1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "aot/aotLoader.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/compiledIC.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/metaspaceShared.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "memory/universe.inline.hpp"
  44 #include "oops/klass.hpp"
  45 #include "oops/objArrayKlass.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/methodHandles.hpp"
  50 #include "prims/nativeLookup.hpp"
  51 #include "runtime/arguments.hpp"
  52 #include "runtime/atomic.hpp"
  53 #include "runtime/biasedLocking.hpp"
  54 #include "runtime/compilationPolicy.hpp"
  55 #include "runtime/handles.inline.hpp"
  56 #include "runtime/init.hpp"
  57 #include "runtime/interfaceSupport.hpp"
  58 #include "runtime/java.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "utilities/copy.hpp"
  65 #include "utilities/dtrace.hpp"
  66 #include "utilities/events.hpp"
  67 #include "utilities/hashtable.inline.hpp"
  68 #include "utilities/macros.hpp"
  69 #include "utilities/xmlstream.hpp"
  70 #ifdef COMPILER1
  71 #include "c1/c1_Runtime1.hpp"
  72 #endif
  73 #if INCLUDE_TRACE
  74 #include "trace/tracing.hpp"
  75 #endif
  76 
  77 // Shared stub locations
  78 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  79 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  80 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  82 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  83 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  84 address             SharedRuntime::_resolve_static_call_entry;
  85 
  86 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  87 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  88 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  89 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  90 
  91 #ifdef COMPILER2
  92 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  93 #endif // COMPILER2
  94 
  95 
  96 //----------------------------generate_stubs-----------------------------------
  97 void SharedRuntime::generate_stubs() {
  98   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  99   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
 100   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
 101   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
 102   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 103   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 104   _resolve_static_call_entry           = _resolve_static_call_blob->entry_point();
 105 
 106 #if defined(COMPILER2) || INCLUDE_JVMCI
 107   // Vectors are generated only by C2 and JVMCI.
 108   bool support_wide = is_wide_vector(MaxVectorSize);
 109   if (support_wide) {
 110     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 111   }
 112 #endif // COMPILER2 || INCLUDE_JVMCI
 113   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 114   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 115 
 116   generate_deopt_blob();
 117 
 118 #ifdef COMPILER2
 119   generate_uncommon_trap_blob();
 120 #endif // COMPILER2
 121 }
 122 
 123 #include <math.h>
 124 
 125 // Implementation of SharedRuntime
 126 
 127 #ifndef PRODUCT
 128 // For statistics
 129 int SharedRuntime::_ic_miss_ctr = 0;
 130 int SharedRuntime::_wrong_method_ctr = 0;
 131 int SharedRuntime::_resolve_static_ctr = 0;
 132 int SharedRuntime::_resolve_virtual_ctr = 0;
 133 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 134 int SharedRuntime::_implicit_null_throws = 0;
 135 int SharedRuntime::_implicit_div0_throws = 0;
 136 int SharedRuntime::_throw_null_ctr = 0;
 137 
 138 int SharedRuntime::_nof_normal_calls = 0;
 139 int SharedRuntime::_nof_optimized_calls = 0;
 140 int SharedRuntime::_nof_inlined_calls = 0;
 141 int SharedRuntime::_nof_megamorphic_calls = 0;
 142 int SharedRuntime::_nof_static_calls = 0;
 143 int SharedRuntime::_nof_inlined_static_calls = 0;
 144 int SharedRuntime::_nof_interface_calls = 0;
 145 int SharedRuntime::_nof_optimized_interface_calls = 0;
 146 int SharedRuntime::_nof_inlined_interface_calls = 0;
 147 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 148 int SharedRuntime::_nof_removable_exceptions = 0;
 149 
 150 int SharedRuntime::_new_instance_ctr=0;
 151 int SharedRuntime::_new_array_ctr=0;
 152 int SharedRuntime::_multi1_ctr=0;
 153 int SharedRuntime::_multi2_ctr=0;
 154 int SharedRuntime::_multi3_ctr=0;
 155 int SharedRuntime::_multi4_ctr=0;
 156 int SharedRuntime::_multi5_ctr=0;
 157 int SharedRuntime::_mon_enter_stub_ctr=0;
 158 int SharedRuntime::_mon_exit_stub_ctr=0;
 159 int SharedRuntime::_mon_enter_ctr=0;
 160 int SharedRuntime::_mon_exit_ctr=0;
 161 int SharedRuntime::_partial_subtype_ctr=0;
 162 int SharedRuntime::_jbyte_array_copy_ctr=0;
 163 int SharedRuntime::_jshort_array_copy_ctr=0;
 164 int SharedRuntime::_jint_array_copy_ctr=0;
 165 int SharedRuntime::_jlong_array_copy_ctr=0;
 166 int SharedRuntime::_oop_array_copy_ctr=0;
 167 int SharedRuntime::_checkcast_array_copy_ctr=0;
 168 int SharedRuntime::_unsafe_array_copy_ctr=0;
 169 int SharedRuntime::_generic_array_copy_ctr=0;
 170 int SharedRuntime::_slow_array_copy_ctr=0;
 171 int SharedRuntime::_find_handler_ctr=0;
 172 int SharedRuntime::_rethrow_ctr=0;
 173 
 174 int     SharedRuntime::_ICmiss_index                    = 0;
 175 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 176 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 177 
 178 
 179 void SharedRuntime::trace_ic_miss(address at) {
 180   for (int i = 0; i < _ICmiss_index; i++) {
 181     if (_ICmiss_at[i] == at) {
 182       _ICmiss_count[i]++;
 183       return;
 184     }
 185   }
 186   int index = _ICmiss_index++;
 187   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 188   _ICmiss_at[index] = at;
 189   _ICmiss_count[index] = 1;
 190 }
 191 
 192 void SharedRuntime::print_ic_miss_histogram() {
 193   if (ICMissHistogram) {
 194     tty->print_cr("IC Miss Histogram:");
 195     int tot_misses = 0;
 196     for (int i = 0; i < _ICmiss_index; i++) {
 197       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 198       tot_misses += _ICmiss_count[i];
 199     }
 200     tty->print_cr("Total IC misses: %7d", tot_misses);
 201   }
 202 }
 203 #endif // PRODUCT
 204 
 205 #if INCLUDE_ALL_GCS
 206 
 207 // G1 write-barrier pre: executed before a pointer store.
 208 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 209   if (orig == NULL) {
 210     assert(false, "should be optimized out");
 211     return;
 212   }
 213   assert(orig->is_oop(true /* ignore mark word */), "Error");
 214   // store the original value that was in the field reference
 215   thread->satb_mark_queue().enqueue(orig);
 216 JRT_END
 217 
 218 // G1 write-barrier post: executed after a pointer store.
 219 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 220   thread->dirty_card_queue().enqueue(card_addr);
 221 JRT_END
 222 
 223 #endif // INCLUDE_ALL_GCS
 224 
 225 
 226 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 227   return x * y;
 228 JRT_END
 229 
 230 
 231 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 232   if (x == min_jlong && y == CONST64(-1)) {
 233     return x;
 234   } else {
 235     return x / y;
 236   }
 237 JRT_END
 238 
 239 
 240 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 241   if (x == min_jlong && y == CONST64(-1)) {
 242     return 0;
 243   } else {
 244     return x % y;
 245   }
 246 JRT_END
 247 
 248 
 249 const juint  float_sign_mask  = 0x7FFFFFFF;
 250 const juint  float_infinity   = 0x7F800000;
 251 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 252 const julong double_infinity  = CONST64(0x7FF0000000000000);
 253 
 254 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 255 #ifdef _WIN64
 256   // 64-bit Windows on amd64 returns the wrong values for
 257   // infinity operands.
 258   union { jfloat f; juint i; } xbits, ybits;
 259   xbits.f = x;
 260   ybits.f = y;
 261   // x Mod Infinity == x unless x is infinity
 262   if (((xbits.i & float_sign_mask) != float_infinity) &&
 263        ((ybits.i & float_sign_mask) == float_infinity) ) {
 264     return x;
 265   }
 266   return ((jfloat)fmod_winx64((double)x, (double)y));
 267 #else
 268   return ((jfloat)fmod((double)x,(double)y));
 269 #endif
 270 JRT_END
 271 
 272 
 273 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 274 #ifdef _WIN64
 275   union { jdouble d; julong l; } xbits, ybits;
 276   xbits.d = x;
 277   ybits.d = y;
 278   // x Mod Infinity == x unless x is infinity
 279   if (((xbits.l & double_sign_mask) != double_infinity) &&
 280        ((ybits.l & double_sign_mask) == double_infinity) ) {
 281     return x;
 282   }
 283   return ((jdouble)fmod_winx64((double)x, (double)y));
 284 #else
 285   return ((jdouble)fmod((double)x,(double)y));
 286 #endif
 287 JRT_END
 288 
 289 #ifdef __SOFTFP__
 290 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 291   return x + y;
 292 JRT_END
 293 
 294 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 295   return x - y;
 296 JRT_END
 297 
 298 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 299   return x * y;
 300 JRT_END
 301 
 302 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 303   return x / y;
 304 JRT_END
 305 
 306 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 307   return x + y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 311   return x - y;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 315   return x * y;
 316 JRT_END
 317 
 318 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 319   return x / y;
 320 JRT_END
 321 
 322 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 323   return (jfloat)x;
 324 JRT_END
 325 
 326 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 327   return (jdouble)x;
 328 JRT_END
 329 
 330 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 331   return (jdouble)x;
 332 JRT_END
 333 
 334 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 335   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 339   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 340 JRT_END
 341 
 342 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 343   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 344 JRT_END
 345 
 346 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 347   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 348 JRT_END
 349 
 350 // Functions to return the opposite of the aeabi functions for nan.
 351 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 352   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 356   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 360   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 364   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 368   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 372   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 376   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 377 JRT_END
 378 
 379 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 380   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 381 JRT_END
 382 
 383 // Intrinsics make gcc generate code for these.
 384 float  SharedRuntime::fneg(float f)   {
 385   return -f;
 386 }
 387 
 388 double SharedRuntime::dneg(double f)  {
 389   return -f;
 390 }
 391 
 392 #endif // __SOFTFP__
 393 
 394 #if defined(__SOFTFP__) || defined(E500V2)
 395 // Intrinsics make gcc generate code for these.
 396 double SharedRuntime::dabs(double f)  {
 397   return (f <= (double)0.0) ? (double)0.0 - f : f;
 398 }
 399 
 400 #endif
 401 
 402 #if defined(__SOFTFP__) || defined(PPC)
 403 double SharedRuntime::dsqrt(double f) {
 404   return sqrt(f);
 405 }
 406 #endif
 407 
 408 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 409   if (g_isnan(x))
 410     return 0;
 411   if (x >= (jfloat) max_jint)
 412     return max_jint;
 413   if (x <= (jfloat) min_jint)
 414     return min_jint;
 415   return (jint) x;
 416 JRT_END
 417 
 418 
 419 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 420   if (g_isnan(x))
 421     return 0;
 422   if (x >= (jfloat) max_jlong)
 423     return max_jlong;
 424   if (x <= (jfloat) min_jlong)
 425     return min_jlong;
 426   return (jlong) x;
 427 JRT_END
 428 
 429 
 430 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 431   if (g_isnan(x))
 432     return 0;
 433   if (x >= (jdouble) max_jint)
 434     return max_jint;
 435   if (x <= (jdouble) min_jint)
 436     return min_jint;
 437   return (jint) x;
 438 JRT_END
 439 
 440 
 441 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 442   if (g_isnan(x))
 443     return 0;
 444   if (x >= (jdouble) max_jlong)
 445     return max_jlong;
 446   if (x <= (jdouble) min_jlong)
 447     return min_jlong;
 448   return (jlong) x;
 449 JRT_END
 450 
 451 
 452 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 453   return (jfloat)x;
 454 JRT_END
 455 
 456 
 457 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 458   return (jfloat)x;
 459 JRT_END
 460 
 461 
 462 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 463   return (jdouble)x;
 464 JRT_END
 465 
 466 // Exception handling across interpreter/compiler boundaries
 467 //
 468 // exception_handler_for_return_address(...) returns the continuation address.
 469 // The continuation address is the entry point of the exception handler of the
 470 // previous frame depending on the return address.
 471 
 472 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 473   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 474   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 475 
 476   // Reset method handle flag.
 477   thread->set_is_method_handle_return(false);
 478 
 479 #if INCLUDE_JVMCI
 480   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 481   // and other exception handler continuations do not read it
 482   thread->set_exception_pc(NULL);
 483 #endif // INCLUDE_JVMCI
 484 
 485   // The fastest case first
 486   CodeBlob* blob = CodeCache::find_blob(return_address);
 487   CompiledMethod* nm = (blob != NULL) ? blob->as_compiled_method_or_null() : NULL;
 488   if (nm != NULL) {
 489     // Set flag if return address is a method handle call site.
