1 /*
   2  * Copyright (c) 2005, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_Compilation.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_Instruction.hpp"
  29 #include "c1/c1_LIRAssembler.hpp"
  30 #include "c1/c1_LIRGenerator.hpp"
  31 #include "c1/c1_ValueStack.hpp"
  32 #include "ci/ciArrayKlass.hpp"
  33 #include "ci/ciInstance.hpp"
  34 #include "ci/ciObjArray.hpp"
  35 #include "runtime/sharedRuntime.hpp"
  36 #include "runtime/stubRoutines.hpp"
  37 #include "utilities/bitMap.inline.hpp"
  38 #ifndef SERIALGC
  39 #include "gc_implementation/g1/heapRegion.hpp"
  40 #endif
  41 
  42 #ifdef ASSERT
  43 #define __ gen()->lir(__FILE__, __LINE__)->
  44 #else
  45 #define __ gen()->lir()->
  46 #endif
  47 
  48 // TODO: ARM - Use some recognizable constant which still fits architectural constraints
  49 #ifdef ARM
  50 #define PATCHED_ADDR  (204)
  51 #else
  52 #define PATCHED_ADDR  (max_jint)
  53 #endif
  54 
  55 void PhiResolverState::reset(int max_vregs) {
  56   // Initialize array sizes
  57   _virtual_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  58   _virtual_operands.trunc_to(0);
  59   _other_operands.at_put_grow(max_vregs - 1, NULL, NULL);
  60   _other_operands.trunc_to(0);
  61   _vreg_table.at_put_grow(max_vregs - 1, NULL, NULL);
  62   _vreg_table.trunc_to(0);
  63 }
  64 
  65 
  66 
  67 //--------------------------------------------------------------
  68 // PhiResolver
  69 
  70 // Resolves cycles:
  71 //
  72 //  r1 := r2  becomes  temp := r1
  73 //  r2 := r1           r1 := r2
  74 //                     r2 := temp
  75 // and orders moves:
  76 //
  77 //  r2 := r3  becomes  r1 := r2
  78 //  r1 := r2           r2 := r3
  79 
  80 PhiResolver::PhiResolver(LIRGenerator* gen, int max_vregs)
  81  : _gen(gen)
  82  , _state(gen->resolver_state())
  83  , _temp(LIR_OprFact::illegalOpr)
  84 {
  85   // reinitialize the shared state arrays
  86   _state.reset(max_vregs);
  87 }
  88 
  89 
  90 void PhiResolver::emit_move(LIR_Opr src, LIR_Opr dest) {
  91   assert(src->is_valid(), "");
  92   assert(dest->is_valid(), "");
  93   __ move(src, dest);
  94 }
  95 
  96 
  97 void PhiResolver::move_temp_to(LIR_Opr dest) {
  98   assert(_temp->is_valid(), "");
  99   emit_move(_temp, dest);
 100   NOT_PRODUCT(_temp = LIR_OprFact::illegalOpr);
 101 }
 102 
 103 
 104 void PhiResolver::move_to_temp(LIR_Opr src) {
 105   assert(_temp->is_illegal(), "");
 106   _temp = _gen->new_register(src->type());
 107   emit_move(src, _temp);
 108 }
 109 
 110 
 111 // Traverse assignment graph in depth first order and generate moves in post order
 112 // ie. two assignments: b := c, a := b start with node c:
 113 // Call graph: move(NULL, c) -> move(c, b) -> move(b, a)
 114 // Generates moves in this order: move b to a and move c to b
 115 // ie. cycle a := b, b := a start with node a
 116 // Call graph: move(NULL, a) -> move(a, b) -> move(b, a)
 117 // Generates moves in this order: move b to temp, move a to b, move temp to a
 118 void PhiResolver::move(ResolveNode* src, ResolveNode* dest) {
 119   if (!dest->visited()) {
 120     dest->set_visited();
 121     for (int i = dest->no_of_destinations()-1; i >= 0; i --) {
 122       move(dest, dest->destination_at(i));
 123     }
 124   } else if (!dest->start_node()) {
 125     // cylce in graph detected
 126     assert(_loop == NULL, "only one loop valid!");
 127     _loop = dest;
 128     move_to_temp(src->operand());
 129     return;
 130   } // else dest is a start node
 131 
 132   if (!dest->assigned()) {
 133     if (_loop == dest) {
 134       move_temp_to(dest->operand());
 135       dest->set_assigned();
 136     } else if (src != NULL) {
 137       emit_move(src->operand(), dest->operand());
 138       dest->set_assigned();
 139     }
 140   }
 141 }
 142 
 143 
 144 PhiResolver::~PhiResolver() {
 145   int i;
 146   // resolve any cycles in moves from and to virtual registers
 147   for (i = virtual_operands().length() - 1; i >= 0; i --) {
 148     ResolveNode* node = virtual_operands()[i];
 149     if (!node->visited()) {
 150       _loop = NULL;
 151       move(NULL, node);
 152       node->set_start_node();
 153       assert(_temp->is_illegal(), "move_temp_to() call missing");
 154     }
 155   }
 156 
 157   // generate move for move from non virtual register to abitrary destination
 158   for (i = other_operands().length() - 1; i >= 0; i --) {
 159     ResolveNode* node = other_operands()[i];
 160     for (int j = node->no_of_destinations() - 1; j >= 0; j --) {
 161       emit_move(node->operand(), node->destination_at(j)->operand());
 162     }
 163   }
 164 }
 165 
 166 
 167 ResolveNode* PhiResolver::create_node(LIR_Opr opr, bool source) {
 168   ResolveNode* node;
 169   if (opr->is_virtual()) {
 170     int vreg_num = opr->vreg_number();
 171     node = vreg_table().at_grow(vreg_num, NULL);
 172     assert(node == NULL || node->operand() == opr, "");
 173     if (node == NULL) {
 174       node = new ResolveNode(opr);
 175       vreg_table()[vreg_num] = node;
 176     }
 177     // Make sure that all virtual operands show up in the list when
 178     // they are used as the source of a move.
 179     if (source && !virtual_operands().contains(node)) {
 180       virtual_operands().append(node);
 181     }
 182   } else {
 183     assert(source, "");
 184     node = new ResolveNode(opr);
 185     other_operands().append(node);
 186   }
 187   return node;
 188 }
 189 
 190 
 191 void PhiResolver::move(LIR_Opr src, LIR_Opr dest) {
 192   assert(dest->is_virtual(), "");
 193   // tty->print("move "); src->print(); tty->print(" to "); dest->print(); tty->cr();
 194   assert(src->is_valid(), "");
 195   assert(dest->is_valid(), "");
 196   ResolveNode* source = source_node(src);
 197   source->append(destination_node(dest));
 198 }
 199 
 200 
 201 //--------------------------------------------------------------
 202 // LIRItem
 203 
 204 void LIRItem::set_result(LIR_Opr opr) {
 205   assert(value()->operand()->is_illegal() || value()->operand()->is_constant(), "operand should never change");
 206   value()->set_operand(opr);
 207 
 208   if (opr->is_virtual()) {
 209     _gen->_instruction_for_operand.at_put_grow(opr->vreg_number(), value(), NULL);
 210   }
 211 
 212   _result = opr;
 213 }
 214 
 215 void LIRItem::load_item() {
 216   if (result()->is_illegal()) {
 217     // update the items result
 218     _result = value()->operand();
 219   }
 220   if (!result()->is_register()) {
 221     LIR_Opr reg = _gen->new_register(value()->type());
 222     __ move(result(), reg);
 223     if (result()->is_constant()) {
 224       _result = reg;
 225     } else {
 226       set_result(reg);
 227     }
 228   }
 229 }
 230 
 231 
 232 void LIRItem::load_for_store(BasicType type) {
 233   if (_gen->can_store_as_constant(value(), type)) {
 234     _result = value()->operand();
 235     if (!_result->is_constant()) {
 236       _result = LIR_OprFact::value_type(value()->type());
 237     }
 238   } else if (type == T_BYTE || type == T_BOOLEAN) {
 239     load_byte_item();
 240   } else {
 241     load_item();
 242   }
 243 }
 244 
 245 void LIRItem::load_item_force(LIR_Opr reg) {
 246   LIR_Opr r = result();
 247   if (r != reg) {
 248 #if !defined(ARM) && !defined(E500V2)
 249     if (r->type() != reg->type()) {
 250       // moves between different types need an intervening spill slot
 251       r = _gen->force_to_spill(r, reg->type());
 252     }
 253 #endif
 254     __ move(r, reg);
 255     _result = reg;
 256   }
 257 }
 258 
 259 ciObject* LIRItem::get_jobject_constant() const {
 260   ObjectType* oc = type()->as_ObjectType();
 261   if (oc) {
 262     return oc->constant_value();
 263   }
 264   return NULL;
 265 }
 266 
 267 
 268 jint LIRItem::get_jint_constant() const {
 269   assert(is_constant() && value() != NULL, "");
 270   assert(type()->as_IntConstant() != NULL, "type check");
 271   return type()->as_IntConstant()->value();
 272 }
 273 
 274 
 275 jint LIRItem::get_address_constant() const {
 276   assert(is_constant() && value() != NULL, "");
 277   assert(type()->as_AddressConstant() != NULL, "type check");
 278   return type()->as_AddressConstant()->value();
 279 }
 280 
 281 
 282 jfloat LIRItem::get_jfloat_constant() const {
 283   assert(is_constant() && value() != NULL, "");
 284   assert(type()->as_FloatConstant() != NULL, "type check");
 285   return type()->as_FloatConstant()->value();
 286 }
 287 
 288 
 289 jdouble LIRItem::get_jdouble_constant() const {
 290   assert(is_constant() && value() != NULL, "");
 291   assert(type()->as_DoubleConstant() != NULL, "type check");
 292   return type()->as_DoubleConstant()->value();
 293 }
 294 
 295 
 296 jlong LIRItem::get_jlong_constant() const {
 297   assert(is_constant() && value() != NULL, "");
 298   assert(type()->as_LongConstant() != NULL, "type check");
 299   return type()->as_LongConstant()->value();
 300 }
 301 
 302 
 303 
 304 //--------------------------------------------------------------
 305 
 306 
 307 void LIRGenerator::init() {
 308   _bs = Universe::heap()->barrier_set();
 309 }
 310 
 311 
 312 void LIRGenerator::block_do_prolog(BlockBegin* block) {
 313 #ifndef PRODUCT
 314   if (PrintIRWithLIR) {
 315     block->print();
 316   }
 317 #endif
 318 
 319   // set up the list of LIR instructions
 320   assert(block->lir() == NULL, "LIR list already computed for this block");
 321   _lir = new LIR_List(compilation(), block);
 322   block->set_lir(_lir);
 323 
 324   __ branch_destination(block->label());
 325 
 326   if (LIRTraceExecution &&
 327       Compilation::current()->hir()->start()->block_id() != block->block_id() &&
 328       !block->is_set(BlockBegin::exception_entry_flag)) {
 329     assert(block->lir()->instructions_list()->length() == 1, "should come right after br_dst");
 330     trace_block_entry(block);
 331   }
 332 }
 333 
 334 
 335 void LIRGenerator::block_do_epilog(BlockBegin* block) {
 336 #ifndef PRODUCT
 337   if (PrintIRWithLIR) {
 338     tty->cr();
 339   }
 340 #endif
 341 
 342   // LIR_Opr for unpinned constants shouldn't be referenced by other
 343   // blocks so clear them out after processing the block.
 344   for (int i = 0; i < _unpinned_constants.length(); i++) {
 345     _unpinned_constants.at(i)->clear_operand();
 346   }
 347   _unpinned_constants.trunc_to(0);
 348 
 349   // clear our any registers for other local constants
 350   _constants.trunc_to(0);
 351   _reg_for_constants.trunc_to(0);
 352 }
 353 
 354 
 355 void LIRGenerator::block_do(BlockBegin* block) {
 356   CHECK_BAILOUT();
 357 
 358   block_do_prolog(block);
 359   set_block(block);
 360 
 361   for (Instruction* instr = block; instr != NULL; instr = instr->next()) {
 362     if (instr->is_pinned()) do_root(instr);
 363   }
 364 
 365   set_block(NULL);
 366   block_do_epilog(block);
 367 }
 368 
 369 
 370 //-------------------------LIRGenerator-----------------------------
 371 
 372 // This is where the tree-walk starts; instr must be root;
 373 void LIRGenerator::do_root(Value instr) {
 374   CHECK_BAILOUT();
 375 
 376   InstructionMark im(compilation(), instr);
 377 
 378   assert(instr->is_pinned(), "use only with roots");
 379   assert(instr->subst() == instr, "shouldn't have missed substitution");
 380 
 381   instr->visit(this);
 382 
 383   assert(!instr->has_uses() || instr->operand()->is_valid() ||
 384          instr->as_Constant() != NULL || bailed_out(), "invalid item set");
 385 }
 386 
 387 
 388 // This is called for each node in tree; the walk stops if a root is reached
 389 void LIRGenerator::walk(Value instr) {
 390   InstructionMark im(compilation(), instr);
 391   //stop walk when encounter a root
 392   if (instr->is_pinned() && instr->as_Phi() == NULL || instr->operand()->is_valid()) {
 393     assert(instr->operand() != LIR_OprFact::illegalOpr || instr->as_Constant() != NULL, "this root has not yet been visited");
 394   } else {
 395     assert(instr->subst() == instr, "shouldn't have missed substitution");
 396     instr->visit(this);
 397     // assert(instr->use_count() > 0 || instr->as_Phi() != NULL, "leaf instruction must have a use");
 398   }
 399 }
 400 
 401 
 402 CodeEmitInfo* LIRGenerator::state_for(Instruction* x, ValueStack* state, bool ignore_xhandler) {
 403   assert(state != NULL, "state must be defined");
 404 
 405   ValueStack* s = state;
 406   for_each_state(s) {
 407     if (s->kind() == ValueStack::EmptyExceptionState) {
 408       assert(s->stack_size() == 0 && s->locals_size() == 0 && (s->locks_size() == 0 || s->locks_size() == 1), "state must be empty");
 409       continue;
 410     }
 411 
 412     int index;
 413     Value value;
 414     for_each_stack_value(s, index, value) {
 415       assert(value->subst() == value, "missed substitution");
 416       if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 417         walk(value);
 418         assert(value->operand()->is_valid(), "must be evaluated now");
 419       }
 420     }
 421 
 422     int bci = s->bci();
 423     IRScope* scope = s->scope();
 424     ciMethod* method = scope->method();
 425 
 426     MethodLivenessResult liveness = method->liveness_at_bci(bci);
 427     if (bci == SynchronizationEntryBCI) {
 428       if (x->as_ExceptionObject() || x->as_Throw()) {
 429         // all locals are dead on exit from the synthetic unlocker
 430         liveness.clear();
 431       } else {
 432         assert(x->as_MonitorEnter() || x->as_ProfileInvoke(), "only other cases are MonitorEnter and ProfileInvoke");
 433       }
 434     }
 435     if (!liveness.is_valid()) {
 436       // Degenerate or breakpointed method.
 437       bailout("Degenerate or breakpointed method");
 438     } else {
 439       assert((int)liveness.size() == s->locals_size(), "error in use of liveness");
 440       for_each_local_value(s, index, value) {
 441         assert(value->subst() == value, "missed substition");
 442         if (liveness.at(index) && !value->type()->is_illegal()) {
 443           if (!value->is_pinned() && value->as_Constant() == NULL && value->as_Local() == NULL) {
 444             walk(value);
 445             assert(value->operand()->is_valid(), "must be evaluated now");
 446           }
 447         } else {
 448           // NULL out this local so that linear scan can assume that all non-NULL values are live.
