1 /*
   2  * Copyright (c) 1998, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/vmSymbols.hpp"
  27 #include "logging/log.hpp"
  28 #include "memory/metaspaceShared.hpp"
  29 #include "memory/padded.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/markOop.hpp"
  32 #include "oops/oop.inline.hpp"
  33 #include "runtime/atomic.hpp"
  34 #include "runtime/biasedLocking.hpp"
  35 #include "runtime/handles.inline.hpp"
  36 #include "runtime/interfaceSupport.hpp"
  37 #include "runtime/mutexLocker.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/objectMonitor.inline.hpp"
  40 #include "runtime/osThread.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/synchronizer.hpp"
  43 #include "runtime/thread.inline.hpp"
  44 #include "runtime/vframe.hpp"
  45 #include "utilities/dtrace.hpp"
  46 #include "utilities/events.hpp"
  47 #include "utilities/macros.hpp"
  48 #include "utilities/preserveException.hpp"
  49 #if INCLUDE_TRACE
  50 #include "trace/tracing.hpp"
  51 #endif
  52 
  53 // The "core" versions of monitor enter and exit reside in this file.
  54 // The interpreter and compilers contain specialized transliterated
  55 // variants of the enter-exit fast-path operations.  See i486.ad fast_lock(),
  56 // for instance.  If you make changes here, make sure to modify the
  57 // interpreter, and both C1 and C2 fast-path inline locking code emission.
  58 //
  59 // -----------------------------------------------------------------------------
  60 
  61 #ifdef DTRACE_ENABLED
  62 
  63 // Only bother with this argument setup if dtrace is available
  64 // TODO-FIXME: probes should not fire when caller is _blocked.  assert() accordingly.
  65 
  66 #define DTRACE_MONITOR_PROBE_COMMON(obj, thread)                           \
  67   char* bytes = NULL;                                                      \
  68   int len = 0;                                                             \
  69   jlong jtid = SharedRuntime::get_java_tid(thread);                        \
  70   Symbol* klassname = ((oop)(obj))->klass()->name();                       \
  71   if (klassname != NULL) {                                                 \
  72     bytes = (char*)klassname->bytes();                                     \
  73     len = klassname->utf8_length();                                        \
  74   }
  75 
  76 #define DTRACE_MONITOR_WAIT_PROBE(monitor, obj, thread, millis)            \
  77   {                                                                        \
  78     if (DTraceMonitorProbes) {                                             \
  79       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  80       HOTSPOT_MONITOR_WAIT(jtid,                                           \
  81                            (uintptr_t)(monitor), bytes, len, (millis));    \
  82     }                                                                      \
  83   }
  84 
  85 #define HOTSPOT_MONITOR_PROBE_notify HOTSPOT_MONITOR_NOTIFY
  86 #define HOTSPOT_MONITOR_PROBE_notifyAll HOTSPOT_MONITOR_NOTIFYALL
  87 #define HOTSPOT_MONITOR_PROBE_waited HOTSPOT_MONITOR_WAITED
  88 
  89 #define DTRACE_MONITOR_PROBE(probe, monitor, obj, thread)                  \
  90   {                                                                        \
  91     if (DTraceMonitorProbes) {                                             \
  92       DTRACE_MONITOR_PROBE_COMMON(obj, thread);                            \
  93       HOTSPOT_MONITOR_PROBE_##probe(jtid, /* probe = waited */             \
  94                                     (uintptr_t)(monitor), bytes, len);     \
  95     }                                                                      \
  96   }
  97 
  98 #else //  ndef DTRACE_ENABLED
  99 
 100 #define DTRACE_MONITOR_WAIT_PROBE(obj, thread, millis, mon)    {;}
 101 #define DTRACE_MONITOR_PROBE(probe, obj, thread, mon)          {;}
 102 
 103 #endif // ndef DTRACE_ENABLED
 104 
 105 // This exists only as a workaround of dtrace bug 6254741
 106 int dtrace_waited_probe(ObjectMonitor* monitor, Handle obj, Thread* thr) {
 107   DTRACE_MONITOR_PROBE(waited, monitor, obj(), thr);
 108   return 0;
 109 }
 110 
 111 #define NINFLATIONLOCKS 256
 112 static volatile intptr_t gInflationLocks[NINFLATIONLOCKS];
 113 
 114 // global list of blocks of monitors
 115 // gBlockList is really PaddedEnd<ObjectMonitor> *, but we don't
 116 // want to expose the PaddedEnd template more than necessary.
 117 ObjectMonitor * volatile ObjectSynchronizer::gBlockList = NULL;
 118 // global monitor free list
 119 ObjectMonitor * volatile ObjectSynchronizer::gFreeList  = NULL;
 120 // global monitor in-use list, for moribund threads,
 121 // monitors they inflated need to be scanned for deflation
 122 ObjectMonitor * volatile ObjectSynchronizer::gOmInUseList  = NULL;
 123 // count of entries in gOmInUseList
 124 int ObjectSynchronizer::gOmInUseCount = 0;
 125 
 126 static volatile intptr_t gListLock = 0;      // protects global monitor lists
 127 static volatile int gMonitorFreeCount  = 0;  // # on gFreeList
 128 static volatile int gMonitorPopulation = 0;  // # Extant -- in circulation
 129 
 130 #define CHAINMARKER (cast_to_oop<intptr_t>(-1))
 131 
 132 
 133 // =====================> Quick functions
 134 
 135 // The quick_* forms are special fast-path variants used to improve
 136 // performance.  In the simplest case, a "quick_*" implementation could
 137 // simply return false, in which case the caller will perform the necessary
 138 // state transitions and call the slow-path form.
 139 // The fast-path is designed to handle frequently arising cases in an efficient
 140 // manner and is just a degenerate "optimistic" variant of the slow-path.
 141 // returns true  -- to indicate the call was satisfied.
 142 // returns false -- to indicate the call needs the services of the slow-path.
 143 // A no-loitering ordinance is in effect for code in the quick_* family
 144 // operators: safepoints or indefinite blocking (blocking that might span a
 145 // safepoint) are forbidden. Generally the thread_state() is _in_Java upon
 146 // entry.
 147 //
 148 // Consider: An interesting optimization is to have the JIT recognize the
 149 // following common idiom:
 150 //   synchronized (someobj) { .... ; notify(); }
 151 // That is, we find a notify() or notifyAll() call that immediately precedes
 152 // the monitorexit operation.  In that case the JIT could fuse the operations
 153 // into a single notifyAndExit() runtime primitive.
 154 
 155 bool ObjectSynchronizer::quick_notify(oopDesc * obj, Thread * self, bool all) {
 156   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 157   assert(self->is_Java_thread(), "invariant");
 158   assert(((JavaThread *) self)->thread_state() == _thread_in_Java, "invariant");
 159   NoSafepointVerifier nsv;
 160   if (obj == NULL) return false;  // slow-path for invalid obj
 161   const markOop mark = obj->mark();
 162 
 163   if (mark->has_locker() && self->is_lock_owned((address)mark->locker())) {
 164     // Degenerate notify
 165     // stack-locked by caller so by definition the implied waitset is empty.
 166     return true;
 167   }
 168 
 169   if (mark->has_monitor()) {
 170     ObjectMonitor * const mon = mark->monitor();
 171     assert(mon->object() == obj, "invariant");
 172     if (mon->owner() != self) return false;  // slow-path for IMS exception
 173 
 174     if (mon->first_waiter() != NULL) {
 175       // We have one or more waiters. Since this is an inflated monitor
 176       // that we own, we can transfer one or more threads from the waitset
 177       // to the entrylist here and now, avoiding the slow-path.
 178       if (all) {
 179         DTRACE_MONITOR_PROBE(notifyAll, mon, obj, self);
 180       } else {
 181         DTRACE_MONITOR_PROBE(notify, mon, obj, self);
 182       }
 183       int tally = 0;
 184       do {
 185         mon->INotify(self);
 186         ++tally;
 187       } while (mon->first_waiter() != NULL && all);
 188       OM_PERFDATA_OP(Notifications, inc(tally));
 189     }
 190     return true;
 191   }
 192 
 193   // biased locking and any other IMS exception states take the slow-path
 194   return false;
 195 }
 196 
 197 
 198 // The LockNode emitted directly at the synchronization site would have
 199 // been too big if it were to have included support for the cases of inflated
 200 // recursive enter and exit, so they go here instead.
 201 // Note that we can't safely call AsyncPrintJavaStack() from within
 202 // quick_enter() as our thread state remains _in_Java.
 203 
 204 bool ObjectSynchronizer::quick_enter(oop obj, Thread * Self,
 205                                      BasicLock * lock) {
 206   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 207   assert(Self->is_Java_thread(), "invariant");
 208   assert(((JavaThread *) Self)->thread_state() == _thread_in_Java, "invariant");
 209   NoSafepointVerifier nsv;
 210   if (obj == NULL) return false;       // Need to throw NPE
 211   const markOop mark = obj->mark();
 212 
 213   if (mark->has_monitor()) {
 214     ObjectMonitor * const m = mark->monitor();
 215     assert(m->object() == obj, "invariant");
 216     Thread * const owner = (Thread *) m->_owner;
 217 
 218     // Lock contention and Transactional Lock Elision (TLE) diagnostics
 219     // and observability
 220     // Case: light contention possibly amenable to TLE
 221     // Case: TLE inimical operations such as nested/recursive synchronization
 222 
 223     if (owner == Self) {
 224       m->_recursions++;
 225       return true;
 226     }
 227 
 228     // This Java Monitor is inflated so obj's header will never be
 229     // displaced to this thread's BasicLock. Make the displaced header
 230     // non-NULL so this BasicLock is not seen as recursive nor as
 231     // being locked. We do this unconditionally so that this thread's
 232     // BasicLock cannot be mis-interpreted by any stack walkers. For
 233     // performance reasons, stack walkers generally first check for
 234     // Biased Locking in the object's header, the second check is for
 235     // stack-locking in the object's header, the third check is for
 236     // recursive stack-locking in the displaced header in the BasicLock,
 237     // and last are the inflated Java Monitor (ObjectMonitor) checks.
 238     lock->set_displaced_header(markOopDesc::unused_mark());
 239 
 240     if (owner == NULL &&
 241         Atomic::cmpxchg_ptr(Self, &(m->_owner), NULL) == NULL) {
 242       assert(m->_recursions == 0, "invariant");
 243       assert(m->_owner == Self, "invariant");
 244       return true;
 245     }
 246   }
 247 
 248   // Note that we could inflate in quick_enter.
 249   // This is likely a useful optimization
 250   // Critically, in quick_enter() we must not:
 251   // -- perform bias revocation, or
 252   // -- block indefinitely, or
 253   // -- reach a safepoint
 254 
 255   return false;        // revert to slow-path
 256 }
 257 
 258 // -----------------------------------------------------------------------------
 259 //  Fast Monitor Enter/Exit
 260 // This the fast monitor enter. The interpreter and compiler use
 261 // some assembly copies of this code. Make sure update those code
 262 // if the following function is changed. The implementation is
 263 // extremely sensitive to race condition. Be careful.