 490     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 491     // native nmethods don't have exception handlers
 492     assert(!nm->is_native_method(), "no exception handler");
 493     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 494     if (nm->is_deopt_pc(return_address)) {
 495       // If we come here because of a stack overflow, the stack may be
 496       // unguarded. Reguard the stack otherwise if we return to the
 497       // deopt blob and the stack bang causes a stack overflow we
 498       // crash.
 499       bool guard_pages_enabled = thread->stack_guards_enabled();
 500       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 501       if (thread->reserved_stack_activation() != thread->stack_base()) {
 502         thread->set_reserved_stack_activation(thread->stack_base());
 503       }
 504       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 505       return SharedRuntime::deopt_blob()->unpack_with_exception();
 506     } else {
 507       return nm->exception_begin();
 508     }
 509   }
 510 
 511   // Entry code
 512   if (StubRoutines::returns_to_call_stub(return_address)) {
 513     return StubRoutines::catch_exception_entry();
 514   }
 515   // Interpreted code
 516   if (Interpreter::contains(return_address)) {
 517     return Interpreter::rethrow_exception_entry();
 518   }
 519 
 520   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 521   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 522 
 523 #ifndef PRODUCT
 524   { ResourceMark rm;
 525     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 526     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 527     tty->print_cr("b) other problem");
 528   }
 529 #endif // PRODUCT
 530 
 531   ShouldNotReachHere();
 532   return NULL;
 533 }
 534 
 535 
 536 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 537   return raw_exception_handler_for_return_address(thread, return_address);
 538 JRT_END
 539 
 540 
 541 address SharedRuntime::get_poll_stub(address pc) {
 542   address stub;
 543   // Look up the code blob
 544   CodeBlob *cb = CodeCache::find_blob(pc);
 545 
 546   // Should be an nmethod
 547   guarantee(cb != NULL && cb->is_compiled(), "safepoint polling: pc must refer to an nmethod");
 548 
 549   // Look up the relocation information
 550   assert(((CompiledMethod*)cb)->is_at_poll_or_poll_return(pc),
 551     "safepoint polling: type must be poll");
 552 
 553 #ifdef ASSERT
 554   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 555     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 556     Disassembler::decode(cb);
 557     fatal("Only polling locations are used for safepoint");
 558   }
 559 #endif
 560 
 561   bool at_poll_return = ((CompiledMethod*)cb)->is_at_poll_return(pc);
 562   bool has_wide_vectors = ((CompiledMethod*)cb)->has_wide_vectors();
 563   if (at_poll_return) {
 564     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 565            "polling page return stub not created yet");
 566     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 567   } else if (has_wide_vectors) {
 568     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 569            "polling page vectors safepoint stub not created yet");
 570     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 571   } else {
 572     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 573            "polling page safepoint stub not created yet");
 574     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 575   }
 576   log_debug(safepoint)("... found polling page %s exception at pc = "
 577                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 578                        at_poll_return ? "return" : "loop",
 579                        (intptr_t)pc, (intptr_t)stub);
 580   return stub;
 581 }
 582 
 583 
 584 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 585   assert(caller.is_interpreted_frame(), "");
 586   int args_size = ArgumentSizeComputer(sig).size() + 1;
 587   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 588   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 589   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 590   return result;
 591 }
 592 
 593 
 594 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 595   if (JvmtiExport::can_post_on_exceptions()) {
 596     vframeStream vfst(thread, true);
 597     methodHandle method = methodHandle(thread, vfst.method());
 598     address bcp = method()->bcp_from(vfst.bci());
 599     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 600   }
 601   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 602 }
 603 
 604 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 605   Handle h_exception = Exceptions::new_exception(thread, name, message);
 606   throw_and_post_jvmti_exception(thread, h_exception);
 607 }
 608 
 609 // The interpreter code to call this tracing function is only
 610 // called/generated when UL is on for redefine, class and has the right level
 611 // and tags. Since obsolete methods are never compiled, we don't have
 612 // to modify the compilers to generate calls to this function.
 613 //
 614 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 615     JavaThread* thread, Method* method))
 616   if (method->is_obsolete()) {
 617     // We are calling an obsolete method, but this is not necessarily
 618     // an error. Our method could have been redefined just after we
 619     // fetched the Method* from the constant pool.
 620     ResourceMark rm;
 621     log_trace(redefine, class, obsolete)("calling obsolete method '%s'", method->name_and_sig_as_C_string());
 622   }
 623   return 0;
 624 JRT_END
 625 
 626 // ret_pc points into caller; we are returning caller's exception handler
 627 // for given exception
 628 address SharedRuntime::compute_compiled_exc_handler(CompiledMethod* cm, address ret_pc, Handle& exception,
 629                                                     bool force_unwind, bool top_frame_only, bool& recursive_exception_occurred) {
 630   assert(cm != NULL, "must exist");
 631   ResourceMark rm;
 632 
 633 #if INCLUDE_JVMCI
 634   if (cm->is_compiled_by_jvmci()) {
 635     // lookup exception handler for this pc
 636     int catch_pco = ret_pc - cm->code_begin();
 637     ExceptionHandlerTable table(cm);
 638     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 639     if (t != NULL) {
 640       return cm->code_begin() + t->pco();
 641     } else {
 642       // there is no exception handler for this pc => deoptimize
 643       cm->make_not_entrant();
 644 
 645       // Use Deoptimization::deoptimize for all of its side-effects:
 646       // revoking biases of monitors, gathering traps statistics, logging...
 647       // it also patches the return pc but we do not care about that
 648       // since we return a continuation to the deopt_blob below.
 649       JavaThread* thread = JavaThread::current();
 650       RegisterMap reg_map(thread, UseBiasedLocking);
 651       frame runtime_frame = thread->last_frame();
 652       frame caller_frame = runtime_frame.sender(&reg_map);
 653       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 654 
 655       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 656     }
 657   }
 658 #endif // INCLUDE_JVMCI
 659 
 660   nmethod* nm = cm->as_nmethod();
 661   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 662   // determine handler bci, if any
 663   EXCEPTION_MARK;
 664 
 665   int handler_bci = -1;
 666   int scope_depth = 0;
 667   if (!force_unwind) {
 668     int bci = sd->bci();
 669     bool recursive_exception = false;
 670     do {
 671       bool skip_scope_increment = false;
 672       // exception handler lookup
 673       Klass* ek = exception->klass();
 674       methodHandle mh(THREAD, sd->method());
 675       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 676       if (HAS_PENDING_EXCEPTION) {
 677         recursive_exception = true;
 678         // We threw an exception while trying to find the exception handler.
 679         // Transfer the new exception to the exception handle which will
 680         // be set into thread local storage, and do another lookup for an
 681         // exception handler for this exception, this time starting at the
 682         // BCI of the exception handler which caused the exception to be
 683         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 684         // argument to ensure that the correct exception is thrown (4870175).
 685         recursive_exception_occurred = true;
 686         exception = Handle(THREAD, PENDING_EXCEPTION);
 687         CLEAR_PENDING_EXCEPTION;
 688         if (handler_bci >= 0) {
 689           bci = handler_bci;
 690           handler_bci = -1;
 691           skip_scope_increment = true;
 692         }
 693       }
 694       else {
 695         recursive_exception = false;
 696       }
 697       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 698         sd = sd->sender();
 699         if (sd != NULL) {
 700           bci = sd->bci();
 701         }
 702         ++scope_depth;
 703       }
 704     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 705   }
 706 
 707   // found handling method => lookup exception handler
 708   int catch_pco = ret_pc - nm->code_begin();
 709 
 710   ExceptionHandlerTable table(nm);
 711   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 712   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 713     // Allow abbreviated catch tables.  The idea is to allow a method
 714     // to materialize its exceptions without committing to the exact
 715     // routing of exceptions.  In particular this is needed for adding
 716     // a synthetic handler to unlock monitors when inlining
 717     // synchronized methods since the unlock path isn't represented in
 718     // the bytecodes.
 719     t = table.entry_for(catch_pco, -1, 0);
 720   }
 721 
 722 #ifdef COMPILER1
 723   if (t == NULL && nm->is_compiled_by_c1()) {
 724     assert(nm->unwind_handler_begin() != NULL, "");
 725     return nm->unwind_handler_begin();
 726   }
 727 #endif
 728 
 729   if (t == NULL) {
 730     ttyLocker ttyl;
 731     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 732     tty->print_cr("   Exception:");
 733     exception->print();
 734     tty->cr();
 735     tty->print_cr(" Compiled exception table :");
 736     table.print();
 737     nm->print_code();
 738     guarantee(false, "missing exception handler");
 739     return NULL;
 740   }
 741 
 742   return nm->code_begin() + t->pco();
 743 }
 744 
 745 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 746   // These errors occur only at call sites
 747   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 748 JRT_END
 749 
 750 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 751   // These errors occur only at call sites
 752   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 753 JRT_END
 754 
 755 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 756   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 757 JRT_END
 758 
 759 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 760   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 761 JRT_END
 762 
 763 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 764   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 765   // cache sites (when the callee activation is not yet set up) so we are at a call site
 766   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 767 JRT_END
 768 
 769 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 770   throw_StackOverflowError_common(thread, false);
 771 JRT_END
 772 
 773 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 774   throw_StackOverflowError_common(thread, true);
 775 JRT_END
 776 
 777 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 778   // We avoid using the normal exception construction in this case because
 779   // it performs an upcall to Java, and we're already out of stack space.
 780   Thread* THREAD = thread;
 781   Klass* k = SystemDictionary::StackOverflowError_klass();
 782   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 783   if (delayed) {
 784     java_lang_Throwable::set_message(exception_oop,
 785                                      Universe::delayed_stack_overflow_error_message());
 786   }
 787   Handle exception (thread, exception_oop);
 788   if (StackTraceInThrowable) {
 789     java_lang_Throwable::fill_in_stack_trace(exception);
 790   }
 791   // Increment counter for hs_err file reporting
 792   Atomic::inc(&Exceptions::_stack_overflow_errors);
 793   throw_and_post_jvmti_exception(thread, exception);
 794 }
 795 
 796 #if INCLUDE_JVMCI
 797 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, CompiledMethod* nm, int deopt_reason) {
 798   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 799   thread->set_jvmci_implicit_exception_pc(pc);
 800   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 801   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 802 }
 803 #endif // INCLUDE_JVMCI
 804 
 805 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 806                                                            address pc,
 807                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 808 {
 809   address target_pc = NULL;
 810 
 811   if (Interpreter::contains(pc)) {
 812 #ifdef CC_INTERP
 813     // C++ interpreter doesn't throw implicit exceptions
 814     ShouldNotReachHere();
 815 #else
 816     switch (exception_kind) {
 817       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 818       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 819       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 820       default:                      ShouldNotReachHere();
 821     }
 822 #endif // !CC_INTERP
 823   } else {
 824     switch (exception_kind) {
 825       case STACK_OVERFLOW: {
 826         // Stack overflow only occurs upon frame setup; the callee is
 827         // going to be unwound. Dispatch to a shared runtime stub
 828         // which will cause the StackOverflowError to be fabricated
 829         // and processed.
 830         // Stack overflow should never occur during deoptimization:
 831         // the compiled method bangs the stack by as much as the
 832         // interpreter would need in case of a deoptimization. The
 833         // deoptimization blob and uncommon trap blob bang the stack
 834         // in a debug VM to verify the correctness of the compiled
 835         // method stack banging.
 836         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 837         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 838         return StubRoutines::throw_StackOverflowError_entry();
 839       }
 840 
 841       case IMPLICIT_NULL: {
 842         if (VtableStubs::contains(pc)) {
 843           // We haven't yet entered the callee frame. Fabricate an
 844           // exception and begin dispatching it in the caller. Since
 845           // the caller was at a call site, it's safe to destroy all
 846           // caller-saved registers, as these entry points do.
 847           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 848 
 849           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 850           if (vt_stub == NULL) return NULL;
 851 
 852           if (vt_stub->is_abstract_method_error(pc)) {
 853             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 854             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 855             return StubRoutines::throw_AbstractMethodError_entry();
 856           } else {
 857             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_NullPointerException_at_call_entry();
 859           }
 860         } else {
 861           CodeBlob* cb = CodeCache::find_blob(pc);
 862 
 863           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 864           if (cb == NULL) return NULL;
 865 
 866           // Exception happened in CodeCache. Must be either:
 867           // 1. Inline-cache check in C2I handler blob,
 868           // 2. Inline-cache check in nmethod, or
 869           // 3. Implicit null exception in nmethod
 870 
 871           if (!cb->is_compiled()) {
 872             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 873             if (!is_in_blob) {
 874               // Allow normal crash reporting to handle this
 875               return NULL;
 876             }
 877             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 878             // There is no handler here, so we will simply unwind.
