1 /*
   2  * Copyright (c) 1999, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "interpreter/interpreter.hpp"
  33 #include "jvm_linux.h"
  34 #include "memory/allocation.inline.hpp"
  35 #include "memory/filemap.hpp"
  36 #include "mutex_linux.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "os_share_linux.hpp"
  39 #include "prims/jniFastGetField.hpp"
  40 #include "prims/jvm.h"
  41 #include "prims/jvm_misc.hpp"
  42 #include "runtime/arguments.hpp"
  43 #include "runtime/extendedPC.hpp"
  44 #include "runtime/globals.hpp"
  45 #include "runtime/interfaceSupport.hpp"
  46 #include "runtime/java.hpp"
  47 #include "runtime/javaCalls.hpp"
  48 #include "runtime/mutexLocker.hpp"
  49 #include "runtime/objectMonitor.hpp"
  50 #include "runtime/osThread.hpp"
  51 #include "runtime/perfMemory.hpp"
  52 #include "runtime/sharedRuntime.hpp"
  53 #include "runtime/statSampler.hpp"
  54 #include "runtime/stubRoutines.hpp"
  55 #include "runtime/threadCritical.hpp"
  56 #include "runtime/timer.hpp"
  57 #include "services/attachListener.hpp"
  58 #include "services/runtimeService.hpp"
  59 #include "thread_linux.inline.hpp"
  60 #include "utilities/decoder.hpp"
  61 #include "utilities/defaultStream.hpp"
  62 #include "utilities/events.hpp"
  63 #include "utilities/growableArray.hpp"
  64 #include "utilities/vmError.hpp"
  65 #ifdef TARGET_ARCH_x86
  66 # include "assembler_x86.inline.hpp"
  67 # include "nativeInst_x86.hpp"
  68 #endif
  69 #ifdef TARGET_ARCH_sparc
  70 # include "assembler_sparc.inline.hpp"
  71 # include "nativeInst_sparc.hpp"
  72 #endif
  73 #ifdef TARGET_ARCH_zero
  74 # include "assembler_zero.inline.hpp"
  75 # include "nativeInst_zero.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_arm
  78 # include "assembler_arm.inline.hpp"
  79 # include "nativeInst_arm.hpp"
  80 #endif
  81 #ifdef TARGET_ARCH_ppc
  82 # include "assembler_ppc.inline.hpp"
  83 # include "nativeInst_ppc.hpp"
  84 #endif
  85 
  86 // put OS-includes here
  87 # include <sys/types.h>
  88 # include <sys/mman.h>
  89 # include <sys/stat.h>
  90 # include <sys/select.h>
  91 # include <pthread.h>
  92 # include <signal.h>
  93 # include <errno.h>
  94 # include <dlfcn.h>
  95 # include <stdio.h>
  96 # include <unistd.h>
  97 # include <sys/resource.h>
  98 # include <pthread.h>
  99 # include <sys/stat.h>
 100 # include <sys/time.h>
 101 # include <sys/times.h>
 102 # include <sys/utsname.h>
 103 # include <sys/socket.h>
 104 # include <sys/wait.h>
 105 # include <pwd.h>
 106 # include <poll.h>
 107 # include <semaphore.h>
 108 # include <fcntl.h>
 109 # include <string.h>
 110 # include <syscall.h>
 111 # include <sys/sysinfo.h>
 112 # include <gnu/libc-version.h>
 113 # include <sys/ipc.h>
 114 # include <sys/shm.h>
 115 # include <link.h>
 116 # include <stdint.h>
 117 # include <inttypes.h>
 118 # include <sys/ioctl.h>
 119 
 120 #define MAX_PATH    (2 * K)
 121 
 122 // for timer info max values which include all bits
 123 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 124 
 125 #define LARGEPAGES_BIT (1 << 6)
 126 ////////////////////////////////////////////////////////////////////////////////
 127 // global variables
 128 julong os::Linux::_physical_memory = 0;
 129 
 130 address   os::Linux::_initial_thread_stack_bottom = NULL;
 131 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 132 
 133 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 134 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 135 Mutex* os::Linux::_createThread_lock = NULL;
 136 pthread_t os::Linux::_main_thread;
 137 int os::Linux::_page_size = -1;
 138 bool os::Linux::_is_floating_stack = false;
 139 bool os::Linux::_is_NPTL = false;
 140 bool os::Linux::_supports_fast_thread_cpu_time = false;
 141 const char * os::Linux::_glibc_version = NULL;
 142 const char * os::Linux::_libpthread_version = NULL;
 143 
 144 static jlong initial_time_count=0;
 145 
 146 static int clock_tics_per_sec = 100;
 147 
 148 // For diagnostics to print a message once. see run_periodic_checks
 149 static sigset_t check_signal_done;
 150 static bool check_signals = true;;
 151 
 152 static pid_t _initial_pid = 0;
 153 
 154 /* Signal number used to suspend/resume a thread */
 155 
 156 /* do not use any signal number less than SIGSEGV, see 4355769 */
 157 static int SR_signum = SIGUSR2;
 158 sigset_t SR_sigset;
 159 
 160 /* Used to protect dlsym() calls */
 161 static pthread_mutex_t dl_mutex;
 162 
 163 #ifdef JAVASE_EMBEDDED
 164 class MemNotifyThread: public Thread {
 165   friend class VMStructs;
 166  public:
 167   virtual void run();
 168 
 169  private:
 170   static MemNotifyThread* _memnotify_thread;
 171   int _fd;
 172 
 173  public:
 174 
 175   // Constructor
 176   MemNotifyThread(int fd);
 177 
 178   // Tester
 179   bool is_memnotify_thread() const { return true; }
 180 
 181   // Printing
 182   char* name() const { return (char*)"Linux MemNotify Thread"; }
 183 
 184   // Returns the single instance of the MemNotifyThread
 185   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 186 
 187   // Create and start the single instance of MemNotifyThread
 188   static void start();
 189 };
 190 #endif // JAVASE_EMBEDDED
 191 
 192 // utility functions
 193 
 194 static int SR_initialize();
 195 
 196 julong os::available_memory() {
 197   return Linux::available_memory();
 198 }
 199 
 200 julong os::Linux::available_memory() {
 201   // values in struct sysinfo are "unsigned long"
 202   struct sysinfo si;
 203   sysinfo(&si);
 204 
 205   return (julong)si.freeram * si.mem_unit;
 206 }
 207 
 208 julong os::physical_memory() {
 209   return Linux::physical_memory();
 210 }
 211 
 212 julong os::allocatable_physical_memory(julong size) {
 213 #ifdef _LP64
 214   return size;
 215 #else
 216   julong result = MIN2(size, (julong)3800*M);
 217    if (!is_allocatable(result)) {
 218      // See comments under solaris for alignment considerations
 219      julong reasonable_size = (julong)2*G - 2 * os::vm_page_size();
 220      result =  MIN2(size, reasonable_size);
 221    }
 222    return result;
 223 #endif // _LP64
 224 }
 225 
 226 ////////////////////////////////////////////////////////////////////////////////
 227 // environment support
 228 
 229 bool os::getenv(const char* name, char* buf, int len) {
 230   const char* val = ::getenv(name);
 231   if (val != NULL && strlen(val) < (size_t)len) {
 232     strcpy(buf, val);
 233     return true;
 234   }
 235   if (len > 0) buf[0] = 0;  // return a null string
 236   return false;
 237 }
 238 
 239 
 240 // Return true if user is running as root.
 241 
 242 bool os::have_special_privileges() {
 243   static bool init = false;
 244   static bool privileges = false;
 245   if (!init) {
 246     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 247     init = true;
 248   }
 249   return privileges;
 250 }
 251 
 252 
 253 #ifndef SYS_gettid
 254 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 255 #ifdef __ia64__
 256 #define SYS_gettid 1105
 257 #elif __i386__
 258 #define SYS_gettid 224
 259 #elif __amd64__
 260 #define SYS_gettid 186
 261 #elif __sparc__
 262 #define SYS_gettid 143
 263 #else
 264 #error define gettid for the arch
 265 #endif
 266 #endif
 267 
 268 // Cpu architecture string
 269 #if   defined(ZERO)
 270 static char cpu_arch[] = ZERO_LIBARCH;
 271 #elif defined(IA64)
 272 static char cpu_arch[] = "ia64";
 273 #elif defined(IA32)
 274 static char cpu_arch[] = "i386";
 275 #elif defined(AMD64)
 276 static char cpu_arch[] = "amd64";
 277 #elif defined(ARM)
 278 static char cpu_arch[] = "arm";
 279 #elif defined(PPC)
 280 static char cpu_arch[] = "ppc";
 281 #elif defined(SPARC)
 282 #  ifdef _LP64
 283 static char cpu_arch[] = "sparcv9";
 284 #  else
 285 static char cpu_arch[] = "sparc";
 286 #  endif
 287 #else
 288 #error Add appropriate cpu_arch setting
 289 #endif
 290 
 291 
 292 // pid_t gettid()
 293 //
 294 // Returns the kernel thread id of the currently running thread. Kernel
 295 // thread id is used to access /proc.
 296 //
 297 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 298 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 299 //
 300 pid_t os::Linux::gettid() {
 301   int rslt = syscall(SYS_gettid);
 302   if (rslt == -1) {
 303      // old kernel, no NPTL support
 304      return getpid();
 305   } else {
 306      return (pid_t)rslt;
 307   }
 308 }
 309 
 310 // Most versions of linux have a bug where the number of processors are
 311 // determined by looking at the /proc file system.  In a chroot environment,
 312 // the system call returns 1.  This causes the VM to act as if it is
 313 // a single processor and elide locking (see is_MP() call).
 314 static bool unsafe_chroot_detected = false;
 315 static const char *unstable_chroot_error = "/proc file system not found.\n"
 316                      "Java may be unstable running multithreaded in a chroot "
 317                      "environment on Linux when /proc filesystem is not mounted.";
 318 
 319 void os::Linux::initialize_system_info() {
 320   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 321   if (processor_count() == 1) {
 322     pid_t pid = os::Linux::gettid();
 323     char fname[32];
 324     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 325     FILE *fp = fopen(fname, "r");
 326     if (fp == NULL) {
 327       unsafe_chroot_detected = true;
 328     } else {
 329       fclose(fp);
 330     }
 331   }
 332   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 333   assert(processor_count() > 0, "linux error");
 334 }
 335 
 336 void os::init_system_properties_values() {
 337 //  char arch[12];
 338 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 339 
 340   // The next steps are taken in the product version:
 341   //
 342   // Obtain the JAVA_HOME value from the location of libjvm[_g].so.
 343   // This library should be located at:
 344   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm[_g].so.
 345   //
 346   // If "/jre/lib/" appears at the right place in the path, then we
 347   // assume libjvm[_g].so is installed in a JDK and we use this path.
 348   //
 349   // Otherwise exit with message: "Could not create the Java virtual machine."
 350   //
 351   // The following extra steps are taken in the debugging version:
 352   //
 353   // If "/jre/lib/" does NOT appear at the right place in the path
 354   // instead of exit check for $JAVA_HOME environment variable.
 355   //
 356   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 357   // then we append a fake suffix "hotspot/libjvm[_g].so" to this path so
 358   // it looks like libjvm[_g].so is installed there
 359   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm[_g].so.
 360   //
 361   // Otherwise exit.
 362   //
 363   // Important note: if the location of libjvm.so changes this
 364   // code needs to be changed accordingly.
 365 
 366   // The next few definitions allow the code to be verbatim:
 367 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 368 #define getenv(n) ::getenv(n)
 369 
 370 /*
 371  * See ld(1):
 372  *      The linker uses the following search paths to locate required
 373  *      shared libraries:
 374  *        1: ...
 375  *        ...
 376  *        7: The default directories, normally /lib and /usr/lib.
 377  */
 378 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 379 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 380 #else
 381 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 382 #endif
 383 
 384 #define EXTENSIONS_DIR  "/lib/ext"
 385 #define ENDORSED_DIR    "/lib/endorsed"
 386 #define REG_DIR         "/usr/java/packages"
 387 
 388   {
 389     /* sysclasspath, java_home, dll_dir */
 390     {
 391         char *home_path;
 392         char *dll_path;
 393         char *pslash;
 394         char buf[MAXPATHLEN];
 395         os::jvm_path(buf, sizeof(buf));
 396 
 397         // Found the full path to libjvm.so.
 398         // Now cut the path to <java_home>/jre if we can.
 399         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 400         pslash = strrchr(buf, '/');
 401         if (pslash != NULL)
 402             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 403         dll_path = malloc(strlen(buf) + 1);
 404         if (dll_path == NULL)
 405             return;
 406         strcpy(dll_path, buf);
 407         Arguments::set_dll_dir(dll_path);
 408 
 409         if (pslash != NULL) {
 410             pslash = strrchr(buf, '/');
 411             if (pslash != NULL) {
 412                 *pslash = '\0';       /* get rid of /<arch> */
 413                 pslash = strrchr(buf, '/');
 414                 if (pslash != NULL)
 415                     *pslash = '\0';   /* get rid of /lib */
 416             }
 417         }
 418 
 419         home_path = malloc(strlen(buf) + 1);
 420         if (home_path == NULL)
 421             return;
 422         strcpy(home_path, buf);
 423         Arguments::set_java_home(home_path);
 424 
 425         if (!set_boot_path('/', ':'))
 426             return;
 427     }
 428 
 429     /*
 430      * Where to look for native libraries
 431      *
 432      * Note: Due to a legacy implementation, most of the library path
 433      * is set in the launcher.  This was to accomodate linking restrictions
 434      * on legacy Linux implementations (which are no longer supported).
 435      * Eventually, all the library path setting will be done here.
 436      *
 437      * However, to prevent the proliferation of improperly built native
 438      * libraries, the new path component /usr/java/packages is added here.
 439      * Eventually, all the library path setting will be done here.
 440      */
 441     {
 442         char *ld_library_path;
 443 
 444         /*
 445          * Construct the invariant part of ld_library_path. Note that the
 446          * space for the colon and the trailing null are provided by the
 447          * nulls included by the sizeof operator (so actually we allocate
 448          * a byte more than necessary).
 449          */
 450         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 451             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 452         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 453 
 454         /*
 455          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 456          * should always exist (until the legacy problem cited above is
 457          * addressed).
 458          */
 459         char *v = getenv("LD_LIBRARY_PATH");
 460         if (v != NULL) {
 461             char *t = ld_library_path;
 462             /* That's +1 for the colon and +1 for the trailing '\0' */
 463             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 464             sprintf(ld_library_path, "%s:%s", v, t);
 465         }
 466         Arguments::set_library_path(ld_library_path);
 467     }
 468 
 469     /*
 470      * Extensions directories.
 471      *
 472      * Note that the space for the colon and the trailing null are provided
 473      * by the nulls included by the sizeof operator (so actually one byte more
 474      * than necessary is allocated).
 475      */
 476     {
 477         char *buf = malloc(strlen(Arguments::get_java_home()) +
 478             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 479         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 480             Arguments::get_java_home());
 481         Arguments::set_ext_dirs(buf);
 482     }
 483 
 484     /* Endorsed standards default directory. */
 485     {
 486         char * buf;
 487         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 488         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 489         Arguments::set_endorsed_dirs(buf);
 490     }
 491   }
 492 
 493 #undef malloc
 494 #undef getenv
 495 #undef EXTENSIONS_DIR
 496 #undef ENDORSED_DIR
 497 
 498   // Done
 499   return;
 500 }
 501 
 502 ////////////////////////////////////////////////////////////////////////////////
 503 // breakpoint support
 504 
 505 void os::breakpoint() {
 506   BREAKPOINT;
 507 }
 508 
 509 extern "C" void breakpoint() {
 510   // use debugger to set breakpoint here
 511 }
 512 
 513 ////////////////////////////////////////////////////////////////////////////////
 514 // signal support
 515 
 516 debug_only(static bool signal_sets_initialized = false);
 517 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 518 
 519 bool os::Linux::is_sig_ignored(int sig) {
 520       struct sigaction oact;
 521       sigaction(sig, (struct sigaction*)NULL, &oact);
 522       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 523                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 524       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 525            return true;
 526       else
 527            return false;
 528 }
 529 
 530 void os::Linux::signal_sets_init() {
 531   // Should also have an assertion stating we are still single-threaded.
 532   assert(!signal_sets_initialized, "Already initialized");
 533   // Fill in signals that are necessarily unblocked for all threads in
 534   // the VM. Currently, we unblock the following signals:
 535   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 536   //                         by -Xrs (=ReduceSignalUsage));
 537   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 538   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 539   // the dispositions or masks wrt these signals.
 540   // Programs embedding the VM that want to use the above signals for their
 541   // own purposes must, at this time, use the "-Xrs" option to prevent
 542   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 543   // (See bug 4345157, and other related bugs).
 544   // In reality, though, unblocking these signals is really a nop, since
 545   // these signals are not blocked by default.
 546   sigemptyset(&unblocked_sigs);
 547   sigemptyset(&allowdebug_blocked_sigs);
 548   sigaddset(&unblocked_sigs, SIGILL);
 549   sigaddset(&unblocked_sigs, SIGSEGV);
 550   sigaddset(&unblocked_sigs, SIGBUS);
 551   sigaddset(&unblocked_sigs, SIGFPE);
 552   sigaddset(&unblocked_sigs, SR_signum);
 553 
 554   if (!ReduceSignalUsage) {
 555    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 556       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 557       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 558    }
 559    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 560       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 561       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 562    }
 563    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 564       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 565       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 566    }
 567   }
 568   // Fill in signals that are blocked by all but the VM thread.
 569   sigemptyset(&vm_sigs);
 570   if (!ReduceSignalUsage)
 571     sigaddset(&vm_sigs, BREAK_SIGNAL);
 572   debug_only(signal_sets_initialized = true);
 573 
 574 }
 575 
 576 // These are signals that are unblocked while a thread is running Java.
 577 // (For some reason, they get blocked by default.)
 578 sigset_t* os::Linux::unblocked_signals() {
 579   assert(signal_sets_initialized, "Not initialized");
 580   return &unblocked_sigs;
 581 }
 582 
 583 // These are the signals that are blocked while a (non-VM) thread is
 584 // running Java. Only the VM thread handles these signals.
 585 sigset_t* os::Linux::vm_signals() {
 586   assert(signal_sets_initialized, "Not initialized");
 587   return &vm_sigs;
 588 }
 589 
 590 // These are signals that are blocked during cond_wait to allow debugger in
 591 sigset_t* os::Linux::allowdebug_blocked_signals() {
 592   assert(signal_sets_initialized, "Not initialized");
 593   return &allowdebug_blocked_sigs;
 594 }
 595 
 596 void os::Linux::hotspot_sigmask(Thread* thread) {
 597 
 598   //Save caller's signal mask before setting VM signal mask
 599   sigset_t caller_sigmask;
 600   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 601 
 602   OSThread* osthread = thread->osthread();
 603   osthread->set_caller_sigmask(caller_sigmask);
 604 
 605   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 606 
 607   if (!ReduceSignalUsage) {
 608     if (thread->is_VM_thread()) {
 609       // Only the VM thread handles BREAK_SIGNAL ...
 610       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 611     } else {
 612       // ... all other threads block BREAK_SIGNAL
 613       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 614     }
 615   }
 616 }
 617 
 618 //////////////////////////////////////////////////////////////////////////////
 619 // detecting pthread library
 620 
 621 void os::Linux::libpthread_init() {
 622   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 623   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 624   // generic name for earlier versions.
 625   // Define macros here so we can build HotSpot on old systems.
 626 # ifndef _CS_GNU_LIBC_VERSION
 627 # define _CS_GNU_LIBC_VERSION 2
 628 # endif
 629 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 630 # define _CS_GNU_LIBPTHREAD_VERSION 3
 631 # endif
 632 
 633   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 634   if (n > 0) {
 635      char *str = (char *)malloc(n, mtInternal);
 636      confstr(_CS_GNU_LIBC_VERSION, str, n);
 637      os::Linux::set_glibc_version(str);
 638   } else {
 639      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 640      static char _gnu_libc_version[32];
 641      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 642               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 643      os::Linux::set_glibc_version(_gnu_libc_version);
 644   }
 645 
 646   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 647   if (n > 0) {
 648      char *str = (char *)malloc(n, mtInternal);
 649      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 650      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 651      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 652      // is the case. LinuxThreads has a hard limit on max number of threads.
 653      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 654      // On the other hand, NPTL does not have such a limit, sysconf()
 655      // will return -1 and errno is not changed. Check if it is really NPTL.
 656      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 657          strstr(str, "NPTL") &&
 658          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 659        free(str);
 660        os::Linux::set_libpthread_version("linuxthreads");
 661      } else {
 662        os::Linux::set_libpthread_version(str);
 663      }
 664   } else {
 665     // glibc before 2.3.2 only has LinuxThreads.
 666     os::Linux::set_libpthread_version("linuxthreads");
 667   }
 668 
 669   if (strstr(libpthread_version(), "NPTL")) {
 670      os::Linux::set_is_NPTL();
 671   } else {
 672      os::Linux::set_is_LinuxThreads();
 673   }
 674 
 675   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 676   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 677   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 678      os::Linux::set_is_floating_stack();
 679   }
 680 }
 681 
 682 /////////////////////////////////////////////////////////////////////////////
 683 // thread stack
 684 
 685 // Force Linux kernel to expand current thread stack. If "bottom" is close
 686 // to the stack guard, caller should block all signals.