 264 
 265 void ObjectSynchronizer::fast_enter(Handle obj, BasicLock* lock,
 266                                     bool attempt_rebias, TRAPS) {
 267   if (UseBiasedLocking) {
 268     if (!SafepointSynchronize::is_at_safepoint()) {
 269       BiasedLocking::Condition cond = BiasedLocking::revoke_and_rebias(obj, attempt_rebias, THREAD);
 270       if (cond == BiasedLocking::BIAS_REVOKED_AND_REBIASED) {
 271         return;
 272       }
 273     } else {
 274       assert(!attempt_rebias, "can not rebias toward VM thread");
 275       BiasedLocking::revoke_at_safepoint(obj);
 276     }
 277     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 278   }
 279 
 280   slow_enter(obj, lock, THREAD);
 281 }
 282 
 283 void ObjectSynchronizer::fast_exit(oop object, BasicLock* lock, TRAPS) {
 284   markOop mark = object->mark();
 285   // We cannot check for Biased Locking if we are racing an inflation.
 286   assert(mark == markOopDesc::INFLATING() ||
 287          !mark->has_bias_pattern(), "should not see bias pattern here");
 288 
 289   markOop dhw = lock->displaced_header();
 290   if (dhw == NULL) {
 291     // If the displaced header is NULL, then this exit matches up with
 292     // a recursive enter. No real work to do here except for diagnostics.
 293 #ifndef PRODUCT
 294     if (mark != markOopDesc::INFLATING()) {
 295       // Only do diagnostics if we are not racing an inflation. Simply
 296       // exiting a recursive enter of a Java Monitor that is being
 297       // inflated is safe; see the has_monitor() comment below.
 298       assert(!mark->is_neutral(), "invariant");
 299       assert(!mark->has_locker() ||
 300              THREAD->is_lock_owned((address)mark->locker()), "invariant");
 301       if (mark->has_monitor()) {
 302         // The BasicLock's displaced_header is marked as a recursive
 303         // enter and we have an inflated Java Monitor (ObjectMonitor).
 304         // This is a special case where the Java Monitor was inflated
 305         // after this thread entered the stack-lock recursively. When a
 306         // Java Monitor is inflated, we cannot safely walk the Java
 307         // Monitor owner's stack and update the BasicLocks because a
 308         // Java Monitor can be asynchronously inflated by a thread that
 309         // does not own the Java Monitor.
 310         ObjectMonitor * m = mark->monitor();
 311         assert(((oop)(m->object()))->mark() == mark, "invariant");
 312         assert(m->is_entered(THREAD), "invariant");
 313       }
 314     }
 315 #endif
 316     return;
 317   }
 318 
 319   if (mark == (markOop) lock) {
 320     // If the object is stack-locked by the current thread, try to
 321     // swing the displaced header from the BasicLock back to the mark.
 322     assert(dhw->is_neutral(), "invariant");
 323     if ((markOop) Atomic::cmpxchg_ptr(dhw, object->mark_addr(), mark) == mark) {
 324       TEVENT(fast_exit: release stack-lock);
 325       return;
 326     }
 327   }
 328 
 329   // We have to take the slow-path of possible inflation and then exit.
 330   ObjectSynchronizer::inflate(THREAD,
 331                               object,
 332                               inflate_cause_vm_internal)->exit(true, THREAD);
 333 }
 334 
 335 // -----------------------------------------------------------------------------
 336 // Interpreter/Compiler Slow Case
 337 // This routine is used to handle interpreter/compiler slow case
 338 // We don't need to use fast path here, because it must have been
 339 // failed in the interpreter/compiler code.
 340 void ObjectSynchronizer::slow_enter(Handle obj, BasicLock* lock, TRAPS) {
 341   markOop mark = obj->mark();
 342   assert(!mark->has_bias_pattern(), "should not see bias pattern here");
 343 
 344   if (mark->is_neutral()) {
 345     // Anticipate successful CAS -- the ST of the displaced mark must
 346     // be visible <= the ST performed by the CAS.
 347     lock->set_displaced_header(mark);
 348     if (mark == (markOop) Atomic::cmpxchg_ptr(lock, obj()->mark_addr(), mark)) {
 349       TEVENT(slow_enter: release stacklock);
 350       return;
 351     }
 352     // Fall through to inflate() ...
 353   } else if (mark->has_locker() &&
 354              THREAD->is_lock_owned((address)mark->locker())) {
 355     assert(lock != mark->locker(), "must not re-lock the same lock");
 356     assert(lock != (BasicLock*)obj->mark(), "don't relock with same BasicLock");
 357     lock->set_displaced_header(NULL);
 358     return;
 359   }
 360 
 361   // The object header will never be displaced to this lock,
 362   // so it does not matter what the value is, except that it
 363   // must be non-zero to avoid looking like a re-entrant lock,
 364   // and must not look locked either.
 365   lock->set_displaced_header(markOopDesc::unused_mark());
 366   ObjectSynchronizer::inflate(THREAD,
 367                               obj(),
 368                               inflate_cause_monitor_enter)->enter(THREAD);
 369 }
 370 
 371 // This routine is used to handle interpreter/compiler slow case
 372 // We don't need to use fast path here, because it must have
 373 // failed in the interpreter/compiler code. Simply use the heavy
 374 // weight monitor should be ok, unless someone find otherwise.
 375 void ObjectSynchronizer::slow_exit(oop object, BasicLock* lock, TRAPS) {
 376   fast_exit(object, lock, THREAD);
 377 }
 378 
 379 // -----------------------------------------------------------------------------
 380 // Class Loader  support to workaround deadlocks on the class loader lock objects
 381 // Also used by GC
 382 // complete_exit()/reenter() are used to wait on a nested lock
 383 // i.e. to give up an outer lock completely and then re-enter
 384 // Used when holding nested locks - lock acquisition order: lock1 then lock2
 385 //  1) complete_exit lock1 - saving recursion count
 386 //  2) wait on lock2
 387 //  3) when notified on lock2, unlock lock2
 388 //  4) reenter lock1 with original recursion count
 389 //  5) lock lock2
 390 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 391 intptr_t ObjectSynchronizer::complete_exit(Handle obj, TRAPS) {
 392   TEVENT(complete_exit);
 393   if (UseBiasedLocking) {
 394     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 395     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 396   }
 397 
 398   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 399                                                        obj(),
 400                                                        inflate_cause_vm_internal);
 401 
 402   return monitor->complete_exit(THREAD);
 403 }
 404 
 405 // NOTE: must use heavy weight monitor to handle complete_exit/reenter()
 406 void ObjectSynchronizer::reenter(Handle obj, intptr_t recursion, TRAPS) {
 407   TEVENT(reenter);
 408   if (UseBiasedLocking) {
 409     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 410     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 411   }
 412 
 413   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 414                                                        obj(),
 415                                                        inflate_cause_vm_internal);
 416 
 417   monitor->reenter(recursion, THREAD);
 418 }
 419 // -----------------------------------------------------------------------------
 420 // JNI locks on java objects
 421 // NOTE: must use heavy weight monitor to handle jni monitor enter
 422 void ObjectSynchronizer::jni_enter(Handle obj, TRAPS) {
 423   // the current locking is from JNI instead of Java code
 424   TEVENT(jni_enter);
 425   if (UseBiasedLocking) {
 426     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 427     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 428   }
 429   THREAD->set_current_pending_monitor_is_from_java(false);
 430   ObjectSynchronizer::inflate(THREAD, obj(), inflate_cause_jni_enter)->enter(THREAD);
 431   THREAD->set_current_pending_monitor_is_from_java(true);
 432 }
 433 
 434 // NOTE: must use heavy weight monitor to handle jni monitor exit
 435 void ObjectSynchronizer::jni_exit(oop obj, Thread* THREAD) {
 436   TEVENT(jni_exit);
 437   if (UseBiasedLocking) {
 438     Handle h_obj(THREAD, obj);
 439     BiasedLocking::revoke_and_rebias(h_obj, false, THREAD);
 440     obj = h_obj();
 441   }
 442   assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 443 
 444   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 445                                                        obj,
 446                                                        inflate_cause_jni_exit);
 447   // If this thread has locked the object, exit the monitor.  Note:  can't use
 448   // monitor->check(CHECK); must exit even if an exception is pending.
 449   if (monitor->check(THREAD)) {
 450     monitor->exit(true, THREAD);
 451   }
 452 }
 453 
 454 // -----------------------------------------------------------------------------
 455 // Internal VM locks on java objects
 456 // standard constructor, allows locking failures
 457 ObjectLocker::ObjectLocker(Handle obj, Thread* thread, bool doLock) {
 458   _dolock = doLock;
 459   _thread = thread;
 460   debug_only(if (StrictSafepointChecks) _thread->check_for_valid_safepoint_state(false);)
 461   _obj = obj;
 462 
 463   if (_dolock) {
 464     TEVENT(ObjectLocker);
 465 
 466     ObjectSynchronizer::fast_enter(_obj, &_lock, false, _thread);
 467   }
 468 }
 469 
 470 ObjectLocker::~ObjectLocker() {
 471   if (_dolock) {
 472     ObjectSynchronizer::fast_exit(_obj(), &_lock, _thread);
 473   }
 474 }
 475 
 476 
 477 // -----------------------------------------------------------------------------
 478 //  Wait/Notify/NotifyAll
 479 // NOTE: must use heavy weight monitor to handle wait()
 480 int ObjectSynchronizer::wait(Handle obj, jlong millis, TRAPS) {
 481   if (UseBiasedLocking) {
 482     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 483     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 484   }
 485   if (millis < 0) {
 486     TEVENT(wait - throw IAX);
 487     THROW_MSG_0(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 488   }
 489   ObjectMonitor* monitor = ObjectSynchronizer::inflate(THREAD,
 490                                                        obj(),
 491                                                        inflate_cause_wait);
 492 
 493   DTRACE_MONITOR_WAIT_PROBE(monitor, obj(), THREAD, millis);
 494   monitor->wait(millis, true, THREAD);
 495 
 496   // This dummy call is in place to get around dtrace bug 6254741.  Once
 497   // that's fixed we can uncomment the following line, remove the call
 498   // and change this function back into a "void" func.
