--- /dev/null 2017-11-09 09:38:01.297999907 +0100 +++ new/src/hotspot/os/linux/os_perf_linux.cpp 2018-04-09 14:25:41.561677593 +0200 @@ -0,0 +1,1060 @@ +/* + * Copyright (c) 2012, 2018, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "jvm.h" +#include "memory/allocation.inline.hpp" +#include "os_linux.inline.hpp" +#include "runtime/os.hpp" +#include "runtime/os_perf.hpp" + +#ifdef X86 +#include "vm_version_ext_x86.hpp" +#endif +#ifdef ARM +#include "vm_version_ext_arm.hpp" +#endif +#ifndef ARM +#ifdef AARCH64 +#include "vm_version_ext_aarch64.hpp" +#endif +#endif + +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +/** + /proc/[number]/stat + Status information about the process. This is used by ps(1). It is defined in /usr/src/linux/fs/proc/array.c. + + The fields, in order, with their proper scanf(3) format specifiers, are: + + 1. pid %d The process id. + + 2. comm %s + The filename of the executable, in parentheses. This is visible whether or not the executable is swapped out. + + 3. state %c + One character from the string "RSDZTW" where R is running, S is sleeping in an interruptible wait, D is waiting in uninterruptible disk + sleep, Z is zombie, T is traced or stopped (on a signal), and W is paging. + + 4. ppid %d + The PID of the parent. + + 5. pgrp %d + The process group ID of the process. + + 6. session %d + The session ID of the process. + + 7. tty_nr %d + The tty the process uses. + + 8. tpgid %d + The process group ID of the process which currently owns the tty that the process is connected to. + + 9. flags %lu + The flags of the process. The math bit is decimal 4, and the traced bit is decimal 10. + + 10. minflt %lu + The number of minor faults the process has made which have not required loading a memory page from disk. + + 11. cminflt %lu + The number of minor faults that the process's waited-for children have made. + + 12. majflt %lu + The number of major faults the process has made which have required loading a memory page from disk. + + 13. cmajflt %lu + The number of major faults that the process's waited-for children have made. + + 14. utime %lu + The number of jiffies that this process has been scheduled in user mode. + + 15. stime %lu + The number of jiffies that this process has been scheduled in kernel mode. + + 16. cutime %ld + The number of jiffies that this process's waited-for children have been scheduled in user mode. (See also times(2).) + + 17. cstime %ld + The number of jiffies that this process' waited-for children have been scheduled in kernel mode. + + 18. priority %ld + The standard nice value, plus fifteen. The value is never negative in the kernel. + + 19. nice %ld + The nice value ranges from 19 (nicest) to -19 (not nice to others). + + 20. 0 %ld This value is hard coded to 0 as a placeholder for a removed field. + + 21. itrealvalue %ld + The time in jiffies before the next SIGALRM is sent to the process due to an interval timer. + + 22. starttime %lu + The time in jiffies the process started after system boot. + + 23. vsize %lu + Virtual memory size in bytes. + + 24. rss %ld + Resident Set Size: number of pages the process has in real memory, minus 3 for administrative purposes. This is just the pages which count + towards text, data, or stack space. This does not include pages which have not been demand-loaded in, or which are swapped out. + + 25. rlim %lu + Current limit in bytes on the rss of the process (usually 4294967295 on i386). + + 26. startcode %lu + The address above which program text can run. + + 27. endcode %lu + The address below which program text can run. + + 28. startstack %lu + The address of the start of the stack. + + 29. kstkesp %lu + The current value of esp (stack pointer), as found in the kernel stack page for the process. + + 30. kstkeip %lu + The current EIP (instruction pointer). + + 