 879             return StubRoutines::throw_NullPointerException_at_call_entry();
 880           }
 881 
 882           // Otherwise, it's a compiled method.  Consult its exception handlers.
 883           CompiledMethod* cm = (CompiledMethod*)cb;
 884           if (cm->inlinecache_check_contains(pc)) {
 885             // exception happened inside inline-cache check code
 886             // => the nmethod is not yet active (i.e., the frame
 887             // is not set up yet) => use return address pushed by
 888             // caller => don't push another return address
 889             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 890             return StubRoutines::throw_NullPointerException_at_call_entry();
 891           }
 892 
 893           if (cm->method()->is_method_handle_intrinsic()) {
 894             // exception happened inside MH dispatch code, similar to a vtable stub
 895             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 896             return StubRoutines::throw_NullPointerException_at_call_entry();
 897           }
 898 
 899 #ifndef PRODUCT
 900           _implicit_null_throws++;
 901 #endif
 902 #if INCLUDE_JVMCI
 903           if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 904             // If there's no PcDesc then we'll die way down inside of
 905             // deopt instead of just getting normal error reporting,
 906             // so only go there if it will succeed.
 907             return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_null_check);
 908           } else {
 909 #endif // INCLUDE_JVMCI
 910           assert (cm->is_nmethod(), "Expect nmethod");
 911           target_pc = ((nmethod*)cm)->continuation_for_implicit_exception(pc);
 912 #if INCLUDE_JVMCI
 913           }
 914 #endif // INCLUDE_JVMCI
 915           // If there's an unexpected fault, target_pc might be NULL,
 916           // in which case we want to fall through into the normal
 917           // error handling code.
 918         }
 919 
 920         break; // fall through
 921       }
 922 
 923 
 924       case IMPLICIT_DIVIDE_BY_ZERO: {
 925         CompiledMethod* cm = CodeCache::find_compiled(pc);
 926         guarantee(cm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 927 #ifndef PRODUCT
 928         _implicit_div0_throws++;
 929 #endif
 930 #if INCLUDE_JVMCI
 931         if (cm->is_compiled_by_jvmci() && cm->pc_desc_at(pc) != NULL) {
 932           return deoptimize_for_implicit_exception(thread, pc, cm, Deoptimization::Reason_div0_check);
 933         } else {
 934 #endif // INCLUDE_JVMCI
 935         target_pc = cm->continuation_for_implicit_exception(pc);
 936 #if INCLUDE_JVMCI
 937         }
 938 #endif // INCLUDE_JVMCI
 939         // If there's an unexpected fault, target_pc might be NULL,
 940         // in which case we want to fall through into the normal
 941         // error handling code.
 942         break; // fall through
 943       }
 944 
 945       default: ShouldNotReachHere();
 946     }
 947 
 948     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 949 
 950     if (exception_kind == IMPLICIT_NULL) {
 951 #ifndef PRODUCT
 952       // for AbortVMOnException flag
 953       Exceptions::debug_check_abort("java.lang.NullPointerException");
 954 #endif //PRODUCT
 955       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 956     } else {
 957 #ifndef PRODUCT
 958       // for AbortVMOnException flag
 959       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 960 #endif //PRODUCT
 961       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 962     }
 963     return target_pc;
 964   }
 965 
 966   ShouldNotReachHere();
 967   return NULL;
 968 }
 969 
 970 
 971 /**
 972  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 973  * installed in the native function entry of all native Java methods before
 974  * they get linked to their actual native methods.
 975  *
 976  * \note
 977  * This method actually never gets called!  The reason is because
 978  * the interpreter's native entries call NativeLookup::lookup() which
 979  * throws the exception when the lookup fails.  The exception is then
 980  * caught and forwarded on the return from NativeLookup::lookup() call
 981  * before the call to the native function.  This might change in the future.
 982  */
 983 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 984 {
 985   // We return a bad value here to make sure that the exception is
 986   // forwarded before we look at the return value.
 987   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 988 }
 989 JNI_END
 990 
 991 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 992   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 993 }
 994 
 995 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
 996 #if INCLUDE_JVMCI
 997   if (!obj->klass()->has_finalizer()) {
 998     return;
 999   }
1000 #endif // INCLUDE_JVMCI
1001   assert(obj->is_oop(), "must be a valid oop");
1002   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1003   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1004 JRT_END
1005 
1006 
1007 jlong SharedRuntime::get_java_tid(Thread* thread) {
1008   if (thread != NULL) {
1009     if (thread->is_Java_thread()) {
1010       oop obj = ((JavaThread*)thread)->threadObj();
1011       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1012     }
1013   }
1014   return 0;
1015 }
1016 
1017 /**
1018  * This function ought to be a void function, but cannot be because
1019  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1020  * 6254741.  Once that is fixed we can remove the dummy return value.
1021  */
1022 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1023   return dtrace_object_alloc_base(Thread::current(), o, size);
1024 }
1025 
1026 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1027   assert(DTraceAllocProbes, "wrong call");
1028   Klass* klass = o->klass();
1029   Symbol* name = klass->name();
1030   HOTSPOT_OBJECT_ALLOC(
1031                    get_java_tid(thread),
1032                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1033   return 0;
1034 }
1035 
1036 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1037     JavaThread* thread, Method* method))
1038   assert(DTraceMethodProbes, "wrong call");
1039   Symbol* kname = method->klass_name();
1040   Symbol* name = method->name();
1041   Symbol* sig = method->signature();
1042   HOTSPOT_METHOD_ENTRY(
1043       get_java_tid(thread),
1044       (char *) kname->bytes(), kname->utf8_length(),
1045       (char *) name->bytes(), name->utf8_length(),
1046       (char *) sig->bytes(), sig->utf8_length());
1047   return 0;
1048 JRT_END
1049 
1050 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1051     JavaThread* thread, Method* method))
1052   assert(DTraceMethodProbes, "wrong call");
1053   Symbol* kname = method->klass_name();
1054   Symbol* name = method->name();
1055   Symbol* sig = method->signature();
1056   HOTSPOT_METHOD_RETURN(
1057       get_java_tid(thread),
1058       (char *) kname->bytes(), kname->utf8_length(),
1059       (char *) name->bytes(), name->utf8_length(),
1060       (char *) sig->bytes(), sig->utf8_length());
1061   return 0;
1062 JRT_END
1063 
1064 
1065 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1066 // for a call current in progress, i.e., arguments has been pushed on stack
1067 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1068 // vtable updates, etc.  Caller frame must be compiled.
1069 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1070   ResourceMark rm(THREAD);
1071 
1072   // last java frame on stack (which includes native call frames)
1073   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1074 
1075   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1076 }
1077 
1078 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1079   CompiledMethod* caller = vfst.nm();
1080 
1081   nmethodLocker caller_lock(caller);
1082 
1083   address pc = vfst.frame_pc();
1084   { // Get call instruction under lock because another thread may be busy patching it.
1085     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1086     return caller->attached_method_before_pc(pc);
1087   }
1088   return NULL;
1089 }
1090 
1091 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1092 // for a call current in progress, i.e., arguments has been pushed on stack
1093 // but callee has not been invoked yet.  Caller frame must be compiled.
1094 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1095                                               vframeStream& vfst,
1096                                               Bytecodes::Code& bc,
1097                                               CallInfo& callinfo, TRAPS) {
1098   Handle receiver;
1099   Handle nullHandle;  //create a handy null handle for exception returns
1100 
1101   assert(!vfst.at_end(), "Java frame must exist");
1102 
1103   // Find caller and bci from vframe
1104   methodHandle caller(THREAD, vfst.method());
1105   int          bci   = vfst.bci();
1106 
1107   Bytecode_invoke bytecode(caller, bci);
1108   int bytecode_index = bytecode.index();
1109 
1110   methodHandle attached_method = extract_attached_method(vfst);
1111   if (attached_method.not_null()) {
1112     methodHandle callee = bytecode.static_target(CHECK_NH);
1113     vmIntrinsics::ID id = callee->intrinsic_id();
1114     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1115     // it attaches statically resolved method to the call site.
1116     if (MethodHandles::is_signature_polymorphic(id) &&
1117         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1118       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1119 
1120       // Adjust invocation mode according to the attached method.
1121       switch (bc) {
1122         case Bytecodes::_invokeinterface:
1123           if (!attached_method->method_holder()->is_interface()) {
1124             bc = Bytecodes::_invokevirtual;
1125           }
1126           break;
1127         case Bytecodes::_invokehandle:
1128           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1129             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1130                                               : Bytecodes::_invokevirtual;
1131           }
1132           break;
1133       }
1134     }
1135   } else {
1136     bc = bytecode.invoke_code();
1137   }
1138 
1139   bool has_receiver = bc != Bytecodes::_invokestatic &&
1140                       bc != Bytecodes::_invokedynamic &&
1141                       bc != Bytecodes::_invokehandle;
1142 
1143   // Find receiver for non-static call
1144   if (has_receiver) {
1145     // This register map must be update since we need to find the receiver for
1146     // compiled frames. The receiver might be in a register.
1147     RegisterMap reg_map2(thread);
1148     frame stubFrame   = thread->last_frame();
1149     // Caller-frame is a compiled frame
1150     frame callerFrame = stubFrame.sender(&reg_map2);
1151 
1152     if (attached_method.is_null()) {
1153       methodHandle callee = bytecode.static_target(CHECK_NH);
1154       if (callee.is_null()) {
1155         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1156       }
1157     }
1158 
1159     // Retrieve from a compiled argument list
1160     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1161 
1162     if (receiver.is_null()) {
1163       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1164     }
1165   }
1166 
1167   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1168 
1169   // Resolve method
1170   if (attached_method.not_null()) {
1171     // Parameterized by attached method.
1172     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1173   } else {
1174     // Parameterized by bytecode.
1175     constantPoolHandle constants(THREAD, caller->constants());
1176     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1177   }
1178 
1179 #ifdef ASSERT
1180   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1181   if (has_receiver) {
1182     assert(receiver.not_null(), "should have thrown exception");
1183     Klass* receiver_klass = receiver->klass();
1184     Klass* rk = NULL;
1185     if (attached_method.not_null()) {
1186       // In case there's resolved method attached, use its holder during the check.
1187       rk = attached_method->method_holder();
1188     } else {
1189       // Klass is already loaded.
1190       constantPoolHandle constants(THREAD, caller->constants());
1191       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1192     }
1193     Klass* static_receiver_klass = rk;
1194     methodHandle callee = callinfo.selected_method();
1195     assert(receiver_klass->is_subtype_of(static_receiver_klass),
1196            "actual receiver must be subclass of static receiver klass");
1197     if (receiver_klass->is_instance_klass()) {
1198       if (InstanceKlass::cast(receiver_klass)->is_not_initialized()) {
1199         tty->print_cr("ERROR: Klass not yet initialized!!");
1200         receiver_klass->print();
1201       }
1202       assert(!InstanceKlass::cast(receiver_klass)->is_not_initialized(), "receiver_klass must be initialized");
1203     }
1204   }
1205 #endif
1206 
1207   return receiver;
1208 }
1209 
1210 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1211   ResourceMark rm(THREAD);
1212   // We need first to check if any Java activations (compiled, interpreted)
1213   // exist on the stack since last JavaCall.  If not, we need
1214   // to get the target method from the JavaCall wrapper.
1215   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1216   methodHandle callee_method;
1217   if (vfst.at_end()) {
1218     // No Java frames were found on stack since we did the JavaCall.
1219     // Hence the stack can only contain an entry_frame.  We need to
1220     // find the target method from the stub frame.
1221     RegisterMap reg_map(thread, false);
1222     frame fr = thread->last_frame();
1223     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1224     fr = fr.sender(&reg_map);
1225     assert(fr.is_entry_frame(), "must be");
1226     // fr is now pointing to the entry frame.
1227     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1228   } else {
1229     Bytecodes::Code bc;
1230     CallInfo callinfo;
1231     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1232     callee_method = callinfo.selected_method();
1233   }
1234   assert(callee_method()->is_method(), "must be");
1235   return callee_method;
1236 }
1237 
1238 // Resolves a call.
1239 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1240                                            bool is_virtual,
1241                                            bool is_optimized, TRAPS) {
1242   methodHandle callee_method;
1243   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1244   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1245     int retry_count = 0;
1246     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1247            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1248       // If has a pending exception then there is no need to re-try to
1249       // resolve this method.
1250       // If the method has been redefined, we need to try again.
1251       // Hack: we have no way to update the vtables of arrays, so don't
1252       // require that java.lang.Object has been updated.
1253 
1254       // It is very unlikely that method is redefined more than 100 times
1255       // in the middle of resolve. If it is looping here more than 100 times
1256       // means then there could be a bug here.
