA_HOME");
2354       if (java_home_var != NULL && java_home_var[0] != 0) {
2355         char* jrelib_p;
2356         int len;
2357 
2358         // Check the current module name "libjvm.so".
2359         p = strrchr(buf, '/');
2360         assert(strstr(p, "/libjvm") == p, "invalid library name");
2361 
2362         rp = realpath(java_home_var, buf);
2363         if (rp == NULL)
2364           return;
2365 
2366         // determine if this is a legacy image or modules image
2367         // modules image doesn't have "jre" subdirectory
2368         len = strlen(buf);
2369         jrelib_p = buf + len;
2370         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2371         if (0 != access(buf, F_OK)) {
2372           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2373         }
2374 
2375         if (0 == access(buf, F_OK)) {
2376           // Use current module name "libjvm.so"
2377           len = strlen(buf);
2378           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2379         } else {
2380           // Go back to path of .so
2381           rp = realpath(dli_fname, buf);
2382           if (rp == NULL)
2383             return;
2384         }
2385       }
2386     }
2387   }
2388 
2389   strcpy(saved_jvm_path, buf);
2390 }
2391 
2392 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2393   // no prefix required, not even "_"
2394 }
2395 
2396 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2397   // no suffix required
2398 }
2399 
2400 ////////////////////////////////////////////////////////////////////////////////
2401 // sun.misc.Signal support
2402 
2403 static volatile jint sigint_count = 0;
2404 
2405 static void
2406 UserHandler(int sig, void *siginfo, void *context) {
2407   // 4511530 - sem_post is serialized and handled by the manager thread. When
2408   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2409   // don't want to flood the manager thread with sem_post requests.
2410   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2411       return;
2412 
2413   // Ctrl-C is pressed during error reporting, likely because the error
2414   // handler fails to abort. Let VM die immediately.
2415   if (sig == SIGINT && is_error_reported()) {
2416      os::die();
2417   }
2418 
2419   os::signal_notify(sig);
2420 }
2421 
2422 void* os::user_handler() {
2423   return CAST_FROM_FN_PTR(void*, UserHandler);
2424 }
2425 
2426 class Semaphore : public StackObj {
2427   public:
2428     Semaphore();
2429     ~Semaphore();
2430     void signal();
2431     void wait();
2432     bool trywait();
2433     bool timedwait(unsigned int sec, int nsec);
2434   private:
2435     sem_t _semaphore;
2436 };
2437 
2438 Semaphore::Semaphore() {
2439   sem_init(&_semaphore, 0, 0);
2440 }
2441 
2442 Semaphore::~Semaphore() {
2443   sem_destroy(&_semaphore);
2444 }
2445 
2446 void Semaphore::signal() {
2447   sem_post(&_semaphore);
2448 }
2449 
2450 void Semaphore::wait() {
2451   sem_wait(&_semaphore);
2452 }
2453 
2454 bool Semaphore::trywait() {
2455   return sem_trywait(&_semaphore) == 0;
2456 }
2457 
2458 bool Semaphore::timedwait(unsigned int sec, int nsec) {
2459   struct timespec ts;
2460   // Semaphore's are always associated with CLOCK_REALTIME
2461   absoluteRealTimeForRelativeTime(&ts, (sec * NANOSECS_PER_SEC) + nsec);
2462 
2463   while (1) {
2464     int result = sem_timedwait(&_semaphore, &ts);
2465     if (result == 0) {
2466       return true;
2467     } else if (errno == EINTR) {
2468       continue;
2469     } else if (errno == ETIMEDOUT) {
2470       return false;
2471     } else {
2472       return false;
2473     }
2474   }
2475 }
2476 
2477 extern "C" {
2478   typedef void (*sa_handler_t)(int);
2479   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2480 }
2481 
2482 void* os::signal(int signal_number, void* handler) {
2483   struct sigaction sigAct, oldSigAct;
2484 
2485   sigfillset(&(sigAct.sa_mask));
2486   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2487   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2488 
2489   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2490     // -1 means registration failed
2491     return (void *)-1;
2492   }
2493 
2494   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2495 }
2496 
2497 void os::signal_raise(int signal_number) {
2498   ::raise(signal_number);
2499 }
2500 
2501 /*
2502  * The following code is moved from os.cpp for making this
2503  * code platform specific, which it is by its very nature.
2504  */
2505 
2506 // Will be modified when max signal is changed to be dynamic
2507 int os::sigexitnum_pd() {
2508   return NSIG;
2509 }
2510 
2511 // a counter for each possible signal value
2512 static volatile jint pending_signals[NSIG+1] = { 0 };
2513 
2514 // Linux(POSIX) specific hand shaking semaphore.
2515 static sem_t sig_sem;
2516 static Semaphore sr_semaphore;
2517 
2518 void os::signal_init_pd() {
2519   // Initialize signal structures
2520   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2521 
2522   // Initialize signal semaphore
2523   ::sem_init(&sig_sem, 0, 0);
2524 }
2525 
2526 void os::signal_notify(int sig) {
2527   Atomic::inc(&pending_signals[sig]);
2528   ::sem_post(&sig_sem);
2529 }
2530 
2531 static int check_pending_signals(bool wait) {
2532   Atomic::store(0, &sigint_count);
2533   for (;;) {
2534     for (int i = 0; i < NSIG + 1; i++) {
2535       jint n = pending_signals[i];
2536       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2537         return i;
2538       }
2539     }
2540     if (!wait) {
2541       return -1;
2542     }
2543     JavaThread *thread = JavaThread::current();
2544     ThreadBlockInVM tbivm(thread);
2545 
2546     bool threadIsSuspended;
2547     do {
2548       thread->set_suspend_equivalent();
2549       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2550       ::sem_wait(&sig_sem);
2551 
2552       // were we externally suspended while we were waiting?
2553       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2554       if (threadIsSuspended) {
2555         //
2556         // The semaphore has been incremented, but while we were waiting
2557         // another thread suspended us. We don't want to continue running
2558         // while suspended because that would surprise the thread that
2559         // suspended us.
2560         //
2561         ::sem_post(&sig_sem);
2562 
2563         thread->java_suspend_self();
2564       }
2565     } while (threadIsSuspended);
2566   }
2567 }
2568 
2569 int os::signal_lookup() {
2570   return check_pending_signals(false);
2571 }
2572 
2573 int os::signal_wait() {
2574   return check_pending_signals(true);
2575 }
2576 
2577 ////////////////////////////////////////////////////////////////////////////////
2578 // Virtual Memory
2579 
2580 int os::vm_page_size() {
2581   // Seems redundant as all get out
2582   assert(os::Linux::page_size() != -1, "must call os::init");
2583   return os::Linux::page_size();
2584 }
2585 
2586 // Solaris allocates memory by pages.
2587 int os::vm_allocation_granularity() {
2588   assert(os::Linux::page_size() != -1, "must call os::init");
2589   return os::Linux::page_size();
2590 }
2591 
2592 // Rationale behind this function:
2593 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2594 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2595 //  samples for JITted code. Here we create private executable mapping over the code cache
2596 //  and then we can use standard (well, almost, as mapping can change) way to provide
2597 //  info for the reporting script by storing timestamp and location of symbol
2598 void linux_wrap_code(char* base, size_t size) {
2599   static volatile jint cnt = 0;
2600 
2601   if (!UseOprofile) {
2602     return;
2603   }
2604 
2605   char buf[PATH_MAX+1];
2606   int num = Atomic::add(1, &cnt);
2607 
2608   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2609            os::get_temp_directory(), os::current_process_id(), num);
2610   unlink(buf);
2611 
2612   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2613 
2614   if (fd != -1) {
2615     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2616     if (rv != (off_t)-1) {
2617       if (::write(fd, "", 1) == 1) {
2618         mmap(base, size,
2619              PROT_READ|PROT_WRITE|PROT_EXEC,
2620              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2621       }
2622     }
2623     ::close(fd);
2624     unlink(buf);
2625   }
2626 }
2627 
2628 static bool recoverable_mmap_error(int err) {
2629   // See if the error is one we can let the caller handle. This
2630   // list of errno values comes from JBS-6843484. I can't find a
2631   // Linux man page that documents this specific set of errno
2632   // values so while this list currently matches Solaris, it may
2633   // change as we gain experience with this failure mode.
2634   switch (err) {
2635   case EBADF:
2636   case EINVAL:
2637   case ENOTSUP:
2638     // let the caller deal with these errors
2639     return true;
2640 
2641   default:
2642     // Any remaining errors on this OS can cause our reserved mapping
2643     // to be lost. That can cause confusion where different data
2644     // structures think they have the same memory mapped. The worst
2645     // scenario is if both the VM and a library think they have the
2646     // same memory mapped.
2647     return false;
2648   }
2649 }
2650 
2651 static void warn_fail_commit_memory(char* addr, size_t size, bool exec,
2652                                     int err) {
2653   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2654           ", %d) failed; error='%s' (errno=%d)", addr, size, exec,
2655           strerror(err), err);
2656 }
2657 
2658 static void warn_fail_commit_memory(char* addr, size_t size,
2659                                     size_t alignment_hint, bool exec,
2660                                     int err) {
2661   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
2662           ", " SIZE_FORMAT ", %d) failed; error='%s' (errno=%d)", addr, size,
2663           alignment_hint, exec, strerror(err), err);
2664 }
2665 
2666 // NOTE: Linux kernel does not really reserve the pages for us.
2667 //       All it does is to check if there are enough free pages
2668 //       left at the time of mmap(). This could be a potential
2669 //       problem.
2670 int os::Linux::commit_memory_impl(char* addr, size_t size, bool exec) {
2671   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2672   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2673                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2674   if (res != (uintptr_t) MAP_FAILED) {
2675     if (UseNUMAInterleaving) {
2676       numa_make_global(addr, size);
2677     }
2678     return 0;
2679   }
2680 
2681   int err = errno;  // save errno from mmap() call above
2682 
2683   if (!recoverable_mmap_error(err)) {
2684     warn_fail_commit_memory(addr, size, exec, err);
2685     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, "committing reserved memory.");
2686   }
2687 
2688   return err;
2689 }
2690 
2691 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2692   return os::Linux::commit_memory_impl(addr, size, exec) == 0;
2693 }
2694 
2695 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
2696                                   const char* mesg) {
2697   assert(mesg != NULL, "mesg must be specified");
2698   int err = os::Linux::commit_memory_impl(addr, size, exec);
2699   if (err != 0) {
2700     // the caller wants all commit errors to exit with the specified mesg:
2701     warn_fail_commit_memory(addr, size, exec, err);
2702     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2703   }
2704 }
2705 
2706 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2707 #ifndef MAP_HUGETLB
2708 #define MAP_HUGETLB 0x40000
2709 #endif
2710 
2711 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2712 #ifndef MADV_HUGEPAGE
2713 #define MADV_HUGEPAGE 14
2714 #endif
2715 
2716 int os::Linux::commit_memory_impl(char* addr, size_t size,
2717                                   size_t alignment_hint, bool exec) {
2718   int err = os::Linux::commit_memory_impl(addr, size, exec);
2719   if (err == 0) {
2720     realign_memory(addr, size, alignment_hint);
2721   }
2722   return err;
2723 }
2724 
2725 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2726                           bool exec) {
2727   return os::Linux::commit_memory_impl(addr, size, alignment_hint, exec) == 0;
2728 }
2729 
2730 void os::pd_commit_memory_or_exit(char* addr, size_t size,
2731                                   size_t alignment_hint, bool exec,
2732                                   const char* mesg) {
2733   assert(mesg != NULL, "mesg must be specified");
2734   int err = os::Linux::commit_memory_impl(addr, size, alignment_hint, exec);
2735   if (err != 0) {
2736     // the caller wants all commit errors to exit with the specified mesg:
2737     warn_fail_commit_memory(addr, size, alignment_hint, exec, err);
2738     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
2739   }
2740 }
2741 
2742 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2743   if (UseTransparentHugePages && alignment_hint > (size_t)vm_page_size()) {
2744     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2745     // be supported or the memory may already be backed by huge pages.
2746     ::madvise(addr, bytes, MADV_HUGEPAGE);
2747   }
2748 }
2749 
2750 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2751   // This method works by doing an mmap over an existing mmaping and effectively discarding
2752   // the existing pages. However it won't work for SHM-based large pages that cannot be
2753   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2754   // small pages on top of the SHM segment. This method always works for small pages, so we
2755   // allow that in any case.
2756   if (alignment_hint <= (size_t)os::vm_page_size() || can_commit_large_page_memory()) {
2757     commit_memory(addr, bytes, alignment_hint, !ExecMem);
2758   }
2759 }
2760 
2761 void os::numa_make_global(char *addr, size_t bytes) {
2762   Linux::numa_interleave_memory(addr, bytes);
2763 }
2764 
2765 // Define for numa_set_bind_policy(int). Setting the argument to 0 will set the
2766 // bind policy to MPOL_PREFERRED for the current thread.
2767 #define USE_MPOL_PREFERRED 0
2768 
2769 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2770   // To make NUMA and large pages more robust when both enabled, we need to ease
2771   // the requirements on where the memory should be allocated. MPOL_BIND is the
2772   // default policy and it will force memory to be allocated on the specified
2773   // node. Changing this to MPOL_PREFERRED will prefer to allocate the memory on
2774   // the specified node, but will not force it. Using this policy will prevent
2775   // getting SIGBUS when trying to allocate large pages on NUMA nodes with no
2776   // free large pages.
2777   Linux::numa_set_bind_policy(USE_MPOL_PREFERRED);
2778   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2779 }
2780 
2781 bool os::numa_topology_changed()   { return false; }
2782 
2783 size_t os::numa_get_groups_num() {
2784   int max_node = Linux::numa_max_node();
2785   return max_node > 0 ? max_node + 1 : 1;
2786 }
2787 
2788 int os::numa_get_group_id() {
2789   int cpu_id = Linux::sched_getcpu();
2790   if (cpu_id != -1) {
2791     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2792     if (lgrp_id != -1) {
2793       return lgrp_id;
2794     }
2795   }
2796   return 0;
2797 }
2798 
2799 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2800   for (size_t i = 0; i < size; i++) {
2801     ids[i] = i;
2802   }
2803   return size;
2804 }
2805 
2806 bool os::get_page_info(char *start, page_info* info) {
2807   return false;
2808 }
2809 
2810 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2811   return end;
2812 }
2813 
2814 
2815 int os::Linux::sched_getcpu_syscall(void) {
2816   unsigned int cpu;
2817   int retval = -1;
2818 
2819 #if defined(IA32)
2820 # ifndef SYS_getcpu
2821 # define SYS_getcpu 318
2822 # endif
2823   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2824 #elif defined(AMD64)
2825 // Unfortunately we have to bring all these macros here from vsyscall.h
2826 // to be able to compile on old linuxes.
2827 # define __NR_vgetcpu 2
2828 # define VSYSCALL_START (-10UL << 20)
2829 # define VSYSCALL_SIZE 1024
2830 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2831   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2832   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2833   retval = vgetcpu(&cpu, NULL, NULL);
2834 #endif
2835 
2836   return (retval == -1) ? retval : cpu;
2837 }
2838 
2839 // Something to do with the numa-aware allocator needs these symbols
2840 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2841 extern "C" JNIEXPORT void numa_error(char *where) { }
2842 extern "C" JNIEXPORT int fork1() { return fork(); }
2843 
2844 
2845 // If we are running with libnuma version > 2, then we should
2846 // be trying to use symbols with versions 1.1
2847 // If we are running with earlier version, which did not have symbol versions,
2848 // we should use the base version.
2849 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2850   void *f = dlvsym(handle, name, "libnuma_1.1");
2851   if (f == NULL) {
2852     f = dlsym(handle, name);
2853   }
2854   return f;
2855 }
2856 
2857 bool os::Linux::libnuma_init() {
2858   // sched_getcpu() should be in libc.
2859   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2860                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2861 
2862   // If it's not, try a direct syscall.
2863   if (sched_getcpu() == -1)
2864     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2865 
2866   if (sched_getcpu() != -1) { // Does it work?