 499   // DTRACE_MONITOR_PROBE(waited, monitor, obj(), THREAD);
 500   return dtrace_waited_probe(monitor, obj, THREAD);
 501 }
 502 
 503 void ObjectSynchronizer::waitUninterruptibly(Handle obj, jlong millis, TRAPS) {
 504   if (UseBiasedLocking) {
 505     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 506     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 507   }
 508   if (millis < 0) {
 509     TEVENT(wait - throw IAX);
 510     THROW_MSG(vmSymbols::java_lang_IllegalArgumentException(), "timeout value is negative");
 511   }
 512   ObjectSynchronizer::inflate(THREAD,
 513                               obj(),
 514                               inflate_cause_wait)->wait(millis, false, THREAD);
 515 }
 516 
 517 void ObjectSynchronizer::notify(Handle obj, TRAPS) {
 518   if (UseBiasedLocking) {
 519     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 520     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 521   }
 522 
 523   markOop mark = obj->mark();
 524   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 525     return;
 526   }
 527   ObjectSynchronizer::inflate(THREAD,
 528                               obj(),
 529                               inflate_cause_notify)->notify(THREAD);
 530 }
 531 
 532 // NOTE: see comment of notify()
 533 void ObjectSynchronizer::notifyall(Handle obj, TRAPS) {
 534   if (UseBiasedLocking) {
 535     BiasedLocking::revoke_and_rebias(obj, false, THREAD);
 536     assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 537   }
 538 
 539   markOop mark = obj->mark();
 540   if (mark->has_locker() && THREAD->is_lock_owned((address)mark->locker())) {
 541     return;
 542   }
 543   ObjectSynchronizer::inflate(THREAD,
 544                               obj(),
 545                               inflate_cause_notify)->notifyAll(THREAD);
 546 }
 547 
 548 // -----------------------------------------------------------------------------
 549 // Hash Code handling
 550 //
 551 // Performance concern:
 552 // OrderAccess::storestore() calls release() which at one time stored 0
 553 // into the global volatile OrderAccess::dummy variable. This store was
 554 // unnecessary for correctness. Many threads storing into a common location
 555 // causes considerable cache migration or "sloshing" on large SMP systems.
 556 // As such, I avoided using OrderAccess::storestore(). In some cases
 557 // OrderAccess::fence() -- which incurs local latency on the executing
 558 // processor -- is a better choice as it scales on SMP systems.
 559 //
 560 // See http://blogs.oracle.com/dave/entry/biased_locking_in_hotspot for
 561 // a discussion of coherency costs. Note that all our current reference
 562 // platforms provide strong ST-ST order, so the issue is moot on IA32,
 563 // x64, and SPARC.
 564 //
 565 // As a general policy we use "volatile" to control compiler-based reordering
 566 // and explicit fences (barriers) to control for architectural reordering
 567 // performed by the CPU(s) or platform.
 568 
 569 struct SharedGlobals {
 570   char         _pad_prefix[DEFAULT_CACHE_LINE_SIZE];
 571   // These are highly shared mostly-read variables.
 572   // To avoid false-sharing they need to be the sole occupants of a cache line.
 573   volatile int stwRandom;
 574   volatile int stwCycle;
 575   DEFINE_PAD_MINUS_SIZE(1, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int) * 2);
 576   // Hot RW variable -- Sequester to avoid false-sharing
 577   volatile int hcSequence;
 578   DEFINE_PAD_MINUS_SIZE(2, DEFAULT_CACHE_LINE_SIZE, sizeof(volatile int));
 579 };
 580 
 581 static SharedGlobals GVars;
 582 static int MonitorScavengeThreshold = 1000000;
 583 static volatile int ForceMonitorScavenge = 0; // Scavenge required and pending
 584 
 585 static markOop ReadStableMark(oop obj) {
 586   markOop mark = obj->mark();
 587   if (!mark->is_being_inflated()) {
 588     return mark;       // normal fast-path return
 589   }
 590 
 591   int its = 0;
 592   for (;;) {
 593     markOop mark = obj->mark();
 594     if (!mark->is_being_inflated()) {
 595       return mark;    // normal fast-path return
 596     }
 597 
 598     // The object is being inflated by some other thread.
 599     // The caller of ReadStableMark() must wait for inflation to complete.
 600     // Avoid live-lock
 601     // TODO: consider calling SafepointSynchronize::do_call_back() while
 602     // spinning to see if there's a safepoint pending.  If so, immediately
 603     // yielding or blocking would be appropriate.  Avoid spinning while
 604     // there is a safepoint pending.
 605     // TODO: add inflation contention performance counters.
 606     // TODO: restrict the aggregate number of spinners.
 607 
 608     ++its;
 609     if (its > 10000 || !os::is_MP()) {
 610       if (its & 1) {
 611         os::naked_yield();
 612         TEVENT(Inflate: INFLATING - yield);
 613       } else {
 614         // Note that the following code attenuates the livelock problem but is not
 615         // a complete remedy.  A more complete solution would require that the inflating
 616         // thread hold the associated inflation lock.  The following code simply restricts
 617         // the number of spinners to at most one.  We'll have N-2 threads blocked
 618         // on the inflationlock, 1 thread holding the inflation lock and using
 619         // a yield/park strategy, and 1 thread in the midst of inflation.
 620         // A more refined approach would be to change the encoding of INFLATING
 621         // to allow encapsulation of a native thread pointer.  Threads waiting for
 622         // inflation to complete would use CAS to push themselves onto a singly linked
 623         // list rooted at the markword.  Once enqueued, they'd loop, checking a per-thread flag
 624         // and calling park().  When inflation was complete the thread that accomplished inflation
 625         // would detach the list and set the markword to inflated with a single CAS and
 626         // then for each thread on the list, set the flag and unpark() the thread.
 627         // This is conceptually similar to muxAcquire-muxRelease, except that muxRelease
 628         // wakes at most one thread whereas we need to wake the entire list.
 629         int ix = (cast_from_oop<intptr_t>(obj) >> 5) & (NINFLATIONLOCKS-1);
 630         int YieldThenBlock = 0;
 631         assert(ix >= 0 && ix < NINFLATIONLOCKS, "invariant");
 632         assert((NINFLATIONLOCKS & (NINFLATIONLOCKS-1)) == 0, "invariant");
 633         Thread::muxAcquire(gInflationLocks + ix, "gInflationLock");
 634         while (obj->mark() == markOopDesc::INFLATING()) {
 635           // Beware: NakedYield() is advisory and has almost no effect on some platforms
 636           // so we periodically call Self->_ParkEvent->park(1).
 637           // We use a mixed spin/yield/block mechanism.
 638           if ((YieldThenBlock++) >= 16) {
 639             Thread::current()->_ParkEvent->park(1);
 640           } else {
 641             os::naked_yield();
 642           }
 643         }
 644         Thread::muxRelease(gInflationLocks + ix);
 645         TEVENT(Inflate: INFLATING - yield/park);
 646       }
 647     } else {
 648       SpinPause();       // SMP-polite spinning
 649     }
 650   }
 651 }
 652 
 653 // hashCode() generation :
 654 //
 655 // Possibilities:
 656 // * MD5Digest of {obj,stwRandom}
 657 // * CRC32 of {obj,stwRandom} or any linear-feedback shift register function.
 658 // * A DES- or AES-style SBox[] mechanism
 659 // * One of the Phi-based schemes, such as:
 660 //   2654435761 = 2^32 * Phi (golden ratio)
 661 //   HashCodeValue = ((uintptr_t(obj) >> 3) * 2654435761) ^ GVars.stwRandom ;
 662 // * A variation of Marsaglia's shift-xor RNG scheme.
 663 // * (obj ^ stwRandom) is appealing, but can result
 664 //   in undesirable regularity in the hashCode values of adjacent objects
 665 //   (objects allocated back-to-back, in particular).  This could potentially
 666 //   result in hashtable collisions and reduced hashtable efficiency.
 667 //   There are simple ways to "diffuse" the middle address bits over the
 668 //   generated hashCode values:
 669 
 670 static inline intptr_t get_next_hash(Thread * Self, oop obj) {
 671   intptr_t value = 0;
 672   if (hashCode == 0) {
 673     // This form uses an unguarded global Park-Miller RNG,
 674     // so it's possible for two threads to race and generate the same RNG.
 675     // On MP system we'll have lots of RW access to a global, so the
 676     // mechanism induces lots of coherency traffic.
 677     value = os::random();
 678   } else if (hashCode == 1) {
 679     // This variation has the property of being stable (idempotent)
 680     // between STW operations.  This can be useful in some of the 1-0
 681     // synchronization schemes.
 682     intptr_t addrBits = cast_from_oop<intptr_t>(obj) >> 3;
 683     value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom;
 684   } else if (hashCode == 2) {
 685     value = 1;            // for sensitivity testing
 686   } else if (hashCode == 3) {
 687     value = ++GVars.hcSequence;
 688   } else if (hashCode == 4) {
 689     value = cast_from_oop<intptr_t>(obj);
 690   } else {
 691     // Marsaglia's xor-shift scheme with thread-specific state
 692     // This is probably the best overall implementation -- we'll
 693     // likely make this the default in future releases.
 694     unsigned t = Self->_hashStateX;
 695     t ^= (t << 11);
 696     Self->_hashStateX = Self->_hashStateY;
 697     Self->_hashStateY = Self->_hashStateZ;
 698     Self->_hashStateZ = Self->_hashStateW;
 699     unsigned v = Self->_hashStateW;
 700     v = (v ^ (v >> 19)) ^ (t ^ (t >> 8));
 701     Self->_hashStateW = v;
 702     value = v;
 703   }
 704 
 705   value &= markOopDesc::hash_mask;
 706   if (value == 0) value = 0xBAD;
 707   assert(value != markOopDesc::no_hash, "invariant");
 708   TEVENT(hashCode: GENERATE);
 709   return value;
 710 }
 711 
 712 intptr_t ObjectSynchronizer::FastHashCode(Thread * Self, oop obj) {
 713   if (UseBiasedLocking) {
 714     // NOTE: many places throughout the JVM do not expect a safepoint
 715     // to be taken here, in particular most operations on perm gen
 716     // objects. However, we only ever bias Java instances and all of
 717     // the call sites of identity_hash that might revoke biases have
 718     // been checked to make sure they can handle a safepoint. The
 719     // added check of the bias pattern is to avoid useless calls to
 720     // thread-local storage.
 721     if (obj->mark()->has_bias_pattern()) {
 722       // Handle for oop obj in case of STW safepoint
 723       Handle hobj(Self, obj);
 724       // Relaxing assertion for bug 6320749.
 725       assert(Universe::verify_in_progress() ||
 726              !SafepointSynchronize::is_at_safepoint(),
 727              "biases should not be seen by VM thread here");
 728       BiasedLocking::revoke_and_rebias(hobj, false, JavaThread::current());
 729       obj = hobj();
 730       assert(!obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 731     }
 732   }
 733 
 734   // hashCode() is a heap mutator ...
 735   // Relaxing assertion for bug 6320749.