1257       guarantee((retry_count++ < 100),
1258                 "Could not resolve to latest version of redefined method");
1259       // method is redefined in the middle of resolve so re-try.
1260       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1261     }
1262   }
1263   return callee_method;
1264 }
1265 
1266 // Resolves a call.  The compilers generate code for calls that go here
1267 // and are patched with the real destination of the call.
1268 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1269                                            bool is_virtual,
1270                                            bool is_optimized, TRAPS) {
1271 
1272   ResourceMark rm(thread);
1273   RegisterMap cbl_map(thread, false);
1274   frame caller_frame = thread->last_frame().sender(&cbl_map);
1275 
1276   CodeBlob* caller_cb = caller_frame.cb();
1277   guarantee(caller_cb != NULL && caller_cb->is_compiled(), "must be called from compiled method");
1278   CompiledMethod* caller_nm = caller_cb->as_compiled_method_or_null();
1279 
1280   // make sure caller is not getting deoptimized
1281   // and removed before we are done with it.
1282   // CLEANUP - with lazy deopt shouldn't need this lock
1283   nmethodLocker caller_lock(caller_nm);
1284 
1285   // determine call info & receiver
1286   // note: a) receiver is NULL for static calls
1287   //       b) an exception is thrown if receiver is NULL for non-static calls
1288   CallInfo call_info;
1289   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1290   Handle receiver = find_callee_info(thread, invoke_code,
1291                                      call_info, CHECK_(methodHandle()));
1292   methodHandle callee_method = call_info.selected_method();
1293 
1294   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1295          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1296          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1297          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1298          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1299 
1300   assert(caller_nm->is_alive(), "It should be alive");
1301 
1302 #ifndef PRODUCT
1303   // tracing/debugging/statistics
1304   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1305                 (is_virtual) ? (&_resolve_virtual_ctr) :
1306                                (&_resolve_static_ctr);
1307   Atomic::inc(addr);
1308 
1309   if (TraceCallFixup) {
1310     ResourceMark rm(thread);
1311     tty->print("resolving %s%s (%s) call to",
1312       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1313       Bytecodes::name(invoke_code));
1314     callee_method->print_short_name(tty);
1315     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1316                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1317   }
1318 #endif
1319 
1320   // JSR 292 key invariant:
1321   // If the resolved method is a MethodHandle invoke target, the call
1322   // site must be a MethodHandle call site, because the lambda form might tail-call
1323   // leaving the stack in a state unknown to either caller or callee
1324   // TODO detune for now but we might need it again
1325 //  assert(!callee_method->is_compiled_lambda_form() ||
1326 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1327 
1328   // Compute entry points. This might require generation of C2I converter
1329   // frames, so we cannot be holding any locks here. Furthermore, the
1330   // computation of the entry points is independent of patching the call.  We
1331   // always return the entry-point, but we only patch the stub if the call has
1332   // not been deoptimized.  Return values: For a virtual call this is an
1333   // (cached_oop, destination address) pair. For a static call/optimized
1334   // virtual this is just a destination address.
1335 
1336   StaticCallInfo static_call_info;
1337   CompiledICInfo virtual_call_info;
1338 
1339   // Make sure the callee nmethod does not get deoptimized and removed before
1340   // we are done patching the code.
1341   CompiledMethod* callee = callee_method->code();
1342 
1343   if (callee != NULL) {
1344     assert(callee->is_compiled(), "must be nmethod for patching");
1345   }
1346 
1347   if (callee != NULL && !callee->is_in_use()) {
1348     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1349     callee = NULL;
1350   }
1351   nmethodLocker nl_callee(callee);
1352 #ifdef ASSERT
1353   address dest_entry_point = callee == NULL ? 0 : callee->entry_point(); // used below
1354 #endif
1355 
1356   bool is_nmethod = caller_nm->is_nmethod();
1357 
1358   if (is_virtual) {
1359     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle, "sanity check");
1360     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1361     Klass* klass = invoke_code == Bytecodes::_invokehandle ? NULL : receiver->klass();
1362     CompiledIC::compute_monomorphic_entry(callee_method, klass,
1363                      is_optimized, static_bound, is_nmethod, virtual_call_info,
1364                      CHECK_(methodHandle()));
1365   } else {
1366     // static call
1367     CompiledStaticCall::compute_entry(callee_method, is_nmethod, static_call_info);
1368   }
1369 
1370   // grab lock, check for deoptimization and potentially patch caller
1371   {
1372     MutexLocker ml_patch(CompiledIC_lock);
1373 
1374     // Lock blocks for safepoint during which both nmethods can change state.
1375 
1376     // Now that we are ready to patch if the Method* was redefined then
1377     // don't update call site and let the caller retry.
1378     // Don't update call site if callee nmethod was unloaded or deoptimized.
1379     // Don't update call site if callee nmethod was replaced by an other nmethod
1380     // which may happen when multiply alive nmethod (tiered compilation)
1381     // will be supported.
1382     if (!callee_method->is_old() &&
1383         (callee == NULL || callee->is_in_use() && (callee_method->code() == callee))) {
1384 #ifdef ASSERT
1385       // We must not try to patch to jump to an already unloaded method.
1386       if (dest_entry_point != 0) {
1387         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1388         assert((cb != NULL) && cb->is_compiled() && (((CompiledMethod*)cb) == callee),
1389                "should not call unloaded nmethod");
1390       }
1391 #endif
1392       if (is_virtual) {
1393         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1394         if (inline_cache->is_clean()) {
1395           inline_cache->set_to_monomorphic(virtual_call_info);
1396         }
1397       } else {
1398         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_before(caller_frame.pc());
1399         if (ssc->is_clean()) ssc->set(static_call_info);
1400       }
1401     }
1402 
1403   } // unlock CompiledIC_lock
1404 
1405   return callee_method;
1406 }
1407 
1408 
1409 // Inline caches exist only in compiled code
1410 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1411 #ifdef ASSERT
1412   RegisterMap reg_map(thread, false);
1413   frame stub_frame = thread->last_frame();
1414   assert(stub_frame.is_runtime_frame(), "sanity check");
1415   frame caller_frame = stub_frame.sender(&reg_map);
1416   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1417 #endif /* ASSERT */
1418 
1419   methodHandle callee_method;
1420   JRT_BLOCK
1421     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1422     // Return Method* through TLS
1423     thread->set_vm_result_2(callee_method());
1424   JRT_BLOCK_END
1425   // return compiled code entry point after potential safepoints
1426   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1427   return callee_method->verified_code_entry();
1428 JRT_END
1429 
1430 
1431 // Handle call site that has been made non-entrant
1432 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1433   // 6243940 We might end up in here if the callee is deoptimized
1434   // as we race to call it.  We don't want to take a safepoint if
1435   // the caller was interpreted because the caller frame will look
1436   // interpreted to the stack walkers and arguments are now
1437   // "compiled" so it is much better to make this transition
1438   // invisible to the stack walking code. The i2c path will
1439   // place the callee method in the callee_target. It is stashed
1440   // there because if we try and find the callee by normal means a
1441   // safepoint is possible and have trouble gc'ing the compiled args.
1442   RegisterMap reg_map(thread, false);
1443   frame stub_frame = thread->last_frame();
1444   assert(stub_frame.is_runtime_frame(), "sanity check");
1445   frame caller_frame = stub_frame.sender(&reg_map);
1446 
1447   if (caller_frame.is_interpreted_frame() ||
1448       caller_frame.is_entry_frame()) {
1449     Method* callee = thread->callee_target();
1450     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1451     thread->set_vm_result_2(callee);
1452     thread->set_callee_target(NULL);
1453     return callee->get_c2i_entry();
1454   }
1455 
1456   // Must be compiled to compiled path which is safe to stackwalk
1457   methodHandle callee_method;
1458   JRT_BLOCK
1459     // Force resolving of caller (if we called from compiled frame)
1460     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1461     thread->set_vm_result_2(callee_method());
1462   JRT_BLOCK_END
1463   // return compiled code entry point after potential safepoints
1464   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1465   return callee_method->verified_code_entry();
1466 JRT_END
1467 
1468 // Handle abstract method call
1469 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1470   return StubRoutines::throw_AbstractMethodError_entry();
1471 JRT_END
1472 
1473 
1474 // resolve a static call and patch code
1475 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1476   methodHandle callee_method;
1477   JRT_BLOCK
1478     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1479     thread->set_vm_result_2(callee_method());
1480   JRT_BLOCK_END
1481   // return compiled code entry point after potential safepoints
1482   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1483   return callee_method->verified_code_entry();
1484 JRT_END
1485 
1486 
1487 // resolve virtual call and update inline cache to monomorphic
1488 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1489   methodHandle callee_method;
1490   JRT_BLOCK
1491     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1492     thread->set_vm_result_2(callee_method());
1493   JRT_BLOCK_END
1494   // return compiled code entry point after potential safepoints
1495   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1496   return callee_method->verified_code_entry();
1497 JRT_END
1498 
1499 
1500 // Resolve a virtual call that can be statically bound (e.g., always
1501 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1502 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1503   methodHandle callee_method;
1504   JRT_BLOCK
1505     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1506     thread->set_vm_result_2(callee_method());
1507   JRT_BLOCK_END
1508   // return compiled code entry point after potential safepoints
1509   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1510   return callee_method->verified_code_entry();
1511 JRT_END
1512 
1513 
1514 
1515 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1516   ResourceMark rm(thread);
1517   CallInfo call_info;
1518   Bytecodes::Code bc;
1519 
1520   // receiver is NULL for static calls. An exception is thrown for NULL
1521   // receivers for non-static calls
1522   Handle receiver = find_callee_info(thread, bc, call_info,
1523                                      CHECK_(methodHandle()));
1524   // Compiler1 can produce virtual call sites that can actually be statically bound
1525   // If we fell thru to below we would think that the site was going megamorphic
1526   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1527   // we'd try and do a vtable dispatch however methods that can be statically bound
1528   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1529   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1530   // plain ic_miss) and the site will be converted to an optimized virtual call site
1531   // never to miss again. I don't believe C2 will produce code like this but if it
1532   // did this would still be the correct thing to do for it too, hence no ifdef.
1533   //
1534   if (call_info.resolved_method()->can_be_statically_bound()) {
1535     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1536     if (TraceCallFixup) {
1537       RegisterMap reg_map(thread, false);
1538       frame caller_frame = thread->last_frame().sender(&reg_map);
1539       ResourceMark rm(thread);
1540       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1541       callee_method->print_short_name(tty);
1542       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1543       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1544     }
1545     return callee_method;
1546   }
1547 
1548   methodHandle callee_method = call_info.selected_method();
1549 
1550   bool should_be_mono = false;
1551 
1552 #ifndef PRODUCT
1553   Atomic::inc(&_ic_miss_ctr);
1554 
1555   // Statistics & Tracing
1556   if (TraceCallFixup) {
1557     ResourceMark rm(thread);
1558     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1559     callee_method->print_short_name(tty);
1560     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1561   }
1562 
1563   if (ICMissHistogram) {
1564     MutexLocker m(VMStatistic_lock);
1565     RegisterMap reg_map(thread, false);
1566     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1567     // produce statistics under the lock
1568     trace_ic_miss(f.pc());
1569   }
1570 #endif
1571 
1572   // install an event collector so that when a vtable stub is created the
1573   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1574   // event can't be posted when the stub is created as locks are held
1575   // - instead the event will be deferred until the event collector goes
1576   // out of scope.
1577   JvmtiDynamicCodeEventCollector event_collector;
1578 
1579   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1580   { MutexLocker ml_patch (CompiledIC_lock);
1581     RegisterMap reg_map(thread, false);
1582     frame caller_frame = thread->last_frame().sender(&reg_map);
1583     CodeBlob* cb = caller_frame.cb();
1584     CompiledMethod* caller_nm = cb->as_compiled_method_or_null();
1585     if (cb->is_compiled()) {
1586       CompiledIC* inline_cache = CompiledIC_before(((CompiledMethod*)cb), caller_frame.pc());
1587       bool should_be_mono = false;
1588       if (inline_cache->is_optimized()) {
1589         if (TraceCallFixup) {
1590           ResourceMark rm(thread);
1591           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1592           callee_method->print_short_name(tty);
1593           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1594         }
1595         should_be_mono = true;
1596       } else if (inline_cache->is_icholder_call()) {
1597         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1598         if (ic_oop != NULL) {
1599 
1600           if (receiver()->klass() == ic_oop->holder_klass()) {
1601             // This isn't a real miss. We must have seen that compiled code
1602             // is now available and we want the call site converted to a
1603             // monomorphic compiled call site.