 687 //
 688 // MAP_GROWSDOWN:
 689 //   A special mmap() flag that is used to implement thread stacks. It tells
 690 //   kernel that the memory region should extend downwards when needed. This
 691 //   allows early versions of LinuxThreads to only mmap the first few pages
 692 //   when creating a new thread. Linux kernel will automatically expand thread
 693 //   stack as needed (on page faults).
 694 //
 695 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 696 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 697 //   region, it's hard to tell if the fault is due to a legitimate stack
 698 //   access or because of reading/writing non-exist memory (e.g. buffer
 699 //   overrun). As a rule, if the fault happens below current stack pointer,
 700 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 701 //   application (see Linux kernel fault.c).
 702 //
 703 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 704 //   stack overflow detection.
 705 //
 706 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 707 //   not use this flag. However, the stack of initial thread is not created
 708 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 709 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 710 //   and then attach the thread to JVM.
 711 //
 712 // To get around the problem and allow stack banging on Linux, we need to
 713 // manually expand thread stack after receiving the SIGSEGV.
 714 //
 715 // There are two ways to expand thread stack to address "bottom", we used
 716 // both of them in JVM before 1.5:
 717 //   1. adjust stack pointer first so that it is below "bottom", and then
 718 //      touch "bottom"
 719 //   2. mmap() the page in question
 720 //
 721 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 722 // if current sp is already near the lower end of page 101, and we need to
 723 // call mmap() to map page 100, it is possible that part of the mmap() frame
 724 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 725 // That will destroy the mmap() frame and cause VM to crash.
 726 //
 727 // The following code works by adjusting sp first, then accessing the "bottom"
 728 // page to force a page fault. Linux kernel will then automatically expand the
 729 // stack mapping.
 730 //
 731 // _expand_stack_to() assumes its frame size is less than page size, which
 732 // should always be true if the function is not inlined.
 733 
 734 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 735 #define NOINLINE
 736 #else
 737 #define NOINLINE __attribute__ ((noinline))
 738 #endif
 739 
 740 static void _expand_stack_to(address bottom) NOINLINE;
 741 
 742 static void _expand_stack_to(address bottom) {
 743   address sp;
 744   size_t size;
 745   volatile char *p;
 746 
 747   // Adjust bottom to point to the largest address within the same page, it
 748   // gives us a one-page buffer if alloca() allocates slightly more memory.
 749   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 750   bottom += os::Linux::page_size() - 1;
 751 
 752   // sp might be slightly above current stack pointer; if that's the case, we
 753   // will alloca() a little more space than necessary, which is OK. Don't use
 754   // os::current_stack_pointer(), as its result can be slightly below current
 755   // stack pointer, causing us to not alloca enough to reach "bottom".
 756   sp = (address)&sp;
 757 
 758   if (sp > bottom) {
 759     size = sp - bottom;
 760     p = (volatile char *)alloca(size);
 761     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 762     p[0] = '\0';
 763   }
 764 }
 765 
 766 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 767   assert(t!=NULL, "just checking");
 768   assert(t->osthread()->expanding_stack(), "expand should be set");
 769   assert(t->stack_base() != NULL, "stack_base was not initialized");
 770 
 771   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 772     sigset_t mask_all, old_sigset;
 773     sigfillset(&mask_all);
 774     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 775     _expand_stack_to(addr);
 776     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 777     return true;
 778   }
 779   return false;
 780 }
 781 
 782 //////////////////////////////////////////////////////////////////////////////
 783 // create new thread
 784 
 785 static address highest_vm_reserved_address();
 786 
 787 // check if it's safe to start a new thread
 788 static bool _thread_safety_check(Thread* thread) {
 789   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 790     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 791     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 792     //   allocated (MAP_FIXED) from high address space. Every thread stack
 793     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 794     //   it to other values if they rebuild LinuxThreads).
 795     //
 796     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 797     // the memory region has already been mmap'ed. That means if we have too
 798     // many threads and/or very large heap, eventually thread stack will
 799     // collide with heap.
 800     //
 801     // Here we try to prevent heap/stack collision by comparing current
 802     // stack bottom with the highest address that has been mmap'ed by JVM
 803     // plus a safety margin for memory maps created by native code.
 804     //
 805     // This feature can be disabled by setting ThreadSafetyMargin to 0
 806     //
 807     if (ThreadSafetyMargin > 0) {
 808       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 809 
 810       // not safe if our stack extends below the safety margin
 811       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 812     } else {
 813       return true;
 814     }
 815   } else {
 816     // Floating stack LinuxThreads or NPTL:
 817     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 818     //   there's not enough space left, pthread_create() will fail. If we come
 819     //   here, that means enough space has been reserved for stack.
 820     return true;
 821   }
 822 }
 823 
 824 // Thread start routine for all newly created threads
 825 static void *java_start(Thread *thread) {
 826   // Try to randomize the cache line index of hot stack frames.
 827   // This helps when threads of the same stack traces evict each other's
 828   // cache lines. The threads can be either from the same JVM instance, or
 829   // from different JVM instances. The benefit is especially true for
 830   // processors with hyperthreading technology.
 831   static int counter = 0;
 832   int pid = os::current_process_id();
 833   alloca(((pid ^ counter++) & 7) * 128);
 834 
 835   ThreadLocalStorage::set_thread(thread);
 836 
 837   OSThread* osthread = thread->osthread();
 838   Monitor* sync = osthread->startThread_lock();
 839 
 840   // non floating stack LinuxThreads needs extra check, see above
 841   if (!_thread_safety_check(thread)) {
 842     // notify parent thread
 843     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 844     osthread->set_state(ZOMBIE);
 845     sync->notify_all();
 846     return NULL;
 847   }
 848 
 849   // thread_id is kernel thread id (similar to Solaris LWP id)
 850   osthread->set_thread_id(os::Linux::gettid());
 851 
 852   if (UseNUMA) {
 853     int lgrp_id = os::numa_get_group_id();
 854     if (lgrp_id != -1) {
 855       thread->set_lgrp_id(lgrp_id);
 856     }
 857   }
 858   // initialize signal mask for this thread
 859   os::Linux::hotspot_sigmask(thread);
 860 
 861   // initialize floating point control register
 862   os::Linux::init_thread_fpu_state();
 863 
 864   // handshaking with parent thread
 865   {
 866     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 867 
 868     // notify parent thread
 869     osthread->set_state(INITIALIZED);
 870     sync->notify_all();
 871 
 872     // wait until os::start_thread()
 873     while (osthread->get_state() == INITIALIZED) {
 874       sync->wait(Mutex::_no_safepoint_check_flag);
 875     }
 876   }
 877 
 878   // call one more level start routine
 879   thread->run();
 880 
 881   return 0;
 882 }
 883 
 884 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 885   assert(thread->osthread() == NULL, "caller responsible");
 886 
 887   // Allocate the OSThread object
 888   OSThread* osthread = new OSThread(NULL, NULL);
 889   if (osthread == NULL) {
 890     return false;
 891   }
 892 
 893   // set the correct thread state
 894   osthread->set_thread_type(thr_type);
 895 
 896   // Initial state is ALLOCATED but not INITIALIZED
 897   osthread->set_state(ALLOCATED);
 898 
 899   thread->set_osthread(osthread);
 900 
 901   // init thread attributes
 902   pthread_attr_t attr;
 903   pthread_attr_init(&attr);
 904   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 905 
 906   // stack size
 907   if (os::Linux::supports_variable_stack_size()) {
 908     // calculate stack size if it's not specified by caller
 909     if (stack_size == 0) {
 910       stack_size = os::Linux::default_stack_size(thr_type);
 911 
 912       switch (thr_type) {
 913       case os::java_thread:
 914         // Java threads use ThreadStackSize which default value can be
 915         // changed with the flag -Xss
 916         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 917         stack_size = JavaThread::stack_size_at_create();
 918         break;
 919       case os::compiler_thread:
 920         if (CompilerThreadStackSize > 0) {
 921           stack_size = (size_t)(CompilerThreadStackSize * K);
 922           break;
 923         } // else fall through:
 924           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 925       case os::vm_thread:
 926       case os::pgc_thread:
 927       case os::cgc_thread:
 928       case os::watcher_thread:
 929         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 930         break;
 931       }
 932     }
 933 
 934     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 935     pthread_attr_setstacksize(&attr, stack_size);
 936   } else {
 937     // let pthread_create() pick the default value.
 938   }
 939 
 940   // glibc guard page
 941   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 942 
 943   ThreadState state;
 944 
 945   {
 946     // Serialize thread creation if we are running with fixed stack LinuxThreads
 947     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 948     if (lock) {
 949       os::Linux::createThread_lock()->lock_without_safepoint_check();
 950     }
 951 
 952     pthread_t tid;
 953     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 954 
 955     pthread_attr_destroy(&attr);
 956 
 957     if (ret != 0) {
 958       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 959         perror("pthread_create()");
 960       }
 961       // Need to clean up stuff we've allocated so far
 962       thread->set_osthread(NULL);
 963       delete osthread;
 964       if (lock) os::Linux::createThread_lock()->unlock();
 965       return false;
 966     }
 967 
 968     // Store pthread info into the OSThread
 969     osthread->set_pthread_id(tid);
 970 
 971     // Wait until child thread is either initialized or aborted
 972     {
 973       Monitor* sync_with_child = osthread->startThread_lock();
 974       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 975       while ((state = osthread->get_state()) == ALLOCATED) {
 976         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 977       }
 978     }
 979 
 980     if (lock) {
 981       os::Linux::createThread_lock()->unlock();
 982     }
 983   }
 984 
 985   // Aborted due to thread limit being reached
 986   if (state == ZOMBIE) {
 987       thread->set_osthread(NULL);
 988       delete osthread;
 989       return false;
 990   }
 991 
 992   // The thread is returned suspended (in state INITIALIZED),
 993   // and is started higher up in the call chain
 994   assert(state == INITIALIZED, "race condition");
 995   return true;
 996 }
 997 
 998 /////////////////////////////////////////////////////////////////////////////
 999 // attach existing thread
1000 
1001 // bootstrap the main thread
1002 bool os::create_main_thread(JavaThread* thread) {
1003   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1004   return create_attached_thread(thread);
1005 }
1006 
1007 bool os::create_attached_thread(JavaThread* thread) {
1008 #ifdef ASSERT
1009     thread->verify_not_published();
1010 #endif
1011 
1012   // Allocate the OSThread object
1013   OSThread* osthread = new OSThread(NULL, NULL);
1014 
1015   if (osthread == NULL) {
1016     return false;
1017   }
1018 
1019   // Store pthread info into the OSThread
1020   osthread->set_thread_id(os::Linux::gettid());
1021   osthread->set_pthread_id(::pthread_self());
1022 
1023   // initialize floating point control register
1024   os::Linux::init_thread_fpu_state();
1025 
1026   // Initial thread state is RUNNABLE
1027   osthread->set_state(RUNNABLE);
1028 
1029   thread->set_osthread(osthread);
1030 
1031   if (UseNUMA) {
1032     int lgrp_id = os::numa_get_group_id();
1033     if (lgrp_id != -1) {
1034       thread->set_lgrp_id(lgrp_id);
1035     }
1036   }
1037 
1038   if (os::Linux::is_initial_thread()) {
1039     // If current thread is initial thread, its stack is mapped on demand,
1040     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1041     // the entire stack region to avoid SEGV in stack banging.
1042     // It is also useful to get around the heap-stack-gap problem on SuSE
1043     // kernel (see 4821821 for details). We first expand stack to the top
1044     // of yellow zone, then enable stack yellow zone (order is significant,
1045     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1046     // is no gap between the last two virtual memory regions.
1047 
1048     JavaThread *jt = (JavaThread *)thread;
1049     address addr = jt->stack_yellow_zone_base();
1050     assert(addr != NULL, "initialization problem?");
1051     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1052 
1053     osthread->set_expanding_stack();
1054     os::Linux::manually_expand_stack(jt, addr);
1055     osthread->clear_expanding_stack();
1056   }
1057 
1058   // initialize signal mask for this thread
1059   // and save the caller's signal mask
1060   os::Linux::hotspot_sigmask(thread);
1061 
1062   return true;
1063 }
1064 
1065 void os::pd_start_thread(Thread* thread) {
1066   OSThread * osthread = thread->osthread();
1067   assert(osthread->get_state() != INITIALIZED, "just checking");
1068   Monitor* sync_with_child = osthread->startThread_lock();
1069   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1070   sync_with_child->notify();
1071 }
1072 
1073 // Free Linux resources related to the OSThread
1074 void os::free_thread(OSThread* osthread) {
1075   assert(osthread != NULL, "osthread not set");
1076 
1077   if (Thread::current()->osthread() == osthread) {
1078     // Restore caller's signal mask
1079     sigset_t sigmask = osthread->caller_sigmask();
1080     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1081    }
1082 
1083   delete osthread;
1084 }
1085 
1086 //////////////////////////////////////////////////////////////////////////////
1087 // thread local storage
1088 
1089 int os::allocate_thread_local_storage() {
1090   pthread_key_t key;
1091   int rslt = pthread_key_create(&key, NULL);
1092   assert(rslt == 0, "cannot allocate thread local storage");
1093   return (int)key;
1094 }
1095 
1096 // Note: This is currently not used by VM, as we don't destroy TLS key
1097 // on VM exit.
1098 void os::free_thread_local_storage(int index) {
1099   int rslt = pthread_key_delete((pthread_key_t)index);
1100   assert(rslt == 0, "invalid index");
1101 }
1102 
1103 void os::thread_local_storage_at_put(int index, void* value) {
1104   int rslt = pthread_setspecific((pthread_key_t)index, value);
1105   assert(rslt == 0, "pthread_setspecific failed");
1106 }
1107 
1108 extern "C" Thread* get_thread() {
1109   return ThreadLocalStorage::thread();
1110 }
1111 
1112 //////////////////////////////////////////////////////////////////////////////
1113 // initial thread
1114 
1115 // Check if current thread is the initial thread, similar to Solaris thr_main.
1116 bool os::Linux::is_initial_thread(void) {
1117   char dummy;
1118   // If called before init complete, thread stack bottom will be null.
1119   // Can be called if fatal error occurs before initialization.
1120   if (initial_thread_stack_bottom() == NULL) return false;
1121   assert(initial_thread_stack_bottom() != NULL &&
1122          initial_thread_stack_size()   != 0,
1123          "os::init did not locate initial thread's stack region");
1124   if ((address)&dummy >= initial_thread_stack_bottom() &&
1125       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1126        return true;
1127   else return false;
1128 }
1129 
1130 // Find the virtual memory area that contains addr
1131 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1132   FILE *fp = fopen("/proc/self/maps", "r");
1133   if (fp) {
1134     address low, high;
1135     while (!feof(fp)) {
1136       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1137         if (low <= addr && addr < high) {
1138            if (vma_low)  *vma_low  = low;
1139            if (vma_high) *vma_high = high;
1140            fclose (fp);
1141            return true;
1142         }
1143       }
1144       for (;;) {
1145         int ch = fgetc(fp);
1146         if (ch == EOF || ch == (int)'\n') break;
1147       }
1148     }
1149     fclose(fp);
1150   }
1151   return false;
1152 }
1153 
1154 // Locate initial thread stack. This special handling of initial thread stack
1155 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1156 // bogus value for initial thread.
1157 void os::Linux::capture_initial_stack(size_t max_size) {
1158   // stack size is the easy part, get it from RLIMIT_STACK
1159   size_t stack_size;
1160   struct rlimit rlim;
1161   getrlimit(RLIMIT_STACK, &rlim);
1162   stack_size = rlim.rlim_cur;
1163 
1164   // 6308388: a bug in ld.so will relocate its own .data section to the
1165   //   lower end of primordial stack; reduce ulimit -s value a little bit
1166   //   so we won't install guard page on ld.so's data section.
1167   stack_size -= 2 * page_size();
1168 
1169   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1170   //   7.1, in both cases we will get 2G in return value.
1171   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1172   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1173   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1174   //   in case other parts in glibc still assumes 2M max stack size.
1175   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1176 #ifndef IA64
1177   if (stack_size > 2 * K * K) stack_size = 2 * K * K;
1178 #else
1179   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1180   if (stack_size > 4 * K * K) stack_size = 4 * K * K;
1181 #endif
1182 
1183   // Try to figure out where the stack base (top) is. This is harder.
1184   //
1185   // When an application is started, glibc saves the initial stack pointer in
1186   // a global variable "__libc_stack_end", which is then used by system
1187   // libraries. __libc_stack_end should be pretty close to stack top. The
1188   // variable is available since the very early days. However, because it is
1189   // a private interface, it could disappear in the future.
1190   //
1191   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1192   // to __libc_stack_end, it is very close to stack top, but isn't the real
1193   // stack top. Note that /proc may not exist if VM is running as a chroot
1194   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1195   // /proc/<pid>/stat could change in the future (though unlikely).
1196   //
1197   // We try __libc_stack_end first. If that doesn't work, look for
1198   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1199   // as a hint, which should work well in most cases.
1200 
1201   uintptr_t stack_start;
1202 
1203   // try __libc_stack_end first
1204   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1205   if (p && *p) {
1206     stack_start = *p;
1207   } else {
1208     // see if we can get the start_stack field from /proc/self/stat
1209     FILE *fp;
1210     int pid;
1211     char state;
1212     int ppid;
1213     int pgrp;
1214     int session;
1215     int nr;
1216     int tpgrp;
1217     unsigned long flags;
1218     unsigned long minflt;
1219     unsigned long cminflt;
1220     unsigned long majflt;
1221     unsigned long cmajflt;
1222     unsigned long utime;
1223     unsigned long stime;
1224     long cutime;
1225     long cstime;
1226     long prio;
1227     long nice;
1228     long junk;
1229     long it_real;
1230     uintptr_t start;
1231     uintptr_t vsize;
1232     intptr_t rss;
1233     uintptr_t rsslim;
1234     uintptr_t scodes;
1235     uintptr_t ecode;
1236     int i;
1237 
1238     // Figure what the primordial thread stack base is. Code is inspired
1239     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1240     // followed by command name surrounded by parentheses, state, etc.
1241     char stat[2048];
1242     int statlen;
1243 
1244     fp = fopen("/proc/self/stat", "r");
1245     if (fp) {
1246       statlen = fread(stat, 1, 2047, fp);
1247       stat[statlen] = '\0';
1248       fclose(fp);
1249 
1250       // Skip pid and the command string. Note that we could be dealing with
1251       // weird command names, e.g. user could decide to rename java launcher
1252       // to "java 1.4.2 :)", then the stat file would look like
1253       //                1234 (java 1.4.2 :)) R ... ...
1254       // We don't really need to know the command string, just find the last
1255       // occurrence of ")" and then start parsing from there. See bug 4726580.
1256       char * s = strrchr(stat, ')');
1257 
1258       i = 0;
1259       if (s) {
1260         // Skip blank chars
1261         do s++; while (isspace(*s));
1262 
1263 #define _UFM UINTX_FORMAT
1264 #define _DFM INTX_FORMAT
1265 
1266         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1267         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1268         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1269              &state,          /* 3  %c  */
1270              &ppid,           /* 4  %d  */
1271              &pgrp,           /* 5  %d  */
1272              &session,        /* 6  %d  */
1273              &nr,             /* 7  %d  */
1274              &tpgrp,          /* 8  %d  */
1275              &flags,          /* 9  %lu  */
1276              &minflt,         /* 10 %lu  */
1277              &cminflt,        /* 11 %lu  */
1278              &majflt,         /* 12 %lu  */
1279              &cmajflt,        /* 13 %lu  */
1280              &utime,          /* 14 %lu  */
1281              &stime,          /* 15 %lu  */
1282              &cutime,         /* 16 %ld  */
1283              &cstime,         /* 17 %ld  */
1284              &prio,           /* 18 %ld  */
1285              &nice,           /* 19 %ld  */
1286              &junk,           /* 20 %ld  */
1287              &it_real,        /* 21 %ld  */
1288              &start,          /* 22 UINTX_FORMAT */
1289              &vsize,          /* 23 UINTX_FORMAT */
1290              &rss,            /* 24 INTX_FORMAT  */
1291              &rsslim,         /* 25 UINTX_FORMAT */
1292              &scodes,         /* 26 UINTX_FORMAT */
1293              &ecode,          /* 27 UINTX_FORMAT */
1294              &stack_start);   /* 28 UINTX_FORMAT */
1295       }
1296 
1297 #undef _UFM
1298 #undef _DFM
1299 
1300       if (i != 28 - 2) {
1301          assert(false, "Bad conversion from /proc/self/stat");
1302          // product mode - assume we are the initial thread, good luck in the
1303          // embedded case.
1304          warning("Can't detect initial thread stack location - bad conversion");
1305          stack_start = (uintptr_t) &rlim;
1306       }
1307     } else {
1308       // For some reason we can't open /proc/self/stat (for example, running on
1309       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1310       // most cases, so don't abort:
1311       warning("Can't detect initial thread stack location - no /proc/self/stat");
1312       stack_start = (uintptr_t) &rlim;
1313     }
1314   }
1315 
1316   // Now we have a pointer (stack_start) very close to the stack top, the
1317   // next thing to do is to figure out the exact location of stack top. We
1318   // can find out the virtual memory area that contains stack_start by
1319   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1320   // and its upper limit is the real stack top. (again, this would fail if
1321   // running inside chroot, because /proc may not exist.)