 736   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 737          !SafepointSynchronize::is_at_safepoint(), "invariant");
 738   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 739          Self->is_Java_thread() , "invariant");
 740   assert(Universe::verify_in_progress() || DumpSharedSpaces ||
 741          ((JavaThread *)Self)->thread_state() != _thread_blocked, "invariant");
 742 
 743   ObjectMonitor* monitor = NULL;
 744   markOop temp, test;
 745   intptr_t hash;
 746   markOop mark = ReadStableMark(obj);
 747 
 748   // object should remain ineligible for biased locking
 749   assert(!mark->has_bias_pattern(), "invariant");
 750 
 751   if (mark->is_neutral()) {
 752     hash = mark->hash();              // this is a normal header
 753     if (hash) {                       // if it has hash, just return it
 754       return hash;
 755     }
 756     hash = get_next_hash(Self, obj);  // allocate a new hash code
 757     temp = mark->copy_set_hash(hash); // merge the hash code into header
 758     // use (machine word version) atomic operation to install the hash
 759     test = (markOop) Atomic::cmpxchg_ptr(temp, obj->mark_addr(), mark);
 760     if (test == mark) {
 761       return hash;
 762     }
 763     // If atomic operation failed, we must inflate the header
 764     // into heavy weight monitor. We could add more code here
 765     // for fast path, but it does not worth the complexity.
 766   } else if (mark->has_monitor()) {
 767     monitor = mark->monitor();
 768     temp = monitor->header();
 769     assert(temp->is_neutral(), "invariant");
 770     hash = temp->hash();
 771     if (hash) {
 772       return hash;
 773     }
 774     // Skip to the following code to reduce code size
 775   } else if (Self->is_lock_owned((address)mark->locker())) {
 776     temp = mark->displaced_mark_helper(); // this is a lightweight monitor owned
 777     assert(temp->is_neutral(), "invariant");
 778     hash = temp->hash();              // by current thread, check if the displaced
 779     if (hash) {                       // header contains hash code
 780       return hash;
 781     }
 782     // WARNING:
 783     //   The displaced header is strictly immutable.
 784     // It can NOT be changed in ANY cases. So we have
 785     // to inflate the header into heavyweight monitor
 786     // even the current thread owns the lock. The reason
 787     // is the BasicLock (stack slot) will be asynchronously
 788     // read by other threads during the inflate() function.
 789     // Any change to stack may not propagate to other threads
 790     // correctly.
 791   }
 792 
 793   // Inflate the monitor to set hash code
 794   monitor = ObjectSynchronizer::inflate(Self, obj, inflate_cause_hash_code);
 795   // Load displaced header and check it has hash code
 796   mark = monitor->header();
 797   assert(mark->is_neutral(), "invariant");
 798   hash = mark->hash();
 799   if (hash == 0) {
 800     hash = get_next_hash(Self, obj);
 801     temp = mark->copy_set_hash(hash); // merge hash code into header
 802     assert(temp->is_neutral(), "invariant");
 803     test = (markOop) Atomic::cmpxchg_ptr(temp, monitor, mark);
 804     if (test != mark) {
 805       // The only update to the header in the monitor (outside GC)
 806       // is install the hash code. If someone add new usage of
 807       // displaced header, please update this code
 808       hash = test->hash();
 809       assert(test->is_neutral(), "invariant");
 810       assert(hash != 0, "Trivial unexpected object/monitor header usage.");
 811     }
 812   }
 813   // We finally get the hash
 814   return hash;
 815 }
 816 
 817 // Deprecated -- use FastHashCode() instead.
 818 
 819 intptr_t ObjectSynchronizer::identity_hash_value_for(Handle obj) {
 820   return FastHashCode(Thread::current(), obj());
 821 }
 822 
 823 
 824 bool ObjectSynchronizer::current_thread_holds_lock(JavaThread* thread,
 825                                                    Handle h_obj) {
 826   if (UseBiasedLocking) {
 827     BiasedLocking::revoke_and_rebias(h_obj, false, thread);
 828     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 829   }
 830 
 831   assert(thread == JavaThread::current(), "Can only be called on current thread");
 832   oop obj = h_obj();
 833 
 834   markOop mark = ReadStableMark(obj);
 835 
 836   // Uncontended case, header points to stack
 837   if (mark->has_locker()) {
 838     return thread->is_lock_owned((address)mark->locker());
 839   }
 840   // Contended case, header points to ObjectMonitor (tagged pointer)
 841   if (mark->has_monitor()) {
 842     ObjectMonitor* monitor = mark->monitor();
 843     return monitor->is_entered(thread) != 0;
 844   }
 845   // Unlocked case, header in place
 846   assert(mark->is_neutral(), "sanity check");
 847   return false;
 848 }
 849 
 850 // Be aware of this method could revoke bias of the lock object.
 851 // This method queries the ownership of the lock handle specified by 'h_obj'.
 852 // If the current thread owns the lock, it returns owner_self. If no
 853 // thread owns the lock, it returns owner_none. Otherwise, it will return
 854 // owner_other.
 855 ObjectSynchronizer::LockOwnership ObjectSynchronizer::query_lock_ownership
 856 (JavaThread *self, Handle h_obj) {
 857   // The caller must beware this method can revoke bias, and
 858   // revocation can result in a safepoint.
 859   assert(!SafepointSynchronize::is_at_safepoint(), "invariant");
 860   assert(self->thread_state() != _thread_blocked, "invariant");
 861 
 862   // Possible mark states: neutral, biased, stack-locked, inflated
 863 
 864   if (UseBiasedLocking && h_obj()->mark()->has_bias_pattern()) {
 865     // CASE: biased
 866     BiasedLocking::revoke_and_rebias(h_obj, false, self);
 867     assert(!h_obj->mark()->has_bias_pattern(),
 868            "biases should be revoked by now");
 869   }
 870 
 871   assert(self == JavaThread::current(), "Can only be called on current thread");
 872   oop obj = h_obj();
 873   markOop mark = ReadStableMark(obj);
 874 
 875   // CASE: stack-locked.  Mark points to a BasicLock on the owner's stack.
 876   if (mark->has_locker()) {
 877     return self->is_lock_owned((address)mark->locker()) ?
 878       owner_self : owner_other;
 879   }
 880 
 881   // CASE: inflated. Mark (tagged pointer) points to an objectMonitor.
 882   // The Object:ObjectMonitor relationship is stable as long as we're
 883   // not at a safepoint.
 884   if (mark->has_monitor()) {
 885     void * owner = mark->monitor()->_owner;
 886     if (owner == NULL) return owner_none;
 887     return (owner == self ||
 888             self->is_lock_owned((address)owner)) ? owner_self : owner_other;
 889   }
 890 
 891   // CASE: neutral
 892   assert(mark->is_neutral(), "sanity check");
 893   return owner_none;           // it's unlocked
 894 }
 895 
 896 // FIXME: jvmti should call this
 897 JavaThread* ObjectSynchronizer::get_lock_owner(Handle h_obj, bool doLock) {
 898   if (UseBiasedLocking) {
 899     if (SafepointSynchronize::is_at_safepoint()) {
 900       BiasedLocking::revoke_at_safepoint(h_obj);
 901     } else {
 902       BiasedLocking::revoke_and_rebias(h_obj, false, JavaThread::current());
 903     }
 904     assert(!h_obj->mark()->has_bias_pattern(), "biases should be revoked by now");
 905   }
 906 
 907   oop obj = h_obj();
 908   address owner = NULL;
 909 
 910   markOop mark = ReadStableMark(obj);
 911 
 912   // Uncontended case, header points to stack
 913   if (mark->has_locker()) {
 914     owner = (address) mark->locker();
 915   }
 916 
 917   // Contended case, header points to ObjectMonitor (tagged pointer)
 918   if (mark->has_monitor()) {
 919     ObjectMonitor* monitor = mark->monitor();
 920     assert(monitor != NULL, "monitor should be non-null");
 921     owner = (address) monitor->owner();
 922   }
 923 
 924   if (owner != NULL) {
 925     // owning_thread_from_monitor_owner() may also return NULL here
 926     return Threads::owning_thread_from_monitor_owner(owner, doLock);
 927   }
 928 
 929   // Unlocked case, header in place
 930   // Cannot have assertion since this object may have been
 931   // locked by another thread when reaching here.
 932   // assert(mark->is_neutral(), "sanity check");
 933 
 934   return NULL;
 935 }
 936 
 937 // Visitors ...
 938 
 939 void ObjectSynchronizer::monitors_iterate(MonitorClosure* closure) {
 940   PaddedEnd<ObjectMonitor> * block =
 941     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
 942   while (block != NULL) {
 943     assert(block->object() == CHAINMARKER, "must be a block header");
 944     for (int i = _BLOCKSIZE - 1; i > 0; i--) {
 945       ObjectMonitor* mid = (ObjectMonitor *)(block + i);
 946       oop object = (oop)mid->object();
 947       if (object != NULL) {
 948         closure->do_monitor(mid);
 949       }
 950     }
 951     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
 952   }
 953 }
 954 
 955 // Get the next block in the block list.
 956 static inline ObjectMonitor* next(ObjectMonitor* block) {
 957   assert(block->object() == CHAINMARKER, "must be a block header");
 958   block = block->FreeNext;
 959   assert(block == NULL || block->object() == CHAINMARKER, "must be a block header");
 960   return block;
 961 }
 962 
 963 static bool monitors_used_above_threshold() {
 964   if (gMonitorPopulation == 0) {
 965     return false;
 966   }
 967   int monitors_used = gMonitorPopulation - gMonitorFreeCount;
 968   int monitor_usage = (monitors_used * 100LL) / gMonitorPopulation;
 969   return monitor_usage > MonitorUsedDeflationThreshold;
 970 }
 971 
 972 bool ObjectSynchronizer::is_cleanup_needed() {
 973   if (MonitorUsedDeflationThreshold > 0) {
 974     return monitors_used_above_threshold();
 975   }
 976   return false;
 977 }
 978 
 979 void ObjectSynchronizer::oops_do(OopClosure* f) {
 980   if (MonitorInUseLists) {
 981     // When using thread local monitor lists, we only scan the
 982     // global used list here (for moribund threads), and
 983     // the thread-local monitors in Thread::oops_do().
 984     global_used_oops_do(f);
 985   } else {
 986     global_oops_do(f);
 987   }
 988 }
 989 
 990 void ObjectSynchronizer::global_oops_do(OopClosure* f) {
 991   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
 992   PaddedEnd<ObjectMonitor> * block =
 993     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
 994   for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
 995     assert(block->object() == CHAINMARKER, "must be a block header");
 996     for (int i = 1; i < _BLOCKSIZE; i++) {
 997       ObjectMonitor* mid = (ObjectMonitor *)&block[i];
 998       if (mid->object() != NULL) {
 999         f->do_oop((oop*)mid->object_addr());
1000       }
1001     }
1002   }
1003 }
1004 
1005 void ObjectSynchronizer::global_used_oops_do(OopClosure* f) {
1006   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1007   list_oops_do(gOmInUseList, f);
1008 }
1009 
1010 void ObjectSynchronizer::thread_local_used_oops_do(Thread* thread, OopClosure* f) {
1011   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1012   list_oops_do(thread->omInUseList, f);
1013 }
1014 
1015 void ObjectSynchronizer::list_oops_do(ObjectMonitor* list, OopClosure* f) {
1016   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1017   ObjectMonitor* mid;
1018   for (mid = list; mid != NULL; mid = mid->FreeNext) {
1019     if (mid->object() != NULL) {
1020       f->do_oop((oop*)mid->object_addr());
1021     }
1022   }
1023 }
1024 
1025 
1026 // -----------------------------------------------------------------------------
1027 // ObjectMonitor Lifecycle
1028 // -----------------------
1029 // Inflation unlinks monitors from the global gFreeList and
1030 // associates them with objects.  Deflation -- which occurs at
1031 // STW-time -- disassociates idle monitors from objects.  Such
1032 // scavenged monitors are returned to the gFreeList.