1604             // We can't assert for callee_method->code() != NULL because it
1605             // could have been deoptimized in the meantime
1606             if (TraceCallFixup) {
1607               ResourceMark rm(thread);
1608               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1609               callee_method->print_short_name(tty);
1610               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1611             }
1612             should_be_mono = true;
1613           }
1614         }
1615       }
1616 
1617       if (should_be_mono) {
1618 
1619         // We have a path that was monomorphic but was going interpreted
1620         // and now we have (or had) a compiled entry. We correct the IC
1621         // by using a new icBuffer.
1622         CompiledICInfo info;
1623         Klass* receiver_klass = receiver()->klass();
1624         inline_cache->compute_monomorphic_entry(callee_method,
1625                                                 receiver_klass,
1626                                                 inline_cache->is_optimized(),
1627                                                 false, caller_nm->is_nmethod(),
1628                                                 info, CHECK_(methodHandle()));
1629         inline_cache->set_to_monomorphic(info);
1630       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1631         // Potential change to megamorphic
1632         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1633         if (!successful) {
1634           inline_cache->set_to_clean();
1635         }
1636       } else {
1637         // Either clean or megamorphic
1638       }
1639     } else {
1640       fatal("Unimplemented");
1641     }
1642   } // Release CompiledIC_lock
1643 
1644   return callee_method;
1645 }
1646 
1647 //
1648 // Resets a call-site in compiled code so it will get resolved again.
1649 // This routines handles both virtual call sites, optimized virtual call
1650 // sites, and static call sites. Typically used to change a call sites
1651 // destination from compiled to interpreted.
1652 //
1653 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1654   ResourceMark rm(thread);
1655   RegisterMap reg_map(thread, false);
1656   frame stub_frame = thread->last_frame();
1657   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1658   frame caller = stub_frame.sender(&reg_map);
1659 
1660   // Do nothing if the frame isn't a live compiled frame.
1661   // nmethod could be deoptimized by the time we get here
1662   // so no update to the caller is needed.
1663 
1664   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1665 
1666     address pc = caller.pc();
1667 
1668     // Check for static or virtual call
1669     bool is_static_call = false;
1670     CompiledMethod* caller_nm = CodeCache::find_compiled(pc);
1671 
1672     // Default call_addr is the location of the "basic" call.
1673     // Determine the address of the call we a reresolving. With
1674     // Inline Caches we will always find a recognizable call.
1675     // With Inline Caches disabled we may or may not find a
1676     // recognizable call. We will always find a call for static
1677     // calls and for optimized virtual calls. For vanilla virtual
1678     // calls it depends on the state of the UseInlineCaches switch.
1679     //
1680     // With Inline Caches disabled we can get here for a virtual call
1681     // for two reasons:
1682     //   1 - calling an abstract method. The vtable for abstract methods
1683     //       will run us thru handle_wrong_method and we will eventually
1684     //       end up in the interpreter to throw the ame.
1685     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1686     //       call and between the time we fetch the entry address and
1687     //       we jump to it the target gets deoptimized. Similar to 1
1688     //       we will wind up in the interprter (thru a c2i with c2).
1689     //
1690     address call_addr = NULL;
1691     {
1692       // Get call instruction under lock because another thread may be
1693       // busy patching it.
1694       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1695       // Location of call instruction
1696       call_addr = caller_nm->call_instruction_address(pc);
1697     }
1698     // Make sure nmethod doesn't get deoptimized and removed until
1699     // this is done with it.
1700     // CLEANUP - with lazy deopt shouldn't need this lock
1701     nmethodLocker nmlock(caller_nm);
1702 
1703     if (call_addr != NULL) {
1704       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1705       int ret = iter.next(); // Get item
1706       if (ret) {
1707         assert(iter.addr() == call_addr, "must find call");
1708         if (iter.type() == relocInfo::static_call_type) {
1709           is_static_call = true;
1710         } else {
1711           assert(iter.type() == relocInfo::virtual_call_type ||
1712                  iter.type() == relocInfo::opt_virtual_call_type
1713                 , "unexpected relocInfo. type");
1714         }
1715       } else {
1716         assert(!UseInlineCaches, "relocation info. must exist for this address");
1717       }
1718 
1719       // Cleaning the inline cache will force a new resolve. This is more robust
1720       // than directly setting it to the new destination, since resolving of calls
1721       // is always done through the same code path. (experience shows that it
1722       // leads to very hard to track down bugs, if an inline cache gets updated
1723       // to a wrong method). It should not be performance critical, since the
1724       // resolve is only done once.
1725 
1726       bool is_nmethod = caller_nm->is_nmethod();
1727       MutexLocker ml(CompiledIC_lock);
1728       if (is_static_call) {
1729         CompiledStaticCall* ssc = caller_nm->compiledStaticCall_at(call_addr);
1730         ssc->set_to_clean();
1731       } else {
1732         // compiled, dispatched call (which used to call an interpreted method)
1733         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1734         inline_cache->set_to_clean();
1735       }
1736     }
1737   }
1738 
1739   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1740 
1741 
1742 #ifndef PRODUCT
1743   Atomic::inc(&_wrong_method_ctr);
1744 
1745   if (TraceCallFixup) {
1746     ResourceMark rm(thread);
1747     tty->print("handle_wrong_method reresolving call to");
1748     callee_method->print_short_name(tty);
1749     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1750   }
1751 #endif
1752 
1753   return callee_method;
1754 }
1755 
1756 address SharedRuntime::handle_unsafe_access(JavaThread* thread, address next_pc) {
1757   // The faulting unsafe accesses should be changed to throw the error
1758   // synchronously instead. Meanwhile the faulting instruction will be
1759   // skipped over (effectively turning it into a no-op) and an
1760   // asynchronous exception will be raised which the thread will
1761   // handle at a later point. If the instruction is a load it will
1762   // return garbage.
1763 
1764   // Request an async exception.
1765   thread->set_pending_unsafe_access_error();
1766 
1767   // Return address of next instruction to execute.
1768   return next_pc;
1769 }
1770 
1771 #ifdef ASSERT
1772 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1773                                                                 const BasicType* sig_bt,
1774                                                                 const VMRegPair* regs) {
1775   ResourceMark rm;
1776   const int total_args_passed = method->size_of_parameters();
1777   const VMRegPair*    regs_with_member_name = regs;
1778         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1779 
1780   const int member_arg_pos = total_args_passed - 1;
1781   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1782   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1783 
1784   const bool is_outgoing = method->is_method_handle_intrinsic();
1785   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1786 
1787   for (int i = 0; i < member_arg_pos; i++) {
1788     VMReg a =    regs_with_member_name[i].first();
1789     VMReg b = regs_without_member_name[i].first();
1790     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1791   }
1792   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1793 }
1794 #endif
1795 
1796 bool SharedRuntime::should_fixup_call_destination(address destination, address entry_point, address caller_pc, Method* moop, CodeBlob* cb) {
1797   if (destination != entry_point) {
1798     CodeBlob* callee = CodeCache::find_blob(destination);
1799     // callee == cb seems weird. It means calling interpreter thru stub.
1800     if (callee != NULL && (callee == cb || callee->is_adapter_blob())) {
1801       // static call or optimized virtual
1802       if (TraceCallFixup) {
1803         tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1804         moop->print_short_name(tty);
1805         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1806       }
1807       return true;
1808     } else {
1809       if (TraceCallFixup) {
1810         tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1811         moop->print_short_name(tty);
1812         tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1813       }
1814       // assert is too strong could also be resolve destinations.
1815       // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1816     }
1817   } else {
1818     if (TraceCallFixup) {
1819       tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1820       moop->print_short_name(tty);
1821       tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1822     }
1823   }
1824   return false;
1825 }
1826 
1827 // ---------------------------------------------------------------------------
1828 // We are calling the interpreter via a c2i. Normally this would mean that
1829 // we were called by a compiled method. However we could have lost a race
1830 // where we went int -> i2c -> c2i and so the caller could in fact be
1831 // interpreted. If the caller is compiled we attempt to patch the caller
1832 // so he no longer calls into the interpreter.
1833 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1834   Method* moop(method);
1835 
1836   address entry_point = moop->from_compiled_entry_no_trampoline();
1837 
1838   // It's possible that deoptimization can occur at a call site which hasn't
1839   // been resolved yet, in which case this function will be called from
1840   // an nmethod that has been patched for deopt and we can ignore the
1841   // request for a fixup.
1842   // Also it is possible that we lost a race in that from_compiled_entry
1843   // is now back to the i2c in that case we don't need to patch and if
1844   // we did we'd leap into space because the callsite needs to use
1845   // "to interpreter" stub in order to load up the Method*. Don't
1846   // ask me how I know this...
1847 
1848   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1849   if (cb == NULL || !cb->is_compiled() || entry_point == moop->get_c2i_entry()) {
1850     return;
1851   }
1852 
1853   // The check above makes sure this is a nmethod.
1854   CompiledMethod* nm = cb->as_compiled_method_or_null();
1855   assert(nm, "must be");
1856 
1857   // Get the return PC for the passed caller PC.
1858   address return_pc = caller_pc + frame::pc_return_offset;
1859 
1860   // There is a benign race here. We could be attempting to patch to a compiled
1861   // entry point at the same time the callee is being deoptimized. If that is
1862   // the case then entry_point may in fact point to a c2i and we'd patch the
1863   // call site with the same old data. clear_code will set code() to NULL
1864   // at the end of it. If we happen to see that NULL then we can skip trying
1865   // to patch. If we hit the window where the callee has a c2i in the
1866   // from_compiled_entry and the NULL isn't present yet then we lose the race
1867   // and patch the code with the same old data. Asi es la vida.
1868 
1869   if (moop->code() == NULL) return;
1870 
1871   if (nm->is_in_use()) {
1872 
1873     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1874     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1875     if (NativeCall::is_call_before(return_pc)) {
1876       ResourceMark mark;
1877       NativeCallWrapper* call = nm->call_wrapper_before(return_pc);
1878       //
1879       // bug 6281185. We might get here after resolving a call site to a vanilla
1880       // virtual call. Because the resolvee uses the verified entry it may then
1881       // see compiled code and attempt to patch the site by calling us. This would
1882       // then incorrectly convert the call site to optimized and its downhill from
1883       // there. If you're lucky you'll get the assert in the bugid, if not you've
1884       // just made a call site that could be megamorphic into a monomorphic site
1885       // for the rest of its life! Just another racing bug in the life of
1886       // fixup_callers_callsite ...
1887       //
1888       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1889       iter.next();
1890       assert(iter.has_current(), "must have a reloc at java call site");
1891       relocInfo::relocType typ = iter.reloc()->type();
1892       if (typ != relocInfo::static_call_type &&
1893            typ != relocInfo::opt_virtual_call_type &&
1894            typ != relocInfo::static_stub_type) {
1895         return;
1896       }
1897       address destination = call->destination();
1898       if (should_fixup_call_destination(destination, entry_point, caller_pc, moop, cb)) {
1899         call->set_destination_mt_safe(entry_point);
1900       }
1901     }
1902   }
1903 IRT_END
1904 
1905 
1906 // same as JVM_Arraycopy, but called directly from compiled code
1907 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1908                                                 oopDesc* dest, jint dest_pos,
1909                                                 jint length,
1910                                                 JavaThread* thread)) {
1911 #ifndef PRODUCT
1912   _slow_array_copy_ctr++;
1913 #endif
1914   // Check if we have null pointers
1915   if (src == NULL || dest == NULL) {
1916     THROW(vmSymbols::java_lang_NullPointerException());
1917   }
1918   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1919   // even though the copy_array API also performs dynamic checks to ensure
1920   // that src and dest are truly arrays (and are conformable).
1921   // The copy_array mechanism is awkward and could be removed, but
1922   // the compilers don't call this function except as a last resort,
1923   // so it probably doesn't matter.
1924   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1925                                         (arrayOopDesc*)dest, dest_pos,
1926                                         length, thread);
1927 }
1928 JRT_END
1929 
1930 // The caller of generate_class_cast_message() (or one of its callers)
1931 // must use a ResourceMark in order to correctly free the result.
1932 char* SharedRuntime::generate_class_cast_message(
1933     JavaThread* thread, Klass* caster_klass) {
1934 
1935   // Get target class name from the checkcast instruction
1936   vframeStream vfst(thread, true);
1937   assert(!vfst.at_end(), "Java frame must exist");
1938   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1939   Klass* target_klass = vfst.method()->constants()->klass_at(
1940     cc.index(), thread);
1941   return generate_class_cast_message(caster_klass, target_klass);
1942 }
1943 
1944 // The caller of class_loader_and_module_name() (or one of its callers)
1945 // must use a ResourceMark in order to correctly free the result.
