1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "gc/shared/collectedHeap.hpp"
  35 #include "gc/shared/gcLocker.inline.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "logging/log.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "memory/universe.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/symbol.hpp"
  42 #include "runtime/atomic.hpp"
  43 #include "runtime/compilationPolicy.hpp"
  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/frame.inline.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/mutexLocker.hpp"
  48 #include "runtime/orderAccess.inline.hpp"
  49 #include "runtime/osThread.hpp"
  50 #include "runtime/safepoint.hpp"
  51 #include "runtime/signature.hpp"
  52 #include "runtime/stubCodeGenerator.hpp"
  53 #include "runtime/stubRoutines.hpp"
  54 #include "runtime/sweeper.hpp"
  55 #include "runtime/synchronizer.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/timerTrace.hpp"
  58 #include "services/runtimeService.hpp"
  59 #include "utilities/events.hpp"
  60 #include "utilities/macros.hpp"
  61 #if INCLUDE_ALL_GCS
  62 #include "gc/cms/concurrentMarkSweepThread.hpp"
  63 #include "gc/g1/suspendibleThreadSet.hpp"
  64 #endif // INCLUDE_ALL_GCS
  65 #ifdef COMPILER1
  66 #include "c1/c1_globals.hpp"
  67 #endif
  68 #if INCLUDE_TRACE
  69 #include "trace/tracing.hpp"
  70 
  71 static void post_safepoint_begin_event(EventSafepointBegin* event,
  72                                        int safepoint_id,
  73                                        int thread_count,
  74                                        int critical_thread_count) {
  75   assert(event != NULL, "invariant");
  76   if (event->should_commit()) {
  77     event->set_safepointId(safepoint_id);
  78     event->set_totalThreadCount(thread_count);
  79     event->set_jniCriticalThreadCount(critical_thread_count);
  80     event->commit();
  81   }
  82 }
  83 
  84 static void post_safepoint_cleanup_event(EventSafepointCleanup* event,
  85                                          int safepoint_id) {
  86   assert(event != NULL, "invariant");
  87   if (event->should_commit()) {
  88     event->set_safepointId(safepoint_id);
  89     event->commit();
  90   }
  91 }
  92 
  93 static void post_safepoint_synchronize_event(EventSafepointStateSynchronization* event,
  94                                              int safepoint_id,
  95                                              int initial_number_of_threads,
  96                                              int threads_waiting_to_block,
  97                                              unsigned int iterations) {
  98   assert(event != NULL, "invariant");
  99   if (event->should_commit()) {
 100     event->set_safepointId(safepoint_id);
 101     event->set_initialThreadCount(initial_number_of_threads);
 102     event->set_runningThreadCount(threads_waiting_to_block);
 103     event->set_iterations(iterations);
 104     event->commit();
 105   }
 106 }
 107 
 108 static void post_safepoint_wait_blocked_event(EventSafepointWaitBlocked* event,
 109                                               int safepoint_id,
 110                                               int initial_threads_waiting_to_block) {
 111   assert(event != NULL, "invariant");
 112   if (event->should_commit()) {
 113     event->set_safepointId(safepoint_id);
 114     event->set_runningThreadCount(initial_threads_waiting_to_block);
 115     event->commit();
 116   }
 117 }
 118 
 119 static void post_safepoint_end_event(EventSafepointEnd* event, int safepoint_id) {
 120   assert(event != NULL, "invariant");
 121   if (event->should_commit()) {
 122     event->set_safepointId(safepoint_id);
 123     event->commit();
 124   }
 125 }
 126 
 127 static void post_safepoint_cleanup_task_event(EventSafepointCleanupTask* event,
 128                                              int safepoint_id,
 129                                              const char* name) {
 130   assert(event != NULL, "invariant");
 131   if (event->should_commit()) {
 132     event->set_safepointId(safepoint_id);
 133     event->set_name(name);
 134     event->commit();
 135   }
 136 }
 137 #endif // INCLUDE_TRACE
 138 
 139 // --------------------------------------------------------------------------------------------------
 140 // Implementation of Safepoint begin/end
 141 
 142 SafepointSynchronize::SynchronizeState volatile SafepointSynchronize::_state = SafepointSynchronize::_not_synchronized;
 143 volatile int  SafepointSynchronize::_waiting_to_block = 0;
 144 volatile int SafepointSynchronize::_safepoint_counter = 0;
 145 int SafepointSynchronize::_current_jni_active_count = 0;
 146 long  SafepointSynchronize::_end_of_last_safepoint = 0;
 147 static volatile int PageArmed = 0 ;        // safepoint polling page is RO|RW vs PROT_NONE
 148 static volatile int TryingToBlock = 0 ;    // proximate value -- for advisory use only
 149 static bool timeout_error_printed = false;
 150 
 151 // Roll all threads forward to a safepoint and suspend them all
 152 void SafepointSynchronize::begin() {
 153   TRACE_ONLY(EventSafepointBegin begin_event;)
 154   Thread* myThread = Thread::current();
 155   assert(myThread->is_VM_thread(), "Only VM thread may execute a safepoint");
 156 
 157   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 158     _safepoint_begin_time = os::javaTimeNanos();
 159     _ts_of_current_safepoint = tty->time_stamp().seconds();
 160   }
 161 
 162 #if INCLUDE_ALL_GCS
 163   if (UseConcMarkSweepGC) {
 164     // In the future we should investigate whether CMS can use the
 165     // more-general mechanism below.  DLD (01/05).
 166     ConcurrentMarkSweepThread::synchronize(false);
 167   } else if (UseG1GC) {
 168     SuspendibleThreadSet::synchronize();
 169   }
 170 #endif // INCLUDE_ALL_GCS
 171 
 172   // By getting the Threads_lock, we assure that no threads are about to start or
 173   // exit. It is released again in SafepointSynchronize::end().
 174   Threads_lock->lock();
 175 
 176   assert( _state == _not_synchronized, "trying to safepoint synchronize with wrong state");
 177 
 178   int nof_threads = Threads::number_of_threads();
 179 
 180   log_debug(safepoint)("Safepoint synchronization initiated. (%d)", nof_threads);
 181 
 182   RuntimeService::record_safepoint_begin();
 183 
 184   MutexLocker mu(Safepoint_lock);
 185 
 186   // Reset the count of active JNI critical threads
 187   _current_jni_active_count = 0;
 188 
 189   // Set number of threads to wait for, before we initiate the callbacks
 190   _waiting_to_block = nof_threads;
 191   TryingToBlock     = 0 ;
 192   int still_running = nof_threads;
 193 
 194   // Save the starting time, so that it can be compared to see if this has taken
 195   // too long to complete.
 196   jlong safepoint_limit_time = 0;
 197   timeout_error_printed = false;
 198 
 199   // PrintSafepointStatisticsTimeout can be specified separately. When
 200   // specified, PrintSafepointStatistics will be set to true in
 201   // deferred_initialize_stat method. The initialization has to be done
 202   // early enough to avoid any races. See bug 6880029 for details.
 203   if (PrintSafepointStatistics || PrintSafepointStatisticsTimeout > 0) {
 204     deferred_initialize_stat();
 205   }
 206 
 207   // Begin the process of bringing the system to a safepoint.