1322 
1323   uintptr_t stack_top;
1324   address low, high;
1325   if (find_vma((address)stack_start, &low, &high)) {
1326     // success, "high" is the true stack top. (ignore "low", because initial
1327     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1328     stack_top = (uintptr_t)high;
1329   } else {
1330     // failed, likely because /proc/self/maps does not exist
1331     warning("Can't detect initial thread stack location - find_vma failed");
1332     // best effort: stack_start is normally within a few pages below the real
1333     // stack top, use it as stack top, and reduce stack size so we won't put
1334     // guard page outside stack.
1335     stack_top = stack_start;
1336     stack_size -= 16 * page_size();
1337   }
1338 
1339   // stack_top could be partially down the page so align it
1340   stack_top = align_size_up(stack_top, page_size());
1341 
1342   if (max_size && stack_size > max_size) {
1343      _initial_thread_stack_size = max_size;
1344   } else {
1345      _initial_thread_stack_size = stack_size;
1346   }
1347 
1348   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1349   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1350 }
1351 
1352 ////////////////////////////////////////////////////////////////////////////////
1353 // time support
1354 
1355 // Time since start-up in seconds to a fine granularity.
1356 // Used by VMSelfDestructTimer and the MemProfiler.
1357 double os::elapsedTime() {
1358 
1359   return (double)(os::elapsed_counter()) * 0.000001;
1360 }
1361 
1362 jlong os::elapsed_counter() {
1363   timeval time;
1364   int status = gettimeofday(&time, NULL);
1365   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1366 }
1367 
1368 jlong os::elapsed_frequency() {
1369   return (1000 * 1000);
1370 }
1371 
1372 // For now, we say that linux does not support vtime.  I have no idea
1373 // whether it can actually be made to (DLD, 9/13/05).
1374 
1375 bool os::supports_vtime() { return false; }
1376 bool os::enable_vtime()   { return false; }
1377 bool os::vtime_enabled()  { return false; }
1378 double os::elapsedVTime() {
1379   // better than nothing, but not much
1380   return elapsedTime();
1381 }
1382 
1383 jlong os::javaTimeMillis() {
1384   timeval time;
1385   int status = gettimeofday(&time, NULL);
1386   assert(status != -1, "linux error");
1387   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1388 }
1389 
1390 #ifndef CLOCK_MONOTONIC
1391 #define CLOCK_MONOTONIC (1)
1392 #endif
1393 
1394 void os::Linux::clock_init() {
1395   // we do dlopen's in this particular order due to bug in linux
1396   // dynamical loader (see 6348968) leading to crash on exit
1397   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1398   if (handle == NULL) {
1399     handle = dlopen("librt.so", RTLD_LAZY);
1400   }
1401 
1402   if (handle) {
1403     int (*clock_getres_func)(clockid_t, struct timespec*) =
1404            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1405     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1406            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1407     if (clock_getres_func && clock_gettime_func) {
1408       // See if monotonic clock is supported by the kernel. Note that some
1409       // early implementations simply return kernel jiffies (updated every
1410       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1411       // for nano time (though the monotonic property is still nice to have).
1412       // It's fixed in newer kernels, however clock_getres() still returns
1413       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1414       // resolution for now. Hopefully as people move to new kernels, this
1415       // won't be a problem.
1416       struct timespec res;
1417       struct timespec tp;
1418       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1419           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1420         // yes, monotonic clock is supported
1421         _clock_gettime = clock_gettime_func;
1422       } else {
1423         // close librt if there is no monotonic clock
1424         dlclose(handle);
1425       }
1426     }
1427   }
1428 }
1429 
1430 #ifndef SYS_clock_getres
1431 
1432 #if defined(IA32) || defined(AMD64)
1433 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1434 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1435 #else
1436 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1437 #define sys_clock_getres(x,y)  -1
1438 #endif
1439 
1440 #else
1441 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1442 #endif
1443 
1444 void os::Linux::fast_thread_clock_init() {
1445   if (!UseLinuxPosixThreadCPUClocks) {
1446     return;
1447   }
1448   clockid_t clockid;
1449   struct timespec tp;
1450   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1451       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1452 
1453   // Switch to using fast clocks for thread cpu time if
1454   // the sys_clock_getres() returns 0 error code.
1455   // Note, that some kernels may support the current thread
1456   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1457   // returned by the pthread_getcpuclockid().
1458   // If the fast Posix clocks are supported then the sys_clock_getres()
1459   // must return at least tp.tv_sec == 0 which means a resolution
1460   // better than 1 sec. This is extra check for reliability.
1461 
1462   if(pthread_getcpuclockid_func &&
1463      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1464      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1465 
1466     _supports_fast_thread_cpu_time = true;
1467     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1468   }
1469 }
1470 
1471 jlong os::javaTimeNanos() {
1472   if (Linux::supports_monotonic_clock()) {
1473     struct timespec tp;
1474     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1475     assert(status == 0, "gettime error");
1476     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1477     return result;
1478   } else {
1479     timeval time;
1480     int status = gettimeofday(&time, NULL);
1481     assert(status != -1, "linux error");
1482     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1483     return 1000 * usecs;
1484   }
1485 }
1486 
1487 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1488   if (Linux::supports_monotonic_clock()) {
1489     info_ptr->max_value = ALL_64_BITS;
1490 
1491     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1492     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1493     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1494   } else {
1495     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1496     info_ptr->max_value = ALL_64_BITS;
1497 
1498     // gettimeofday is a real time clock so it skips
1499     info_ptr->may_skip_backward = true;
1500     info_ptr->may_skip_forward = true;
1501   }
1502 
1503   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1504 }
1505 
1506 // Return the real, user, and system times in seconds from an
1507 // arbitrary fixed point in the past.
1508 bool os::getTimesSecs(double* process_real_time,
1509                       double* process_user_time,
1510                       double* process_system_time) {
1511   struct tms ticks;
1512   clock_t real_ticks = times(&ticks);
1513 
1514   if (real_ticks == (clock_t) (-1)) {
1515     return false;
1516   } else {
1517     double ticks_per_second = (double) clock_tics_per_sec;
1518     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1519     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1520     *process_real_time = ((double) real_ticks) / ticks_per_second;
1521 
1522     return true;
1523   }
1524 }
1525 
1526 
1527 char * os::local_time_string(char *buf, size_t buflen) {
1528   struct tm t;
1529   time_t long_time;
1530   time(&long_time);
1531   localtime_r(&long_time, &t);
1532   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1533                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1534                t.tm_hour, t.tm_min, t.tm_sec);
1535   return buf;
1536 }
1537 
1538 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1539   return localtime_r(clock, res);
1540 }
1541 
1542 ////////////////////////////////////////////////////////////////////////////////
1543 // runtime exit support
1544 
1545 // Note: os::shutdown() might be called very early during initialization, or
1546 // called from signal handler. Before adding something to os::shutdown(), make
1547 // sure it is async-safe and can handle partially initialized VM.
1548 void os::shutdown() {
1549 
1550   // allow PerfMemory to attempt cleanup of any persistent resources
1551   perfMemory_exit();
1552 
1553   // needs to remove object in file system
1554   AttachListener::abort();
1555 
1556   // flush buffered output, finish log files
1557   ostream_abort();
1558 
1559   // Check for abort hook
1560   abort_hook_t abort_hook = Arguments::abort_hook();
1561   if (abort_hook != NULL) {
1562     abort_hook();
1563   }
1564 
1565 }
1566 
1567 // Note: os::abort() might be called very early during initialization, or
1568 // called from signal handler. Before adding something to os::abort(), make
1569 // sure it is async-safe and can handle partially initialized VM.
1570 void os::abort(bool dump_core) {
1571   os::shutdown();
1572   if (dump_core) {
1573 #ifndef PRODUCT
1574     fdStream out(defaultStream::output_fd());
1575     out.print_raw("Current thread is ");
1576     char buf[16];
1577     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1578     out.print_raw_cr(buf);
1579     out.print_raw_cr("Dumping core ...");
1580 #endif
1581     ::abort(); // dump core
1582   }
1583 
1584   ::exit(1);
1585 }
1586 
1587 // Die immediately, no exit hook, no abort hook, no cleanup.
1588 void os::die() {
1589   // _exit() on LinuxThreads only kills current thread
1590   ::abort();
1591 }
1592 
1593 // unused on linux for now.
1594 void os::set_error_file(const char *logfile) {}
1595 
1596 
1597 // This method is a copy of JDK's sysGetLastErrorString
1598 // from src/solaris/hpi/src/system_md.c
1599 
1600 size_t os::lasterror(char *buf, size_t len) {
1601 
1602   if (errno == 0)  return 0;
1603 
1604   const char *s = ::strerror(errno);
1605   size_t n = ::strlen(s);
1606   if (n >= len) {
1607     n = len - 1;
1608   }
1609   ::strncpy(buf, s, n);
1610   buf[n] = '\0';
1611   return n;
1612 }
1613 
1614 intx os::current_thread_id() { return (intx)pthread_self(); }
1615 int os::current_process_id() {
1616 
1617   // Under the old linux thread library, linux gives each thread
1618   // its own process id. Because of this each thread will return
1619   // a different pid if this method were to return the result
1620   // of getpid(2). Linux provides no api that returns the pid
1621   // of the launcher thread for the vm. This implementation
1622   // returns a unique pid, the pid of the launcher thread
1623   // that starts the vm 'process'.
1624 
1625   // Under the NPTL, getpid() returns the same pid as the
1626   // launcher thread rather than a unique pid per thread.
1627   // Use gettid() if you want the old pre NPTL behaviour.
1628 
1629   // if you are looking for the result of a call to getpid() that
1630   // returns a unique pid for the calling thread, then look at the
1631   // OSThread::thread_id() method in osThread_linux.hpp file
1632 
1633   return (int)(_initial_pid ? _initial_pid : getpid());
1634 }
1635 
1636 // DLL functions
1637 
1638 const char* os::dll_file_extension() { return ".so"; }
1639 
1640 // This must be hard coded because it's the system's temporary
1641 // directory not the java application's temp directory, ala java.io.tmpdir.
1642 const char* os::get_temp_directory() { return "/tmp"; }
1643 
1644 static bool file_exists(const char* filename) {
1645   struct stat statbuf;
1646   if (filename == NULL || strlen(filename) == 0) {
1647     return false;
1648   }
1649   return os::stat(filename, &statbuf) == 0;
1650 }
1651 
1652 void os::dll_build_name(char* buffer, size_t buflen,
1653                         const char* pname, const char* fname) {
1654   // Copied from libhpi
1655   const size_t pnamelen = pname ? strlen(pname) : 0;
1656 
1657   // Quietly truncate on buffer overflow.  Should be an error.
1658   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1659       *buffer = '\0';
1660       return;
1661   }
1662 
1663   if (pnamelen == 0) {
1664     snprintf(buffer, buflen, "lib%s.so", fname);
1665   } else if (strchr(pname, *os::path_separator()) != NULL) {
1666     int n;
1667     char** pelements = split_path(pname, &n);
1668     for (int i = 0 ; i < n ; i++) {
1669       // Really shouldn't be NULL, but check can't hurt
1670       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1671         continue; // skip the empty path values
1672       }
1673       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1674       if (file_exists(buffer)) {
1675         break;
1676       }
1677     }
1678     // release the storage
1679     for (int i = 0 ; i < n ; i++) {
1680       if (pelements[i] != NULL) {
1681         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1682       }
1683     }
1684     if (pelements != NULL) {
1685       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1686     }
1687   } else {
1688     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1689   }
1690 }
1691 
1692 const char* os::get_current_directory(char *buf, int buflen) {
1693   return getcwd(buf, buflen);
1694 }
1695 
1696 // check if addr is inside libjvm[_g].so
1697 bool os::address_is_in_vm(address addr) {
1698   static address libjvm_base_addr;
1699   Dl_info dlinfo;
1700 
1701   if (libjvm_base_addr == NULL) {
1702     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1703     libjvm_base_addr = (address)dlinfo.dli_fbase;
1704     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1705   }
1706 
1707   if (dladdr((void *)addr, &dlinfo)) {
1708     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1709   }
1710 
1711   return false;
1712 }
1713 
1714 bool os::dll_address_to_function_name(address addr, char *buf,
1715                                       int buflen, int *offset) {
1716   Dl_info dlinfo;
1717 
1718   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1719     if (buf != NULL) {
1720       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1721         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1722       }
1723     }
1724     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1725     return true;
1726   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1727     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1728         buf, buflen, offset, dlinfo.dli_fname)) {
1729        return true;
1730     }
1731   }
1732 
1733   if (buf != NULL) buf[0] = '\0';
1734   if (offset != NULL) *offset = -1;
1735   return false;
1736 }
1737 
1738 struct _address_to_library_name {
1739   address addr;          // input : memory address
1740   size_t  buflen;        //         size of fname
1741   char*   fname;         // output: library name
1742   address base;          //         library base addr
1743 };
1744 
1745 static int address_to_library_name_callback(struct dl_phdr_info *info,
1746                                             size_t size, void *data) {
1747   int i;
1748   bool found = false;
1749   address libbase = NULL;
1750   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1751 
1752   // iterate through all loadable segments
1753   for (i = 0; i < info->dlpi_phnum; i++) {
1754     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1755     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1756       // base address of a library is the lowest address of its loaded
1757       // segments.
1758       if (libbase == NULL || libbase > segbase) {
1759         libbase = segbase;
1760       }
1761       // see if 'addr' is within current segment
1762       if (segbase <= d->addr &&
1763           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1764         found = true;
1765       }
1766     }
1767   }
1768 
1769   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1770   // so dll_address_to_library_name() can fall through to use dladdr() which
1771   // can figure out executable name from argv[0].
1772   if (found && info->dlpi_name && info->dlpi_name[0]) {
1773     d->base = libbase;
1774     if (d->fname) {
1775       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1776     }
1777     return 1;
1778   }
1779   return 0;
1780 }
1781 
1782 bool os::dll_address_to_library_name(address addr, char* buf,
1783                                      int buflen, int* offset) {
1784   Dl_info dlinfo;
1785   struct _address_to_library_name data;
1786 
1787   // There is a bug in old glibc dladdr() implementation that it could resolve
1788   // to wrong library name if the .so file has a base address != NULL. Here
1789   // we iterate through the program headers of all loaded libraries to find
1790   // out which library 'addr' really belongs to. This workaround can be
1791   // removed once the minimum requirement for glibc is moved to 2.3.x.
1792   data.addr = addr;
1793   data.fname = buf;
1794   data.buflen = buflen;
1795   data.base = NULL;
1796   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1797 
1798   if (rslt) {
1799      // buf already contains library name
1800      if (offset) *offset = addr - data.base;
1801      return true;
1802   } else if (dladdr((void*)addr, &dlinfo)){
1803      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1804      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1805      return true;
1806   } else {
1807      if (buf) buf[0] = '\0';
1808      if (offset) *offset = -1;
1809      return false;
1810   }
1811 }
1812 
1813   // Loads .dll/.so and
1814   // in case of error it checks if .dll/.so was built for the
1815   // same architecture as Hotspot is running on
1816 
1817 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1818 {
1819   void * result= ::dlopen(filename, RTLD_LAZY);
1820   if (result != NULL) {
1821     // Successful loading
1822     return result;
1823   }
1824 
1825   Elf32_Ehdr elf_head;
1826 
1827   // Read system error message into ebuf
1828   // It may or may not be overwritten below
1829   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1830   ebuf[ebuflen-1]='\0';
1831   int diag_msg_max_length=ebuflen-strlen(ebuf);
1832   char* diag_msg_buf=ebuf+strlen(ebuf);
1833 
1834   if (diag_msg_max_length==0) {
1835     // No more space in ebuf for additional diagnostics message
1836     return NULL;
1837   }
1838 
1839 
1840   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1841 
1842   if (file_descriptor < 0) {
1843     // Can't open library, report dlerror() message
1844     return NULL;
1845   }
1846 
1847   bool failed_to_read_elf_head=
1848     (sizeof(elf_head)!=
1849         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1850 
1851   ::close(file_descriptor);
1852   if (failed_to_read_elf_head) {
1853     // file i/o error - report dlerror() msg
1854     return NULL;
1855   }
1856 
1857   typedef struct {
1858     Elf32_Half  code;         // Actual value as defined in elf.h
1859     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1860     char        elf_class;    // 32 or 64 bit
1861     char        endianess;    // MSB or LSB
1862     char*       name;         // String representation
1863   } arch_t;
1864 
1865   #ifndef EM_486
1866   #define EM_486          6               /* Intel 80486 */
1867   #endif
1868 
1869   static const arch_t arch_array[]={
1870     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1871     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1872     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1873     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1874     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1875     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1876     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1877     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1878     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1879     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1880     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1881     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1882     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1883     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1884     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1885     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1886   };
1887 
1888   #if  (defined IA32)
1889     static  Elf32_Half running_arch_code=EM_386;
1890   #elif   (defined AMD64)
1891     static  Elf32_Half running_arch_code=EM_X86_64;
1892   #elif  (defined IA64)
1893     static  Elf32_Half running_arch_code=EM_IA_64;
1894   #elif  (defined __sparc) && (defined _LP64)
1895     static  Elf32_Half running_arch_code=EM_SPARCV9;
1896   #elif  (defined __sparc) && (!defined _LP64)
1897     static  Elf32_Half running_arch_code=EM_SPARC;
1898   #elif  (defined __powerpc64__)
1899     static  Elf32_Half running_arch_code=EM_PPC64;
1900   #elif  (defined __powerpc__)
1901     static  Elf32_Half running_arch_code=EM_PPC;
1902   #elif  (defined ARM)
1903     static  Elf32_Half running_arch_code=EM_ARM;
1904   #elif  (defined S390)
1905     static  Elf32_Half running_arch_code=EM_S390;
1906   #elif  (defined ALPHA)
1907     static  Elf32_Half running_arch_code=EM_ALPHA;
1908   #elif  (defined MIPSEL)
1909     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1910   #elif  (defined PARISC)
1911     static  Elf32_Half running_arch_code=EM_PARISC;
1912   #elif  (defined MIPS)
1913     static  Elf32_Half running_arch_code=EM_MIPS;
1914   #elif  (defined M68K)
1915     static  Elf32_Half running_arch_code=EM_68K;
1916   #else
1917     #error Method os::dll_load requires that one of following is defined:\
1918          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1919   #endif
1920 
1921   // Identify compatability class for VM's architecture and library's architecture
1922   // Obtain string descriptions for architectures
1923 
1924   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1925   int running_arch_index=-1;
1926 
1927   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1928     if (running_arch_code == arch_array[i].code) {
1929       running_arch_index    = i;
1930     }
1931     if (lib_arch.code == arch_array[i].code) {
1932       lib_arch.compat_class = arch_array[i].compat_class;
1933       lib_arch.name         = arch_array[i].name;
1934     }
1935   }
1936 
1937   assert(running_arch_index != -1,
1938     "Didn't find running architecture code (running_arch_code) in arch_array");
1939   if (running_arch_index == -1) {
1940     // Even though running architecture detection failed
1941     // we may still continue with reporting dlerror() message
1942     return NULL;
1943   }
1944 
1945   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1946     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1947     return NULL;
1948   }
1949 
1950 #ifndef S390
1951   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1952     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1953     return NULL;
1954   }
1955 #endif // !S390
1956 
1957   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1958     if ( lib_arch.name!=NULL ) {
1959       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1960         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1961         lib_arch.name, arch_array[running_arch_index].name);
1962     } else {
1963       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1964       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1965         lib_arch.code,
1966         arch_array[running_arch_index].name);
1967     }
1968   }
1969 
1970   return NULL;
1971 }
1972 
1973 /*
1974  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1975  * chances are you might want to run the generated bits against glibc-2.0
1976  * libdl.so, so always use locking for any version of glibc.
1977  */
1978 void* os::dll_lookup(void* handle, const char* name) {
1979   pthread_mutex_lock(&dl_mutex);
1980   void* res = dlsym(handle, name);
1981   pthread_mutex_unlock(&dl_mutex);
1982   return res;
1983 }
1984 
1985 
1986 static bool _print_ascii_file(const char* filename, outputStream* st) {
1987   int fd = ::open(filename, O_RDONLY);
1988   if (fd == -1) {
1989      return false;
1990   }
1991 
1992   char buf[32];
1993   int bytes;
1994   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1995     st->print_raw(buf, bytes);
1996   }
1997 
1998   ::close(fd);
1999 
2000   return true;
2001 }
2002 
2003 void os::print_dll_info(outputStream *st) {
2004    st->print_cr("Dynamic libraries:");
2005 
2006    char fname[32];
2007    pid_t pid = os::Linux::gettid();
2008 
2009    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2010 
2011    if (!_print_ascii_file(fname, st)) {
2012      st->print("Can not get library information for pid = %d\n", pid);
2013    }
2014 }
2015 
2016 void os::print_os_info_brief(outputStream* st) {
2017   os::Linux::print_distro_info(st);
2018 
2019   os::Posix::print_uname_info(st);
2020 
2021   os::Linux::print_libversion_info(st);
2022 
2023 }
2024 
2025 void os::print_os_info(outputStream* st) {
2026   st->print("OS:");
2027 
2028   os::Linux::print_distro_info(st);
2029 
2030   os::Posix::print_uname_info(st);
2031 
2032   // Print warning if unsafe chroot environment detected
2033   if (unsafe_chroot_detected) {
2034     st->print("WARNING!! ");
2035     st->print_cr(unstable_chroot_error);
2036   }
2037 
2038   os::Linux::print_libversion_info(st);
2039 
2040   os::Posix::print_rlimit_info(st);
2041 
2042   os::Posix::print_load_average(st);
2043 
2044   os::Linux::print_full_memory_info(st);
2045 }
2046 
2047 // Try to identify popular distros.