 449           s->invalidate_local(index);
 450         }
 451       }
 452     }
 453   }
 454 
 455   return new CodeEmitInfo(state, ignore_xhandler ? NULL : x->exception_handlers());
 456 }
 457 
 458 
 459 CodeEmitInfo* LIRGenerator::state_for(Instruction* x) {
 460   return state_for(x, x->exception_state());
 461 }
 462 
 463 
 464 void LIRGenerator::klass2reg_with_patching(LIR_Opr r, ciMetadata* obj, CodeEmitInfo* info) {
 465   if (!obj->is_loaded() || PatchALot) {
 466     assert(info != NULL, "info must be set if class is not loaded");
 467     __ klass2reg_patch(NULL, r, info);
 468   } else {
 469     // no patching needed
 470     __ metadata2reg(obj->constant_encoding(), r);
 471   }
 472 }
 473 
 474 
 475 void LIRGenerator::array_range_check(LIR_Opr array, LIR_Opr index,
 476                                     CodeEmitInfo* null_check_info, CodeEmitInfo* range_check_info) {
 477   CodeStub* stub = new RangeCheckStub(range_check_info, index);
 478   if (index->is_constant()) {
 479     cmp_mem_int(lir_cond_belowEqual, array, arrayOopDesc::length_offset_in_bytes(),
 480                 index->as_jint(), null_check_info);
 481     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 482   } else {
 483     cmp_reg_mem(lir_cond_aboveEqual, index, array,
 484                 arrayOopDesc::length_offset_in_bytes(), T_INT, null_check_info);
 485     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 486   }
 487 }
 488 
 489 
 490 void LIRGenerator::nio_range_check(LIR_Opr buffer, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 491   CodeStub* stub = new RangeCheckStub(info, index, true);
 492   if (index->is_constant()) {
 493     cmp_mem_int(lir_cond_belowEqual, buffer, java_nio_Buffer::limit_offset(), index->as_jint(), info);
 494     __ branch(lir_cond_belowEqual, T_INT, stub); // forward branch
 495   } else {
 496     cmp_reg_mem(lir_cond_aboveEqual, index, buffer,
 497                 java_nio_Buffer::limit_offset(), T_INT, info);
 498     __ branch(lir_cond_aboveEqual, T_INT, stub); // forward branch
 499   }
 500   __ move(index, result);
 501 }
 502 
 503 
 504 
 505 void LIRGenerator::arithmetic_op(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp_op, CodeEmitInfo* info) {
 506   LIR_Opr result_op = result;
 507   LIR_Opr left_op   = left;
 508   LIR_Opr right_op  = right;
 509 
 510   if (TwoOperandLIRForm && left_op != result_op) {
 511     assert(right_op != result_op, "malformed");
 512     __ move(left_op, result_op);
 513     left_op = result_op;
 514   }
 515 
 516   switch(code) {
 517     case Bytecodes::_dadd:
 518     case Bytecodes::_fadd:
 519     case Bytecodes::_ladd:
 520     case Bytecodes::_iadd:  __ add(left_op, right_op, result_op); break;
 521     case Bytecodes::_fmul:
 522     case Bytecodes::_lmul:  __ mul(left_op, right_op, result_op); break;
 523 
 524     case Bytecodes::_dmul:
 525       {
 526         if (is_strictfp) {
 527           __ mul_strictfp(left_op, right_op, result_op, tmp_op); break;
 528         } else {
 529           __ mul(left_op, right_op, result_op); break;
 530         }
 531       }
 532       break;
 533 
 534     case Bytecodes::_imul:
 535       {
 536         bool    did_strength_reduce = false;
 537 
 538         if (right->is_constant()) {
 539           int c = right->as_jint();
 540           if (is_power_of_2(c)) {
 541             // do not need tmp here
 542             __ shift_left(left_op, exact_log2(c), result_op);
 543             did_strength_reduce = true;
 544           } else {
 545             did_strength_reduce = strength_reduce_multiply(left_op, c, result_op, tmp_op);
 546           }
 547         }
 548         // we couldn't strength reduce so just emit the multiply
 549         if (!did_strength_reduce) {
 550           __ mul(left_op, right_op, result_op);
 551         }
 552       }
 553       break;
 554 
 555     case Bytecodes::_dsub:
 556     case Bytecodes::_fsub:
 557     case Bytecodes::_lsub:
 558     case Bytecodes::_isub: __ sub(left_op, right_op, result_op); break;
 559 
 560     case Bytecodes::_fdiv: __ div (left_op, right_op, result_op); break;
 561     // ldiv and lrem are implemented with a direct runtime call
 562 
 563     case Bytecodes::_ddiv:
 564       {
 565         if (is_strictfp) {
 566           __ div_strictfp (left_op, right_op, result_op, tmp_op); break;
 567         } else {
 568           __ div (left_op, right_op, result_op); break;
 569         }
 570       }
 571       break;
 572 
 573     case Bytecodes::_drem:
 574     case Bytecodes::_frem: __ rem (left_op, right_op, result_op); break;
 575 
 576     default: ShouldNotReachHere();
 577   }
 578 }
 579 
 580 
 581 void LIRGenerator::arithmetic_op_int(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, LIR_Opr tmp) {
 582   arithmetic_op(code, result, left, right, false, tmp);
 583 }
 584 
 585 
 586 void LIRGenerator::arithmetic_op_long(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info) {
 587   arithmetic_op(code, result, left, right, false, LIR_OprFact::illegalOpr, info);
 588 }
 589 
 590 
 591 void LIRGenerator::arithmetic_op_fpu(Bytecodes::Code code, LIR_Opr result, LIR_Opr left, LIR_Opr right, bool is_strictfp, LIR_Opr tmp) {
 592   arithmetic_op(code, result, left, right, is_strictfp, tmp);
 593 }
 594 
 595 
 596 void LIRGenerator::shift_op(Bytecodes::Code code, LIR_Opr result_op, LIR_Opr value, LIR_Opr count, LIR_Opr tmp) {
 597   if (TwoOperandLIRForm && value != result_op) {
 598     assert(count != result_op, "malformed");
 599     __ move(value, result_op);
 600     value = result_op;
 601   }
 602 
 603   assert(count->is_constant() || count->is_register(), "must be");
 604   switch(code) {
 605   case Bytecodes::_ishl:
 606   case Bytecodes::_lshl: __ shift_left(value, count, result_op, tmp); break;
 607   case Bytecodes::_ishr:
 608   case Bytecodes::_lshr: __ shift_right(value, count, result_op, tmp); break;
 609   case Bytecodes::_iushr:
 610   case Bytecodes::_lushr: __ unsigned_shift_right(value, count, result_op, tmp); break;
 611   default: ShouldNotReachHere();
 612   }
 613 }
 614 
 615 
 616 void LIRGenerator::logic_op (Bytecodes::Code code, LIR_Opr result_op, LIR_Opr left_op, LIR_Opr right_op) {
 617   if (TwoOperandLIRForm && left_op != result_op) {
 618     assert(right_op != result_op, "malformed");
 619     __ move(left_op, result_op);
 620     left_op = result_op;
 621   }
 622 
 623   switch(code) {
 624     case Bytecodes::_iand:
 625     case Bytecodes::_land:  __ logical_and(left_op, right_op, result_op); break;
 626 
 627     case Bytecodes::_ior:
 628     case Bytecodes::_lor:   __ logical_or(left_op, right_op, result_op);  break;
 629 
 630     case Bytecodes::_ixor:
 631     case Bytecodes::_lxor:  __ logical_xor(left_op, right_op, result_op); break;
 632 
 633     default: ShouldNotReachHere();
 634   }
 635 }
 636 
 637 
 638 void LIRGenerator::monitor_enter(LIR_Opr object, LIR_Opr lock, LIR_Opr hdr, LIR_Opr scratch, int monitor_no, CodeEmitInfo* info_for_exception, CodeEmitInfo* info) {
 639   if (!GenerateSynchronizationCode) return;
 640   // for slow path, use debug info for state after successful locking
 641   CodeStub* slow_path = new MonitorEnterStub(object, lock, info);
 642   __ load_stack_address_monitor(monitor_no, lock);
 643   // for handling NullPointerException, use debug info representing just the lock stack before this monitorenter
 644   __ lock_object(hdr, object, lock, scratch, slow_path, info_for_exception);
 645 }
 646 
 647 
 648 void LIRGenerator::monitor_exit(LIR_Opr object, LIR_Opr lock, LIR_Opr new_hdr, LIR_Opr scratch, int monitor_no) {
 649   if (!GenerateSynchronizationCode) return;
 650   // setup registers
 651   LIR_Opr hdr = lock;
 652   lock = new_hdr;
 653   CodeStub* slow_path = new MonitorExitStub(lock, UseFastLocking, monitor_no);
 654   __ load_stack_address_monitor(monitor_no, lock);
 655   __ unlock_object(hdr, object, lock, scratch, slow_path);
 656 }
 657 
 658 
 659 void LIRGenerator::new_instance(LIR_Opr dst, ciInstanceKlass* klass, LIR_Opr scratch1, LIR_Opr scratch2, LIR_Opr scratch3, LIR_Opr scratch4, LIR_Opr klass_reg, CodeEmitInfo* info) {
 660   klass2reg_with_patching(klass_reg, klass, info);
 661   // If klass is not loaded we do not know if the klass has finalizers:
 662   if (UseFastNewInstance && klass->is_loaded()
 663       && !Klass::layout_helper_needs_slow_path(klass->layout_helper())) {
 664 
 665     Runtime1::StubID stub_id = klass->is_initialized() ? Runtime1::fast_new_instance_id : Runtime1::fast_new_instance_init_check_id;
 666 
 667     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, stub_id);
 668 
 669     assert(klass->is_loaded(), "must be loaded");
 670     // allocate space for instance
 671     assert(klass->size_helper() >= 0, "illegal instance size");
 672     const int instance_size = align_object_size(klass->size_helper());
 673     __ allocate_object(dst, scratch1, scratch2, scratch3, scratch4,
 674                        oopDesc::header_size(), instance_size, klass_reg, !klass->is_initialized(), slow_path);
 675   } else {
 676     CodeStub* slow_path = new NewInstanceStub(klass_reg, dst, klass, info, Runtime1::new_instance_id);
 677     __ branch(lir_cond_always, T_ILLEGAL, slow_path);
 678     __ branch_destination(slow_path->continuation());
 679   }
 680 }
 681 
 682 
 683 static bool is_constant_zero(Instruction* inst) {
 684   IntConstant* c = inst->type()->as_IntConstant();
 685   if (c) {
 686     return (c->value() == 0);
 687   }
 688   return false;
 689 }
 690 
 691 
 692 static bool positive_constant(Instruction* inst) {
 693   IntConstant* c = inst->type()->as_IntConstant();
 694   if (c) {
 695     return (c->value() >= 0);
 696   }
 697   return false;
 698 }
 699 
 700 
 701 static ciArrayKlass* as_array_klass(ciType* type) {
 702   if (type != NULL && type->is_array_klass() && type->is_loaded()) {
 703     return (ciArrayKlass*)type;
 704   } else {
 705     return NULL;
 706   }
 707 }
 708 
 709 static ciType* phi_declared_type(Phi* phi) {
 710   ciType* t = phi->operand_at(0)->declared_type();
 711   if (t == NULL) {
 712     return NULL;
 713   }
 714   for(int i = 1; i < phi->operand_count(); i++) {
 715     if (t != phi->operand_at(i)->declared_type()) {
 716       return NULL;
 717     }
 718   }
 719   return t;
 720 }
 721 
 722 void LIRGenerator::arraycopy_helper(Intrinsic* x, int* flagsp, ciArrayKlass** expected_typep) {
 723   Instruction* src     = x->argument_at(0);
 724   Instruction* src_pos = x->argument_at(1);
 725   Instruction* dst     = x->argument_at(2);
 726   Instruction* dst_pos = x->argument_at(3);
 727   Instruction* length  = x->argument_at(4);
 728 
 729   // first try to identify the likely type of the arrays involved
 730   ciArrayKlass* expected_type = NULL;
 731   bool is_exact = false, src_objarray = false, dst_objarray = false;
 732   {
 733     ciArrayKlass* src_exact_type    = as_array_klass(src->exact_type());
 734     ciArrayKlass* src_declared_type = as_array_klass(src->declared_type());
 735     Phi* phi;
 736     if (src_declared_type == NULL && (phi = src->as_Phi()) != NULL) {
 737       src_declared_type = as_array_klass(phi_declared_type(phi));
 738     }
 739     ciArrayKlass* dst_exact_type    = as_array_klass(dst->exact_type());
 740     ciArrayKlass* dst_declared_type = as_array_klass(dst->declared_type());
 741     if (dst_declared_type == NULL && (phi = dst->as_Phi()) != NULL) {
 742       dst_declared_type = as_array_klass(phi_declared_type(phi));
 743     }
 744 
 745     if (src_exact_type != NULL && src_exact_type == dst_exact_type) {
 746       // the types exactly match so the type is fully known
 747       is_exact = true;
 748       expected_type = src_exact_type;
 749     } else if (dst_exact_type != NULL && dst_exact_type->is_obj_array_klass()) {
 750       ciArrayKlass* dst_type = (ciArrayKlass*) dst_exact_type;
 751       ciArrayKlass* src_type = NULL;
 752       if (src_exact_type != NULL && src_exact_type->is_obj_array_klass()) {
 753         src_type = (ciArrayKlass*) src_exact_type;
 754       } else if (src_declared_type != NULL && src_declared_type->is_obj_array_klass()) {
 755         src_type = (ciArrayKlass*) src_declared_type;
 756       }
 757       if (src_type != NULL) {
 758         if (src_type->element_type()->is_subtype_of(dst_type->element_type())) {
 759           is_exact = true;
 760           expected_type = dst_type;
 761         }
 762       }
 763     }
 764     // at least pass along a good guess
 765     if (expected_type == NULL) expected_type = dst_exact_type;
 766     if (expected_type == NULL) expected_type = src_declared_type;
 767     if (expected_type == NULL) expected_type = dst_declared_type;
 768 
 769     src_objarray = (src_exact_type && src_exact_type->is_obj_array_klass()) || (src_declared_type && src_declared_type->is_obj_array_klass());
 770     dst_objarray = (dst_exact_type && dst_exact_type->is_obj_array_klass()) || (dst_declared_type && dst_declared_type->is_obj_array_klass());
 771   }
 772 
 773   // if a probable array type has been identified, figure out if any
 774   // of the required checks for a fast case can be elided.
 775   int flags = LIR_OpArrayCopy::all_flags;
 776 
 777   if (!src_objarray)
 778     flags &= ~LIR_OpArrayCopy::src_objarray;
 779   if (!dst_objarray)
 780     flags &= ~LIR_OpArrayCopy::dst_objarray;
 781 
 782   if (!x->arg_needs_null_check(0))
 783     flags &= ~LIR_OpArrayCopy::src_null_check;
 784   if (!x->arg_needs_null_check(2))
 785     flags &= ~LIR_OpArrayCopy::dst_null_check;
 786 
 787 
 788   if (expected_type != NULL) {
 789     Value length_limit = NULL;
 790 
 791     IfOp* ifop = length->as_IfOp();
 792     if (ifop != NULL) {
 793       // look for expressions like min(v, a.length) which ends up as
 794       //   x > y ? y : x  or  x >= y ? y : x
 795       if ((ifop->cond() == If::gtr || ifop->cond() == If::geq) &&
 796           ifop->x() == ifop->fval() &&
 797           ifop->y() == ifop->tval()) {
 798         length_limit = ifop->y();
 799       }
 800     }
 801 
 802     // try to skip null checks and range checks
 803     NewArray* src_array = src->as_NewArray();
 804     if (src_array != NULL) {
 805       flags &= ~LIR_OpArrayCopy::src_null_check;
 806       if (length_limit != NULL &&
 807           src_array->length() == length_limit &&
 808           is_constant_zero(src_pos)) {
 809         flags &= ~LIR_OpArrayCopy::src_range_check;
 810       }
 811     }
 812 
 813     NewArray* dst_array = dst->as_NewArray();
 814     if (dst_array != NULL) {
 815       flags &= ~LIR_OpArrayCopy::dst_null_check;
 816       if (length_limit != NULL &&
 817           dst_array->length() == length_limit &&
 818           is_constant_zero(dst_pos)) {
 819         flags &= ~LIR_OpArrayCopy::dst_range_check;
 820       }
 821     }
 822 
 823     // check from incoming constant values
 824     if (positive_constant(src_pos))
 825       flags &= ~LIR_OpArrayCopy::src_pos_positive_check;
 826     if (positive_constant(dst_pos))
 827       flags &= ~LIR_OpArrayCopy::dst_pos_positive_check;
 828     if (positive_constant(length))
 829       flags &= ~LIR_OpArrayCopy::length_positive_check;
 830 
 831     // see if the range check can be elided, which might also imply
 832     // that src or dst is non-null.