 208   // Java threads can be in several different states and are
 209   // stopped by different mechanisms:
 210   //
 211   //  1. Running interpreted
 212   //     The interpreter dispatch table is changed to force it to
 213   //     check for a safepoint condition between bytecodes.
 214   //  2. Running in native code
 215   //     When returning from the native code, a Java thread must check
 216   //     the safepoint _state to see if we must block.  If the
 217   //     VM thread sees a Java thread in native, it does
 218   //     not wait for this thread to block.  The order of the memory
 219   //     writes and reads of both the safepoint state and the Java
 220   //     threads state is critical.  In order to guarantee that the
 221   //     memory writes are serialized with respect to each other,
 222   //     the VM thread issues a memory barrier instruction
 223   //     (on MP systems).  In order to avoid the overhead of issuing
 224   //     a memory barrier for each Java thread making native calls, each Java
 225   //     thread performs a write to a single memory page after changing
 226   //     the thread state.  The VM thread performs a sequence of
 227   //     mprotect OS calls which forces all previous writes from all
 228   //     Java threads to be serialized.  This is done in the
 229   //     os::serialize_thread_states() call.  This has proven to be
 230   //     much more efficient than executing a membar instruction
 231   //     on every call to native code.
 232   //  3. Running compiled Code
 233   //     Compiled code reads a global (Safepoint Polling) page that
 234   //     is set to fault if we are trying to get to a safepoint.
 235   //  4. Blocked
 236   //     A thread which is blocked will not be allowed to return from the
 237   //     block condition until the safepoint operation is complete.
 238   //  5. In VM or Transitioning between states
 239   //     If a Java thread is currently running in the VM or transitioning
 240   //     between states, the safepointing code will wait for the thread to
 241   //     block itself when it attempts transitions to a new state.
 242   //
 243   {
 244     TRACE_ONLY(EventSafepointStateSynchronization sync_event;)
 245     int initial_running = 0;
 246 
 247     _state            = _synchronizing;
 248     OrderAccess::fence();
 249 
 250     // Flush all thread states to memory
 251     if (!UseMembar) {
 252       os::serialize_thread_states();
 253     }
 254 
 255     // Make interpreter safepoint aware
 256     Interpreter::notice_safepoints();
 257 
 258     if (DeferPollingPageLoopCount < 0) {
 259       // Make polling safepoint aware
 260       guarantee (PageArmed == 0, "invariant") ;
 261       PageArmed = 1 ;
 262       os::make_polling_page_unreadable();
 263     }
 264 
 265     // Consider using active_processor_count() ... but that call is expensive.
 266     int ncpus = os::processor_count() ;
 267 
 268 #ifdef ASSERT
 269     for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 270       assert(cur->safepoint_state()->is_running(), "Illegal initial state");
 271       // Clear the visited flag to ensure that the critical counts are collected properly.
 272       cur->set_visited_for_critical_count(false);
 273     }
 274 #endif // ASSERT
 275 
 276     if (SafepointTimeout)
 277       safepoint_limit_time = os::javaTimeNanos() + (jlong)SafepointTimeoutDelay * MICROUNITS;
 278 
 279     // Iterate through all threads until it have been determined how to stop them all at a safepoint
 280     unsigned int iterations = 0;
 281     int steps = 0 ;
 282     while(still_running > 0) {
 283       for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 284         assert(!cur->is_ConcurrentGC_thread(), "A concurrent GC thread is unexpectly being suspended");
 285         ThreadSafepointState *cur_state = cur->safepoint_state();
 286         if (cur_state->is_running()) {
 287           cur_state->examine_state_of_thread();
 288           if (!cur_state->is_running()) {
 289             still_running--;
 290             // consider adjusting steps downward:
 291             //   steps = 0
 292             //   steps -= NNN
 293             //   steps >>= 1
 294             //   steps = MIN(steps, 2000-100)
 295             //   if (iterations != 0) steps -= NNN
 296           }
 297           if (log_is_enabled(Trace, safepoint)) {
 298             ResourceMark rm;
 299             cur_state->print_on(Log(safepoint)::trace_stream());
 300           }
 301         }
 302       }
 303 
 304       if (iterations == 0) {
 305         initial_running = still_running;
 306         if (PrintSafepointStatistics) {
 307           begin_statistics(nof_threads, still_running);
 308         }
 309       }
 310 
 311       if (still_running > 0) {
 312         // Check for if it takes to long
 313         if (SafepointTimeout && safepoint_limit_time < os::javaTimeNanos()) {
 314           print_safepoint_timeout(_spinning_timeout);
 315         }
 316 
 317         // Spin to avoid context switching.
 318         // There's a tension between allowing the mutators to run (and rendezvous)
 319         // vs spinning.  As the VM thread spins, wasting cycles, it consumes CPU that
 320         // a mutator might otherwise use profitably to reach a safepoint.  Excessive
 321         // spinning by the VM thread on a saturated system can increase rendezvous latency.
 322         // Blocking or yielding incur their own penalties in the form of context switching
 323         // and the resultant loss of $ residency.
 324         //
 325         // Further complicating matters is that yield() does not work as naively expected
 326         // on many platforms -- yield() does not guarantee that any other ready threads
 327         // will run.   As such we revert to naked_short_sleep() after some number of iterations.
 328         // nakes_short_sleep() is implemented as a short unconditional sleep.
 329         // Typical operating systems round a "short" sleep period up to 10 msecs, so sleeping
 330         // can actually increase the time it takes the VM thread to detect that a system-wide
 331         // stop-the-world safepoint has been reached.  In a pathological scenario such as that
 332         // described in CR6415670 the VMthread may sleep just before the mutator(s) become safe.
 333         // In that case the mutators will be stalled waiting for the safepoint to complete and the
 334         // the VMthread will be sleeping, waiting for the mutators to rendezvous.  The VMthread
 335         // will eventually wake up and detect that all mutators are safe, at which point
 336         // we'll again make progress.
 337         //
 338         // Beware too that that the VMThread typically runs at elevated priority.
 339         // Its default priority is higher than the default mutator priority.
 340         // Obviously, this complicates spinning.
 341         //
 342         // Note too that on Windows XP SwitchThreadTo() has quite different behavior than Sleep(0).
 343         // Sleep(0) will _not yield to lower priority threads, while SwitchThreadTo() will.
 344         //
 345         // See the comments in synchronizer.cpp for additional remarks on spinning.
 346         //
 347         // In the future we might:
 348         // 1. Modify the safepoint scheme to avoid potentially unbounded spinning.
 349         //    This is tricky as the path used by a thread exiting the JVM (say on
 350         //    on JNI call-out) simply stores into its state field.  The burden
 351         //    is placed on the VM thread, which must poll (spin).
 352         // 2. Find something useful to do while spinning.  If the safepoint is GC-related
 353         //    we might aggressively scan the stacks of threads that are already safe.
 354         // 3. Use Solaris schedctl to examine the state of the still-running mutators.
 355         //    If all the mutators are ONPROC there's no reason to sleep or yield.
 356         // 4. YieldTo() any still-running mutators that are ready but OFFPROC.
 357         // 5. Check system saturation.  If the system is not fully saturated then
 358         //    simply spin and avoid sleep/yield.
 359         // 6. As still-running mutators rendezvous they could unpark the sleeping
 360         //    VMthread.  This works well for still-running mutators that become
 361         //    safe.  The VMthread must still poll for mutators that call-out.