2867     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2868     if (handle != NULL) {
2869       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2870                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2871       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2872                                        libnuma_dlsym(handle, "numa_max_node")));
2873       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2874                                         libnuma_dlsym(handle, "numa_available")));
2875       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2876                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2877       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2878                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2879       set_numa_set_bind_policy(CAST_TO_FN_PTR(numa_set_bind_policy_func_t,
2880                                             libnuma_dlsym(handle, "numa_set_bind_policy")));
2881 
2882 
2883       if (numa_available() != -1) {
2884         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2885         // Create a cpu -> node mapping
2886         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2887         rebuild_cpu_to_node_map();
2888         return true;
2889       }
2890     }
2891   }
2892   return false;
2893 }
2894 
2895 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2896 // The table is later used in get_node_by_cpu().
2897 void os::Linux::rebuild_cpu_to_node_map() {
2898   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2899                               // in libnuma (possible values are starting from 16,
2900                               // and continuing up with every other power of 2, but less
2901                               // than the maximum number of CPUs supported by kernel), and
2902                               // is a subject to change (in libnuma version 2 the requirements
2903                               // are more reasonable) we'll just hardcode the number they use
2904                               // in the library.
2905   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2906 
2907   size_t cpu_num = os::active_processor_count();
2908   size_t cpu_map_size = NCPUS / BitsPerCLong;
2909   size_t cpu_map_valid_size =
2910     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2911 
2912   cpu_to_node()->clear();
2913   cpu_to_node()->at_grow(cpu_num - 1);
2914   size_t node_num = numa_get_groups_num();
2915 
2916   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2917   for (size_t i = 0; i < node_num; i++) {
2918     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2919       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2920         if (cpu_map[j] != 0) {
2921           for (size_t k = 0; k < BitsPerCLong; k++) {
2922             if (cpu_map[j] & (1UL << k)) {
2923               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2924             }
2925           }
2926         }
2927       }
2928     }
2929   }
2930   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2931 }
2932 
2933 int os::Linux::get_node_by_cpu(int cpu_id) {
2934   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2935     return cpu_to_node()->at(cpu_id);
2936   }
2937   return -1;
2938 }
2939 
2940 GrowableArray<int>* os::Linux::_cpu_to_node;
2941 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2942 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2943 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2944 os::Linux::numa_available_func_t os::Linux::_numa_available;
2945 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2946 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2947 os::Linux::numa_set_bind_policy_func_t os::Linux::_numa_set_bind_policy;
2948 unsigned long* os::Linux::_numa_all_nodes;
2949 
2950 bool os::pd_uncommit_memory(char* addr, size_t size) {
2951   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2952                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2953   return res  != (uintptr_t) MAP_FAILED;
2954 }
2955 
2956 static
2957 address get_stack_commited_bottom(address bottom, size_t size) {
2958   address nbot = bottom;
2959   address ntop = bottom + size;
2960 
2961   size_t page_sz = os::vm_page_size();
2962   unsigned pages = size / page_sz;
2963 
2964   unsigned char vec[1];
2965   unsigned imin = 1, imax = pages + 1, imid;
2966   int mincore_return_value = 0;
2967 
2968   assert(imin <= imax, "Unexpected page size");
2969 
2970   while (imin < imax) {
2971     imid = (imax + imin) / 2;
2972     nbot = ntop - (imid * page_sz);
2973 
2974     // Use a trick with mincore to check whether the page is mapped or not.
2975     // mincore sets vec to 1 if page resides in memory and to 0 if page
2976     // is swapped output but if page we are asking for is unmapped
2977     // it returns -1,ENOMEM
2978     mincore_return_value = mincore(nbot, page_sz, vec);
2979 
2980     if (mincore_return_value == -1) {
2981       // Page is not mapped go up
2982       // to find first mapped page
2983       if (errno != EAGAIN) {
2984         assert(errno == ENOMEM, "Unexpected mincore errno");
2985         imax = imid;
2986       }
2987     } else {
2988       // Page is mapped go down
2989       // to find first not mapped page
2990       imin = imid + 1;
2991     }
2992   }
2993 
2994   nbot = nbot + page_sz;
2995 
2996   // Adjust stack bottom one page up if last checked page is not mapped
2997   if (mincore_return_value == -1) {
2998     nbot = nbot + page_sz;
2999   }
3000 
3001   return nbot;
3002 }
3003 
3004 
3005 // Linux uses a growable mapping for the stack, and if the mapping for
3006 // the stack guard pages is not removed when we detach a thread the
3007 // stack cannot grow beyond the pages where the stack guard was
3008 // mapped.  If at some point later in the process the stack expands to
3009 // that point, the Linux kernel cannot expand the stack any further
3010 // because the guard pages are in the way, and a segfault occurs.
3011 //
3012 // However, it's essential not to split the stack region by unmapping
3013 // a region (leaving a hole) that's already part of the stack mapping,
3014 // so if the stack mapping has already grown beyond the guard pages at
3015 // the time we create them, we have to truncate the stack mapping.
3016 // So, we need to know the extent of the stack mapping when
3017 // create_stack_guard_pages() is called.
3018 
3019 // We only need this for stacks that are growable: at the time of
3020 // writing thread stacks don't use growable mappings (i.e. those
3021 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
3022 // only applies to the main thread.
3023 
3024 // If the (growable) stack mapping already extends beyond the point
3025 // where we're going to put our guard pages, truncate the mapping at
3026 // that point by munmap()ping it.  This ensures that when we later
3027 // munmap() the guard pages we don't leave a hole in the stack
3028 // mapping. This only affects the main/initial thread
3029 
3030 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3031 
3032   if (os::Linux::is_initial_thread()) {
3033     // As we manually grow stack up to bottom inside create_attached_thread(),
3034     // it's likely that os::Linux::initial_thread_stack_bottom is mapped and
3035     // we don't need to do anything special.
3036     // Check it first, before calling heavy function.
3037     uintptr_t stack_extent = (uintptr_t) os::Linux::initial_thread_stack_bottom();
3038     unsigned char vec[1];
3039 
3040     if (mincore((address)stack_extent, os::vm_page_size(), vec) == -1) {
3041       // Fallback to slow path on all errors, including EAGAIN
3042       stack_extent = (uintptr_t) get_stack_commited_bottom(
3043                                     os::Linux::initial_thread_stack_bottom(),
3044                                     (size_t)addr - stack_extent);
3045     }
3046 
3047     if (stack_extent < (uintptr_t)addr) {
3048       ::munmap((void*)stack_extent, (uintptr_t)(addr - stack_extent));
3049     }
3050   }
3051 
3052   return os::commit_memory(addr, size, !ExecMem);
3053 }
3054 
3055 // If this is a growable mapping, remove the guard pages entirely by
3056 // munmap()ping them.  If not, just call uncommit_memory(). This only
3057 // affects the main/initial thread, but guard against future OS changes
3058 // It's safe to always unmap guard pages for initial thread because we
3059 // always place it right after end of the mapped region
3060 
3061 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3062   uintptr_t stack_extent, stack_base;
3063 
3064   if (os::Linux::is_initial_thread()) {
3065     return ::munmap(addr, size) == 0;
3066   }
3067 
3068   return os::uncommit_memory(addr, size);
3069 }
3070 
3071 static address _highest_vm_reserved_address = NULL;
3072 
3073 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
3074 // at 'requested_addr'. If there are existing memory mappings at the same
3075 // location, however, they will be overwritten. If 'fixed' is false,
3076 // 'requested_addr' is only treated as a hint, the return value may or
3077 // may not start from the requested address. Unlike Linux mmap(), this
3078 // function returns NULL to indicate failure.
3079 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
3080   char * addr;
3081   int flags;
3082 
3083   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
3084   if (fixed) {
3085     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
3086     flags |= MAP_FIXED;
3087   }
3088 
3089   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
3090   // touch an uncommitted page. Otherwise, the read/write might
3091   // succeed if we have enough swap space to back the physical page.
3092   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
3093                        flags, -1, 0);
3094 
3095   if (addr != MAP_FAILED) {
3096     // anon_mmap() should only get called during VM initialization,
3097     // don't need lock (actually we can skip locking even it can be called
3098     // from multiple threads, because _highest_vm_reserved_address is just a
3099     // hint about the upper limit of non-stack memory regions.)
3100     if ((address)addr + bytes > _highest_vm_reserved_address) {
3101       _highest_vm_reserved_address = (address)addr + bytes;
3102     }
3103   }
3104 
3105   return addr == MAP_FAILED ? NULL : addr;
3106 }
3107 
3108 // Don't update _highest_vm_reserved_address, because there might be memory
3109 // regions above addr + size. If so, releasing a memory region only creates
3110 // a hole in the address space, it doesn't help prevent heap-stack collision.
3111 //
3112 static int anon_munmap(char * addr, size_t size) {
3113   return ::munmap(addr, size) == 0;
3114 }
3115 
3116 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
3117                          size_t alignment_hint) {
3118   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
3119 }
3120 
3121 bool os::pd_release_memory(char* addr, size_t size) {
3122   return anon_munmap(addr, size);
3123 }
3124 
3125 static address highest_vm_reserved_address() {
3126   return _highest_vm_reserved_address;
3127 }
3128 
3129 static bool linux_mprotect(char* addr, size_t size, int prot) {
3130   // Linux wants the mprotect address argument to be page aligned.
3131   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
3132 
3133   // According to SUSv3, mprotect() should only be used with mappings
3134   // established by mmap(), and mmap() always maps whole pages. Unaligned
3135   // 'addr' likely indicates problem in the VM (e.g. trying to change
3136   // protection of malloc'ed or statically allocated memory). Check the
3137   // caller if you hit this assert.
3138   assert(addr == bottom, "sanity check");
3139 
3140   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
3141   return ::mprotect(bottom, size, prot) == 0;
3142 }
3143 
3144 // Set protections specified
3145 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3146                         bool is_committed) {
3147   unsigned int p = 0;
3148   switch (prot) {
3149   case MEM_PROT_NONE: p = PROT_NONE; break;
3150   case MEM_PROT_READ: p = PROT_READ; break;
3151   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
3152   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
3153   default:
3154     ShouldNotReachHere();
3155   }
3156   // is_committed is unused.
3157   return linux_mprotect(addr, bytes, p);
3158 }
3159 
3160 bool os::guard_memory(char* addr, size_t size) {
3161   return linux_mprotect(addr, size, PROT_NONE);
3162 }
3163 
3164 bool os::unguard_memory(char* addr, size_t size) {
3165   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
3166 }
3167 
3168 bool os::Linux::transparent_huge_pages_sanity_check(bool warn, size_t page_size) {
3169   bool result = false;
3170   void *p = mmap(NULL, page_size * 2, PROT_READ|PROT_WRITE,
3171                  MAP_ANONYMOUS|MAP_PRIVATE,
3172                  -1, 0);
3173   if (p != MAP_FAILED) {
3174     void *aligned_p = align_ptr_up(p, page_size);
3175 
3176     result = madvise(aligned_p, page_size, MADV_HUGEPAGE) == 0;
3177 
3178     munmap(p, page_size * 2);
3179   }
3180 
3181   if (warn && !result) {
3182     warning("TransparentHugePages is not supported by the operating system.");
3183   }
3184 
3185   return result;
3186 }
3187 
3188 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
3189   bool result = false;
3190   void *p = mmap(NULL, page_size, PROT_READ|PROT_WRITE,
3191                  MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
3192                  -1, 0);
3193 
3194   if (p != MAP_FAILED) {
3195     // We don't know if this really is a huge page or not.
3196     FILE *fp = fopen("/proc/self/maps", "r");
3197     if (fp) {
3198       while (!feof(fp)) {
3199         char chars[257];
3200         long x = 0;
3201         if (fgets(chars, sizeof(chars), fp)) {
3202           if (sscanf(chars, "%lx-%*x", &x) == 1
3203               && x == (long)p) {
3204             if (strstr (chars, "hugepage")) {
3205               result = true;
3206               break;
3207             }
3208           }
3209         }
3210       }
3211       fclose(fp);
3212     }
3213     munmap(p, page_size);
3214   }
3215 
3216   if (warn && !result) {
3217     warning("HugeTLBFS is not supported by the operating system.");
3218   }
3219 
3220   return result;
3221 }
3222 
3223 /*
3224 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3225 *
3226 * From the coredump_filter documentation:
3227 *
3228 * - (bit 0) anonymous private memory
3229 * - (bit 1) anonymous shared memory
3230 * - (bit 2) file-backed private memory
3231 * - (bit 3) file-backed shared memory
3232 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3233 *           effective only if the bit 2 is cleared)
3234 * - (bit 5) hugetlb private memory
3235 * - (bit 6) hugetlb shared memory
3236 */
3237 static void set_coredump_filter(void) {
3238   FILE *f;
3239   long cdm;
3240 
3241   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3242     return;
3243   }
3244 
3245   if (fscanf(f, "%lx", &cdm) != 1) {
3246     fclose(f);
3247     return;
3248   }
3249 
3250   rewind(f);
3251 
3252   if ((cdm & LARGEPAGES_BIT) == 0) {
3253     cdm |= LARGEPAGES_BIT;
3254     fprintf(f, "%#lx", cdm);
3255   }
3256 
3257   fclose(f);
3258 }
3259 
3260 // Large page support
3261 
3262 static size_t _large_page_size = 0;
3263 
3264 size_t os::Linux::find_large_page_size() {
3265   size_t large_page_size = 0;
3266 
3267   // large_page_size on Linux is used to round up heap size. x86 uses either
3268   // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3269   // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3270   // page as large as 256M.
3271   //
3272   // Here we try to figure out page size by parsing /proc/meminfo and looking
3273   // for a line with the following format:
3274   //    Hugepagesize:     2048 kB
3275   //
3276   // If we can't determine the value (e.g. /proc is not mounted, or the text
3277   // format has been changed), we'll use the largest page size supported by
3278   // the processor.
3279 
3280 #ifndef ZERO
3281   large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3282                      ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3283 #endif // ZERO
3284 
3285   FILE *fp = fopen("/proc/meminfo", "r");
3286   if (fp) {
3287     while (!feof(fp)) {
3288       int x = 0;
3289       char buf[16];
3290       if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3291         if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3292           large_page_size = x * K;
3293           break;
3294         }
3295       } else {
3296         // skip to next line
3297         for (;;) {
3298           int ch = fgetc(fp);
3299           if (ch == EOF || ch == (int)'\n') break;
3300         }
3301       }
3302     }
3303     fclose(fp);
3304   }
3305 
3306   if (!FLAG_IS_DEFAULT(LargePageSizeInBytes) && LargePageSizeInBytes != large_page_size) {
3307     warning("Setting LargePageSizeInBytes has no effect on this OS. Large page size is "
3308         SIZE_FORMAT "%s.", byte_size_in_proper_unit(large_page_size),
3309         proper_unit_for_byte_size(large_page_size));
3310   }
3311 
3312   return large_page_size;
3313 }
3314 
3315 size_t os::Linux::setup_large_page_size() {
3316   _large_page_size = Linux::find_large_page_size();
3317   const size_t default_page_size = (size_t)Linux::page_size();
3318   if (_large_page_size > default_page_size) {
3319     _page_sizes[0] = _large_page_size;
3320     _page_sizes[1] = default_page_size;
3321     _page_sizes[2] = 0;
3322   }
3323 
3324   return _large_page_size;
3325 }
3326 
3327 bool os::Linux::setup_large_page_type(size_t page_size) {
3328   if (FLAG_IS_DEFAULT(UseHugeTLBFS) &&
3329       FLAG_IS_DEFAULT(UseSHM) &&
3330       FLAG_IS_DEFAULT(UseTransparentHugePages)) {
3331 
3332     // The type of large pages has not been specified by the user.
3333 
3334     // Try UseHugeTLBFS and then UseSHM.
3335     UseHugeTLBFS = UseSHM = true;
3336 
3337     // Don't try UseTransparentHugePages since there are known
3338     // performance issues with it turned on. This might change in the future.