1033 //
1034 // The global list is protected by gListLock.  All the critical sections
1035 // are short and operate in constant-time.
1036 //
1037 // ObjectMonitors reside in type-stable memory (TSM) and are immortal.
1038 //
1039 // Lifecycle:
1040 // --   unassigned and on the global free list
1041 // --   unassigned and on a thread's private omFreeList
1042 // --   assigned to an object.  The object is inflated and the mark refers
1043 //      to the objectmonitor.
1044 
1045 
1046 // Constraining monitor pool growth via MonitorBound ...
1047 //
1048 // The monitor pool is grow-only.  We scavenge at STW safepoint-time, but the
1049 // the rate of scavenging is driven primarily by GC.  As such,  we can find
1050 // an inordinate number of monitors in circulation.
1051 // To avoid that scenario we can artificially induce a STW safepoint
1052 // if the pool appears to be growing past some reasonable bound.
1053 // Generally we favor time in space-time tradeoffs, but as there's no
1054 // natural back-pressure on the # of extant monitors we need to impose some
1055 // type of limit.  Beware that if MonitorBound is set to too low a value
1056 // we could just loop. In addition, if MonitorBound is set to a low value
1057 // we'll incur more safepoints, which are harmful to performance.
1058 // See also: GuaranteedSafepointInterval
1059 //
1060 // The current implementation uses asynchronous VM operations.
1061 
1062 static void InduceScavenge(Thread * Self, const char * Whence) {
1063   // Induce STW safepoint to trim monitors
1064   // Ultimately, this results in a call to deflate_idle_monitors() in the near future.
1065   // More precisely, trigger an asynchronous STW safepoint as the number
1066   // of active monitors passes the specified threshold.
1067   // TODO: assert thread state is reasonable
1068 
1069   if (ForceMonitorScavenge == 0 && Atomic::xchg (1, &ForceMonitorScavenge) == 0) {
1070     if (ObjectMonitor::Knob_Verbose) {
1071       tty->print_cr("INFO: Monitor scavenge - Induced STW @%s (%d)",
1072                     Whence, ForceMonitorScavenge) ;
1073       tty->flush();
1074     }
1075     // Induce a 'null' safepoint to scavenge monitors
1076     // Must VM_Operation instance be heap allocated as the op will be enqueue and posted
1077     // to the VMthread and have a lifespan longer than that of this activation record.
1078     // The VMThread will delete the op when completed.
1079     VMThread::execute(new VM_ScavengeMonitors());
1080 
1081     if (ObjectMonitor::Knob_Verbose) {
1082       tty->print_cr("INFO: Monitor scavenge - STW posted @%s (%d)",
1083                     Whence, ForceMonitorScavenge) ;
1084       tty->flush();
1085     }
1086   }
1087 }
1088 
1089 void ObjectSynchronizer::verifyInUse(Thread *Self) {
1090   ObjectMonitor* mid;
1091   int in_use_tally = 0;
1092   for (mid = Self->omInUseList; mid != NULL; mid = mid->FreeNext) {
1093     in_use_tally++;
1094   }
1095   assert(in_use_tally == Self->omInUseCount, "in-use count off");
1096 
1097   int free_tally = 0;
1098   for (mid = Self->omFreeList; mid != NULL; mid = mid->FreeNext) {
1099     free_tally++;
1100   }
1101   assert(free_tally == Self->omFreeCount, "free count off");
1102 }
1103 
1104 ObjectMonitor* ObjectSynchronizer::omAlloc(Thread * Self) {
1105   // A large MAXPRIVATE value reduces both list lock contention
1106   // and list coherency traffic, but also tends to increase the
1107   // number of objectMonitors in circulation as well as the STW
1108   // scavenge costs.  As usual, we lean toward time in space-time
1109   // tradeoffs.
1110   const int MAXPRIVATE = 1024;
1111   for (;;) {
1112     ObjectMonitor * m;
1113 
1114     // 1: try to allocate from the thread's local omFreeList.
1115     // Threads will attempt to allocate first from their local list, then
1116     // from the global list, and only after those attempts fail will the thread
1117     // attempt to instantiate new monitors.   Thread-local free lists take
1118     // heat off the gListLock and improve allocation latency, as well as reducing
1119     // coherency traffic on the shared global list.
1120     m = Self->omFreeList;
1121     if (m != NULL) {
1122       Self->omFreeList = m->FreeNext;
1123       Self->omFreeCount--;
1124       // CONSIDER: set m->FreeNext = BAD -- diagnostic hygiene
1125       guarantee(m->object() == NULL, "invariant");
1126       if (MonitorInUseLists) {
1127         m->FreeNext = Self->omInUseList;
1128         Self->omInUseList = m;
1129         Self->omInUseCount++;
1130         if (ObjectMonitor::Knob_VerifyInUse) {
1131           verifyInUse(Self);
1132         }
1133       } else {
1134         m->FreeNext = NULL;
1135       }
1136       return m;
1137     }
1138 
1139     // 2: try to allocate from the global gFreeList
1140     // CONSIDER: use muxTry() instead of muxAcquire().
1141     // If the muxTry() fails then drop immediately into case 3.
1142     // If we're using thread-local free lists then try
1143     // to reprovision the caller's free list.
1144     if (gFreeList != NULL) {
1145       // Reprovision the thread's omFreeList.
1146       // Use bulk transfers to reduce the allocation rate and heat
1147       // on various locks.
1148       Thread::muxAcquire(&gListLock, "omAlloc");
1149       for (int i = Self->omFreeProvision; --i >= 0 && gFreeList != NULL;) {
1150         gMonitorFreeCount--;
1151         ObjectMonitor * take = gFreeList;
1152         gFreeList = take->FreeNext;
1153         guarantee(take->object() == NULL, "invariant");
1154         guarantee(!take->is_busy(), "invariant");
1155         take->Recycle();
1156         omRelease(Self, take, false);
1157       }
1158       Thread::muxRelease(&gListLock);
1159       Self->omFreeProvision += 1 + (Self->omFreeProvision/2);
1160       if (Self->omFreeProvision > MAXPRIVATE) Self->omFreeProvision = MAXPRIVATE;
1161       TEVENT(omFirst - reprovision);
1162 
1163       const int mx = MonitorBound;
1164       if (mx > 0 && (gMonitorPopulation-gMonitorFreeCount) > mx) {
1165         // We can't safely induce a STW safepoint from omAlloc() as our thread
1166         // state may not be appropriate for such activities and callers may hold
1167         // naked oops, so instead we defer the action.
1168         InduceScavenge(Self, "omAlloc");
1169       }
1170       continue;
1171     }
1172 
1173     // 3: allocate a block of new ObjectMonitors
1174     // Both the local and global free lists are empty -- resort to malloc().
1175     // In the current implementation objectMonitors are TSM - immortal.
1176     // Ideally, we'd write "new ObjectMonitor[_BLOCKSIZE], but we want
1177     // each ObjectMonitor to start at the beginning of a cache line,
1178     // so we use align_size_up().
1179     // A better solution would be to use C++ placement-new.
1180     // BEWARE: As it stands currently, we don't run the ctors!
1181     assert(_BLOCKSIZE > 1, "invariant");
1182     size_t neededsize = sizeof(PaddedEnd<ObjectMonitor>) * _BLOCKSIZE;
1183     PaddedEnd<ObjectMonitor> * temp;
1184     size_t aligned_size = neededsize + (DEFAULT_CACHE_LINE_SIZE - 1);
1185     void* real_malloc_addr = (void *)NEW_C_HEAP_ARRAY(char, aligned_size,
1186                                                       mtInternal);
1187     temp = (PaddedEnd<ObjectMonitor> *)
1188              align_size_up((intptr_t)real_malloc_addr,
1189                            DEFAULT_CACHE_LINE_SIZE);
1190 
1191     // NOTE: (almost) no way to recover if allocation failed.
1192     // We might be able to induce a STW safepoint and scavenge enough
1193     // objectMonitors to permit progress.
1194     if (temp == NULL) {
1195       vm_exit_out_of_memory(neededsize, OOM_MALLOC_ERROR,
1196                             "Allocate ObjectMonitors");
1197     }
1198     (void)memset((void *) temp, 0, neededsize);
1199 
1200     // Format the block.
1201     // initialize the linked list, each monitor points to its next
1202     // forming the single linked free list, the very first monitor
1203     // will points to next block, which forms the block list.
1204     // The trick of using the 1st element in the block as gBlockList
1205     // linkage should be reconsidered.  A better implementation would
1206     // look like: class Block { Block * next; int N; ObjectMonitor Body [N] ; }
1207 
1208     for (int i = 1; i < _BLOCKSIZE; i++) {
1209       temp[i].FreeNext = (ObjectMonitor *)&temp[i+1];
1210     }
1211 
1212     // terminate the last monitor as the end of list
1213     temp[_BLOCKSIZE - 1].FreeNext = NULL;
1214 
1215     // Element [0] is reserved for global list linkage
1216     temp[0].set_object(CHAINMARKER);
1217 
1218     // Consider carving out this thread's current request from the
1219     // block in hand.  This avoids some lock traffic and redundant
1220     // list activity.
1221 
1222     // Acquire the gListLock to manipulate gBlockList and gFreeList.
1223     // An Oyama-Taura-Yonezawa scheme might be more efficient.
1224     Thread::muxAcquire(&gListLock, "omAlloc [2]");
1225     gMonitorPopulation += _BLOCKSIZE-1;
1226     gMonitorFreeCount += _BLOCKSIZE-1;
1227 
1228     // Add the new block to the list of extant blocks (gBlockList).
1229     // The very first objectMonitor in a block is reserved and dedicated.
1230     // It serves as blocklist "next" linkage.
1231     temp[0].FreeNext = gBlockList;
1232     // There are lock-free uses of gBlockList so make sure that
1233     // the previous stores happen before we update gBlockList.
1234     OrderAccess::release_store_ptr(&gBlockList, temp);
1235 
1236     // Add the new string of objectMonitors to the global free list
1237     temp[_BLOCKSIZE - 1].FreeNext = gFreeList;
1238     gFreeList = temp + 1;
1239     Thread::muxRelease(&gListLock);
1240     TEVENT(Allocate block of monitors);
1241   }
1242 }
1243 
1244 // Place "m" on the caller's private per-thread omFreeList.