31. signal %lu + The bitmap of pending signals (usually 0). + + 32. blocked %lu + The bitmap of blocked signals (usually 0, 2 for shells). + + 33. sigignore %lu + The bitmap of ignored signals. + + 34. sigcatch %lu + The bitmap of catched signals. + + 35. wchan %lu + This is the "channel" in which the process is waiting. It is the address of a system call, and can be looked up in a namelist if you need + a textual name. (If you have an up-to-date /etc/psdatabase, then try ps -l to see the WCHAN field in action.) + + 36. nswap %lu + Number of pages swapped - not maintained. + + 37. cnswap %lu + Cumulative nswap for child processes. + + 38. exit_signal %d + Signal to be sent to parent when we die. + + 39. processor %d + CPU number last executed on. + + + + ///// SSCANF FORMAT STRING. Copy and use. + +field: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 +format: %d %s %c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld %lu %lu %ld %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %lu %d %d + + +*/ + +/** + * For platforms that have them, when declaring + * a printf-style function, + * formatSpec is the parameter number (starting at 1) + * that is the format argument ("%d pid %s") + * params is the parameter number where the actual args to + * the format starts. If the args are in a va_list, this + * should be 0. + */ +#ifndef PRINTF_ARGS +# define PRINTF_ARGS(formatSpec, params) ATTRIBUTE_PRINTF(formatSpec, params) +#endif + +#ifndef SCANF_ARGS +# define SCANF_ARGS(formatSpec, params) ATTRIBUTE_SCANF(formatSpec, params) +#endif + +#ifndef _PRINTFMT_ +# define _PRINTFMT_ +#endif + +#ifndef _SCANFMT_ +# define _SCANFMT_ +#endif + + +struct CPUPerfTicks { + uint64_t used; + uint64_t usedKernel; + uint64_t total; +}; + +typedef enum { + CPU_LOAD_VM_ONLY, + CPU_LOAD_GLOBAL, +} CpuLoadTarget; + +enum { + UNDETECTED, + UNDETECTABLE, + LINUX26_NPTL, + BAREMETAL +}; + +struct CPUPerfCounters { + int nProcs; + CPUPerfTicks jvmTicks; + CPUPerfTicks* cpus; +}; + +static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target); + +/** reads /proc//stat data, with some checks and some skips. + * Ensure that 'fmt' does _NOT_ contain the first two "%d %s" + */ +static int SCANF_ARGS(2, 0) vread_statdata(const char* procfile, _SCANFMT_ const char* fmt, va_list args) { + FILE*f; + int n; + char buf[2048]; + + if ((f = fopen(procfile, "r")) == NULL) { + return -1; + } + + if ((n = fread(buf, 1, sizeof(buf), f)) != -1) { + char *tmp; + + buf[n-1] = '\0'; + /** skip through pid and exec name. */ + if ((tmp = strrchr(buf, ')')) != NULL) { + // skip the ')' and the following space + // but check that buffer is long enough + tmp += 2; + if (tmp < buf + n) { + n = vsscanf(tmp, fmt, args); + } + } + } + + fclose(f); + + return n; +} + +static int SCANF_ARGS(2, 3) read_statdata(const char* procfile, _SCANFMT_ const char* fmt, ...) { + int n; + va_list args; + + va_start(args, fmt); + n = vread_statdata(procfile, fmt, args); + va_end(args); + return n; +} + +static FILE* open_statfile(void) { + FILE *f; + + if ((f = fopen("/proc/stat", "r")) == NULL) { + static int haveWarned = 0; + if (!haveWarned) { + haveWarned = 1; + } + } + return f; +} + +static void +next_line(FILE *f) { + int c; + do { + c = fgetc(f); + } while (c != '\n' && c != EOF); +} + +/** + * Return the total number of ticks since the system was booted. + * If the usedTicks parameter is not NULL, it will be filled with + * the number of ticks spent on actual processes (user, system or + * nice processes) since system boot. Note that this is the total number + * of "executed" ticks on _all_ CPU:s, that is on a n-way system it is + * n times the number of ticks that has passed in clock time. + * + * Returns a negative value if the reading of the ticks failed. + */ +static OSReturn get_total_ticks(int which_logical_cpu, CPUPerfTicks* pticks) { + FILE* fh; + uint64_t userTicks, niceTicks, systemTicks, idleTicks; + uint64_t iowTicks = 0, irqTicks = 0, sirqTicks= 0; + int logical_cpu = -1; + const int expected_assign_count = (-1 == which_logical_cpu) ? 