--- /dev/null 2017-11-09 09:38:01.297999907 +0100 +++ new/src/hotspot/share/jfr/leakprofiler/chains/edgeUtils.cpp 2018-04-09 14:38:26.621806332 +0200 @@ -0,0 +1,312 @@ +/* + * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved. + * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. + * + * This code is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License version 2 only, as + * published by the Free Software Foundation. + * + * This code is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * version 2 for more details (a copy is included in the LICENSE file that + * accompanied this code). + * + * You should have received a copy of the GNU General Public License version + * 2 along with this work; if not, write to the Free Software Foundation, + * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. + * + * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA + * or visit www.oracle.com if you need additional information or have any + * questions. + * + */ + +#include "precompiled.hpp" +#include "classfile/javaClasses.hpp" +#include "jfr/leakprofiler/chains/edge.hpp" +#include "jfr/leakprofiler/chains/edgeStore.hpp" +#include "jfr/leakprofiler/chains/edgeUtils.hpp" +#include "jfr/leakprofiler/utilities/unifiedOop.hpp" +#include "oops/fieldStreams.hpp" +#include "oops/instanceKlass.hpp" +#include "oops/objArrayOop.inline.hpp" +#include "oops/oopsHierarchy.hpp" +#include "runtime/handles.inline.hpp" + +bool EdgeUtils::is_leak_edge(const Edge& edge) { + return (const Edge*)edge.pointee()->mark() == &edge; +} + +bool EdgeUtils::is_root(const Edge& edge) { + return edge.is_root(); +} + +static int field_offset(const Edge& edge) { + assert(!edge.is_root(), "invariant"); + const oop ref_owner = edge.reference_owner(); + assert(ref_owner != NULL, "invariant"); + const oop* reference = UnifiedOop::decode(edge.reference()); + assert(reference != NULL, "invariant"); + assert(!UnifiedOop::is_narrow(reference), "invariant"); + assert(!ref_owner->is_array(), "invariant"); + assert(ref_owner->is_instance(), "invariant"); + const int offset = (int)pointer_delta(reference, ref_owner, sizeof(char)); + assert(offset < (ref_owner->size() * HeapWordSize), "invariant"); + return offset; +} + +static const InstanceKlass* field_type(const Edge& edge) { + assert(!edge.is_root() || !EdgeUtils::is_array_element(edge), "invariant"); + return (const InstanceKlass*)edge.reference_owner_klass(); +} + +const Symbol* EdgeUtils::field_name_symbol(const Edge& edge) { + assert(!edge.is_root(), "invariant"); + assert(!is_array_element(edge), "invariant"); + const int offset = field_offset(edge); + const InstanceKlass* ik = field_type(edge); + while (ik != NULL) { + JavaFieldStream jfs(ik); + while (!jfs.done()) { + if (offset == jfs.offset()) { + return jfs.name(); + } + jfs.next(); + } + ik = (InstanceKlass*)ik->super(); + } + return NULL; +} + +jshort EdgeUtils::field_modifiers(const Edge& edge) { + const int offset = field_offset(edge); + const InstanceKlass* ik = field_type(edge); + + while (ik != NULL) { + JavaFieldStream jfs(ik); + while (!jfs.done()) { + if (offset == jfs.offset()) { + return jfs.access_flags().as_short(); + } + jfs.next(); + } + ik = (InstanceKlass*)ik->super(); + } + return 0; +} + +bool EdgeUtils::is_array_element(const Edge& edge) { + assert(!edge.is_root(), "invariant"); + const oop ref_owner = edge.reference_owner(); + assert(ref_owner != NULL, "invariant"); + return ref_owner->is_objArray(); +} + +static int array_offset(const Edge& edge) { + assert(!edge.is_root(), "invariant"); + const oop ref_owner = edge.reference_owner(); + assert(ref_owner != NULL, "invariant"); + const oop* reference = UnifiedOop::decode(edge.reference()); + assert(reference != NULL, "invariant"); + assert(!UnifiedOop::is_narrow(reference), "invariant"); + assert(ref_owner->is_array(), "invariant"); + const objArrayOop ref_owner_array = static_cast(ref_owner); + const int offset = (int)pointer_delta(reference, ref_owner_array->base(), heapOopSize); + assert(offset >= 0 && offset < ref_owner_array->length(), "invariant"); + return offset; +} + +int EdgeUtils::array_index(const Edge& edge) { + return is_array_element(edge) ? array_offset(edge) : 0; +} + +int EdgeUtils::array_size(const Edge& edge) { + if (is_array_element(edge)) { + const oop ref_owner = edge.reference_owner(); + assert(ref_owner != NULL, "invariant"); + assert(ref_owner->is_objArray(), "invariant"); + return ((objArrayOop)(ref_owner))->length(); + } + return 0; +} + +const Edge* EdgeUtils::root(const Edge& edge) { + const Edge* current = &edge; + const Edge* parent = current->parent(); + while (parent != NULL) { + current = parent; + parent = current->parent(); + } + return current; +} + +// The number of references associated with the leak node; +// can be viewed as the leak node "context". +// Used to provide leak context for a "capped/skipped" reference chain. +static const size_t leak_context = 100; + +// The number of references associated with the root node; +// can be viewed as the root node "context". +// Used to provide root context for a "capped/skipped" reference chain. +static const size_t root_context = 100; + +// A limit on the reference chain depth to be serialized, +static const size_t max_ref_chain_depth = leak_context + root_context; + +const RoutableEdge* skip_to(const RoutableEdge& edge, size_t skip_length) { + const RoutableEdge* current = &edge; + const RoutableEdge* parent = current->physical_parent(); + size_t seek = 0; + while (parent != NULL && seek != skip_length) { + seek++; + current = parent; + parent = parent->physical_parent(); + } + return current; +} + +#ifdef ASSERT +static void validate_skip_target(const RoutableEdge* skip_target) { + assert(skip_target != NULL, "invariant"); + assert(skip_target->distance_to_root() + 1 == root_context, "invariant"); + assert(skip_target->is_sentinel(), "invariant"); +} + +static void validate_new_skip_edge(const RoutableEdge* new_skip_edge, const RoutableEdge* last_skip_edge, size_t adjustment) { + assert(new_skip_edge != NULL, "invariant"); + assert(new_skip_edge->is_skip_edge(), "invariant"); + if (last_skip_edge != NULL) { + const RoutableEdge* const target = skip_to(*new_skip_edge->logical_parent(), adjustment); + validate_skip_target(target->logical_parent()); + return; + } + assert(last_skip_edge == NULL, "invariant"); + // only one level of logical indirection + validate_skip_target(new_skip_edge->logical_parent()); +} +#endif // ASSERT + +static void install_logical_route(const RoutableEdge* new_skip_edge, size_t skip_target_distance) { + assert(new_skip_edge != NULL, "invariant"); + assert(!new_skip_edge->is_skip_edge(), "invariant"); + assert(!new_skip_edge->processed(), "invariant"); + const RoutableEdge* const skip_target = skip_to(*new_skip_edge, skip_target_distance); + assert(skip_target != NULL, "invariant"); + new_skip_edge->set_skip_edge(skip_target); + new_skip_edge->set_skip_length(skip_target_distance); + assert(new_skip_edge->is_skip_edge(), "invariant"); + assert(new_skip_edge->logical_parent() == skip_target, "invariant"); +} + +static const RoutableEdge* find_last_skip_edge(const RoutableEdge& edge, size_t& distance) { + assert(distance == 0, "invariant"); + const RoutableEdge* current = &edge; + while (current != NULL) { + if (current->is_skip_edge() && current->skip_edge()->is_sentinel()) { + return current; + } + current = current->physical_parent(); + ++distance; + } + return current; +} + +static void collapse_overlapping_chain(const RoutableEdge& edge, + const RoutableEdge* first_processed_edge, + size_t first_processed_distance) { + assert(first_processed_edge != NULL, "invariant"); + // first_processed_edge is already processed / written + assert(first_processed_edge->processed(), "invariant"); + assert(first_processed_distance + 1 <= leak_context, "invariant"); + + // from this first processed edge, attempt to fetch the last skip edge + size_t last_skip_edge_distance = 0; + const RoutableEdge* const last_skip_edge = find_last_skip_edge(*first_processed_edge, last_skip_edge_distance); + const size_t distance_discovered = first_processed_distance + last_skip_edge_distance + 1; + + if (distance_discovered <= leak_context || (last_skip_edge == NULL && distance_discovered <= max_ref_chain_depth)) { + // complete chain can be accommodated without modification + return; + } + + // backtrack one edge from existing processed edge + const RoutableEdge* const new_skip_edge = skip_to(edge, first_processed_distance - 1); + assert(new_skip_edge != NULL, "invariant"); + assert(!new_skip_edge->processed(), "invariant"); + assert(new_skip_edge->parent() == first_processed_edge, "invariant"); + + size_t adjustment = 0; + if (last_skip_edge != NULL) { + assert(leak_context - 1 > first_processed_distance - 1, "invariant"); + adjustment = leak_context - first_processed_distance - 1; + assert(last_skip_edge_distance + 1 > adjustment, "invariant"); + install_logical_route(new_skip_edge, last_skip_edge_distance + 1 - adjustment); + } else { + install_logical_route(new_skip_edge, last_skip_edge_distance + 1 - root_context); + new_skip_edge->logical_parent()->set_skip_length(1); // sentinel + } + + DEBUG_ONLY(validate_new_skip_edge(new_skip_edge, last_skip_edge, adjustment);) +} + +static void collapse_non_overlapping_chain(const RoutableEdge& edge, + const RoutableEdge* first_processed_edge, + size_t first_processed_distance) { + assert(first_processed_edge != NULL, "invariant"); + assert(!first_processed_edge->processed(), "invariant"); + // this implies that the first "processed" edge is the leak context relative "leaf" + assert(first_processed_distance + 1 == leak_context, "invariant"); + + const size_t distance_to_root = edge.distance_to_root(); + if (distance_to_root + 1 <= max_ref_chain_depth) { + // complete chain can be accommodated without constructing a skip edge + return; + } + + install_logical_route(first_processed_edge, distance_to_root + 1 - first_processed_distance - root_context); + first_processed_edge->logical_parent()->set_skip_length(1); // sentinel + + DEBUG_ONLY(validate_new_skip_edge(first_processed_edge, NULL, 0);) +} + +static const RoutableEdge* processed_edge(const RoutableEdge& edge, size_t& distance) { + assert(distance == 0, "invariant"); + const RoutableEdge* current = &edge; + while (current != NULL && distance < leak_context - 1) { + if (current->processed()) { + return current; + } + current = current->physical_parent(); + ++distance; + } + assert(distance <= leak_context - 1, "invariant"); + return current; +} + +/* + * Some vocabulary: + * ----------- + * "Context" is an interval in the chain, it is associcated with an edge and it signifies a number of connected edges. + * "Processed / written" means an edge that has already been serialized. + * "Skip edge" is an edge that contains additional information for logical routing purposes. + * "Skip target" is an edge used as a destination for a skip edge + */ +void EdgeUtils::collapse_chain(const RoutableEdge& edge) { + assert(is_leak_edge(edge), "invariant"); + + // attempt to locate an already processed edge inside current leak context (if any) + size_t first_processed_distance = 0; + const RoutableEdge* const first_processed_edge = processed_edge(edge, first_processed_distance); + if (first_processed_edge == NULL) { + return; + } + + if (first_processed_edge->processed()) { + collapse_overlapping_chain(edge, first_processed_edge, first_processed_distance); + } else { + collapse_non_overlapping_chain(edge, first_processed_edge, first_processed_distance); + } + + assert(edge.logical_distance_to_root() + 1 <= max_ref_chain_depth, "invariant"); +}