 362         // 7. Drive the policy on time-since-begin instead of iterations.
 363         // 8. Consider making the spin duration a function of the # of CPUs:
 364         //    Spin = (((ncpus-1) * M) + K) + F(still_running)
 365         //    Alternately, instead of counting iterations of the outer loop
 366         //    we could count the # of threads visited in the inner loop, above.
 367         // 9. On windows consider using the return value from SwitchThreadTo()
 368         //    to drive subsequent spin/SwitchThreadTo()/Sleep(N) decisions.
 369 
 370         if (int(iterations) == DeferPollingPageLoopCount) {
 371           guarantee (PageArmed == 0, "invariant") ;
 372           PageArmed = 1 ;
 373           os::make_polling_page_unreadable();
 374         }
 375 
 376         // Instead of (ncpus > 1) consider either (still_running < (ncpus + EPSILON)) or
 377         // ((still_running + _waiting_to_block - TryingToBlock)) < ncpus)
 378         ++steps ;
 379         if (ncpus > 1 && steps < SafepointSpinBeforeYield) {
 380           SpinPause() ;     // MP-Polite spin
 381         } else
 382           if (steps < DeferThrSuspendLoopCount) {
 383             os::naked_yield() ;
 384           } else {
 385             os::naked_short_sleep(1);
 386           }
 387 
 388         iterations ++ ;
 389       }
 390       assert(iterations < (uint)max_jint, "We have been iterating in the safepoint loop too long");
 391     }
 392     assert(still_running == 0, "sanity check");
 393 
 394     if (PrintSafepointStatistics) {
 395       update_statistics_on_spin_end();
 396     }
 397 
 398     TRACE_ONLY(post_safepoint_synchronize_event(&sync_event,
 399                                                 safepoint_counter(),
 400                                                 initial_running,
 401                                                 _waiting_to_block,
 402                                                 iterations);)
 403   }
 404 
 405   // wait until all threads are stopped
 406   {
 407     TRACE_ONLY(EventSafepointWaitBlocked wait_blocked_event;)
 408     int initial_waiting_to_block = _waiting_to_block;
 409 
 410     while (_waiting_to_block > 0) {
 411       log_debug(safepoint)("Waiting for %d thread(s) to block", _waiting_to_block);
 412       if (!SafepointTimeout || timeout_error_printed) {
 413         Safepoint_lock->wait(true);  // true, means with no safepoint checks
 414       } else {
 415         // Compute remaining time
 416         jlong remaining_time = safepoint_limit_time - os::javaTimeNanos();
 417 
 418         // If there is no remaining time, then there is an error
 419         if (remaining_time < 0 || Safepoint_lock->wait(true, remaining_time / MICROUNITS)) {
 420           print_safepoint_timeout(_blocking_timeout);
 421         }
 422       }
 423     }
 424     assert(_waiting_to_block == 0, "sanity check");
 425 
 426 #ifndef PRODUCT
 427     if (SafepointTimeout) {
 428       jlong current_time = os::javaTimeNanos();
 429       if (safepoint_limit_time < current_time) {
 430         tty->print_cr("# SafepointSynchronize: Finished after "
 431                       INT64_FORMAT_W(6) " ms",
 432                       ((current_time - safepoint_limit_time) / MICROUNITS +
 433                        (jlong)SafepointTimeoutDelay));
 434       }
 435     }
 436 #endif
 437 
 438     assert((_safepoint_counter & 0x1) == 0, "must be even");
 439     assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 440     _safepoint_counter ++;
 441 
 442     // Record state
 443     _state = _synchronized;
 444 
 445     OrderAccess::fence();
 446 
 447     TRACE_ONLY(post_safepoint_wait_blocked_event(&wait_blocked_event,
 448                                                  safepoint_counter(),
 449                                                  initial_waiting_to_block);)
 450   }
 451 
 452 #ifdef ASSERT
 453   for (JavaThread *cur = Threads::first(); cur != NULL; cur = cur->next()) {
 454     // make sure all the threads were visited
 455     assert(cur->was_visited_for_critical_count(), "missed a thread");
 456   }
 457 #endif // ASSERT
 458 
 459   // Update the count of active JNI critical regions
 460   GCLocker::set_jni_lock_count(_current_jni_active_count);
 461 
 462   if (log_is_enabled(Debug, safepoint)) {
 463     log_debug(safepoint)("Entering safepoint region: %s", VMThread::vm_safepoint_description());
 464   }
 465 
 466   RuntimeService::record_safepoint_synchronized();
 467   if (PrintSafepointStatistics) {
 468     update_statistics_on_sync_end(os::javaTimeNanos());
 469   }
 470 
 471   // Call stuff that needs to be run when a safepoint is just about to be completed
 472   {
 473     TRACE_ONLY(EventSafepointCleanup cleanup_event;)
 474     do_cleanup_tasks();
 475     TRACE_ONLY(post_safepoint_cleanup_event(&cleanup_event, safepoint_counter());)
 476   }
 477 
 478   if (PrintSafepointStatistics) {
 479     // Record how much time spend on the above cleanup tasks
 480     update_statistics_on_cleanup_end(os::javaTimeNanos());
 481   }
 482   TRACE_ONLY(post_safepoint_begin_event(&begin_event, safepoint_counter(),
 483                                         nof_threads, _current_jni_active_count);)
 484 }
 485 
 486 // Wake up all threads, so they are ready to resume execution after the safepoint
 487 // operation has been carried out
 488 void SafepointSynchronize::end() {
 489   TRACE_ONLY(EventSafepointEnd event;)
 490   int safepoint_id = safepoint_counter(); // Keep the odd counter as "id"
 491 
 492   assert(Threads_lock->owned_by_self(), "must hold Threads_lock");
 493   assert((_safepoint_counter & 0x1) == 1, "must be odd");
 494   _safepoint_counter ++;
 495   // memory fence isn't required here since an odd _safepoint_counter
 496   // value can do no harm and a fence is issued below anyway.
 497 
 498   DEBUG_ONLY(Thread* myThread = Thread::current();)
 499   assert(myThread->is_VM_thread(), "Only VM thread can execute a safepoint");
 500 
 501   if (PrintSafepointStatistics) {
 502     end_statistics(os::javaTimeNanos());
 503   }
 504 
 505 #ifdef ASSERT
 506   // A pending_exception cannot be installed during a safepoint.  The threads
 507   // may install an async exception after they come back from a safepoint into
 508   // pending_exception after they unblock.  But that should happen later.
 509   for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
 510     assert (!(cur->has_pending_exception() &&
 511               cur->safepoint_state()->is_at_poll_safepoint()),
 512             "safepoint installed a pending exception");
 513   }
 514 #endif // ASSERT
 515 
 516   if (PageArmed) {
 517     // Make polling safepoint aware
 518     os::make_polling_page_readable();
 519     PageArmed = 0 ;
 520   }
 521 
 522   // Remove safepoint check from interpreter
 523   Interpreter::ignore_safepoints();
 524 
 525   {
 526     MutexLocker mu(Safepoint_lock);
 527 
 528     assert(_state == _synchronized, "must be synchronized before ending safepoint synchronization");
 529 
 530     // Set to not synchronized, so the threads will not go into the signal_thread_blocked method
 531     // when they get restarted.