4 : 5; + int n; + + if ((fh = open_statfile()) == NULL) { + return OS_ERR; + } + if (-1 == which_logical_cpu) { + n = fscanf(fh, "cpu " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " + UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT, + &userTicks, &niceTicks, &systemTicks, &idleTicks, + &iowTicks, &irqTicks, &sirqTicks); + } else { + // Move to next line + next_line(fh); + + // find the line for requested cpu faster to just iterate linefeeds? + for (int i = 0; i < which_logical_cpu; i++) { + next_line(fh); + } + + n = fscanf(fh, "cpu%u " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " + UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT, + &logical_cpu, &userTicks, &niceTicks, + &systemTicks, &idleTicks, &iowTicks, &irqTicks, &sirqTicks); + } + + fclose(fh); + if (n < expected_assign_count || logical_cpu != which_logical_cpu) { +#ifdef DEBUG_LINUX_PROC_STAT + vm_fprintf(stderr, "[stat] read failed"); +#endif + return OS_ERR; + } + +#ifdef DEBUG_LINUX_PROC_STAT + vm_fprintf(stderr, "[stat] read " + UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " " + UINT64_FORMAT " " UINT64_FORMAT " " UINT64_FORMAT " \n", + userTicks, niceTicks, systemTicks, idleTicks, + iowTicks, irqTicks, sirqTicks); +#endif + + pticks->used = userTicks + niceTicks; + pticks->usedKernel = systemTicks + irqTicks + sirqTicks; + pticks->total = userTicks + niceTicks + systemTicks + idleTicks + + iowTicks + irqTicks + sirqTicks; + + return OS_OK; +} + + +static int get_systemtype(void) { + static int procEntriesType = UNDETECTED; + DIR *taskDir; + + if (procEntriesType != UNDETECTED) { + return procEntriesType; + } + + // Check whether we have a task subdirectory + if ((taskDir = opendir("/proc/self/task")) == NULL) { + procEntriesType = UNDETECTABLE; + } else { + // The task subdirectory exists; we're on a Linux >= 2.6 system + closedir(taskDir); + procEntriesType = LINUX26_NPTL; + } + + return procEntriesType; +} + +/** read user and system ticks from a named procfile, assumed to be in 'stat' format then. */ +static int read_ticks(const char* procfile, uint64_t* userTicks, uint64_t* systemTicks) { + return read_statdata(procfile, "%*c %*d %*d %*d %*d %*d %*u %*u %*u %*u %*u " UINT64_FORMAT " " UINT64_FORMAT, + userTicks, systemTicks); +} + +/** + * Return the number of ticks spent in any of the processes belonging + * to the JVM on any CPU. + */ +static OSReturn get_jvm_ticks(CPUPerfTicks* pticks) { + uint64_t userTicks; + uint64_t systemTicks; + + if (get_systemtype() != LINUX26_NPTL) { + return OS_ERR; + } + + if (read_ticks("/proc/self/stat", &userTicks, &systemTicks) != 2) { + return OS_ERR; + } + + // get the total + if (get_total_ticks(-1, pticks) != OS_OK) { + return OS_ERR; + } + + pticks->used = userTicks; + pticks->usedKernel = systemTicks; + + return OS_OK; +} + +/** + * Return the load of the CPU as a double. 1.0 means the CPU process uses all + * available time for user or system processes, 0.0 means the CPU uses all time + * being idle. + * + * Returns a negative value if there is a problem in determining the CPU load. + */ +static double get_cpu_load(int which_logical_cpu, CPUPerfCounters* counters, double* pkernelLoad, CpuLoadTarget target) { + uint64_t udiff, kdiff, tdiff; + CPUPerfTicks* pticks; + CPUPerfTicks tmp; + double user_load; + + *pkernelLoad = 0.0; + + if (target == CPU_LOAD_VM_ONLY) { + pticks = &counters->jvmTicks; + } else if (-1 == which_logical_cpu) { + pticks = &counters->cpus[counters->nProcs]; + } else { + pticks = &counters->cpus[which_logical_cpu]; + } + + tmp = *pticks; + + if (target == CPU_LOAD_VM_ONLY) { + if (get_jvm_ticks(pticks) != OS_OK) { + return -1.0; + } + } else if (get_total_ticks(which_logical_cpu, pticks) != OS_OK) { + return -1.0; + } + + // seems like we sometimes end up with less kernel ticks when + // reading /proc/self/stat a second time, timing issue between cpus? + if (pticks->usedKernel < tmp.usedKernel) { + kdiff = 0; + } else { + kdiff = pticks->usedKernel - tmp.usedKernel; + } + tdiff = pticks->total - tmp.total; + udiff = pticks->used - tmp.used; + + if (tdiff == 0) { + return 0.0; + } else if (tdiff < (udiff + kdiff)) { + tdiff = udiff + kdiff; + } + *pkernelLoad = (kdiff / (double)tdiff); + // BUG9044876, normalize return values to sane values + *pkernelLoad = MAX2(*pkernelLoad, 0.0); + *pkernelLoad = MIN2(*pkernelLoad, 1.0); + + user_load = (udiff / (double)tdiff); + user_load = MAX2(user_load, 0.0); + user_load = MIN2(user_load, 1.0); + + return user_load; +} + +static int SCANF_ARGS(1, 2) parse_stat(_SCANFMT_ const char* fmt, ...) { + FILE *f; + va_list args; + + va_start(args, fmt); + + if ((f = open_statfile()) == NULL) { + va_end(args); + return OS_ERR; + } + for (;;) { + char line[80]; + if (fgets(line, sizeof(line), f) != NULL) { + if (vsscanf(line, fmt, args) == 1) { + fclose(f); + va_end(args); + return OS_OK; + } + } else { + fclose(f); + va_end(args); + return OS_ERR; + } + } +} + +static int get_noof_context_switches(uint64_t* switches) { + return parse_stat("ctxt " UINT64_FORMAT "\n", switches); +} + +/** returns boot time in _seconds_ since epoch */ +static int get_boot_time(uint64_t* time) { + return parse_stat("btime " UINT64_FORMAT "\n", time); +} + +static int perf_context_switch_rate(double* rate) { + static pthread_mutex_t contextSwitchLock = PTHREAD_MUTEX_INITIALIZER; + static uint64_t lastTime; + static uint64_t lastSwitches; + static double lastRate; + + uint64_t lt = 0; + int res = 0; + + if (lastTime == 0) { + uint64_t tmp; + if (get_boot_time(&tmp) < 0) { + return OS_ERR; + } + lt = tmp * 1000; + } + + res = OS_OK; + + pthread_mutex_lock(&contextSwitchLock); + { + + uint64_t sw; + s8 t, d; + + if (lastTime == 0) { + lastTime = lt; + } + + t = os::javaTimeMillis(); + d = t - lastTime; + + if (d == 0) { + *rate = lastRate; + } else if (!get_noof_context_switches(&sw)) { + *rate = ( (double)(sw - lastSwitches) / d ) * 1000; + lastRate = *rate; + lastSwitches = sw; + lastTime = t; + } else { + *rate = 0; + res = OS_ERR; + } + if (*rate <= 0) { + *rate = 0; + lastRate = 0; + } + } + pthread_mutex_unlock(&contextSwitchLock); + + return res; +} + +class CPUPerformanceInterface::CPUPerformance : public CHeapObj { + friend class CPUPerformanceInterface; + private: + CPUPerfCounters _counters; + + int cpu_load(int which_logical_cpu, double* cpu_load); + int context_switch_rate(double* rate); + int cpu_load_total_process(double* cpu_load); + int cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad); + + public: + CPUPerformance(); + bool initialize(); + ~CPUPerformance(); +}; + +CPUPerformanceInterface::CPUPerformance::CPUPerformance() { + _counters.nProcs = os::active_processor_count(); + _counters.cpus = NULL; +} + +bool CPUPerformanceInterface::CPUPerformance::initialize() { + size_t tick_array_size = (_counters.nProcs +1) * sizeof(CPUPerfTicks); + _counters.cpus = (CPUPerfTicks*)NEW_C_HEAP_ARRAY(char, tick_array_size, mtInternal); + if (NULL == _counters.cpus) { + return false; + } + memset(_counters.cpus, 0, tick_array_size); + + // For the CPU load total + get_total_ticks(-1, &_counters.cpus[_counters.nProcs]); + + // For each CPU + for (int i = 0; i < _counters.nProcs; i++) { + get_total_ticks(i, &_counters.cpus[i]); + } + // For JVM load + get_jvm_ticks(&_counters.jvmTicks); + + // initialize context switch system + // the double is only for init + double