 833     ArrayLength* al = length->as_ArrayLength();
 834     if (al != NULL) {
 835       if (al->array() == src) {
 836         // it's the length of the source array
 837         flags &= ~LIR_OpArrayCopy::length_positive_check;
 838         flags &= ~LIR_OpArrayCopy::src_null_check;
 839         if (is_constant_zero(src_pos))
 840           flags &= ~LIR_OpArrayCopy::src_range_check;
 841       }
 842       if (al->array() == dst) {
 843         // it's the length of the destination array
 844         flags &= ~LIR_OpArrayCopy::length_positive_check;
 845         flags &= ~LIR_OpArrayCopy::dst_null_check;
 846         if (is_constant_zero(dst_pos))
 847           flags &= ~LIR_OpArrayCopy::dst_range_check;
 848       }
 849     }
 850     if (is_exact) {
 851       flags &= ~LIR_OpArrayCopy::type_check;
 852     }
 853   }
 854 
 855   IntConstant* src_int = src_pos->type()->as_IntConstant();
 856   IntConstant* dst_int = dst_pos->type()->as_IntConstant();
 857   if (src_int && dst_int) {
 858     int s_offs = src_int->value();
 859     int d_offs = dst_int->value();
 860     if (src_int->value() >= dst_int->value()) {
 861       flags &= ~LIR_OpArrayCopy::overlapping;
 862     }
 863     if (expected_type != NULL) {
 864       BasicType t = expected_type->element_type()->basic_type();
 865       int element_size = type2aelembytes(t);
 866       if (((arrayOopDesc::base_offset_in_bytes(t) + s_offs * element_size) % HeapWordSize == 0) &&
 867           ((arrayOopDesc::base_offset_in_bytes(t) + d_offs * element_size) % HeapWordSize == 0)) {
 868         flags &= ~LIR_OpArrayCopy::unaligned;
 869       }
 870     }
 871   } else if (src_pos == dst_pos || is_constant_zero(dst_pos)) {
 872     // src and dest positions are the same, or dst is zero so assume
 873     // nonoverlapping copy.
 874     flags &= ~LIR_OpArrayCopy::overlapping;
 875   }
 876 
 877   if (src == dst) {
 878     // moving within a single array so no type checks are needed
 879     if (flags & LIR_OpArrayCopy::type_check) {
 880       flags &= ~LIR_OpArrayCopy::type_check;
 881     }
 882   }
 883   *flagsp = flags;
 884   *expected_typep = (ciArrayKlass*)expected_type;
 885 }
 886 
 887 
 888 LIR_Opr LIRGenerator::round_item(LIR_Opr opr) {
 889   assert(opr->is_register(), "why spill if item is not register?");
 890 
 891   if (RoundFPResults && UseSSE < 1 && opr->is_single_fpu()) {
 892     LIR_Opr result = new_register(T_FLOAT);
 893     set_vreg_flag(result, must_start_in_memory);
 894     assert(opr->is_register(), "only a register can be spilled");
 895     assert(opr->value_type()->is_float(), "rounding only for floats available");
 896     __ roundfp(opr, LIR_OprFact::illegalOpr, result);
 897     return result;
 898   }
 899   return opr;
 900 }
 901 
 902 
 903 LIR_Opr LIRGenerator::force_to_spill(LIR_Opr value, BasicType t) {
 904   assert(type2size[t] == type2size[value->type()],
 905          err_msg_res("size mismatch: t=%s, value->type()=%s", type2name(t), type2name(value->type())));
 906   if (!value->is_register()) {
 907     // force into a register
 908     LIR_Opr r = new_register(value->type());
 909     __ move(value, r);
 910     value = r;
 911   }
 912 
 913   // create a spill location
 914   LIR_Opr tmp = new_register(t);
 915   set_vreg_flag(tmp, LIRGenerator::must_start_in_memory);
 916 
 917   // move from register to spill
 918   __ move(value, tmp);
 919   return tmp;
 920 }
 921 
 922 void LIRGenerator::profile_branch(If* if_instr, If::Condition cond) {
 923   if (if_instr->should_profile()) {
 924     ciMethod* method = if_instr->profiled_method();
 925     assert(method != NULL, "method should be set if branch is profiled");
 926     ciMethodData* md = method->method_data_or_null();
 927     assert(md != NULL, "Sanity");
 928     ciProfileData* data = md->bci_to_data(if_instr->profiled_bci());
 929     assert(data != NULL, "must have profiling data");
 930     assert(data->is_BranchData(), "need BranchData for two-way branches");
 931     int taken_count_offset     = md->byte_offset_of_slot(data, BranchData::taken_offset());
 932     int not_taken_count_offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
 933     if (if_instr->is_swapped()) {
 934       int t = taken_count_offset;
 935       taken_count_offset = not_taken_count_offset;
 936       not_taken_count_offset = t;
 937     }
 938 
 939     LIR_Opr md_reg = new_register(T_METADATA);
 940     __ metadata2reg(md->constant_encoding(), md_reg);
 941 
 942     LIR_Opr data_offset_reg = new_pointer_register();
 943     __ cmove(lir_cond(cond),
 944              LIR_OprFact::intptrConst(taken_count_offset),
 945              LIR_OprFact::intptrConst(not_taken_count_offset),
 946              data_offset_reg, as_BasicType(if_instr->x()->type()));
 947 
 948     // MDO cells are intptr_t, so the data_reg width is arch-dependent.
 949     LIR_Opr data_reg = new_pointer_register();
 950     LIR_Address* data_addr = new LIR_Address(md_reg, data_offset_reg, data_reg->type());
 951     __ move(data_addr, data_reg);
 952     // Use leal instead of add to avoid destroying condition codes on x86
 953     LIR_Address* fake_incr_value = new LIR_Address(data_reg, DataLayout::counter_increment, T_INT);
 954     __ leal(LIR_OprFact::address(fake_incr_value), data_reg);
 955     __ move(data_reg, data_addr);
 956   }
 957 }
 958 
 959 // Phi technique:
 960 // This is about passing live values from one basic block to the other.
 961 // In code generated with Java it is rather rare that more than one
 962 // value is on the stack from one basic block to the other.
 963 // We optimize our technique for efficient passing of one value
 964 // (of type long, int, double..) but it can be extended.
 965 // When entering or leaving a basic block, all registers and all spill
 966 // slots are release and empty. We use the released registers
 967 // and spill slots to pass the live values from one block
 968 // to the other. The topmost value, i.e., the value on TOS of expression
 969 // stack is passed in registers. All other values are stored in spilling
 970 // area. Every Phi has an index which designates its spill slot
 971 // At exit of a basic block, we fill the register(s) and spill slots.
 972 // At entry of a basic block, the block_prolog sets up the content of phi nodes
 973 // and locks necessary registers and spilling slots.
 974 
 975 
 976 // move current value to referenced phi function
 977 void LIRGenerator::move_to_phi(PhiResolver* resolver, Value cur_val, Value sux_val) {
 978   Phi* phi = sux_val->as_Phi();
 979   // cur_val can be null without phi being null in conjunction with inlining
 980   if (phi != NULL && cur_val != NULL && cur_val != phi && !phi->is_illegal()) {
 981     LIR_Opr operand = cur_val->operand();
 982     if (cur_val->operand()->is_illegal()) {
 983       assert(cur_val->as_Constant() != NULL || cur_val->as_Local() != NULL,
 984              "these can be produced lazily");
 985       operand = operand_for_instruction(cur_val);
 986     }
 987     resolver->move(operand, operand_for_instruction(phi));
 988   }
 989 }
 990 
 991 
 992 // Moves all stack values into their PHI position
 993 void LIRGenerator::move_to_phi(ValueStack* cur_state) {
 994   BlockBegin* bb = block();
 995   if (bb->number_of_sux() == 1) {
 996     BlockBegin* sux = bb->sux_at(0);
 997     assert(sux->number_of_preds() > 0, "invalid CFG");
 998 
 999     // a block with only one predecessor never has phi functions
1000     if (sux->number_of_preds() > 1) {
1001       int max_phis = cur_state->stack_size() + cur_state->locals_size();
1002       PhiResolver resolver(this, _virtual_register_number + max_phis * 2);
1003 
1004       ValueStack* sux_state = sux->state();
1005       Value sux_value;
1006       int index;
1007 
1008       assert(cur_state->scope() == sux_state->scope(), "not matching");
1009       assert(cur_state->locals_size() == sux_state->locals_size(), "not matching");
1010       assert(cur_state->stack_size() == sux_state->stack_size(), "not matching");
1011 
1012       for_each_stack_value(sux_state, index, sux_value) {
1013         move_to_phi(&resolver, cur_state->stack_at(index), sux_value);
1014       }
1015 
1016       for_each_local_value(sux_state, index, sux_value) {
1017         move_to_phi(&resolver, cur_state->local_at(index), sux_value);
1018       }
1019 
1020       assert(cur_state->caller_state() == sux_state->caller_state(), "caller states must be equal");
1021     }
1022   }
1023 }
1024 
1025 
1026 LIR_Opr LIRGenerator::new_register(BasicType type) {
1027   int vreg = _virtual_register_number;
1028   // add a little fudge factor for the bailout, since the bailout is
1029   // only checked periodically.  This gives a few extra registers to
1030   // hand out before we really run out, which helps us keep from
1031   // tripping over assertions.
1032   if (vreg + 20 >= LIR_OprDesc::vreg_max) {
1033     bailout("out of virtual registers");
1034     if (vreg + 2 >= LIR_OprDesc::vreg_max) {
1035       // wrap it around
1036       _virtual_register_number = LIR_OprDesc::vreg_base;
1037     }
1038   }
1039   _virtual_register_number += 1;
1040   return LIR_OprFact::virtual_register(vreg, type);
1041 }
1042 
1043 
1044 // Try to lock using register in hint
1045 LIR_Opr LIRGenerator::rlock(Value instr) {
1046   return new_register(instr->type());
1047 }
1048 
1049 
1050 // does an rlock and sets result
1051 LIR_Opr LIRGenerator::rlock_result(Value x) {
1052   LIR_Opr reg = rlock(x);
1053   set_result(x, reg);
1054   return reg;
1055 }
1056 
1057 
1058 // does an rlock and sets result
1059 LIR_Opr LIRGenerator::rlock_result(Value x, BasicType type) {
1060   LIR_Opr reg;
1061   switch (type) {
1062   case T_BYTE:
1063   case T_BOOLEAN:
1064     reg = rlock_byte(type);
1065     break;
1066   default:
1067     reg = rlock(x);
1068     break;
1069   }
1070 
1071   set_result(x, reg);
1072   return reg;
1073 }
1074 
1075 
1076 //---------------------------------------------------------------------
1077 ciObject* LIRGenerator::get_jobject_constant(Value value) {
1078   ObjectType* oc = value->type()->as_ObjectType();
1079   if (oc) {
1080     return oc->constant_value();
1081   }
1082   return NULL;
1083 }
1084 
1085 
1086 void LIRGenerator::do_ExceptionObject(ExceptionObject* x) {
1087   assert(block()->is_set(BlockBegin::exception_entry_flag), "ExceptionObject only allowed in exception handler block");
1088   assert(block()->next() == x, "ExceptionObject must be first instruction of block");
1089 
1090   // no moves are created for phi functions at the begin of exception
1091   // handlers, so assign operands manually here
1092   for_each_phi_fun(block(), phi,
1093                    operand_for_instruction(phi));
1094 
1095   LIR_Opr thread_reg = getThreadPointer();
1096   __ move_wide(new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT),
1097                exceptionOopOpr());
1098   __ move_wide(LIR_OprFact::oopConst(NULL),
1099                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_oop_offset()), T_OBJECT));
1100   __ move_wide(LIR_OprFact::oopConst(NULL),
1101                new LIR_Address(thread_reg, in_bytes(JavaThread::exception_pc_offset()), T_OBJECT));
1102 
1103   LIR_Opr result = new_register(T_OBJECT);
1104   __ move(exceptionOopOpr(), result);
1105   set_result(x, result);
1106 }
1107 
1108 
1109 //----------------------------------------------------------------------
1110 //----------------------------------------------------------------------
1111 //----------------------------------------------------------------------
1112 //----------------------------------------------------------------------
1113 //                        visitor functions
1114 //----------------------------------------------------------------------
1115 //----------------------------------------------------------------------
1116 //----------------------------------------------------------------------
1117 //----------------------------------------------------------------------
1118 
1119 void LIRGenerator::do_Phi(Phi* x) {
1120   // phi functions are never visited directly
1121   ShouldNotReachHere();
1122 }
1123 
1124 
1125 // Code for a constant is generated lazily unless the constant is frequently used and can't be inlined.
1126 void LIRGenerator::do_Constant(Constant* x) {
1127   if (x->state_before() != NULL) {
1128     // Any constant with a ValueStack requires patching so emit the patch here
1129     LIR_Opr reg = rlock_result(x);
1130     CodeEmitInfo* info = state_for(x, x->state_before());
1131     __ oop2reg_patch(NULL, reg, info);
1132   } else if (x->use_count() > 1 && !can_inline_as_constant(x)) {
1133     if (!x->is_pinned()) {
1134       // unpinned constants are handled specially so that they can be
1135       // put into registers when they are used multiple times within a
1136       // block.  After the block completes their operand will be
1137       // cleared so that other blocks can't refer to that register.
1138       set_result(x, load_constant(x));
1139     } else {
1140       LIR_Opr res = x->operand();
1141       if (!res->is_valid()) {
1142         res = LIR_OprFact::value_type(x->type());
1143       }
1144       if (res->is_constant()) {
1145         LIR_Opr reg = rlock_result(x);
1146         __ move(res, reg);
1147       } else {
1148         set_result(x, res);
1149       }
1150     }
1151   } else {
1152     set_result(x, LIR_OprFact::value_type(x->type()));
1153   }
1154 }
1155 
1156 
1157 void LIRGenerator::do_Local(Local* x) {
1158   // operand_for_instruction has the side effect of setting the result
1159   // so there's no need to do it here.
1160   operand_for_instruction(x);
1161 }
1162 
1163 
1164 void LIRGenerator::do_IfInstanceOf(IfInstanceOf* x) {
1165   Unimplemented();
1166 }
1167 
1168 
1169 void LIRGenerator::do_Return(Return* x) {
1170   if (compilation()->env()->dtrace_method_probes()) {
1171     BasicTypeList signature;
1172     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
1173     signature.append(T_OBJECT); // Method*
1174     LIR_OprList* args = new LIR_OprList();
1175     args->append(getThreadPointer());
1176     LIR_Opr meth = new_register(T_METADATA);
1177     __ metadata2reg(method()->constant_encoding(), meth);
1178     args->append(meth);
1179     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit), voidType, NULL);
1180   }
1181 
1182   if (x->type()->is_void()) {
1183     __ return_op(LIR_OprFact::illegalOpr);
1184   } else {
1185     LIR_Opr reg = result_register_for(x->type(), /*callee=*/true);
1186     LIRItem result(x->result(), this);
1187 
1188     result.load_item_force(reg);
1189     __ return_op(result.result());
1190   }
1191   set_no_result(x);
1192 }
1193 
1194 // Examble: ref.get()
1195 // Combination of LoadField and g1 pre-write barrier
1196 void LIRGenerator::do_Reference_get(Intrinsic* x) {
1197 
1198   const int referent_offset = java_lang_ref_Reference::referent_offset;
1199   guarantee(referent_offset > 0, "referent offset not initialized");
1200 
1201   assert(x->number_of_arguments() == 1, "wrong type");
1202 
1203   LIRItem reference(x->argument_at(0), this);
1204   reference.load_item();
1205 
1206   // need to perform the null check on the reference objecy
1207   CodeEmitInfo* info = NULL;
1208   if (x->needs_null_check()) {
1209     info = state_for(x);
1210   }
1211 
1212   LIR_Address* referent_field_adr =
1213     new LIR_Address(reference.result(), referent_offset, T_OBJECT);
1214 
1215   LIR_Opr result = rlock_result(x);
1216 
1217   __ load(referent_field_adr, result, info);
1218 
1219   // Register the value in the referent field with the pre-barrier
1220   pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
1221               result /* pre_val */,
1222               false  /* do_load */,
1223               false  /* patch */,
1224               NULL   /* info */);
1225 }
1226 
1227 // Example: clazz.isInstance(object)
1228 void LIRGenerator::do_isInstance(Intrinsic* x) {
1229   assert(x->number_of_arguments() == 2, "wrong type");
1230 
1231   // TODO could try to substitute this node with an equivalent InstanceOf
1232   // if clazz is known to be a constant Class. This will pick up newly found
1233   // constants after HIR construction. I'll leave this to a future change.