1245 // In practice there's no need to clamp or limit the number of
1246 // monitors on a thread's omFreeList as the only time we'll call
1247 // omRelease is to return a monitor to the free list after a CAS
1248 // attempt failed.  This doesn't allow unbounded #s of monitors to
1249 // accumulate on a thread's free list.
1250 //
1251 // Key constraint: all ObjectMonitors on a thread's free list and the global
1252 // free list must have their object field set to null. This prevents the
1253 // scavenger -- deflate_idle_monitors -- from reclaiming them.
1254 
1255 void ObjectSynchronizer::omRelease(Thread * Self, ObjectMonitor * m,
1256                                    bool fromPerThreadAlloc) {
1257   guarantee(m->object() == NULL, "invariant");
1258   guarantee(((m->is_busy()|m->_recursions) == 0), "freeing in-use monitor");
1259   // Remove from omInUseList
1260   if (MonitorInUseLists && fromPerThreadAlloc) {
1261     ObjectMonitor* cur_mid_in_use = NULL;
1262     bool extracted = false;
1263     for (ObjectMonitor* mid = Self->omInUseList; mid != NULL; cur_mid_in_use = mid, mid = mid->FreeNext) {
1264       if (m == mid) {
1265         // extract from per-thread in-use list
1266         if (mid == Self->omInUseList) {
1267           Self->omInUseList = mid->FreeNext;
1268         } else if (cur_mid_in_use != NULL) {
1269           cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1270         }
1271         extracted = true;
1272         Self->omInUseCount--;
1273         if (ObjectMonitor::Knob_VerifyInUse) {
1274           verifyInUse(Self);
1275         }
1276         break;
1277       }
1278     }
1279     assert(extracted, "Should have extracted from in-use list");
1280   }
1281 
1282   // FreeNext is used for both omInUseList and omFreeList, so clear old before setting new
1283   m->FreeNext = Self->omFreeList;
1284   Self->omFreeList = m;
1285   Self->omFreeCount++;
1286 }
1287 
1288 // Return the monitors of a moribund thread's local free list to
1289 // the global free list.  Typically a thread calls omFlush() when
1290 // it's dying.  We could also consider having the VM thread steal
1291 // monitors from threads that have not run java code over a few
1292 // consecutive STW safepoints.  Relatedly, we might decay
1293 // omFreeProvision at STW safepoints.
1294 //
1295 // Also return the monitors of a moribund thread's omInUseList to
1296 // a global gOmInUseList under the global list lock so these
1297 // will continue to be scanned.
1298 //
1299 // We currently call omFlush() from Threads::remove() _before the thread
1300 // has been excised from the thread list and is no longer a mutator.
1301 // This means that omFlush() can not run concurrently with a safepoint and
1302 // interleave with the scavenge operator. In particular, this ensures that
1303 // the thread's monitors are scanned by a GC safepoint, either via
1304 // Thread::oops_do() (if safepoint happens before omFlush()) or via
1305 // ObjectSynchronizer::oops_do() (if it happens after omFlush() and the thread's
1306 // monitors have been transferred to the global in-use list).
1307 
1308 void ObjectSynchronizer::omFlush(Thread * Self) {
1309   ObjectMonitor * list = Self->omFreeList;  // Null-terminated SLL
1310   Self->omFreeList = NULL;
1311   ObjectMonitor * tail = NULL;
1312   int tally = 0;
1313   if (list != NULL) {
1314     ObjectMonitor * s;
1315     // The thread is going away, the per-thread free monitors
1316     // are freed via set_owner(NULL)
1317     // Link them to tail, which will be linked into the global free list
1318     // gFreeList below, under the gListLock
1319     for (s = list; s != NULL; s = s->FreeNext) {
1320       tally++;
1321       tail = s;
1322       guarantee(s->object() == NULL, "invariant");
1323       guarantee(!s->is_busy(), "invariant");
1324       s->set_owner(NULL);   // redundant but good hygiene
1325       TEVENT(omFlush - Move one);
1326     }
1327     guarantee(tail != NULL && list != NULL, "invariant");
1328   }
1329 
1330   ObjectMonitor * inUseList = Self->omInUseList;
1331   ObjectMonitor * inUseTail = NULL;
1332   int inUseTally = 0;
1333   if (inUseList != NULL) {
1334     Self->omInUseList = NULL;
1335     ObjectMonitor *cur_om;
1336     // The thread is going away, however the omInUseList inflated
1337     // monitors may still be in-use by other threads.
1338     // Link them to inUseTail, which will be linked into the global in-use list
1339     // gOmInUseList below, under the gListLock
1340     for (cur_om = inUseList; cur_om != NULL; cur_om = cur_om->FreeNext) {
1341       inUseTail = cur_om;
1342       inUseTally++;
1343     }
1344     assert(Self->omInUseCount == inUseTally, "in-use count off");
1345     Self->omInUseCount = 0;
1346     guarantee(inUseTail != NULL && inUseList != NULL, "invariant");
1347   }
1348 
1349   Thread::muxAcquire(&gListLock, "omFlush");
1350   if (tail != NULL) {
1351     tail->FreeNext = gFreeList;
1352     gFreeList = list;
1353     gMonitorFreeCount += tally;
1354     assert(Self->omFreeCount == tally, "free-count off");
1355     Self->omFreeCount = 0;
1356   }
1357 
1358   if (inUseTail != NULL) {
1359     inUseTail->FreeNext = gOmInUseList;
1360     gOmInUseList = inUseList;
1361     gOmInUseCount += inUseTally;
1362   }
1363 
1364   Thread::muxRelease(&gListLock);
1365   TEVENT(omFlush);
1366 }
1367 
1368 // Fast path code shared by multiple functions
1369 ObjectMonitor* ObjectSynchronizer::inflate_helper(oop obj) {
1370   markOop mark = obj->mark();
1371   if (mark->has_monitor()) {
1372     assert(ObjectSynchronizer::verify_objmon_isinpool(mark->monitor()), "monitor is invalid");
1373     assert(mark->monitor()->header()->is_neutral(), "monitor must record a good object header");
1374     return mark->monitor();
1375   }
1376   return ObjectSynchronizer::inflate(Thread::current(),
1377                                      obj,
1378                                      inflate_cause_vm_internal);
1379 }
1380 
1381 #if INCLUDE_TRACE
1382 static void post_monitor_inflate_event(EventJavaMonitorInflate* event,
1383                                        const oop obj,
1384                                        ObjectSynchronizer::InflateCause cause) {
1385   assert(event != NULL, "invariant");
1386   if (event->should_commit()) {
1387     event->set_monitorClass(obj->klass());
1388     event->set_address((TYPE_ADDRESS)(uintptr_t)(void*)obj);
1389     event->set_cause((u1)cause);
1390     event->commit();
1391   }
1392 }
1393 #endif
1394 
1395 ObjectMonitor* ObjectSynchronizer::inflate(Thread * Self,
1396                                            oop object,
1397                                            const InflateCause cause) {
1398 
1399   // Inflate mutates the heap ...
1400   // Relaxing assertion for bug 6320749.
1401   assert(Universe::verify_in_progress() ||
1402          !SafepointSynchronize::is_at_safepoint(), "invariant");
1403 
1404   TRACE_ONLY(EventJavaMonitorInflate event;)
1405 
1406   for (;;) {
1407     const markOop mark = object->mark();
1408     assert(!mark->has_bias_pattern(), "invariant");
1409 
1410     // The mark can be in one of the following states:
1411     // *  Inflated     - just return
1412     // *  Stack-locked - coerce it to inflated
1413     // *  INFLATING    - busy wait for conversion to complete
1414     // *  Neutral      - aggressively inflate the object.
1415     // *  BIASED       - Illegal.  We should never see this
1416 
1417     // CASE: inflated
1418     if (mark->has_monitor()) {
1419       ObjectMonitor * inf = mark->monitor();
1420       assert(inf->header()->is_neutral(), "invariant");
1421       assert(inf->object() == object, "invariant");
1422       assert(ObjectSynchronizer::verify_objmon_isinpool(inf), "monitor is invalid");
1423       return inf;
1424     }
1425 
1426     // CASE: inflation in progress - inflating over a stack-lock.
1427     // Some other thread is converting from stack-locked to inflated.
1428     // Only that thread can complete inflation -- other threads must wait.
1429     // The INFLATING value is transient.
1430     // Currently, we spin/yield/park and poll the markword, waiting for inflation to finish.
1431     // We could always eliminate polling by parking the thread on some auxiliary list.
1432     if (mark == markOopDesc::INFLATING()) {
1433       TEVENT(Inflate: spin while INFLATING);
1434       ReadStableMark(object);
1435       continue;
1436     }
1437 
1438     // CASE: stack-locked
1439     // Could be stack-locked either by this thread or by some other thread.
1440     //
1441     // Note that we allocate the objectmonitor speculatively, _before_ attempting
1442     // to install INFLATING into the mark word.  We originally installed INFLATING,
1443     // allocated the objectmonitor, and then finally STed the address of the
1444     // objectmonitor into the mark.  This was correct, but artificially lengthened
1445     // the interval in which INFLATED appeared in the mark, thus increasing
1446     // the odds of inflation contention.
1447     //
1448     // We now use per-thread private objectmonitor free lists.
1449     // These list are reprovisioned from the global free list outside the
1450     // critical INFLATING...ST interval.  A thread can transfer
1451     // multiple objectmonitors en-mass from the global free list to its local free list.
1452     // This reduces coherency traffic and lock contention on the global free list.
1453     // Using such local free lists, it doesn't matter if the omAlloc() call appears
1454     // before or after the CAS(INFLATING) operation.
1455     // See the comments in omAlloc().
1456 
1457     if (mark->has_locker()) {
1458       ObjectMonitor * m = omAlloc(Self);
1459       // Optimistically prepare the objectmonitor - anticipate successful CAS
1460       // We do this before the CAS in order to minimize the length of time
1461       // in which INFLATING appears in the mark.
1462       m->Recycle();
1463       m->_Responsible  = NULL;
1464       m->_recursions   = 0;
1465       m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;   // Consider: maintain by type/class
1466 
1467       markOop cmp = (markOop) Atomic::cmpxchg_ptr(markOopDesc::INFLATING(), object->mark_addr(), mark);
1468       if (cmp != mark) {
1469         omRelease(Self, m, true);
1470         continue;       // Interference -- just retry
1471       }
1472 
1473       // We've successfully installed INFLATING (0) into the mark-word.
1474       // This is the only case where 0 will appear in a mark-word.
1475       // Only the singular thread that successfully swings the mark-word
1476       // to 0 can perform (or more precisely, complete) inflation.
1477       //
1478       // Why do we CAS a 0 into the mark-word instead of just CASing the
1479       // mark-word from the stack-locked value directly to the new inflated state?
1480       // Consider what happens when a thread unlocks a stack-locked object.