init_ctx_switch_rate; + perf_context_switch_rate(&init_ctx_switch_rate); + + return true; +} + +CPUPerformanceInterface::CPUPerformance::~CPUPerformance() { + if (_counters.cpus != NULL) { + FREE_C_HEAP_ARRAY(char, _counters.cpus); + } +} + +int CPUPerformanceInterface::CPUPerformance::cpu_load(int which_logical_cpu, double* cpu_load) { + double u, s; + u = get_cpu_load(which_logical_cpu, &_counters, &s, CPU_LOAD_GLOBAL); + if (u < 0) { + *cpu_load = 0.0; + return OS_ERR; + } + // Cap total systemload to 1.0 + *cpu_load = MIN2((u + s), 1.0); + return OS_OK; +} + +int CPUPerformanceInterface::CPUPerformance::cpu_load_total_process(double* cpu_load) { + double u, s; + u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY); + if (u < 0) { + *cpu_load = 0.0; + return OS_ERR; + } + *cpu_load = u + s; + return OS_OK; +} + +int CPUPerformanceInterface::CPUPerformance::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) { + double u, s, t; + + assert(pjvmUserLoad != NULL, "pjvmUserLoad not inited"); + assert(pjvmKernelLoad != NULL, "pjvmKernelLoad not inited"); + assert(psystemTotalLoad != NULL, "psystemTotalLoad not inited"); + + u = get_cpu_load(-1, &_counters, &s, CPU_LOAD_VM_ONLY); + if (u < 0) { + *pjvmUserLoad = 0.0; + *pjvmKernelLoad = 0.0; + *psystemTotalLoad = 0.0; + return OS_ERR; + } + + cpu_load(-1, &t); + // clamp at user+system and 1.0 + if (u + s > t) { + t = MIN2(u + s, 1.0); + } + + *pjvmUserLoad = u; + *pjvmKernelLoad = s; + *psystemTotalLoad = t; + + return OS_OK; +} + +int CPUPerformanceInterface::CPUPerformance::context_switch_rate(double* rate) { + return perf_context_switch_rate(rate); +} + +CPUPerformanceInterface::CPUPerformanceInterface() { + _impl = NULL; +} + +bool CPUPerformanceInterface::initialize() { + _impl = new CPUPerformanceInterface::CPUPerformance(); + return NULL == _impl ? false : _impl->initialize(); +} + +CPUPerformanceInterface::~CPUPerformanceInterface() { + if (_impl != NULL) { + delete _impl; + } +} + +int CPUPerformanceInterface::cpu_load(int which_logical_cpu, double* cpu_load) const { + return _impl->cpu_load(which_logical_cpu, cpu_load); +} + +int CPUPerformanceInterface::cpu_load_total_process(double* cpu_load) const { + return _impl->cpu_load_total_process(cpu_load); +} + +int CPUPerformanceInterface::cpu_loads_process(double* pjvmUserLoad, double* pjvmKernelLoad, double* psystemTotalLoad) const { + return _impl->cpu_loads_process(pjvmUserLoad, pjvmKernelLoad, psystemTotalLoad); +} + +int CPUPerformanceInterface::context_switch_rate(double* rate) const { + return _impl->context_switch_rate(rate); +} + +class SystemProcessInterface::SystemProcesses : public CHeapObj { + friend class SystemProcessInterface; + private: + class ProcessIterator : public CHeapObj { + friend class SystemProcessInterface::SystemProcesses; + private: + DIR* _dir; + struct dirent* _entry; + bool _valid; + char _exeName[PATH_MAX]; + char _exePath[PATH_MAX]; + + ProcessIterator(); + ~ProcessIterator(); + bool initialize(); + + bool is_valid() const { return _valid; } + bool is_valid_entry(struct dirent* entry) const; + bool is_dir(const char* name) const; + int fsize(const char* name, uint64_t& size) const; + + char* allocate_string(const char* str) const; + void get_exe_name(); + char* get_exe_path(); + char* get_cmdline(); + + int current(SystemProcess* process_info); + int next_process(); + }; + + ProcessIterator* _iterator; + SystemProcesses(); + bool initialize(); + ~SystemProcesses(); + + //information about system processes + int system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const; +}; + +bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_dir(const char* name) const { + struct stat mystat; + int ret_val = 0; + + ret_val = stat(name, &mystat); + if (ret_val < 0) { + return false; + } + ret_val = S_ISDIR(mystat.st_mode); + return ret_val > 0; +} + +int