2048 // Most Linux distributions have /etc/XXX-release file, which contains
2049 // the OS version string. Some have more than one /etc/XXX-release file
2050 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2051 // so the order is important.
2052 void os::Linux::print_distro_info(outputStream* st) {
2053   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2054       !_print_ascii_file("/etc/sun-release", st) &&
2055       !_print_ascii_file("/etc/redhat-release", st) &&
2056       !_print_ascii_file("/etc/SuSE-release", st) &&
2057       !_print_ascii_file("/etc/turbolinux-release", st) &&
2058       !_print_ascii_file("/etc/gentoo-release", st) &&
2059       !_print_ascii_file("/etc/debian_version", st) &&
2060       !_print_ascii_file("/etc/ltib-release", st) &&
2061       !_print_ascii_file("/etc/angstrom-version", st)) {
2062       st->print("Linux");
2063   }
2064   st->cr();
2065 }
2066 
2067 void os::Linux::print_libversion_info(outputStream* st) {
2068   // libc, pthread
2069   st->print("libc:");
2070   st->print(os::Linux::glibc_version()); st->print(" ");
2071   st->print(os::Linux::libpthread_version()); st->print(" ");
2072   if (os::Linux::is_LinuxThreads()) {
2073      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2074   }
2075   st->cr();
2076 }
2077 
2078 void os::Linux::print_full_memory_info(outputStream* st) {
2079    st->print("\n/proc/meminfo:\n");
2080    _print_ascii_file("/proc/meminfo", st);
2081    st->cr();
2082 }
2083 
2084 void os::print_memory_info(outputStream* st) {
2085 
2086   st->print("Memory:");
2087   st->print(" %dk page", os::vm_page_size()>>10);
2088 
2089   // values in struct sysinfo are "unsigned long"
2090   struct sysinfo si;
2091   sysinfo(&si);
2092 
2093   st->print(", physical " UINT64_FORMAT "k",
2094             os::physical_memory() >> 10);
2095   st->print("(" UINT64_FORMAT "k free)",
2096             os::available_memory() >> 10);
2097   st->print(", swap " UINT64_FORMAT "k",
2098             ((jlong)si.totalswap * si.mem_unit) >> 10);
2099   st->print("(" UINT64_FORMAT "k free)",
2100             ((jlong)si.freeswap * si.mem_unit) >> 10);
2101   st->cr();
2102 }
2103 
2104 void os::pd_print_cpu_info(outputStream* st) {
2105   st->print("\n/proc/cpuinfo:\n");
2106   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2107     st->print("  <Not Available>");
2108   }
2109   st->cr();
2110 }
2111 
2112 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2113 // but they're the same for all the linux arch that we support
2114 // and they're the same for solaris but there's no common place to put this.
2115 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2116                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2117                           "ILL_COPROC", "ILL_BADSTK" };
2118 
2119 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2120                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2121                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2122 
2123 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2124 
2125 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2126 
2127 void os::print_siginfo(outputStream* st, void* siginfo) {
2128   st->print("siginfo:");
2129 
2130   const int buflen = 100;
2131   char buf[buflen];
2132   siginfo_t *si = (siginfo_t*)siginfo;
2133   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2134   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2135     st->print("si_errno=%s", buf);
2136   } else {
2137     st->print("si_errno=%d", si->si_errno);
2138   }
2139   const int c = si->si_code;
2140   assert(c > 0, "unexpected si_code");
2141   switch (si->si_signo) {
2142   case SIGILL:
2143     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2144     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2145     break;
2146   case SIGFPE:
2147     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2148     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2149     break;
2150   case SIGSEGV:
2151     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2152     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2153     break;
2154   case SIGBUS:
2155     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2156     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2157     break;
2158   default:
2159     st->print(", si_code=%d", si->si_code);
2160     // no si_addr
2161   }
2162 
2163   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2164       UseSharedSpaces) {
2165     FileMapInfo* mapinfo = FileMapInfo::current_info();
2166     if (mapinfo->is_in_shared_space(si->si_addr)) {
2167       st->print("\n\nError accessing class data sharing archive."   \
2168                 " Mapped file inaccessible during execution, "      \
2169                 " possible disk/network problem.");
2170     }
2171   }
2172   st->cr();
2173 }
2174 
2175 
2176 static void print_signal_handler(outputStream* st, int sig,
2177                                  char* buf, size_t buflen);
2178 
2179 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2180   st->print_cr("Signal Handlers:");
2181   print_signal_handler(st, SIGSEGV, buf, buflen);
2182   print_signal_handler(st, SIGBUS , buf, buflen);
2183   print_signal_handler(st, SIGFPE , buf, buflen);
2184   print_signal_handler(st, SIGPIPE, buf, buflen);
2185   print_signal_handler(st, SIGXFSZ, buf, buflen);
2186   print_signal_handler(st, SIGILL , buf, buflen);
2187   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2188   print_signal_handler(st, SR_signum, buf, buflen);
2189   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2190   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2191   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2192   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2193 }
2194 
2195 static char saved_jvm_path[MAXPATHLEN] = {0};
2196 
2197 // Find the full path to the current module, libjvm.so or libjvm_g.so
2198 void os::jvm_path(char *buf, jint buflen) {
2199   // Error checking.
2200   if (buflen < MAXPATHLEN) {
2201     assert(false, "must use a large-enough buffer");
2202     buf[0] = '\0';
2203     return;
2204   }
2205   // Lazy resolve the path to current module.
2206   if (saved_jvm_path[0] != 0) {
2207     strcpy(buf, saved_jvm_path);
2208     return;
2209   }
2210 
2211   char dli_fname[MAXPATHLEN];
2212   bool ret = dll_address_to_library_name(
2213                 CAST_FROM_FN_PTR(address, os::jvm_path),
2214                 dli_fname, sizeof(dli_fname), NULL);
2215   assert(ret != 0, "cannot locate libjvm");
2216   char *rp = realpath(dli_fname, buf);
2217   if (rp == NULL)
2218     return;
2219 
2220   if (Arguments::created_by_gamma_launcher()) {
2221     // Support for the gamma launcher.  Typical value for buf is
2222     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2223     // the right place in the string, then assume we are installed in a JDK and
2224     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2225     // up the path so it looks like libjvm.so is installed there (append a
2226     // fake suffix hotspot/libjvm.so).
2227     const char *p = buf + strlen(buf) - 1;
2228     for (int count = 0; p > buf && count < 5; ++count) {
2229       for (--p; p > buf && *p != '/'; --p)
2230         /* empty */ ;
2231     }
2232 
2233     if (strncmp(p, "/jre/lib/", 9) != 0) {
2234       // Look for JAVA_HOME in the environment.
2235       char* java_home_var = ::getenv("JAVA_HOME");
2236       if (java_home_var != NULL && java_home_var[0] != 0) {
2237         char* jrelib_p;
2238         int len;
2239 
2240         // Check the current module name "libjvm.so" or "libjvm_g.so".
2241         p = strrchr(buf, '/');
2242         assert(strstr(p, "/libjvm") == p, "invalid library name");
2243         p = strstr(p, "_g") ? "_g" : "";
2244 
2245         rp = realpath(java_home_var, buf);
2246         if (rp == NULL)
2247           return;
2248 
2249         // determine if this is a legacy image or modules image
2250         // modules image doesn't have "jre" subdirectory
2251         len = strlen(buf);
2252         jrelib_p = buf + len;
2253         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2254         if (0 != access(buf, F_OK)) {
2255           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2256         }
2257 
2258         if (0 == access(buf, F_OK)) {
2259           // Use current module name "libjvm[_g].so" instead of
2260           // "libjvm"debug_only("_g")".so" since for fastdebug version
2261           // we should have "libjvm.so" but debug_only("_g") adds "_g"!
2262           len = strlen(buf);
2263           snprintf(buf + len, buflen-len, "/hotspot/libjvm%s.so", p);
2264         } else {
2265           // Go back to path of .so
2266           rp = realpath(dli_fname, buf);
2267           if (rp == NULL)
2268             return;
2269         }
2270       }
2271     }
2272   }
2273 
2274   strcpy(saved_jvm_path, buf);
2275 }
2276 
2277 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2278   // no prefix required, not even "_"
2279 }
2280 
2281 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2282   // no suffix required
2283 }
2284 
2285 ////////////////////////////////////////////////////////////////////////////////
2286 // sun.misc.Signal support
2287 
2288 static volatile jint sigint_count = 0;
2289 
2290 static void
2291 UserHandler(int sig, void *siginfo, void *context) {
2292   // 4511530 - sem_post is serialized and handled by the manager thread. When
2293   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2294   // don't want to flood the manager thread with sem_post requests.
2295   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2296       return;
2297 
2298   // Ctrl-C is pressed during error reporting, likely because the error
2299   // handler fails to abort. Let VM die immediately.
2300   if (sig == SIGINT && is_error_reported()) {
2301      os::die();
2302   }
2303 
2304   os::signal_notify(sig);
2305 }
2306 
2307 void* os::user_handler() {
2308   return CAST_FROM_FN_PTR(void*, UserHandler);
2309 }
2310 
2311 extern "C" {
2312   typedef void (*sa_handler_t)(int);
2313   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2314 }
2315 
2316 void* os::signal(int signal_number, void* handler) {
2317   struct sigaction sigAct, oldSigAct;
2318 
2319   sigfillset(&(sigAct.sa_mask));
2320   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2321   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2322 
2323   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2324     // -1 means registration failed
2325     return (void *)-1;
2326   }
2327 
2328   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2329 }
2330 
2331 void os::signal_raise(int signal_number) {
2332   ::raise(signal_number);
2333 }
2334 
2335 /*
2336  * The following code is moved from os.cpp for making this
2337  * code platform specific, which it is by its very nature.
2338  */
2339 
2340 // Will be modified when max signal is changed to be dynamic
2341 int os::sigexitnum_pd() {
2342   return NSIG;
2343 }
2344 
2345 // a counter for each possible signal value
2346 static volatile jint pending_signals[NSIG+1] = { 0 };
2347 
2348 // Linux(POSIX) specific hand shaking semaphore.
2349 static sem_t sig_sem;
2350 
2351 void os::signal_init_pd() {
2352   // Initialize signal structures
2353   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2354 
2355   // Initialize signal semaphore
2356   ::sem_init(&sig_sem, 0, 0);
2357 }
2358 
2359 void os::signal_notify(int sig) {
2360   Atomic::inc(&pending_signals[sig]);
2361   ::sem_post(&sig_sem);
2362 }
2363 
2364 static int check_pending_signals(bool wait) {
2365   Atomic::store(0, &sigint_count);
2366   for (;;) {
2367     for (int i = 0; i < NSIG + 1; i++) {
2368       jint n = pending_signals[i];
2369       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2370         return i;
2371       }
2372     }
2373     if (!wait) {
2374       return -1;
2375     }
2376     JavaThread *thread = JavaThread::current();
2377     ThreadBlockInVM tbivm(thread);
2378 
2379     bool threadIsSuspended;
2380     do {
2381       thread->set_suspend_equivalent();
2382       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2383       ::sem_wait(&sig_sem);
2384 
2385       // were we externally suspended while we were waiting?
2386       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2387       if (threadIsSuspended) {
2388         //
2389         // The semaphore has been incremented, but while we were waiting
2390         // another thread suspended us. We don't want to continue running
2391         // while suspended because that would surprise the thread that
2392         // suspended us.
2393         //
2394         ::sem_post(&sig_sem);
2395 
2396         thread->java_suspend_self();
2397       }
2398     } while (threadIsSuspended);
2399   }
2400 }
2401 
2402 int os::signal_lookup() {
2403   return check_pending_signals(false);
2404 }
2405 
2406 int os::signal_wait() {
2407   return check_pending_signals(true);
2408 }
2409 
2410 ////////////////////////////////////////////////////////////////////////////////
2411 // Virtual Memory
2412 
2413 int os::vm_page_size() {
2414   // Seems redundant as all get out
2415   assert(os::Linux::page_size() != -1, "must call os::init");
2416   return os::Linux::page_size();
2417 }
2418 
2419 // Solaris allocates memory by pages.
2420 int os::vm_allocation_granularity() {
2421   assert(os::Linux::page_size() != -1, "must call os::init");
2422   return os::Linux::page_size();
2423 }
2424 
2425 // Rationale behind this function:
2426 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2427 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2428 //  samples for JITted code. Here we create private executable mapping over the code cache
2429 //  and then we can use standard (well, almost, as mapping can change) way to provide
2430 //  info for the reporting script by storing timestamp and location of symbol
2431 void linux_wrap_code(char* base, size_t size) {
2432   static volatile jint cnt = 0;
2433 
2434   if (!UseOprofile) {
2435     return;
2436   }
2437 
2438   char buf[PATH_MAX+1];
2439   int num = Atomic::add(1, &cnt);
2440 
2441   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2442            os::get_temp_directory(), os::current_process_id(), num);
2443   unlink(buf);
2444 
2445   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2446 
2447   if (fd != -1) {
2448     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2449     if (rv != (off_t)-1) {
2450       if (::write(fd, "", 1) == 1) {
2451         mmap(base, size,
2452              PROT_READ|PROT_WRITE|PROT_EXEC,
2453              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2454       }
2455     }
2456     ::close(fd);
2457     unlink(buf);
2458   }
2459 }
2460 
2461 // NOTE: Linux kernel does not really reserve the pages for us.
2462 //       All it does is to check if there are enough free pages
2463 //       left at the time of mmap(). This could be a potential
2464 //       problem.
2465 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2466   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2467   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2468                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2469   if (res != (uintptr_t) MAP_FAILED) {
2470     if (UseNUMAInterleaving) {
2471       numa_make_global(addr, size);
2472     }
2473     return true;
2474   }
2475   return false;
2476 }
2477 
2478 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2479 #ifndef MAP_HUGETLB
2480 #define MAP_HUGETLB 0x40000
2481 #endif
2482 
2483 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2484 #ifndef MADV_HUGEPAGE
2485 #define MADV_HUGEPAGE 14
2486 #endif
2487 
2488 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2489                        bool exec) {
2490   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2491     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2492     uintptr_t res =
2493       (uintptr_t) ::mmap(addr, size, prot,
2494                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2495                          -1, 0);
2496     if (res != (uintptr_t) MAP_FAILED) {
2497       if (UseNUMAInterleaving) {
2498         numa_make_global(addr, size);
2499       }
2500       return true;
2501     }
2502     // Fall through and try to use small pages
2503   }
2504 
2505   if (commit_memory(addr, size, exec)) {
2506     realign_memory(addr, size, alignment_hint);
2507     return true;
2508   }
2509   return false;
2510 }
2511 
2512 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2513   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2514     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2515     // be supported or the memory may already be backed by huge pages.
2516     ::madvise(addr, bytes, MADV_HUGEPAGE);
2517   }
2518 }
2519 
2520 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2521   // This method works by doing an mmap over an existing mmaping and effectively discarding
2522   // the existing pages. However it won't work for SHM-based large pages that cannot be
2523   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2524   // small pages on top of the SHM segment. This method always works for small pages, so we
2525   // allow that in any case.
2526   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2527     commit_memory(addr, bytes, alignment_hint, false);
2528   }
2529 }
2530 
2531 void os::numa_make_global(char *addr, size_t bytes) {
2532   Linux::numa_interleave_memory(addr, bytes);
2533 }
2534 
2535 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2536   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2537 }
2538 
2539 bool os::numa_topology_changed()   { return false; }
2540 
2541 size_t os::numa_get_groups_num() {
2542   int max_node = Linux::numa_max_node();
2543   return max_node > 0 ? max_node + 1 : 1;
2544 }
2545 
2546 int os::numa_get_group_id() {
2547   int cpu_id = Linux::sched_getcpu();
2548   if (cpu_id != -1) {
2549     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2550     if (lgrp_id != -1) {
2551       return lgrp_id;
2552     }
2553   }
2554   return 0;
2555 }
2556 
2557 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2558   for (size_t i = 0; i < size; i++) {
2559     ids[i] = i;
2560   }
2561   return size;
2562 }
2563 
2564 bool os::get_page_info(char *start, page_info* info) {
2565   return false;
2566 }
2567 
2568 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2569   return end;
2570 }
2571 
2572 
2573 int os::Linux::sched_getcpu_syscall(void) {
2574   unsigned int cpu;
2575   int retval = -1;
2576 
2577 #if defined(IA32)
2578 # ifndef SYS_getcpu
2579 # define SYS_getcpu 318
2580 # endif
2581   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2582 #elif defined(AMD64)
2583 // Unfortunately we have to bring all these macros here from vsyscall.h
2584 // to be able to compile on old linuxes.
2585 # define __NR_vgetcpu 2
2586 # define VSYSCALL_START (-10UL << 20)
2587 # define VSYSCALL_SIZE 1024
2588 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2589   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2590   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2591   retval = vgetcpu(&cpu, NULL, NULL);
2592 #endif
2593 
2594   return (retval == -1) ? retval : cpu;
2595 }
2596 
2597 // Something to do with the numa-aware allocator needs these symbols
2598 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2599 extern "C" JNIEXPORT void numa_error(char *where) { }
2600 extern "C" JNIEXPORT int fork1() { return fork(); }
2601 
2602 
2603 // If we are running with libnuma version > 2, then we should
2604 // be trying to use symbols with versions 1.1
2605 // If we are running with earlier version, which did not have symbol versions,
2606 // we should use the base version.
2607 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2608   void *f = dlvsym(handle, name, "libnuma_1.1");
2609   if (f == NULL) {
2610     f = dlsym(handle, name);
2611   }
2612   return f;
2613 }
2614 
2615 bool os::Linux::libnuma_init() {
2616   // sched_getcpu() should be in libc.
2617   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2618                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2619 
2620   // If it's not, try a direct syscall.
2621   if (sched_getcpu() == -1)
2622     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2623 
2624   if (sched_getcpu() != -1) { // Does it work?
2625     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2626     if (handle != NULL) {
2627       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2628                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2629       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2630                                        libnuma_dlsym(handle, "numa_max_node")));
2631       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2632                                         libnuma_dlsym(handle, "numa_available")));
2633       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2634                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2635       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2636                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2637 
2638 
2639       if (numa_available() != -1) {
2640         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2641         // Create a cpu -> node mapping
2642         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2643         rebuild_cpu_to_node_map();
2644         return true;
2645       }
2646     }
2647   }
2648   return false;
2649 }
2650 
2651 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2652 // The table is later used in get_node_by_cpu().
2653 void os::Linux::rebuild_cpu_to_node_map() {
2654   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2655                               // in libnuma (possible values are starting from 16,
2656                               // and continuing up with every other power of 2, but less
2657                               // than the maximum number of CPUs supported by kernel), and
2658                               // is a subject to change (in libnuma version 2 the requirements
2659                               // are more reasonable) we'll just hardcode the number they use
2660                               // in the library.
2661   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2662 
2663   size_t cpu_num = os::active_processor_count();
2664   size_t cpu_map_size = NCPUS / BitsPerCLong;
2665   size_t cpu_map_valid_size =
2666     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2667 
2668   cpu_to_node()->clear();
2669   cpu_to_node()->at_grow(cpu_num - 1);
2670   size_t node_num = numa_get_groups_num();
2671 
2672   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2673   for (size_t i = 0; i < node_num; i++) {
2674     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2675       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2676         if (cpu_map[j] != 0) {
2677           for (size_t k = 0; k < BitsPerCLong; k++) {
2678             if (cpu_map[j] & (1UL << k)) {
2679               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2680             }
2681           }
2682         }
2683       }
2684     }
2685   }
2686   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2687 }
2688 
2689 int os::Linux::get_node_by_cpu(int cpu_id) {
2690   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2691     return cpu_to_node()->at(cpu_id);
2692   }
2693   return -1;
2694 }
2695 
2696 GrowableArray<int>* os::Linux::_cpu_to_node;
2697 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2698 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2699 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2700 os::Linux::numa_available_func_t os::Linux::_numa_available;
2701 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2702 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2703 unsigned long* os::Linux::_numa_all_nodes;
2704 
2705 bool os::pd_uncommit_memory(char* addr, size_t size) {
2706   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2707                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2708   return res  != (uintptr_t) MAP_FAILED;
2709 }
2710 
2711 // Linux uses a growable mapping for the stack, and if the mapping for
2712 // the stack guard pages is not removed when we detach a thread the
2713 // stack cannot grow beyond the pages where the stack guard was
2714 // mapped.  If at some point later in the process the stack expands to
2715 // that point, the Linux kernel cannot expand the stack any further
2716 // because the guard pages are in the way, and a segfault occurs.
2717 //
2718 // However, it's essential not to split the stack region by unmapping
2719 // a region (leaving a hole) that's already part of the stack mapping,
2720 // so if the stack mapping has already grown beyond the guard pages at
2721 // the time we create them, we have to truncate the stack mapping.