1481       // It attempts to use CAS to swing the displaced header value from the
1482       // on-stack basiclock back into the object header.  Recall also that the
1483       // header value (hashcode, etc) can reside in (a) the object header, or
1484       // (b) a displaced header associated with the stack-lock, or (c) a displaced
1485       // header in an objectMonitor.  The inflate() routine must copy the header
1486       // value from the basiclock on the owner's stack to the objectMonitor, all
1487       // the while preserving the hashCode stability invariants.  If the owner
1488       // decides to release the lock while the value is 0, the unlock will fail
1489       // and control will eventually pass from slow_exit() to inflate.  The owner
1490       // will then spin, waiting for the 0 value to disappear.   Put another way,
1491       // the 0 causes the owner to stall if the owner happens to try to
1492       // drop the lock (restoring the header from the basiclock to the object)
1493       // while inflation is in-progress.  This protocol avoids races that might
1494       // would otherwise permit hashCode values to change or "flicker" for an object.
1495       // Critically, while object->mark is 0 mark->displaced_mark_helper() is stable.
1496       // 0 serves as a "BUSY" inflate-in-progress indicator.
1497 
1498 
1499       // fetch the displaced mark from the owner's stack.
1500       // The owner can't die or unwind past the lock while our INFLATING
1501       // object is in the mark.  Furthermore the owner can't complete
1502       // an unlock on the object, either.
1503       markOop dmw = mark->displaced_mark_helper();
1504       assert(dmw->is_neutral(), "invariant");
1505 
1506       // Setup monitor fields to proper values -- prepare the monitor
1507       m->set_header(dmw);
1508 
1509       // Optimization: if the mark->locker stack address is associated
1510       // with this thread we could simply set m->_owner = Self.
1511       // Note that a thread can inflate an object
1512       // that it has stack-locked -- as might happen in wait() -- directly
1513       // with CAS.  That is, we can avoid the xchg-NULL .... ST idiom.
1514       m->set_owner(mark->locker());
1515       m->set_object(object);
1516       // TODO-FIXME: assert BasicLock->dhw != 0.
1517 
1518       // Must preserve store ordering. The monitor state must
1519       // be stable at the time of publishing the monitor address.
1520       guarantee(object->mark() == markOopDesc::INFLATING(), "invariant");
1521       object->release_set_mark(markOopDesc::encode(m));
1522 
1523       // Hopefully the performance counters are allocated on distinct cache lines
1524       // to avoid false sharing on MP systems ...
1525       OM_PERFDATA_OP(Inflations, inc());
1526       TEVENT(Inflate: overwrite stacklock);
1527       if (log_is_enabled(Debug, monitorinflation)) {
1528         if (object->is_instance()) {
1529           ResourceMark rm;
1530           log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1531                                       p2i(object), p2i(object->mark()),
1532                                       object->klass()->external_name());
1533         }
1534       }
1535       TRACE_ONLY(post_monitor_inflate_event(&event, object, cause);)
1536       return m;
1537     }
1538 
1539     // CASE: neutral
1540     // TODO-FIXME: for entry we currently inflate and then try to CAS _owner.
1541     // If we know we're inflating for entry it's better to inflate by swinging a
1542     // pre-locked objectMonitor pointer into the object header.   A successful
1543     // CAS inflates the object *and* confers ownership to the inflating thread.
1544     // In the current implementation we use a 2-step mechanism where we CAS()
1545     // to inflate and then CAS() again to try to swing _owner from NULL to Self.
1546     // An inflateTry() method that we could call from fast_enter() and slow_enter()
1547     // would be useful.
1548 
1549     assert(mark->is_neutral(), "invariant");
1550     ObjectMonitor * m = omAlloc(Self);
1551     // prepare m for installation - set monitor to initial state
1552     m->Recycle();
1553     m->set_header(mark);
1554     m->set_owner(NULL);
1555     m->set_object(object);
1556     m->_recursions   = 0;
1557     m->_Responsible  = NULL;
1558     m->_SpinDuration = ObjectMonitor::Knob_SpinLimit;       // consider: keep metastats by type/class
1559 
1560     if (Atomic::cmpxchg_ptr (markOopDesc::encode(m), object->mark_addr(), mark) != mark) {
1561       m->set_object(NULL);
1562       m->set_owner(NULL);
1563       m->Recycle();
1564       omRelease(Self, m, true);
1565       m = NULL;
1566       continue;
1567       // interference - the markword changed - just retry.
1568       // The state-transitions are one-way, so there's no chance of
1569       // live-lock -- "Inflated" is an absorbing state.
1570     }
1571 
1572     // Hopefully the performance counters are allocated on distinct
1573     // cache lines to avoid false sharing on MP systems ...
1574     OM_PERFDATA_OP(Inflations, inc());
1575     TEVENT(Inflate: overwrite neutral);
1576     if (log_is_enabled(Debug, monitorinflation)) {
1577       if (object->is_instance()) {
1578         ResourceMark rm;
1579         log_debug(monitorinflation)("Inflating object " INTPTR_FORMAT " , mark " INTPTR_FORMAT " , type %s",
1580                                     p2i(object), p2i(object->mark()),
1581                                     object->klass()->external_name());
1582       }
1583     }
1584     TRACE_ONLY(post_monitor_inflate_event(&event, object, cause);)
1585     return m;
1586   }
1587 }
1588 
1589 
1590 // Deflate_idle_monitors() is called at all safepoints, immediately
1591 // after all mutators are stopped, but before any objects have moved.
1592 // It traverses the list of known monitors, deflating where possible.
1593 // The scavenged monitor are returned to the monitor free list.
1594 //
1595 // Beware that we scavenge at *every* stop-the-world point.
1596 // Having a large number of monitors in-circulation negatively
1597 // impacts the performance of some applications (e.g., PointBase).
1598 // Broadly, we want to minimize the # of monitors in circulation.
1599 //
1600 // We have added a flag, MonitorInUseLists, which creates a list
1601 // of active monitors for each thread. deflate_idle_monitors()
1602 // only scans the per-thread in-use lists. omAlloc() puts all
1603 // assigned monitors on the per-thread list. deflate_idle_monitors()
1604 // returns the non-busy monitors to the global free list.
1605 // When a thread dies, omFlush() adds the list of active monitors for
1606 // that thread to a global gOmInUseList acquiring the
1607 // global list lock. deflate_idle_monitors() acquires the global
1608 // list lock to scan for non-busy monitors to the global free list.
1609 // An alternative could have used a single global in-use list. The
1610 // downside would have been the additional cost of acquiring the global list lock
1611 // for every omAlloc().
1612 //
1613 // Perversely, the heap size -- and thus the STW safepoint rate --
1614 // typically drives the scavenge rate.  Large heaps can mean infrequent GC,
1615 // which in turn can mean large(r) numbers of objectmonitors in circulation.
1616 // This is an unfortunate aspect of this design.
1617 
1618 enum ManifestConstants {
1619   ClearResponsibleAtSTW = 0
1620 };
1621 
1622 // Deflate a single monitor if not in-use
1623 // Return true if deflated, false if in-use
1624 bool ObjectSynchronizer::deflate_monitor(ObjectMonitor* mid, oop obj,
1625                                          ObjectMonitor** freeHeadp,
1626                                          ObjectMonitor** freeTailp) {
1627   bool deflated;
1628   // Normal case ... The monitor is associated with obj.
1629   guarantee(obj->mark() == markOopDesc::encode(mid), "invariant");
1630   guarantee(mid == obj->mark()->monitor(), "invariant");
1631   guarantee(mid->header()->is_neutral(), "invariant");
1632 
1633   if (mid->is_busy()) {
1634     if (ClearResponsibleAtSTW) mid->_Responsible = NULL;
1635     deflated = false;
1636   } else {
1637     // Deflate the monitor if it is no longer being used
1638     // It's idle - scavenge and return to the global free list
1639     // plain old deflation ...
1640     TEVENT(deflate_idle_monitors - scavenge1);
1641     if (log_is_enabled(Debug, monitorinflation)) {
1642       if (obj->is_instance()) {
1643         ResourceMark rm;
1644         log_debug(monitorinflation)("Deflating object " INTPTR_FORMAT " , "
1645                                     "mark " INTPTR_FORMAT " , type %s",
1646                                     p2i(obj), p2i(obj->mark()),
1647                                     obj->klass()->external_name());
1648       }
1649     }
1650 
1651     // Restore the header back to obj
1652     obj->release_set_mark(mid->header());
1653     mid->clear();
1654 
1655     assert(mid->object() == NULL, "invariant");
1656 
1657     // Move the object to the working free list defined by freeHeadp, freeTailp
1658     if (*freeHeadp == NULL) *freeHeadp = mid;
1659     if (*freeTailp != NULL) {
1660       ObjectMonitor * prevtail = *freeTailp;
1661       assert(prevtail->FreeNext == NULL, "cleaned up deflated?");
1662       prevtail->FreeNext = mid;
1663     }
1664     *freeTailp = mid;
1665     deflated = true;
1666   }
1667   return deflated;
1668 }
1669 
1670 // Walk a given monitor list, and deflate idle monitors
1671 // The given list could be a per-thread list or a global list
1672 // Caller acquires gListLock
1673 int ObjectSynchronizer::deflate_monitor_list(ObjectMonitor** listHeadp,
1674                                              ObjectMonitor** freeHeadp,
1675                                              ObjectMonitor** freeTailp) {
1676   ObjectMonitor* mid;
1677   ObjectMonitor* next;
1678   ObjectMonitor* cur_mid_in_use = NULL;
1679   int deflated_count = 0;
1680 
1681   for (mid = *listHeadp; mid != NULL;) {
1682     oop obj = (oop) mid->object();
1683     if (obj != NULL && deflate_monitor(mid, obj, freeHeadp, freeTailp)) {
1684       // if deflate_monitor succeeded,
1685       // extract from per-thread in-use list
1686       if (mid == *listHeadp) {
1687         *listHeadp = mid->FreeNext;
1688       } else if (cur_mid_in_use != NULL) {
1689         cur_mid_in_use->FreeNext = mid->FreeNext; // maintain the current thread in-use list
1690       }
1691       next = mid->FreeNext;
1692       mid->FreeNext = NULL;  // This mid is current tail in the freeHeadp list
1693       mid = next;
1694       deflated_count++;
1695     } else {
1696       cur_mid_in_use = mid;
1697       mid = mid->FreeNext;
1698     }
1699   }
1700   return deflated_count;
1701 }
1702 
1703 void ObjectSynchronizer::deflate_idle_monitors() {
1704   assert(SafepointSynchronize::is_at_safepoint(), "must be at safepoint");
1705   int nInuse = 0;              // currently associated with objects
1706   int nInCirculation = 0;      // extant
1707   int nScavenged = 0;          // reclaimed
1708   bool deflated = false;
1709 
1710   ObjectMonitor * freeHeadp = NULL;  // Local SLL of scavenged monitors
1711   ObjectMonitor * freeTailp = NULL;
1712 
1713   TEVENT(deflate_idle_monitors);
1714   // Prevent omFlush from changing mids in Thread dtor's during deflation
1715   // And in case the vm thread is acquiring a lock during a safepoint
1716   // See e.g. 6320749
1717   Thread::muxAcquire(&gListLock, "scavenge - return");
1718 
1719   if (MonitorInUseLists) {
1720     int inUse = 0;
1721     for (JavaThread* cur = Threads::first(); cur != NULL; cur = cur->next()) {
1722       nInCirculation+= cur->omInUseCount;
1723       int deflated_count = deflate_monitor_list(cur->omInUseList_addr(), &freeHeadp, &freeTailp);
1724       cur->omInUseCount-= deflated_count;
1725       if (ObjectMonitor::Knob_VerifyInUse) {
1726         verifyInUse(cur);
1727       }
1728       nScavenged += deflated_count;
1729       nInuse += cur->omInUseCount;
1730     }
1731 
1732     // For moribund threads, scan gOmInUseList
1733     if (gOmInUseList) {
1734       nInCirculation += gOmInUseCount;
1735       int deflated_count = deflate_monitor_list((ObjectMonitor **)&gOmInUseList, &freeHeadp, &freeTailp);
1736       gOmInUseCount-= deflated_count;
1737       nScavenged += deflated_count;
1738       nInuse += gOmInUseCount;
1739     }
1740 
1741   } else {
1742     PaddedEnd<ObjectMonitor> * block =
1743       (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1744     for (; block != NULL; block = (PaddedEnd<ObjectMonitor> *)next(block)) {
1745       // Iterate over all extant monitors - Scavenge all idle monitors.