 532     _state = _not_synchronized;
 533     OrderAccess::fence();
 534 
 535     log_debug(safepoint)("Leaving safepoint region");
 536 
 537     // Start suspended threads
 538     for(JavaThread *current = Threads::first(); current; current = current->next()) {
 539       // A problem occurring on Solaris is when attempting to restart threads
 540       // the first #cpus - 1 go well, but then the VMThread is preempted when we get
 541       // to the next one (since it has been running the longest).  We then have
 542       // to wait for a cpu to become available before we can continue restarting
 543       // threads.
 544       // FIXME: This causes the performance of the VM to degrade when active and with
 545       // large numbers of threads.  Apparently this is due to the synchronous nature
 546       // of suspending threads.
 547       //
 548       // TODO-FIXME: the comments above are vestigial and no longer apply.
 549       // Furthermore, using solaris' schedctl in this particular context confers no benefit
 550       if (VMThreadHintNoPreempt) {
 551         os::hint_no_preempt();
 552       }
 553       ThreadSafepointState* cur_state = current->safepoint_state();
 554       assert(cur_state->type() != ThreadSafepointState::_running, "Thread not suspended at safepoint");
 555       cur_state->restart();
 556       assert(cur_state->is_running(), "safepoint state has not been reset");
 557     }
 558 
 559     RuntimeService::record_safepoint_end();
 560 
 561     // Release threads lock, so threads can be created/destroyed again. It will also starts all threads
 562     // blocked in signal_thread_blocked
 563     Threads_lock->unlock();
 564 
 565   }
 566 #if INCLUDE_ALL_GCS
 567   // If there are any concurrent GC threads resume them.
 568   if (UseConcMarkSweepGC) {
 569     ConcurrentMarkSweepThread::desynchronize(false);
 570   } else if (UseG1GC) {
 571     SuspendibleThreadSet::desynchronize();
 572   }
 573 #endif // INCLUDE_ALL_GCS
 574   // record this time so VMThread can keep track how much time has elapsed
 575   // since last safepoint.
 576   _end_of_last_safepoint = os::javaTimeMillis();
 577 
 578   TRACE_ONLY(post_safepoint_end_event(&event, safepoint_id);)
 579 }
 580 
 581 bool SafepointSynchronize::is_cleanup_needed() {
 582   // Need a safepoint if there are many monitors to deflate.
 583   if (ObjectSynchronizer::is_cleanup_needed()) return true;
 584   // Need a safepoint if some inline cache buffers is non-empty
 585   if (!InlineCacheBuffer::is_empty()) return true;
 586   return false;
 587 }
 588 
 589 // Various cleaning tasks that should be done periodically at safepoints
 590 void SafepointSynchronize::do_cleanup_tasks() {
 591   {
 592     const char* name = "deflating idle monitors";
 593     TRACE_ONLY(EventSafepointCleanupTask event;)
 594     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 595     ObjectSynchronizer::deflate_idle_monitors();
 596     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 597   }
 598 
 599   {
 600     const char* name = "updating inline caches";
 601     TRACE_ONLY(EventSafepointCleanupTask event;)
 602     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 603     InlineCacheBuffer::update_inline_caches();
 604     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 605   }
 606   {
 607     const char* name = "compilation policy safepoint handler";
 608     TRACE_ONLY(EventSafepointCleanupTask event;)
 609     TraceTime timer("compilation policy safepoint handler", TRACETIME_LOG(Info, safepoint, cleanup));
 610     CompilationPolicy::policy()->do_safepoint_work();
 611     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 612   }
 613 
 614   {
 615     const char* name = "mark nmethods";
 616     TRACE_ONLY(EventSafepointCleanupTask event;)
 617     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 618     NMethodSweeper::mark_active_nmethods();
 619     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 620   }
 621 
 622   if (SymbolTable::needs_rehashing()) {
 623     const char* name = "rehashing symbol table";
 624     TRACE_ONLY(EventSafepointCleanupTask event;)
 625     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 626     SymbolTable::rehash_table();
 627     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 628   }
 629 
 630   if (StringTable::needs_rehashing()) {
 631     const char* name = "rehashing string table";
 632     TRACE_ONLY(EventSafepointCleanupTask event;)
 633     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 634     StringTable::rehash_table();
 635     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 636   }
 637 
 638   {
 639     // CMS delays purging the CLDG until the beginning of the next safepoint and to
 640     // make sure concurrent sweep is done
 641     const char* name = "purging class loader data graph";
 642     TRACE_ONLY(EventSafepointCleanupTask event;)
 643     TraceTime timer(name, TRACETIME_LOG(Info, safepoint, cleanup));
 644     ClassLoaderDataGraph::purge_if_needed();
 645     TRACE_ONLY(post_safepoint_cleanup_task_event(&event, safepoint_counter(), name);)
 646   }
 647 }
 648 
 649 
 650 bool SafepointSynchronize::safepoint_safe(JavaThread *thread, JavaThreadState state) {
 651   switch(state) {
 652   case _thread_in_native:
 653     // native threads are safe if they have no java stack or have walkable stack
 654     return !thread->has_last_Java_frame() || thread->frame_anchor()->walkable();
 655 
 656    // blocked threads should have already have walkable stack
 657   case _thread_blocked:
 658     assert(!thread->has_last_Java_frame() || thread->frame_anchor()->walkable(), "blocked and not walkable");
 659     return true;
 660 
 661   default:
 662     return false;
 663   }
 664 }
 665 
 666 
 667 // See if the thread is running inside a lazy critical native and
 668 // update the thread critical count if so.  Also set a suspend flag to
 669 // cause the native wrapper to return into the JVM to do the unlock
 670 // once the native finishes.
 671 void SafepointSynchronize::check_for_lazy_critical_native(JavaThread *thread, JavaThreadState state) {
 672   if (state == _thread_in_native &&
 673       thread->has_last_Java_frame() &&
 674       thread->frame_anchor()->walkable()) {
 675     // This thread might be in a critical native nmethod so look at
 676     // the top of the stack and increment the critical count if it
 677     // is.
 678     frame wrapper_frame = thread->last_frame();
 679     CodeBlob* stub_cb = wrapper_frame.cb();
 680     if (stub_cb != NULL &&
 681         stub_cb->is_nmethod() &&
 682         stub_cb->as_nmethod_or_null()->is_lazy_critical_native()) {
 683       // A thread could potentially be in a critical native across
 684       // more than one safepoint, so only update the critical state on
 685       // the first one.  When it returns it will perform the unlock.
 686       if (!thread->do_critical_native_unlock()) {
 687 #ifdef ASSERT
 688         if (!thread->in_critical()) {
 689           GCLocker::increment_debug_jni_lock_count();
 690         }
 691 #endif
 692         thread->enter_critical();
 693         // Make sure the native wrapper calls back on return to
 694         // perform the needed critical unlock.
 695         thread->set_critical_native_unlock();
 696       }
 697     }
 698   }
 699 }
 700 
 701 
 702 
 703 // -------------------------------------------------------------------------------------------------------
 704 // Implementation of Safepoint callback point
 705 
 706 void SafepointSynchronize::block(JavaThread *thread) {
 707   assert(thread != NULL, "thread must be set");
 708   assert(thread->is_Java_thread(), "not a Java thread");
 709 
 710   // Threads shouldn't block if they are in the middle of printing, but...