2722 // So, we need to know the extent of the stack mapping when
2723 // create_stack_guard_pages() is called.
2724 
2725 // Find the bounds of the stack mapping.  Return true for success.
2726 //
2727 // We only need this for stacks that are growable: at the time of
2728 // writing thread stacks don't use growable mappings (i.e. those
2729 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2730 // only applies to the main thread.
2731 
2732 static
2733 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2734 
2735   char buf[128];
2736   int fd, sz;
2737 
2738   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2739     return false;
2740   }
2741 
2742   const char kw[] = "[stack]";
2743   const int kwlen = sizeof(kw)-1;
2744 
2745   // Address part of /proc/self/maps couldn't be more than 128 bytes
2746   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2747      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2748         // Extract addresses
2749         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2750            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2751            if (sp >= *bottom && sp <= *top) {
2752               ::close(fd);
2753               return true;
2754            }
2755         }
2756      }
2757   }
2758 
2759  ::close(fd);
2760   return false;
2761 }
2762 
2763 
2764 // If the (growable) stack mapping already extends beyond the point
2765 // where we're going to put our guard pages, truncate the mapping at
2766 // that point by munmap()ping it.  This ensures that when we later
2767 // munmap() the guard pages we don't leave a hole in the stack
2768 // mapping. This only affects the main/initial thread, but guard
2769 // against future OS changes
2770 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2771   uintptr_t stack_extent, stack_base;
2772   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2773   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2774       assert(os::Linux::is_initial_thread(),
2775            "growable stack in non-initial thread");
2776     if (stack_extent < (uintptr_t)addr)
2777       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2778   }
2779 
2780   return os::commit_memory(addr, size);
2781 }
2782 
2783 // If this is a growable mapping, remove the guard pages entirely by
2784 // munmap()ping them.  If not, just call uncommit_memory(). This only
2785 // affects the main/initial thread, but guard against future OS changes
2786 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2787   uintptr_t stack_extent, stack_base;
2788   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2789   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2790       assert(os::Linux::is_initial_thread(),
2791            "growable stack in non-initial thread");
2792 
2793     return ::munmap(addr, size) == 0;
2794   }
2795 
2796   return os::uncommit_memory(addr, size);
2797 }
2798 
2799 static address _highest_vm_reserved_address = NULL;
2800 
2801 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2802 // at 'requested_addr'. If there are existing memory mappings at the same
2803 // location, however, they will be overwritten. If 'fixed' is false,
2804 // 'requested_addr' is only treated as a hint, the return value may or
2805 // may not start from the requested address. Unlike Linux mmap(), this
2806 // function returns NULL to indicate failure.
2807 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2808   char * addr;
2809   int flags;
2810 
2811   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2812   if (fixed) {
2813     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2814     flags |= MAP_FIXED;
2815   }
2816 
2817   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2818   // to PROT_EXEC if executable when we commit the page.
2819   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2820                        flags, -1, 0);
2821 
2822   if (addr != MAP_FAILED) {
2823     // anon_mmap() should only get called during VM initialization,
2824     // don't need lock (actually we can skip locking even it can be called
2825     // from multiple threads, because _highest_vm_reserved_address is just a
2826     // hint about the upper limit of non-stack memory regions.)
2827     if ((address)addr + bytes > _highest_vm_reserved_address) {
2828       _highest_vm_reserved_address = (address)addr + bytes;
2829     }
2830   }
2831 
2832   return addr == MAP_FAILED ? NULL : addr;
2833 }
2834 
2835 // Don't update _highest_vm_reserved_address, because there might be memory
2836 // regions above addr + size. If so, releasing a memory region only creates
2837 // a hole in the address space, it doesn't help prevent heap-stack collision.
2838 //
2839 static int anon_munmap(char * addr, size_t size) {
2840   return ::munmap(addr, size) == 0;
2841 }
2842 
2843 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2844                          size_t alignment_hint) {
2845   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2846 }
2847 
2848 bool os::pd_release_memory(char* addr, size_t size) {
2849   return anon_munmap(addr, size);
2850 }
2851 
2852 static address highest_vm_reserved_address() {
2853   return _highest_vm_reserved_address;
2854 }
2855 
2856 static bool linux_mprotect(char* addr, size_t size, int prot) {
2857   // Linux wants the mprotect address argument to be page aligned.
2858   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2859 
2860   // According to SUSv3, mprotect() should only be used with mappings
2861   // established by mmap(), and mmap() always maps whole pages. Unaligned
2862   // 'addr' likely indicates problem in the VM (e.g. trying to change
2863   // protection of malloc'ed or statically allocated memory). Check the
2864   // caller if you hit this assert.
2865   assert(addr == bottom, "sanity check");
2866 
2867   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2868   return ::mprotect(bottom, size, prot) == 0;
2869 }
2870 
2871 // Set protections specified
2872 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2873                         bool is_committed) {
2874   unsigned int p = 0;
2875   switch (prot) {
2876   case MEM_PROT_NONE: p = PROT_NONE; break;
2877   case MEM_PROT_READ: p = PROT_READ; break;
2878   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2879   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2880   default:
2881     ShouldNotReachHere();
2882   }
2883   // is_committed is unused.
2884   return linux_mprotect(addr, bytes, p);
2885 }
2886 
2887 bool os::guard_memory(char* addr, size_t size) {
2888   return linux_mprotect(addr, size, PROT_NONE);
2889 }
2890 
2891 bool os::unguard_memory(char* addr, size_t size) {
2892   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2893 }
2894 
2895 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2896   bool result = false;
2897   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2898                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2899                   -1, 0);
2900 
2901   if (p != (void *) -1) {
2902     // We don't know if this really is a huge page or not.
2903     FILE *fp = fopen("/proc/self/maps", "r");
2904     if (fp) {
2905       while (!feof(fp)) {
2906         char chars[257];
2907         long x = 0;
2908         if (fgets(chars, sizeof(chars), fp)) {
2909           if (sscanf(chars, "%lx-%*x", &x) == 1
2910               && x == (long)p) {
2911             if (strstr (chars, "hugepage")) {
2912               result = true;
2913               break;
2914             }
2915           }
2916         }
2917       }
2918       fclose(fp);
2919     }
2920     munmap (p, page_size);
2921     if (result)
2922       return true;
2923   }
2924 
2925   if (warn) {
2926     warning("HugeTLBFS is not supported by the operating system.");
2927   }
2928 
2929   return result;
2930 }
2931 
2932 /*
2933 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2934 *
2935 * From the coredump_filter documentation:
2936 *
2937 * - (bit 0) anonymous private memory
2938 * - (bit 1) anonymous shared memory
2939 * - (bit 2) file-backed private memory
2940 * - (bit 3) file-backed shared memory
2941 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2942 *           effective only if the bit 2 is cleared)
2943 * - (bit 5) hugetlb private memory
2944 * - (bit 6) hugetlb shared memory
2945 */
2946 static void set_coredump_filter(void) {
2947   FILE *f;
2948   long cdm;
2949 
2950   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2951     return;
2952   }
2953 
2954   if (fscanf(f, "%lx", &cdm) != 1) {
2955     fclose(f);
2956     return;
2957   }
2958 
2959   rewind(f);
2960 
2961   if ((cdm & LARGEPAGES_BIT) == 0) {
2962     cdm |= LARGEPAGES_BIT;
2963     fprintf(f, "%#lx", cdm);
2964   }
2965 
2966   fclose(f);
2967 }
2968 
2969 // Large page support
2970 
2971 static size_t _large_page_size = 0;
2972 
2973 void os::large_page_init() {
2974   if (!UseLargePages) {
2975     UseHugeTLBFS = false;
2976     UseSHM = false;
2977     return;
2978   }
2979 
2980   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2981     // If UseLargePages is specified on the command line try both methods,
2982     // if it's default, then try only HugeTLBFS.
2983     if (FLAG_IS_DEFAULT(UseLargePages)) {
2984       UseHugeTLBFS = true;
2985     } else {
2986       UseHugeTLBFS = UseSHM = true;
2987     }
2988   }
2989 
2990   if (LargePageSizeInBytes) {
2991     _large_page_size = LargePageSizeInBytes;
2992   } else {
2993     // large_page_size on Linux is used to round up heap size. x86 uses either
2994     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2995     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2996     // page as large as 256M.
2997     //
2998     // Here we try to figure out page size by parsing /proc/meminfo and looking
2999     // for a line with the following format:
3000     //    Hugepagesize:     2048 kB
3001     //
3002     // If we can't determine the value (e.g. /proc is not mounted, or the text
3003     // format has been changed), we'll use the largest page size supported by
3004     // the processor.
3005 
3006 #ifndef ZERO
3007     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3008                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3009 #endif // ZERO
3010 
3011     FILE *fp = fopen("/proc/meminfo", "r");
3012     if (fp) {
3013       while (!feof(fp)) {
3014         int x = 0;
3015         char buf[16];
3016         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3017           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3018             _large_page_size = x * K;
3019             break;
3020           }
3021         } else {
3022           // skip to next line
3023           for (;;) {
3024             int ch = fgetc(fp);
3025             if (ch == EOF || ch == (int)'\n') break;
3026           }
3027         }
3028       }
3029       fclose(fp);
3030     }
3031   }
3032 
3033   // print a warning if any large page related flag is specified on command line
3034   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3035 
3036   const size_t default_page_size = (size_t)Linux::page_size();
3037   if (_large_page_size > default_page_size) {
3038     _page_sizes[0] = _large_page_size;
3039     _page_sizes[1] = default_page_size;
3040     _page_sizes[2] = 0;
3041   }
3042   UseHugeTLBFS = UseHugeTLBFS &&
3043                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3044 
3045   if (UseHugeTLBFS)
3046     UseSHM = false;
3047 
3048   UseLargePages = UseHugeTLBFS || UseSHM;
3049 
3050   set_coredump_filter();
3051 }
3052 
3053 #ifndef SHM_HUGETLB
3054 #define SHM_HUGETLB 04000
3055 #endif
3056 
3057 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3058   // "exec" is passed in but not used.  Creating the shared image for
3059   // the code cache doesn't have an SHM_X executable permission to check.
3060   assert(UseLargePages && UseSHM, "only for SHM large pages");
3061 
3062   key_t key = IPC_PRIVATE;
3063   char *addr;
3064 
3065   bool warn_on_failure = UseLargePages &&
3066                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3067                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3068                         );
3069   char msg[128];
3070 
3071   // Create a large shared memory region to attach to based on size.
3072   // Currently, size is the total size of the heap
3073   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3074   if (shmid == -1) {
3075      // Possible reasons for shmget failure:
3076      // 1. shmmax is too small for Java heap.
3077      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3078      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3079      // 2. not enough large page memory.
3080      //    > check available large pages: cat /proc/meminfo
3081      //    > increase amount of large pages:
3082      //          echo new_value > /proc/sys/vm/nr_hugepages
3083      //      Note 1: different Linux may use different name for this property,
3084      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3085      //      Note 2: it's possible there's enough physical memory available but
3086      //            they are so fragmented after a long run that they can't
3087      //            coalesce into large pages. Try to reserve large pages when
3088      //            the system is still "fresh".
3089      if (warn_on_failure) {
3090        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3091        warning(msg);
3092      }
3093      return NULL;
3094   }
3095 
3096   // attach to the region
3097   addr = (char*)shmat(shmid, req_addr, 0);
3098   int err = errno;
3099 
3100   // Remove shmid. If shmat() is successful, the actual shared memory segment
3101   // will be deleted when it's detached by shmdt() or when the process
3102   // terminates. If shmat() is not successful this will remove the shared
3103   // segment immediately.
3104   shmctl(shmid, IPC_RMID, NULL);
3105 
3106   if ((intptr_t)addr == -1) {
3107      if (warn_on_failure) {
3108        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3109        warning(msg);
3110      }
3111      return NULL;
3112   }
3113 
3114   if ((addr != NULL) && UseNUMAInterleaving) {
3115     numa_make_global(addr, bytes);
3116   }
3117 
3118   return addr;
3119 }
3120 
3121 bool os::release_memory_special(char* base, size_t bytes) {
3122   // detaching the SHM segment will also delete it, see reserve_memory_special()
3123   int rslt = shmdt(base);
3124   return rslt == 0;
3125 }
3126 
3127 size_t os::large_page_size() {
3128   return _large_page_size;
3129 }
3130 
3131 // HugeTLBFS allows application to commit large page memory on demand;
3132 // with SysV SHM the entire memory region must be allocated as shared
3133 // memory.
3134 bool os::can_commit_large_page_memory() {
3135   return UseHugeTLBFS;
3136 }
3137 
3138 bool os::can_execute_large_page_memory() {
3139   return UseHugeTLBFS;
3140 }
3141 
3142 // Reserve memory at an arbitrary address, only if that area is
3143 // available (and not reserved for something else).
3144 
3145 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3146   const int max_tries = 10;
3147   char* base[max_tries];
3148   size_t size[max_tries];
3149   const size_t gap = 0x000000;
3150 
3151   // Assert only that the size is a multiple of the page size, since
3152   // that's all that mmap requires, and since that's all we really know
3153   // about at this low abstraction level.  If we need higher alignment,
3154   // we can either pass an alignment to this method or verify alignment
3155   // in one of the methods further up the call chain.  See bug 5044738.
3156   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3157 
3158   // Repeatedly allocate blocks until the block is allocated at the
3159   // right spot. Give up after max_tries. Note that reserve_memory() will
3160   // automatically update _highest_vm_reserved_address if the call is
3161   // successful. The variable tracks the highest memory address every reserved
3162   // by JVM. It is used to detect heap-stack collision if running with
3163   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3164   // space than needed, it could confuse the collision detecting code. To
3165   // solve the problem, save current _highest_vm_reserved_address and
3166   // calculate the correct value before return.
3167   address old_highest = _highest_vm_reserved_address;
3168 
3169   // Linux mmap allows caller to pass an address as hint; give it a try first,
3170   // if kernel honors the hint then we can return immediately.
3171   char * addr = anon_mmap(requested_addr, bytes, false);
3172   if (addr == requested_addr) {
3173      return requested_addr;
3174   }
3175 
3176   if (addr != NULL) {
3177      // mmap() is successful but it fails to reserve at the requested address
3178      anon_munmap(addr, bytes);
3179   }
3180 
3181   int i;
3182   for (i = 0; i < max_tries; ++i) {
3183     base[i] = reserve_memory(bytes);
3184 
3185     if (base[i] != NULL) {
3186       // Is this the block we wanted?
3187       if (base[i] == requested_addr) {
3188         size[i] = bytes;
3189         break;
3190       }
3191 
3192       // Does this overlap the block we wanted? Give back the overlapped
3193       // parts and try again.
3194 
3195       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3196       if (top_overlap >= 0 && top_overlap < bytes) {
3197         unmap_memory(base[i], top_overlap);
3198         base[i] += top_overlap;
3199         size[i] = bytes - top_overlap;
3200       } else {
3201         size_t bottom_overlap = base[i] + bytes - requested_addr;
3202         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3203           unmap_memory(requested_addr, bottom_overlap);
3204           size[i] = bytes - bottom_overlap;
3205         } else {
3206           size[i] = bytes;
3207         }
3208       }
3209     }
3210   }
3211 
3212   // Give back the unused reserved pieces.
3213 
3214   for (int j = 0; j < i; ++j) {
3215     if (base[j] != NULL) {
3216       unmap_memory(base[j], size[j]);
3217     }
3218   }
3219 
3220   if (i < max_tries) {
3221     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3222     return requested_addr;
3223   } else {
3224     _highest_vm_reserved_address = old_highest;
3225     return NULL;
3226   }
3227 }
3228 
3229 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3230   return ::read(fd, buf, nBytes);
3231 }
3232 
3233 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3234 // Solaris uses poll(), linux uses park().
3235 // Poll() is likely a better choice, assuming that Thread.interrupt()
3236 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3237 // SIGSEGV, see 4355769.
3238 
3239 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3240   assert(thread == Thread::current(),  "thread consistency check");
3241 
3242   ParkEvent * const slp = thread->_SleepEvent ;
3243   slp->reset() ;
3244   OrderAccess::fence() ;
3245 
3246   if (interruptible) {
3247     jlong prevtime = javaTimeNanos();
3248 
3249     for (;;) {
3250       if (os::is_interrupted(thread, true)) {
3251         return OS_INTRPT;
3252       }
3253 
3254       jlong newtime = javaTimeNanos();
3255 
3256       if (newtime - prevtime < 0) {
3257         // time moving backwards, should only happen if no monotonic clock
3258         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3259         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3260       } else {
3261         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3262       }
3263 
3264       if(millis <= 0) {
3265         return OS_OK;
3266       }
3267 
3268       prevtime = newtime;
3269 
3270       {
3271         assert(thread->is_Java_thread(), "sanity check");
3272         JavaThread *jt = (JavaThread *) thread;
3273         ThreadBlockInVM tbivm(jt);
3274         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3275 
3276         jt->set_suspend_equivalent();
3277         // cleared by handle_special_suspend_equivalent_condition() or
3278         // java_suspend_self() via check_and_wait_while_suspended()
3279 
3280         slp->park(millis);
3281 
3282         // were we externally suspended while we were waiting?
3283         jt->check_and_wait_while_suspended();
3284       }
3285     }
3286   } else {
3287     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3288     jlong prevtime = javaTimeNanos();
3289 
3290     for (;;) {
3291       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3292       // the 1st iteration ...
3293       jlong newtime = javaTimeNanos();
3294 
3295       if (newtime - prevtime < 0) {
3296         // time moving backwards, should only happen if no monotonic clock
3297         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3298         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3299       } else {
3300         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3301       }
3302 
3303       if(millis <= 0) break ;
3304 
3305       prevtime = newtime;
3306       slp->park(millis);
3307     }
3308     return OS_OK ;
3309   }
3310 }
3311 
3312 int os::naked_sleep() {
3313   // %% make the sleep time an integer flag. for now use 1 millisec.
3314   return os::sleep(Thread::current(), 1, false);
3315 }
3316 
3317 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3318 void os::infinite_sleep() {
3319   while (true) {    // sleep forever ...
3320     ::sleep(100);   // ... 100 seconds at a time
3321   }
3322 }
3323 
3324 // Used to convert frequent JVM_Yield() to nops
3325 bool os::dont_yield() {
3326   return DontYieldALot;
3327 }
3328 
3329 void os::yield() {
3330   sched_yield();
3331 }
3332 
3333 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3334 
3335 void os::yield_all(int attempts) {
3336   // Yields to all threads, including threads with lower priorities
3337   // Threads on Linux are all with same priority. The Solaris style
3338   // os::yield_all() with nanosleep(1ms) is not necessary.
3339   sched_yield();
3340 }
3341 
3342 // Called from the tight loops to possibly influence time-sharing heuristics
3343 void os::loop_breaker(int attempts) {
3344   os::yield_all(attempts);
3345 }
3346 
3347 ////////////////////////////////////////////////////////////////////////////////
3348 // thread priority support
3349 
3350 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3351 // only supports dynamic priority, static priority must be zero. For real-time
3352 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3353 // However, for large multi-threaded applications, SCHED_RR is not only slower
3354 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3355 // of 5 runs - Sep 2005).
3356 //
3357 // The following code actually changes the niceness of kernel-thread/LWP. It
3358 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3359 // not the entire user process, and user level threads are 1:1 mapped to kernel
3360 // threads. It has always been the case, but could change in the future. For
3361 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3362 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3363 
3364 int os::java_to_os_priority[CriticalPriority + 1] = {
3365   19,              // 0 Entry should never be used
3366 
3367    4,              // 1 MinPriority
3368    3,              // 2
3369    2,              // 3
3370 
3371    1,              // 4
3372    0,              // 5 NormPriority
3373   -1,              // 6
3374 
3375   -2,              // 7
3376   -3,              // 8
3377   -4,              // 9 NearMaxPriority
3378 
3379   -5,              // 10 MaxPriority
3380 
3381   -5               // 11 CriticalPriority
3382 };
3383 
3384 static int prio_init() {
3385   if (ThreadPriorityPolicy == 1) {
3386     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3387     // if effective uid is not root. Perhaps, a more elegant way of doing
3388     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3389     if (geteuid() != 0) {
3390       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3391         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3392       }
3393       ThreadPriorityPolicy = 0;
3394     }
3395   }
3396   if (UseCriticalJavaThreadPriority) {
3397     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3398   }
3399   return 0;
3400 }
3401 
3402 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3403   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3404 
3405   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3406   return (ret == 0) ? OS_OK : OS_ERR;
3407 }
3408 
3409 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3410   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3411     *priority_ptr = java_to_os_priority[NormPriority];
3412     return OS_OK;
3413   }
3414 
3415   errno = 0;
3416   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3417   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3418 }
3419 
3420 // Hint to the underlying OS that a task switch would not be good.
3421 // Void return because it's a hint and can fail.
3422 void os::hint_no_preempt() {}
3423 
3424 ////////////////////////////////////////////////////////////////////////////////
3425 // suspend/resume support
3426 
3427 //  the low-level signal-based suspend/resume support is a remnant from the
3428 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3429 //  within hotspot. Now there is a single use-case for this:
3430 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3431 //      that runs in the watcher thread.
3432 //  The remaining code is greatly simplified from the more general suspension
3433 //  code that used to be used.