1946 const char* class_loader_and_module_name(Klass* klass) {
1947   const char* delim = "/";
1948   size_t delim_len = strlen(delim);
1949 
1950   const char* fqn = klass->external_name();
1951   // Length of message to return; always include FQN
1952   size_t msglen = strlen(fqn) + 1;
1953 
1954   bool has_cl_name = false;
1955   bool has_mod_name = false;
1956   bool has_version = false;
1957 
1958   // Use class loader name, if exists and not builtin
1959   const char* class_loader_name = "";
1960   ClassLoaderData* cld = klass->class_loader_data();
1961   assert(cld != NULL, "class_loader_data should not be NULL");
1962   if (!cld->is_builtin_class_loader_data()) {
1963     // If not builtin, look for name
1964     oop loader = klass->class_loader();
1965     if (loader != NULL) {
1966       oop class_loader_name_oop = java_lang_ClassLoader::name(loader);
1967       if (class_loader_name_oop != NULL) {
1968         class_loader_name = java_lang_String::as_utf8_string(class_loader_name_oop);
1969         if (class_loader_name != NULL && class_loader_name[0] != '\0') {
1970           has_cl_name = true;
1971           msglen += strlen(class_loader_name) + delim_len;
1972         }
1973       }
1974     }
1975   }
1976 
1977   const char* module_name = "";
1978   const char* version = "";
1979   Klass* bottom_klass = klass->is_objArray_klass() ?
1980     ObjArrayKlass::cast(klass)->bottom_klass() : klass;
1981   if (bottom_klass->is_instance_klass()) {
1982     ModuleEntry* module = InstanceKlass::cast(bottom_klass)->module();
1983     // Use module name, if exists
1984     if (module->is_named()) {
1985       has_mod_name = true;
1986       module_name = module->name()->as_C_string();
1987       msglen += strlen(module_name);
1988       // Use version if exists and is not a jdk module
1989       if (module->is_non_jdk_module() && module->version() != NULL) {
1990         has_version = true;
1991         version = module->version()->as_C_string();
1992         msglen += strlen("@") + strlen(version);
1993       }
1994     }
1995   } else {
1996     // klass is an array of primitives, so its module is java.base
1997     module_name = JAVA_BASE_NAME;
1998   }
1999 
2000   if (has_cl_name || has_mod_name) {
2001     msglen += delim_len;
2002   }
2003 
2004   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2005 
2006   // Just return the FQN if error in allocating string
2007   if (message == NULL) {
2008     return fqn;
2009   }
2010 
2011   jio_snprintf(message, msglen, "%s%s%s%s%s%s%s",
2012                class_loader_name,
2013                (has_cl_name) ? delim : "",
2014                (has_mod_name) ? module_name : "",
2015                (has_version) ? "@" : "",
2016                (has_version) ? version : "",
2017                (has_cl_name || has_mod_name) ? delim : "",
2018                fqn);
2019   return message;
2020 }
2021 
2022 char* SharedRuntime::generate_class_cast_message(
2023     Klass* caster_klass, Klass* target_klass) {
2024 
2025   const char* caster_name = class_loader_and_module_name(caster_klass);
2026 
2027   const char* target_name = class_loader_and_module_name(target_klass);
2028 
2029   size_t msglen = strlen(caster_name) + strlen(" cannot be cast to ") + strlen(target_name) + 1;
2030 
2031   char* message = NEW_RESOURCE_ARRAY_RETURN_NULL(char, msglen);
2032   if (message == NULL) {
2033     // Shouldn't happen, but don't cause even more problems if it does
2034     message = const_cast<char*>(caster_klass->external_name());
2035   } else {
2036     jio_snprintf(message,
2037                  msglen,
2038                  "%s cannot be cast to %s",
2039                  caster_name,
2040                  target_name);
2041   }
2042   return message;
2043 }
2044 
2045 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
2046   (void) JavaThread::current()->reguard_stack();
2047 JRT_END
2048 
2049 
2050 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
2051 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
2052   // Disable ObjectSynchronizer::quick_enter() in default config
2053   // on AARCH64 and ARM until JDK-8153107 is resolved.
2054   if (ARM_ONLY((SyncFlags & 256) != 0 &&)
2055       AARCH64_ONLY((SyncFlags & 256) != 0 &&)
2056       !SafepointSynchronize::is_synchronizing()) {
2057     // Only try quick_enter() if we're not trying to reach a safepoint
2058     // so that the calling thread reaches the safepoint more quickly.
2059     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
2060   }
2061   // NO_ASYNC required because an async exception on the state transition destructor
2062   // would leave you with the lock held and it would never be released.
2063   // The normal monitorenter NullPointerException is thrown without acquiring a lock
2064   // and the model is that an exception implies the method failed.
2065   JRT_BLOCK_NO_ASYNC
2066   oop obj(_obj);
2067   if (PrintBiasedLockingStatistics) {
2068     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
2069   }
2070   Handle h_obj(THREAD, obj);
2071   if (UseBiasedLocking) {
2072     // Retry fast entry if bias is revoked to avoid unnecessary inflation
2073     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
2074   } else {
2075     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
2076   }
2077   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
2078   JRT_BLOCK_END
2079 JRT_END
2080 
2081 // Handles the uncommon cases of monitor unlocking in compiled code
2082 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
2083    oop obj(_obj);
2084   assert(JavaThread::current() == THREAD, "invariant");
2085   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
2086   // testing was unable to ever fire the assert that guarded it so I have removed it.
2087   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
2088 #undef MIGHT_HAVE_PENDING
2089 #ifdef MIGHT_HAVE_PENDING
2090   // Save and restore any pending_exception around the exception mark.
2091   // While the slow_exit must not throw an exception, we could come into
2092   // this routine with one set.
2093   oop pending_excep = NULL;
2094   const char* pending_file;
2095   int pending_line;
2096   if (HAS_PENDING_EXCEPTION) {
2097     pending_excep = PENDING_EXCEPTION;
2098     pending_file  = THREAD->exception_file();
2099     pending_line  = THREAD->exception_line();
2100     CLEAR_PENDING_EXCEPTION;
2101   }
2102 #endif /* MIGHT_HAVE_PENDING */
2103 
2104   {
2105     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2106     EXCEPTION_MARK;
2107     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2108   }
2109 
2110 #ifdef MIGHT_HAVE_PENDING
2111   if (pending_excep != NULL) {
2112     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2113   }
2114 #endif /* MIGHT_HAVE_PENDING */
2115 JRT_END
2116 
2117 #ifndef PRODUCT
2118 
2119 void SharedRuntime::print_statistics() {
2120   ttyLocker ttyl;
2121   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2122 
2123   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2124 
2125   SharedRuntime::print_ic_miss_histogram();
2126 
2127   if (CountRemovableExceptions) {
2128     if (_nof_removable_exceptions > 0) {
2129       Unimplemented(); // this counter is not yet incremented
2130       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2131     }
2132   }
2133 
2134   // Dump the JRT_ENTRY counters
2135   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2136   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2137   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2138   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2139   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2140   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2141   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2142 
2143   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2144   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2145   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2146   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2147   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2148 
2149   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2150   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2151   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2152   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2153   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2154   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2155   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2156   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2157   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2158   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2159   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2160   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2161   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2162   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2163   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2164   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2165 
2166   AdapterHandlerLibrary::print_statistics();
2167 
2168   if (xtty != NULL)  xtty->tail("statistics");
2169 }
2170 
2171 inline double percent(int x, int y) {
2172   return 100.0 * x / MAX2(y, 1);
2173 }
2174 
2175 class MethodArityHistogram {
2176  public:
2177   enum { MAX_ARITY = 256 };
2178  private:
2179   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2180   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2181   static int _max_arity;                      // max. arity seen
2182   static int _max_size;                       // max. arg size seen
2183 
2184   static void add_method_to_histogram(nmethod* nm) {
2185     Method* m = nm->method();
2186     ArgumentCount args(m->signature());
2187     int arity   = args.size() + (m->is_static() ? 0 : 1);
2188     int argsize = m->size_of_parameters();
2189     arity   = MIN2(arity, MAX_ARITY-1);
2190     argsize = MIN2(argsize, MAX_ARITY-1);
2191     int count = nm->method()->compiled_invocation_count();
2192     _arity_histogram[arity]  += count;
2193     _size_histogram[argsize] += count;
2194     _max_arity = MAX2(_max_arity, arity);
2195     _max_size  = MAX2(_max_size, argsize);
2196   }
2197 
2198   void print_histogram_helper(int n, int* histo, const char* name) {
2199     const int N = MIN2(5, n);
2200     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2201     double sum = 0;
2202     double weighted_sum = 0;
2203     int i;
2204     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2205     double rest = sum;
2206     double percent = sum / 100;
2207     for (i = 0; i <= N; i++) {
2208       rest -= histo[i];
2209       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2210     }
2211     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2212     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2213   }
2214 
2215   void print_histogram() {
2216     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2217     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2218     tty->print_cr("\nSame for parameter size (in words):");
2219     print_histogram_helper(_max_size, _size_histogram, "size");
2220     tty->cr();
2221   }
2222 
2223  public:
2224   MethodArityHistogram() {
2225     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2226     _max_arity = _max_size = 0;
2227     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2228     CodeCache::nmethods_do(add_method_to_histogram);
2229     print_histogram();
2230   }
2231 };
2232 
2233 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2234 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2235 int MethodArityHistogram::_max_arity;
2236 int MethodArityHistogram::_max_size;
2237 
2238 void SharedRuntime::print_call_statistics(int comp_total) {
2239   tty->print_cr("Calls from compiled code:");
2240   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2241   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2242   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2243   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2244   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2245   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2246   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2247   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2248   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2249   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2250   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2251   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2252   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2253   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2254   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2255   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2256   tty->cr();
2257   tty->print_cr("Note 1: counter updates are not MT-safe.");
2258   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2259   tty->print_cr("        %% in nested categories are relative to their category");
2260   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2261   tty->cr();
2262 
2263   MethodArityHistogram h;
2264 }
2265 #endif
2266 
2267 
2268 // A simple wrapper class around the calling convention information
2269 // that allows sharing of adapters for the same calling convention.
2270 class AdapterFingerPrint : public CHeapObj<mtCode> {
2271  private:
2272   enum {
2273     _basic_type_bits = 4,
2274     _basic_type_mask = right_n_bits(_basic_type_bits),
2275     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2276     _compact_int_count = 3
2277   };
2278   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2279   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2280 
2281   union {
2282     int  _compact[_compact_int_count];
2283     int* _fingerprint;
2284   } _value;
2285   int _length; // A negative length indicates the fingerprint is in the compact form,
2286                // Otherwise _value._fingerprint is the array.
2287 
2288   // Remap BasicTypes that are handled equivalently by the adapters.
2289   // These are correct for the current system but someday it might be
2290   // necessary to make this mapping platform dependent.
2291   static int adapter_encoding(BasicType in) {
2292     switch (in) {
2293       case T_BOOLEAN:
2294       case T_BYTE:
2295       case T_SHORT:
2296       case T_CHAR:
2297         // There are all promoted to T_INT in the calling convention
2298         return T_INT;
2299 
2300       case T_OBJECT:
2301       case T_ARRAY:
2302         // In other words, we assume that any register good enough for
2303         // an int or long is good enough for a managed pointer.
2304 #ifdef _LP64
2305         return T_LONG;
2306 #else
2307         return T_INT;
2308 #endif
2309 
2310       case T_INT:
2311       case T_LONG:
2312       case T_FLOAT:
2313       case T_DOUBLE:
2314       case T_VOID:
2315         return in;
2316 
2317       default:
2318         ShouldNotReachHere();
2319         return T_CONFLICT;
2320     }
2321   }
2322 
2323  public:
2324   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2325     // The fingerprint is based on the BasicType signature encoded
2326     // into an array of ints with eight entries per int.
2327     int* ptr;
2328     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2329     if (len <= _compact_int_count) {
2330       assert(_compact_int_count == 3, "else change next line");
2331       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2332       // Storing the signature encoded as signed chars hits about 98%
2333       // of the time.