1746       assert(block->object() == CHAINMARKER, "must be a block header");
1747       nInCirculation += _BLOCKSIZE;
1748       for (int i = 1; i < _BLOCKSIZE; i++) {
1749         ObjectMonitor* mid = (ObjectMonitor*)&block[i];
1750         oop obj = (oop)mid->object();
1751 
1752         if (obj == NULL) {
1753           // The monitor is not associated with an object.
1754           // The monitor should either be a thread-specific private
1755           // free list or the global free list.
1756           // obj == NULL IMPLIES mid->is_busy() == 0
1757           guarantee(!mid->is_busy(), "invariant");
1758           continue;
1759         }
1760         deflated = deflate_monitor(mid, obj, &freeHeadp, &freeTailp);
1761 
1762         if (deflated) {
1763           mid->FreeNext = NULL;
1764           nScavenged++;
1765         } else {
1766           nInuse++;
1767         }
1768       }
1769     }
1770   }
1771 
1772   gMonitorFreeCount += nScavenged;
1773 
1774   // Consider: audit gFreeList to ensure that gMonitorFreeCount and list agree.
1775 
1776   if (ObjectMonitor::Knob_Verbose) {
1777     tty->print_cr("INFO: Deflate: InCirc=%d InUse=%d Scavenged=%d "
1778                   "ForceMonitorScavenge=%d : pop=%d free=%d",
1779                   nInCirculation, nInuse, nScavenged, ForceMonitorScavenge,
1780                   gMonitorPopulation, gMonitorFreeCount);
1781     tty->flush();
1782   }
1783 
1784   ForceMonitorScavenge = 0;    // Reset
1785 
1786   // Move the scavenged monitors back to the global free list.
1787   if (freeHeadp != NULL) {
1788     guarantee(freeTailp != NULL && nScavenged > 0, "invariant");
1789     assert(freeTailp->FreeNext == NULL, "invariant");
1790     // constant-time list splice - prepend scavenged segment to gFreeList
1791     freeTailp->FreeNext = gFreeList;
1792     gFreeList = freeHeadp;
1793   }
1794   Thread::muxRelease(&gListLock);
1795 
1796   OM_PERFDATA_OP(Deflations, inc(nScavenged));
1797   OM_PERFDATA_OP(MonExtant, set_value(nInCirculation));
1798 
1799   // TODO: Add objectMonitor leak detection.
1800   // Audit/inventory the objectMonitors -- make sure they're all accounted for.
1801   GVars.stwRandom = os::random();
1802   GVars.stwCycle++;
1803 }
1804 
1805 // Monitor cleanup on JavaThread::exit
1806 
1807 // Iterate through monitor cache and attempt to release thread's monitors
1808 // Gives up on a particular monitor if an exception occurs, but continues
1809 // the overall iteration, swallowing the exception.
1810 class ReleaseJavaMonitorsClosure: public MonitorClosure {
1811  private:
1812   TRAPS;
1813 
1814  public:
1815   ReleaseJavaMonitorsClosure(Thread* thread) : THREAD(thread) {}
1816   void do_monitor(ObjectMonitor* mid) {
1817     if (mid->owner() == THREAD) {
1818       if (ObjectMonitor::Knob_VerifyMatch != 0) {
1819         ResourceMark rm;
1820         Handle obj(THREAD, (oop) mid->object());
1821         tty->print("INFO: unexpected locked object:");
1822         javaVFrame::print_locked_object_class_name(tty, obj, "locked");
1823         fatal("exiting JavaThread=" INTPTR_FORMAT
1824               " unexpectedly owns ObjectMonitor=" INTPTR_FORMAT,
1825               p2i(THREAD), p2i(mid));
1826       }
1827       (void)mid->complete_exit(CHECK);
1828     }
1829   }
1830 };
1831 
1832 // Release all inflated monitors owned by THREAD.  Lightweight monitors are
1833 // ignored.  This is meant to be called during JNI thread detach which assumes
1834 // all remaining monitors are heavyweight.  All exceptions are swallowed.
1835 // Scanning the extant monitor list can be time consuming.
1836 // A simple optimization is to add a per-thread flag that indicates a thread
1837 // called jni_monitorenter() during its lifetime.
1838 //
1839 // Instead of No_Savepoint_Verifier it might be cheaper to
1840 // use an idiom of the form:
1841 //   auto int tmp = SafepointSynchronize::_safepoint_counter ;
1842 //   <code that must not run at safepoint>
1843 //   guarantee (((tmp ^ _safepoint_counter) | (tmp & 1)) == 0) ;
1844 // Since the tests are extremely cheap we could leave them enabled
1845 // for normal product builds.
1846 
1847 void ObjectSynchronizer::release_monitors_owned_by_thread(TRAPS) {
1848   assert(THREAD == JavaThread::current(), "must be current Java thread");
1849   NoSafepointVerifier nsv;
1850   ReleaseJavaMonitorsClosure rjmc(THREAD);
1851   Thread::muxAcquire(&gListLock, "release_monitors_owned_by_thread");
1852   ObjectSynchronizer::monitors_iterate(&rjmc);
1853   Thread::muxRelease(&gListLock);
1854   THREAD->clear_pending_exception();
1855 }
1856 
1857 const char* ObjectSynchronizer::inflate_cause_name(const InflateCause cause) {
1858   switch (cause) {
1859     case inflate_cause_vm_internal:    return "VM Internal";
1860     case inflate_cause_monitor_enter:  return "Monitor Enter";
1861     case inflate_cause_wait:           return "Monitor Wait";
1862     case inflate_cause_notify:         return "Monitor Notify";
1863     case inflate_cause_hash_code:      return "Monitor Hash Code";
1864     case inflate_cause_jni_enter:      return "JNI Monitor Enter";
1865     case inflate_cause_jni_exit:       return "JNI Monitor Exit";
1866     default:
1867       ShouldNotReachHere();
1868   }
1869   return "Unknown";
1870 }
1871 
1872 //------------------------------------------------------------------------------
1873 // Debugging code
1874 
1875 void ObjectSynchronizer::sanity_checks(const bool verbose,
1876                                        const uint cache_line_size,
1877                                        int *error_cnt_ptr,
1878                                        int *warning_cnt_ptr) {
1879   u_char *addr_begin      = (u_char*)&GVars;
1880   u_char *addr_stwRandom  = (u_char*)&GVars.stwRandom;
1881   u_char *addr_hcSequence = (u_char*)&GVars.hcSequence;
1882 
1883   if (verbose) {
1884     tty->print_cr("INFO: sizeof(SharedGlobals)=" SIZE_FORMAT,
1885                   sizeof(SharedGlobals));
1886   }
1887 
1888   uint offset_stwRandom = (uint)(addr_stwRandom - addr_begin);
1889   if (verbose) tty->print_cr("INFO: offset(stwRandom)=%u", offset_stwRandom);
1890 
1891   uint offset_hcSequence = (uint)(addr_hcSequence - addr_begin);
1892   if (verbose) {
1893     tty->print_cr("INFO: offset(_hcSequence)=%u", offset_hcSequence);
1894   }
1895 
1896   if (cache_line_size != 0) {
1897     // We were able to determine the L1 data cache line size so
1898     // do some cache line specific sanity checks
1899 
1900     if (offset_stwRandom < cache_line_size) {
1901       tty->print_cr("WARNING: the SharedGlobals.stwRandom field is closer "
1902                     "to the struct beginning than a cache line which permits "
1903                     "false sharing.");
1904       (*warning_cnt_ptr)++;
1905     }
1906 
1907     if ((offset_hcSequence - offset_stwRandom) < cache_line_size) {
1908       tty->print_cr("WARNING: the SharedGlobals.stwRandom and "
1909                     "SharedGlobals.hcSequence fields are closer than a cache "
1910                     "line which permits false sharing.");
1911       (*warning_cnt_ptr)++;
1912     }
1913 
1914     if ((sizeof(SharedGlobals) - offset_hcSequence) < cache_line_size) {
1915       tty->print_cr("WARNING: the SharedGlobals.hcSequence field is closer "
1916                     "to the struct end than a cache line which permits false "
1917                     "sharing.");
1918       (*warning_cnt_ptr)++;
1919     }
1920   }
1921 }
1922 
1923 #ifndef PRODUCT
1924 
1925 // Check if monitor belongs to the monitor cache
1926 // The list is grow-only so it's *relatively* safe to traverse
1927 // the list of extant blocks without taking a lock.
1928 
1929 int ObjectSynchronizer::verify_objmon_isinpool(ObjectMonitor *monitor) {
1930   PaddedEnd<ObjectMonitor> * block =
1931     (PaddedEnd<ObjectMonitor> *)OrderAccess::load_ptr_acquire(&gBlockList);
1932   while (block != NULL) {
1933     assert(block->object() == CHAINMARKER, "must be a block header");
1934     if (monitor > (ObjectMonitor *)&block[0] &&
1935         monitor < (ObjectMonitor *)&block[_BLOCKSIZE]) {
1936       address mon = (address)monitor;
1937       address blk = (address)block;
1938       size_t diff = mon - blk;
1939       assert((diff % sizeof(PaddedEnd<ObjectMonitor>)) == 0, "must be aligned");
1940       return 1;
1941     }
1942     block = (PaddedEnd<ObjectMonitor> *)block->FreeNext;
1943   }
1944   return 0;
1945 }
1946 
1947 #endif