1 /*
   2  * Copyright (c) 1997, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/exceptionHandlerTable.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "compiler/compileLog.hpp"
  31 #include "compiler/oopMap.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/block.hpp"
  34 #include "opto/c2compiler.hpp"
  35 #include "opto/callGenerator.hpp"
  36 #include "opto/callnode.hpp"
  37 #include "opto/cfgnode.hpp"
  38 #include "opto/chaitin.hpp"
  39 #include "opto/compile.hpp"
  40 #include "opto/connode.hpp"
  41 #include "opto/divnode.hpp"
  42 #include "opto/escape.hpp"
  43 #include "opto/idealGraphPrinter.hpp"
  44 #include "opto/loopnode.hpp"
  45 #include "opto/machnode.hpp"
  46 #include "opto/macro.hpp"
  47 #include "opto/matcher.hpp"
  48 #include "opto/memnode.hpp"
  49 #include "opto/mulnode.hpp"
  50 #include "opto/node.hpp"
  51 #include "opto/opcodes.hpp"
  52 #include "opto/output.hpp"
  53 #include "opto/parse.hpp"
  54 #include "opto/phaseX.hpp"
  55 #include "opto/rootnode.hpp"
  56 #include "opto/runtime.hpp"
  57 #include "opto/stringopts.hpp"
  58 #include "opto/type.hpp"
  59 #include "opto/vectornode.hpp"
  60 #include "runtime/arguments.hpp"
  61 #include "runtime/signature.hpp"
  62 #include "runtime/stubRoutines.hpp"
  63 #include "runtime/timer.hpp"
  64 #include "utilities/copy.hpp"
  65 #ifdef TARGET_ARCH_MODEL_x86_32
  66 # include "adfiles/ad_x86_32.hpp"
  67 #endif
  68 #ifdef TARGET_ARCH_MODEL_x86_64
  69 # include "adfiles/ad_x86_64.hpp"
  70 #endif
  71 #ifdef TARGET_ARCH_MODEL_sparc
  72 # include "adfiles/ad_sparc.hpp"
  73 #endif
  74 #ifdef TARGET_ARCH_MODEL_zero
  75 # include "adfiles/ad_zero.hpp"
  76 #endif
  77 #ifdef TARGET_ARCH_MODEL_arm
  78 # include "adfiles/ad_arm.hpp"
  79 #endif
  80 #ifdef TARGET_ARCH_MODEL_ppc
  81 # include "adfiles/ad_ppc.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new (C) MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual) {
 101 #ifdef ASSERT
 102   for (int i = 1; i < _intrinsics->length(); i++) {
 103     CallGenerator* cg1 = _intrinsics->at(i-1);
 104     CallGenerator* cg2 = _intrinsics->at(i);
 105     assert(cg1->method() != cg2->method()
 106            ? cg1->method()     < cg2->method()
 107            : cg1->is_virtual() < cg2->is_virtual(),
 108            "compiler intrinsics list must stay sorted");
 109   }
 110 #endif
 111   // Binary search sorted list, in decreasing intervals [lo, hi].
 112   int lo = 0, hi = _intrinsics->length()-1;
 113   while (lo <= hi) {
 114     int mid = (uint)(hi + lo) / 2;
 115     ciMethod* mid_m = _intrinsics->at(mid)->method();
 116     if (m < mid_m) {
 117       hi = mid-1;
 118     } else if (m > mid_m) {
 119       lo = mid+1;
 120     } else {
 121       // look at minor sort key
 122       bool mid_virt = _intrinsics->at(mid)->is_virtual();
 123       if (is_virtual < mid_virt) {
 124         hi = mid-1;
 125       } else if (is_virtual > mid_virt) {
 126         lo = mid+1;
 127       } else {
 128         return mid;  // exact match
 129       }
 130     }
 131   }
 132   return lo;  // inexact match
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new GrowableArray<CallGenerator*>(60);
 138   }
 139   // This code is stolen from ciObjectFactory::insert.
 140   // Really, GrowableArray should have methods for
 141   // insert_at, remove_at, and binary_search.
 142   int len = _intrinsics->length();
 143   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual());
 144   if (index == len) {
 145     _intrinsics->append(cg);
 146   } else {
 147 #ifdef ASSERT
 148     CallGenerator* oldcg = _intrinsics->at(index);
 149     assert(oldcg->method() != cg->method() || oldcg->is_virtual() != cg->is_virtual(), "don't register twice");
 150 #endif
 151     _intrinsics->append(_intrinsics->at(len-1));
 152     int pos;
 153     for (pos = len-2; pos >= index; pos--) {
 154       _intrinsics->at_put(pos+1,_intrinsics->at(pos));
 155     }
 156     _intrinsics->at_put(index, cg);
 157   }
 158   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 159 }
 160 
 161 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 162   assert(m->is_loaded(), "don't try this on unloaded methods");
 163   if (_intrinsics != NULL) {
 164     int index = intrinsic_insertion_index(m, is_virtual);
 165     if (index < _intrinsics->length()
 166         && _intrinsics->at(index)->method() == m
 167         && _intrinsics->at(index)->is_virtual() == is_virtual) {
 168       return _intrinsics->at(index);
 169     }
 170   }
 171   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 172   if (m->intrinsic_id() != vmIntrinsics::_none &&
 173       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 174     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 175     if (cg != NULL) {
 176       // Save it for next time:
 177       register_intrinsic(cg);
 178       return cg;
 179     } else {
 180       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 181     }
 182   }
 183   return NULL;
 184 }
 185 
 186 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 187 // in library_call.cpp.
 188 
 189 
 190 #ifndef PRODUCT
 191 // statistics gathering...
 192 
 193 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 194 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 195 
 196 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 197   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 198   int oflags = _intrinsic_hist_flags[id];
 199   assert(flags != 0, "what happened?");
 200   if (is_virtual) {
 201     flags |= _intrinsic_virtual;
 202   }
 203   bool changed = (flags != oflags);
 204   if ((flags & _intrinsic_worked) != 0) {
 205     juint count = (_intrinsic_hist_count[id] += 1);
 206     if (count == 1) {
 207       changed = true;           // first time
 208     }
 209     // increment the overall count also:
 210     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 211   }
 212   if (changed) {
 213     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 214       // Something changed about the intrinsic's virtuality.
 215       if ((flags & _intrinsic_virtual) != 0) {
 216         // This is the first use of this intrinsic as a virtual call.
 217         if (oflags != 0) {
 218           // We already saw it as a non-virtual, so note both cases.