3434 //
3435 //  The protocol is quite simple:
3436 //  - suspend:
3437 //      - sends a signal to the target thread
3438 //      - polls the suspend state of the osthread using a yield loop
3439 //      - target thread signal handler (SR_handler) sets suspend state
3440 //        and blocks in sigsuspend until continued
3441 //  - resume:
3442 //      - sets target osthread state to continue
3443 //      - sends signal to end the sigsuspend loop in the SR_handler
3444 //
3445 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3446 //
3447 
3448 static void resume_clear_context(OSThread *osthread) {
3449   osthread->set_ucontext(NULL);
3450   osthread->set_siginfo(NULL);
3451 
3452   // notify the suspend action is completed, we have now resumed
3453   osthread->sr.clear_suspended();
3454 }
3455 
3456 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3457   osthread->set_ucontext(context);
3458   osthread->set_siginfo(siginfo);
3459 }
3460 
3461 //
3462 // Handler function invoked when a thread's execution is suspended or
3463 // resumed. We have to be careful that only async-safe functions are
3464 // called here (Note: most pthread functions are not async safe and
3465 // should be avoided.)
3466 //
3467 // Note: sigwait() is a more natural fit than sigsuspend() from an
3468 // interface point of view, but sigwait() prevents the signal hander
3469 // from being run. libpthread would get very confused by not having
3470 // its signal handlers run and prevents sigwait()'s use with the
3471 // mutex granting granting signal.
3472 //
3473 // Currently only ever called on the VMThread
3474 //
3475 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3476   // Save and restore errno to avoid confusing native code with EINTR
3477   // after sigsuspend.
3478   int old_errno = errno;
3479 
3480   Thread* thread = Thread::current();
3481   OSThread* osthread = thread->osthread();
3482   assert(thread->is_VM_thread(), "Must be VMThread");
3483   // read current suspend action
3484   int action = osthread->sr.suspend_action();
3485   if (action == SR_SUSPEND) {
3486     suspend_save_context(osthread, siginfo, context);
3487 
3488     // Notify the suspend action is about to be completed. do_suspend()
3489     // waits until SR_SUSPENDED is set and then returns. We will wait
3490     // here for a resume signal and that completes the suspend-other
3491     // action. do_suspend/do_resume is always called as a pair from
3492     // the same thread - so there are no races
3493 
3494     // notify the caller
3495     osthread->sr.set_suspended();
3496 
3497     sigset_t suspend_set;  // signals for sigsuspend()
3498 
3499     // get current set of blocked signals and unblock resume signal
3500     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3501     sigdelset(&suspend_set, SR_signum);
3502 
3503     // wait here until we are resumed
3504     do {
3505       sigsuspend(&suspend_set);
3506       // ignore all returns until we get a resume signal
3507     } while (osthread->sr.suspend_action() != SR_CONTINUE);
3508 
3509     resume_clear_context(osthread);
3510 
3511   } else {
3512     assert(action == SR_CONTINUE, "unexpected sr action");
3513     // nothing special to do - just leave the handler
3514   }
3515 
3516   errno = old_errno;
3517 }
3518 
3519 
3520 static int SR_initialize() {
3521   struct sigaction act;
3522   char *s;
3523   /* Get signal number to use for suspend/resume */
3524   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3525     int sig = ::strtol(s, 0, 10);
3526     if (sig > 0 || sig < _NSIG) {
3527         SR_signum = sig;
3528     }
3529   }
3530 
3531   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3532         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3533 
3534   sigemptyset(&SR_sigset);
3535   sigaddset(&SR_sigset, SR_signum);
3536 
3537   /* Set up signal handler for suspend/resume */
3538   act.sa_flags = SA_RESTART|SA_SIGINFO;
3539   act.sa_handler = (void (*)(int)) SR_handler;
3540 
3541   // SR_signum is blocked by default.
3542   // 4528190 - We also need to block pthread restart signal (32 on all
3543   // supported Linux platforms). Note that LinuxThreads need to block
3544   // this signal for all threads to work properly. So we don't have
3545   // to use hard-coded signal number when setting up the mask.
3546   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3547 
3548   if (sigaction(SR_signum, &act, 0) == -1) {
3549     return -1;
3550   }
3551 
3552   // Save signal flag
3553   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3554   return 0;
3555 }
3556 
3557 
3558 // returns true on success and false on error - really an error is fatal
3559 // but this seems the normal response to library errors
3560 static bool do_suspend(OSThread* osthread) {
3561   // mark as suspended and send signal
3562   osthread->sr.set_suspend_action(SR_SUSPEND);
3563   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3564   assert_status(status == 0, status, "pthread_kill");
3565 
3566   // check status and wait until notified of suspension
3567   if (status == 0) {
3568     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3569       os::yield_all(i);
3570     }
3571     osthread->sr.set_suspend_action(SR_NONE);
3572     return true;
3573   }
3574   else {
3575     osthread->sr.set_suspend_action(SR_NONE);
3576     return false;
3577   }
3578 }
3579 
3580 static void do_resume(OSThread* osthread) {
3581   assert(osthread->sr.is_suspended(), "thread should be suspended");
3582   osthread->sr.set_suspend_action(SR_CONTINUE);
3583 
3584   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3585   assert_status(status == 0, status, "pthread_kill");
3586   // check status and wait unit notified of resumption
3587   if (status == 0) {
3588     for (int i = 0; osthread->sr.is_suspended(); i++) {
3589       os::yield_all(i);
3590     }
3591   }
3592   osthread->sr.set_suspend_action(SR_NONE);
3593 }
3594 
3595 ////////////////////////////////////////////////////////////////////////////////
3596 // interrupt support
3597 
3598 void os::interrupt(Thread* thread) {
3599   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3600     "possibility of dangling Thread pointer");
3601 
3602   OSThread* osthread = thread->osthread();
3603 
3604   if (!osthread->interrupted()) {
3605     osthread->set_interrupted(true);
3606     // More than one thread can get here with the same value of osthread,
3607     // resulting in multiple notifications.  We do, however, want the store
3608     // to interrupted() to be visible to other threads before we execute unpark().
3609     OrderAccess::fence();
3610     ParkEvent * const slp = thread->_SleepEvent ;
3611     if (slp != NULL) slp->unpark() ;
3612   }
3613 
3614   // For JSR166. Unpark even if interrupt status already was set
3615   if (thread->is_Java_thread())
3616     ((JavaThread*)thread)->parker()->unpark();
3617 
3618   ParkEvent * ev = thread->_ParkEvent ;
3619   if (ev != NULL) ev->unpark() ;
3620 
3621 }
3622 
3623 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3624   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3625     "possibility of dangling Thread pointer");
3626 
3627   OSThread* osthread = thread->osthread();
3628 
3629   bool interrupted = osthread->interrupted();
3630 
3631   if (interrupted && clear_interrupted) {
3632     osthread->set_interrupted(false);
3633     // consider thread->_SleepEvent->reset() ... optional optimization
3634   }
3635 
3636   return interrupted;
3637 }
3638 
3639 ///////////////////////////////////////////////////////////////////////////////////
3640 // signal handling (except suspend/resume)
3641 
3642 // This routine may be used by user applications as a "hook" to catch signals.
3643 // The user-defined signal handler must pass unrecognized signals to this
3644 // routine, and if it returns true (non-zero), then the signal handler must
3645 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3646 // routine will never retun false (zero), but instead will execute a VM panic
3647 // routine kill the process.
3648 //
3649 // If this routine returns false, it is OK to call it again.  This allows
3650 // the user-defined signal handler to perform checks either before or after
3651 // the VM performs its own checks.  Naturally, the user code would be making
3652 // a serious error if it tried to handle an exception (such as a null check
3653 // or breakpoint) that the VM was generating for its own correct operation.
3654 //
3655 // This routine may recognize any of the following kinds of signals:
3656 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3657 // It should be consulted by handlers for any of those signals.
3658 //
3659 // The caller of this routine must pass in the three arguments supplied
3660 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3661 // field of the structure passed to sigaction().  This routine assumes that
3662 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3663 //
3664 // Note that the VM will print warnings if it detects conflicting signal
3665 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3666 //
3667 extern "C" JNIEXPORT int
3668 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3669                         void* ucontext, int abort_if_unrecognized);
3670 
3671 void signalHandler(int sig, siginfo_t* info, void* uc) {
3672   assert(info != NULL && uc != NULL, "it must be old kernel");
3673   JVM_handle_linux_signal(sig, info, uc, true);
3674 }
3675 
3676 
3677 // This boolean allows users to forward their own non-matching signals
3678 // to JVM_handle_linux_signal, harmlessly.
3679 bool os::Linux::signal_handlers_are_installed = false;
3680 
3681 // For signal-chaining
3682 struct sigaction os::Linux::sigact[MAXSIGNUM];
3683 unsigned int os::Linux::sigs = 0;
3684 bool os::Linux::libjsig_is_loaded = false;
3685 typedef struct sigaction *(*get_signal_t)(int);
3686 get_signal_t os::Linux::get_signal_action = NULL;
3687 
3688 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3689   struct sigaction *actp = NULL;
3690 
3691   if (libjsig_is_loaded) {
3692     // Retrieve the old signal handler from libjsig
3693     actp = (*get_signal_action)(sig);
3694   }
3695   if (actp == NULL) {
3696     // Retrieve the preinstalled signal handler from jvm
3697     actp = get_preinstalled_handler(sig);
3698   }
3699 
3700   return actp;
3701 }
3702 
3703 static bool call_chained_handler(struct sigaction *actp, int sig,
3704                                  siginfo_t *siginfo, void *context) {
3705   // Call the old signal handler
3706   if (actp->sa_handler == SIG_DFL) {
3707     // It's more reasonable to let jvm treat it as an unexpected exception
3708     // instead of taking the default action.
3709     return false;
3710   } else if (actp->sa_handler != SIG_IGN) {
3711     if ((actp->sa_flags & SA_NODEFER) == 0) {
3712       // automaticlly block the signal
3713       sigaddset(&(actp->sa_mask), sig);
3714     }
3715 
3716     sa_handler_t hand;
3717     sa_sigaction_t sa;
3718     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3719     // retrieve the chained handler
3720     if (siginfo_flag_set) {
3721       sa = actp->sa_sigaction;
3722     } else {
3723       hand = actp->sa_handler;
3724     }
3725 
3726     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3727       actp->sa_handler = SIG_DFL;
3728     }
3729 
3730     // try to honor the signal mask
3731     sigset_t oset;
3732     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3733 
3734     // call into the chained handler
3735     if (siginfo_flag_set) {
3736       (*sa)(sig, siginfo, context);
3737     } else {
3738       (*hand)(sig);
3739     }
3740 
3741     // restore the signal mask
3742     pthread_sigmask(SIG_SETMASK, &oset, 0);
3743   }
3744   // Tell jvm's signal handler the signal is taken care of.
3745   return true;
3746 }
3747 
3748 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3749   bool chained = false;
3750   // signal-chaining
3751   if (UseSignalChaining) {
3752     struct sigaction *actp = get_chained_signal_action(sig);
3753     if (actp != NULL) {
3754       chained = call_chained_handler(actp, sig, siginfo, context);
3755     }
3756   }
3757   return chained;
3758 }
3759 
3760 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3761   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3762     return &sigact[sig];
3763   }
3764   return NULL;
3765 }
3766 
3767 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3768   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3769   sigact[sig] = oldAct;
3770   sigs |= (unsigned int)1 << sig;
3771 }
3772 
3773 // for diagnostic
3774 int os::Linux::sigflags[MAXSIGNUM];
3775 
3776 int os::Linux::get_our_sigflags(int sig) {
3777   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3778   return sigflags[sig];
3779 }
3780 
3781 void os::Linux::set_our_sigflags(int sig, int flags) {
3782   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3783   sigflags[sig] = flags;
3784 }
3785 
3786 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3787   // Check for overwrite.
3788   struct sigaction oldAct;
3789   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3790 
3791   void* oldhand = oldAct.sa_sigaction
3792                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3793                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3794   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3795       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3796       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3797     if (AllowUserSignalHandlers || !set_installed) {
3798       // Do not overwrite; user takes responsibility to forward to us.
3799       return;
3800     } else if (UseSignalChaining) {
3801       // save the old handler in jvm
3802       save_preinstalled_handler(sig, oldAct);
3803       // libjsig also interposes the sigaction() call below and saves the
3804       // old sigaction on it own.
3805     } else {
3806       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3807                     "%#lx for signal %d.", (long)oldhand, sig));
3808     }
3809   }
3810 
3811   struct sigaction sigAct;
3812   sigfillset(&(sigAct.sa_mask));
3813   sigAct.sa_handler = SIG_DFL;
3814   if (!set_installed) {
3815     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3816   } else {
3817     sigAct.sa_sigaction = signalHandler;
3818     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3819   }
3820   // Save flags, which are set by ours
3821   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3822   sigflags[sig] = sigAct.sa_flags;
3823 
3824   int ret = sigaction(sig, &sigAct, &oldAct);
3825   assert(ret == 0, "check");
3826 
3827   void* oldhand2  = oldAct.sa_sigaction
3828                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3829                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3830   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3831 }
3832 
3833 // install signal handlers for signals that HotSpot needs to
3834 // handle in order to support Java-level exception handling.
3835 
3836 void os::Linux::install_signal_handlers() {
3837   if (!signal_handlers_are_installed) {
3838     signal_handlers_are_installed = true;
3839 
3840     // signal-chaining
3841     typedef void (*signal_setting_t)();
3842     signal_setting_t begin_signal_setting = NULL;
3843     signal_setting_t end_signal_setting = NULL;
3844     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3845                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3846     if (begin_signal_setting != NULL) {
3847       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3848                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3849       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3850                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3851       libjsig_is_loaded = true;
3852       assert(UseSignalChaining, "should enable signal-chaining");
3853     }
3854     if (libjsig_is_loaded) {
3855       // Tell libjsig jvm is setting signal handlers
3856       (*begin_signal_setting)();
3857     }
3858 
3859     set_signal_handler(SIGSEGV, true);
3860     set_signal_handler(SIGPIPE, true);
3861     set_signal_handler(SIGBUS, true);
3862     set_signal_handler(SIGILL, true);
3863     set_signal_handler(SIGFPE, true);
3864     set_signal_handler(SIGXFSZ, true);
3865 
3866     if (libjsig_is_loaded) {
3867       // Tell libjsig jvm finishes setting signal handlers
3868       (*end_signal_setting)();
3869     }
3870 
3871     // We don't activate signal checker if libjsig is in place, we trust ourselves
3872     // and if UserSignalHandler is installed all bets are off.
3873     // Log that signal checking is off only if -verbose:jni is specified.
3874     if (CheckJNICalls) {
3875       if (libjsig_is_loaded) {
3876         if (PrintJNIResolving) {
3877           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3878         }
3879         check_signals = false;
3880       }
3881       if (AllowUserSignalHandlers) {
3882         if (PrintJNIResolving) {
3883           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3884         }
3885         check_signals = false;
3886       }
3887     }
3888   }
3889 }
3890 
3891 // This is the fastest way to get thread cpu time on Linux.
3892 // Returns cpu time (user+sys) for any thread, not only for current.
3893 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3894 // It might work on 2.6.10+ with a special kernel/glibc patch.
3895 // For reference, please, see IEEE Std 1003.1-2004:
3896 //   http://www.unix.org/single_unix_specification
3897 
3898 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3899   struct timespec tp;
3900   int rc = os::Linux::clock_gettime(clockid, &tp);
3901   assert(rc == 0, "clock_gettime is expected to return 0 code");
3902 
3903   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3904 }
3905 
3906 /////
3907 // glibc on Linux platform uses non-documented flag
3908 // to indicate, that some special sort of signal
3909 // trampoline is used.
3910 // We will never set this flag, and we should
3911 // ignore this flag in our diagnostic
3912 #ifdef SIGNIFICANT_SIGNAL_MASK
3913 #undef SIGNIFICANT_SIGNAL_MASK
3914 #endif
3915 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3916 
3917 static const char* get_signal_handler_name(address handler,
3918                                            char* buf, int buflen) {
3919   int offset;
3920   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3921   if (found) {
3922     // skip directory names
3923     const char *p1, *p2;
3924     p1 = buf;
3925     size_t len = strlen(os::file_separator());
3926     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3927     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3928   } else {
3929     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3930   }
3931   return buf;
3932 }
3933 
3934 static void print_signal_handler(outputStream* st, int sig,
3935                                  char* buf, size_t buflen) {
3936   struct sigaction sa;
3937 
3938   sigaction(sig, NULL, &sa);
3939 
3940   // See comment for SIGNIFICANT_SIGNAL_MASK define
3941   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3942 
3943   st->print("%s: ", os::exception_name(sig, buf, buflen));
3944 
3945   address handler = (sa.sa_flags & SA_SIGINFO)
3946     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3947     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3948 
3949   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3950     st->print("SIG_DFL");
3951   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3952     st->print("SIG_IGN");
3953   } else {
3954     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3955   }
3956 
3957   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3958 
3959   address rh = VMError::get_resetted_sighandler(sig);
3960   // May be, handler was resetted by VMError?
3961   if(rh != NULL) {
3962     handler = rh;
3963     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3964   }
3965 
3966   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3967 
3968   // Check: is it our handler?
3969   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3970      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3971     // It is our signal handler
3972     // check for flags, reset system-used one!
3973     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3974       st->print(
3975                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3976                 os::Linux::get_our_sigflags(sig));
3977     }
3978   }
3979   st->cr();
3980 }
3981 
3982 
3983 #define DO_SIGNAL_CHECK(sig) \
3984   if (!sigismember(&check_signal_done, sig)) \
3985     os::Linux::check_signal_handler(sig)
3986 
3987 // This method is a periodic task to check for misbehaving JNI applications
3988 // under CheckJNI, we can add any periodic checks here
3989 
3990 void os::run_periodic_checks() {
3991 
3992   if (check_signals == false) return;
3993 
3994   // SEGV and BUS if overridden could potentially prevent
3995   // generation of hs*.log in the event of a crash, debugging
3996   // such a case can be very challenging, so we absolutely
3997   // check the following for a good measure:
3998   DO_SIGNAL_CHECK(SIGSEGV);
3999   DO_SIGNAL_CHECK(SIGILL);
4000   DO_SIGNAL_CHECK(SIGFPE);
4001   DO_SIGNAL_CHECK(SIGBUS);
4002   DO_SIGNAL_CHECK(SIGPIPE);
4003   DO_SIGNAL_CHECK(SIGXFSZ);
4004 
4005 
4006   // ReduceSignalUsage allows the user to override these handlers
4007   // see comments at the very top and jvm_solaris.h
4008   if (!ReduceSignalUsage) {
4009     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4010     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4011     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4012     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4013   }
4014 
4015   DO_SIGNAL_CHECK(SR_signum);
4016   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4017 }
4018 
4019 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4020 
4021 static os_sigaction_t os_sigaction = NULL;
4022 
4023 void os::Linux::check_signal_handler(int sig) {
4024   char buf[O_BUFLEN];
4025   address jvmHandler = NULL;
4026 
4027 
4028   struct sigaction act;
4029   if (os_sigaction == NULL) {
4030     // only trust the default sigaction, in case it has been interposed
4031     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4032     if (os_sigaction == NULL) return;
4033   }
4034 
4035   os_sigaction(sig, (struct sigaction*)NULL, &act);
4036 
4037 
4038   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4039 
4040   address thisHandler = (act.sa_flags & SA_SIGINFO)
4041     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4042     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4043 
4044 
4045   switch(sig) {
4046   case SIGSEGV:
4047   case SIGBUS:
4048   case SIGFPE:
4049   case SIGPIPE:
4050   case SIGILL:
4051   case SIGXFSZ:
4052     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4053     break;
4054 
4055   case SHUTDOWN1_SIGNAL:
4056   case SHUTDOWN2_SIGNAL:
4057   case SHUTDOWN3_SIGNAL:
4058   case BREAK_SIGNAL:
4059     jvmHandler = (address)user_handler();
4060     break;
4061 
4062   case INTERRUPT_SIGNAL:
4063     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4064     break;
4065 
4066   default:
4067     if (sig == SR_signum) {
4068       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4069     } else {
4070       return;
4071     }
4072     break;
4073   }
4074 
4075   if (thisHandler != jvmHandler) {
4076     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4077     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4078     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4079     // No need to check this sig any longer
4080     sigaddset(&check_signal_done, sig);
4081   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4082     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4083     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4084     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4085     // No need to check this sig any longer
4086     sigaddset(&check_signal_done, sig);
4087   }
4088 
4089   // Dump all the signal
4090   if (sigismember(&check_signal_done, sig)) {
4091     print_signal_handlers(tty, buf, O_BUFLEN);
4092   }
4093 }
4094 
4095 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4096 
4097 extern bool signal_name(int signo, char* buf, size_t len);
4098 
4099 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4100   if (0 < exception_code && exception_code <= SIGRTMAX) {
4101     // signal
4102     if (!signal_name(exception_code, buf, size)) {
4103       jio_snprintf(buf, size, "SIG%d", exception_code);
4104     }
4105     return buf;
4106   } else {
4107     return NULL;
4108   }
4109 }
4110 
4111 // this is called _before_ the most of global arguments have been parsed
4112 void os::init(void) {
4113   char dummy;   /* used to get a guess on initial stack address */
4114 //  first_hrtime = gethrtime();
4115 
4116   // With LinuxThreads the JavaMain thread pid (primordial thread)
4117   // is different than the pid of the java launcher thread.