 711   ttyLocker::break_tty_lock_for_safepoint(os::current_thread_id());
 712 
 713   // Only bail from the block() call if the thread is gone from the
 714   // thread list; starting to exit should still block.
 715   if (thread->is_terminated()) {
 716      // block current thread if we come here from native code when VM is gone
 717      thread->block_if_vm_exited();
 718 
 719      // otherwise do nothing
 720      return;
 721   }
 722 
 723   JavaThreadState state = thread->thread_state();
 724   thread->frame_anchor()->make_walkable(thread);
 725 
 726   // Check that we have a valid thread_state at this point
 727   switch(state) {
 728     case _thread_in_vm_trans:
 729     case _thread_in_Java:        // From compiled code
 730 
 731       // We are highly likely to block on the Safepoint_lock. In order to avoid blocking in this case,
 732       // we pretend we are still in the VM.
 733       thread->set_thread_state(_thread_in_vm);
 734 
 735       if (is_synchronizing()) {
 736          Atomic::inc (&TryingToBlock) ;
 737       }
 738 
 739       // We will always be holding the Safepoint_lock when we are examine the state
 740       // of a thread. Hence, the instructions between the Safepoint_lock->lock() and
 741       // Safepoint_lock->unlock() are happening atomic with regards to the safepoint code
 742       Safepoint_lock->lock_without_safepoint_check();
 743       if (is_synchronizing()) {
 744         // Decrement the number of threads to wait for and signal vm thread
 745         assert(_waiting_to_block > 0, "sanity check");
 746         _waiting_to_block--;
 747         thread->safepoint_state()->set_has_called_back(true);
 748 
 749         DEBUG_ONLY(thread->set_visited_for_critical_count(true));
 750         if (thread->in_critical()) {
 751           // Notice that this thread is in a critical section
 752           increment_jni_active_count();
 753         }
 754 
 755         // Consider (_waiting_to_block < 2) to pipeline the wakeup of the VM thread
 756         if (_waiting_to_block == 0) {
 757           Safepoint_lock->notify_all();
 758         }
 759       }
 760 
 761       // We transition the thread to state _thread_blocked here, but
 762       // we can't do our usual check for external suspension and then
 763       // self-suspend after the lock_without_safepoint_check() call
 764       // below because we are often called during transitions while
 765       // we hold different locks. That would leave us suspended while
 766       // holding a resource which results in deadlocks.
 767       thread->set_thread_state(_thread_blocked);
 768       Safepoint_lock->unlock();
 769 
 770       // We now try to acquire the threads lock. Since this lock is hold by the VM thread during
 771       // the entire safepoint, the threads will all line up here during the safepoint.
 772       Threads_lock->lock_without_safepoint_check();
 773       // restore original state. This is important if the thread comes from compiled code, so it
 774       // will continue to execute with the _thread_in_Java state.
 775       thread->set_thread_state(state);
 776       Threads_lock->unlock();
 777       break;
 778 
 779     case _thread_in_native_trans:
 780     case _thread_blocked_trans:
 781     case _thread_new_trans:
 782       if (thread->safepoint_state()->type() == ThreadSafepointState::_call_back) {
 783         thread->print_thread_state();
 784         fatal("Deadlock in safepoint code.  "
 785               "Should have called back to the VM before blocking.");
 786       }
 787 
 788       // We transition the thread to state _thread_blocked here, but
 789       // we can't do our usual check for external suspension and then
 790       // self-suspend after the lock_without_safepoint_check() call
 791       // below because we are often called during transitions while
 792       // we hold different locks. That would leave us suspended while
 793       // holding a resource which results in deadlocks.
 794       thread->set_thread_state(_thread_blocked);
 795 
 796       // It is not safe to suspend a thread if we discover it is in _thread_in_native_trans. Hence,
 797       // the safepoint code might still be waiting for it to block. We need to change the state here,
 798       // so it can see that it is at a safepoint.
 799 
 800       // Block until the safepoint operation is completed.
 801       Threads_lock->lock_without_safepoint_check();
 802 
 803       // Restore state
 804       thread->set_thread_state(state);
 805 
 806       Threads_lock->unlock();
 807       break;
 808 
 809     default:
 810      fatal("Illegal threadstate encountered: %d", state);
 811   }
 812 
 813   // Check for pending. async. exceptions or suspends - except if the
 814   // thread was blocked inside the VM. has_special_runtime_exit_condition()
 815   // is called last since it grabs a lock and we only want to do that when
 816   // we must.
 817   //
 818   // Note: we never deliver an async exception at a polling point as the
 819   // compiler may not have an exception handler for it. The polling
 820   // code will notice the async and deoptimize and the exception will
 821   // be delivered. (Polling at a return point is ok though). Sure is
 822   // a lot of bother for a deprecated feature...
 823   //
 824   // We don't deliver an async exception if the thread state is
 825   // _thread_in_native_trans so JNI functions won't be called with
 826   // a surprising pending exception. If the thread state is going back to java,
 827   // async exception is checked in check_special_condition_for_native_trans().
 828 
 829   if (state != _thread_blocked_trans &&
 830       state != _thread_in_vm_trans &&
 831       thread->has_special_runtime_exit_condition()) {
 832     thread->handle_special_runtime_exit_condition(
 833       !thread->is_at_poll_safepoint() && (state != _thread_in_native_trans));
 834   }
 835 }
 836 
 837 // ------------------------------------------------------------------------------------------------------
 838 // Exception handlers
 839 
 840 
 841 void SafepointSynchronize::handle_polling_page_exception(JavaThread *thread) {
 842   assert(thread->is_Java_thread(), "polling reference encountered by VM thread");
 843   assert(thread->thread_state() == _thread_in_Java, "should come from Java code");
 844   assert(SafepointSynchronize::is_synchronizing(), "polling encountered outside safepoint synchronization");
 845 
 846   if (ShowSafepointMsgs) {
 847     tty->print("handle_polling_page_exception: ");
 848   }
 849 
 850   if (PrintSafepointStatistics) {
 851     inc_page_trap_count();
 852   }
 853 
 854   ThreadSafepointState* state = thread->safepoint_state();
 855 
 856   state->handle_polling_page_exception();
 857 }
 858 
 859 
 860 void SafepointSynchronize::print_safepoint_timeout(SafepointTimeoutReason reason) {
 861   if (!timeout_error_printed) {
 862     timeout_error_printed = true;
 863     // Print out the thread info which didn't reach the safepoint for debugging
 864     // purposes (useful when there are lots of threads in the debugger).