 219           flags |= _intrinsic_both;
 220         }
 221       } else if ((oflags & _intrinsic_both) == 0) {
 222         // This is the first use of this intrinsic as a non-virtual
 223         flags |= _intrinsic_both;
 224       }
 225     }
 226     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 227   }
 228   // update the overall flags also:
 229   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 230   return changed;
 231 }
 232 
 233 static char* format_flags(int flags, char* buf) {
 234   buf[0] = 0;
 235   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 236   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 237   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 238   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 239   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 240   if (buf[0] == 0)  strcat(buf, ",");
 241   assert(buf[0] == ',', "must be");
 242   return &buf[1];
 243 }
 244 
 245 void Compile::print_intrinsic_statistics() {
 246   char flagsbuf[100];
 247   ttyLocker ttyl;
 248   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 249   tty->print_cr("Compiler intrinsic usage:");
 250   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 251   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 252   #define PRINT_STAT_LINE(name, c, f) \
 253     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 254   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 255     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 256     int   flags = _intrinsic_hist_flags[id];
 257     juint count = _intrinsic_hist_count[id];
 258     if ((flags | count) != 0) {
 259       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 260     }
 261   }
 262   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 263   if (xtty != NULL)  xtty->tail("statistics");
 264 }
 265 
 266 void Compile::print_statistics() {
 267   { ttyLocker ttyl;
 268     if (xtty != NULL)  xtty->head("statistics type='opto'");
 269     Parse::print_statistics();
 270     PhaseCCP::print_statistics();
 271     PhaseRegAlloc::print_statistics();
 272     Scheduling::print_statistics();
 273     PhasePeephole::print_statistics();
 274     PhaseIdealLoop::print_statistics();
 275     if (xtty != NULL)  xtty->tail("statistics");
 276   }
 277   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 278     // put this under its own <statistics> element.
 279     print_intrinsic_statistics();
 280   }
 281 }
 282 #endif //PRODUCT
 283 
 284 // Support for bundling info
 285 Bundle* Compile::node_bundling(const Node *n) {
 286   assert(valid_bundle_info(n), "oob");
 287   return &_node_bundling_base[n->_idx];
 288 }
 289 
 290 bool Compile::valid_bundle_info(const Node *n) {
 291   return (_node_bundling_limit > n->_idx);
 292 }
 293 
 294 
 295 void Compile::gvn_replace_by(Node* n, Node* nn) {
 296   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 297     Node* use = n->last_out(i);
 298     bool is_in_table = initial_gvn()->hash_delete(use);
 299     uint uses_found = 0;
 300     for (uint j = 0; j < use->len(); j++) {
 301       if (use->in(j) == n) {
 302         if (j < use->req())
 303           use->set_req(j, nn);
 304         else
 305           use->set_prec(j, nn);
 306         uses_found++;
 307       }
 308     }
 309     if (is_in_table) {
 310       // reinsert into table
 311       initial_gvn()->hash_find_insert(use);
 312     }
 313     record_for_igvn(use);
 314     i -= uses_found;    // we deleted 1 or more copies of this edge
 315   }
 316 }
 317 
 318 
 319 
 320 
 321 // Identify all nodes that are reachable from below, useful.
 322 // Use breadth-first pass that records state in a Unique_Node_List,
 323 // recursive traversal is slower.
 324 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 325   int estimated_worklist_size = unique();
 326   useful.map( estimated_worklist_size, NULL );  // preallocate space
 327 
 328   // Initialize worklist
 329   if (root() != NULL)     { useful.push(root()); }
 330   // If 'top' is cached, declare it useful to preserve cached node
 331   if( cached_top_node() ) { useful.push(cached_top_node()); }
 332 
 333   // Push all useful nodes onto the list, breadthfirst
 334   for( uint next = 0; next < useful.size(); ++next ) {
 335     assert( next < unique(), "Unique useful nodes < total nodes");
 336     Node *n  = useful.at(next);
 337     uint max = n->len();
 338     for( uint i = 0; i < max; ++i ) {
 339       Node *m = n->in(i);
 340       if( m == NULL ) continue;
 341       useful.push(m);
 342     }
 343   }
 344 }
 345 
 346 // Disconnect all useless nodes by disconnecting those at the boundary.
 347 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 348   uint next = 0;
 349   while (next < useful.size()) {
 350     Node *n = useful.at(next++);
 351     // Use raw traversal of out edges since this code removes out edges
 352     int max = n->outcnt();
 353     for (int j = 0; j < max; ++j) {
 354       Node* child = n->raw_out(j);
 355       if (! useful.member(child)) {
 356         assert(!child->is_top() || child != top(),
 357                "If top is cached in Compile object it is in useful list");
 358         // Only need to remove this out-edge to the useless node
 359         n->raw_del_out(j);
 360         --j;
 361         --max;
 362       }
 363     }
 364     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 365       record_for_igvn(n->unique_out());
 366     }
 367   }
 368   // Remove useless macro and predicate opaq nodes
 369   for (int i = C->macro_count()-1; i >= 0; i--) {
 370     Node* n = C->macro_node(i);
 371     if (!useful.member(n)) {
 372       remove_macro_node(n);
 373     }
 374   }
 375   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 376 }
 377 
 378 //------------------------------frame_size_in_words-----------------------------
 379 // frame_slots in units of words
 380 int Compile::frame_size_in_words() const {
 381   // shift is 0 in LP32 and 1 in LP64
 382   const int shift = (LogBytesPerWord - LogBytesPerInt);
 383   int words = _frame_slots >> shift;
 384   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 385   return words;
 386 }
 387 
 388 // ============================================================================
 389 //------------------------------CompileWrapper---------------------------------
 390 class CompileWrapper : public StackObj {
 391   Compile *const _compile;
 392  public:
 393   CompileWrapper(Compile* compile);
 394 
 395   ~CompileWrapper();
 396 };
 397 
 398 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 399   // the Compile* pointer is stored in the current ciEnv:
 400   ciEnv* env = compile->env();
 401   assert(env == ciEnv::current(), "must already be a ciEnv active");
 402   assert(env->compiler_data() == NULL, "compile already active?");
 403   env->set_compiler_data(compile);
 404   assert(compile == Compile::current(), "sanity");
 405 
 406   compile->set_type_dict(NULL);
 407   compile->set_type_hwm(NULL);
 408   compile->set_type_last_size(0);
 409   compile->set_last_tf(NULL, NULL);
 410   compile->set_indexSet_arena(NULL);
 411   compile->set_indexSet_free_block_list(NULL);
 412   compile->init_type_arena();
 413   Type::Initialize(compile);
 414   _compile->set_scratch_buffer_blob(NULL);
 415   _compile->begin_method();
 416 }
 417 CompileWrapper::~CompileWrapper() {
 418   _compile->end_method();
 419   if (_compile->scratch_buffer_blob() != NULL)
 420     BufferBlob::free(_compile->scratch_buffer_blob());
 421   _compile->env()->set_compiler_data(NULL);
 422 }
 423 
 424 
 425 //----------------------------print_compile_messages---------------------------
 426 void Compile::print_compile_messages() {
 427 #ifndef PRODUCT
 428   // Check if recompiling
 429   if (_subsume_loads == false && PrintOpto) {
 430     // Recompiling without allowing machine instructions to subsume loads
 431     tty->print_cr("*********************************************************");
 432     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 433     tty->print_cr("*********************************************************");
 434   }
 435   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 436     // Recompiling without escape analysis
 437     tty->print_cr("*********************************************************");
 438     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 439     tty->print_cr("*********************************************************");
 440   }
 441   if (env()->break_at_compile()) {
 442     // Open the debugger when compiling this method.