4118   // So, on Linux, the launcher thread pid is passed to the VM
4119   // via the sun.java.launcher.pid property.
4120   // Use this property instead of getpid() if it was correctly passed.
4121   // See bug 6351349.
4122   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4123 
4124   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4125 
4126   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4127 
4128   init_random(1234567);
4129 
4130   ThreadCritical::initialize();
4131 
4132   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4133   if (Linux::page_size() == -1) {
4134     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4135                   strerror(errno)));
4136   }
4137   init_page_sizes((size_t) Linux::page_size());
4138 
4139   Linux::initialize_system_info();
4140 
4141   // main_thread points to the aboriginal thread
4142   Linux::_main_thread = pthread_self();
4143 
4144   Linux::clock_init();
4145   initial_time_count = os::elapsed_counter();
4146   pthread_mutex_init(&dl_mutex, NULL);
4147 }
4148 
4149 // To install functions for atexit system call
4150 extern "C" {
4151   static void perfMemory_exit_helper() {
4152     perfMemory_exit();
4153   }
4154 }
4155 
4156 // this is called _after_ the global arguments have been parsed
4157 jint os::init_2(void)
4158 {
4159   Linux::fast_thread_clock_init();
4160 
4161   // Allocate a single page and mark it as readable for safepoint polling
4162   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4163   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4164 
4165   os::set_polling_page( polling_page );
4166 
4167 #ifndef PRODUCT
4168   if(Verbose && PrintMiscellaneous)
4169     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4170 #endif
4171 
4172   if (!UseMembar) {
4173     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4174     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4175     os::set_memory_serialize_page( mem_serialize_page );
4176 
4177 #ifndef PRODUCT
4178     if(Verbose && PrintMiscellaneous)
4179       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4180 #endif
4181   }
4182 
4183   os::large_page_init();
4184 
4185   // initialize suspend/resume support - must do this before signal_sets_init()
4186   if (SR_initialize() != 0) {
4187     perror("SR_initialize failed");
4188     return JNI_ERR;
4189   }
4190 
4191   Linux::signal_sets_init();
4192   Linux::install_signal_handlers();
4193 
4194   // Check minimum allowable stack size for thread creation and to initialize
4195   // the java system classes, including StackOverflowError - depends on page
4196   // size.  Add a page for compiler2 recursion in main thread.
4197   // Add in 2*BytesPerWord times page size to account for VM stack during
4198   // class initialization depending on 32 or 64 bit VM.
4199   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4200             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4201                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4202 
4203   size_t threadStackSizeInBytes = ThreadStackSize * K;
4204   if (threadStackSizeInBytes != 0 &&
4205       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4206         tty->print_cr("\nThe stack size specified is too small, "
4207                       "Specify at least %dk",
4208                       os::Linux::min_stack_allowed/ K);
4209         return JNI_ERR;
4210   }
4211 
4212   // Make the stack size a multiple of the page size so that
4213   // the yellow/red zones can be guarded.
4214   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4215         vm_page_size()));
4216 
4217   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4218 
4219   Linux::libpthread_init();
4220   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4221      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4222           Linux::glibc_version(), Linux::libpthread_version(),
4223           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4224   }
4225 
4226   if (UseNUMA) {
4227     if (!Linux::libnuma_init()) {
4228       UseNUMA = false;
4229     } else {
4230       if ((Linux::numa_max_node() < 1)) {
4231         // There's only one node(they start from 0), disable NUMA.
4232         UseNUMA = false;
4233       }
4234     }
4235     // With SHM large pages we cannot uncommit a page, so there's not way
4236     // we can make the adaptive lgrp chunk resizing work. If the user specified
4237     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4238     // disable adaptive resizing.
4239     if (UseNUMA && UseLargePages && UseSHM) {
4240       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4241         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4242           UseLargePages = false;
4243         } else {
4244           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4245           UseAdaptiveSizePolicy = false;
4246           UseAdaptiveNUMAChunkSizing = false;
4247         }
4248       } else {
4249         UseNUMA = false;
4250       }
4251     }
4252     if (!UseNUMA && ForceNUMA) {
4253       UseNUMA = true;
4254     }
4255   }
4256 
4257   if (MaxFDLimit) {
4258     // set the number of file descriptors to max. print out error
4259     // if getrlimit/setrlimit fails but continue regardless.
4260     struct rlimit nbr_files;
4261     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4262     if (status != 0) {
4263       if (PrintMiscellaneous && (Verbose || WizardMode))
4264         perror("os::init_2 getrlimit failed");
4265     } else {
4266       nbr_files.rlim_cur = nbr_files.rlim_max;
4267       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4268       if (status != 0) {
4269         if (PrintMiscellaneous && (Verbose || WizardMode))
4270           perror("os::init_2 setrlimit failed");
4271       }
4272     }
4273   }
4274 
4275   // Initialize lock used to serialize thread creation (see os::create_thread)
4276   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4277 
4278   // at-exit methods are called in the reverse order of their registration.
4279   // atexit functions are called on return from main or as a result of a
4280   // call to exit(3C). There can be only 32 of these functions registered
4281   // and atexit() does not set errno.
4282 
4283   if (PerfAllowAtExitRegistration) {
4284     // only register atexit functions if PerfAllowAtExitRegistration is set.
4285     // atexit functions can be delayed until process exit time, which
4286     // can be problematic for embedded VM situations. Embedded VMs should
4287     // call DestroyJavaVM() to assure that VM resources are released.
4288 
4289     // note: perfMemory_exit_helper atexit function may be removed in
4290     // the future if the appropriate cleanup code can be added to the
4291     // VM_Exit VMOperation's doit method.
4292     if (atexit(perfMemory_exit_helper) != 0) {
4293       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4294     }
4295   }
4296 
4297   // initialize thread priority policy
4298   prio_init();
4299 
4300   return JNI_OK;
4301 }
4302 
4303 // this is called at the end of vm_initialization
4304 void os::init_3(void)
4305 {
4306 #ifdef JAVASE_EMBEDDED
4307   // Start the MemNotifyThread
4308   if (LowMemoryProtection) {
4309     MemNotifyThread::start();
4310   }
4311   return;
4312 #endif
4313 }
4314 
4315 // Mark the polling page as unreadable
4316 void os::make_polling_page_unreadable(void) {
4317   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4318     fatal("Could not disable polling page");
4319 };
4320 
4321 // Mark the polling page as readable
4322 void os::make_polling_page_readable(void) {
4323   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4324     fatal("Could not enable polling page");
4325   }
4326 };
4327 
4328 int os::active_processor_count() {
4329   // Linux doesn't yet have a (official) notion of processor sets,
4330   // so just return the number of online processors.
4331   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4332   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4333   return online_cpus;
4334 }
4335 
4336 void os::set_native_thread_name(const char *name) {
4337   // Not yet implemented.
4338   return;
4339 }
4340 
4341 bool os::distribute_processes(uint length, uint* distribution) {
4342   // Not yet implemented.
4343   return false;
4344 }
4345 
4346 bool os::bind_to_processor(uint processor_id) {
4347   // Not yet implemented.
4348   return false;
4349 }
4350 
4351 ///
4352 
4353 // Suspends the target using the signal mechanism and then grabs the PC before
4354 // resuming the target. Used by the flat-profiler only
4355 ExtendedPC os::get_thread_pc(Thread* thread) {
4356   // Make sure that it is called by the watcher for the VMThread
4357   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4358   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4359 
4360   ExtendedPC epc;
4361 
4362   OSThread* osthread = thread->osthread();
4363   if (do_suspend(osthread)) {
4364     if (osthread->ucontext() != NULL) {
4365       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4366     } else {
4367       // NULL context is unexpected, double-check this is the VMThread
4368       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4369     }
4370     do_resume(osthread);
4371   }
4372   // failure means pthread_kill failed for some reason - arguably this is
4373   // a fatal problem, but such problems are ignored elsewhere
4374 
4375   return epc;
4376 }
4377 
4378 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4379 {
4380    if (is_NPTL()) {
4381       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4382    } else {
4383 #ifndef IA64
4384       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4385       // word back to default 64bit precision if condvar is signaled. Java
4386       // wants 53bit precision.  Save and restore current value.
4387       int fpu = get_fpu_control_word();
4388 #endif // IA64
4389       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4390 #ifndef IA64
4391       set_fpu_control_word(fpu);
4392 #endif // IA64
4393       return status;
4394    }
4395 }
4396 
4397 ////////////////////////////////////////////////////////////////////////////////
4398 // debug support
4399 
4400 bool os::find(address addr, outputStream* st) {
4401   Dl_info dlinfo;
4402   memset(&dlinfo, 0, sizeof(dlinfo));
4403   if (dladdr(addr, &dlinfo)) {
4404     st->print(PTR_FORMAT ": ", addr);
4405     if (dlinfo.dli_sname != NULL) {
4406       st->print("%s+%#x", dlinfo.dli_sname,
4407                  addr - (intptr_t)dlinfo.dli_saddr);
4408     } else if (dlinfo.dli_fname) {
4409       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4410     } else {
4411       st->print("<absolute address>");
4412     }
4413     if (dlinfo.dli_fname) {
4414       st->print(" in %s", dlinfo.dli_fname);
4415     }
4416     if (dlinfo.dli_fbase) {
4417       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4418     }
4419     st->cr();
4420 
4421     if (Verbose) {
4422       // decode some bytes around the PC
4423       address begin = clamp_address_in_page(addr-40, addr);
4424       address end   = clamp_address_in_page(addr+40, addr);
4425       address       lowest = (address) dlinfo.dli_sname;
4426       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4427       if (begin < lowest)  begin = lowest;
4428       Dl_info dlinfo2;
4429       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4430           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4431         end = (address) dlinfo2.dli_saddr;
4432       Disassembler::decode(begin, end, st);
4433     }
4434     return true;
4435   }
4436   return false;
4437 }
4438 
4439 ////////////////////////////////////////////////////////////////////////////////
4440 // misc
4441 
4442 // This does not do anything on Linux. This is basically a hook for being
4443 // able to use structured exception handling (thread-local exception filters)
4444 // on, e.g., Win32.
4445 void
4446 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4447                          JavaCallArguments* args, Thread* thread) {
4448   f(value, method, args, thread);
4449 }
4450 
4451 void os::print_statistics() {
4452 }
4453 
4454 int os::message_box(const char* title, const char* message) {
4455   int i;
4456   fdStream err(defaultStream::error_fd());
4457   for (i = 0; i < 78; i++) err.print_raw("=");
4458   err.cr();
4459   err.print_raw_cr(title);
4460   for (i = 0; i < 78; i++) err.print_raw("-");
4461   err.cr();
4462   err.print_raw_cr(message);
4463   for (i = 0; i < 78; i++) err.print_raw("=");
4464   err.cr();
4465 
4466   char buf[16];
4467   // Prevent process from exiting upon "read error" without consuming all CPU
4468   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4469 
4470   return buf[0] == 'y' || buf[0] == 'Y';
4471 }
4472 
4473 int os::stat(const char *path, struct stat *sbuf) {
4474   char pathbuf[MAX_PATH];
4475   if (strlen(path) > MAX_PATH - 1) {
4476     errno = ENAMETOOLONG;
4477     return -1;
4478   }
4479   os::native_path(strcpy(pathbuf, path));
4480   return ::stat(pathbuf, sbuf);
4481 }
4482 
4483 bool os::check_heap(bool force) {
4484   return true;
4485 }
4486 
4487 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4488   return ::vsnprintf(buf, count, format, args);
4489 }
4490 
4491 // Is a (classpath) directory empty?
4492 bool os::dir_is_empty(const char* path) {
4493   DIR *dir = NULL;
4494   struct dirent *ptr;
4495 
4496   dir = opendir(path);
4497   if (dir == NULL) return true;
4498 
4499   /* Scan the directory */
4500   bool result = true;
4501   char buf[sizeof(struct dirent) + MAX_PATH];
4502   while (result && (ptr = ::readdir(dir)) != NULL) {
4503     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4504       result = false;
4505     }
4506   }
4507   closedir(dir);
4508   return result;
4509 }
4510 
4511 // This code originates from JDK's sysOpen and open64_w
4512 // from src/solaris/hpi/src/system_md.c
4513 
4514 #ifndef O_DELETE
4515 #define O_DELETE 0x10000
4516 #endif
4517 
4518 // Open a file. Unlink the file immediately after open returns
4519 // if the specified oflag has the O_DELETE flag set.
4520 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4521 
4522 int os::open(const char *path, int oflag, int mode) {
4523 
4524   if (strlen(path) > MAX_PATH - 1) {
4525     errno = ENAMETOOLONG;
4526     return -1;
4527   }
4528   int fd;
4529   int o_delete = (oflag & O_DELETE);
4530   oflag = oflag & ~O_DELETE;
4531 
4532   fd = ::open64(path, oflag, mode);
4533   if (fd == -1) return -1;
4534 
4535   //If the open succeeded, the file might still be a directory
4536   {
4537     struct stat64 buf64;
4538     int ret = ::fstat64(fd, &buf64);
4539     int st_mode = buf64.st_mode;
4540 
4541     if (ret != -1) {
4542       if ((st_mode & S_IFMT) == S_IFDIR) {
4543         errno = EISDIR;
4544         ::close(fd);
4545         return -1;
4546       }
4547     } else {
4548       ::close(fd);
4549       return -1;
4550     }
4551   }
4552 
4553     /*
4554      * All file descriptors that are opened in the JVM and not
4555      * specifically destined for a subprocess should have the
4556      * close-on-exec flag set.  If we don't set it, then careless 3rd
4557      * party native code might fork and exec without closing all
4558      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4559      * UNIXProcess.c), and this in turn might:
4560      *
4561      * - cause end-of-file to fail to be detected on some file
4562      *   descriptors, resulting in mysterious hangs, or
4563      *
4564      * - might cause an fopen in the subprocess to fail on a system
4565      *   suffering from bug 1085341.
4566      *
4567      * (Yes, the default setting of the close-on-exec flag is a Unix
4568      * design flaw)
4569      *
4570      * See:
4571      * 1085341: 32-bit stdio routines should support file descriptors >255
4572      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4573      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4574      */
4575 #ifdef FD_CLOEXEC
4576     {
4577         int flags = ::fcntl(fd, F_GETFD);
4578         if (flags != -1)
4579             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4580     }
4581 #endif
4582 
4583   if (o_delete != 0) {
4584     ::unlink(path);
4585   }
4586   return fd;
4587 }
4588 
4589 
4590 // create binary file, rewriting existing file if required
4591 int os::create_binary_file(const char* path, bool rewrite_existing) {
4592   int oflags = O_WRONLY | O_CREAT;
4593   if (!rewrite_existing) {
4594     oflags |= O_EXCL;
4595   }
4596   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4597 }
4598 
4599 // return current position of file pointer
4600 jlong os::current_file_offset(int fd) {
4601   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4602 }
4603 
4604 // move file pointer to the specified offset
4605 jlong os::seek_to_file_offset(int fd, jlong offset) {
4606   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4607 }
4608 
4609 // This code originates from JDK's sysAvailable
4610 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4611 
4612 int os::available(int fd, jlong *bytes) {
4613   jlong cur, end;
4614   int mode;
4615   struct stat64 buf64;
4616 
4617   if (::fstat64(fd, &buf64) >= 0) {
4618     mode = buf64.st_mode;
4619     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4620       /*
4621       * XXX: is the following call interruptible? If so, this might
4622       * need to go through the INTERRUPT_IO() wrapper as for other
4623       * blocking, interruptible calls in this file.
4624       */
4625       int n;
4626       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4627         *bytes = n;
4628         return 1;
4629       }
4630     }
4631   }
4632   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4633     return 0;
4634   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4635     return 0;
4636   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4637     return 0;
4638   }
4639   *bytes = end - cur;
4640   return 1;
4641 }
4642 
4643 int os::socket_available(int fd, jint *pbytes) {
4644   // Linux doc says EINTR not returned, unlike Solaris
4645   int ret = ::ioctl(fd, FIONREAD, pbytes);
4646 
4647   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4648   // is expected to return 0 on failure and 1 on success to the jdk.
4649   return (ret < 0) ? 0 : 1;
4650 }
4651 
4652 // Map a block of memory.
4653 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4654                      char *addr, size_t bytes, bool read_only,
4655                      bool allow_exec) {
4656   int prot;
4657   int flags = MAP_PRIVATE;
4658 
4659   if (read_only) {
4660     prot = PROT_READ;
4661   } else {
4662     prot = PROT_READ | PROT_WRITE;
4663   }
4664 
4665   if (allow_exec) {
4666     prot |= PROT_EXEC;
4667   }
4668 
4669   if (addr != NULL) {
4670     flags |= MAP_FIXED;
4671   }
4672 
4673   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4674                                      fd, file_offset);
4675   if (mapped_address == MAP_FAILED) {
4676     return NULL;
4677   }
4678   return mapped_address;
4679 }
4680 
4681 
4682 // Remap a block of memory.
4683 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4684                        char *addr, size_t bytes, bool read_only,
4685                        bool allow_exec) {
4686   // same as map_memory() on this OS
4687   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4688                         allow_exec);
4689 }
4690 
4691 
4692 // Unmap a block of memory.
4693 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4694   return munmap(addr, bytes) == 0;
4695 }
4696 
4697 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4698 
4699 static clockid_t thread_cpu_clockid(Thread* thread) {
4700   pthread_t tid = thread->osthread()->pthread_id();
4701   clockid_t clockid;
4702 
4703   // Get thread clockid
4704   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4705   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4706   return clockid;
4707 }
4708 
4709 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4710 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4711 // of a thread.
4712 //
4713 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4714 // the fast estimate available on the platform.
4715 
4716 jlong os::current_thread_cpu_time() {
4717   if (os::Linux::supports_fast_thread_cpu_time()) {
4718     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4719   } else {
4720     // return user + sys since the cost is the same
4721     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4722   }
4723 }
4724 
4725 jlong os::thread_cpu_time(Thread* thread) {
4726   // consistent with what current_thread_cpu_time() returns
4727   if (os::Linux::supports_fast_thread_cpu_time()) {
4728     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4729   } else {
4730     return slow_thread_cpu_time(thread, true /* user + sys */);
4731   }
4732 }
4733 
4734 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4735   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4736     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4737   } else {
4738     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4739   }
4740 }
4741 
4742 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4743   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4744     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4745   } else {
4746     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4747   }
4748 }
4749 
4750 //
4751 //  -1 on error.
4752 //
4753 
4754 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4755   static bool proc_pid_cpu_avail = true;
4756   static bool proc_task_unchecked = true;
4757   static const char *proc_stat_path = "/proc/%d/stat";
4758   pid_t  tid = thread->osthread()->thread_id();
4759   int i;
4760   char *s;
4761   char stat[2048];
4762   int statlen;
4763   char proc_name[64];
4764   int count;
4765   long sys_time, user_time;
4766   char string[64];
4767   char cdummy;
4768   int idummy;
4769   long ldummy;
4770   FILE *fp;
4771 
4772   // We first try accessing /proc/<pid>/cpu since this is faster to
4773   // process.  If this file is not present (linux kernels 2.5 and above)
4774   // then we open /proc/<pid>/stat.
4775   if ( proc_pid_cpu_avail ) {
4776     sprintf(proc_name, "/proc/%d/cpu", tid);
4777     fp =  fopen(proc_name, "r");
4778     if ( fp != NULL ) {
4779       count = fscanf( fp, "%s %lu %lu\n", string, &user_time, &sys_time);
4780       fclose(fp);
4781       if ( count != 3 ) return -1;
4782 
4783       if (user_sys_cpu_time) {
4784         return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4785       } else {
4786         return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4787       }
4788     }
4789     else proc_pid_cpu_avail = false;
4790   }
4791 
4792   // The /proc/<tid>/stat aggregates per-process usage on
4793   // new Linux kernels 2.6+ where NPTL is supported.
4794   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4795   // See bug 6328462.
4796   // There can be no directory /proc/self/task on kernels 2.4 with NPTL
4797   // and possibly in some other cases, so we check its availability.
4798   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4799     // This is executed only once
4800     proc_task_unchecked = false;
4801     fp = fopen("/proc/self/task", "r");
4802     if (fp != NULL) {
4803       proc_stat_path = "/proc/self/task/%d/stat";
4804       fclose(fp);
4805     }
4806   }
4807 
4808   sprintf(proc_name, proc_stat_path, tid);
4809   fp = fopen(proc_name, "r");
4810   if ( fp == NULL ) return -1;
4811   statlen = fread(stat, 1, 2047, fp);
4812   stat[statlen] = '\0';
4813   fclose(fp);
4814 
4815   // Skip pid and the command string. Note that we could be dealing with
4816   // weird command names, e.g. user could decide to rename java launcher
4817   // to "java 1.4.2 :)", then the stat file would look like
4818   //                1234 (java 1.4.2 :)) R ... ...
4819   // We don't really need to know the command string, just find the last
4820   // occurrence of ")" and then start parsing from there. See bug 4726580.