3339     UseTransparentHugePages = false;
3340   }
3341 
3342   if (UseTransparentHugePages) {
3343     bool warn_on_failure = !FLAG_IS_DEFAULT(UseTransparentHugePages);
3344     if (transparent_huge_pages_sanity_check(warn_on_failure, page_size)) {
3345       UseHugeTLBFS = false;
3346       UseSHM = false;
3347       return true;
3348     }
3349     UseTransparentHugePages = false;
3350   }
3351 
3352   if (UseHugeTLBFS) {
3353     bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3354     if (hugetlbfs_sanity_check(warn_on_failure, page_size)) {
3355       UseSHM = false;
3356       return true;
3357     }
3358     UseHugeTLBFS = false;
3359   }
3360 
3361   return UseSHM;
3362 }
3363 
3364 void os::large_page_init() {
3365   if (!UseLargePages &&
3366       !UseTransparentHugePages &&
3367       !UseHugeTLBFS &&
3368       !UseSHM) {
3369     // Not using large pages.
3370     return;
3371   }
3372 
3373   if (!FLAG_IS_DEFAULT(UseLargePages) && !UseLargePages) {
3374     // The user explicitly turned off large pages.
3375     // Ignore the rest of the large pages flags.
3376     UseTransparentHugePages = false;
3377     UseHugeTLBFS = false;
3378     UseSHM = false;
3379     return;
3380   }
3381 
3382   size_t large_page_size = Linux::setup_large_page_size();
3383   UseLargePages          = Linux::setup_large_page_type(large_page_size);
3384 
3385   set_coredump_filter();
3386 }
3387 
3388 #ifndef SHM_HUGETLB
3389 #define SHM_HUGETLB 04000
3390 #endif
3391 
3392 char* os::Linux::reserve_memory_special_shm(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3393   // "exec" is passed in but not used.  Creating the shared image for
3394   // the code cache doesn't have an SHM_X executable permission to check.
3395   assert(UseLargePages && UseSHM, "only for SHM large pages");
3396   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3397 
3398   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3399     return NULL; // Fallback to small pages.
3400   }
3401 
3402   key_t key = IPC_PRIVATE;
3403   char *addr;
3404 
3405   bool warn_on_failure = UseLargePages &&
3406                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3407                          !FLAG_IS_DEFAULT(UseSHM) ||
3408                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3409                         );
3410   char msg[128];
3411 
3412   // Create a large shared memory region to attach to based on size.
3413   // Currently, size is the total size of the heap
3414   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3415   if (shmid == -1) {
3416      // Possible reasons for shmget failure:
3417      // 1. shmmax is too small for Java heap.
3418      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3419      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3420      // 2. not enough large page memory.
3421      //    > check available large pages: cat /proc/meminfo
3422      //    > increase amount of large pages:
3423      //          echo new_value > /proc/sys/vm/nr_hugepages
3424      //      Note 1: different Linux may use different name for this property,
3425      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3426      //      Note 2: it's possible there's enough physical memory available but
3427      //            they are so fragmented after a long run that they can't
3428      //            coalesce into large pages. Try to reserve large pages when
3429      //            the system is still "fresh".
3430      if (warn_on_failure) {
3431        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3432        warning(msg);
3433      }
3434      return NULL;
3435   }
3436 
3437   // attach to the region
3438   addr = (char*)shmat(shmid, req_addr, 0);
3439   int err = errno;
3440 
3441   // Remove shmid. If shmat() is successful, the actual shared memory segment
3442   // will be deleted when it's detached by shmdt() or when the process
3443   // terminates. If shmat() is not successful this will remove the shared
3444   // segment immediately.
3445   shmctl(shmid, IPC_RMID, NULL);
3446 
3447   if ((intptr_t)addr == -1) {
3448      if (warn_on_failure) {
3449        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3450        warning(msg);
3451      }
3452      return NULL;
3453   }
3454 
3455   return addr;
3456 }
3457 
3458 static void warn_on_large_pages_failure(char* req_addr, size_t bytes, int error) {
3459   assert(error == ENOMEM, "Only expect to fail if no memory is available");
3460 
3461   bool warn_on_failure = UseLargePages &&
3462       (!FLAG_IS_DEFAULT(UseLargePages) ||
3463        !FLAG_IS_DEFAULT(UseHugeTLBFS) ||
3464        !FLAG_IS_DEFAULT(LargePageSizeInBytes));
3465 
3466   if (warn_on_failure) {
3467     char msg[128];
3468     jio_snprintf(msg, sizeof(msg), "Failed to reserve large pages memory req_addr: "
3469         PTR_FORMAT " bytes: " SIZE_FORMAT " (errno = %d).", req_addr, bytes, error);
3470     warning(msg);
3471   }
3472 }
3473 
3474 char* os::Linux::reserve_memory_special_huge_tlbfs_only(size_t bytes, char* req_addr, bool exec) {
3475   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3476   assert(is_size_aligned(bytes, os::large_page_size()), "Unaligned size");
3477   assert(is_ptr_aligned(req_addr, os::large_page_size()), "Unaligned address");
3478 
3479   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3480   char* addr = (char*)::mmap(req_addr, bytes, prot,
3481                              MAP_PRIVATE|MAP_ANONYMOUS|MAP_HUGETLB,
3482                              -1, 0);
3483 
3484   if (addr == MAP_FAILED) {
3485     warn_on_large_pages_failure(req_addr, bytes, errno);
3486     return NULL;
3487   }
3488 
3489   assert(is_ptr_aligned(addr, os::large_page_size()), "Must be");
3490 
3491   return addr;
3492 }
3493 
3494 char* os::Linux::reserve_memory_special_huge_tlbfs_mixed(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3495   size_t large_page_size = os::large_page_size();
3496 
3497   assert(bytes >= large_page_size, "Shouldn't allocate large pages for small sizes");
3498 
3499   // Allocate small pages.
3500 
3501   char* start;
3502   if (req_addr != NULL) {
3503     assert(is_ptr_aligned(req_addr, alignment), "Must be");
3504     assert(is_size_aligned(bytes, alignment), "Must be");
3505     start = os::reserve_memory(bytes, req_addr);
3506     assert(start == NULL || start == req_addr, "Must be");
3507   } else {
3508     start = os::reserve_memory_aligned(bytes, alignment);
3509   }
3510 
3511   if (start == NULL) {
3512     return NULL;
3513   }
3514 
3515   assert(is_ptr_aligned(start, alignment), "Must be");
3516 
3517   // os::reserve_memory_special will record this memory area.
3518   // Need to release it here to prevent overlapping reservations.
3519   MemTracker::record_virtual_memory_release((address)start, bytes);
3520 
3521   char* end = start + bytes;
3522 
3523   // Find the regions of the allocated chunk that can be promoted to large pages.
3524   char* lp_start = (char*)align_ptr_up(start, large_page_size);
3525   char* lp_end   = (char*)align_ptr_down(end, large_page_size);
3526 
3527   size_t lp_bytes = lp_end - lp_start;
3528 
3529   assert(is_size_aligned(lp_bytes, large_page_size), "Must be");
3530 
3531   if (lp_bytes == 0) {
3532     // The mapped region doesn't even span the start and the end of a large page.
3533     // Fall back to allocate a non-special area.
3534     ::munmap(start, end - start);
3535     return NULL;
3536   }
3537 
3538   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
3539 
3540 
3541   void* result;
3542 
3543   if (start != lp_start) {
3544     result = ::mmap(start, lp_start - start, prot,
3545                     MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3546                     -1, 0);
3547     if (result == MAP_FAILED) {
3548       ::munmap(lp_start, end - lp_start);
3549       return NULL;
3550     }
3551   }
3552 
3553   result = ::mmap(lp_start, lp_bytes, prot,
3554                   MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED|MAP_HUGETLB,
3555                   -1, 0);
3556   if (result == MAP_FAILED) {
3557     warn_on_large_pages_failure(req_addr, bytes, errno);
3558     // If the mmap above fails, the large pages region will be unmapped and we
3559     // have regions before and after with small pages. Release these regions.
3560     //
3561     // |  mapped  |  unmapped  |  mapped  |
3562     // ^          ^            ^          ^
3563     // start      lp_start     lp_end     end
3564     //
3565     ::munmap(start, lp_start - start);
3566     ::munmap(lp_end, end - lp_end);
3567     return NULL;
3568   }
3569 
3570   if (lp_end != end) {
3571       result = ::mmap(lp_end, end - lp_end, prot,
3572                       MAP_PRIVATE|MAP_ANONYMOUS|MAP_FIXED,
3573                       -1, 0);
3574     if (result == MAP_FAILED) {
3575       ::munmap(start, lp_end - start);
3576       return NULL;
3577     }
3578   }
3579 
3580   return start;
3581 }
3582 
3583 char* os::Linux::reserve_memory_special_huge_tlbfs(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3584   assert(UseLargePages && UseHugeTLBFS, "only for Huge TLBFS large pages");
3585   assert(is_ptr_aligned(req_addr, alignment), "Must be");
3586   assert(is_power_of_2(alignment), "Must be");
3587   assert(is_power_of_2(os::large_page_size()), "Must be");
3588   assert(bytes >= os::large_page_size(), "Shouldn't allocate large pages for small sizes");
3589 
3590   if (is_size_aligned(bytes, os::large_page_size()) && alignment <= os::large_page_size()) {
3591     return reserve_memory_special_huge_tlbfs_only(bytes, req_addr, exec);
3592   } else {
3593     return reserve_memory_special_huge_tlbfs_mixed(bytes, alignment, req_addr, exec);
3594   }
3595 }
3596 
3597 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* req_addr, bool exec) {
3598   assert(UseLargePages, "only for large pages");
3599 
3600   char* addr;
3601   if (UseSHM) {
3602     addr = os::Linux::reserve_memory_special_shm(bytes, alignment, req_addr, exec);
3603   } else {
3604     assert(UseHugeTLBFS, "must be");
3605     addr = os::Linux::reserve_memory_special_huge_tlbfs(bytes, alignment, req_addr, exec);
3606   }
3607 
3608   if (addr != NULL) {
3609     if (UseNUMAInterleaving) {
3610       numa_make_global(addr, bytes);
3611     }
3612 
3613     // The memory is committed
3614     MemTracker::record_virtual_memory_reserve_and_commit((address)addr, bytes, mtNone, CALLER_PC);
3615   }
3616 
3617   return addr;
3618 }
3619 
3620 bool os::Linux::release_memory_special_shm(char* base, size_t bytes) {
3621   // detaching the SHM segment will also delete it, see reserve_memory_special_shm()
3622   return shmdt(base) == 0;
3623 }
3624 
3625 bool os::Linux::release_memory_special_huge_tlbfs(char* base, size_t bytes) {
3626   return pd_release_memory(base, bytes);
3627 }
3628 
3629 bool os::release_memory_special(char* base, size_t bytes) {
3630   assert(UseLargePages, "only for large pages");
3631 
3632   MemTracker::Tracker tkr = MemTracker::get_virtual_memory_release_tracker();
3633 
3634   bool res;
3635   if (UseSHM) {
3636     res = os::Linux::release_memory_special_shm(base, bytes);
3637   } else {
3638     assert(UseHugeTLBFS, "must be");
3639     res = os::Linux::release_memory_special_huge_tlbfs(base, bytes);
3640   }
3641 
3642   if (res) {
3643     tkr.record((address)base, bytes);
3644   } else {
3645     tkr.discard();
3646   }
3647 
3648   return res;
3649 }
3650 
3651 size_t os::large_page_size() {
3652   return _large_page_size;
3653 }
3654 
3655 // With SysV SHM the entire memory region must be allocated as shared
3656 // memory.
3657 // HugeTLBFS allows application to commit large page memory on demand.
3658 // However, when committing memory with HugeTLBFS fails, the region
3659 // that was supposed to be committed will lose the old reservation
3660 // and allow other threads to steal that memory region. Because of this
3661 // behavior we can't commit HugeTLBFS memory.
3662 bool os::can_commit_large_page_memory() {
3663   return UseTransparentHugePages;
3664 }
3665 
3666 bool os::can_execute_large_page_memory() {
3667   return UseTransparentHugePages || UseHugeTLBFS;
3668 }
3669 
3670 // Reserve memory at an arbitrary address, only if that area is
3671 // available (and not reserved for something else).
3672 
3673 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3674   const int max_tries = 10;
3675   char* base[max_tries];
3676   size_t size[max_tries];
3677   const size_t gap = 0x000000;
3678 
3679   // Assert only that the size is a multiple of the page size, since
3680   // that's all that mmap requires, and since that's all we really know
3681   // about at this low abstraction level.  If we need higher alignment,
3682   // we can either pass an alignment to this method or verify alignment
3683   // in one of the methods further up the call chain.  See bug 5044738.
3684   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3685 
3686   // Repeatedly allocate blocks until the block is allocated at the
3687   // right spot. Give up after max_tries. Note that reserve_memory() will
3688   // automatically update _highest_vm_reserved_address if the call is
3689   // successful. The variable tracks the highest memory address every reserved
3690   // by JVM. It is used to detect heap-stack collision if running with
3691   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3692   // space than needed, it could confuse the collision detecting code. To
3693   // solve the problem, save current _highest_vm_reserved_address and
3694   // calculate the correct value before return.
3695   address old_highest = _highest_vm_reserved_address;
3696 
3697   // Linux mmap allows caller to pass an address as hint; give it a try first,
3698   // if kernel honors the hint then we can return immediately.
3699   char * addr = anon_mmap(requested_addr, bytes, false);
3700   if (addr == requested_addr) {
3701      return requested_addr;
3702   }
3703 
3704   if (addr != NULL) {
3705      // mmap() is successful but it fails to reserve at the requested address
3706      anon_munmap(addr, bytes);
3707   }
3708 
3709   int i;
3710   for (i = 0; i < max_tries; ++i) {
3711     base[i] = reserve_memory(bytes);
3712 
3713     if (base[i] != NULL) {
3714       // Is this the block we wanted?
3715       if (base[i] == requested_addr) {
3716         size[i] = bytes;
3717         break;
3718       }
3719 
3720       // Does this overlap the block we wanted? Give back the overlapped
3721       // parts and try again.
3722 
3723       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3724       if (top_overlap >= 0 && top_overlap < bytes) {
3725         unmap_memory(base[i], top_overlap);
3726         base[i] += top_overlap;
3727         size[i] = bytes - top_overlap;
3728       } else {
3729         size_t bottom_overlap = base[i] + bytes - requested_addr;
3730         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3731           unmap_memory(requested_addr, bottom_overlap);
3732           size[i] = bytes - bottom_overlap;
3733         } else {
3734           size[i] = bytes;
3735         }
3736       }
3737     }
3738   }
3739 
3740   // Give back the unused reserved pieces.
3741 
3742   for (int j = 0; j < i; ++j) {
3743     if (base[j] != NULL) {
3744       unmap_memory(base[j], size[j]);
3745     }
3746   }
3747 
3748   if (i < max_tries) {
3749     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3750     return requested_addr;
3751   } else {
3752     _highest_vm_reserved_address = old_highest;
3753     return NULL;
3754   }
3755 }
3756 
3757 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3758   return ::read(fd, buf, nBytes);
3759 }
3760 
3761 //
3762 // Short sleep, direct OS call.
3763 //
3764 // Note: certain versions of Linux CFS scheduler (since 2.6.23) do not guarantee
3765 // sched_yield(2) will actually give up the CPU:
3766 //
3767 //   * Alone on this pariticular CPU, keeps running.
3768 //   * Before the introduction of "skip_buddy" with "compat_yield" disabled
3769 //     (pre 2.6.39).
3770 //
3771 // So calling this with 0 is an alternative.
3772 //
3773 void os::naked_short_sleep(jlong ms) {
3774   struct timespec req;
3775 
3776   assert(ms < 1000, "Un-interruptable sleep, short time use only");
3777   req.tv_sec = 0;
3778   if (ms > 0) {
3779     req.tv_nsec = (ms % 1000) * 1000000;
3780   }
3781   else {
3782     req.tv_nsec = 1;
3783   }
3784 
3785   nanosleep(&req, NULL);
3786 
3787   return;
3788 }
3789 
3790 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3791 void os::infinite_sleep() {
3792   while (true) {    // sleep forever ...
3793     ::sleep(100);   // ... 100 seconds at a time
3794   }
3795 }
3796 
3797 // Used to convert frequent JVM_Yield() to nops
3798 bool os::dont_yield() {
3799   return DontYieldALot;
3800 }
3801 
3802 void os::yield() {
3803   sched_yield();
3804 }
3805 
3806 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3807 
3808 void os::yield_all(int attempts) {
3809   // Yields to all threads, including threads with lower priorities
3810   // Threads on Linux are all with same priority. The Solaris style
3811   // os::yield_all() with nanosleep(1ms) is not necessary.