 443     tty->print("### Breaking when compiling: ");
 444     method()->print_short_name();
 445     tty->cr();
 446     BREAKPOINT;
 447   }
 448 
 449   if( PrintOpto ) {
 450     if (is_osr_compilation()) {
 451       tty->print("[OSR]%3d", _compile_id);
 452     } else {
 453       tty->print("%3d", _compile_id);
 454     }
 455   }
 456 #endif
 457 }
 458 
 459 
 460 //-----------------------init_scratch_buffer_blob------------------------------
 461 // Construct a temporary BufferBlob and cache it for this compile.
 462 void Compile::init_scratch_buffer_blob(int const_size) {
 463   // If there is already a scratch buffer blob allocated and the
 464   // constant section is big enough, use it.  Otherwise free the
 465   // current and allocate a new one.
 466   BufferBlob* blob = scratch_buffer_blob();
 467   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 468     // Use the current blob.
 469   } else {
 470     if (blob != NULL) {
 471       BufferBlob::free(blob);
 472     }
 473 
 474     ResourceMark rm;
 475     _scratch_const_size = const_size;
 476     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 477     blob = BufferBlob::create("Compile::scratch_buffer", size);
 478     // Record the buffer blob for next time.
 479     set_scratch_buffer_blob(blob);
 480     // Have we run out of code space?
 481     if (scratch_buffer_blob() == NULL) {
 482       // Let CompilerBroker disable further compilations.
 483       record_failure("Not enough space for scratch buffer in CodeCache");
 484       return;
 485     }
 486   }
 487 
 488   // Initialize the relocation buffers
 489   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 490   set_scratch_locs_memory(locs_buf);
 491 }
 492 
 493 
 494 //-----------------------scratch_emit_size-------------------------------------
 495 // Helper function that computes size by emitting code
 496 uint Compile::scratch_emit_size(const Node* n) {
 497   // Start scratch_emit_size section.
 498   set_in_scratch_emit_size(true);
 499 
 500   // Emit into a trash buffer and count bytes emitted.
 501   // This is a pretty expensive way to compute a size,
 502   // but it works well enough if seldom used.
 503   // All common fixed-size instructions are given a size
 504   // method by the AD file.
 505   // Note that the scratch buffer blob and locs memory are
 506   // allocated at the beginning of the compile task, and
 507   // may be shared by several calls to scratch_emit_size.
 508   // The allocation of the scratch buffer blob is particularly
 509   // expensive, since it has to grab the code cache lock.
 510   BufferBlob* blob = this->scratch_buffer_blob();
 511   assert(blob != NULL, "Initialize BufferBlob at start");
 512   assert(blob->size() > MAX_inst_size, "sanity");
 513   relocInfo* locs_buf = scratch_locs_memory();
 514   address blob_begin = blob->content_begin();
 515   address blob_end   = (address)locs_buf;
 516   assert(blob->content_contains(blob_end), "sanity");
 517   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 518   buf.initialize_consts_size(_scratch_const_size);
 519   buf.initialize_stubs_size(MAX_stubs_size);
 520   assert(locs_buf != NULL, "sanity");
 521   int lsize = MAX_locs_size / 3;
 522   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 523   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 524   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 525 
 526   // Do the emission.
 527 
 528   Label fakeL; // Fake label for branch instructions.
 529   Label*   saveL = NULL;
 530   uint save_bnum = 0;
 531   bool is_branch = n->is_MachBranch();
 532   if (is_branch) {
 533     MacroAssembler masm(&buf);
 534     masm.bind(fakeL);
 535     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 536     n->as_MachBranch()->label_set(&fakeL, 0);
 537   }
 538   n->emit(buf, this->regalloc());
 539   if (is_branch) // Restore label.
 540     n->as_MachBranch()->label_set(saveL, save_bnum);
 541 
 542   // End scratch_emit_size section.
 543   set_in_scratch_emit_size(false);
 544 
 545   return buf.insts_size();
 546 }
 547 
 548 
 549 // ============================================================================
 550 //------------------------------Compile standard-------------------------------
 551 debug_only( int Compile::_debug_idx = 100000; )
 552 
 553 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 554 // the continuation bci for on stack replacement.
 555 
 556 
 557 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci, bool subsume_loads, bool do_escape_analysis )
 558                 : Phase(Compiler),
 559                   _env(ci_env),
 560                   _log(ci_env->log()),
 561                   _compile_id(ci_env->compile_id()),
 562                   _save_argument_registers(false),
 563                   _stub_name(NULL),
 564                   _stub_function(NULL),
 565                   _stub_entry_point(NULL),
 566                   _method(target),
 567                   _entry_bci(osr_bci),
 568                   _initial_gvn(NULL),
 569                   _for_igvn(NULL),
 570                   _warm_calls(NULL),
 571                   _subsume_loads(subsume_loads),
 572                   _do_escape_analysis(do_escape_analysis),
 573                   _failure_reason(NULL),
 574                   _code_buffer("Compile::Fill_buffer"),
 575                   _orig_pc_slot(0),
 576                   _orig_pc_slot_offset_in_bytes(0),
 577                   _has_method_handle_invokes(false),
 578                   _mach_constant_base_node(NULL),
 579                   _node_bundling_limit(0),
 580                   _node_bundling_base(NULL),
 581                   _java_calls(0),
 582                   _inner_loops(0),
 583                   _scratch_const_size(-1),
 584                   _in_scratch_emit_size(false),
 585 #ifndef PRODUCT
 586                   _trace_opto_output(TraceOptoOutput || method()->has_option("TraceOptoOutput")),
 587                   _printer(IdealGraphPrinter::printer()),
 588 #endif
 589                   _congraph(NULL) {
 590   C = this;
 591 
 592   CompileWrapper cw(this);
 593 #ifndef PRODUCT
 594   if (TimeCompiler2) {
 595     tty->print(" ");
 596     target->holder()->name()->print();
 597     tty->print(".");
 598     target->print_short_name();
 599     tty->print("  ");
 600   }
 601   TraceTime t1("Total compilation time", &_t_totalCompilation, TimeCompiler, TimeCompiler2);
 602   TraceTime t2(NULL, &_t_methodCompilation, TimeCompiler, false);
 603   bool print_opto_assembly = PrintOptoAssembly || _method->has_option("PrintOptoAssembly");
 604   if (!print_opto_assembly) {
 605     bool print_assembly = (PrintAssembly || _method->should_print_assembly());
 606     if (print_assembly && !Disassembler::can_decode()) {
 607       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 608       print_opto_assembly = true;
 609     }
 610   }
 611   set_print_assembly(print_opto_assembly);
 612   set_parsed_irreducible_loop(false);
 613 #endif
 614 
 615   if (ProfileTraps) {
 616     // Make sure the method being compiled gets its own MDO,
 617     // so we can at least track the decompile_count().