1234 
1235   // as a first cut, make a simple leaf call to runtime to stay platform independent.
1236   // could follow the aastore example in a future change.
1237 
1238   LIRItem clazz(x->argument_at(0), this);
1239   LIRItem object(x->argument_at(1), this);
1240   clazz.load_item();
1241   object.load_item();
1242   LIR_Opr result = rlock_result(x);
1243 
1244   // need to perform null check on clazz
1245   if (x->needs_null_check()) {
1246     CodeEmitInfo* info = state_for(x);
1247     __ null_check(clazz.result(), info);
1248   }
1249 
1250   LIR_Opr call_result = call_runtime(clazz.value(), object.value(),
1251                                      CAST_FROM_FN_PTR(address, Runtime1::is_instance_of),
1252                                      x->type(),
1253                                      NULL); // NULL CodeEmitInfo results in a leaf call
1254   __ move(call_result, result);
1255 }
1256 
1257 // Example: object.getClass ()
1258 void LIRGenerator::do_getClass(Intrinsic* x) {
1259   assert(x->number_of_arguments() == 1, "wrong type");
1260 
1261   LIRItem rcvr(x->argument_at(0), this);
1262   rcvr.load_item();
1263   LIR_Opr result = rlock_result(x);
1264 
1265   // need to perform the null check on the rcvr
1266   CodeEmitInfo* info = NULL;
1267   if (x->needs_null_check()) {
1268     info = state_for(x);
1269   }
1270   __ move(new LIR_Address(rcvr.result(), oopDesc::klass_offset_in_bytes(), T_ADDRESS), result, info);
1271   __ move_wide(new LIR_Address(result, in_bytes(Klass::java_mirror_offset()), T_OBJECT), result);
1272 }
1273 
1274 
1275 // Example: Thread.currentThread()
1276 void LIRGenerator::do_currentThread(Intrinsic* x) {
1277   assert(x->number_of_arguments() == 0, "wrong type");
1278   LIR_Opr reg = rlock_result(x);
1279   __ move_wide(new LIR_Address(getThreadPointer(), in_bytes(JavaThread::threadObj_offset()), T_OBJECT), reg);
1280 }
1281 
1282 
1283 void LIRGenerator::do_RegisterFinalizer(Intrinsic* x) {
1284   assert(x->number_of_arguments() == 1, "wrong type");
1285   LIRItem receiver(x->argument_at(0), this);
1286 
1287   receiver.load_item();
1288   BasicTypeList signature;
1289   signature.append(T_OBJECT); // receiver
1290   LIR_OprList* args = new LIR_OprList();
1291   args->append(receiver.result());
1292   CodeEmitInfo* info = state_for(x, x->state());
1293   call_runtime(&signature, args,
1294                CAST_FROM_FN_PTR(address, Runtime1::entry_for(Runtime1::register_finalizer_id)),
1295                voidType, info);
1296 
1297   set_no_result(x);
1298 }
1299 
1300 
1301 //------------------------local access--------------------------------------
1302 
1303 LIR_Opr LIRGenerator::operand_for_instruction(Instruction* x) {
1304   if (x->operand()->is_illegal()) {
1305     Constant* c = x->as_Constant();
1306     if (c != NULL) {
1307       x->set_operand(LIR_OprFact::value_type(c->type()));
1308     } else {
1309       assert(x->as_Phi() || x->as_Local() != NULL, "only for Phi and Local");
1310       // allocate a virtual register for this local or phi
1311       x->set_operand(rlock(x));
1312       _instruction_for_operand.at_put_grow(x->operand()->vreg_number(), x, NULL);
1313     }
1314   }
1315   return x->operand();
1316 }
1317 
1318 
1319 Instruction* LIRGenerator::instruction_for_opr(LIR_Opr opr) {
1320   if (opr->is_virtual()) {
1321     return instruction_for_vreg(opr->vreg_number());
1322   }
1323   return NULL;
1324 }
1325 
1326 
1327 Instruction* LIRGenerator::instruction_for_vreg(int reg_num) {
1328   if (reg_num < _instruction_for_operand.length()) {
1329     return _instruction_for_operand.at(reg_num);
1330   }
1331   return NULL;
1332 }
1333 
1334 
1335 void LIRGenerator::set_vreg_flag(int vreg_num, VregFlag f) {
1336   if (_vreg_flags.size_in_bits() == 0) {
1337     BitMap2D temp(100, num_vreg_flags);
1338     temp.clear();
1339     _vreg_flags = temp;
1340   }
1341   _vreg_flags.at_put_grow(vreg_num, f, true);
1342 }
1343 
1344 bool LIRGenerator::is_vreg_flag_set(int vreg_num, VregFlag f) {
1345   if (!_vreg_flags.is_valid_index(vreg_num, f)) {
1346     return false;
1347   }
1348   return _vreg_flags.at(vreg_num, f);
1349 }
1350 
1351 
1352 // Block local constant handling.  This code is useful for keeping
1353 // unpinned constants and constants which aren't exposed in the IR in
1354 // registers.  Unpinned Constant instructions have their operands
1355 // cleared when the block is finished so that other blocks can't end
1356 // up referring to their registers.
1357 
1358 LIR_Opr LIRGenerator::load_constant(Constant* x) {
1359   assert(!x->is_pinned(), "only for unpinned constants");
1360   _unpinned_constants.append(x);
1361   return load_constant(LIR_OprFact::value_type(x->type())->as_constant_ptr());
1362 }
1363 
1364 
1365 LIR_Opr LIRGenerator::load_constant(LIR_Const* c) {
1366   BasicType t = c->type();
1367   for (int i = 0; i < _constants.length(); i++) {
1368     LIR_Const* other = _constants.at(i);
1369     if (t == other->type()) {
1370       switch (t) {
1371       case T_INT:
1372       case T_FLOAT:
1373         if (c->as_jint_bits() != other->as_jint_bits()) continue;
1374         break;
1375       case T_LONG:
1376       case T_DOUBLE:
1377         if (c->as_jint_hi_bits() != other->as_jint_hi_bits()) continue;
1378         if (c->as_jint_lo_bits() != other->as_jint_lo_bits()) continue;
1379         break;
1380       case T_OBJECT:
1381         if (c->as_jobject() != other->as_jobject()) continue;
1382         break;
1383       }
1384       return _reg_for_constants.at(i);
1385     }
1386   }
1387 
1388   LIR_Opr result = new_register(t);
1389   __ move((LIR_Opr)c, result);
1390   _constants.append(c);
1391   _reg_for_constants.append(result);
1392   return result;
1393 }
1394 
1395 // Various barriers
1396 
1397 void LIRGenerator::pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1398                                bool do_load, bool patch, CodeEmitInfo* info) {
1399   // Do the pre-write barrier, if any.
1400   switch (_bs->kind()) {
1401 #ifndef SERIALGC
1402     case BarrierSet::G1SATBCT:
1403     case BarrierSet::G1SATBCTLogging:
1404       G1SATBCardTableModRef_pre_barrier(addr_opr, pre_val, do_load, patch, info);
1405       break;
1406 #endif // SERIALGC
1407     case BarrierSet::CardTableModRef:
1408     case BarrierSet::CardTableExtension:
1409       // No pre barriers
1410       break;
1411     case BarrierSet::ModRef:
1412     case BarrierSet::Other:
1413       // No pre barriers
1414       break;
1415     default      :
1416       ShouldNotReachHere();
1417 
1418   }
1419 }
1420 
1421 void LIRGenerator::post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1422   switch (_bs->kind()) {
1423 #ifndef SERIALGC
1424     case BarrierSet::G1SATBCT:
1425     case BarrierSet::G1SATBCTLogging:
1426       G1SATBCardTableModRef_post_barrier(addr,  new_val);
1427       break;
1428 #endif // SERIALGC
1429     case BarrierSet::CardTableModRef:
1430     case BarrierSet::CardTableExtension:
1431       CardTableModRef_post_barrier(addr,  new_val);
1432       break;
1433     case BarrierSet::ModRef:
1434     case BarrierSet::Other:
1435       // No post barriers
1436       break;
1437     default      :
1438       ShouldNotReachHere();
1439     }
1440 }
1441 
1442 ////////////////////////////////////////////////////////////////////////
1443 #ifndef SERIALGC
1444 
1445 void LIRGenerator::G1SATBCardTableModRef_pre_barrier(LIR_Opr addr_opr, LIR_Opr pre_val,
1446                                                      bool do_load, bool patch, CodeEmitInfo* info) {
1447   // First we test whether marking is in progress.
1448   BasicType flag_type;
1449   if (in_bytes(PtrQueue::byte_width_of_active()) == 4) {
1450     flag_type = T_INT;
1451   } else {
1452     guarantee(in_bytes(PtrQueue::byte_width_of_active()) == 1,
1453               "Assumption");
1454     flag_type = T_BYTE;
1455   }
1456   LIR_Opr thrd = getThreadPointer();
1457   LIR_Address* mark_active_flag_addr =
1458     new LIR_Address(thrd,
1459                     in_bytes(JavaThread::satb_mark_queue_offset() +
1460                              PtrQueue::byte_offset_of_active()),
1461                     flag_type);
1462   // Read the marking-in-progress flag.
1463   LIR_Opr flag_val = new_register(T_INT);
1464   __ load(mark_active_flag_addr, flag_val);
1465   __ cmp(lir_cond_notEqual, flag_val, LIR_OprFact::intConst(0));
1466 
1467   LIR_PatchCode pre_val_patch_code = lir_patch_none;
1468 
1469   CodeStub* slow;
1470 
1471   if (do_load) {
1472     assert(pre_val == LIR_OprFact::illegalOpr, "sanity");
1473     assert(addr_opr != LIR_OprFact::illegalOpr, "sanity");
1474 
1475     if (patch)
1476       pre_val_patch_code = lir_patch_normal;
1477 
1478     pre_val = new_register(T_OBJECT);
1479 
1480     if (!addr_opr->is_address()) {
1481       assert(addr_opr->is_register(), "must be");
1482       addr_opr = LIR_OprFact::address(new LIR_Address(addr_opr, T_OBJECT));
1483     }
1484     slow = new G1PreBarrierStub(addr_opr, pre_val, pre_val_patch_code, info);
1485   } else {
1486     assert(addr_opr == LIR_OprFact::illegalOpr, "sanity");
1487     assert(pre_val->is_register(), "must be");
1488     assert(pre_val->type() == T_OBJECT, "must be an object");
1489     assert(info == NULL, "sanity");
1490 
1491     slow = new G1PreBarrierStub(pre_val);
1492   }
1493 
1494   __ branch(lir_cond_notEqual, T_INT, slow);
1495   __ branch_destination(slow->continuation());
1496 }
1497 
1498 void LIRGenerator::G1SATBCardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1499   // If the "new_val" is a constant NULL, no barrier is necessary.
1500   if (new_val->is_constant() &&
1501       new_val->as_constant_ptr()->as_jobject() == NULL) return;
1502 
1503   if (!new_val->is_register()) {
1504     LIR_Opr new_val_reg = new_register(T_OBJECT);
1505     if (new_val->is_constant()) {
1506       __ move(new_val, new_val_reg);
1507     } else {
1508       __ leal(new_val, new_val_reg);
1509     }
1510     new_val = new_val_reg;
1511   }
1512   assert(new_val->is_register(), "must be a register at this point");
1513 
1514   if (addr->is_address()) {
1515     LIR_Address* address = addr->as_address_ptr();
1516     LIR_Opr ptr = new_pointer_register();
1517     if (!address->index()->is_valid() && address->disp() == 0) {
1518       __ move(address->base(), ptr);
1519     } else {
1520       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1521       __ leal(addr, ptr);
1522     }
1523     addr = ptr;
1524   }
1525   assert(addr->is_register(), "must be a register at this point");
1526 
1527   LIR_Opr xor_res = new_pointer_register();
1528   LIR_Opr xor_shift_res = new_pointer_register();
1529   if (TwoOperandLIRForm ) {
1530     __ move(addr, xor_res);
1531     __ logical_xor(xor_res, new_val, xor_res);
1532     __ move(xor_res, xor_shift_res);
1533     __ unsigned_shift_right(xor_shift_res,
1534                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1535                             xor_shift_res,
1536                             LIR_OprDesc::illegalOpr());
1537   } else {
1538     __ logical_xor(addr, new_val, xor_res);
1539     __ unsigned_shift_right(xor_res,
1540                             LIR_OprFact::intConst(HeapRegion::LogOfHRGrainBytes),
1541                             xor_shift_res,
1542                             LIR_OprDesc::illegalOpr());
1543   }
1544 
1545   if (!new_val->is_register()) {
1546     LIR_Opr new_val_reg = new_register(T_OBJECT);
1547     __ leal(new_val, new_val_reg);
1548     new_val = new_val_reg;
1549   }
1550   assert(new_val->is_register(), "must be a register at this point");
1551 
1552   __ cmp(lir_cond_notEqual, xor_shift_res, LIR_OprFact::intptrConst(NULL_WORD));
1553 
1554   CodeStub* slow = new G1PostBarrierStub(addr, new_val);
1555   __ branch(lir_cond_notEqual, LP64_ONLY(T_LONG) NOT_LP64(T_INT), slow);
1556   __ branch_destination(slow->continuation());
1557 }
1558 
1559 #endif // SERIALGC
1560 ////////////////////////////////////////////////////////////////////////
1561 
1562 void LIRGenerator::CardTableModRef_post_barrier(LIR_OprDesc* addr, LIR_OprDesc* new_val) {
1563 
1564   assert(sizeof(*((CardTableModRefBS*)_bs)->byte_map_base) == sizeof(jbyte), "adjust this code");
1565   LIR_Const* card_table_base = new LIR_Const(((CardTableModRefBS*)_bs)->byte_map_base);
1566   if (addr->is_address()) {
1567     LIR_Address* address = addr->as_address_ptr();
1568     // ptr cannot be an object because we use this barrier for array card marks
1569     // and addr can point in the middle of an array.
1570     LIR_Opr ptr = new_pointer_register();
1571     if (!address->index()->is_valid() && address->disp() == 0) {
1572       __ move(address->base(), ptr);
1573     } else {
1574       assert(address->disp() != max_jint, "lea doesn't support patched addresses!");
1575       __ leal(addr, ptr);
1576     }
1577     addr = ptr;
1578   }
1579   assert(addr->is_register(), "must be a register at this point");
1580 
1581 #ifdef ARM
1582   // TODO: ARM - move to platform-dependent code
1583   LIR_Opr tmp = FrameMap::R14_opr;
1584   if (VM_Version::supports_movw()) {
1585     __ move((LIR_Opr)card_table_base, tmp);
1586   } else {
1587     __ move(new LIR_Address(FrameMap::Rthread_opr, in_bytes(JavaThread::card_table_base_offset()), T_ADDRESS), tmp);
1588   }
1589 
1590   CardTableModRefBS* ct = (CardTableModRefBS*)_bs;
1591   LIR_Address *card_addr = new LIR_Address(tmp, addr, (LIR_Address::Scale) -CardTableModRefBS::card_shift, 0, T_BYTE);
1592   if(((int)ct->byte_map_base & 0xff) == 0) {
1593     __ move(tmp, card_addr);
1594   } else {
1595     LIR_Opr tmp_zero = new_register(T_INT);
1596     __ move(LIR_OprFact::intConst(0), tmp_zero);
1597     __ move(tmp_zero, card_addr);
1598   }
1599 #else // ARM
1600   LIR_Opr tmp = new_pointer_register();
1601   if (TwoOperandLIRForm) {
1602     __ move(addr, tmp);
1603     __ unsigned_shift_right(tmp, CardTableModRefBS::card_shift, tmp);
1604   } else {
1605     __ unsigned_shift_right(addr, CardTableModRefBS::card_shift, tmp);
1606   }
1607   if (can_inline_as_constant(card_table_base)) {
1608     __ move(LIR_OprFact::intConst(0),
1609               new LIR_Address(tmp, card_table_base->as_jint(), T_BYTE));
1610   } else {
1611     __ move(LIR_OprFact::intConst(0),
1612               new LIR_Address(tmp, load_constant(card_table_base),
1613                               T_BYTE));
1614   }
1615 #endif // ARM
1616 }
1617 
1618 
1619 //------------------------field access--------------------------------------
1620 
1621 // Comment copied form templateTable_i486.cpp
1622 // ----------------------------------------------------------------------------
1623 // Volatile variables demand their effects be made known to all CPU's in
1624 // order.  Store buffers on most chips allow reads & writes to reorder; the
1625 // JMM's ReadAfterWrite.java test fails in -Xint mode without some kind of
1626 // memory barrier (i.e., it's not sufficient that the interpreter does not
1627 // reorder volatile references, the hardware also must not reorder them).