 865     tty->cr();
 866     tty->print_cr("# SafepointSynchronize::begin: Timeout detected:");
 867     if (reason ==  _spinning_timeout) {
 868       tty->print_cr("# SafepointSynchronize::begin: Timed out while spinning to reach a safepoint.");
 869     } else if (reason == _blocking_timeout) {
 870       tty->print_cr("# SafepointSynchronize::begin: Timed out while waiting for threads to stop.");
 871     }
 872 
 873     tty->print_cr("# SafepointSynchronize::begin: Threads which did not reach the safepoint:");
 874     ThreadSafepointState *cur_state;
 875     ResourceMark rm;
 876     for(JavaThread *cur_thread = Threads::first(); cur_thread;
 877         cur_thread = cur_thread->next()) {
 878       cur_state = cur_thread->safepoint_state();
 879 
 880       if (cur_thread->thread_state() != _thread_blocked &&
 881           ((reason == _spinning_timeout && cur_state->is_running()) ||
 882            (reason == _blocking_timeout && !cur_state->has_called_back()))) {
 883         tty->print("# ");
 884         cur_thread->print();
 885         tty->cr();
 886       }
 887     }
 888     tty->print_cr("# SafepointSynchronize::begin: (End of list)");
 889   }
 890 
 891   // To debug the long safepoint, specify both DieOnSafepointTimeout &
 892   // ShowMessageBoxOnError.
 893   if (DieOnSafepointTimeout) {
 894     fatal("Safepoint sync time longer than " INTX_FORMAT "ms detected when executing %s.",
 895           SafepointTimeoutDelay, VMThread::vm_safepoint_description());
 896   }
 897 }
 898 
 899 
 900 // -------------------------------------------------------------------------------------------------------
 901 // Implementation of ThreadSafepointState
 902 
 903 ThreadSafepointState::ThreadSafepointState(JavaThread *thread) {
 904   _thread = thread;
 905   _type   = _running;
 906   _has_called_back = false;
 907   _at_poll_safepoint = false;
 908 }
 909 
 910 void ThreadSafepointState::create(JavaThread *thread) {
 911   ThreadSafepointState *state = new ThreadSafepointState(thread);
 912   thread->set_safepoint_state(state);
 913 }
 914 
 915 void ThreadSafepointState::destroy(JavaThread *thread) {
 916   if (thread->safepoint_state()) {
 917     delete(thread->safepoint_state());
 918     thread->set_safepoint_state(NULL);
 919   }
 920 }
 921 
 922 void ThreadSafepointState::examine_state_of_thread() {
 923   assert(is_running(), "better be running or just have hit safepoint poll");
 924 
 925   JavaThreadState state = _thread->thread_state();
 926 
 927   // Save the state at the start of safepoint processing.
 928   _orig_thread_state = state;
 929 
 930   // Check for a thread that is suspended. Note that thread resume tries
 931   // to grab the Threads_lock which we own here, so a thread cannot be
 932   // resumed during safepoint synchronization.
 933 
 934   // We check to see if this thread is suspended without locking to
 935   // avoid deadlocking with a third thread that is waiting for this
 936   // thread to be suspended. The third thread can notice the safepoint
 937   // that we're trying to start at the beginning of its SR_lock->wait()
 938   // call. If that happens, then the third thread will block on the
 939   // safepoint while still holding the underlying SR_lock. We won't be
 940   // able to get the SR_lock and we'll deadlock.
 941   //
 942   // We don't need to grab the SR_lock here for two reasons:
 943   // 1) The suspend flags are both volatile and are set with an
 944   //    Atomic::cmpxchg() call so we should see the suspended
 945   //    state right away.
 946   // 2) We're being called from the safepoint polling loop; if
 947   //    we don't see the suspended state on this iteration, then
 948   //    we'll come around again.
 949   //
 950   bool is_suspended = _thread->is_ext_suspended();
 951   if (is_suspended) {
 952     roll_forward(_at_safepoint);
 953     return;
 954   }
 955 
 956   // Some JavaThread states have an initial safepoint state of
 957   // running, but are actually at a safepoint. We will happily
 958   // agree and update the safepoint state here.
 959   if (SafepointSynchronize::safepoint_safe(_thread, state)) {
 960     SafepointSynchronize::check_for_lazy_critical_native(_thread, state);
 961     roll_forward(_at_safepoint);
 962     return;
 963   }
 964 
 965   if (state == _thread_in_vm) {
 966     roll_forward(_call_back);
 967     return;
 968   }
 969 
 970   // All other thread states will continue to run until they
 971   // transition and self-block in state _blocked
 972   // Safepoint polling in compiled code causes the Java threads to do the same.
 973   // Note: new threads may require a malloc so they must be allowed to finish
 974 
 975   assert(is_running(), "examine_state_of_thread on non-running thread");
 976   return;
 977 }
 978 
 979 // Returns true is thread could not be rolled forward at present position.
 980 void ThreadSafepointState::roll_forward(suspend_type type) {
 981   _type = type;
 982 
 983   switch(_type) {
 984     case _at_safepoint:
 985       SafepointSynchronize::signal_thread_at_safepoint();
 986       DEBUG_ONLY(_thread->set_visited_for_critical_count(true));
 987       if (_thread->in_critical()) {
 988         // Notice that this thread is in a critical section
 989         SafepointSynchronize::increment_jni_active_count();
 990       }
 991       break;
 992 
 993     case _call_back:
 994       set_has_called_back(false);
 995       break;
 996 
 997     case _running:
 998     default:
 999       ShouldNotReachHere();
1000   }
1001 }
1002 
1003 void ThreadSafepointState::restart() {
1004   switch(type()) {
1005     case _at_safepoint:
1006     case _call_back:
1007       break;
1008 
1009     case _running:
1010     default:
1011        tty->print_cr("restart thread " INTPTR_FORMAT " with state %d",
1012                      p2i(_thread), _type);
1013        _thread->print();
1014       ShouldNotReachHere();
1015   }
1016   _type = _running;
1017   set_has_called_back(false);
1018 }
1019 
1020 
1021 void ThreadSafepointState::print_on(outputStream *st) const {
1022   const char *s = NULL;
1023 
1024   switch(_type) {
1025     case _running                : s = "_running";              break;
1026     case _at_safepoint           : s = "_at_safepoint";         break;
1027     case _call_back              : s = "_call_back";            break;
1028     default:
1029       ShouldNotReachHere();
1030   }
1031 
1032   st->print_cr("Thread: " INTPTR_FORMAT
1033               "  [0x%2x] State: %s _has_called_back %d _at_poll_safepoint %d",
1034                p2i(_thread), _thread->osthread()->thread_id(), s, _has_called_back,
1035                _at_poll_safepoint);
1036 
1037   _thread->print_thread_state_on(st);
1038 }
1039 
1040 // ---------------------------------------------------------------------------------------------------------------------
1041 
1042 // Block the thread at the safepoint poll or poll return.
1043 void ThreadSafepointState::handle_polling_page_exception() {
1044 
1045   // Check state.  block() will set thread state to thread_in_vm which will
1046   // cause the safepoint state _type to become _call_back.
1047   assert(type() == ThreadSafepointState::_running,
1048          "polling page exception on thread not running state");
1049 
1050   // Step 1: Find the nmethod from the return address
1051   if (ShowSafepointMsgs && Verbose) {
1052     tty->print_cr("Polling page exception at " INTPTR_FORMAT, p2i(thread()->saved_exception_pc()));
1053   }
1054   address real_return_addr = thread()->saved_exception_pc();
1055 
1056   CodeBlob *cb = CodeCache::find_blob(real_return_addr);
1057   assert(cb != NULL && cb->is_compiled(), "return address should be in nmethod");
1058   CompiledMethod* nm = (CompiledMethod*)cb;
1059 
1060   // Find frame of caller
1061   frame stub_fr = thread()->last_frame();
1062   CodeBlob* stub_cb = stub_fr.cb();
1063   assert(stub_cb->is_safepoint_stub(), "must be a safepoint stub");
1064   RegisterMap map(thread(), true);
1065   frame caller_fr = stub_fr.sender(&map);
1066 
1067   // Should only be poll_return or poll
1068   assert( nm->is_at_poll_or_poll_return(real_return_addr), "should not be at call" );
1069 
1070   // This is a poll immediately before a return. The exception handling code
1071   // has already had the effect of causing the return to occur, so the execution
1072   // will continue immediately after the call. In addition, the oopmap at the
1073   // return point does not mark the return value as an oop (if it is), so
1074   // it needs a handle here to be updated.