4821   s = strrchr(stat, ')');
4822   i = 0;
4823   if (s == NULL ) return -1;
4824 
4825   // Skip blank chars
4826   do s++; while (isspace(*s));
4827 
4828   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4829                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4830                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4831                  &user_time, &sys_time);
4832   if ( count != 13 ) return -1;
4833   if (user_sys_cpu_time) {
4834     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4835   } else {
4836     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4837   }
4838 }
4839 
4840 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4841   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4842   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4843   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4844   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4845 }
4846 
4847 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4848   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4849   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4850   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4851   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4852 }
4853 
4854 bool os::is_thread_cpu_time_supported() {
4855   return true;
4856 }
4857 
4858 // System loadavg support.  Returns -1 if load average cannot be obtained.
4859 // Linux doesn't yet have a (official) notion of processor sets,
4860 // so just return the system wide load average.
4861 int os::loadavg(double loadavg[], int nelem) {
4862   return ::getloadavg(loadavg, nelem);
4863 }
4864 
4865 void os::pause() {
4866   char filename[MAX_PATH];
4867   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4868     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4869   } else {
4870     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4871   }
4872 
4873   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4874   if (fd != -1) {
4875     struct stat buf;
4876     ::close(fd);
4877     while (::stat(filename, &buf) == 0) {
4878       (void)::poll(NULL, 0, 100);
4879     }
4880   } else {
4881     jio_fprintf(stderr,
4882       "Could not open pause file '%s', continuing immediately.\n", filename);
4883   }
4884 }
4885 
4886 
4887 // Refer to the comments in os_solaris.cpp park-unpark.
4888 //
4889 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4890 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4891 // For specifics regarding the bug see GLIBC BUGID 261237 :
4892 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4893 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4894 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4895 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4896 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4897 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4898 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4899 // of libpthread avoids the problem, but isn't practical.
4900 //
4901 // Possible remedies:
4902 //
4903 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4904 //      This is palliative and probabilistic, however.  If the thread is preempted
4905 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4906 //      than the minimum period may have passed, and the abstime may be stale (in the
4907 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4908 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4909 //
4910 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4911 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4912 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4913 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4914 //      thread.
4915 //
4916 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4917 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4918 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4919 //      This also works well.  In fact it avoids kernel-level scalability impediments
4920 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4921 //      timers in a graceful fashion.
4922 //
4923 // 4.   When the abstime value is in the past it appears that control returns
4924 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4925 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4926 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4927 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4928 //      It may be possible to avoid reinitialization by checking the return
4929 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4930 //      condvar we must establish the invariant that cond_signal() is only called
4931 //      within critical sections protected by the adjunct mutex.  This prevents
4932 //      cond_signal() from "seeing" a condvar that's in the midst of being
4933 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4934 //      desirable signal-after-unlock optimization that avoids futile context switching.
4935 //
4936 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4937 //      structure when a condvar is used or initialized.  cond_destroy()  would
4938 //      release the helper structure.  Our reinitialize-after-timedwait fix
4939 //      put excessive stress on malloc/free and locks protecting the c-heap.
4940 //
4941 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4942 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4943 // and only enabling the work-around for vulnerable environments.
4944 
4945 // utility to compute the abstime argument to timedwait:
4946 // millis is the relative timeout time
4947 // abstime will be the absolute timeout time
4948 // TODO: replace compute_abstime() with unpackTime()
4949 
4950 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4951   if (millis < 0)  millis = 0;
4952   struct timeval now;
4953   int status = gettimeofday(&now, NULL);
4954   assert(status == 0, "gettimeofday");
4955   jlong seconds = millis / 1000;
4956   millis %= 1000;
4957   if (seconds > 50000000) { // see man cond_timedwait(3T)
4958     seconds = 50000000;
4959   }
4960   abstime->tv_sec = now.tv_sec  + seconds;
4961   long       usec = now.tv_usec + millis * 1000;
4962   if (usec >= 1000000) {
4963     abstime->tv_sec += 1;
4964     usec -= 1000000;
4965   }
4966   abstime->tv_nsec = usec * 1000;
4967   return abstime;
4968 }
4969 
4970 
4971 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4972 // Conceptually TryPark() should be equivalent to park(0).
4973 
4974 int os::PlatformEvent::TryPark() {
4975   for (;;) {
4976     const int v = _Event ;
4977     guarantee ((v == 0) || (v == 1), "invariant") ;
4978     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4979   }
4980 }
4981 
4982 void os::PlatformEvent::park() {       // AKA "down()"
4983   // Invariant: Only the thread associated with the Event/PlatformEvent
4984   // may call park().
4985   // TODO: assert that _Assoc != NULL or _Assoc == Self
4986   int v ;
4987   for (;;) {
4988       v = _Event ;
4989       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4990   }
4991   guarantee (v >= 0, "invariant") ;
4992   if (v == 0) {
4993      // Do this the hard way by blocking ...
4994      int status = pthread_mutex_lock(_mutex);
4995      assert_status(status == 0, status, "mutex_lock");
4996      guarantee (_nParked == 0, "invariant") ;
4997      ++ _nParked ;
4998      while (_Event < 0) {
4999         status = pthread_cond_wait(_cond, _mutex);
5000         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5001         // Treat this the same as if the wait was interrupted
5002         if (status == ETIME) { status = EINTR; }
5003         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5004      }
5005      -- _nParked ;
5006 
5007     // In theory we could move the ST of 0 into _Event past the unlock(),
5008     // but then we'd need a MEMBAR after the ST.
5009     _Event = 0 ;
5010      status = pthread_mutex_unlock(_mutex);
5011      assert_status(status == 0, status, "mutex_unlock");
5012   }
5013   guarantee (_Event >= 0, "invariant") ;
5014 }
5015 
5016 int os::PlatformEvent::park(jlong millis) {
5017   guarantee (_nParked == 0, "invariant") ;
5018 
5019   int v ;
5020   for (;;) {
5021       v = _Event ;
5022       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5023   }
5024   guarantee (v >= 0, "invariant") ;
5025   if (v != 0) return OS_OK ;
5026 
5027   // We do this the hard way, by blocking the thread.
5028   // Consider enforcing a minimum timeout value.
5029   struct timespec abst;
5030   compute_abstime(&abst, millis);
5031 
5032   int ret = OS_TIMEOUT;
5033   int status = pthread_mutex_lock(_mutex);
5034   assert_status(status == 0, status, "mutex_lock");
5035   guarantee (_nParked == 0, "invariant") ;
5036   ++_nParked ;
5037 
5038   // Object.wait(timo) will return because of
5039   // (a) notification
5040   // (b) timeout
5041   // (c) thread.interrupt
5042   //
5043   // Thread.interrupt and object.notify{All} both call Event::set.
5044   // That is, we treat thread.interrupt as a special case of notification.
5045   // The underlying Solaris implementation, cond_timedwait, admits
5046   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5047   // JVM from making those visible to Java code.  As such, we must
5048   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5049   //
5050   // TODO: properly differentiate simultaneous notify+interrupt.
5051   // In that case, we should propagate the notify to another waiter.
5052 
5053   while (_Event < 0) {
5054     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5055     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5056       pthread_cond_destroy (_cond);
5057       pthread_cond_init (_cond, NULL) ;
5058     }
5059     assert_status(status == 0 || status == EINTR ||
5060                   status == ETIME || status == ETIMEDOUT,
5061                   status, "cond_timedwait");
5062     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5063     if (status == ETIME || status == ETIMEDOUT) break ;
5064     // We consume and ignore EINTR and spurious wakeups.
5065   }
5066   --_nParked ;
5067   if (_Event >= 0) {
5068      ret = OS_OK;
5069   }
5070   _Event = 0 ;
5071   status = pthread_mutex_unlock(_mutex);
5072   assert_status(status == 0, status, "mutex_unlock");
5073   assert (_nParked == 0, "invariant") ;
5074   return ret;
5075 }
5076 
5077 void os::PlatformEvent::unpark() {
5078   int v, AnyWaiters ;
5079   for (;;) {
5080       v = _Event ;
5081       if (v > 0) {
5082          // The LD of _Event could have reordered or be satisfied
5083          // by a read-aside from this processor's write buffer.
5084          // To avoid problems execute a barrier and then
5085          // ratify the value.
5086          OrderAccess::fence() ;
5087          if (_Event == v) return ;
5088          continue ;
5089       }
5090       if (Atomic::cmpxchg (v+1, &_Event, v) == v) break ;
5091   }
5092   if (v < 0) {
5093      // Wait for the thread associated with the event to vacate
5094      int status = pthread_mutex_lock(_mutex);
5095      assert_status(status == 0, status, "mutex_lock");
5096      AnyWaiters = _nParked ;
5097      assert (AnyWaiters == 0 || AnyWaiters == 1, "invariant") ;
5098      if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5099         AnyWaiters = 0 ;
5100         pthread_cond_signal (_cond);
5101      }
5102      status = pthread_mutex_unlock(_mutex);
5103      assert_status(status == 0, status, "mutex_unlock");
5104      if (AnyWaiters != 0) {
5105         status = pthread_cond_signal(_cond);
5106         assert_status(status == 0, status, "cond_signal");
5107      }
5108   }
5109 
5110   // Note that we signal() _after dropping the lock for "immortal" Events.
5111   // This is safe and avoids a common class of  futile wakeups.  In rare
5112   // circumstances this can cause a thread to return prematurely from
5113   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5114   // simply re-test the condition and re-park itself.
5115 }
5116 
5117 
5118 // JSR166
5119 // -------------------------------------------------------
5120 
5121 /*
5122  * The solaris and linux implementations of park/unpark are fairly
5123  * conservative for now, but can be improved. They currently use a
5124  * mutex/condvar pair, plus a a count.
5125  * Park decrements count if > 0, else does a condvar wait.  Unpark
5126  * sets count to 1 and signals condvar.  Only one thread ever waits
5127  * on the condvar. Contention seen when trying to park implies that someone
5128  * is unparking you, so don't wait. And spurious returns are fine, so there
5129  * is no need to track notifications.
5130  */
5131 
5132 #define MAX_SECS 100000000
5133 /*
5134  * This code is common to linux and solaris and will be moved to a
5135  * common place in dolphin.
5136  *
5137  * The passed in time value is either a relative time in nanoseconds
5138  * or an absolute time in milliseconds. Either way it has to be unpacked
5139  * into suitable seconds and nanoseconds components and stored in the
5140  * given timespec structure.
5141  * Given time is a 64-bit value and the time_t used in the timespec is only
5142  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5143  * overflow if times way in the future are given. Further on Solaris versions
5144  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5145  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5146  * As it will be 28 years before "now + 100000000" will overflow we can
5147  * ignore overflow and just impose a hard-limit on seconds using the value
5148  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5149  * years from "now".
5150  */
5151 
5152 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5153   assert (time > 0, "convertTime");
5154 
5155   struct timeval now;
5156   int status = gettimeofday(&now, NULL);
5157   assert(status == 0, "gettimeofday");
5158 
5159   time_t max_secs = now.tv_sec + MAX_SECS;
5160 
5161   if (isAbsolute) {
5162     jlong secs = time / 1000;
5163     if (secs > max_secs) {
5164       absTime->tv_sec = max_secs;
5165     }
5166     else {
5167       absTime->tv_sec = secs;
5168     }
5169     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5170   }
5171   else {
5172     jlong secs = time / NANOSECS_PER_SEC;
5173     if (secs >= MAX_SECS) {
5174       absTime->tv_sec = max_secs;
5175       absTime->tv_nsec = 0;
5176     }
5177     else {
5178       absTime->tv_sec = now.tv_sec + secs;
5179       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5180       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5181         absTime->tv_nsec -= NANOSECS_PER_SEC;
5182         ++absTime->tv_sec; // note: this must be <= max_secs
5183       }
5184     }
5185   }
5186   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5187   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5188   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5189   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5190 }
5191 
5192 void Parker::park(bool isAbsolute, jlong time) {
5193   // Optional fast-path check:
5194   // Return immediately if a permit is available.
5195   if (_counter > 0) {
5196       _counter = 0 ;
5197       OrderAccess::fence();
5198       return ;
5199   }
5200 
5201   Thread* thread = Thread::current();
5202   assert(thread->is_Java_thread(), "Must be JavaThread");
5203   JavaThread *jt = (JavaThread *)thread;
5204 
5205   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5206   // Check interrupt before trying to wait
5207   if (Thread::is_interrupted(thread, false)) {
5208     return;
5209   }
5210 
5211   // Next, demultiplex/decode time arguments
5212   timespec absTime;
5213   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5214     return;
5215   }
5216   if (time > 0) {
5217     unpackTime(&absTime, isAbsolute, time);
5218   }
5219 
5220 
5221   // Enter safepoint region
5222   // Beware of deadlocks such as 6317397.
5223   // The per-thread Parker:: mutex is a classic leaf-lock.
5224   // In particular a thread must never block on the Threads_lock while
5225   // holding the Parker:: mutex.  If safepoints are pending both the
5226   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5227   ThreadBlockInVM tbivm(jt);
5228 
5229   // Don't wait if cannot get lock since interference arises from
5230   // unblocking.  Also. check interrupt before trying wait
5231   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5232     return;
5233   }
5234 
5235   int status ;
5236   if (_counter > 0)  { // no wait needed
5237     _counter = 0;
5238     status = pthread_mutex_unlock(_mutex);
5239     assert (status == 0, "invariant") ;
5240     OrderAccess::fence();
5241     return;
5242   }
5243 
5244 #ifdef ASSERT
5245   // Don't catch signals while blocked; let the running threads have the signals.
5246   // (This allows a debugger to break into the running thread.)
5247   sigset_t oldsigs;
5248   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5249   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5250 #endif
5251 
5252   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5253   jt->set_suspend_equivalent();
5254   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5255 
5256   if (time == 0) {
5257     status = pthread_cond_wait (_cond, _mutex) ;
5258   } else {
5259     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5260     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5261       pthread_cond_destroy (_cond) ;
5262       pthread_cond_init    (_cond, NULL);
5263     }
5264   }
5265   assert_status(status == 0 || status == EINTR ||
5266                 status == ETIME || status == ETIMEDOUT,
5267                 status, "cond_timedwait");
5268 
5269 #ifdef ASSERT
5270   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5271 #endif
5272 
5273   _counter = 0 ;
5274   status = pthread_mutex_unlock(_mutex) ;
5275   assert_status(status == 0, status, "invariant") ;
5276   // If externally suspended while waiting, re-suspend
5277   if (jt->handle_special_suspend_equivalent_condition()) {
5278     jt->java_suspend_self();
5279   }
5280 
5281   OrderAccess::fence();
5282 }
5283 
5284 void Parker::unpark() {
5285   int s, status ;
5286   status = pthread_mutex_lock(_mutex);
5287   assert (status == 0, "invariant") ;
5288   s = _counter;
5289   _counter = 1;
5290   if (s < 1) {
5291      if (WorkAroundNPTLTimedWaitHang) {
5292         status = pthread_cond_signal (_cond) ;
5293         assert (status == 0, "invariant") ;
5294         status = pthread_mutex_unlock(_mutex);
5295         assert (status == 0, "invariant") ;
5296      } else {
5297         status = pthread_mutex_unlock(_mutex);
5298         assert (status == 0, "invariant") ;
5299         status = pthread_cond_signal (_cond) ;
5300         assert (status == 0, "invariant") ;
5301      }
5302   } else {
5303     pthread_mutex_unlock(_mutex);
5304     assert (status == 0, "invariant") ;
5305   }
5306 }
5307 
5308 
5309 extern char** environ;
5310 
5311 #ifndef __NR_fork
5312 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5313 #endif
5314 
5315 #ifndef __NR_execve
5316 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5317 #endif
5318 
5319 // Run the specified command in a separate process. Return its exit value,
5320 // or -1 on failure (e.g. can't fork a new process).
5321 // Unlike system(), this function can be called from signal handler. It
5322 // doesn't block SIGINT et al.
5323 int os::fork_and_exec(char* cmd) {
5324   const char * argv[4] = {"sh", "-c", cmd, NULL};
5325 
5326   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5327   // pthread_atfork handlers and reset pthread library. All we need is a
5328   // separate process to execve. Make a direct syscall to fork process.
5329   // On IA64 there's no fork syscall, we have to use fork() and hope for
5330   // the best...
5331   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5332               IA64_ONLY(fork();)
5333 
5334   if (pid < 0) {
5335     // fork failed
5336     return -1;
5337 
5338   } else if (pid == 0) {
5339     // child process
5340 
5341     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5342     // first to kill every thread on the thread list. Because this list is
5343     // not reset by fork() (see notes above), execve() will instead kill
5344     // every thread in the parent process. We know this is the only thread
5345     // in the new process, so make a system call directly.
5346     // IA64 should use normal execve() from glibc to match the glibc fork()
5347     // above.
5348     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5349     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5350 
5351     // execve failed
5352     _exit(-1);
5353 
5354   } else  {
5355     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5356     // care about the actual exit code, for now.
5357 
5358     int status;
5359 
5360     // Wait for the child process to exit.  This returns immediately if
5361     // the child has already exited. */
5362     while (waitpid(pid, &status, 0) < 0) {
5363         switch (errno) {
5364         case ECHILD: return 0;
5365         case EINTR: break;
5366         default: return -1;
5367         }
5368     }
5369 
5370     if (WIFEXITED(status)) {
5371        // The child exited normally; get its exit code.
5372        return WEXITSTATUS(status);
5373     } else if (WIFSIGNALED(status)) {
5374        // The child exited because of a signal
5375        // The best value to return is 0x80 + signal number,
5376        // because that is what all Unix shells do, and because
5377        // it allows callers to distinguish between process exit and
5378        // process death by signal.
5379        return 0x80 + WTERMSIG(status);
5380     } else {
5381        // Unknown exit code; pass it through
5382        return status;
5383     }
5384   }
5385 }
5386 
5387 // is_headless_jre()
5388 //
5389 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5390 // in order to report if we are running in a headless jre
5391 //
5392 // Since JDK8 xawt/libmawt.so was moved into the same directory
5393 // as libawt.so, and renamed libawt_xawt.so
5394 //
5395 bool os::is_headless_jre() {
5396     struct stat statbuf;
5397     char buf[MAXPATHLEN];
5398     char libmawtpath[MAXPATHLEN];
5399     const char *xawtstr  = "/xawt/libmawt.so";
5400     const char *new_xawtstr = "/libawt_xawt.so";
5401     char *p;
5402 
5403     // Get path to libjvm.so
5404     os::jvm_path(buf, sizeof(buf));
5405 
5406     // Get rid of libjvm.so
5407     p = strrchr(buf, '/');
5408     if (p == NULL) return false;
5409     else *p = '\0';
5410 
5411     // Get rid of client or server
5412     p = strrchr(buf, '/');
5413     if (p == NULL) return false;
5414     else *p = '\0';
5415 
5416     // check xawt/libmawt.so
5417     strcpy(libmawtpath, buf);
5418     strcat(libmawtpath, xawtstr);
5419     if (::stat(libmawtpath, &statbuf) == 0) return false;
5420 
5421     // check libawt_xawt.so
5422     strcpy(libmawtpath, buf);
5423     strcat(libmawtpath, new_xawtstr);
5424     if (::stat(libmawtpath, &statbuf) == 0) return false;
5425 
5426     return true;
5427 }
5428 
5429 // Get the default path to the core file
5430 // Returns the length of the string
5431 int os::get_core_path(char* buffer, size_t bufferSize) {
5432   const char* p = get_current_directory(buffer, bufferSize);
5433 
5434   if (p == NULL) {
5435     assert(p != NULL, "failed to get current directory");
5436     return 0;
5437   }
5438 
5439   return strlen(buffer);
5440 }
5441 
5442 #ifdef JAVASE_EMBEDDED
5443 //
5444 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5445 //
5446 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5447 
5448 // ctor
5449 //
5450 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5451   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5452   _fd = fd;
5453 
5454   if (os::create_thread(this, os::os_thread)) {
5455     _memnotify_thread = this;
5456     os::set_priority(this, NearMaxPriority);
5457     os::start_thread(this);
5458   }
5459 }
5460 
5461 // Where all the work gets done
5462 //
5463 void MemNotifyThread::run() {
5464   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5465 
5466   // Set up the select arguments
5467   fd_set rfds;
5468   if (_fd != -1) {
5469     FD_ZERO(&rfds);
5470     FD_SET(_fd, &rfds);
5471   }
5472 
5473   // Now wait for the mem_notify device to wake up
5474   while (1) {
5475     // Wait for the mem_notify device to signal us..
5476     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5477     if (rc == -1) {
5478       perror("select!\n");
5479       break;
5480     } else if (rc) {
5481       //ssize_t free_before = os::available_memory();
5482       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5483 
5484       // The kernel is telling us there is not much memory left...
5485       // try to do something about that
5486 
5487       // If we are not already in a GC, try one.
5488       if (!Universe::heap()->is_gc_active()) {
5489         Universe::heap()->collect(GCCause::_allocation_failure);
5490 
5491         //ssize_t free_after = os::available_memory();
5492         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5493         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5494       }
5495       // We might want to do something like the following if we find the GC's are not helping...
5496       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5497     }
5498   }
5499 }
5500 
5501 //
5502 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5503 //
5504 void MemNotifyThread::start() {
5505   int    fd;
5506   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5507   if (fd < 0) {
5508       return;
5509   }
5510 
5511   if (memnotify_thread() == NULL) {
5512     new MemNotifyThread(fd);
5513   }
5514 }
5515 #endif // JAVASE_EMBEDDED