3812   sched_yield();
3813 }
3814 
3815 // Called from the tight loops to possibly influence time-sharing heuristics
3816 void os::loop_breaker(int attempts) {
3817   os::yield_all(attempts);
3818 }
3819 
3820 ////////////////////////////////////////////////////////////////////////////////
3821 // thread priority support
3822 
3823 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3824 // only supports dynamic priority, static priority must be zero. For real-time
3825 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3826 // However, for large multi-threaded applications, SCHED_RR is not only slower
3827 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3828 // of 5 runs - Sep 2005).
3829 //
3830 // The following code actually changes the niceness of kernel-thread/LWP. It
3831 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3832 // not the entire user process, and user level threads are 1:1 mapped to kernel
3833 // threads. It has always been the case, but could change in the future. For
3834 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3835 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3836 
3837 int os::java_to_os_priority[CriticalPriority + 1] = {
3838   19,              // 0 Entry should never be used
3839 
3840    4,              // 1 MinPriority
3841    3,              // 2
3842    2,              // 3
3843 
3844    1,              // 4
3845    0,              // 5 NormPriority
3846   -1,              // 6
3847 
3848   -2,              // 7
3849   -3,              // 8
3850   -4,              // 9 NearMaxPriority
3851 
3852   -5,              // 10 MaxPriority
3853 
3854   -5               // 11 CriticalPriority
3855 };
3856 
3857 static int prio_init() {
3858   if (ThreadPriorityPolicy == 1) {
3859     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3860     // if effective uid is not root. Perhaps, a more elegant way of doing
3861     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3862     if (geteuid() != 0) {
3863       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3864         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3865       }
3866       ThreadPriorityPolicy = 0;
3867     }
3868   }
3869   if (UseCriticalJavaThreadPriority) {
3870     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3871   }
3872   return 0;
3873 }
3874 
3875 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3876   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3877 
3878   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3879   return (ret == 0) ? OS_OK : OS_ERR;
3880 }
3881 
3882 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3883   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3884     *priority_ptr = java_to_os_priority[NormPriority];
3885     return OS_OK;
3886   }
3887 
3888   errno = 0;
3889   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3890   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3891 }
3892 
3893 // Hint to the underlying OS that a task switch would not be good.
3894 // Void return because it's a hint and can fail.
3895 void os::hint_no_preempt() {}
3896 
3897 ////////////////////////////////////////////////////////////////////////////////
3898 // suspend/resume support
3899 
3900 //  the low-level signal-based suspend/resume support is a remnant from the
3901 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3902 //  within hotspot. Now there is a single use-case for this:
3903 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3904 //      that runs in the watcher thread.
3905 //  The remaining code is greatly simplified from the more general suspension
3906 //  code that used to be used.
3907 //
3908 //  The protocol is quite simple:
3909 //  - suspend:
3910 //      - sends a signal to the target thread
3911 //      - polls the suspend state of the osthread using a yield loop
3912 //      - target thread signal handler (SR_handler) sets suspend state
3913 //        and blocks in sigsuspend until continued
3914 //  - resume:
3915 //      - sets target osthread state to continue
3916 //      - sends signal to end the sigsuspend loop in the SR_handler
3917 //
3918 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3919 //
3920 
3921 static void resume_clear_context(OSThread *osthread) {
3922   osthread->set_ucontext(NULL);
3923   osthread->set_siginfo(NULL);
3924 }
3925 
3926 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3927   osthread->set_ucontext(context);
3928   osthread->set_siginfo(siginfo);
3929 }
3930 
3931 //
3932 // Handler function invoked when a thread's execution is suspended or
3933 // resumed. We have to be careful that only async-safe functions are
3934 // called here (Note: most pthread functions are not async safe and
3935 // should be avoided.)
3936 //
3937 // Note: sigwait() is a more natural fit than sigsuspend() from an
3938 // interface point of view, but sigwait() prevents the signal hander
3939 // from being run. libpthread would get very confused by not having
3940 // its signal handlers run and prevents sigwait()'s use with the
3941 // mutex granting granting signal.
3942 //
3943 // Currently only ever called on the VMThread and JavaThreads (PC sampling)
3944 //
3945 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3946   // Save and restore errno to avoid confusing native code with EINTR
3947   // after sigsuspend.
3948   int old_errno = errno;
3949 
3950   Thread* thread = Thread::current();
3951   OSThread* osthread = thread->osthread();
3952   assert(thread->is_VM_thread() || thread->is_Java_thread(), "Must be VMThread or JavaThread");
3953 
3954   os::SuspendResume::State current = osthread->sr.state();
3955   if (current == os::SuspendResume::SR_SUSPEND_REQUEST) {
3956     suspend_save_context(osthread, siginfo, context);
3957 
3958     // attempt to switch the state, we assume we had a SUSPEND_REQUEST
3959     os::SuspendResume::State state = osthread->sr.suspended();
3960     if (state == os::SuspendResume::SR_SUSPENDED) {
3961       sigset_t suspend_set;  // signals for sigsuspend()
3962 
3963       // get current set of blocked signals and unblock resume signal
3964       pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3965       sigdelset(&suspend_set, SR_signum);
3966 
3967       sr_semaphore.signal();
3968       // wait here until we are resumed
3969       while (1) {
3970         sigsuspend(&suspend_set);
3971 
3972         os::SuspendResume::State result = osthread->sr.running();
3973         if (result == os::SuspendResume::SR_RUNNING) {
3974           sr_semaphore.signal();
3975           break;
3976         }
3977       }
3978 
3979     } else if (state == os::SuspendResume::SR_RUNNING) {
3980       // request was cancelled, continue
3981     } else {
3982       ShouldNotReachHere();
3983     }
3984 
3985     resume_clear_context(osthread);
3986   } else if (current == os::SuspendResume::SR_RUNNING) {
3987     // request was cancelled, continue
3988   } else if (current == os::SuspendResume::SR_WAKEUP_REQUEST) {
3989     // ignore
3990   } else {
3991     // ignore
3992   }
3993 
3994   errno = old_errno;
3995 }
3996 
3997 
3998 static int SR_initialize() {
3999   struct sigaction act;
4000   char *s;
4001   /* Get signal number to use for suspend/resume */
4002   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
4003     int sig = ::strtol(s, 0, 10);
4004     if (sig > 0 || sig < _NSIG) {
4005         SR_signum = sig;
4006     }
4007   }
4008 
4009   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
4010         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
4011 
4012   sigemptyset(&SR_sigset);
4013   sigaddset(&SR_sigset, SR_signum);
4014 
4015   /* Set up signal handler for suspend/resume */
4016   act.sa_flags = SA_RESTART|SA_SIGINFO;
4017   act.sa_handler = (void (*)(int)) SR_handler;
4018 
4019   // SR_signum is blocked by default.
4020   // 4528190 - We also need to block pthread restart signal (32 on all
4021   // supported Linux platforms). Note that LinuxThreads need to block
4022   // this signal for all threads to work properly. So we don't have
4023   // to use hard-coded signal number when setting up the mask.
4024   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
4025 
4026   if (sigaction(SR_signum, &act, 0) == -1) {
4027     return -1;
4028   }
4029 
4030   // Save signal flag
4031   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
4032   return 0;
4033 }
4034 
4035 static int sr_notify(OSThread* osthread) {
4036   int status = pthread_kill(osthread->pthread_id(), SR_signum);
4037   assert_status(status == 0, status, "pthread_kill");
4038   return status;
4039 }
4040 
4041 // "Randomly" selected value for how long we want to spin
4042 // before bailing out on suspending a thread, also how often
4043 // we send a signal to a thread we want to resume
4044 static const int RANDOMLY_LARGE_INTEGER = 1000000;
4045 static const int RANDOMLY_LARGE_INTEGER2 = 100;
4046 
4047 // returns true on success and false on error - really an error is fatal
4048 // but this seems the normal response to library errors
4049 static bool do_suspend(OSThread* osthread) {
4050   assert(osthread->sr.is_running(), "thread should be running");
4051   assert(!sr_semaphore.trywait(), "semaphore has invalid state");
4052 
4053   // mark as suspended and send signal
4054   if (osthread->sr.request_suspend() != os::SuspendResume::SR_SUSPEND_REQUEST) {
4055     // failed to switch, state wasn't running?
4056     ShouldNotReachHere();
4057     return false;
4058   }
4059 
4060   if (sr_notify(osthread) != 0) {
4061     ShouldNotReachHere();
4062   }
4063 
4064   // managed to send the signal and switch to SUSPEND_REQUEST, now wait for SUSPENDED
4065   while (true) {
4066     if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4067       break;
4068     } else {
4069       // timeout
4070       os::SuspendResume::State cancelled = osthread->sr.cancel_suspend();
4071       if (cancelled == os::SuspendResume::SR_RUNNING) {
4072         return false;
4073       } else if (cancelled == os::SuspendResume::SR_SUSPENDED) {
4074         // make sure that we consume the signal on the semaphore as well
4075         sr_semaphore.wait();
4076         break;
4077       } else {
4078         ShouldNotReachHere();
4079         return false;
4080       }
4081     }
4082   }
4083 
4084   guarantee(osthread->sr.is_suspended(), "Must be suspended");
4085   return true;
4086 }
4087 
4088 static void do_resume(OSThread* osthread) {
4089   assert(osthread->sr.is_suspended(), "thread should be suspended");
4090   assert(!sr_semaphore.trywait(), "invalid semaphore state");
4091 
4092   if (osthread->sr.request_wakeup() != os::SuspendResume::SR_WAKEUP_REQUEST) {
4093     // failed to switch to WAKEUP_REQUEST
4094     ShouldNotReachHere();
4095     return;
4096   }
4097 
4098   while (true) {
4099     if (sr_notify(osthread) == 0) {
4100       if (sr_semaphore.timedwait(0, 2 * NANOSECS_PER_MILLISEC)) {
4101         if (osthread->sr.is_running()) {
4102           return;
4103         }
4104       }
4105     } else {
4106       ShouldNotReachHere();
4107     }
4108   }
4109 
4110   guarantee(osthread->sr.is_running(), "Must be running!");
4111 }
4112 
4113 ///////////////////////////////////////////////////////////////////////////////////
4114 // signal handling (except suspend/resume)
4115 
4116 // This routine may be used by user applications as a "hook" to catch signals.
4117 // The user-defined signal handler must pass unrecognized signals to this
4118 // routine, and if it returns true (non-zero), then the signal handler must
4119 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
4120 // routine will never retun false (zero), but instead will execute a VM panic
4121 // routine kill the process.
4122 //
4123 // If this routine returns false, it is OK to call it again.  This allows
4124 // the user-defined signal handler to perform checks either before or after
4125 // the VM performs its own checks.  Naturally, the user code would be making
4126 // a serious error if it tried to handle an exception (such as a null check
4127 // or breakpoint) that the VM was generating for its own correct operation.
4128 //
4129 // This routine may recognize any of the following kinds of signals:
4130 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
4131 // It should be consulted by handlers for any of those signals.
4132 //
4133 // The caller of this routine must pass in the three arguments supplied
4134 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
4135 // field of the structure passed to sigaction().  This routine assumes that
4136 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
4137 //
4138 // Note that the VM will print warnings if it detects conflicting signal
4139 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
4140 //
4141 extern "C" JNIEXPORT int
4142 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
4143                         void* ucontext, int abort_if_unrecognized);
4144 
4145 void signalHandler(int sig, siginfo_t* info, void* uc) {
4146   assert(info != NULL && uc != NULL, "it must be old kernel");
4147   int orig_errno = errno;  // Preserve errno value over signal handler.
4148   JVM_handle_linux_signal(sig, info, uc, true);
4149   errno = orig_errno;
4150 }
4151 
4152 
4153 // This boolean allows users to forward their own non-matching signals
4154 // to JVM_handle_linux_signal, harmlessly.
4155 bool os::Linux::signal_handlers_are_installed = false;
4156 
4157 // For signal-chaining
4158 struct sigaction os::Linux::sigact[MAXSIGNUM];
4159 unsigned int os::Linux::sigs = 0;
4160 bool os::Linux::libjsig_is_loaded = false;
4161 typedef struct sigaction *(*get_signal_t)(int);
4162 get_signal_t os::Linux::get_signal_action = NULL;
4163 
4164 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
4165   struct sigaction *actp = NULL;
4166 
4167   if (libjsig_is_loaded) {
4168     // Retrieve the old signal handler from libjsig
4169     actp = (*get_signal_action)(sig);
4170   }
4171   if (actp == NULL) {
4172     // Retrieve the preinstalled signal handler from jvm
4173     actp = get_preinstalled_handler(sig);
4174   }
4175 
4176   return actp;
4177 }
4178 
4179 static bool call_chained_handler(struct sigaction *actp, int sig,
4180                                  siginfo_t *siginfo, void *context) {
4181   // Call the old signal handler
4182   if (actp->sa_handler == SIG_DFL) {
4183     // It's more reasonable to let jvm treat it as an unexpected exception
4184     // instead of taking the default action.
4185     return false;
4186   } else if (actp->sa_handler != SIG_IGN) {
4187     if ((actp->sa_flags & SA_NODEFER) == 0) {
4188       // automaticlly block the signal
4189       sigaddset(&(actp->sa_mask), sig);
4190     }
4191 
4192     sa_handler_t hand;
4193     sa_sigaction_t sa;
4194     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
4195     // retrieve the chained handler
4196     if (siginfo_flag_set) {
4197       sa = actp->sa_sigaction;
4198     } else {
4199       hand = actp->sa_handler;
4200     }
4201 
4202     if ((actp->sa_flags & SA_RESETHAND) != 0) {
4203       actp->sa_handler = SIG_DFL;
4204     }
4205 
4206     // try to honor the signal mask
4207     sigset_t oset;
4208     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
4209 
4210     // call into the chained handler
4211     if (siginfo_flag_set) {
4212       (*sa)(sig, siginfo, context);
4213     } else {
4214       (*hand)(sig);
4215     }
4216 
4217     // restore the signal mask
4218     pthread_sigmask(SIG_SETMASK, &oset, 0);
4219   }
4220   // Tell jvm's signal handler the signal is taken care of.
4221   return true;
4222 }
4223 
4224 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
4225   bool chained = false;
4226   // signal-chaining
4227   if (UseSignalChaining) {
4228     struct sigaction *actp = get_chained_signal_action(sig);
4229     if (actp != NULL) {
4230       chained = call_chained_handler(actp, sig, siginfo, context);
4231     }
4232   }
4233   return chained;
4234 }
4235 
4236 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
4237   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
4238     return &sigact[sig];
4239   }
4240   return NULL;
4241 }
4242 
4243 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
4244   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4245   sigact[sig] = oldAct;
4246   sigs |= (unsigned int)1 << sig;
4247 }
4248 
4249 // for diagnostic
4250 int os::Linux::sigflags[MAXSIGNUM];
4251 
4252 int os::Linux::get_our_sigflags(int sig) {
4253   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4254   return sigflags[sig];
4255 }
4256 
4257 void os::Linux::set_our_sigflags(int sig, int flags) {
4258   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4259   sigflags[sig] = flags;
4260 }
4261 
4262 void os::Linux::set_signal_handler(int sig, bool set_installed) {
4263   // Check for overwrite.
4264   struct sigaction oldAct;
4265   sigaction(sig, (struct sigaction*)NULL, &oldAct);
4266 
4267   void* oldhand = oldAct.sa_sigaction
4268                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
4269                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
4270   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
4271       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
4272       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
4273     if (AllowUserSignalHandlers || !set_installed) {
4274       // Do not overwrite; user takes responsibility to forward to us.
4275       return;
4276     } else if (UseSignalChaining) {
4277       // save the old handler in jvm
4278       save_preinstalled_handler(sig, oldAct);
4279       // libjsig also interposes the sigaction() call below and saves the
4280       // old sigaction on it own.