SystemProcessInterface::SystemProcesses::ProcessIterator::fsize(const char* name, uint64_t& size) const { + assert(name != NULL, "name pointer is NULL!"); + size = 0; + struct stat fbuf; + + if (stat(name, &fbuf) < 0) { + return OS_ERR; + } + size = fbuf.st_size; + return OS_OK; +} + +// if it has a numeric name, is a directory and has a 'stat' file in it +bool SystemProcessInterface::SystemProcesses::ProcessIterator::is_valid_entry(struct dirent* entry) const { + char buffer[PATH_MAX]; + uint64_t size = 0; + + if (atoi(entry->d_name) != 0) { + jio_snprintf(buffer, PATH_MAX, "/proc/%s", entry->d_name); + buffer[PATH_MAX - 1] = '\0'; + + if (is_dir(buffer)) { + jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", entry->d_name); + buffer[PATH_MAX - 1] = '\0'; + if (fsize(buffer, size) != OS_ERR) { + return true; + } + } + } + return false; +} + +// get exe-name from /proc//stat +void SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_name() { + FILE* fp; + char buffer[PATH_MAX]; + + jio_snprintf(buffer, PATH_MAX, "/proc/%s/stat", _entry->d_name); + buffer[PATH_MAX - 1] = '\0'; + if ((fp = fopen(buffer, "r")) != NULL) { + if (fgets(buffer, PATH_MAX, fp) != NULL) { + char* start, *end; + // exe-name is between the first pair of ( and ) + start = strchr(buffer, '('); + if (start != NULL && start[1] != '\0') { + start++; + end = strrchr(start, ')'); + if (end != NULL) { + size_t len; + len = MIN2(end - start, sizeof(_exeName) - 1); + memcpy(_exeName, start, len); + _exeName[len] = '\0'; + } + } + } + fclose(fp); + } +} + +// get command line from /proc//cmdline +char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_cmdline() { + FILE* fp; + char buffer[PATH_MAX]; + char* cmdline = NULL; + + jio_snprintf(buffer, PATH_MAX, "/proc/%s/cmdline", _entry->d_name); + buffer[PATH_MAX - 1] = '\0'; + if ((fp = fopen(buffer, "r")) != NULL) { + size_t size = 0; + char dummy; + + // find out how long the file is (stat always returns 0) + while (fread(&dummy, 1, 1, fp) == 1) { + size++; + } + if (size > 0) { + cmdline = NEW_C_HEAP_ARRAY(char, size + 1, mtInternal); + if (cmdline != NULL) { + cmdline[0] = '\0'; + if (fseek(fp, 0, SEEK_SET) == 0) { + if (fread(cmdline, 1, size, fp) == size) { + // the file has the arguments separated by '\0', + // so we translate '\0' to ' ' + for (size_t i = 0; i < size; i++) { + if (cmdline[i] == '\0') { + cmdline[i] = ' '; + } + } + cmdline[size] = '\0'; + } + } + } + } + fclose(fp); + } + return cmdline; +} + +// get full path to exe from /proc//exe symlink +char* SystemProcessInterface::SystemProcesses::ProcessIterator::get_exe_path() { + char buffer[PATH_MAX]; + + jio_snprintf(buffer, PATH_MAX, "/proc/%s/exe", _entry->d_name); + buffer[PATH_MAX - 1] = '\0'; + return realpath(buffer, _exePath); +} + +char* SystemProcessInterface::SystemProcesses::ProcessIterator::allocate_string(const char* str) const { + if (str != NULL) { + size_t len = strlen(str); + char* tmp = NEW_C_HEAP_ARRAY(char, len+1, mtInternal); + strncpy(tmp, str, len); + tmp[len] = '\0'; + return tmp; + } + return NULL; +} + +int SystemProcessInterface::SystemProcesses::ProcessIterator::current(SystemProcess* process_info) { + if (!is_valid()) { + return OS_ERR; + } + + process_info->set_pid(atoi(_entry->d_name)); + + get_exe_name(); + process_info->set_name(allocate_string(_exeName)); + + if (get_exe_path() != NULL) { + process_info->set_path(allocate_string(_exePath)); + } + + char* cmdline = NULL; + cmdline = get_cmdline(); + if (cmdline != NULL) { + process_info->set_command_line(allocate_string(cmdline)); + FREE_C_HEAP_ARRAY(char, cmdline); + } + + return OS_OK; +} + +int SystemProcessInterface::SystemProcesses::ProcessIterator::next_process() { + struct dirent* entry; + + if (!is_valid()) { + return OS_ERR; + } + + do { + entry = os::readdir(_dir, _entry); + if (entry == NULL) { + // error + _valid = false; + return OS_ERR; + } + if (_entry == NULL) { + // reached end + _valid = false; + return OS_ERR; + } + } while(!is_valid_entry(_entry)); + + _valid = true; + return OS_OK; +} + +SystemProcessInterface::SystemProcesses::ProcessIterator::ProcessIterator() { + _dir = NULL; + _entry = NULL; + _valid = false; +} + +bool SystemProcessInterface::SystemProcesses::ProcessIterator::initialize() { + _dir = opendir("/proc"); + _entry = (struct dirent*)NEW_C_HEAP_ARRAY(char, sizeof(struct dirent) + NAME_MAX + 1, mtInternal); + if (NULL == _entry) { + return false; + } + _valid = true; + next_process(); + + return true; +} + +SystemProcessInterface::SystemProcesses::ProcessIterator::~ProcessIterator() { + if (_entry != NULL) { + FREE_C_HEAP_ARRAY(char, _entry); + } + if (_dir != NULL) { + closedir(_dir); + } +} + +SystemProcessInterface::SystemProcesses::SystemProcesses() { + _iterator = NULL; +} + +bool SystemProcessInterface::SystemProcesses::initialize() { + _iterator = new SystemProcessInterface::SystemProcesses::ProcessIterator(); + return NULL == _iterator ? false : _iterator->initialize(); +} + +SystemProcessInterface::SystemProcesses::~SystemProcesses() { + if (_iterator != NULL) { + delete _iterator; + } +} + +int SystemProcessInterface::SystemProcesses::system_processes(SystemProcess** system_processes, int* no_of_sys_processes) const { + assert(system_processes != NULL, "system_processes pointer is NULL!"); + assert(no_of_sys_processes != NULL, "system_processes counter pointers is NULL!"); + assert(_iterator != NULL, "iterator is NULL!"); + + // initialize pointers + *no_of_sys_processes = 0; + *system_processes = NULL; + + while (_iterator->is_valid()) { + SystemProcess* tmp = new SystemProcess(); + _iterator->current(tmp); + + //if already existing head + if (*system_processes != NULL) { + //move "first to second" + tmp->set_next(*system_processes); + } + // new head + *system_processes = tmp; + // increment + (*no_of_sys_processes)++; + // step forward + _iterator->next_process(); + } + return OS_OK; +} + +int SystemProcessInterface::system_processes(SystemProcess** system_procs, int* no_of_sys_processes) const { + return _impl->system_processes(system_procs, no_of_sys_processes); +} + +SystemProcessInterface::SystemProcessInterface() { + _impl = NULL; +} + +bool SystemProcessInterface::initialize() { + _impl = new SystemProcessInterface::SystemProcesses(); + return NULL == _impl ? false : _impl->initialize(); +} + +SystemProcessInterface::~SystemProcessInterface() { + if (_impl != NULL) { + delete _impl; + } +} + +CPUInformationInterface::CPUInformationInterface() { + _cpu_info = NULL; +} + +bool CPUInformationInterface::initialize() { + _cpu_info = new CPUInformation(); + if (NULL == _cpu_info) { + return false; + } + _cpu_info->set_number_of_hardware_threads(VM_Version_Ext::number_of_threads()); + _cpu_info->set_number_of_cores(VM_Version_Ext::number_of_cores()); + _cpu_info->set_number_of_sockets(VM_Version_Ext::number_of_sockets()); + _cpu_info->set_cpu_name(VM_Version_Ext::cpu_name()); + _cpu_info->set_cpu_description(VM_Version_Ext::cpu_description()); + + return true; +} + +CPUInformationInterface::~CPUInformationInterface() { + if (_cpu_info != NULL) { + if (_cpu_info->cpu_name() != NULL) { + const char* cpu_name = _cpu_info->cpu_name(); + FREE_C_HEAP_ARRAY(char, cpu_name); + _cpu_info->set_cpu_name(NULL); + } + if (_cpu_info->cpu_description() != NULL) { + const char* cpu_desc = _cpu_info->cpu_description(); + FREE_C_HEAP_ARRAY(char, cpu_desc); + _cpu_info->set_cpu_description(NULL); + } + delete _cpu_info; + } +} + +int CPUInformationInterface::cpu_information(CPUInformation& cpu_info) { + if (_cpu_info == NULL) { + return OS_ERR; + } + + cpu_info = *_cpu_info; // shallow copy assignment + return OS_OK; +}