1628 //
1629 // According to the new Java Memory Model (JMM):
1630 // (1) All volatiles are serialized wrt to each other.
1631 // ALSO reads & writes act as aquire & release, so:
1632 // (2) A read cannot let unrelated NON-volatile memory refs that happen after
1633 // the read float up to before the read.  It's OK for non-volatile memory refs
1634 // that happen before the volatile read to float down below it.
1635 // (3) Similar a volatile write cannot let unrelated NON-volatile memory refs
1636 // that happen BEFORE the write float down to after the write.  It's OK for
1637 // non-volatile memory refs that happen after the volatile write to float up
1638 // before it.
1639 //
1640 // We only put in barriers around volatile refs (they are expensive), not
1641 // _between_ memory refs (that would require us to track the flavor of the
1642 // previous memory refs).  Requirements (2) and (3) require some barriers
1643 // before volatile stores and after volatile loads.  These nearly cover
1644 // requirement (1) but miss the volatile-store-volatile-load case.  This final
1645 // case is placed after volatile-stores although it could just as well go
1646 // before volatile-loads.
1647 
1648 
1649 void LIRGenerator::do_StoreField(StoreField* x) {
1650   bool needs_patching = x->needs_patching();
1651   bool is_volatile = x->field()->is_volatile();
1652   BasicType field_type = x->field_type();
1653   bool is_oop = (field_type == T_ARRAY || field_type == T_OBJECT);
1654 
1655   CodeEmitInfo* info = NULL;
1656   if (needs_patching) {
1657     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1658     info = state_for(x, x->state_before());
1659   } else if (x->needs_null_check()) {
1660     NullCheck* nc = x->explicit_null_check();
1661     if (nc == NULL) {
1662       info = state_for(x);
1663     } else {
1664       info = state_for(nc);
1665     }
1666   }
1667 
1668 
1669   LIRItem object(x->obj(), this);
1670   LIRItem value(x->value(),  this);
1671 
1672   object.load_item();
1673 
1674   if (is_volatile || needs_patching) {
1675     // load item if field is volatile (fewer special cases for volatiles)
1676     // load item if field not initialized
1677     // load item if field not constant
1678     // because of code patching we cannot inline constants
1679     if (field_type == T_BYTE || field_type == T_BOOLEAN) {
1680       value.load_byte_item();
1681     } else  {
1682       value.load_item();
1683     }
1684   } else {
1685     value.load_for_store(field_type);
1686   }
1687 
1688   set_no_result(x);
1689 
1690 #ifndef PRODUCT
1691   if (PrintNotLoaded && needs_patching) {
1692     tty->print_cr("   ###class not loaded at store_%s bci %d",
1693                   x->is_static() ?  "static" : "field", x->printable_bci());
1694   }
1695 #endif
1696 
1697   if (x->needs_null_check() &&
1698       (needs_patching ||
1699        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1700     // emit an explicit null check because the offset is too large
1701     __ null_check(object.result(), new CodeEmitInfo(info));
1702   }
1703 
1704   LIR_Address* address;
1705   if (needs_patching) {
1706     // we need to patch the offset in the instruction so don't allow
1707     // generate_address to try to be smart about emitting the -1.
1708     // Otherwise the patching code won't know how to find the
1709     // instruction to patch.
1710     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1711   } else {
1712     address = generate_address(object.result(), x->offset(), field_type);
1713   }
1714 
1715   if (is_volatile && os::is_MP()) {
1716     __ membar_release();
1717   }
1718 
1719   if (is_oop) {
1720     // Do the pre-write barrier, if any.
1721     pre_barrier(LIR_OprFact::address(address),
1722                 LIR_OprFact::illegalOpr /* pre_val */,
1723                 true /* do_load*/,
1724                 needs_patching,
1725                 (info ? new CodeEmitInfo(info) : NULL));
1726   }
1727 
1728   if (is_volatile && !needs_patching) {
1729     volatile_field_store(value.result(), address, info);
1730   } else {
1731     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1732     __ store(value.result(), address, info, patch_code);
1733   }
1734 
1735   if (is_oop) {
1736     // Store to object so mark the card of the header
1737     post_barrier(object.result(), value.result());
1738   }
1739 
1740   if (is_volatile && os::is_MP()) {
1741     __ membar();
1742   }
1743 }
1744 
1745 
1746 void LIRGenerator::do_LoadField(LoadField* x) {
1747   bool needs_patching = x->needs_patching();
1748   bool is_volatile = x->field()->is_volatile();
1749   BasicType field_type = x->field_type();
1750 
1751   CodeEmitInfo* info = NULL;
1752   if (needs_patching) {
1753     assert(x->explicit_null_check() == NULL, "can't fold null check into patching field access");
1754     info = state_for(x, x->state_before());
1755   } else if (x->needs_null_check()) {
1756     NullCheck* nc = x->explicit_null_check();
1757     if (nc == NULL) {
1758       info = state_for(x);
1759     } else {
1760       info = state_for(nc);
1761     }
1762   }
1763 
1764   LIRItem object(x->obj(), this);
1765 
1766   object.load_item();
1767 
1768 #ifndef PRODUCT
1769   if (PrintNotLoaded && needs_patching) {
1770     tty->print_cr("   ###class not loaded at load_%s bci %d",
1771                   x->is_static() ?  "static" : "field", x->printable_bci());
1772   }
1773 #endif
1774 
1775   if (x->needs_null_check() &&
1776       (needs_patching ||
1777        MacroAssembler::needs_explicit_null_check(x->offset()))) {
1778     // emit an explicit null check because the offset is too large
1779     __ null_check(object.result(), new CodeEmitInfo(info));
1780   }
1781 
1782   LIR_Opr reg = rlock_result(x, field_type);
1783   LIR_Address* address;
1784   if (needs_patching) {
1785     // we need to patch the offset in the instruction so don't allow
1786     // generate_address to try to be smart about emitting the -1.
1787     // Otherwise the patching code won't know how to find the
1788     // instruction to patch.
1789     address = new LIR_Address(object.result(), PATCHED_ADDR, field_type);
1790   } else {
1791     address = generate_address(object.result(), x->offset(), field_type);
1792   }
1793 
1794   if (is_volatile && !needs_patching) {
1795     volatile_field_load(address, reg, info);
1796   } else {
1797     LIR_PatchCode patch_code = needs_patching ? lir_patch_normal : lir_patch_none;
1798     __ load(address, reg, info, patch_code);
1799   }
1800 
1801   if (is_volatile && os::is_MP()) {
1802     __ membar_acquire();
1803   }
1804 }
1805 
1806 
1807 //------------------------java.nio.Buffer.checkIndex------------------------
1808 
1809 // int java.nio.Buffer.checkIndex(int)
1810 void LIRGenerator::do_NIOCheckIndex(Intrinsic* x) {
1811   // NOTE: by the time we are in checkIndex() we are guaranteed that
1812   // the buffer is non-null (because checkIndex is package-private and
1813   // only called from within other methods in the buffer).
1814   assert(x->number_of_arguments() == 2, "wrong type");
1815   LIRItem buf  (x->argument_at(0), this);
1816   LIRItem index(x->argument_at(1), this);
1817   buf.load_item();
1818   index.load_item();
1819 
1820   LIR_Opr result = rlock_result(x);
1821   if (GenerateRangeChecks) {
1822     CodeEmitInfo* info = state_for(x);
1823     CodeStub* stub = new RangeCheckStub(info, index.result(), true);
1824     if (index.result()->is_constant()) {
1825       cmp_mem_int(lir_cond_belowEqual, buf.result(), java_nio_Buffer::limit_offset(), index.result()->as_jint(), info);
1826       __ branch(lir_cond_belowEqual, T_INT, stub);
1827     } else {
1828       cmp_reg_mem(lir_cond_aboveEqual, index.result(), buf.result(),
1829                   java_nio_Buffer::limit_offset(), T_INT, info);
1830       __ branch(lir_cond_aboveEqual, T_INT, stub);
1831     }
1832     __ move(index.result(), result);
1833   } else {
1834     // Just load the index into the result register
1835     __ move(index.result(), result);
1836   }
1837 }
1838 
1839 
1840 //------------------------array access--------------------------------------
1841 
1842 
1843 void LIRGenerator::do_ArrayLength(ArrayLength* x) {
1844   LIRItem array(x->array(), this);
1845   array.load_item();
1846   LIR_Opr reg = rlock_result(x);
1847 
1848   CodeEmitInfo* info = NULL;
1849   if (x->needs_null_check()) {
1850     NullCheck* nc = x->explicit_null_check();
1851     if (nc == NULL) {
1852       info = state_for(x);
1853     } else {
1854       info = state_for(nc);
1855     }
1856   }
1857   __ load(new LIR_Address(array.result(), arrayOopDesc::length_offset_in_bytes(), T_INT), reg, info, lir_patch_none);
1858 }
1859 
1860 
1861 void LIRGenerator::do_LoadIndexed(LoadIndexed* x) {
1862   bool use_length = x->length() != NULL;
1863   LIRItem array(x->array(), this);
1864   LIRItem index(x->index(), this);
1865   LIRItem length(this);
1866   bool needs_range_check = true;
1867 
1868   if (use_length) {
1869     needs_range_check = x->compute_needs_range_check();
1870     if (needs_range_check) {
1871       length.set_instruction(x->length());
1872       length.load_item();
1873     }
1874   }
1875 
1876   array.load_item();
1877   if (index.is_constant() && can_inline_as_constant(x->index())) {
1878     // let it be a constant
1879     index.dont_load_item();
1880   } else {
1881     index.load_item();
1882   }
1883 
1884   CodeEmitInfo* range_check_info = state_for(x);
1885   CodeEmitInfo* null_check_info = NULL;
1886   if (x->needs_null_check()) {
1887     NullCheck* nc = x->explicit_null_check();
1888     if (nc != NULL) {
1889       null_check_info = state_for(nc);
1890     } else {
1891       null_check_info = range_check_info;
1892     }
1893   }
1894 
1895   // emit array address setup early so it schedules better
1896   LIR_Address* array_addr = emit_array_address(array.result(), index.result(), x->elt_type(), false);
1897 
1898   if (GenerateRangeChecks && needs_range_check) {
1899     if (use_length) {
1900       // TODO: use a (modified) version of array_range_check that does not require a
1901       //       constant length to be loaded to a register
1902       __ cmp(lir_cond_belowEqual, length.result(), index.result());
1903       __ branch(lir_cond_belowEqual, T_INT, new RangeCheckStub(range_check_info, index.result()));
1904     } else {
1905       array_range_check(array.result(), index.result(), null_check_info, range_check_info);
1906       // The range check performs the null check, so clear it out for the load
1907       null_check_info = NULL;
1908     }
1909   }
1910 
1911   __ move(array_addr, rlock_result(x, x->elt_type()), null_check_info);
1912 }
1913 
1914 
1915 void LIRGenerator::do_NullCheck(NullCheck* x) {
1916   if (x->can_trap()) {
1917     LIRItem value(x->obj(), this);
1918     value.load_item();
1919     CodeEmitInfo* info = state_for(x);
1920     __ null_check(value.result(), info);
1921   }
1922 }
1923 
1924 
1925 void LIRGenerator::do_TypeCast(TypeCast* x) {
1926   LIRItem value(x->obj(), this);
1927   value.load_item();
1928   // the result is the same as from the node we are casting
1929   set_result(x, value.result());
1930 }
1931 
1932 
1933 void LIRGenerator::do_Throw(Throw* x) {
1934   LIRItem exception(x->exception(), this);
1935   exception.load_item();
1936   set_no_result(x);
1937   LIR_Opr exception_opr = exception.result();
1938   CodeEmitInfo* info = state_for(x, x->state());
1939 
1940 #ifndef PRODUCT
1941   if (PrintC1Statistics) {
1942     increment_counter(Runtime1::throw_count_address(), T_INT);
1943   }
1944 #endif
1945 
1946   // check if the instruction has an xhandler in any of the nested scopes
1947   bool unwind = false;
1948   if (info->exception_handlers()->length() == 0) {
1949     // this throw is not inside an xhandler
1950     unwind = true;
1951   } else {
1952     // get some idea of the throw type
1953     bool type_is_exact = true;
1954     ciType* throw_type = x->exception()->exact_type();
1955     if (throw_type == NULL) {
1956       type_is_exact = false;
1957       throw_type = x->exception()->declared_type();
1958     }
1959     if (throw_type != NULL && throw_type->is_instance_klass()) {
1960       ciInstanceKlass* throw_klass = (ciInstanceKlass*)throw_type;
1961       unwind = !x->exception_handlers()->could_catch(throw_klass, type_is_exact);
1962     }
1963   }
1964 
1965   // do null check before moving exception oop into fixed register
1966   // to avoid a fixed interval with an oop during the null check.
1967   // Use a copy of the CodeEmitInfo because debug information is
1968   // different for null_check and throw.
1969   if (GenerateCompilerNullChecks &&
1970       (x->exception()->as_NewInstance() == NULL && x->exception()->as_ExceptionObject() == NULL)) {
1971     // if the exception object wasn't created using new then it might be null.