2334       _length = -len;
2335       ptr = _value._compact;
2336     } else {
2337       _length = len;
2338       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2339       ptr = _value._fingerprint;
2340     }
2341 
2342     // Now pack the BasicTypes with 8 per int
2343     int sig_index = 0;
2344     for (int index = 0; index < len; index++) {
2345       int value = 0;
2346       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2347         int bt = ((sig_index < total_args_passed)
2348                   ? adapter_encoding(sig_bt[sig_index++])
2349                   : 0);
2350         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2351         value = (value << _basic_type_bits) | bt;
2352       }
2353       ptr[index] = value;
2354     }
2355   }
2356 
2357   ~AdapterFingerPrint() {
2358     if (_length > 0) {
2359       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2360     }
2361   }
2362 
2363   int value(int index) {
2364     if (_length < 0) {
2365       return _value._compact[index];
2366     }
2367     return _value._fingerprint[index];
2368   }
2369   int length() {
2370     if (_length < 0) return -_length;
2371     return _length;
2372   }
2373 
2374   bool is_compact() {
2375     return _length <= 0;
2376   }
2377 
2378   unsigned int compute_hash() {
2379     int hash = 0;
2380     for (int i = 0; i < length(); i++) {
2381       int v = value(i);
2382       hash = (hash << 8) ^ v ^ (hash >> 5);
2383     }
2384     return (unsigned int)hash;
2385   }
2386 
2387   const char* as_string() {
2388     stringStream st;
2389     st.print("0x");
2390     for (int i = 0; i < length(); i++) {
2391       st.print("%08x", value(i));
2392     }
2393     return st.as_string();
2394   }
2395 
2396   bool equals(AdapterFingerPrint* other) {
2397     if (other->_length != _length) {
2398       return false;
2399     }
2400     if (_length < 0) {
2401       assert(_compact_int_count == 3, "else change next line");
2402       return _value._compact[0] == other->_value._compact[0] &&
2403              _value._compact[1] == other->_value._compact[1] &&
2404              _value._compact[2] == other->_value._compact[2];
2405     } else {
2406       for (int i = 0; i < _length; i++) {
2407         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2408           return false;
2409         }
2410       }
2411     }
2412     return true;
2413   }
2414 };
2415 
2416 
2417 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2418 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2419   friend class AdapterHandlerTableIterator;
2420 
2421  private:
2422 
2423 #ifndef PRODUCT
2424   static int _lookups; // number of calls to lookup
2425   static int _buckets; // number of buckets checked
2426   static int _equals;  // number of buckets checked with matching hash
2427   static int _hits;    // number of successful lookups
2428   static int _compact; // number of equals calls with compact signature
2429 #endif
2430 
2431   AdapterHandlerEntry* bucket(int i) {
2432     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2433   }
2434 
2435  public:
2436   AdapterHandlerTable()
2437     : BasicHashtable<mtCode>(293, (DumpSharedSpaces ? sizeof(CDSAdapterHandlerEntry) : sizeof(AdapterHandlerEntry))) { }
2438 
2439   // Create a new entry suitable for insertion in the table
2440   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2441     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2442     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2443     if (DumpSharedSpaces) {
2444       ((CDSAdapterHandlerEntry*)entry)->init();
2445     }
2446     return entry;
2447   }
2448 
2449   // Insert an entry into the table
2450   void add(AdapterHandlerEntry* entry) {
2451     int index = hash_to_index(entry->hash());
2452     add_entry(index, entry);
2453   }
2454 
2455   void free_entry(AdapterHandlerEntry* entry) {
2456     entry->deallocate();
2457     BasicHashtable<mtCode>::free_entry(entry);
2458   }
2459 
2460   // Find a entry with the same fingerprint if it exists
2461   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2462     NOT_PRODUCT(_lookups++);
2463     AdapterFingerPrint fp(total_args_passed, sig_bt);
2464     unsigned int hash = fp.compute_hash();
2465     int index = hash_to_index(hash);
2466     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2467       NOT_PRODUCT(_buckets++);
2468       if (e->hash() == hash) {
2469         NOT_PRODUCT(_equals++);
2470         if (fp.equals(e->fingerprint())) {
2471 #ifndef PRODUCT
2472           if (fp.is_compact()) _compact++;
2473           _hits++;
2474 #endif
2475           return e;
2476         }
2477       }
2478     }
2479     return NULL;
2480   }
2481 
2482 #ifndef PRODUCT
2483   void print_statistics() {
2484     ResourceMark rm;
2485     int longest = 0;
2486     int empty = 0;
2487     int total = 0;
2488     int nonempty = 0;
2489     for (int index = 0; index < table_size(); index++) {
2490       int count = 0;
2491       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2492         count++;
2493       }
2494       if (count != 0) nonempty++;
2495       if (count == 0) empty++;
2496       if (count > longest) longest = count;
2497       total += count;
2498     }
2499     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2500                   empty, longest, total, total / (double)nonempty);
2501     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2502                   _lookups, _buckets, _equals, _hits, _compact);
2503   }
2504 #endif
2505 };
2506 
2507 
2508 #ifndef PRODUCT
2509 
2510 int AdapterHandlerTable::_lookups;
2511 int AdapterHandlerTable::_buckets;
2512 int AdapterHandlerTable::_equals;
2513 int AdapterHandlerTable::_hits;
2514 int AdapterHandlerTable::_compact;
2515 
2516 #endif
2517 
2518 class AdapterHandlerTableIterator : public StackObj {
2519  private:
2520   AdapterHandlerTable* _table;
2521   int _index;
2522   AdapterHandlerEntry* _current;
2523 
2524   void scan() {
2525     while (_index < _table->table_size()) {
2526       AdapterHandlerEntry* a = _table->bucket(_index);
2527       _index++;
2528       if (a != NULL) {
2529         _current = a;
2530         return;
2531       }
2532     }
2533   }
2534 
2535  public:
2536   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2537     scan();
2538   }
2539   bool has_next() {
2540     return _current != NULL;
2541   }
2542   AdapterHandlerEntry* next() {
2543     if (_current != NULL) {
2544       AdapterHandlerEntry* result = _current;
2545       _current = _current->next();
2546       if (_current == NULL) scan();
2547       return result;
2548     } else {
2549       return NULL;
2550     }
2551   }
2552 };
2553 
2554 
2555 // ---------------------------------------------------------------------------
2556 // Implementation of AdapterHandlerLibrary
2557 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2558 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2559 const int AdapterHandlerLibrary_size = 16*K;
2560 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2561 
2562 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2563   // Should be called only when AdapterHandlerLibrary_lock is active.
2564   if (_buffer == NULL) // Initialize lazily
2565       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2566   return _buffer;
2567 }
2568 
2569 extern "C" void unexpected_adapter_call() {
2570   ShouldNotCallThis();
2571 }
2572 
2573 void AdapterHandlerLibrary::initialize() {
2574   if (_adapters != NULL) return;
2575   _adapters = new AdapterHandlerTable();
2576 
2577   // Create a special handler for abstract methods.  Abstract methods
2578   // are never compiled so an i2c entry is somewhat meaningless, but
2579   // throw AbstractMethodError just in case.
2580   // Pass wrong_method_abstract for the c2i transitions to return
2581   // AbstractMethodError for invalid invocations.
2582   address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2583   _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2584                                                               StubRoutines::throw_AbstractMethodError_entry(),
2585                                                               wrong_method_abstract, wrong_method_abstract);
2586 }
2587 
2588 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2589                                                       address i2c_entry,
2590                                                       address c2i_entry,
2591                                                       address c2i_unverified_entry) {
2592   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2593 }
2594 
2595 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2596   AdapterHandlerEntry* entry = get_adapter0(method);
2597   if (method->is_shared()) {
2598     // See comments around Method::link_method()
2599     MutexLocker mu(AdapterHandlerLibrary_lock);
2600     if (method->adapter() == NULL) {
2601       method->update_adapter_trampoline(entry);
2602     }
2603     address trampoline = method->from_compiled_entry();
2604     if (*(int*)trampoline == 0) {
2605       CodeBuffer buffer(trampoline, (int)SharedRuntime::trampoline_size());
2606       MacroAssembler _masm(&buffer);
2607       SharedRuntime::generate_trampoline(&_masm, entry->get_c2i_entry());
2608       assert(*(int*)trampoline != 0, "Instruction(s) for trampoline must not be encoded as zeros.");
2609 
2610       if (PrintInterpreter) {
2611         Disassembler::decode(buffer.insts_begin(), buffer.insts_end());
2612       }
2613     }
2614   }
2615 
2616   return entry;
2617 }
2618 
2619 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter0(const methodHandle& method) {
2620   // Use customized signature handler.  Need to lock around updates to
2621   // the AdapterHandlerTable (it is not safe for concurrent readers
2622   // and a single writer: this could be fixed if it becomes a
2623   // problem).
2624 
2625   ResourceMark rm;
2626 
2627   NOT_PRODUCT(int insts_size);
2628   AdapterBlob* new_adapter = NULL;
2629   AdapterHandlerEntry* entry = NULL;
2630   AdapterFingerPrint* fingerprint = NULL;
2631   {
2632     MutexLocker mu(AdapterHandlerLibrary_lock);
2633     // make sure data structure is initialized
2634     initialize();
2635 
2636     if (method->is_abstract()) {
2637       return _abstract_method_handler;
2638     }
2639 
2640     // Fill in the signature array, for the calling-convention call.
2641     int total_args_passed = method->size_of_parameters(); // All args on stack
2642 
2643     BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2644     VMRegPair* regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2645     int i = 0;
2646     if (!method->is_static())  // Pass in receiver first
2647       sig_bt[i++] = T_OBJECT;
2648     for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2649       sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2650       if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2651         sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2652     }
2653     assert(i == total_args_passed, "");
2654 
2655     // Lookup method signature's fingerprint
2656     entry = _adapters->lookup(total_args_passed, sig_bt);
2657 
2658 #ifdef ASSERT
2659     AdapterHandlerEntry* shared_entry = NULL;
2660     // Start adapter sharing verification only after the VM is booted.
2661     if (VerifyAdapterSharing && (entry != NULL)) {
2662       shared_entry = entry;
2663       entry = NULL;
2664     }
2665 #endif
2666 
2667     if (entry != NULL) {
2668       return entry;
2669     }
2670 
2671     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2672     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, false);
2673 
2674     // Make a C heap allocated version of the fingerprint to store in the adapter
2675     fingerprint = new AdapterFingerPrint(total_args_passed, sig_bt);
2676 
2677     // StubRoutines::code2() is initialized after this function can be called. As a result,
2678     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2679     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2680     // stub that ensure that an I2C stub is called from an interpreter frame.
2681     bool contains_all_checks = StubRoutines::code2() != NULL;
2682 
2683     // Create I2C & C2I handlers
2684     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2685     if (buf != NULL) {
2686       CodeBuffer buffer(buf);
2687       short buffer_locs[20];
2688       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2689                                              sizeof(buffer_locs)/sizeof(relocInfo));
2690 
2691       MacroAssembler _masm(&buffer);
2692       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2693                                                      total_args_passed,
2694                                                      comp_args_on_stack,
2695                                                      sig_bt,
2696                                                      regs,
2697                                                      fingerprint);
2698 #ifdef ASSERT
2699       if (VerifyAdapterSharing) {
2700         if (shared_entry != NULL) {
2701           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2702           // Release the one just created and return the original
2703           _adapters->free_entry(entry);
2704           return shared_entry;
2705         } else  {
2706           entry->save_code(buf->code_begin(), buffer.insts_size());
2707         }
2708       }
2709 #endif
2710 
2711       new_adapter = AdapterBlob::create(&buffer);
2712       NOT_PRODUCT(insts_size = buffer.insts_size());
2713     }
2714     if (new_adapter == NULL) {
2715       // CodeCache is full, disable compilation
2716       // Ought to log this but compile log is only per compile thread
2717       // and we're some non descript Java thread.
2718       return NULL; // Out of CodeCache space
2719     }
2720     entry->relocate(new_adapter->content_begin());
2721 #ifndef PRODUCT
2722     // debugging suppport
2723     if (PrintAdapterHandlers || PrintStubCode) {
2724       ttyLocker ttyl;
2725       entry->print_adapter_on(tty);
2726       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2727                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2728                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2729       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2730       if (Verbose || PrintStubCode) {
2731         address first_pc = entry->base_address();
2732         if (first_pc != NULL) {
2733           Disassembler::decode(first_pc, first_pc + insts_size);
2734           tty->cr();
2735         }
2736       }
2737     }
2738 #endif
2739     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2740     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2741     if (contains_all_checks || !VerifyAdapterCalls) {
2742       _adapters->add(entry);
2743     }
2744   }
2745   // Outside of the lock
2746   if (new_adapter != NULL) {
2747     char blob_id[256];
2748     jio_snprintf(blob_id,
2749                  sizeof(blob_id),
2750                  "%s(%s)@" PTR_FORMAT,
2751                  new_adapter->name(),
2752                  fingerprint->as_string(),
2753                  new_adapter->content_begin());
2754     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2755 
2756     if (JvmtiExport::should_post_dynamic_code_generated()) {
2757       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2758     }
2759   }
2760   return entry;
2761 }
2762 
2763 address AdapterHandlerEntry::base_address() {
2764   address base = _i2c_entry;
2765   if (base == NULL)  base = _c2i_entry;
2766   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2767   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2768   return base;
2769 }
2770 
2771 void AdapterHandlerEntry::relocate(address new_base) {
2772   address old_base = base_address();
2773   assert(old_base != NULL, "");
2774   ptrdiff_t delta = new_base - old_base;
2775   if (_i2c_entry != NULL)
2776     _i2c_entry += delta;
2777   if (_c2i_entry != NULL)
2778     _c2i_entry += delta;
2779   if (_c2i_unverified_entry != NULL)
2780     _c2i_unverified_entry += delta;
2781   assert(base_address() == new_base, "");
2782 }
2783 
2784 
2785 void AdapterHandlerEntry::deallocate() {
2786   delete _fingerprint;
2787 #ifdef ASSERT
2788   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2789 #endif
2790 }
2791 
2792 
2793 #ifdef ASSERT
2794 // Capture the code before relocation so that it can be compared
2795 // against other versions.  If the code is captured after relocation
2796 // then relative instructions won't be equivalent.