4281     } else {
4282       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
4283                     "%#lx for signal %d.", (long)oldhand, sig));
4284     }
4285   }
4286 
4287   struct sigaction sigAct;
4288   sigfillset(&(sigAct.sa_mask));
4289   sigAct.sa_handler = SIG_DFL;
4290   if (!set_installed) {
4291     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4292   } else {
4293     sigAct.sa_sigaction = signalHandler;
4294     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
4295   }
4296   // Save flags, which are set by ours
4297   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
4298   sigflags[sig] = sigAct.sa_flags;
4299 
4300   int ret = sigaction(sig, &sigAct, &oldAct);
4301   assert(ret == 0, "check");
4302 
4303   void* oldhand2  = oldAct.sa_sigaction
4304                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
4305                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
4306   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
4307 }
4308 
4309 // install signal handlers for signals that HotSpot needs to
4310 // handle in order to support Java-level exception handling.
4311 
4312 void os::Linux::install_signal_handlers() {
4313   if (!signal_handlers_are_installed) {
4314     signal_handlers_are_installed = true;
4315 
4316     // signal-chaining
4317     typedef void (*signal_setting_t)();
4318     signal_setting_t begin_signal_setting = NULL;
4319     signal_setting_t end_signal_setting = NULL;
4320     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4321                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
4322     if (begin_signal_setting != NULL) {
4323       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
4324                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
4325       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
4326                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
4327       libjsig_is_loaded = true;
4328       assert(UseSignalChaining, "should enable signal-chaining");
4329     }
4330     if (libjsig_is_loaded) {
4331       // Tell libjsig jvm is setting signal handlers
4332       (*begin_signal_setting)();
4333     }
4334 
4335     set_signal_handler(SIGSEGV, true);
4336     set_signal_handler(SIGPIPE, true);
4337     set_signal_handler(SIGBUS, true);
4338     set_signal_handler(SIGILL, true);
4339     set_signal_handler(SIGFPE, true);
4340 #if defined(PPC64)
4341     set_signal_handler(SIGTRAP, true);
4342 #endif
4343     set_signal_handler(SIGXFSZ, true);
4344 
4345     if (libjsig_is_loaded) {
4346       // Tell libjsig jvm finishes setting signal handlers
4347       (*end_signal_setting)();
4348     }
4349 
4350     // We don't activate signal checker if libjsig is in place, we trust ourselves
4351     // and if UserSignalHandler is installed all bets are off.
4352     // Log that signal checking is off only if -verbose:jni is specified.
4353     if (CheckJNICalls) {
4354       if (libjsig_is_loaded) {
4355         if (PrintJNIResolving) {
4356           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
4357         }
4358         check_signals = false;
4359       }
4360       if (AllowUserSignalHandlers) {
4361         if (PrintJNIResolving) {
4362           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
4363         }
4364         check_signals = false;
4365       }
4366     }
4367   }
4368 }
4369 
4370 // This is the fastest way to get thread cpu time on Linux.
4371 // Returns cpu time (user+sys) for any thread, not only for current.
4372 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
4373 // It might work on 2.6.10+ with a special kernel/glibc patch.
4374 // For reference, please, see IEEE Std 1003.1-2004:
4375 //   http://www.unix.org/single_unix_specification
4376 
4377 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4378   struct timespec tp;
4379   int rc = os::Linux::clock_gettime(clockid, &tp);
4380   assert(rc == 0, "clock_gettime is expected to return 0 code");
4381 
4382   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4383 }
4384 
4385 /////
4386 // glibc on Linux platform uses non-documented flag
4387 // to indicate, that some special sort of signal
4388 // trampoline is used.
4389 // We will never set this flag, and we should
4390 // ignore this flag in our diagnostic
4391 #ifdef SIGNIFICANT_SIGNAL_MASK
4392 #undef SIGNIFICANT_SIGNAL_MASK
4393 #endif
4394 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4395 
4396 static const char* get_signal_handler_name(address handler,
4397                                            char* buf, int buflen) {
4398   int offset;
4399   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4400   if (found) {
4401     // skip directory names
4402     const char *p1, *p2;
4403     p1 = buf;
4404     size_t len = strlen(os::file_separator());
4405     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4406     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4407   } else {
4408     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4409   }
4410   return buf;
4411 }
4412 
4413 static void print_signal_handler(outputStream* st, int sig,
4414                                  char* buf, size_t buflen) {
4415   struct sigaction sa;
4416 
4417   sigaction(sig, NULL, &sa);
4418 
4419   // See comment for SIGNIFICANT_SIGNAL_MASK define
4420   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4421 
4422   st->print("%s: ", os::exception_name(sig, buf, buflen));
4423 
4424   address handler = (sa.sa_flags & SA_SIGINFO)
4425     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4426     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4427 
4428   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4429     st->print("SIG_DFL");
4430   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4431     st->print("SIG_IGN");
4432   } else {
4433     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4434   }
4435 
4436   st->print(", sa_mask[0]=");
4437   os::Posix::print_signal_set_short(st, &sa.sa_mask);
4438 
4439   address rh = VMError::get_resetted_sighandler(sig);
4440   // May be, handler was resetted by VMError?
4441   if(rh != NULL) {
4442     handler = rh;
4443     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4444   }
4445 
4446   st->print(", sa_flags=");
4447   os::Posix::print_sa_flags(st, sa.sa_flags);
4448 
4449   // Check: is it our handler?
4450   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4451      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4452     // It is our signal handler
4453     // check for flags, reset system-used one!
4454     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4455       st->print(
4456                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4457                 os::Linux::get_our_sigflags(sig));
4458     }
4459   }
4460   st->cr();
4461 }
4462 
4463 
4464 #define DO_SIGNAL_CHECK(sig) \
4465   if (!sigismember(&check_signal_done, sig)) \
4466     os::Linux::check_signal_handler(sig)
4467 
4468 // This method is a periodic task to check for misbehaving JNI applications
4469 // under CheckJNI, we can add any periodic checks here
4470 
4471 void os::run_periodic_checks() {
4472 
4473   if (check_signals == false) return;
4474 
4475   // SEGV and BUS if overridden could potentially prevent
4476   // generation of hs*.log in the event of a crash, debugging
4477   // such a case can be very challenging, so we absolutely
4478   // check the following for a good measure:
4479   DO_SIGNAL_CHECK(SIGSEGV);
4480   DO_SIGNAL_CHECK(SIGILL);
4481   DO_SIGNAL_CHECK(SIGFPE);
4482   DO_SIGNAL_CHECK(SIGBUS);
4483   DO_SIGNAL_CHECK(SIGPIPE);
4484   DO_SIGNAL_CHECK(SIGXFSZ);
4485 #if defined(PPC64)
4486   DO_SIGNAL_CHECK(SIGTRAP);
4487 #endif
4488 
4489   // ReduceSignalUsage allows the user to override these handlers
4490   // see comments at the very top and jvm_solaris.h
4491   if (!ReduceSignalUsage) {
4492     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4493     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4494     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4495     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4496   }
4497 
4498   DO_SIGNAL_CHECK(SR_signum);
4499   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4500 }
4501 
4502 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4503 
4504 static os_sigaction_t os_sigaction = NULL;
4505 
4506 void os::Linux::check_signal_handler(int sig) {
4507   char buf[O_BUFLEN];
4508   address jvmHandler = NULL;
4509 
4510 
4511   struct sigaction act;
4512   if (os_sigaction == NULL) {
4513     // only trust the default sigaction, in case it has been interposed
4514     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4515     if (os_sigaction == NULL) return;
4516   }
4517 
4518   os_sigaction(sig, (struct sigaction*)NULL, &act);
4519 
4520 
4521   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4522 
4523   address thisHandler = (act.sa_flags & SA_SIGINFO)
4524     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4525     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4526 
4527 
4528   switch(sig) {
4529   case SIGSEGV:
4530   case SIGBUS:
4531   case SIGFPE:
4532   case SIGPIPE:
4533   case SIGILL:
4534   case SIGXFSZ:
4535     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4536     break;
4537 
4538   case SHUTDOWN1_SIGNAL:
4539   case SHUTDOWN2_SIGNAL:
4540   case SHUTDOWN3_SIGNAL:
4541   case BREAK_SIGNAL:
4542     jvmHandler = (address)user_handler();
4543     break;
4544 
4545   case INTERRUPT_SIGNAL:
4546     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4547     break;
4548 
4549   default:
4550     if (sig == SR_signum) {
4551       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4552     } else {
4553       return;
4554     }
4555     break;
4556   }
4557 
4558   if (thisHandler != jvmHandler) {
4559     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4560     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4561     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4562     // No need to check this sig any longer
4563     sigaddset(&check_signal_done, sig);
4564   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4565     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4566     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4567     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4568     // No need to check this sig any longer
4569     sigaddset(&check_signal_done, sig);
4570   }
4571 
4572   // Dump all the signal
4573   if (sigismember(&check_signal_done, sig)) {
4574     print_signal_handlers(tty, buf, O_BUFLEN);
4575   }
4576 }
4577 
4578 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4579 
4580 extern bool signal_name(int signo, char* buf, size_t len);
4581 
4582 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4583   if (0 < exception_code && exception_code <= SIGRTMAX) {
4584     // signal
4585     if (!signal_name(exception_code, buf, size)) {
4586       jio_snprintf(buf, size, "SIG%d", exception_code);
4587     }
4588     return buf;
4589   } else {
4590     return NULL;
4591   }
4592 }
4593 
4594 // this is called _before_ the most of global arguments have been parsed
4595 void os::init(void) {
4596   char dummy;   /* used to get a guess on initial stack address */
4597 //  first_hrtime = gethrtime();
4598 
4599   // With LinuxThreads the JavaMain thread pid (primordial thread)
4600   // is different than the pid of the java launcher thread.
4601   // So, on Linux, the launcher thread pid is passed to the VM
4602   // via the sun.java.launcher.pid property.
4603   // Use this property instead of getpid() if it was correctly passed.
4604   // See bug 6351349.
4605   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4606 
4607   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4608 
4609   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4610 
4611   init_random(1234567);
4612 
4613   ThreadCritical::initialize();
4614 
4615   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4616   if (Linux::page_size() == -1) {
4617     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4618                   strerror(errno)));
4619   }
4620   init_page_sizes((size_t) Linux::page_size());
4621 
4622   Linux::initialize_system_info();
4623 
4624   // main_thread points to the aboriginal thread
4625   Linux::_main_thread = pthread_self();
4626 
4627   Linux::clock_init();
4628   initial_time_count = javaTimeNanos();
4629 
4630   // pthread_condattr initialization for monotonic clock
4631   int status;
4632   pthread_condattr_t* _condattr = os::Linux::condAttr();
4633   if ((status = pthread_condattr_init(_condattr)) != 0) {
4634     fatal(err_msg("pthread_condattr_init: %s", strerror(status)));
4635   }
4636   // Only set the clock if CLOCK_MONOTONIC is available
4637   if (os::supports_monotonic_clock()) {
4638     if ((status = pthread_condattr_setclock(_condattr, CLOCK_MONOTONIC)) != 0) {
4639       if (status == EINVAL) {
4640         warning("Unable to use monotonic clock with relative timed-waits" \
4641                 " - changes to the time-of-day clock may have adverse affects");
4642       } else {
4643         fatal(err_msg("pthread_condattr_setclock: %s", strerror(status)));
4644       }
4645     }
4646   }
4647   // else it defaults to CLOCK_REALTIME
4648 
4649   pthread_mutex_init(&dl_mutex, NULL);
4650 
4651   // If the pagesize of the VM is greater than 8K determine the appropriate
4652   // number of initial guard pages.  The user can change this with the
4653   // command line arguments, if needed.
4654   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4655     StackYellowPages = 1;
4656     StackRedPages = 1;
4657     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4658   }
4659 }
4660 
4661 // To install functions for atexit system call
4662 extern "C" {
4663   static void perfMemory_exit_helper() {
4664     perfMemory_exit();
4665   }
4666 }
4667 
4668 // this is called _after_ the global arguments have been parsed
4669 jint os::init_2(void)
4670 {
4671   Linux::fast_thread_clock_init();
4672 
4673   // Allocate a single page and mark it as readable for safepoint polling
4674   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4675   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4676 
4677   os::set_polling_page( polling_page );
4678 
4679 #ifndef PRODUCT
4680   if(Verbose && PrintMiscellaneous)
4681     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4682 #endif
4683 
4684   if (!UseMembar) {
4685     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4686     guarantee( mem_serialize_page != MAP_FAILED, "mmap Failed for memory serialize page");
4687     os::set_memory_serialize_page( mem_serialize_page );
4688 
4689 #ifndef PRODUCT
4690     if(Verbose && PrintMiscellaneous)
4691       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4692 #endif
4693   }
4694 
4695   // initialize suspend/resume support - must do this before signal_sets_init()
4696   if (SR_initialize() != 0) {
4697     perror("SR_initialize failed");
4698     return JNI_ERR;
4699   }
4700 
4701   Linux::signal_sets_init();
4702   Linux::install_signal_handlers();
4703 
4704   // Check minimum allowable stack size for thread creation and to initialize
4705   // the java system classes, including StackOverflowError - depends on page
4706   // size.  Add a page for compiler2 recursion in main thread.
4707   // Add in 2*BytesPerWord times page size to account for VM stack during
4708   // class initialization depending on 32 or 64 bit VM.
4709   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4710             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4711                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4712 
4713   size_t threadStackSizeInBytes = ThreadStackSize * K;
4714   if (threadStackSizeInBytes != 0 &&
4715       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4716         tty->print_cr("\nThe stack size specified is too small, "
4717                       "Specify at least %dk",
4718                       os::Linux::min_stack_allowed/ K);
4719         return JNI_ERR;
4720   }
4721 
4722   // Make the stack size a multiple of the page size so that
4723   // the yellow/red zones can be guarded.
4724   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4725         vm_page_size()));
4726 
4727   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4728 
4729 #if defined(IA32)
4730   workaround_expand_exec_shield_cs_limit();
4731 #endif
4732 
4733   Linux::libpthread_init();
4734   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4735      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4736           Linux::glibc_version(), Linux::libpthread_version(),
4737           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4738   }
4739 
4740   if (UseNUMA) {
4741     if (!Linux::libnuma_init()) {
4742       UseNUMA = false;
4743     } else {
4744       if ((Linux::numa_max_node() < 1)) {
4745         // There's only one node(they start from 0), disable NUMA.
4746         UseNUMA = false;
4747       }
4748     }
4749     // With SHM and HugeTLBFS large pages we cannot uncommit a page, so there's no way
4750     // we can make the adaptive lgrp chunk resizing work. If the user specified
4751     // both UseNUMA and UseLargePages (or UseSHM/UseHugeTLBFS) on the command line - warn and
4752     // disable adaptive resizing.
4753     if (UseNUMA && UseLargePages && !can_commit_large_page_memory()) {
4754       if (FLAG_IS_DEFAULT(UseNUMA)) {
4755         UseNUMA = false;
4756       } else {
4757         if (FLAG_IS_DEFAULT(UseLargePages) &&
4758             FLAG_IS_DEFAULT(UseSHM) &&
4759             FLAG_IS_DEFAULT(UseHugeTLBFS)) {
4760           UseLargePages = false;
4761         } else {
4762           warning("UseNUMA is not fully compatible with SHM/HugeTLBFS large pages, disabling adaptive resizing");
4763           UseAdaptiveSizePolicy = false;
4764           UseAdaptiveNUMAChunkSizing = false;
4765         }
4766       }
4767     }
4768     if (!UseNUMA && ForceNUMA) {
4769       UseNUMA = true;
4770     }
4771   }
4772 
4773   if (MaxFDLimit) {
4774     // set the number of file descriptors to max. print out error
4775     // if getrlimit/setrlimit fails but continue regardless.
4776     struct rlimit nbr_files;
4777     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4778     if (status != 0) {
4779       if (PrintMiscellaneous && (Verbose || WizardMode))
4780         perror("os::init_2 getrlimit failed");
4781     } else {
4782       nbr_files.rlim_cur = nbr_files.rlim_max;
4783       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4784       if (status != 0) {
4785         if (PrintMiscellaneous && (Verbose || WizardMode))
4786           perror("os::init_2 setrlimit failed");
4787       }
4788     }
4789   }
4790 
4791   // Initialize lock used to serialize thread creation (see os::create_thread)
4792   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4793 
4794   // at-exit methods are called in the reverse order of their registration.