1075   if( nm->is_at_poll_return(real_return_addr) ) {
1076     // See if return type is an oop.
1077     bool return_oop = nm->method()->is_returning_oop();
1078     Handle return_value;
1079     if (return_oop) {
1080       // The oop result has been saved on the stack together with all
1081       // the other registers. In order to preserve it over GCs we need
1082       // to keep it in a handle.
1083       oop result = caller_fr.saved_oop_result(&map);
1084       assert(result == NULL || result->is_oop(), "must be oop");
1085       return_value = Handle(thread(), result);
1086       assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
1087     }
1088 
1089     // Block the thread
1090     SafepointSynchronize::block(thread());
1091 
1092     // restore oop result, if any
1093     if (return_oop) {
1094       caller_fr.set_saved_oop_result(&map, return_value());
1095     }
1096   }
1097 
1098   // This is a safepoint poll. Verify the return address and block.
1099   else {
1100     set_at_poll_safepoint(true);
1101 
1102     // verify the blob built the "return address" correctly
1103     assert(real_return_addr == caller_fr.pc(), "must match");
1104 
1105     // Block the thread
1106     SafepointSynchronize::block(thread());
1107     set_at_poll_safepoint(false);
1108 
1109     // If we have a pending async exception deoptimize the frame
1110     // as otherwise we may never deliver it.
1111     if (thread()->has_async_condition()) {
1112       ThreadInVMfromJavaNoAsyncException __tiv(thread());
1113       Deoptimization::deoptimize_frame(thread(), caller_fr.id());
1114     }
1115 
1116     // If an exception has been installed we must check for a pending deoptimization
1117     // Deoptimize frame if exception has been thrown.
1118 
1119     if (thread()->has_pending_exception() ) {
1120       RegisterMap map(thread(), true);
1121       frame caller_fr = stub_fr.sender(&map);
1122       if (caller_fr.is_deoptimized_frame()) {
1123         // The exception patch will destroy registers that are still
1124         // live and will be needed during deoptimization. Defer the
1125         // Async exception should have deferred the exception until the
1126         // next safepoint which will be detected when we get into
1127         // the interpreter so if we have an exception now things
1128         // are messed up.
1129 
1130         fatal("Exception installed and deoptimization is pending");
1131       }
1132     }
1133   }
1134 }
1135 
1136 
1137 //
1138 //                     Statistics & Instrumentations
1139 //
1140 SafepointSynchronize::SafepointStats*  SafepointSynchronize::_safepoint_stats = NULL;
1141 jlong  SafepointSynchronize::_safepoint_begin_time = 0;
1142 int    SafepointSynchronize::_cur_stat_index = 0;
1143 julong SafepointSynchronize::_safepoint_reasons[VM_Operation::VMOp_Terminating];
1144 julong SafepointSynchronize::_coalesced_vmop_count = 0;
1145 jlong  SafepointSynchronize::_max_sync_time = 0;
1146 jlong  SafepointSynchronize::_max_vmop_time = 0;
1147 float  SafepointSynchronize::_ts_of_current_safepoint = 0.0f;
1148 
1149 static jlong  cleanup_end_time = 0;
1150 static bool   need_to_track_page_armed_status = false;
1151 static bool   init_done = false;
1152 
1153 // Helper method to print the header.
1154 static void print_header() {
1155   // The number of spaces is significant here, and should match the format
1156   // specifiers in print_statistics().
1157 
1158   tty->print("          vmop                            "
1159              "[ threads:    total initially_running wait_to_block ]"
1160              "[ time:    spin   block    sync cleanup    vmop ] ");
1161 
1162   // no page armed status printed out if it is always armed.
1163   if (need_to_track_page_armed_status) {
1164     tty->print("page_armed ");
1165   }
1166 
1167   tty->print_cr("page_trap_count");
1168 }
1169 
1170 void SafepointSynchronize::deferred_initialize_stat() {
1171   if (init_done) return;
1172 
1173   // If PrintSafepointStatisticsTimeout is specified, the statistics data will
1174   // be printed right away, in which case, _safepoint_stats will regress to
1175   // a single element array. Otherwise, it is a circular ring buffer with default
1176   // size of PrintSafepointStatisticsCount.
1177   int stats_array_size;
1178   if (PrintSafepointStatisticsTimeout > 0) {
1179     stats_array_size = 1;
1180     PrintSafepointStatistics = true;
1181   } else {
1182     stats_array_size = PrintSafepointStatisticsCount;
1183   }
1184   _safepoint_stats = (SafepointStats*)os::malloc(stats_array_size
1185                                                  * sizeof(SafepointStats), mtInternal);
1186   guarantee(_safepoint_stats != NULL,
1187             "not enough memory for safepoint instrumentation data");
1188 
1189   if (DeferPollingPageLoopCount >= 0) {
1190     need_to_track_page_armed_status = true;
1191   }
1192   init_done = true;
1193 }
1194 
1195 void SafepointSynchronize::begin_statistics(int nof_threads, int nof_running) {
1196   assert(init_done, "safepoint statistics array hasn't been initialized");
1197   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1198 
1199   spstat->_time_stamp = _ts_of_current_safepoint;
1200 
1201   VM_Operation *op = VMThread::vm_operation();
1202   spstat->_vmop_type = (op != NULL ? op->type() : -1);
1203   if (op != NULL) {
1204     _safepoint_reasons[spstat->_vmop_type]++;
1205   }
1206 
1207   spstat->_nof_total_threads = nof_threads;
1208   spstat->_nof_initial_running_threads = nof_running;
1209   spstat->_nof_threads_hit_page_trap = 0;
1210 
1211   // Records the start time of spinning. The real time spent on spinning
1212   // will be adjusted when spin is done. Same trick is applied for time
1213   // spent on waiting for threads to block.
1214   if (nof_running != 0) {
1215     spstat->_time_to_spin = os::javaTimeNanos();
1216   }  else {
1217     spstat->_time_to_spin = 0;
1218   }
1219 }
1220 
1221 void SafepointSynchronize::update_statistics_on_spin_end() {
1222   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1223 
1224   jlong cur_time = os::javaTimeNanos();
1225 
1226   spstat->_nof_threads_wait_to_block = _waiting_to_block;
1227   if (spstat->_nof_initial_running_threads != 0) {
1228     spstat->_time_to_spin = cur_time - spstat->_time_to_spin;
1229   }
1230 
1231   if (need_to_track_page_armed_status) {
1232     spstat->_page_armed = (PageArmed == 1);
1233   }
1234 
1235   // Records the start time of waiting for to block. Updated when block is done.