2797 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2798   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2799   _saved_code_length = length;
2800   memcpy(_saved_code, buffer, length);
2801 }
2802 
2803 
2804 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2805   if (length != _saved_code_length) {
2806     return false;
2807   }
2808 
2809   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2810 }
2811 #endif
2812 
2813 
2814 /**
2815  * Create a native wrapper for this native method.  The wrapper converts the
2816  * Java-compiled calling convention to the native convention, handles
2817  * arguments, and transitions to native.  On return from the native we transition
2818  * back to java blocking if a safepoint is in progress.
2819  */
2820 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2821   ResourceMark rm;
2822   nmethod* nm = NULL;
2823 
2824   assert(method->is_native(), "must be native");
2825   assert(method->is_method_handle_intrinsic() ||
2826          method->has_native_function(), "must have something valid to call!");
2827 
2828   {
2829     // Perform the work while holding the lock, but perform any printing outside the lock
2830     MutexLocker mu(AdapterHandlerLibrary_lock);
2831     // See if somebody beat us to it
2832     if (method->code() != NULL) {
2833       return;
2834     }
2835 
2836     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2837     assert(compile_id > 0, "Must generate native wrapper");
2838 
2839 
2840     ResourceMark rm;
2841     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2842     if (buf != NULL) {
2843       CodeBuffer buffer(buf);
2844       double locs_buf[20];
2845       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2846       MacroAssembler _masm(&buffer);
2847 
2848       // Fill in the signature array, for the calling-convention call.
2849       const int total_args_passed = method->size_of_parameters();
2850 
2851       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2852       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2853       int i=0;
2854       if (!method->is_static())  // Pass in receiver first
2855         sig_bt[i++] = T_OBJECT;
2856       SignatureStream ss(method->signature());
2857       for (; !ss.at_return_type(); ss.next()) {
2858         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2859         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2860           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2861       }
2862       assert(i == total_args_passed, "");
2863       BasicType ret_type = ss.type();
2864 
2865       // Now get the compiled-Java layout as input (or output) arguments.
2866       // NOTE: Stubs for compiled entry points of method handle intrinsics
2867       // are just trampolines so the argument registers must be outgoing ones.
2868       const bool is_outgoing = method->is_method_handle_intrinsic();
2869       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2870 
2871       // Generate the compiled-to-native wrapper code
2872       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2873 
2874       if (nm != NULL) {
2875         method->set_code(method, nm);
2876 
2877         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2878         if (directive->PrintAssemblyOption) {
2879           nm->print_code();
2880         }
2881         DirectivesStack::release(directive);
2882       }
2883     }
2884   } // Unlock AdapterHandlerLibrary_lock
2885 
2886 
2887   // Install the generated code.
2888   if (nm != NULL) {
2889     const char *msg = method->is_static() ? "(static)" : "";
2890     CompileTask::print_ul(nm, msg);
2891     if (PrintCompilation) {
2892       ttyLocker ttyl;
2893       CompileTask::print(tty, nm, msg);
2894     }
2895     nm->post_compiled_method_load_event();
2896   }
2897 }
2898 
2899 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2900   assert(thread == JavaThread::current(), "must be");
2901   // The code is about to enter a JNI lazy critical native method and
2902   // _needs_gc is true, so if this thread is already in a critical
2903   // section then just return, otherwise this thread should block
2904   // until needs_gc has been cleared.
2905   if (thread->in_critical()) {
2906     return;
2907   }
2908   // Lock and unlock a critical section to give the system a chance to block
2909   GCLocker::lock_critical(thread);
2910   GCLocker::unlock_critical(thread);
2911 JRT_END
2912 
2913 // -------------------------------------------------------------------------
2914 // Java-Java calling convention
2915 // (what you use when Java calls Java)
2916 
2917 //------------------------------name_for_receiver----------------------------------
2918 // For a given signature, return the VMReg for parameter 0.
2919 VMReg SharedRuntime::name_for_receiver() {
2920   VMRegPair regs;
2921   BasicType sig_bt = T_OBJECT;
2922   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2923   // Return argument 0 register.  In the LP64 build pointers
2924   // take 2 registers, but the VM wants only the 'main' name.
2925   return regs.first();
2926 }
2927 
2928 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2929   // This method is returning a data structure allocating as a
2930   // ResourceObject, so do not put any ResourceMarks in here.
2931   char *s = sig->as_C_string();
2932   int len = (int)strlen(s);
2933   s++; len--;                   // Skip opening paren
2934 
2935   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2936   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2937   int cnt = 0;
2938   if (has_receiver) {
2939     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2940   }
2941 
2942   while (*s != ')') {          // Find closing right paren
2943     switch (*s++) {            // Switch on signature character
2944     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2945     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2946     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2947     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2948     case 'I': sig_bt[cnt++] = T_INT;     break;
2949     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2950     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2951     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2952     case 'V': sig_bt[cnt++] = T_VOID;    break;
2953     case 'L':                   // Oop
2954       while (*s++ != ';');   // Skip signature
2955       sig_bt[cnt++] = T_OBJECT;
2956       break;
2957     case '[': {                 // Array
2958       do {                      // Skip optional size
2959         while (*s >= '0' && *s <= '9') s++;
2960       } while (*s++ == '[');   // Nested arrays?
2961       // Skip element type
2962       if (s[-1] == 'L')
2963         while (*s++ != ';'); // Skip signature
2964       sig_bt[cnt++] = T_ARRAY;
2965       break;
2966     }
2967     default : ShouldNotReachHere();
2968     }
2969   }
2970 
2971   if (has_appendix) {
2972     sig_bt[cnt++] = T_OBJECT;
2973   }
2974 
2975   assert(cnt < 256, "grow table size");
2976 
2977   int comp_args_on_stack;
2978   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2979 
2980   // the calling convention doesn't count out_preserve_stack_slots so
2981   // we must add that in to get "true" stack offsets.
2982 
2983   if (comp_args_on_stack) {
2984     for (int i = 0; i < cnt; i++) {
2985       VMReg reg1 = regs[i].first();
2986       if (reg1->is_stack()) {
2987         // Yuck
2988         reg1 = reg1->bias(out_preserve_stack_slots());
2989       }
2990       VMReg reg2 = regs[i].second();
2991       if (reg2->is_stack()) {
2992         // Yuck
2993         reg2 = reg2->bias(out_preserve_stack_slots());
2994       }
2995       regs[i].set_pair(reg2, reg1);
2996     }
2997   }
2998 
2999   // results
3000   *arg_size = cnt;
3001   return regs;
3002 }
3003 
3004 // OSR Migration Code
3005 //
3006 // This code is used convert interpreter frames into compiled frames.  It is
3007 // called from very start of a compiled OSR nmethod.  A temp array is
3008 // allocated to hold the interesting bits of the interpreter frame.  All
3009 // active locks are inflated to allow them to move.  The displaced headers and
3010 // active interpreter locals are copied into the temp buffer.  Then we return
3011 // back to the compiled code.  The compiled code then pops the current
3012 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3013 // copies the interpreter locals and displaced headers where it wants.
3014 // Finally it calls back to free the temp buffer.
3015 //
3016 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3017 
3018 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3019 
3020   //
3021   // This code is dependent on the memory layout of the interpreter local
3022   // array and the monitors. On all of our platforms the layout is identical
3023   // so this code is shared. If some platform lays the their arrays out
3024   // differently then this code could move to platform specific code or
3025   // the code here could be modified to copy items one at a time using
3026   // frame accessor methods and be platform independent.
3027 
3028   frame fr = thread->last_frame();
3029   assert(fr.is_interpreted_frame(), "");
3030   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3031 
3032   // Figure out how many monitors are active.
3033   int active_monitor_count = 0;
3034   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3035        kptr < fr.interpreter_frame_monitor_begin();
3036        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3037     if (kptr->obj() != NULL) active_monitor_count++;
3038   }
3039 
3040   // QQQ we could place number of active monitors in the array so that compiled code
3041   // could double check it.
3042 
3043   Method* moop = fr.interpreter_frame_method();
3044   int max_locals = moop->max_locals();
3045   // Allocate temp buffer, 1 word per local & 2 per active monitor
3046   int buf_size_words = max_locals + active_monitor_count * BasicObjectLock::size();
3047   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3048 
3049   // Copy the locals.  Order is preserved so that loading of longs works.
3050   // Since there's no GC I can copy the oops blindly.
3051   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3052   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3053                        (HeapWord*)&buf[0],
3054                        max_locals);
3055 
3056   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3057   int i = max_locals;
3058   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3059        kptr2 < fr.interpreter_frame_monitor_begin();
3060        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3061     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3062       BasicLock *lock = kptr2->lock();
3063       // Inflate so the displaced header becomes position-independent
3064       if (lock->displaced_header()->is_unlocked())
3065         ObjectSynchronizer::inflate_helper(kptr2->obj());
3066       // Now the displaced header is free to move
3067       buf[i++] = (intptr_t)lock->displaced_header();
3068       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3069     }
3070   }
3071   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3072 
3073   return buf;
3074 JRT_END
3075 
3076 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3077   FREE_C_HEAP_ARRAY(intptr_t, buf);
3078 JRT_END
3079 
3080 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3081   AdapterHandlerTableIterator iter(_adapters);
3082   while (iter.has_next()) {
3083     AdapterHandlerEntry* a = iter.next();
3084     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3085   }
3086   return false;
3087 }
3088 
3089 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3090   AdapterHandlerTableIterator iter(_adapters);
3091   while (iter.has_next()) {
3092     AdapterHandlerEntry* a = iter.next();
3093     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3094       st->print("Adapter for signature: ");
3095       a->print_adapter_on(tty);
3096       return;
3097     }
3098   }
3099   assert(false, "Should have found handler");
3100 }
3101 
3102 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3103   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3104                p2i(this), fingerprint()->as_string(),
3105                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3106 
3107 }
3108 
3109 #if INCLUDE_CDS
3110 
3111 void CDSAdapterHandlerEntry::init() {
3112   assert(DumpSharedSpaces, "used during dump time only");
3113   _c2i_entry_trampoline = (address)MetaspaceShared::misc_data_space_alloc(SharedRuntime::trampoline_size());
3114   _adapter_trampoline = (AdapterHandlerEntry**)MetaspaceShared::misc_data_space_alloc(sizeof(AdapterHandlerEntry*));
3115 };
3116 
3117 #endif // INCLUDE_CDS
3118 
3119 
3120 #ifndef PRODUCT
3121 
3122 void AdapterHandlerLibrary::print_statistics() {
3123   _adapters->print_statistics();
3124 }
3125 
3126 #endif /* PRODUCT */
3127 
3128 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3129   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3130   thread->enable_stack_reserved_zone();
3131   thread->set_reserved_stack_activation(thread->stack_base());
3132 JRT_END
3133 
3134 #if INCLUDE_TRACE
3135 static void post_stack_reservation_event(const Method* method) {
3136   EventReservedStackActivation event;
3137   if (event.should_commit()) {
3138     event.set_method(method);
3139     event.commit();
3140   }
3141 }
3142 #endif
3143 
3144 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3145   frame activation;
3146   CompiledMethod* nm = NULL;
3147   int count = 1;
3148 
3149   assert(fr.is_java_frame(), "Must start on Java frame");
3150 
3151   while (true) {
3152     Method* method = NULL;
3153     if (fr.is_interpreted_frame()) {
3154       method = fr.interpreter_frame_method();
3155     } else {
3156       CodeBlob* cb = fr.cb();
3157       if (cb != NULL && cb->is_compiled()) {
3158         nm = cb->as_compiled_method();
3159         method = nm->method();
3160       }
3161     }
3162     if ((method != NULL) && method->has_reserved_stack_access()) {
3163       ResourceMark rm(thread);
3164       activation = fr;
3165       warning("Potentially dangerous stack overflow in "
3166               "ReservedStackAccess annotated method %s [%d]",
3167               method->name_and_sig_as_C_string(), count++);
3168       TRACE_ONLY(post_stack_reservation_event(method);)
3169     }
3170     if (fr.is_first_java_frame()) {
3171       break;
3172     } else {
3173       fr = fr.java_sender();
3174     }
3175   }
3176   return activation;
3177 }