1972     __ null_check(exception_opr, new CodeEmitInfo(info, x->state()->copy(ValueStack::ExceptionState, x->state()->bci())));
1973   }
1974 
1975   if (compilation()->env()->jvmti_can_post_on_exceptions()) {
1976     // we need to go through the exception lookup path to get JVMTI
1977     // notification done
1978     unwind = false;
1979   }
1980 
1981   // move exception oop into fixed register
1982   __ move(exception_opr, exceptionOopOpr());
1983 
1984   if (unwind) {
1985     __ unwind_exception(exceptionOopOpr());
1986   } else {
1987     __ throw_exception(exceptionPcOpr(), exceptionOopOpr(), info);
1988   }
1989 }
1990 
1991 
1992 void LIRGenerator::do_RoundFP(RoundFP* x) {
1993   LIRItem input(x->input(), this);
1994   input.load_item();
1995   LIR_Opr input_opr = input.result();
1996   assert(input_opr->is_register(), "why round if value is not in a register?");
1997   assert(input_opr->is_single_fpu() || input_opr->is_double_fpu(), "input should be floating-point value");
1998   if (input_opr->is_single_fpu()) {
1999     set_result(x, round_item(input_opr)); // This code path not currently taken
2000   } else {
2001     LIR_Opr result = new_register(T_DOUBLE);
2002     set_vreg_flag(result, must_start_in_memory);
2003     __ roundfp(input_opr, LIR_OprFact::illegalOpr, result);
2004     set_result(x, result);
2005   }
2006 }
2007 
2008 void LIRGenerator::do_UnsafeGetRaw(UnsafeGetRaw* x) {
2009   LIRItem base(x->base(), this);
2010   LIRItem idx(this);
2011 
2012   base.load_item();
2013   if (x->has_index()) {
2014     idx.set_instruction(x->index());
2015     idx.load_nonconstant();
2016   }
2017 
2018   LIR_Opr reg = rlock_result(x, x->basic_type());
2019 
2020   int   log2_scale = 0;
2021   if (x->has_index()) {
2022     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2023     log2_scale = x->log2_scale();
2024   }
2025 
2026   assert(!x->has_index() || idx.value() == x->index(), "should match");
2027 
2028   LIR_Opr base_op = base.result();
2029 #ifndef _LP64
2030   if (x->base()->type()->tag() == longTag) {
2031     base_op = new_register(T_INT);
2032     __ convert(Bytecodes::_l2i, base.result(), base_op);
2033   } else {
2034     assert(x->base()->type()->tag() == intTag, "must be");
2035   }
2036 #endif
2037 
2038   BasicType dst_type = x->basic_type();
2039   LIR_Opr index_op = idx.result();
2040 
2041   LIR_Address* addr;
2042   if (index_op->is_constant()) {
2043     assert(log2_scale == 0, "must not have a scale");
2044     addr = new LIR_Address(base_op, index_op->as_jint(), dst_type);
2045   } else {
2046 #ifdef X86
2047 #ifdef _LP64
2048     if (!index_op->is_illegal() && index_op->type() == T_INT) {
2049       LIR_Opr tmp = new_pointer_register();
2050       __ convert(Bytecodes::_i2l, index_op, tmp);
2051       index_op = tmp;
2052     }
2053 #endif
2054     addr = new LIR_Address(base_op, index_op, LIR_Address::Scale(log2_scale), 0, dst_type);
2055 #elif defined(ARM)
2056     addr = generate_address(base_op, index_op, log2_scale, 0, dst_type);
2057 #else
2058     if (index_op->is_illegal() || log2_scale == 0) {
2059 #ifdef _LP64
2060       if (!index_op->is_illegal() && index_op->type() == T_INT) {
2061         LIR_Opr tmp = new_pointer_register();
2062         __ convert(Bytecodes::_i2l, index_op, tmp);
2063         index_op = tmp;
2064       }
2065 #endif
2066       addr = new LIR_Address(base_op, index_op, dst_type);
2067     } else {
2068       LIR_Opr tmp = new_pointer_register();
2069       __ shift_left(index_op, log2_scale, tmp);
2070       addr = new LIR_Address(base_op, tmp, dst_type);
2071     }
2072 #endif
2073   }
2074 
2075   if (x->may_be_unaligned() && (dst_type == T_LONG || dst_type == T_DOUBLE)) {
2076     __ unaligned_move(addr, reg);
2077   } else {
2078     if (dst_type == T_OBJECT && x->is_wide()) {
2079       __ move_wide(addr, reg);
2080     } else {
2081       __ move(addr, reg);
2082     }
2083   }
2084 }
2085 
2086 
2087 void LIRGenerator::do_UnsafePutRaw(UnsafePutRaw* x) {
2088   int  log2_scale = 0;
2089   BasicType type = x->basic_type();
2090 
2091   if (x->has_index()) {
2092     assert(x->index()->type()->tag() == intTag, "should not find non-int index");
2093     log2_scale = x->log2_scale();
2094   }
2095 
2096   LIRItem base(x->base(), this);
2097   LIRItem value(x->value(), this);
2098   LIRItem idx(this);
2099 
2100   base.load_item();
2101   if (x->has_index()) {
2102     idx.set_instruction(x->index());
2103     idx.load_item();
2104   }
2105 
2106   if (type == T_BYTE || type == T_BOOLEAN) {
2107     value.load_byte_item();
2108   } else {
2109     value.load_item();
2110   }
2111 
2112   set_no_result(x);
2113 
2114   LIR_Opr base_op = base.result();
2115 #ifndef _LP64
2116   if (x->base()->type()->tag() == longTag) {
2117     base_op = new_register(T_INT);
2118     __ convert(Bytecodes::_l2i, base.result(), base_op);
2119   } else {
2120     assert(x->base()->type()->tag() == intTag, "must be");
2121   }
2122 #endif
2123 
2124   LIR_Opr index_op = idx.result();
2125   if (log2_scale != 0) {
2126     // temporary fix (platform dependent code without shift on Intel would be better)
2127     index_op = new_pointer_register();
2128 #ifdef _LP64
2129     if(idx.result()->type() == T_INT) {
2130       __ convert(Bytecodes::_i2l, idx.result(), index_op);
2131     } else {
2132 #endif
2133       // TODO: ARM also allows embedded shift in the address
2134       __ move(idx.result(), index_op);
2135 #ifdef _LP64
2136     }
2137 #endif
2138     __ shift_left(index_op, log2_scale, index_op);
2139   }
2140 #ifdef _LP64
2141   else if(!index_op->is_illegal() && index_op->type() == T_INT) {
2142     LIR_Opr tmp = new_pointer_register();
2143     __ convert(Bytecodes::_i2l, index_op, tmp);
2144     index_op = tmp;
2145   }
2146 #endif
2147 
2148   LIR_Address* addr = new LIR_Address(base_op, index_op, x->basic_type());
2149   __ move(value.result(), addr);
2150 }
2151 
2152 
2153 void LIRGenerator::do_UnsafeGetObject(UnsafeGetObject* x) {
2154   BasicType type = x->basic_type();
2155   LIRItem src(x->object(), this);
2156   LIRItem off(x->offset(), this);
2157 
2158   off.load_item();
2159   src.load_item();
2160 
2161   LIR_Opr value = rlock_result(x, x->basic_type());
2162 
2163   get_Object_unsafe(value, src.result(), off.result(), type, x->is_volatile());
2164 
2165 #ifndef SERIALGC
2166   // We might be reading the value of the referent field of a
2167   // Reference object in order to attach it back to the live
2168   // object graph. If G1 is enabled then we need to record
2169   // the value that is being returned in an SATB log buffer.
2170   //
2171   // We need to generate code similar to the following...
2172   //
2173   // if (offset == java_lang_ref_Reference::referent_offset) {
2174   //   if (src != NULL) {
2175   //     if (klass(src)->reference_type() != REF_NONE) {
2176   //       pre_barrier(..., value, ...);
2177   //     }
2178   //   }
2179   // }
2180 
2181   if (UseG1GC && type == T_OBJECT) {
2182     bool gen_pre_barrier = true;     // Assume we need to generate pre_barrier.
2183     bool gen_offset_check = true;    // Assume we need to generate the offset guard.
2184     bool gen_source_check = true;    // Assume we need to check the src object for null.
2185     bool gen_type_check = true;      // Assume we need to check the reference_type.
2186 
2187     if (off.is_constant()) {
2188       jlong off_con = (off.type()->is_int() ?
2189                         (jlong) off.get_jint_constant() :
2190                         off.get_jlong_constant());
2191 
2192 
2193       if (off_con != (jlong) java_lang_ref_Reference::referent_offset) {
2194         // The constant offset is something other than referent_offset.
2195         // We can skip generating/checking the remaining guards and
2196         // skip generation of the code stub.
2197         gen_pre_barrier = false;
2198       } else {
2199         // The constant offset is the same as referent_offset -
2200         // we do not need to generate a runtime offset check.
2201         gen_offset_check = false;
2202       }
2203     }
2204 
2205     // We don't need to generate stub if the source object is an array
2206     if (gen_pre_barrier && src.type()->is_array()) {
2207       gen_pre_barrier = false;
2208     }
2209 
2210     if (gen_pre_barrier) {
2211       // We still need to continue with the checks.
2212       if (src.is_constant()) {
2213         ciObject* src_con = src.get_jobject_constant();
2214 
2215         if (src_con->is_null_object()) {
2216           // The constant src object is null - We can skip
2217           // generating the code stub.
2218           gen_pre_barrier = false;
2219         } else {
2220           // Non-null constant source object. We still have to generate
2221           // the slow stub - but we don't need to generate the runtime
2222           // null object check.
2223           gen_source_check = false;
2224         }
2225       }
2226     }
2227     if (gen_pre_barrier && !PatchALot) {
2228       // Can the klass of object be statically determined to be
2229       // a sub-class of Reference?
2230       ciType* type = src.value()->declared_type();
2231       if ((type != NULL) && type->is_loaded()) {
2232         if (type->is_subtype_of(compilation()->env()->Reference_klass())) {
2233           gen_type_check = false;
2234         } else if (type->is_klass() &&
2235                    !compilation()->env()->Object_klass()->is_subtype_of(type->as_klass())) {
2236           // Not Reference and not Object klass.
2237           gen_pre_barrier = false;
2238         }
2239       }
2240     }
2241 
2242     if (gen_pre_barrier) {
2243       LabelObj* Lcont = new LabelObj();
2244 
2245       // We can have generate one runtime check here. Let's start with
2246       // the offset check.
2247       if (gen_offset_check) {
2248         // if (offset != referent_offset) -> continue
2249         // If offset is an int then we can do the comparison with the
2250         // referent_offset constant; otherwise we need to move
2251         // referent_offset into a temporary register and generate
2252         // a reg-reg compare.
2253 
2254         LIR_Opr referent_off;
2255 
2256         if (off.type()->is_int()) {
2257           referent_off = LIR_OprFact::intConst(java_lang_ref_Reference::referent_offset);
2258         } else {
2259           assert(off.type()->is_long(), "what else?");
2260           referent_off = new_register(T_LONG);
2261           __ move(LIR_OprFact::longConst(java_lang_ref_Reference::referent_offset), referent_off);
2262         }
2263         __ cmp(lir_cond_notEqual, off.result(), referent_off);
2264         __ branch(lir_cond_notEqual, as_BasicType(off.type()), Lcont->label());
2265       }
2266       if (gen_source_check) {
2267         // offset is a const and equals referent offset
2268         // if (source == null) -> continue
2269         __ cmp(lir_cond_equal, src.result(), LIR_OprFact::oopConst(NULL));
2270         __ branch(lir_cond_equal, T_OBJECT, Lcont->label());
2271       }
2272       LIR_Opr src_klass = new_register(T_OBJECT);
2273       if (gen_type_check) {
2274         // We have determined that offset == referent_offset && src != null.
2275         // if (src->_klass->_reference_type == REF_NONE) -> continue
2276         __ move(new LIR_Address(src.result(), oopDesc::klass_offset_in_bytes(), UseCompressedKlassPointers ? T_OBJECT : T_ADDRESS), src_klass);
2277         LIR_Address* reference_type_addr = new LIR_Address(src_klass, in_bytes(InstanceKlass::reference_type_offset()), T_BYTE);
2278         LIR_Opr reference_type = new_register(T_INT);
2279         __ move(reference_type_addr, reference_type);
2280         __ cmp(lir_cond_equal, reference_type, LIR_OprFact::intConst(REF_NONE));
2281         __ branch(lir_cond_equal, T_INT, Lcont->label());
2282       }
2283       {
2284         // We have determined that src->_klass->_reference_type != REF_NONE
2285         // so register the value in the referent field with the pre-barrier.
2286         pre_barrier(LIR_OprFact::illegalOpr /* addr_opr */,
2287                     value  /* pre_val */,
2288                     false  /* do_load */,
2289                     false  /* patch */,
2290                     NULL   /* info */);
2291       }
2292       __ branch_destination(Lcont->label());
2293     }
2294   }
2295 #endif // SERIALGC
2296 
2297   if (x->is_volatile() && os::is_MP()) __ membar_acquire();
2298 }
2299 
2300 
2301 void LIRGenerator::do_UnsafePutObject(UnsafePutObject* x) {
2302   BasicType type = x->basic_type();
2303   LIRItem src(x->object(), this);
2304   LIRItem off(x->offset(), this);
2305   LIRItem data(x->value(), this);
2306 
2307   src.load_item();
2308   if (type == T_BOOLEAN || type == T_BYTE) {
2309     data.load_byte_item();
2310   } else {
2311     data.load_item();
2312   }
2313   off.load_item();
2314 
2315   set_no_result(x);
2316 
2317   if (x->is_volatile() && os::is_MP()) __ membar_release();
2318   put_Object_unsafe(src.result(), off.result(), data.result(), type, x->is_volatile());
2319   if (x->is_volatile() && os::is_MP()) __ membar();
2320 }
2321 
2322 
2323 void LIRGenerator::do_UnsafePrefetch(UnsafePrefetch* x, bool is_store) {
2324   LIRItem src(x->object(), this);
2325   LIRItem off(x->offset(), this);
2326 
2327   src.load_item();
2328   if (off.is_constant() && can_inline_as_constant(x->offset())) {
2329     // let it be a constant
2330     off.dont_load_item();
2331   } else {
2332     off.load_item();
2333   }
2334 
2335   set_no_result(x);
2336 
2337   LIR_Address* addr = generate_address(src.result(), off.result(), 0, 0, T_BYTE);
2338   __ prefetch(addr, is_store);
2339 }
2340 
2341 
2342 void LIRGenerator::do_UnsafePrefetchRead(UnsafePrefetchRead* x) {
2343   do_UnsafePrefetch(x, false);
2344 }
2345 
2346 
2347 void LIRGenerator::do_UnsafePrefetchWrite(UnsafePrefetchWrite* x) {
2348   do_UnsafePrefetch(x, true);
2349 }
2350 
2351 
2352 void LIRGenerator::do_SwitchRanges(SwitchRangeArray* x, LIR_Opr value, BlockBegin* default_sux) {
2353   int lng = x->length();
2354 
2355   for (int i = 0; i < lng; i++) {
2356     SwitchRange* one_range = x->at(i);
2357     int low_key = one_range->low_key();
2358     int high_key = one_range->high_key();
2359     BlockBegin* dest = one_range->sux();
2360     if (low_key == high_key) {
2361       __ cmp(lir_cond_equal, value, low_key);
2362       __ branch(lir_cond_equal, T_INT, dest);
2363     } else if (high_key - low_key == 1) {
2364       __ cmp(lir_cond_equal, value, low_key);
2365       __ branch(lir_cond_equal, T_INT, dest);
2366       __ cmp(lir_cond_equal, value, high_key);
2367       __ branch(lir_cond_equal, T_INT, dest);
2368     } else {
2369       LabelObj* L = new LabelObj();
2370       __ cmp(lir_cond_less, value, low_key);
2371       __ branch(lir_cond_less, T_INT, L->label());
2372       __ cmp(lir_cond_lessEqual, value, high_key);
2373       __ branch(lir_cond_lessEqual, T_INT, dest);
2374       __ branch_destination(L->label());
2375     }
2376   }
2377   __ jump(default_sux);
2378 }
2379 
2380 
2381 SwitchRangeArray* LIRGenerator::create_lookup_ranges(TableSwitch* x) {
2382   SwitchRangeList* res = new SwitchRangeList();
2383   int len = x->length();
2384   if (len > 0) {
2385     BlockBegin* sux = x->sux_at(0);
2386     int key = x->lo_key();
2387     BlockBegin* default_sux = x->default_sux();
2388     SwitchRange* range = new SwitchRange(key, sux);
2389     for (int i = 0; i < len; i++, key++) {
2390       BlockBegin* new_sux = x->sux_at(i);
2391       if (sux == new_sux) {
2392         // still in same range
2393         range->set_high_key(key);
2394       } else {
2395         // skip tests which explicitly dispatch to the default
2396         if (sux != default_sux) {
2397           res->append(range);
2398         }
2399         range = new SwitchRange(key, new_sux);
2400       }
2401       sux = new_sux;
2402     }
2403     if (res->length() == 0 || res->last() != range)  res->append(range);
2404   }
2405   return res;
2406 }
2407 
2408 
2409 // we expect the keys to be sorted by increasing value
2410 SwitchRangeArray* LIRGenerator::create_lookup_ranges(LookupSwitch* x) {
2411   SwitchRangeList* res = new SwitchRangeList();
2412   int len = x->length();
2413   if (len > 0) {
2414     BlockBegin* default_sux = x->default_sux();
2415     int key = x->key_at(0);
2416     BlockBegin* sux = x->sux_at(0);
2417     SwitchRange* range = new SwitchRange(key, sux);
2418     for (int i = 1; i < len; i++) {
2419       int new_key = x->key_at(i);
2420       BlockBegin* new_sux = x->sux_at(i);
2421       if (key+1 == new_key && sux == new_sux) {
2422         // still in same range
2423         range->set_high_key(new_key);
2424       } else {
2425         // skip tests which explicitly dispatch to the default
2426         if (range->sux() != default_sux) {
2427           res->append(range);
2428         }
2429         range = new SwitchRange(new_key, new_sux);
2430       }
2431       key = new_key;
2432       sux = new_sux;
2433     }
2434     if (res->length() == 0 || res->last() != range)  res->append(range);
2435   }
2436   return res;
2437 }
2438 
2439 
2440 void LIRGenerator::do_TableSwitch(TableSwitch* x) {
2441   LIRItem tag(x->tag(), this);
2442   tag.load_item();
2443   set_no_result(x);
2444 
2445   if (x->is_safepoint()) {
2446     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2447   }
2448 
2449   // move values into phi locations
2450   move_to_phi(x->state());
2451 
2452   int lo_key = x->lo_key();
2453   int hi_key = x->hi_key();
2454   int len = x->length();
2455   LIR_Opr value = tag.result();
2456   if (UseTableRanges) {
2457     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2458   } else {
2459     for (int i = 0; i < len; i++) {
2460       __ cmp(lir_cond_equal, value, i + lo_key);
2461       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2462     }
2463     __ jump(x->default_sux());
2464   }
2465 }
2466 
2467 
2468 void LIRGenerator::do_LookupSwitch(LookupSwitch* x) {
2469   LIRItem tag(x->tag(), this);
2470   tag.load_item();
2471   set_no_result(x);
2472 
2473   if (x->is_safepoint()) {
2474     __ safepoint(safepoint_poll_register(), state_for(x, x->state_before()));
2475   }
2476 
2477   // move values into phi locations
2478   move_to_phi(x->state());
2479 
2480   LIR_Opr value = tag.result();
2481   if (UseTableRanges) {
2482     do_SwitchRanges(create_lookup_ranges(x), value, x->default_sux());
2483   } else {
2484     int len = x->length();
2485     for (int i = 0; i < len; i++) {
2486       __ cmp(lir_cond_equal, value, x->key_at(i));
2487       __ branch(lir_cond_equal, T_INT, x->sux_at(i));
2488     }
2489     __ jump(x->default_sux());
2490   }
2491 }
2492 
2493 
2494 void LIRGenerator::do_Goto(Goto* x) {
2495   set_no_result(x);
2496 
2497   if (block()->next()->as_OsrEntry()) {
2498     // need to free up storage used for OSR entry point
2499     LIR_Opr osrBuffer = block()->next()->operand();
2500     BasicTypeList signature;
2501     signature.append(T_INT);
2502     CallingConvention* cc = frame_map()->c_calling_convention(&signature);
2503     __ move(osrBuffer, cc->args()->at(0));
2504     __ call_runtime_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::OSR_migration_end),
2505                          getThreadTemp(), LIR_OprFact::illegalOpr, cc->args());
2506   }
2507 
2508   if (x->is_safepoint()) {
2509     ValueStack* state = x->state_before() ? x->state_before() : x->state();
2510 
2511     // increment backedge counter if needed
2512     CodeEmitInfo* info = state_for(x, state);
2513     increment_backedge_counter(info, x->profiled_bci());
2514     CodeEmitInfo* safepoint_info = state_for(x, state);
2515     __ safepoint(safepoint_poll_register(), safepoint_info);
2516   }
2517 
2518   // Gotos can be folded Ifs, handle this case.