 618     method()->ensure_method_data();
 619   }
 620 
 621   Init(::AliasLevel);
 622 
 623 
 624   print_compile_messages();
 625 
 626   if (UseOldInlining || PrintCompilation NOT_PRODUCT( || PrintOpto) )
 627     _ilt = InlineTree::build_inline_tree_root();
 628   else
 629     _ilt = NULL;
 630 
 631   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 632   assert(num_alias_types() >= AliasIdxRaw, "");
 633 
 634 #define MINIMUM_NODE_HASH  1023
 635   // Node list that Iterative GVN will start with
 636   Unique_Node_List for_igvn(comp_arena());
 637   set_for_igvn(&for_igvn);
 638 
 639   // GVN that will be run immediately on new nodes
 640   uint estimated_size = method()->code_size()*4+64;
 641   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 642   PhaseGVN gvn(node_arena(), estimated_size);
 643   set_initial_gvn(&gvn);
 644 
 645   { // Scope for timing the parser
 646     TracePhase t3("parse", &_t_parser, true);
 647 
 648     // Put top into the hash table ASAP.
 649     initial_gvn()->transform_no_reclaim(top());
 650 
 651     // Set up tf(), start(), and find a CallGenerator.
 652     CallGenerator* cg = NULL;
 653     if (is_osr_compilation()) {
 654       const TypeTuple *domain = StartOSRNode::osr_domain();
 655       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 656       init_tf(TypeFunc::make(domain, range));
 657       StartNode* s = new (this) StartOSRNode(root(), domain);
 658       initial_gvn()->set_type_bottom(s);
 659       init_start(s);
 660       cg = CallGenerator::for_osr(method(), entry_bci());
 661     } else {
 662       // Normal case.
 663       init_tf(TypeFunc::make(method()));
 664       StartNode* s = new (this) StartNode(root(), tf()->domain());
 665       initial_gvn()->set_type_bottom(s);
 666       init_start(s);
 667       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get && UseG1GC) {
 668         // With java.lang.ref.reference.get() we must go through the
 669         // intrinsic when G1 is enabled - even when get() is the root
 670         // method of the compile - so that, if necessary, the value in
 671         // the referent field of the reference object gets recorded by
 672         // the pre-barrier code.
 673         // Specifically, if G1 is enabled, the value in the referent
 674         // field is recorded by the G1 SATB pre barrier. This will
 675         // result in the referent being marked live and the reference
 676         // object removed from the list of discovered references during
 677         // reference processing.
 678         cg = find_intrinsic(method(), false);
 679       }
 680       if (cg == NULL) {
 681         float past_uses = method()->interpreter_invocation_count();
 682         float expected_uses = past_uses;
 683         cg = CallGenerator::for_inline(method(), expected_uses);
 684       }
 685     }
 686     if (failing())  return;
 687     if (cg == NULL) {
 688       record_method_not_compilable_all_tiers("cannot parse method");
 689       return;
 690     }
 691     JVMState* jvms = build_start_state(start(), tf());
 692     if ((jvms = cg->generate(jvms)) == NULL) {
 693       record_method_not_compilable("method parse failed");
 694       return;
 695     }
 696     GraphKit kit(jvms);
 697 
 698     if (!kit.stopped()) {
 699       // Accept return values, and transfer control we know not where.
 700       // This is done by a special, unique ReturnNode bound to root.
 701       return_values(kit.jvms());
 702     }
 703 
 704     if (kit.has_exceptions()) {
 705       // Any exceptions that escape from this call must be rethrown
 706       // to whatever caller is dynamically above us on the stack.
 707       // This is done by a special, unique RethrowNode bound to root.
 708       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 709     }
 710 
 711     if (!failing() && has_stringbuilder()) {
 712       {
 713         // remove useless nodes to make the usage analysis simpler
 714         ResourceMark rm;
 715         PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 716       }
 717 
 718       {
 719         ResourceMark rm;
 720         print_method("Before StringOpts", 3);
 721         PhaseStringOpts pso(initial_gvn(), &for_igvn);
 722         print_method("After StringOpts", 3);
 723       }
 724 
 725       // now inline anything that we skipped the first time around
 726       while (_late_inlines.length() > 0) {
 727         CallGenerator* cg = _late_inlines.pop();
 728         cg->do_late_inline();
 729         if (failing())  return;
 730       }
 731     }
 732     assert(_late_inlines.length() == 0, "should have been processed");
 733 
 734     print_method("Before RemoveUseless", 3);
 735 
 736     // Remove clutter produced by parsing.
 737     if (!failing()) {
 738       ResourceMark rm;
 739       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 740     }
 741   }
 742 
 743   // Note:  Large methods are capped off in do_one_bytecode().
 744   if (failing())  return;
 745 
 746   // After parsing, node notes are no longer automagic.
 747   // They must be propagated by register_new_node_with_optimizer(),
 748   // clone(), or the like.
 749   set_default_node_notes(NULL);
 750 
 751   for (;;) {
 752     int successes = Inline_Warm();
 753     if (failing())  return;
 754     if (successes == 0)  break;
 755   }
 756 
 757   // Drain the list.
 758   Finish_Warm();
 759 #ifndef PRODUCT
 760   if (_printer) {
 761     _printer->print_inlining(this);
 762   }
 763 #endif
 764 
 765   if (failing())  return;
 766   NOT_PRODUCT( verify_graph_edges(); )
 767 
 768   // Now optimize
 769   Optimize();
 770   if (failing())  return;
 771   NOT_PRODUCT( verify_graph_edges(); )
 772 
 773 #ifndef PRODUCT
 774   if (PrintIdeal) {
 775     ttyLocker ttyl;  // keep the following output all in one block
 776     // This output goes directly to the tty, not the compiler log.
 777     // To enable tools to match it up with the compilation activity,
 778     // be sure to tag this tty output with the compile ID.
 779     if (xtty != NULL) {
 780       xtty->head("ideal compile_id='%d'%s", compile_id(),
 781                  is_osr_compilation()    ? " compile_kind='osr'" :
 782                  "");
 783     }
 784     root()->dump(9999);
 785     if (xtty != NULL) {
 786       xtty->tail("ideal");
 787     }
 788   }
 789 #endif
 790 
 791   // Now that we know the size of all the monitors we can add a fixed slot
 792   // for the original deopt pc.
 793 
 794   _orig_pc_slot =  fixed_slots();
 795   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 796   set_fixed_slots(next_slot);
 797 
 798   // Now generate code
 799   Code_Gen();
 800   if (failing())  return;
 801 
 802   // Check if we want to skip execution of all compiled code.