4795   // atexit functions are called on return from main or as a result of a
4796   // call to exit(3C). There can be only 32 of these functions registered
4797   // and atexit() does not set errno.
4798 
4799   if (PerfAllowAtExitRegistration) {
4800     // only register atexit functions if PerfAllowAtExitRegistration is set.
4801     // atexit functions can be delayed until process exit time, which
4802     // can be problematic for embedded VM situations. Embedded VMs should
4803     // call DestroyJavaVM() to assure that VM resources are released.
4804 
4805     // note: perfMemory_exit_helper atexit function may be removed in
4806     // the future if the appropriate cleanup code can be added to the
4807     // VM_Exit VMOperation's doit method.
4808     if (atexit(perfMemory_exit_helper) != 0) {
4809       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
4810     }
4811   }
4812 
4813   // initialize thread priority policy
4814   prio_init();
4815 
4816   return JNI_OK;
4817 }
4818 
4819 // this is called at the end of vm_initialization
4820 void os::init_3(void) {
4821 #ifdef JAVASE_EMBEDDED
4822   // Start the MemNotifyThread
4823   if (LowMemoryProtection) {
4824     MemNotifyThread::start();
4825   }
4826   return;
4827 #endif
4828 }
4829 
4830 // Mark the polling page as unreadable
4831 void os::make_polling_page_unreadable(void) {
4832   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4833     fatal("Could not disable polling page");
4834 };
4835 
4836 // Mark the polling page as readable
4837 void os::make_polling_page_readable(void) {
4838   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4839     fatal("Could not enable polling page");
4840   }
4841 };
4842 
4843 int os::active_processor_count() {
4844   // Linux doesn't yet have a (official) notion of processor sets,
4845   // so just return the number of online processors.
4846   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4847   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4848   return online_cpus;
4849 }
4850 
4851 void os::set_native_thread_name(const char *name) {
4852   // Not yet implemented.
4853   return;
4854 }
4855 
4856 bool os::distribute_processes(uint length, uint* distribution) {
4857   // Not yet implemented.
4858   return false;
4859 }
4860 
4861 bool os::bind_to_processor(uint processor_id) {
4862   // Not yet implemented.
4863   return false;
4864 }
4865 
4866 ///
4867 
4868 void os::SuspendedThreadTask::internal_do_task() {
4869   if (do_suspend(_thread->osthread())) {
4870     SuspendedThreadTaskContext context(_thread, _thread->osthread()->ucontext());
4871     do_task(context);
4872     do_resume(_thread->osthread());
4873   }
4874 }
4875 
4876 class PcFetcher : public os::SuspendedThreadTask {
4877 public:
4878   PcFetcher(Thread* thread) : os::SuspendedThreadTask(thread) {}
4879   ExtendedPC result();
4880 protected:
4881   void do_task(const os::SuspendedThreadTaskContext& context);
4882 private:
4883   ExtendedPC _epc;
4884 };
4885 
4886 ExtendedPC PcFetcher::result() {
4887   guarantee(is_done(), "task is not done yet.");
4888   return _epc;
4889 }
4890 
4891 void PcFetcher::do_task(const os::SuspendedThreadTaskContext& context) {
4892   Thread* thread = context.thread();
4893   OSThread* osthread = thread->osthread();
4894   if (osthread->ucontext() != NULL) {
4895     _epc = os::Linux::ucontext_get_pc((ucontext_t *) context.ucontext());
4896   } else {
4897     // NULL context is unexpected, double-check this is the VMThread
4898     guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4899   }
4900 }
4901 
4902 // Suspends the target using the signal mechanism and then grabs the PC before
4903 // resuming the target. Used by the flat-profiler only
4904 ExtendedPC os::get_thread_pc(Thread* thread) {
4905   // Make sure that it is called by the watcher for the VMThread
4906   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4907   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4908 
4909   PcFetcher fetcher(thread);
4910   fetcher.run();
4911   return fetcher.result();
4912 }
4913 
4914 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4915 {
4916    if (is_NPTL()) {
4917       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4918    } else {
4919       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4920       // word back to default 64bit precision if condvar is signaled. Java
4921       // wants 53bit precision.  Save and restore current value.
4922       int fpu = get_fpu_control_word();
4923       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4924       set_fpu_control_word(fpu);
4925       return status;
4926    }
4927 }
4928 
4929 ////////////////////////////////////////////////////////////////////////////////
4930 // debug support
4931 
4932 bool os::find(address addr, outputStream* st) {
4933   Dl_info dlinfo;
4934   memset(&dlinfo, 0, sizeof(dlinfo));
4935   if (dladdr(addr, &dlinfo) != 0) {
4936     st->print(PTR_FORMAT ": ", addr);
4937     if (dlinfo.dli_sname != NULL && dlinfo.dli_saddr != NULL) {
4938       st->print("%s+%#x", dlinfo.dli_sname,
4939                  addr - (intptr_t)dlinfo.dli_saddr);
4940     } else if (dlinfo.dli_fbase != NULL) {
4941       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4942     } else {
4943       st->print("<absolute address>");
4944     }
4945     if (dlinfo.dli_fname != NULL) {
4946       st->print(" in %s", dlinfo.dli_fname);
4947     }
4948     if (dlinfo.dli_fbase != NULL) {
4949       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4950     }
4951     st->cr();
4952 
4953     if (Verbose) {
4954       // decode some bytes around the PC
4955       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4956       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4957       address       lowest = (address) dlinfo.dli_sname;
4958       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4959       if (begin < lowest)  begin = lowest;
4960       Dl_info dlinfo2;
4961       if (dladdr(end, &dlinfo2) != 0 && dlinfo2.dli_saddr != dlinfo.dli_saddr
4962           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4963         end = (address) dlinfo2.dli_saddr;
4964       Disassembler::decode(begin, end, st);
4965     }
4966     return true;
4967   }
4968   return false;
4969 }
4970 
4971 ////////////////////////////////////////////////////////////////////////////////
4972 // misc
4973 
4974 // This does not do anything on Linux. This is basically a hook for being
4975 // able to use structured exception handling (thread-local exception filters)
4976 // on, e.g., Win32.
4977 void
4978 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4979                          JavaCallArguments* args, Thread* thread) {
4980   f(value, method, args, thread);
4981 }
4982 
4983 void os::print_statistics() {
4984 }
4985 
4986 int os::message_box(const char* title, const char* message) {
4987   int i;
4988   fdStream err(defaultStream::error_fd());
4989   for (i = 0; i < 78; i++) err.print_raw("=");
4990   err.cr();
4991   err.print_raw_cr(title);
4992   for (i = 0; i < 78; i++) err.print_raw("-");
4993   err.cr();
4994   err.print_raw_cr(message);
4995   for (i = 0; i < 78; i++) err.print_raw("=");
4996   err.cr();
4997 
4998   char buf[16];
4999   // Prevent process from exiting upon "read error" without consuming all CPU
5000   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
5001 
5002   return buf[0] == 'y' || buf[0] == 'Y';
5003 }
5004 
5005 int os::stat(const char *path, struct stat *sbuf) {
5006   char pathbuf[MAX_PATH];
5007   if (strlen(path) > MAX_PATH - 1) {
5008     errno = ENAMETOOLONG;
5009     return -1;
5010   }
5011   os::native_path(strcpy(pathbuf, path));
5012   return ::stat(pathbuf, sbuf);
5013 }
5014 
5015 bool os::check_heap(bool force) {
5016   return true;
5017 }
5018 
5019 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
5020   return ::vsnprintf(buf, count, format, args);
5021 }
5022 
5023 // Is a (classpath) directory empty?
5024 bool os::dir_is_empty(const char* path) {
5025   DIR *dir = NULL;
5026   struct dirent *ptr;
5027 
5028   dir = opendir(path);
5029   if (dir == NULL) return true;
5030 
5031   /* Scan the directory */
5032   bool result = true;
5033   char buf[sizeof(struct dirent) + MAX_PATH];
5034   while (result && (ptr = ::readdir(dir)) != NULL) {
5035     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
5036       result = false;
5037     }
5038   }
5039   closedir(dir);
5040   return result;
5041 }
5042 
5043 // This code originates from JDK's sysOpen and open64_w
5044 // from src/solaris/hpi/src/system_md.c
5045 
5046 #ifndef O_DELETE
5047 #define O_DELETE 0x10000
5048 #endif
5049 
5050 // Open a file. Unlink the file immediately after open returns
5051 // if the specified oflag has the O_DELETE flag set.
5052 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
5053 
5054 int os::open(const char *path, int oflag, int mode) {
5055 
5056   if (strlen(path) > MAX_PATH - 1) {
5057     errno = ENAMETOOLONG;
5058     return -1;
5059   }
5060   int fd;
5061   int o_delete = (oflag & O_DELETE);
5062   oflag = oflag & ~O_DELETE;
5063 
5064   fd = ::open64(path, oflag, mode);
5065   if (fd == -1) return -1;
5066 
5067   //If the open succeeded, the file might still be a directory
5068   {
5069     struct stat64 buf64;
5070     int ret = ::fstat64(fd, &buf64);
5071     int st_mode = buf64.st_mode;
5072 
5073     if (ret != -1) {
5074       if ((st_mode & S_IFMT) == S_IFDIR) {
5075         errno = EISDIR;
5076         ::close(fd);
5077         return -1;
5078       }
5079     } else {
5080       ::close(fd);
5081       return -1;
5082     }
5083   }
5084 
5085     /*
5086      * All file descriptors that are opened in the JVM and not
5087      * specifically destined for a subprocess should have the
5088      * close-on-exec flag set.  If we don't set it, then careless 3rd
5089      * party native code might fork and exec without closing all
5090      * appropriate file descriptors (e.g. as we do in closeDescriptors in
5091      * UNIXProcess.c), and this in turn might:
5092      *
5093      * - cause end-of-file to fail to be detected on some file
5094      *   descriptors, resulting in mysterious hangs, or
5095      *
5096      * - might cause an fopen in the subprocess to fail on a system
5097      *   suffering from bug 1085341.
5098      *
5099      * (Yes, the default setting of the close-on-exec flag is a Unix
5100      * design flaw)
5101      *
5102      * See:
5103      * 1085341: 32-bit stdio routines should support file descriptors >255
5104      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
5105      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
5106      */
5107 #ifdef FD_CLOEXEC
5108     {
5109         int flags = ::fcntl(fd, F_GETFD);
5110         if (flags != -1)
5111             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
5112     }
5113 #endif
5114 
5115   if (o_delete != 0) {
5116     ::unlink(path);
5117   }
5118   return fd;
5119 }
5120 
5121 
5122 // create binary file, rewriting existing file if required
5123 int os::create_binary_file(const char* path, bool rewrite_existing) {
5124   int oflags = O_WRONLY | O_CREAT;
5125   if (!rewrite_existing) {
5126     oflags |= O_EXCL;
5127   }
5128   return ::open64(path, oflags, S_IREAD | S_IWRITE);
5129 }
5130 
5131 // return current position of file pointer
5132 jlong os::current_file_offset(int fd) {
5133   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
5134 }
5135 
5136 // move file pointer to the specified offset
5137 jlong os::seek_to_file_offset(int fd, jlong offset) {
5138   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
5139 }
5140 
5141 // This code originates from JDK's sysAvailable
5142 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
5143 
5144 int os::available(int fd, jlong *bytes) {
5145   jlong cur, end;
5146   int mode;
5147   struct stat64 buf64;
5148 
5149   if (::fstat64(fd, &buf64) >= 0) {
5150     mode = buf64.st_mode;
5151     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
5152       /*
5153       * XXX: is the following call interruptible? If so, this might
5154       * need to go through the INTERRUPT_IO() wrapper as for other
5155       * blocking, interruptible calls in this file.
5156       */
5157       int n;
5158       if (::ioctl(fd, FIONREAD, &n) >= 0) {
5159         *bytes = n;
5160         return 1;
5161       }
5162     }
5163   }
5164   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
5165     return 0;
5166   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
5167     return 0;
5168   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
5169     return 0;
5170   }
5171   *bytes = end - cur;
5172   return 1;
5173 }
5174 
5175 int os::socket_available(int fd, jint *pbytes) {
5176   // Linux doc says EINTR not returned, unlike Solaris
5177   int ret = ::ioctl(fd, FIONREAD, pbytes);
5178 
5179   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
5180   // is expected to return 0 on failure and 1 on success to the jdk.
5181   return (ret < 0) ? 0 : 1;
5182 }
5183 
5184 // Map a block of memory.
5185 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
5186                      char *addr, size_t bytes, bool read_only,
5187                      bool allow_exec) {
5188   int prot;
5189   int flags = MAP_PRIVATE;
5190 
5191   if (read_only) {
5192     prot = PROT_READ;
5193   } else {
5194     prot = PROT_READ | PROT_WRITE;
5195   }
5196 
5197   if (allow_exec) {
5198     prot |= PROT_EXEC;
5199   }
5200 
5201   if (addr != NULL) {
5202     flags |= MAP_FIXED;
5203   }
5204 
5205   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
5206                                      fd, file_offset);
5207   if (mapped_address == MAP_FAILED) {
5208     return NULL;
5209   }
5210   return mapped_address;
5211 }
5212 
5213 
5214 // Remap a block of memory.
5215 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
5216                        char *addr, size_t bytes, bool read_only,
5217                        bool allow_exec) {
5218   // same as map_memory() on this OS
5219   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
5220                         allow_exec);
5221 }
5222 
5223 
5224 // Unmap a block of memory.
5225 bool os::pd_unmap_memory(char* addr, size_t bytes) {
5226   return munmap(addr, bytes) == 0;
5227 }
5228 
5229 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
5230 
5231 static clockid_t thread_cpu_clockid(Thread* thread) {
5232   pthread_t tid = thread->osthread()->pthread_id();
5233   clockid_t clockid;
5234 
5235   // Get thread clockid
5236   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
5237   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
5238   return clockid;
5239 }
5240 
5241 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
5242 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
5243 // of a thread.
5244 //
5245 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
5246 // the fast estimate available on the platform.
5247 
5248 jlong os::current_thread_cpu_time() {
5249   if (os::Linux::supports_fast_thread_cpu_time()) {
5250     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5251   } else {
5252     // return user + sys since the cost is the same
5253     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
5254   }
5255 }
5256 
5257 jlong os::thread_cpu_time(Thread* thread) {
5258   // consistent with what current_thread_cpu_time() returns
5259   if (os::Linux::supports_fast_thread_cpu_time()) {
5260     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5261   } else {
5262     return slow_thread_cpu_time(thread, true /* user + sys */);
5263   }
5264 }
5265 
5266 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
5267   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5268     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
5269   } else {
5270     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
5271   }
5272 }
5273 
5274 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5275   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
5276     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
5277   } else {
5278     return slow_thread_cpu_time(thread, user_sys_cpu_time);
5279   }
5280 }
5281 
5282 //
5283 //  -1 on error.
5284 //
5285 
5286 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
5287   static bool proc_task_unchecked = true;
5288   pid_t  tid = thread->osthread()->thread_id();
5289   char *s;
5290   char stat[2048];
5291   int statlen;
5292   char proc_name[64];
5293   int count;
5294   long sys_time, user_time;
5295   char cdummy;
5296   int idummy;
5297   long ldummy;
5298   FILE *fp;
5299 
5300   snprintf(proc_name, 64, "/proc/%d/stat", tid);
5301 
5302   // The /proc/<tid>/stat aggregates per-process usage on
5303   // new Linux kernels 2.6+ where NPTL is supported.
5304   // The /proc/self/task/<tid>/stat still has the per-thread usage.
5305   // See bug 6328462.
5306   // There possibly can be cases where there is no directory
5307   // /proc/self/task, so we check its availability.
5308   if (proc_task_unchecked && os::Linux::is_NPTL()) {
5309     // This is executed only once
5310     proc_task_unchecked = false;
5311     fp = fopen("/proc/self/task", "r");
5312     if (fp != NULL) {
5313       snprintf(proc_name, 64, "/proc/self/task/%d/stat", tid);
5314       fclose(fp);
5315     }
5316   }
5317 
5318   fp = fopen(proc_name, "r");
5319   if ( fp == NULL ) return -1;
5320   statlen = fread(stat, 1, 2047, fp);
5321   stat[statlen] = '\0';
5322   fclose(fp);
5323 
5324   // Skip pid and the command string. Note that we could be dealing with
5325   // weird command names, e.g. user could decide to rename java launcher
5326   // to "java 1.4.2 :)", then the stat file would look like
5327   //                1234 (java 1.4.2 :)) R ... ...