2519   if (x->should_profile()) {
2520     ciMethod* method = x->profiled_method();
2521     assert(method != NULL, "method should be set if branch is profiled");
2522     ciMethodData* md = method->method_data_or_null();
2523     assert(md != NULL, "Sanity");
2524     ciProfileData* data = md->bci_to_data(x->profiled_bci());
2525     assert(data != NULL, "must have profiling data");
2526     int offset;
2527     if (x->direction() == Goto::taken) {
2528       assert(data->is_BranchData(), "need BranchData for two-way branches");
2529       offset = md->byte_offset_of_slot(data, BranchData::taken_offset());
2530     } else if (x->direction() == Goto::not_taken) {
2531       assert(data->is_BranchData(), "need BranchData for two-way branches");
2532       offset = md->byte_offset_of_slot(data, BranchData::not_taken_offset());
2533     } else {
2534       assert(data->is_JumpData(), "need JumpData for branches");
2535       offset = md->byte_offset_of_slot(data, JumpData::taken_offset());
2536     }
2537     LIR_Opr md_reg = new_register(T_METADATA);
2538     __ metadata2reg(md->constant_encoding(), md_reg);
2539 
2540     increment_counter(new LIR_Address(md_reg, offset,
2541                                       NOT_LP64(T_INT) LP64_ONLY(T_LONG)), DataLayout::counter_increment);
2542   }
2543 
2544   // emit phi-instruction move after safepoint since this simplifies
2545   // describing the state as the safepoint.
2546   move_to_phi(x->state());
2547 
2548   __ jump(x->default_sux());
2549 }
2550 
2551 
2552 void LIRGenerator::do_Base(Base* x) {
2553   __ std_entry(LIR_OprFact::illegalOpr);
2554   // Emit moves from physical registers / stack slots to virtual registers
2555   CallingConvention* args = compilation()->frame_map()->incoming_arguments();
2556   IRScope* irScope = compilation()->hir()->top_scope();
2557   int java_index = 0;
2558   for (int i = 0; i < args->length(); i++) {
2559     LIR_Opr src = args->at(i);
2560     assert(!src->is_illegal(), "check");
2561     BasicType t = src->type();
2562 
2563     // Types which are smaller than int are passed as int, so
2564     // correct the type which passed.
2565     switch (t) {
2566     case T_BYTE:
2567     case T_BOOLEAN:
2568     case T_SHORT:
2569     case T_CHAR:
2570       t = T_INT;
2571       break;
2572     }
2573 
2574     LIR_Opr dest = new_register(t);
2575     __ move(src, dest);
2576 
2577     // Assign new location to Local instruction for this local
2578     Local* local = x->state()->local_at(java_index)->as_Local();
2579     assert(local != NULL, "Locals for incoming arguments must have been created");
2580 #ifndef __SOFTFP__
2581     // The java calling convention passes double as long and float as int.
2582     assert(as_ValueType(t)->tag() == local->type()->tag(), "check");
2583 #endif // __SOFTFP__
2584     local->set_operand(dest);
2585     _instruction_for_operand.at_put_grow(dest->vreg_number(), local, NULL);
2586     java_index += type2size[t];
2587   }
2588 
2589   if (compilation()->env()->dtrace_method_probes()) {
2590     BasicTypeList signature;
2591     signature.append(LP64_ONLY(T_LONG) NOT_LP64(T_INT));    // thread
2592     signature.append(T_OBJECT); // Method*
2593     LIR_OprList* args = new LIR_OprList();
2594     args->append(getThreadPointer());
2595     LIR_Opr meth = new_register(T_METADATA);
2596     __ metadata2reg(method()->constant_encoding(), meth);
2597     args->append(meth);
2598     call_runtime(&signature, args, CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry), voidType, NULL);
2599   }
2600 
2601   if (method()->is_synchronized()) {
2602     LIR_Opr obj;
2603     if (method()->is_static()) {
2604       obj = new_register(T_OBJECT);
2605       __ oop2reg(method()->holder()->java_mirror()->constant_encoding(), obj);
2606     } else {
2607       Local* receiver = x->state()->local_at(0)->as_Local();
2608       assert(receiver != NULL, "must already exist");
2609       obj = receiver->operand();
2610     }
2611     assert(obj->is_valid(), "must be valid");
2612 
2613     if (method()->is_synchronized() && GenerateSynchronizationCode) {
2614       LIR_Opr lock = new_register(T_INT);
2615       __ load_stack_address_monitor(0, lock);
2616 
2617       CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2618       CodeStub* slow_path = new MonitorEnterStub(obj, lock, info);
2619 
2620       // receiver is guaranteed non-NULL so don't need CodeEmitInfo
2621       __ lock_object(syncTempOpr(), obj, lock, new_register(T_OBJECT), slow_path, NULL);
2622     }
2623   }
2624 
2625   // increment invocation counters if needed
2626   if (!method()->is_accessor()) { // Accessors do not have MDOs, so no counting.
2627     CodeEmitInfo* info = new CodeEmitInfo(scope()->start()->state()->copy(ValueStack::StateBefore, SynchronizationEntryBCI), NULL);
2628     increment_invocation_counter(info);
2629   }
2630 
2631   // all blocks with a successor must end with an unconditional jump
2632   // to the successor even if they are consecutive
2633   __ jump(x->default_sux());
2634 }
2635 
2636 
2637 void LIRGenerator::do_OsrEntry(OsrEntry* x) {
2638   // construct our frame and model the production of incoming pointer
2639   // to the OSR buffer.
2640   __ osr_entry(LIR_Assembler::osrBufferPointer());
2641   LIR_Opr result = rlock_result(x);
2642   __ move(LIR_Assembler::osrBufferPointer(), result);
2643 }
2644 
2645 
2646 void LIRGenerator::invoke_load_arguments(Invoke* x, LIRItemList* args, const LIR_OprList* arg_list) {
2647   assert(args->length() == arg_list->length(),
2648          err_msg_res("args=%d, arg_list=%d", args->length(), arg_list->length()));
2649   for (int i = x->has_receiver() ? 1 : 0; i < args->length(); i++) {
2650     LIRItem* param = args->at(i);
2651     LIR_Opr loc = arg_list->at(i);
2652     if (loc->is_register()) {
2653       param->load_item_force(loc);
2654     } else {
2655       LIR_Address* addr = loc->as_address_ptr();
2656       param->load_for_store(addr->type());
2657       if (addr->type() == T_OBJECT) {
2658         __ move_wide(param->result(), addr);
2659       } else
2660         if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
2661           __ unaligned_move(param->result(), addr);
2662         } else {
2663           __ move(param->result(), addr);
2664         }
2665     }
2666   }
2667 
2668   if (x->has_receiver()) {
2669     LIRItem* receiver = args->at(0);
2670     LIR_Opr loc = arg_list->at(0);
2671     if (loc->is_register()) {
2672       receiver->load_item_force(loc);
2673     } else {
2674       assert(loc->is_address(), "just checking");
2675       receiver->load_for_store(T_OBJECT);
2676       __ move_wide(receiver->result(), loc->as_address_ptr());
2677     }
2678   }
2679 }
2680 
2681 
2682 // Visits all arguments, returns appropriate items without loading them
2683 LIRItemList* LIRGenerator::invoke_visit_arguments(Invoke* x) {
2684   LIRItemList* argument_items = new LIRItemList();
2685   if (x->has_receiver()) {
2686     LIRItem* receiver = new LIRItem(x->receiver(), this);
2687     argument_items->append(receiver);
2688   }
2689   for (int i = 0; i < x->number_of_arguments(); i++) {
2690     LIRItem* param = new LIRItem(x->argument_at(i), this);
2691     argument_items->append(param);
2692   }
2693   return argument_items;
2694 }
2695 
2696 
2697 // The invoke with receiver has following phases:
2698 //   a) traverse and load/lock receiver;
2699 //   b) traverse all arguments -> item-array (invoke_visit_argument)
2700 //   c) push receiver on stack
2701 //   d) load each of the items and push on stack
2702 //   e) unlock receiver
2703 //   f) move receiver into receiver-register %o0
2704 //   g) lock result registers and emit call operation
2705 //
2706 // Before issuing a call, we must spill-save all values on stack
2707 // that are in caller-save register. "spill-save" moves thos registers
2708 // either in a free callee-save register or spills them if no free
2709 // callee save register is available.
2710 //
2711 // The problem is where to invoke spill-save.
2712 // - if invoked between e) and f), we may lock callee save
2713 //   register in "spill-save" that destroys the receiver register
2714 //   before f) is executed
2715 // - if we rearange the f) to be earlier, by loading %o0, it
2716 //   may destroy a value on the stack that is currently in %o0
2717 //   and is waiting to be spilled
2718 // - if we keep the receiver locked while doing spill-save,
2719 //   we cannot spill it as it is spill-locked
2720 //
2721 void LIRGenerator::do_Invoke(Invoke* x) {
2722   CallingConvention* cc = frame_map()->java_calling_convention(x->signature(), true);
2723 
2724   LIR_OprList* arg_list = cc->args();
2725   LIRItemList* args = invoke_visit_arguments(x);
2726   LIR_Opr receiver = LIR_OprFact::illegalOpr;
2727 
2728   // setup result register
2729   LIR_Opr result_register = LIR_OprFact::illegalOpr;
2730   if (x->type() != voidType) {
2731     result_register = result_register_for(x->type());
2732   }
2733 
2734   CodeEmitInfo* info = state_for(x, x->state());
2735 
2736   invoke_load_arguments(x, args, arg_list);
2737 
2738   if (x->has_receiver()) {
2739     args->at(0)->load_item_force(LIR_Assembler::receiverOpr());
2740     receiver = args->at(0)->result();
2741   }
2742 
2743   // emit invoke code
2744   bool optimized = x->target_is_loaded() && x->target_is_final();
2745   assert(receiver->is_illegal() || receiver->is_equal(LIR_Assembler::receiverOpr()), "must match");
2746 
2747   // JSR 292
2748   // Preserve the SP over MethodHandle call sites.
2749   ciMethod* target = x->target();
2750   bool is_method_handle_invoke = (// %%% FIXME: Are both of these relevant?
2751                                   target->is_method_handle_intrinsic() ||
2752                                   target->is_compiled_lambda_form());
2753   if (is_method_handle_invoke) {
2754     info->set_is_method_handle_invoke(true);
2755     __ move(FrameMap::stack_pointer(), FrameMap::method_handle_invoke_SP_save_opr());
2756   }
2757 
2758   switch (x->code()) {
2759     case Bytecodes::_invokestatic:
2760       __ call_static(target, result_register,
2761                      SharedRuntime::get_resolve_static_call_stub(),
2762                      arg_list, info);
2763       break;
2764     case Bytecodes::_invokespecial:
2765     case Bytecodes::_invokevirtual:
2766     case Bytecodes::_invokeinterface:
2767       // for final target we still produce an inline cache, in order
2768       // to be able to call mixed mode
2769       if (x->code() == Bytecodes::_invokespecial || optimized) {
2770         __ call_opt_virtual(target, receiver, result_register,
2771                             SharedRuntime::get_resolve_opt_virtual_call_stub(),
2772                             arg_list, info);
2773       } else if (x->vtable_index() < 0) {
2774         __ call_icvirtual(target, receiver, result_register,
2775                           SharedRuntime::get_resolve_virtual_call_stub(),
2776                           arg_list, info);
2777       } else {
2778         int entry_offset = InstanceKlass::vtable_start_offset() + x->vtable_index() * vtableEntry::size();
2779         int vtable_offset = entry_offset * wordSize + vtableEntry::method_offset_in_bytes();
2780         __ call_virtual(target, receiver, result_register, vtable_offset, arg_list, info);
2781       }
2782       break;
2783     case Bytecodes::_invokedynamic: {
2784       __ call_dynamic(target, receiver, result_register,
2785                       SharedRuntime::get_resolve_static_call_stub(),
2786                       arg_list, info);
2787       break;
2788     }
2789     default:
2790       fatal(err_msg("unexpected bytecode: %s", Bytecodes::name(x->code())));
2791       break;
2792   }
2793 
2794   // JSR 292
2795   // Restore the SP after MethodHandle call sites.
2796   if (is_method_handle_invoke) {
2797     __ move(FrameMap::method_handle_invoke_SP_save_opr(), FrameMap::stack_pointer());
2798   }
2799 
2800   if (x->type()->is_float() || x->type()->is_double()) {
2801     // Force rounding of results from non-strictfp when in strictfp
2802     // scope (or when we don't know the strictness of the callee, to
2803     // be safe.)