 803   {
 804 #ifndef PRODUCT
 805     if (OptoNoExecute) {
 806       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 807       return;
 808     }
 809     TracePhase t2("install_code", &_t_registerMethod, TimeCompiler);
 810 #endif
 811 
 812     if (is_osr_compilation()) {
 813       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 814       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 815     } else {
 816       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 817       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 818     }
 819 
 820     env()->register_method(_method, _entry_bci,
 821                            &_code_offsets,
 822                            _orig_pc_slot_offset_in_bytes,
 823                            code_buffer(),
 824                            frame_size_in_words(), _oop_map_set,
 825                            &_handler_table, &_inc_table,
 826                            compiler,
 827                            env()->comp_level(),
 828                            has_unsafe_access(),
 829                            SharedRuntime::is_wide_vector(max_vector_size())
 830                            );
 831 
 832     if (log() != NULL) // Print code cache state into compiler log
 833       log()->code_cache_state();
 834   }
 835 }
 836 
 837 //------------------------------Compile----------------------------------------
 838 // Compile a runtime stub
 839 Compile::Compile( ciEnv* ci_env,
 840                   TypeFunc_generator generator,
 841                   address stub_function,
 842                   const char *stub_name,
 843                   int is_fancy_jump,
 844                   bool pass_tls,
 845                   bool save_arg_registers,
 846                   bool return_pc )
 847   : Phase(Compiler),
 848     _env(ci_env),
 849     _log(ci_env->log()),
 850     _compile_id(-1),
 851     _save_argument_registers(save_arg_registers),
 852     _method(NULL),
 853     _stub_name(stub_name),
 854     _stub_function(stub_function),
 855     _stub_entry_point(NULL),
 856     _entry_bci(InvocationEntryBci),
 857     _initial_gvn(NULL),
 858     _for_igvn(NULL),
 859     _warm_calls(NULL),
 860     _orig_pc_slot(0),
 861     _orig_pc_slot_offset_in_bytes(0),
 862     _subsume_loads(true),
 863     _do_escape_analysis(false),
 864     _failure_reason(NULL),
 865     _code_buffer("Compile::Fill_buffer"),
 866     _has_method_handle_invokes(false),
 867     _mach_constant_base_node(NULL),
 868     _node_bundling_limit(0),
 869     _node_bundling_base(NULL),
 870     _java_calls(0),
 871     _inner_loops(0),
 872 #ifndef PRODUCT
 873     _trace_opto_output(TraceOptoOutput),
 874     _printer(NULL),
 875 #endif
 876     _congraph(NULL) {
 877   C = this;
 878 
 879 #ifndef PRODUCT
 880   TraceTime t1(NULL, &_t_totalCompilation, TimeCompiler, false);
 881   TraceTime t2(NULL, &_t_stubCompilation, TimeCompiler, false);
 882   set_print_assembly(PrintFrameConverterAssembly);
 883   set_parsed_irreducible_loop(false);
 884 #endif
 885   CompileWrapper cw(this);
 886   Init(/*AliasLevel=*/ 0);
 887   init_tf((*generator)());
 888 
 889   {
 890     // The following is a dummy for the sake of GraphKit::gen_stub
 891     Unique_Node_List for_igvn(comp_arena());
 892     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
 893     PhaseGVN gvn(Thread::current()->resource_area(),255);
 894     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
 895     gvn.transform_no_reclaim(top());
 896 
 897     GraphKit kit;
 898     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
 899   }
 900 
 901   NOT_PRODUCT( verify_graph_edges(); )
 902   Code_Gen();
 903   if (failing())  return;
 904 
 905 
 906   // Entry point will be accessed using compile->stub_entry_point();
 907   if (code_buffer() == NULL) {
 908     Matcher::soft_match_failure();
 909   } else {
 910     if (PrintAssembly && (WizardMode || Verbose))
 911       tty->print_cr("### Stub::%s", stub_name);
 912 
 913     if (!failing()) {
 914       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
 915 
 916       // Make the NMethod
 917       // For now we mark the frame as never safe for profile stackwalking
 918       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
 919                                                       code_buffer(),
 920                                                       CodeOffsets::frame_never_safe,
 921                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
 922                                                       frame_size_in_words(),
 923                                                       _oop_map_set,
 924                                                       save_arg_registers);
 925       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
 926 
 927       _stub_entry_point = rs->entry_point();
 928     }
 929   }
 930 }
 931 
 932 //------------------------------Init-------------------------------------------
 933 // Prepare for a single compilation
 934 void Compile::Init(int aliaslevel) {
 935   _unique  = 0;
 936   _regalloc = NULL;
 937 
 938   _tf      = NULL;  // filled in later
 939   _top     = NULL;  // cached later
 940   _matcher = NULL;  // filled in later
 941   _cfg     = NULL;  // filled in later
 942 
 943   set_24_bit_selection_and_mode(Use24BitFP, false);
 944 
 945   _node_note_array = NULL;
 946   _default_node_notes = NULL;
 947 
 948   _immutable_memory = NULL; // filled in at first inquiry
 949 
 950   // Globally visible Nodes
 951   // First set TOP to NULL to give safe behavior during creation of RootNode
 952   set_cached_top_node(NULL);
 953   set_root(new (this) RootNode());
 954   // Now that you have a Root to point to, create the real TOP
 955   set_cached_top_node( new (this) ConNode(Type::TOP) );
 956   set_recent_alloc(NULL, NULL);
 957 
 958   // Create Debug Information Recorder to record scopes, oopmaps, etc.
 959   env()->set_oop_recorder(new OopRecorder(env()->arena()));
 960   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
 961   env()->set_dependencies(new Dependencies(env()));
 962 
 963   _fixed_slots = 0;
 964   set_has_split_ifs(false);
 965   set_has_loops(has_method() && method()->has_loops()); // first approximation
 966   set_has_stringbuilder(false);
 967   _trap_can_recompile = false;  // no traps emitted yet
 968   _major_progress = true; // start out assuming good things will happen
 969   set_has_unsafe_access(false);
 970   set_max_vector_size(0);
 971   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
 972   set_decompile_count(0);
 973 
 974   set_do_freq_based_layout(BlockLayoutByFrequency || method_has_option("BlockLayoutByFrequency"));
 975   set_num_loop_opts(LoopOptsCount);
 976   set_do_inlining(Inline);
 977   set_max_inline_size(MaxInlineSize);
 978   set_freq_inline_size(FreqInlineSize);
 979   set_do_scheduling(OptoScheduling);
 980   set_do_count_invocations(false);
 981   set_do_method_data_update(false);
 982 
 983   if (debug_info()->recording_non_safepoints()) {
 984     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
 985                         (comp_arena(), 8, 0, NULL));
 986     set_default_node_notes(Node_Notes::make(this));
 987   }
 988 
 989   // // -- Initialize types before each compile --
 990   // // Update cached type information
 991   // if( _method && _method->constants() )
 992   //   Type::update_loaded_types(_method, _method->constants());
 993 
 994   // Init alias_type map.
 995   if (!_do_escape_analysis && aliaslevel == 3)
 996     aliaslevel = 2;  // No unique types without escape analysis
 997   _AliasLevel = aliaslevel;
 998   const int grow_ats = 16;
 999   _max_alias_types = grow_ats;
1000   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1001   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1002   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1003   {
1004     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1005   }
1006   // Initialize the first few types.
1007   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1008   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1009   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1010   _num_alias_types = AliasIdxRaw+1;
1011   // Zero out the alias type cache.
1012   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1013   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1014   probe_alias_cache(NULL)->_index = AliasIdxTop;
1015 
1016   _intrinsics = NULL;
1017   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1018   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1019   register_library_intrinsics();
1020 }
1021 
1022 //---------------------------init_start----------------------------------------
1023 // Install the StartNode on this compile object.