1236   if (_waiting_to_block != 0) {
1237     spstat->_time_to_wait_to_block = cur_time;
1238   } else {
1239     spstat->_time_to_wait_to_block = 0;
1240   }
1241 }
1242 
1243 void SafepointSynchronize::update_statistics_on_sync_end(jlong end_time) {
1244   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1245 
1246   if (spstat->_nof_threads_wait_to_block != 0) {
1247     spstat->_time_to_wait_to_block = end_time -
1248       spstat->_time_to_wait_to_block;
1249   }
1250 
1251   // Records the end time of sync which will be used to calculate the total
1252   // vm operation time. Again, the real time spending in syncing will be deducted
1253   // from the start of the sync time later when end_statistics is called.
1254   spstat->_time_to_sync = end_time - _safepoint_begin_time;
1255   if (spstat->_time_to_sync > _max_sync_time) {
1256     _max_sync_time = spstat->_time_to_sync;
1257   }
1258 
1259   spstat->_time_to_do_cleanups = end_time;
1260 }
1261 
1262 void SafepointSynchronize::update_statistics_on_cleanup_end(jlong end_time) {
1263   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1264 
1265   // Record how long spent in cleanup tasks.
1266   spstat->_time_to_do_cleanups = end_time - spstat->_time_to_do_cleanups;
1267 
1268   cleanup_end_time = end_time;
1269 }
1270 
1271 void SafepointSynchronize::end_statistics(jlong vmop_end_time) {
1272   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1273 
1274   // Update the vm operation time.
1275   spstat->_time_to_exec_vmop = vmop_end_time -  cleanup_end_time;
1276   if (spstat->_time_to_exec_vmop > _max_vmop_time) {
1277     _max_vmop_time = spstat->_time_to_exec_vmop;
1278   }
1279   // Only the sync time longer than the specified
1280   // PrintSafepointStatisticsTimeout will be printed out right away.
1281   // By default, it is -1 meaning all samples will be put into the list.
1282   if ( PrintSafepointStatisticsTimeout > 0) {
1283     if (spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1284       print_statistics();
1285     }
1286   } else {
1287     // The safepoint statistics will be printed out when the _safepoin_stats
1288     // array fills up.
1289     if (_cur_stat_index == PrintSafepointStatisticsCount - 1) {
1290       print_statistics();
1291       _cur_stat_index = 0;
1292     } else {
1293       _cur_stat_index++;
1294     }
1295   }
1296 }
1297 
1298 void SafepointSynchronize::print_statistics() {
1299   for (int index = 0; index <= _cur_stat_index; index++) {
1300     if (index % 30 == 0) {
1301       print_header();
1302     }
1303     SafepointStats* sstats = &_safepoint_stats[index];
1304     tty->print("%8.3f: ", sstats->_time_stamp);
1305     tty->print("%-30s  [          "
1306                INT32_FORMAT_W(8) " " INT32_FORMAT_W(17) " " INT32_FORMAT_W(13) " "
1307                "]",
1308                (sstats->_vmop_type == -1 ? "no vm operation" : VM_Operation::name(sstats->_vmop_type)),
1309                sstats->_nof_total_threads,
1310                sstats->_nof_initial_running_threads,
1311                sstats->_nof_threads_wait_to_block);
1312     // "/ MICROUNITS " is to convert the unit from nanos to millis.
1313     tty->print("[       "
1314                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1315                INT64_FORMAT_W(7) " " INT64_FORMAT_W(7) " "
1316                INT64_FORMAT_W(7) " ] ",
1317                sstats->_time_to_spin / MICROUNITS,
1318                sstats->_time_to_wait_to_block / MICROUNITS,
1319                sstats->_time_to_sync / MICROUNITS,
1320                sstats->_time_to_do_cleanups / MICROUNITS,
1321                sstats->_time_to_exec_vmop / MICROUNITS);
1322 
1323     if (need_to_track_page_armed_status) {
1324       tty->print(INT32_FORMAT_W(10) " ", sstats->_page_armed);
1325     }
1326     tty->print_cr(INT32_FORMAT_W(15) " ", sstats->_nof_threads_hit_page_trap);
1327   }
1328 }
1329 
1330 // This method will be called when VM exits. It will first call
1331 // print_statistics to print out the rest of the sampling.  Then
1332 // it tries to summarize the sampling.
1333 void SafepointSynchronize::print_stat_on_exit() {
1334   if (_safepoint_stats == NULL) return;
1335 
1336   SafepointStats *spstat = &_safepoint_stats[_cur_stat_index];
1337 
1338   // During VM exit, end_statistics may not get called and in that
1339   // case, if the sync time is less than PrintSafepointStatisticsTimeout,
1340   // don't print it out.
1341   // Approximate the vm op time.
1342   _safepoint_stats[_cur_stat_index]._time_to_exec_vmop =
1343     os::javaTimeNanos() - cleanup_end_time;
1344 
1345   if ( PrintSafepointStatisticsTimeout < 0 ||
1346        spstat->_time_to_sync > (jlong)PrintSafepointStatisticsTimeout * MICROUNITS) {
1347     print_statistics();
1348   }
1349   tty->cr();
1350 
1351   // Print out polling page sampling status.
1352   if (!need_to_track_page_armed_status) {
1353     tty->print_cr("Polling page always armed");
1354   } else {
1355     tty->print_cr("Defer polling page loop count = " INTX_FORMAT "\n",
1356                   DeferPollingPageLoopCount);
1357   }
1358 
1359   for (int index = 0; index < VM_Operation::VMOp_Terminating; index++) {
1360     if (_safepoint_reasons[index] != 0) {
1361       tty->print_cr("%-26s" UINT64_FORMAT_W(10), VM_Operation::name(index),
1362                     _safepoint_reasons[index]);
1363     }
1364   }
1365 
1366   tty->print_cr(UINT64_FORMAT_W(5) " VM operations coalesced during safepoint",
1367                 _coalesced_vmop_count);
1368   tty->print_cr("Maximum sync time  " INT64_FORMAT_W(5) " ms",
1369                 _max_sync_time / MICROUNITS);
1370   tty->print_cr("Maximum vm operation time (except for Exit VM operation)  "
1371                 INT64_FORMAT_W(5) " ms",
1372                 _max_vmop_time / MICROUNITS);
1373 }
1374 
1375 // ------------------------------------------------------------------------------------------------
1376 // Non-product code
1377 
1378 #ifndef PRODUCT
1379 
1380 void SafepointSynchronize::print_state() {
1381   if (_state == _not_synchronized) {
1382     tty->print_cr("not synchronized");
1383   } else if (_state == _synchronizing || _state == _synchronized) {
1384     tty->print_cr("State: %s", (_state == _synchronizing) ? "synchronizing" :
1385                   "synchronized");
1386 
1387     for(JavaThread *cur = Threads::first(); cur; cur = cur->next()) {
1388        cur->safepoint_state()->print();
1389     }
1390   }
1391 }
1392 
1393 void SafepointSynchronize::safepoint_msg(const char* format, ...) {
1394   if (ShowSafepointMsgs) {
1395     va_list ap;
1396     va_start(ap, format);
1397     tty->vprint_cr(format, ap);
1398     va_end(ap);
1399   }
1400 }
1401 
1402 #endif // !PRODUCT