2804     if (method()->is_strict()) {
2805       if (!x->target_is_loaded() || !x->target_is_strictfp()) {
2806         result_register = round_item(result_register);
2807       }
2808     }
2809   }
2810 
2811   if (result_register->is_valid()) {
2812     LIR_Opr result = rlock_result(x);
2813     __ move(result_register, result);
2814   }
2815 }
2816 
2817 
2818 void LIRGenerator::do_FPIntrinsics(Intrinsic* x) {
2819   assert(x->number_of_arguments() == 1, "wrong type");
2820   LIRItem value       (x->argument_at(0), this);
2821   LIR_Opr reg = rlock_result(x);
2822   value.load_item();
2823   LIR_Opr tmp = force_to_spill(value.result(), as_BasicType(x->type()));
2824   __ move(tmp, reg);
2825 }
2826 
2827 
2828 
2829 // Code for  :  x->x() {x->cond()} x->y() ? x->tval() : x->fval()
2830 void LIRGenerator::do_IfOp(IfOp* x) {
2831 #ifdef ASSERT
2832   {
2833     ValueTag xtag = x->x()->type()->tag();
2834     ValueTag ttag = x->tval()->type()->tag();
2835     assert(xtag == intTag || xtag == objectTag, "cannot handle others");
2836     assert(ttag == addressTag || ttag == intTag || ttag == objectTag || ttag == longTag, "cannot handle others");
2837     assert(ttag == x->fval()->type()->tag(), "cannot handle others");
2838   }
2839 #endif
2840 
2841   LIRItem left(x->x(), this);
2842   LIRItem right(x->y(), this);
2843   left.load_item();
2844   if (can_inline_as_constant(right.value())) {
2845     right.dont_load_item();
2846   } else {
2847     right.load_item();
2848   }
2849 
2850   LIRItem t_val(x->tval(), this);
2851   LIRItem f_val(x->fval(), this);
2852   t_val.dont_load_item();
2853   f_val.dont_load_item();
2854   LIR_Opr reg = rlock_result(x);
2855 
2856   __ cmp(lir_cond(x->cond()), left.result(), right.result());
2857   __ cmove(lir_cond(x->cond()), t_val.result(), f_val.result(), reg, as_BasicType(x->x()->type()));
2858 }
2859 
2860 void LIRGenerator::do_RuntimeCall(address routine, int expected_arguments, Intrinsic* x) {
2861     assert(x->number_of_arguments() == expected_arguments, "wrong type");
2862     LIR_Opr reg = result_register_for(x->type());
2863     __ call_runtime_leaf(routine, getThreadTemp(),
2864                          reg, new LIR_OprList());
2865     LIR_Opr result = rlock_result(x);
2866     __ move(reg, result);
2867 }
2868 
2869 #ifdef TRACE_HAVE_INTRINSICS
2870 void LIRGenerator::do_ThreadIDIntrinsic(Intrinsic* x) {
2871     LIR_Opr thread = getThreadPointer();
2872     LIR_Opr osthread = new_pointer_register();
2873     __ move(new LIR_Address(thread, in_bytes(JavaThread::osthread_offset()), osthread->type()), osthread);
2874     size_t thread_id_size = OSThread::thread_id_size();
2875     if (thread_id_size == (size_t) BytesPerLong) {
2876       LIR_Opr id = new_register(T_LONG);
2877       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_LONG), id);
2878       __ convert(Bytecodes::_l2i, id, rlock_result(x));
2879     } else if (thread_id_size == (size_t) BytesPerInt) {
2880       __ move(new LIR_Address(osthread, in_bytes(OSThread::thread_id_offset()), T_INT), rlock_result(x));
2881     } else {
2882       ShouldNotReachHere();
2883     }
2884 }
2885 
2886 void LIRGenerator::do_ClassIDIntrinsic(Intrinsic* x) {
2887     CodeEmitInfo* info = state_for(x);
2888     CodeEmitInfo* info2 = new CodeEmitInfo(info); // Clone for the second null check
2889     BasicType klass_pointer_type = NOT_LP64(T_INT) LP64_ONLY(T_LONG);
2890     assert(info != NULL, "must have info");
2891     LIRItem arg(x->argument_at(1), this);
2892     arg.load_item();
2893     LIR_Opr klass = new_pointer_register();
2894     __ move(new LIR_Address(arg.result(), java_lang_Class::klass_offset_in_bytes(), klass_pointer_type), klass, info);
2895     LIR_Opr id = new_register(T_LONG);
2896     ByteSize offset = TRACE_ID_OFFSET;
2897     LIR_Address* trace_id_addr = new LIR_Address(klass, in_bytes(offset), T_LONG);
2898     __ move(trace_id_addr, id);
2899     __ logical_or(id, LIR_OprFact::longConst(0x01l), id);
2900     __ store(id, trace_id_addr);
2901     __ logical_and(id, LIR_OprFact::longConst(~0x3l), id);
2902     __ move(id, rlock_result(x));
2903 }
2904 #endif
2905 
2906 void LIRGenerator::do_Intrinsic(Intrinsic* x) {
2907   switch (x->id()) {
2908   case vmIntrinsics::_intBitsToFloat      :
2909   case vmIntrinsics::_doubleToRawLongBits :
2910   case vmIntrinsics::_longBitsToDouble    :
2911   case vmIntrinsics::_floatToRawIntBits   : {
2912     do_FPIntrinsics(x);
2913     break;
2914   }
2915 
2916 #ifdef TRACE_HAVE_INTRINSICS
2917   case vmIntrinsics::_threadID: do_ThreadIDIntrinsic(x); break;
2918   case vmIntrinsics::_classID: do_ClassIDIntrinsic(x); break;
2919   case vmIntrinsics::_counterTime:
2920     do_RuntimeCall(CAST_FROM_FN_PTR(address, TRACE_TIME_METHOD), 0, x);
2921     break;
2922 #endif
2923 
2924   case vmIntrinsics::_currentTimeMillis:
2925     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeMillis), 0, x);
2926     break;
2927 
2928   case vmIntrinsics::_nanoTime:
2929     do_RuntimeCall(CAST_FROM_FN_PTR(address, os::javaTimeNanos), 0, x);
2930     break;
2931 
2932   case vmIntrinsics::_Object_init:    do_RegisterFinalizer(x); break;
2933   case vmIntrinsics::_isInstance:     do_isInstance(x);    break;
2934   case vmIntrinsics::_getClass:       do_getClass(x);      break;
2935   case vmIntrinsics::_currentThread:  do_currentThread(x); break;
2936 
2937   case vmIntrinsics::_dlog:           // fall through
2938   case vmIntrinsics::_dlog10:         // fall through
2939   case vmIntrinsics::_dabs:           // fall through
2940   case vmIntrinsics::_dsqrt:          // fall through
2941   case vmIntrinsics::_dtan:           // fall through
2942   case vmIntrinsics::_dsin :          // fall through
2943   case vmIntrinsics::_dcos :          // fall through
2944   case vmIntrinsics::_dexp :          // fall through
2945   case vmIntrinsics::_dpow :          do_MathIntrinsic(x); break;
2946   case vmIntrinsics::_arraycopy:      do_ArrayCopy(x);     break;
2947 
2948   // java.nio.Buffer.checkIndex
2949   case vmIntrinsics::_checkIndex:     do_NIOCheckIndex(x); break;
2950 
2951   case vmIntrinsics::_compareAndSwapObject:
2952     do_CompareAndSwap(x, objectType);
2953     break;
2954   case vmIntrinsics::_compareAndSwapInt:
2955     do_CompareAndSwap(x, intType);
2956     break;
2957   case vmIntrinsics::_compareAndSwapLong:
2958     do_CompareAndSwap(x, longType);
2959     break;
2960 
2961   case vmIntrinsics::_Reference_get:
2962     do_Reference_get(x);
2963     break;
2964 
2965   default: ShouldNotReachHere(); break;
2966   }
2967 }
2968 
2969 void LIRGenerator::do_ProfileCall(ProfileCall* x) {
2970   // Need recv in a temporary register so it interferes with the other temporaries
2971   LIR_Opr recv = LIR_OprFact::illegalOpr;
2972   LIR_Opr mdo = new_register(T_OBJECT);
2973   // tmp is used to hold the counters on SPARC
2974   LIR_Opr tmp = new_pointer_register();
2975   if (x->recv() != NULL) {
2976     LIRItem value(x->recv(), this);
2977     value.load_item();
2978     recv = new_register(T_OBJECT);
2979     __ move(value.result(), recv);
2980   }
2981   __ profile_call(x->method(), x->bci_of_invoke(), x->callee(), mdo, recv, tmp, x->known_holder());
2982 }
2983 
2984 void LIRGenerator::do_ProfileInvoke(ProfileInvoke* x) {
2985   // We can safely ignore accessors here, since c2 will inline them anyway,
2986   // accessors are also always mature.
2987   if (!x->inlinee()->is_accessor()) {
2988     CodeEmitInfo* info = state_for(x, x->state(), true);
2989     // Notify the runtime very infrequently only to take care of counter overflows
2990     increment_event_counter_impl(info, x->inlinee(), (1 << Tier23InlineeNotifyFreqLog) - 1, InvocationEntryBci, false, true);
2991   }
2992 }
2993 
2994 void LIRGenerator::increment_event_counter(CodeEmitInfo* info, int bci, bool backedge) {
2995   int freq_log;
2996   int level = compilation()->env()->comp_level();
2997   if (level == CompLevel_limited_profile) {
2998     freq_log = (backedge ? Tier2BackedgeNotifyFreqLog : Tier2InvokeNotifyFreqLog);
2999   } else if (level == CompLevel_full_profile) {
3000     freq_log = (backedge ? Tier3BackedgeNotifyFreqLog : Tier3InvokeNotifyFreqLog);
3001   } else {
3002     ShouldNotReachHere();
3003   }
3004   // Increment the appropriate invocation/backedge counter and notify the runtime.
3005   increment_event_counter_impl(info, info->scope()->method(), (1 << freq_log) - 1, bci, backedge, true);
3006 }
3007 
3008 void LIRGenerator::increment_event_counter_impl(CodeEmitInfo* info,
3009                                                 ciMethod *method, int frequency,
3010                                                 int bci, bool backedge, bool notify) {
3011   assert(frequency == 0 || is_power_of_2(frequency + 1), "Frequency must be x^2 - 1 or 0");
3012   int level = _compilation->env()->comp_level();
3013   assert(level > CompLevel_simple, "Shouldn't be here");
3014 
3015   int offset = -1;
3016   LIR_Opr counter_holder = new_register(T_METADATA);
3017   LIR_Opr meth;
3018   if (level == CompLevel_limited_profile) {
3019     offset = in_bytes(backedge ? Method::backedge_counter_offset() :
3020                                  Method::invocation_counter_offset());
3021     __ metadata2reg(method->constant_encoding(), counter_holder);
3022     meth = counter_holder;
3023   } else if (level == CompLevel_full_profile) {
3024     offset = in_bytes(backedge ? MethodData::backedge_counter_offset() :
3025                                  MethodData::invocation_counter_offset());
3026     ciMethodData* md = method->method_data_or_null();
3027     assert(md != NULL, "Sanity");
3028     __ metadata2reg(md->constant_encoding(), counter_holder);
3029     meth = new_register(T_METADATA);
3030     __ metadata2reg(method->constant_encoding(), meth);
3031   } else {
3032     ShouldNotReachHere();
3033   }
3034   LIR_Address* counter = new LIR_Address(counter_holder, offset, T_INT);
3035   LIR_Opr result = new_register(T_INT);
3036   __ load(counter, result);
3037   __ add(result, LIR_OprFact::intConst(InvocationCounter::count_increment), result);
3038   __ store(result, counter);
3039   if (notify) {
3040     LIR_Opr mask = load_immediate(frequency << InvocationCounter::count_shift, T_INT);
3041     __ logical_and(result, mask, result);
3042     __ cmp(lir_cond_equal, result, LIR_OprFact::intConst(0));
3043     // The bci for info can point to cmp for if's we want the if bci
3044     CodeStub* overflow = new CounterOverflowStub(info, bci, meth);
3045     __ branch(lir_cond_equal, T_INT, overflow);
3046     __ branch_destination(overflow->continuation());
3047   }
3048 }
3049 
3050 void LIRGenerator::do_RuntimeCall(RuntimeCall* x) {
3051   LIR_OprList* args = new LIR_OprList(x->number_of_arguments());
3052   BasicTypeList* signature = new BasicTypeList(x->number_of_arguments());
3053 
3054   if (x->pass_thread()) {
3055     signature->append(T_ADDRESS);
3056     args->append(getThreadPointer());
3057   }
3058 
3059   for (int i = 0; i < x->number_of_arguments(); i++) {
3060     Value a = x->argument_at(i);
3061     LIRItem* item = new LIRItem(a, this);
3062     item->load_item();
3063     args->append(item->result());
3064     signature->append(as_BasicType(a->type()));
3065   }
3066 
3067   LIR_Opr result = call_runtime(signature, args, x->entry(), x->type(), NULL);
3068   if (x->type() == voidType) {
3069     set_no_result(x);
3070   } else {
3071     __ move(result, rlock_result(x));
3072   }
3073 }
3074 
3075 LIR_Opr LIRGenerator::call_runtime(Value arg1, address entry, ValueType* result_type, CodeEmitInfo* info) {
3076   LIRItemList args(1);
3077   LIRItem value(arg1, this);
3078   args.append(&value);
3079   BasicTypeList signature;
3080   signature.append(as_BasicType(arg1->type()));
3081 
3082   return call_runtime(&signature, &args, entry, result_type, info);
3083 }
3084 
3085 
3086 LIR_Opr LIRGenerator::call_runtime(Value arg1, Value arg2, address entry, ValueType* result_type, CodeEmitInfo* info) {
3087   LIRItemList args(2);
3088   LIRItem value1(arg1, this);
3089   LIRItem value2(arg2, this);
3090   args.append(&value1);
3091   args.append(&value2);
3092   BasicTypeList signature;
3093   signature.append(as_BasicType(arg1->type()));
3094   signature.append(as_BasicType(arg2->type()));
3095 
3096   return call_runtime(&signature, &args, entry, result_type, info);
3097 }
3098 
3099 
3100 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIR_OprList* args,
3101                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3102   // get a result register
3103   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3104   LIR_Opr result = LIR_OprFact::illegalOpr;
3105   if (result_type->tag() != voidTag) {
3106     result = new_register(result_type);
3107     phys_reg = result_register_for(result_type);
3108   }
3109 
3110   // move the arguments into the correct location
3111   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3112   assert(cc->length() == args->length(), "argument mismatch");
3113   for (int i = 0; i < args->length(); i++) {
3114     LIR_Opr arg = args->at(i);
3115     LIR_Opr loc = cc->at(i);
3116     if (loc->is_register()) {
3117       __ move(arg, loc);
3118     } else {
3119       LIR_Address* addr = loc->as_address_ptr();
3120 //           if (!can_store_as_constant(arg)) {
3121 //             LIR_Opr tmp = new_register(arg->type());
3122 //             __ move(arg, tmp);
3123 //             arg = tmp;
3124 //           }
3125       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3126         __ unaligned_move(arg, addr);
3127       } else {
3128         __ move(arg, addr);
3129       }
3130     }
3131   }
3132 
3133   if (info) {
3134     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3135   } else {
3136     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3137   }
3138   if (result->is_valid()) {
3139     __ move(phys_reg, result);
3140   }
3141   return result;
3142 }
3143 
3144 
3145 LIR_Opr LIRGenerator::call_runtime(BasicTypeArray* signature, LIRItemList* args,
3146                                    address entry, ValueType* result_type, CodeEmitInfo* info) {
3147   // get a result register
3148   LIR_Opr phys_reg = LIR_OprFact::illegalOpr;
3149   LIR_Opr result = LIR_OprFact::illegalOpr;
3150   if (result_type->tag() != voidTag) {
3151     result = new_register(result_type);
3152     phys_reg = result_register_for(result_type);
3153   }
3154 
3155   // move the arguments into the correct location
3156   CallingConvention* cc = frame_map()->c_calling_convention(signature);
3157 
3158   assert(cc->length() == args->length(), "argument mismatch");
3159   for (int i = 0; i < args->length(); i++) {
3160     LIRItem* arg = args->at(i);
3161     LIR_Opr loc = cc->at(i);
3162     if (loc->is_register()) {
3163       arg->load_item_force(loc);
3164     } else {
3165       LIR_Address* addr = loc->as_address_ptr();
3166       arg->load_for_store(addr->type());
3167       if (addr->type() == T_LONG || addr->type() == T_DOUBLE) {
3168         __ unaligned_move(arg->result(), addr);
3169       } else {
3170         __ move(arg->result(), addr);
3171       }
3172     }
3173   }
3174 
3175   if (info) {
3176     __ call_runtime(entry, getThreadTemp(), phys_reg, cc->args(), info);
3177   } else {
3178     __ call_runtime_leaf(entry, getThreadTemp(), phys_reg, cc->args());
3179   }
3180   if (result->is_valid()) {
3181     __ move(phys_reg, result);
3182   }
3183   return result;
3184 }
3185 
3186 void LIRGenerator::do_MemBar(MemBar* x) {
3187   if (os::is_MP()) {
3188     LIR_Code code = x->code();
3189     switch(code) {
3190       case lir_membar_acquire   : __ membar_acquire(); break;
3191       case lir_membar_release   : __ membar_release(); break;
3192       case lir_membar           : __ membar(); break;
3193       case lir_membar_loadload  : __ membar_loadload(); break;
3194       case lir_membar_storestore: __ membar_storestore(); break;
3195       case lir_membar_loadstore : __ membar_loadstore(); break;
3196       case lir_membar_storeload : __ membar_storeload(); break;
3197       default                   : ShouldNotReachHere(); break;
3198     }
3199   }
3200 }