5328   // We don't really need to know the command string, just find the last
5329   // occurrence of ")" and then start parsing from there. See bug 4726580.
5330   s = strrchr(stat, ')');
5331   if (s == NULL ) return -1;
5332 
5333   // Skip blank chars
5334   do s++; while (isspace(*s));
5335 
5336   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
5337                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
5338                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
5339                  &user_time, &sys_time);
5340   if ( count != 13 ) return -1;
5341   if (user_sys_cpu_time) {
5342     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
5343   } else {
5344     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
5345   }
5346 }
5347 
5348 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5349   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5350   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5351   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5352   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5353 }
5354 
5355 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
5356   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
5357   info_ptr->may_skip_backward = false;     // elapsed time not wall time
5358   info_ptr->may_skip_forward = false;      // elapsed time not wall time
5359   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
5360 }
5361 
5362 bool os::is_thread_cpu_time_supported() {
5363   return true;
5364 }
5365 
5366 // System loadavg support.  Returns -1 if load average cannot be obtained.
5367 // Linux doesn't yet have a (official) notion of processor sets,
5368 // so just return the system wide load average.
5369 int os::loadavg(double loadavg[], int nelem) {
5370   return ::getloadavg(loadavg, nelem);
5371 }
5372 
5373 void os::pause() {
5374   char filename[MAX_PATH];
5375   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
5376     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
5377   } else {
5378     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
5379   }
5380 
5381   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
5382   if (fd != -1) {
5383     struct stat buf;
5384     ::close(fd);
5385     while (::stat(filename, &buf) == 0) {
5386       (void)::poll(NULL, 0, 100);
5387     }
5388   } else {
5389     jio_fprintf(stderr,
5390       "Could not open pause file '%s', continuing immediately.\n", filename);
5391   }
5392 }
5393 
5394 
5395 // Refer to the comments in os_solaris.cpp park-unpark.
5396 //
5397 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
5398 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
5399 // For specifics regarding the bug see GLIBC BUGID 261237 :
5400 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
5401 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
5402 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
5403 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
5404 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
5405 // and monitorenter when we're using 1-0 locking.  All those operations may result in
5406 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
5407 // of libpthread avoids the problem, but isn't practical.
5408 //
5409 // Possible remedies:
5410 //
5411 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
5412 //      This is palliative and probabilistic, however.  If the thread is preempted
5413 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
5414 //      than the minimum period may have passed, and the abstime may be stale (in the
5415 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
5416 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
5417 //
5418 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
5419 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
5420 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
5421 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
5422 //      thread.
5423 //
5424 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5425 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5426 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5427 //      This also works well.  In fact it avoids kernel-level scalability impediments
5428 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5429 //      timers in a graceful fashion.
5430 //
5431 // 4.   When the abstime value is in the past it appears that control returns
5432 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5433 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5434 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5435 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5436 //      It may be possible to avoid reinitialization by checking the return
5437 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5438 //      condvar we must establish the invariant that cond_signal() is only called
5439 //      within critical sections protected by the adjunct mutex.  This prevents
5440 //      cond_signal() from "seeing" a condvar that's in the midst of being
5441 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5442 //      desirable signal-after-unlock optimization that avoids futile context switching.
5443 //
5444 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5445 //      structure when a condvar is used or initialized.  cond_destroy()  would
5446 //      release the helper structure.  Our reinitialize-after-timedwait fix
5447 //      put excessive stress on malloc/free and locks protecting the c-heap.
5448 //
5449 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5450 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5451 // and only enabling the work-around for vulnerable environments.
5452 
5453 // utility to compute the abstime argument to timedwait:
5454 // millis is the relative timeout time
5455 // abstime will be the absolute timeout time
5456 // TODO: replace compute_abstime() with unpackTime()
5457 
5458 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5459   if (millis < 0)  millis = 0;
5460 
5461   jlong seconds = millis / 1000;
5462   millis %= 1000;
5463   if (seconds > 50000000) { // see man cond_timedwait(3T)
5464     seconds = 50000000;
5465   }
5466 
5467   if (os::supports_monotonic_clock()) {
5468     struct timespec now;
5469     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5470     assert_status(status == 0, status, "clock_gettime");
5471     abstime->tv_sec = now.tv_sec  + seconds;
5472     long nanos = now.tv_nsec + millis * NANOSECS_PER_MILLISEC;
5473     if (nanos >= NANOSECS_PER_SEC) {
5474       abstime->tv_sec += 1;
5475       nanos -= NANOSECS_PER_SEC;
5476     }
5477     abstime->tv_nsec = nanos;
5478   } else {
5479     struct timeval now;
5480     int status = gettimeofday(&now, NULL);
5481     assert(status == 0, "gettimeofday");
5482     abstime->tv_sec = now.tv_sec  + seconds;
5483     long usec = now.tv_usec + millis * 1000;
5484     if (usec >= 1000000) {
5485       abstime->tv_sec += 1;
5486       usec -= 1000000;
5487     }
5488     abstime->tv_nsec = usec * 1000;
5489   }
5490   return abstime;
5491 }
5492 
5493 
5494 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5495 // Conceptually TryPark() should be equivalent to park(0).
5496 
5497 int os::PlatformEvent::TryPark() {
5498   for (;;) {
5499     const int v = _Event ;
5500     guarantee ((v == 0) || (v == 1), "invariant") ;
5501     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5502   }
5503 }
5504 
5505 void os::PlatformEvent::park() {       // AKA "down()"
5506   // Invariant: Only the thread associated with the Event/PlatformEvent
5507   // may call park().
5508   // TODO: assert that _Assoc != NULL or _Assoc == Self
5509   int v ;
5510   for (;;) {
5511       v = _Event ;
5512       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5513   }
5514   guarantee (v >= 0, "invariant") ;
5515   if (v == 0) {
5516      // Do this the hard way by blocking ...
5517      int status = pthread_mutex_lock(_mutex);
5518      assert_status(status == 0, status, "mutex_lock");
5519      guarantee (_nParked == 0, "invariant") ;
5520      ++ _nParked ;
5521      while (_Event < 0) {
5522         status = pthread_cond_wait(_cond, _mutex);
5523         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5524         // Treat this the same as if the wait was interrupted
5525         if (status == ETIME) { status = EINTR; }
5526         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5527      }
5528      -- _nParked ;
5529 
5530     _Event = 0 ;
5531      status = pthread_mutex_unlock(_mutex);
5532      assert_status(status == 0, status, "mutex_unlock");
5533     // Paranoia to ensure our locked and lock-free paths interact
5534     // correctly with each other.
5535     OrderAccess::fence();
5536   }
5537   guarantee (_Event >= 0, "invariant") ;
5538 }
5539 
5540 int os::PlatformEvent::park(jlong millis) {
5541   guarantee (_nParked == 0, "invariant") ;
5542 
5543   int v ;
5544   for (;;) {
5545       v = _Event ;
5546       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5547   }
5548   guarantee (v >= 0, "invariant") ;
5549   if (v != 0) return OS_OK ;
5550 
5551   // We do this the hard way, by blocking the thread.
5552   // Consider enforcing a minimum timeout value.
5553   struct timespec abst;
5554   compute_abstime(&abst, millis);
5555 
5556   int ret = OS_TIMEOUT;
5557   int status = pthread_mutex_lock(_mutex);
5558   assert_status(status == 0, status, "mutex_lock");
5559   guarantee (_nParked == 0, "invariant") ;
5560   ++_nParked ;
5561 
5562   // Object.wait(timo) will return because of
5563   // (a) notification
5564   // (b) timeout
5565   // (c) thread.interrupt
5566   //
5567   // Thread.interrupt and object.notify{All} both call Event::set.
5568   // That is, we treat thread.interrupt as a special case of notification.
5569   // The underlying Solaris implementation, cond_timedwait, admits
5570   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5571   // JVM from making those visible to Java code.  As such, we must
5572   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5573   //
5574   // TODO: properly differentiate simultaneous notify+interrupt.
5575   // In that case, we should propagate the notify to another waiter.
5576 
5577   while (_Event < 0) {
5578     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5579     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5580       pthread_cond_destroy (_cond);
5581       pthread_cond_init (_cond, os::Linux::condAttr()) ;
5582     }
5583     assert_status(status == 0 || status == EINTR ||
5584                   status == ETIME || status == ETIMEDOUT,
5585                   status, "cond_timedwait");
5586     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5587     if (status == ETIME || status == ETIMEDOUT) break ;
5588     // We consume and ignore EINTR and spurious wakeups.
5589   }
5590   --_nParked ;
5591   if (_Event >= 0) {
5592      ret = OS_OK;
5593   }
5594   _Event = 0 ;
5595   status = pthread_mutex_unlock(_mutex);
5596   assert_status(status == 0, status, "mutex_unlock");
5597   assert (_nParked == 0, "invariant") ;
5598   // Paranoia to ensure our locked and lock-free paths interact
5599   // correctly with each other.
5600   OrderAccess::fence();
5601   return ret;
5602 }
5603 
5604 void os::PlatformEvent::unpark() {
5605   // Transitions for _Event:
5606   //    0 :=> 1
5607   //    1 :=> 1
5608   //   -1 :=> either 0 or 1; must signal target thread
5609   //          That is, we can safely transition _Event from -1 to either
5610   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5611   //          unpark() calls.
5612   // See also: "Semaphores in Plan 9" by Mullender & Cox
5613   //
5614   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5615   // that it will take two back-to-back park() calls for the owning
5616   // thread to block. This has the benefit of forcing a spurious return
5617   // from the first park() call after an unpark() call which will help
5618   // shake out uses of park() and unpark() without condition variables.
5619 
5620   if (Atomic::xchg(1, &_Event) >= 0) return;
5621 
5622   // Wait for the thread associated with the event to vacate
5623   int status = pthread_mutex_lock(_mutex);
5624   assert_status(status == 0, status, "mutex_lock");
5625   int AnyWaiters = _nParked;
5626   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5627   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5628     AnyWaiters = 0;
5629     pthread_cond_signal(_cond);
5630   }
5631   status = pthread_mutex_unlock(_mutex);
5632   assert_status(status == 0, status, "mutex_unlock");
5633   if (AnyWaiters != 0) {
5634     status = pthread_cond_signal(_cond);
5635     assert_status(status == 0, status, "cond_signal");
5636   }
5637 
5638   // Note that we signal() _after dropping the lock for "immortal" Events.
5639   // This is safe and avoids a common class of  futile wakeups.  In rare
5640   // circumstances this can cause a thread to return prematurely from
5641   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5642   // simply re-test the condition and re-park itself.
5643 }
5644 
5645 
5646 // JSR166
5647 // -------------------------------------------------------
5648 
5649 /*
5650  * The solaris and linux implementations of park/unpark are fairly
5651  * conservative for now, but can be improved. They currently use a
5652  * mutex/condvar pair, plus a a count.
5653  * Park decrements count if > 0, else does a condvar wait.  Unpark
5654  * sets count to 1 and signals condvar.  Only one thread ever waits
5655  * on the condvar. Contention seen when trying to park implies that someone
5656  * is unparking you, so don't wait. And spurious returns are fine, so there
5657  * is no need to track notifications.
5658  */
5659 
5660 #define MAX_SECS 100000000
5661 /*
5662  * This code is common to linux and solaris and will be moved to a
5663  * common place in dolphin.
5664  *
5665  * The passed in time value is either a relative time in nanoseconds
5666  * or an absolute time in milliseconds. Either way it has to be unpacked
5667  * into suitable seconds and nanoseconds components and stored in the
5668  * given timespec structure.
5669  * Given time is a 64-bit value and the time_t used in the timespec is only
5670  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5671  * overflow if times way in the future are given. Further on Solaris versions
5672  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5673  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5674  * As it will be 28 years before "now + 100000000" will overflow we can
5675  * ignore overflow and just impose a hard-limit on seconds using the value
5676  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5677  * years from "now".
5678  */
5679 
5680 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5681   assert (time > 0, "convertTime");
5682   time_t max_secs = 0;
5683 
5684   if (!os::supports_monotonic_clock() || isAbsolute) {
5685     struct timeval now;
5686     int status = gettimeofday(&now, NULL);
5687     assert(status == 0, "gettimeofday");
5688 
5689     max_secs = now.tv_sec + MAX_SECS;
5690 
5691     if (isAbsolute) {
5692       jlong secs = time / 1000;
5693       if (secs > max_secs) {
5694         absTime->tv_sec = max_secs;
5695       } else {
5696         absTime->tv_sec = secs;
5697       }
5698       absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5699     } else {
5700       jlong secs = time / NANOSECS_PER_SEC;
5701       if (secs >= MAX_SECS) {
5702         absTime->tv_sec = max_secs;
5703         absTime->tv_nsec = 0;
5704       } else {
5705         absTime->tv_sec = now.tv_sec + secs;
5706         absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5707         if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5708           absTime->tv_nsec -= NANOSECS_PER_SEC;
5709           ++absTime->tv_sec; // note: this must be <= max_secs
5710         }
5711       }
5712     }
5713   } else {
5714     // must be relative using monotonic clock
5715     struct timespec now;
5716     int status = os::Linux::clock_gettime(CLOCK_MONOTONIC, &now);
5717     assert_status(status == 0, status, "clock_gettime");
5718     max_secs = now.tv_sec + MAX_SECS;
5719     jlong secs = time / NANOSECS_PER_SEC;
5720     if (secs >= MAX_SECS) {
5721       absTime->tv_sec = max_secs;
5722       absTime->tv_nsec = 0;
5723     } else {
5724       absTime->tv_sec = now.tv_sec + secs;
5725       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_nsec;
5726       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5727         absTime->tv_nsec -= NANOSECS_PER_SEC;
5728         ++absTime->tv_sec; // note: this must be <= max_secs
5729       }
5730     }
5731   }
5732   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5733   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5734   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5735   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5736 }
5737 
5738 /*
5739 * Certain structures, for example Semaphores, are always associated
5740 * with CLOCK_REALTIME derived absolute time representations.
5741 * This helper will yield an absolute realtime representation for the passed
5742 * in relative time. We should be able to use clock_gettime for most
5743 * supported Linux's, but if that is not possible we will fallback to use
5744 * gettimeofday.
5745 *
5746 * utility to compute the abstime argument using CLOCK_REALTIME where possible.
5747 *
5748 * relTime is the relative time in nanoseconds.
5749 * absTime will be the absolute time in seconds and nanoseconds.
5750 */
5751 static void absoluteRealTimeForRelativeTime(timespec* absTime, jlong relTime) {
5752   assert(absTime != NULL, "invariant");
5753   assert(relTime > 0, "invariant");
5754 
5755   time_t max_secs = 0;
5756   jlong secs = relTime / NANOSECS_PER_SEC;
5757 
5758   if (os::supports_monotonic_clock()) { // check avail of clock_gettime
5759     struct timespec now;
5760     int status = os::Linux::clock_gettime(CLOCK_REALTIME, &now);
5761     assert_status(status == 0, status, "clock_gettime");
5762     max_secs = now.tv_sec + MAX_SECS;
5763     if (secs >= MAX_SECS) {
5764       absTime->tv_sec = max_secs;
5765       absTime->tv_nsec = 0;
5766     } else {
5767       absTime->tv_sec = now.tv_sec + secs;
5768       absTime->tv_nsec = (relTime % NANOSECS_PER_SEC) + now.tv_nsec;
5769     }
5770   } else {
5771     struct timeval now;
5772     int status = gettimeofday(&now, NULL);
5773     assert(status == 0, "gettimeofday");
5774     max_secs = now.tv_sec + MAX_SECS;
5775     if (secs >= MAX_SECS) {
5776       absTime->tv_sec = max_secs;
5777       absTime->tv_nsec = 0;
5778     } else {
5779       absTime->tv_sec = now.tv_sec + secs;
5780       absTime->tv_nsec = (relTime % NANOSECS_PER_SEC) + now.tv_usec*1000;
5781     }
5782   }
5783 
5784   if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5785     absTime->tv_nsec -= NANOSECS_PER_SEC;
5786     ++absTime->tv_sec; // note: this must be <= max_secs
5787   }
5788 
5789   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5790   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5791   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5792   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5793 }
5794 
5795 void Parker::park(bool isAbsolute, jlong time) {
5796   // Ideally we'd do something useful while spinning, such
5797   // as calling unpackTime().