1024 void Compile::init_start(StartNode* s) {
1025   if (failing())
1026     return; // already failing
1027   assert(s == start(), "");
1028 }
1029 
1030 StartNode* Compile::start() const {
1031   assert(!failing(), "");
1032   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1033     Node* start = root()->fast_out(i);
1034     if( start->is_Start() )
1035       return start->as_Start();
1036   }
1037   ShouldNotReachHere();
1038   return NULL;
1039 }
1040 
1041 //-------------------------------immutable_memory-------------------------------------
1042 // Access immutable memory
1043 Node* Compile::immutable_memory() {
1044   if (_immutable_memory != NULL) {
1045     return _immutable_memory;
1046   }
1047   StartNode* s = start();
1048   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1049     Node *p = s->fast_out(i);
1050     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1051       _immutable_memory = p;
1052       return _immutable_memory;
1053     }
1054   }
1055   ShouldNotReachHere();
1056   return NULL;
1057 }
1058 
1059 //----------------------set_cached_top_node------------------------------------
1060 // Install the cached top node, and make sure Node::is_top works correctly.
1061 void Compile::set_cached_top_node(Node* tn) {
1062   if (tn != NULL)  verify_top(tn);
1063   Node* old_top = _top;
1064   _top = tn;
1065   // Calling Node::setup_is_top allows the nodes the chance to adjust
1066   // their _out arrays.
1067   if (_top != NULL)     _top->setup_is_top();
1068   if (old_top != NULL)  old_top->setup_is_top();
1069   assert(_top == NULL || top()->is_top(), "");
1070 }
1071 
1072 #ifndef PRODUCT
1073 void Compile::verify_top(Node* tn) const {
1074   if (tn != NULL) {
1075     assert(tn->is_Con(), "top node must be a constant");
1076     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1077     assert(tn->in(0) != NULL, "must have live top node");
1078   }
1079 }
1080 #endif
1081 
1082 
1083 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1084 
1085 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1086   guarantee(arr != NULL, "");
1087   int num_blocks = arr->length();
1088   if (grow_by < num_blocks)  grow_by = num_blocks;
1089   int num_notes = grow_by * _node_notes_block_size;
1090   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1091   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1092   while (num_notes > 0) {
1093     arr->append(notes);
1094     notes     += _node_notes_block_size;
1095     num_notes -= _node_notes_block_size;
1096   }
1097   assert(num_notes == 0, "exact multiple, please");
1098 }
1099 
1100 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1101   if (source == NULL || dest == NULL)  return false;
1102 
1103   if (dest->is_Con())
1104     return false;               // Do not push debug info onto constants.
1105 
1106 #ifdef ASSERT
1107   // Leave a bread crumb trail pointing to the original node:
1108   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1109     dest->set_debug_orig(source);
1110   }
1111 #endif
1112 
1113   if (node_note_array() == NULL)
1114     return false;               // Not collecting any notes now.
1115 
1116   // This is a copy onto a pre-existing node, which may already have notes.
1117   // If both nodes have notes, do not overwrite any pre-existing notes.
1118   Node_Notes* source_notes = node_notes_at(source->_idx);
1119   if (source_notes == NULL || source_notes->is_clear())  return false;
1120   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1121   if (dest_notes == NULL || dest_notes->is_clear()) {
1122     return set_node_notes_at(dest->_idx, source_notes);
1123   }
1124 
1125   Node_Notes merged_notes = (*source_notes);
1126   // The order of operations here ensures that dest notes will win...
1127   merged_notes.update_from(dest_notes);
1128   return set_node_notes_at(dest->_idx, &merged_notes);
1129 }
1130 
1131 
1132 //--------------------------allow_range_check_smearing-------------------------
1133 // Gating condition for coalescing similar range checks.
1134 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1135 // single covering check that is at least as strong as any of them.
1136 // If the optimization succeeds, the simplified (strengthened) range check
1137 // will always succeed.  If it fails, we will deopt, and then give up
1138 // on the optimization.
1139 bool Compile::allow_range_check_smearing() const {
1140   // If this method has already thrown a range-check,
1141   // assume it was because we already tried range smearing
1142   // and it failed.
1143   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1144   return !already_trapped;
1145 }
1146 
1147 
1148 //------------------------------flatten_alias_type-----------------------------
1149 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1150   int offset = tj->offset();
1151   TypePtr::PTR ptr = tj->ptr();
1152 
1153   // Known instance (scalarizable allocation) alias only with itself.
1154   bool is_known_inst = tj->isa_oopptr() != NULL &&
1155                        tj->is_oopptr()->is_known_instance();
1156 
1157   // Process weird unsafe references.
1158   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1159     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1160     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1161     tj = TypeOopPtr::BOTTOM;
1162     ptr = tj->ptr();
1163     offset = tj->offset();
1164   }
1165 
1166   // Array pointers need some flattening
1167   const TypeAryPtr *ta = tj->isa_aryptr();
1168   if( ta && is_known_inst ) {
1169     if ( offset != Type::OffsetBot &&
1170          offset > arrayOopDesc::length_offset_in_bytes() ) {
1171       offset = Type::OffsetBot; // Flatten constant access into array body only
1172       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, offset, ta->instance_id());
1173     }
1174   } else if( ta && _AliasLevel >= 2 ) {
1175     // For arrays indexed by constant indices, we flatten the alias
1176     // space to include all of the array body.  Only the header, klass
1177     // and array length can be accessed un-aliased.
1178     if( offset != Type::OffsetBot ) {
1179       if( ta->const_oop() ) { // MethodData* or Method*
1180         offset = Type::OffsetBot;   // Flatten constant access into array body
1181         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,offset);
1182       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1183         // range is OK as-is.
1184         tj = ta = TypeAryPtr::RANGE;
1185       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1186         tj = TypeInstPtr::KLASS; // all klass loads look alike
1187         ta = TypeAryPtr::RANGE; // generic ignored junk
1188         ptr = TypePtr::BotPTR;
1189       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1190         tj = TypeInstPtr::MARK;
1191         ta = TypeAryPtr::RANGE; // generic ignored junk
1192         ptr = TypePtr::BotPTR;
1193       } else {                  // Random constant offset into array body
1194         offset = Type::OffsetBot;   // Flatten constant access into array body
1195         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,offset);
1196       }
1197     }
1198     // Arrays of fixed size alias with arrays of unknown size.
1199     if (ta->size() != TypeInt::POS) {
1200       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1201       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,offset);
1202     }
1203     // Arrays of known objects become arrays of unknown objects.
1204     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1205       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1206       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1207     }
1208     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1209       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1210       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,offset);
1211     }
1212     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1213     // cannot be distinguished by bytecode alone.
1214     if (ta->elem() == TypeInt::BOOL) {
1215       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1216       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1217       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,offset);
1218     }
1219     // During the 2nd round of IterGVN, NotNull castings are removed.
1220     // Make sure the Bottom and NotNull variants alias the same.