5798 
5799   // Optional fast-path check:
5800   // Return immediately if a permit is available.
5801   // We depend on Atomic::xchg() having full barrier semantics
5802   // since we are doing a lock-free update to _counter.
5803   if (Atomic::xchg(0, &_counter) > 0) return;
5804 
5805   Thread* thread = Thread::current();
5806   assert(thread->is_Java_thread(), "Must be JavaThread");
5807   JavaThread *jt = (JavaThread *)thread;
5808 
5809   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5810   // Check interrupt before trying to wait
5811   if (Thread::is_interrupted(thread, false)) {
5812     return;
5813   }
5814 
5815   // Next, demultiplex/decode time arguments
5816   timespec absTime;
5817   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5818     return;
5819   }
5820   if (time > 0) {
5821     unpackTime(&absTime, isAbsolute, time);
5822   }
5823 
5824 
5825   // Enter safepoint region
5826   // Beware of deadlocks such as 6317397.
5827   // The per-thread Parker:: mutex is a classic leaf-lock.
5828   // In particular a thread must never block on the Threads_lock while
5829   // holding the Parker:: mutex.  If safepoints are pending both the
5830   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5831   ThreadBlockInVM tbivm(jt);
5832 
5833   // Don't wait if cannot get lock since interference arises from
5834   // unblocking.  Also. check interrupt before trying wait
5835   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5836     return;
5837   }
5838 
5839   int status ;
5840   if (_counter > 0)  { // no wait needed
5841     _counter = 0;
5842     status = pthread_mutex_unlock(_mutex);
5843     assert (status == 0, "invariant") ;
5844     // Paranoia to ensure our locked and lock-free paths interact
5845     // correctly with each other and Java-level accesses.
5846     OrderAccess::fence();
5847     return;
5848   }
5849 
5850 #ifdef ASSERT
5851   // Don't catch signals while blocked; let the running threads have the signals.
5852   // (This allows a debugger to break into the running thread.)
5853   sigset_t oldsigs;
5854   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5855   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5856 #endif
5857 
5858   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5859   jt->set_suspend_equivalent();
5860   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5861 
5862   assert(_cur_index == -1, "invariant");
5863   if (time == 0) {
5864     _cur_index = REL_INDEX; // arbitrary choice when not timed
5865     status = pthread_cond_wait (&_cond[_cur_index], _mutex) ;
5866   } else {
5867     _cur_index = isAbsolute ? ABS_INDEX : REL_INDEX;
5868     status = os::Linux::safe_cond_timedwait (&_cond[_cur_index], _mutex, &absTime) ;
5869     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5870       pthread_cond_destroy (&_cond[_cur_index]) ;
5871       pthread_cond_init    (&_cond[_cur_index], isAbsolute ? NULL : os::Linux::condAttr());
5872     }
5873   }
5874   _cur_index = -1;
5875   assert_status(status == 0 || status == EINTR ||
5876                 status == ETIME || status == ETIMEDOUT,
5877                 status, "cond_timedwait");
5878 
5879 #ifdef ASSERT
5880   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5881 #endif
5882 
5883   _counter = 0 ;
5884   status = pthread_mutex_unlock(_mutex) ;
5885   assert_status(status == 0, status, "invariant") ;
5886   // Paranoia to ensure our locked and lock-free paths interact
5887   // correctly with each other and Java-level accesses.
5888   OrderAccess::fence();
5889 
5890   // If externally suspended while waiting, re-suspend
5891   if (jt->handle_special_suspend_equivalent_condition()) {
5892     jt->java_suspend_self();
5893   }
5894 }
5895 
5896 void Parker::unpark() {
5897   int s, status ;
5898   status = pthread_mutex_lock(_mutex);
5899   assert (status == 0, "invariant") ;
5900   s = _counter;
5901   _counter = 1;
5902   if (s < 1) {
5903     // thread might be parked
5904     if (_cur_index != -1) {
5905       // thread is definitely parked
5906       if (WorkAroundNPTLTimedWaitHang) {
5907         status = pthread_cond_signal (&_cond[_cur_index]);
5908         assert (status == 0, "invariant");
5909         status = pthread_mutex_unlock(_mutex);
5910         assert (status == 0, "invariant");
5911       } else {
5912         status = pthread_mutex_unlock(_mutex);
5913         assert (status == 0, "invariant");
5914         status = pthread_cond_signal (&_cond[_cur_index]);
5915         assert (status == 0, "invariant");
5916       }
5917     } else {
5918       pthread_mutex_unlock(_mutex);
5919       assert (status == 0, "invariant") ;
5920     }
5921   } else {
5922     pthread_mutex_unlock(_mutex);
5923     assert (status == 0, "invariant") ;
5924   }
5925 }
5926 
5927 
5928 extern char** environ;
5929 
5930 #ifndef __NR_fork
5931 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5932 #endif
5933 
5934 #ifndef __NR_execve
5935 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5936 #endif
5937 
5938 // Run the specified command in a separate process. Return its exit value,
5939 // or -1 on failure (e.g. can't fork a new process).
5940 // Unlike system(), this function can be called from signal handler. It
5941 // doesn't block SIGINT et al.
5942 int os::fork_and_exec(char* cmd) {
5943   const char * argv[4] = {"sh", "-c", cmd, NULL};
5944 
5945   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5946   // pthread_atfork handlers and reset pthread library. All we need is a
5947   // separate process to execve. Make a direct syscall to fork process.
5948   // On IA64 there's no fork syscall, we have to use fork() and hope for
5949   // the best...
5950   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5951               IA64_ONLY(fork();)
5952 
5953   if (pid < 0) {
5954     // fork failed
5955     return -1;
5956 
5957   } else if (pid == 0) {
5958     // child process
5959 
5960     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5961     // first to kill every thread on the thread list. Because this list is
5962     // not reset by fork() (see notes above), execve() will instead kill
5963     // every thread in the parent process. We know this is the only thread
5964     // in the new process, so make a system call directly.
5965     // IA64 should use normal execve() from glibc to match the glibc fork()
5966     // above.
5967     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5968     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5969 
5970     // execve failed
5971     _exit(-1);
5972 
5973   } else  {
5974     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5975     // care about the actual exit code, for now.
5976 
5977     int status;
5978 
5979     // Wait for the child process to exit.  This returns immediately if
5980     // the child has already exited. */
5981     while (waitpid(pid, &status, 0) < 0) {
5982         switch (errno) {
5983         case ECHILD: return 0;
5984         case EINTR: break;
5985         default: return -1;
5986         }
5987     }
5988 
5989     if (WIFEXITED(status)) {
5990        // The child exited normally; get its exit code.
5991        return WEXITSTATUS(status);
5992     } else if (WIFSIGNALED(status)) {
5993        // The child exited because of a signal
5994        // The best value to return is 0x80 + signal number,
5995        // because that is what all Unix shells do, and because
5996        // it allows callers to distinguish between process exit and
5997        // process death by signal.
5998        return 0x80 + WTERMSIG(status);
5999     } else {
6000        // Unknown exit code; pass it through
6001        return status;
6002     }
6003   }
6004 }
6005 
6006 // is_headless_jre()
6007 //
6008 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
6009 // in order to report if we are running in a headless jre
6010 //
6011 // Since JDK8 xawt/libmawt.so was moved into the same directory
6012 // as libawt.so, and renamed libawt_xawt.so
6013 //
6014 bool os::is_headless_jre() {
6015     struct stat statbuf;
6016     char buf[MAXPATHLEN];
6017     char libmawtpath[MAXPATHLEN];
6018     const char *xawtstr  = "/xawt/libmawt.so";
6019     const char *new_xawtstr = "/libawt_xawt.so";
6020     char *p;
6021 
6022     // Get path to libjvm.so
6023     os::jvm_path(buf, sizeof(buf));
6024 
6025     // Get rid of libjvm.so
6026     p = strrchr(buf, '/');
6027     if (p == NULL) return false;
6028     else *p = '\0';
6029 
6030     // Get rid of client or server
6031     p = strrchr(buf, '/');
6032     if (p == NULL) return false;
6033     else *p = '\0';
6034 
6035     // check xawt/libmawt.so
6036     strcpy(libmawtpath, buf);
6037     strcat(libmawtpath, xawtstr);
6038     if (::stat(libmawtpath, &statbuf) == 0) return false;
6039 
6040     // check libawt_xawt.so
6041     strcpy(libmawtpath, buf);
6042     strcat(libmawtpath, new_xawtstr);
6043     if (::stat(libmawtpath, &statbuf) == 0) return false;
6044 
6045     return true;
6046 }
6047 
6048 // Get the default path to the core file
6049 // Returns the length of the string
6050 int os::get_core_path(char* buffer, size_t bufferSize) {
6051   const char* p = get_current_directory(buffer, bufferSize);
6052 
6053   if (p == NULL) {
6054     assert(p != NULL, "failed to get current directory");
6055     return 0;
6056   }
6057 
6058   return strlen(buffer);
6059 }
6060 
6061 #ifdef JAVASE_EMBEDDED
6062 //
6063 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
6064 //
6065 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
6066 
6067 // ctor
6068 //
6069 MemNotifyThread::MemNotifyThread(int fd): Thread() {
6070   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
6071   _fd = fd;
6072 
6073   if (os::create_thread(this, os::os_thread)) {
6074     _memnotify_thread = this;
6075     os::set_priority(this, NearMaxPriority);
6076     os::start_thread(this);
6077   }
6078 }
6079 
6080 // Where all the work gets done
6081 //
6082 void MemNotifyThread::run() {
6083   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
6084 
6085   // Set up the select arguments
6086   fd_set rfds;
6087   if (_fd != -1) {
6088     FD_ZERO(&rfds);
6089     FD_SET(_fd, &rfds);
6090   }
6091 
6092   // Now wait for the mem_notify device to wake up
6093   while (1) {
6094     // Wait for the mem_notify device to signal us..
6095     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
6096     if (rc == -1) {
6097       perror("select!\n");
6098       break;
6099     } else if (rc) {
6100       //ssize_t free_before = os::available_memory();
6101       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
6102 
6103       // The kernel is telling us there is not much memory left...
6104       // try to do something about that
6105 
6106       // If we are not already in a GC, try one.
6107       if (!Universe::heap()->is_gc_active()) {
6108         Universe::heap()->collect(GCCause::_allocation_failure);
6109 
6110         //ssize_t free_after = os::available_memory();
6111         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
6112         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
6113       }
6114       // We might want to do something like the following if we find the GC's are not helping...
6115       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
6116     }
6117   }
6118 }
6119 
6120 //
6121 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
6122 //
6123 void MemNotifyThread::start() {
6124   int    fd;
6125   fd = open ("/dev/mem_notify", O_RDONLY, 0);
6126   if (fd < 0) {
6127       return;
6128   }
6129 
6130   if (memnotify_thread() == NULL) {
6131     new MemNotifyThread(fd);
6132   }
6133 }
6134 
6135 #endif // JAVASE_EMBEDDED
6136 
6137 
6138 /////////////// Unit tests ///////////////
6139 
6140 #ifndef PRODUCT
6141 
6142 #define test_log(...) \
6143   do {\
6144     if (VerboseInternalVMTests) { \
6145       tty->print_cr(__VA_ARGS__); \
6146       tty->flush(); \
6147     }\
6148   } while (false)
6149 
6150 class TestReserveMemorySpecial : AllStatic {
6151  public:
6152   static void small_page_write(void* addr, size_t size) {
6153     size_t page_size = os::vm_page_size();
6154 
6155     char* end = (char*)addr + size;
6156     for (char* p = (char*)addr; p < end; p += page_size) {
6157       *p = 1;
6158     }
6159   }
6160 
6161   static void test_reserve_memory_special_huge_tlbfs_only(size_t size) {
6162     if (!UseHugeTLBFS) {
6163       return;
6164     }
6165 
6166     test_log("test_reserve_memory_special_huge_tlbfs_only(" SIZE_FORMAT ")", size);
6167 
6168     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_only(size, NULL, false);
6169 
6170     if (addr != NULL) {
6171       small_page_write(addr, size);
6172 
6173       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6174     }
6175   }
6176 
6177   static void test_reserve_memory_special_huge_tlbfs_only() {
6178     if (!UseHugeTLBFS) {
6179       return;
6180     }
6181 
6182     size_t lp = os::large_page_size();
6183 
6184     for (size_t size = lp; size <= lp * 10; size += lp) {
6185       test_reserve_memory_special_huge_tlbfs_only(size);
6186     }
6187   }
6188 
6189   static void test_reserve_memory_special_huge_tlbfs_mixed(size_t size, size_t alignment) {
6190     if (!UseHugeTLBFS) {
6191         return;
6192     }
6193 
6194     test_log("test_reserve_memory_special_huge_tlbfs_mixed(" SIZE_FORMAT ", " SIZE_FORMAT ")",
6195         size, alignment);
6196 
6197     assert(size >= os::large_page_size(), "Incorrect input to test");
6198 
6199     char* addr = os::Linux::reserve_memory_special_huge_tlbfs_mixed(size, alignment, NULL, false);
6200 
6201     if (addr != NULL) {
6202       small_page_write(addr, size);
6203 
6204       os::Linux::release_memory_special_huge_tlbfs(addr, size);
6205     }
6206   }
6207 
6208   static void test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(size_t size) {
6209     size_t lp = os::large_page_size();
6210     size_t ag = os::vm_allocation_granularity();
6211 
6212     for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6213       test_reserve_memory_special_huge_tlbfs_mixed(size, alignment);
6214     }
6215   }
6216 
6217   static void test_reserve_memory_special_huge_tlbfs_mixed() {
6218     size_t lp = os::large_page_size();
6219     size_t ag = os::vm_allocation_granularity();
6220 
6221     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp);
6222     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + ag);
6223     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp + lp / 2);
6224     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2);
6225     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + ag);
6226     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 - ag);
6227     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 2 + lp / 2);
6228     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10);
6229     test_reserve_memory_special_huge_tlbfs_mixed_all_alignments(lp * 10 + lp / 2);
6230   }
6231 
6232   static void test_reserve_memory_special_huge_tlbfs() {
6233     if (!UseHugeTLBFS) {
6234       return;
6235     }
6236 
6237     test_reserve_memory_special_huge_tlbfs_only();
6238     test_reserve_memory_special_huge_tlbfs_mixed();
6239   }
6240 
6241   static void test_reserve_memory_special_shm(size_t size, size_t alignment) {
6242     if (!UseSHM) {
6243       return;
6244     }
6245 
6246     test_log("test_reserve_memory_special_shm(" SIZE_FORMAT ", " SIZE_FORMAT ")", size, alignment);
6247 
6248     char* addr = os::Linux::reserve_memory_special_shm(size, alignment, NULL, false);
6249 
6250     if (addr != NULL) {
6251       assert(is_ptr_aligned(addr, alignment), "Check");
6252       assert(is_ptr_aligned(addr, os::large_page_size()), "Check");
6253 
6254       small_page_write(addr, size);
6255 
6256       os::Linux::release_memory_special_shm(addr, size);
6257     }
6258   }
6259 
6260   static void test_reserve_memory_special_shm() {
6261     size_t lp = os::large_page_size();
6262     size_t ag = os::vm_allocation_granularity();
6263 
6264     for (size_t size = ag; size < lp * 3; size += ag) {
6265       for (size_t alignment = ag; is_size_aligned(size, alignment); alignment *= 2) {
6266         test_reserve_memory_special_shm(size, alignment);
6267       }
6268     }
6269   }
6270 
6271   static void test() {
6272     test_reserve_memory_special_huge_tlbfs();
6273     test_reserve_memory_special_shm();
6274   }
6275 };
6276 
6277 void TestReserveMemorySpecial_test() {
6278   TestReserveMemorySpecial::test();
6279 }
6280 
6281 #endif