1221     // Also, make sure exact and non-exact variants alias the same.
1222     if( ptr == TypePtr::NotNull || ta->klass_is_exact() ) {
1223       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,offset);
1224     }
1225   }
1226 
1227   // Oop pointers need some flattening
1228   const TypeInstPtr *to = tj->isa_instptr();
1229   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1230     ciInstanceKlass *k = to->klass()->as_instance_klass();
1231     if( ptr == TypePtr::Constant ) {
1232       if (to->klass() != ciEnv::current()->Class_klass() ||
1233           offset < k->size_helper() * wordSize) {
1234         // No constant oop pointers (such as Strings); they alias with
1235         // unknown strings.
1236         assert(!is_known_inst, "not scalarizable allocation");
1237         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1238       }
1239     } else if( is_known_inst ) {
1240       tj = to; // Keep NotNull and klass_is_exact for instance type
1241     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1242       // During the 2nd round of IterGVN, NotNull castings are removed.
1243       // Make sure the Bottom and NotNull variants alias the same.
1244       // Also, make sure exact and non-exact variants alias the same.
1245       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,offset);
1246     }
1247     // Canonicalize the holder of this field
1248     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1249       // First handle header references such as a LoadKlassNode, even if the
1250       // object's klass is unloaded at compile time (4965979).
1251       if (!is_known_inst) { // Do it only for non-instance types
1252         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, offset);
1253       }
1254     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1255       // Static fields are in the space above the normal instance
1256       // fields in the java.lang.Class instance.
1257       if (to->klass() != ciEnv::current()->Class_klass()) {
1258         to = NULL;
1259         tj = TypeOopPtr::BOTTOM;
1260         offset = tj->offset();
1261       }
1262     } else {
1263       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1264       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1265         if( is_known_inst ) {
1266           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, offset, to->instance_id());
1267         } else {
1268           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, offset);
1269         }
1270       }
1271     }
1272   }
1273 
1274   // Klass pointers to object array klasses need some flattening
1275   const TypeKlassPtr *tk = tj->isa_klassptr();
1276   if( tk ) {
1277     // If we are referencing a field within a Klass, we need
1278     // to assume the worst case of an Object.  Both exact and
1279     // inexact types must flatten to the same alias class so
1280     // use NotNull as the PTR.
1281     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1282 
1283       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1284                                    TypeKlassPtr::OBJECT->klass(),
1285                                    offset);
1286     }
1287 
1288     ciKlass* klass = tk->klass();
1289     if( klass->is_obj_array_klass() ) {
1290       ciKlass* k = TypeAryPtr::OOPS->klass();
1291       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1292         k = TypeInstPtr::BOTTOM->klass();
1293       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, k, offset );
1294     }
1295 
1296     // Check for precise loads from the primary supertype array and force them
1297     // to the supertype cache alias index.  Check for generic array loads from
1298     // the primary supertype array and also force them to the supertype cache
1299     // alias index.  Since the same load can reach both, we need to merge
1300     // these 2 disparate memories into the same alias class.  Since the
1301     // primary supertype array is read-only, there's no chance of confusion
1302     // where we bypass an array load and an array store.
1303     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1304     if (offset == Type::OffsetBot ||
1305         (offset >= primary_supers_offset &&
1306          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1307         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1308       offset = in_bytes(Klass::secondary_super_cache_offset());
1309       tj = tk = TypeKlassPtr::make( TypePtr::NotNull, tk->klass(), offset );
1310     }
1311   }
1312 
1313   // Flatten all Raw pointers together.
1314   if (tj->base() == Type::RawPtr)
1315     tj = TypeRawPtr::BOTTOM;
1316 
1317   if (tj->base() == Type::AnyPtr)
1318     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1319 
1320   // Flatten all to bottom for now
1321   switch( _AliasLevel ) {
1322   case 0:
1323     tj = TypePtr::BOTTOM;
1324     break;
1325   case 1:                       // Flatten to: oop, static, field or array
1326     switch (tj->base()) {
1327     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1328     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1329     case Type::AryPtr:   // do not distinguish arrays at all
1330     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1331     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1332     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1333     default: ShouldNotReachHere();
1334     }
1335     break;
1336   case 2:                       // No collapsing at level 2; keep all splits
1337   case 3:                       // No collapsing at level 3; keep all splits
1338     break;
1339   default:
1340     Unimplemented();
1341   }
1342 
1343   offset = tj->offset();
1344   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1345 
1346   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1347           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1348           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1349           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1350           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1351           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1352           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1353           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1354   assert( tj->ptr() != TypePtr::TopPTR &&
1355           tj->ptr() != TypePtr::AnyNull &&
1356           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1357 //    assert( tj->ptr() != TypePtr::Constant ||
1358 //            tj->base() == Type::RawPtr ||
1359 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1360 
1361   return tj;
1362 }
1363 
1364 void Compile::AliasType::Init(int i, const TypePtr* at) {
1365   _index = i;
1366   _adr_type = at;
1367   _field = NULL;
1368   _is_rewritable = true; // default
1369   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1370   if (atoop != NULL && atoop->is_known_instance()) {
1371     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1372     _general_index = Compile::current()->get_alias_index(gt);
1373   } else {
1374     _general_index = 0;
1375   }
1376 }
1377 
1378 //---------------------------------print_on------------------------------------
1379 #ifndef PRODUCT
1380 void Compile::AliasType::print_on(outputStream* st) {
1381   if (index() < 10)
1382         st->print("@ <%d> ", index());
1383   else  st->print("@ <%d>",  index());
1384   st->print(is_rewritable() ? "   " : " RO");
1385   int offset = adr_type()->offset();
1386   if (offset == Type::OffsetBot)
1387         st->print(" +any");
1388   else  st->print(" +%-3d", offset);
1389   st->print(" in ");
1390   adr_type()->dump_on(st);
1391   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1392   if (field() != NULL && tjp) {
1393     if (tjp->klass()  != field()->holder() ||
1394         tjp->offset() != field()->offset_in_bytes()) {
1395       st->print(" != ");
1396       field()->print();
1397       st->print(" ***");
1398     }
1399   }
1400 }
1401 
1402 void print_alias_types() {
1403   Compile* C = Compile::current();
1404   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1405   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1406     C->alias_type(idx)->print_on(tty);
1407     tty->cr();
1408   }
1409 }
1410 #endif
1411 
1412 
1413 //----------------------------probe_alias_cache--------------------------------
1414 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1415   intptr_t key = (intptr_t) adr_type;
1416   key ^= key >> logAliasCacheSize;
1417   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1418 }
1419 
1420 
1421 //-----------------------------grow_alias_types--------------------------------
1422 void Compile::grow_alias_types() {
1423   const int old_ats  = _max_alias_types; // how many before?
1424   const int new_ats  = old_ats;          // how many more?
1425   const int grow_ats = old_ats+new_ats;  // how many now?
1426   _max_alias_types = grow_ats;
1427   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1428   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1429   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1430   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1431 }
1432 
1433 
1434 //--------------------------------find_alias_type------------------------------
1435 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1436   if (_AliasLevel == 0)
1437     return alias_type(AliasIdxBot);
1438 
1439   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1440   if (ace->_adr_type == adr_type) {
1441     return alias_type(ace->_index);
1442   }
1443 
1444   // Handle special cases.
1445   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1446   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1447 
1448   // Do it the slow way.
1449   const TypePtr* flat = flatten_alias_type(adr_type);
1450 
1451 #ifdef ASSERT
1452   assert(flat == flatten_alias_type(flat), "idempotent");
1453   assert(flat != TypePtr::BOTTOM,     "cannot alias-analyze an untyped ptr");
1454   if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1455     const TypeOopPtr* foop = flat->is_oopptr();
1456     // Scalarizable allocations have exact klass always.
1457     bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1458     const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1459     assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type");
1460   }
1461   assert(flat == flatten_alias_type(flat), "exact bit doesn't matter");
1462 #endif
1463 
1464   int idx = AliasIdxTop;
1465   for (int i = 0; i < num_alias_types(); i++) {
1466     if (alias_type(i)->adr_type() == flat) {
1467       idx = i;
1468       break;
1469     }
1470   }
1471 
1472   if (idx == AliasIdxTop) {
1473     if (no_create)  return NULL;
1474     // Grow the array if necessary.
1475     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1476     // Add a new alias type.
1477     idx = _num_alias_types++;
1478     _alias_types[idx]->Init(idx, flat);
1479     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1480     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1481     if (flat->isa_instptr()) {
1482       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1483           && flat->is_instptr()->klass() == env()->Class_klass())
1484         alias_type(idx)->set_rewritable(false);
1485     }
1486     if (flat->isa_klassptr()) {
1487       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1488         alias_type(idx)->set_rewritable(false);
1489       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1490         alias_type(idx)->set_rewritable(false);
1491       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1492         alias_type(idx)->set_rewritable(false);
1493       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1494         alias_type(idx)->set_rewritable(false);
1495     }
1496     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1497     // but the base pointer type is not distinctive enough to identify
1498     // references into JavaThread.)
1499 
1500     // Check for final fields.
1501     const TypeInstPtr* tinst = flat->isa_instptr();
1502     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1503       ciField* field;
1504       if (tinst->const_oop() != NULL &&
1505           tinst->klass() == ciEnv::current()->Class_klass() &&
1506           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1507         // static field
1508         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1509         field = k->get_field_by_offset(tinst->offset(), true);
1510       } else {
1511         ciInstanceKlass *k = tinst->klass()->as_instance_klass();
1512         field = k->get_field_by_offset(tinst->offset(), false);
1513       }
1514       assert(field == NULL ||
1515              original_field == NULL ||
1516              (field->holder() == original_field->holder() &&
1517               field->offset() == original_field->offset() &&
1518               field->is_static() == original_field->is_static()), "wrong field?");
1519       // Set field() and is_rewritable() attributes.
1520       if (field != NULL)  alias_type(idx)->set_field(field);
1521     }
1522   }
1523 
1524   // Fill the cache for next time.
1525   ace->_adr_type = adr_type;
1526   ace->_index    = idx;
1527   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1528 
1529   // Might as well try to fill the cache for the flattened version, too.
1530   AliasCacheEntry* face = probe_alias_cache(flat);
1531   if (face->_adr_type == NULL) {
1532     face->_adr_type = flat;
1533     face->_index    = idx;
1534     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1535   }
1536 
1537   return alias_type(idx);
1538 }
1539 
1540 
1541 Compile::AliasType* Compile::alias_type(ciField* field) {
1542   const TypeOopPtr* t;
1543   if (field->is_static())
1544     t = TypeInstPtr::make(field->holder()->java_mirror());
1545   else
1546     t = TypeOopPtr::make_from_klass_raw(field->holder());
1547   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1548   assert(field->is_final() == !atp->is_rewritable(), "must get the rewritable bits correct");
1549   return atp;
1550 }
1551 
1552 
1553 //------------------------------have_alias_type--------------------------------
1554 bool Compile::have_alias_type(const TypePtr* adr_type) {
1555   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1556   if (ace->_adr_type == adr_type) {
1557     return true;
1558   }
1559 
1560   // Handle special cases.
1561   if (adr_type == NULL)             return true;
1562   if (adr_type == TypePtr::BOTTOM)  return true;
1563 
1564   return find_alias_type(adr_type, true, NULL) != NULL;
1565 }
1566 
1567 //-----------------------------must_alias--------------------------------------
1568 // True if all values of the given address type are in the given alias category.
1569 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1570   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1571   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1572   if (alias_idx == AliasIdxTop)         return false; // the empty category
1573   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1574 
1575   // the only remaining possible overlap is identity
1576   int adr_idx = get_alias_index(adr_type);
1577   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1578   assert(adr_idx == alias_idx ||
1579          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1580           && adr_type                       != TypeOopPtr::BOTTOM),
1581          "should not be testing for overlap with an unsafe pointer");
1582   return adr_idx == alias_idx;
1583 }
1584 
1585 //------------------------------can_alias--------------------------------------
1586 // True if any values of the given address type are in the given alias category.
1587 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1588   if (alias_idx == AliasIdxTop)         return false; // the empty category
1589   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1590   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1591   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1592 
1593   // the only remaining possible overlap is identity
1594   int adr_idx = get_alias_index(adr_type);
1595   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1596   return adr_idx == alias_idx;
1597 }
1598 
1599 
1600 
1601 //---------------------------pop_warm_call-------------------------------------
1602 WarmCallInfo* Compile::pop_warm_call() {
1603   WarmCallInfo* wci = _warm_calls;
1604   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1605   return wci;
1606 }
1607 
1608 //----------------------------Inline_Warm--------------------------------------
1609 int Compile::Inline_Warm() {
1610   // If there is room, try to inline some more warm call sites.
1611   // %%% Do a graph index compaction pass when we think we're out of space?
1612   if (!InlineWarmCalls)  return 0;
1613 
1614   int calls_made_hot = 0;
1615   int room_to_grow   = NodeCountInliningCutoff - unique();
1616   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1617   int amount_grown   = 0;
1618   WarmCallInfo* call;
1619   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1620     int est_size = (int)call->size();
1621     if (est_size > (room_to_grow - amount_grown)) {
1622       // This one won't fit anyway.  Get rid of it.
1623       call->make_cold();
1624       continue;
1625     }
1626     call->make_hot();
1627     calls_made_hot++;
1628     amount_grown   += est_size;
1629     amount_to_grow -= est_size;
1630   }
1631 
1632   if (calls_made_hot > 0)  set_major_progress();
1633   return calls_made_hot;
1634 }
1635 
1636 
1637 //----------------------------Finish_Warm--------------------------------------
1638 void Compile::Finish_Warm() {
1639   if (!InlineWarmCalls)  return;
1640   if (failing())  return;
1641   if (warm_calls() == NULL)  return;
1642 
1643   // Clean up loose ends, if we are out of space for inlining.
1644   WarmCallInfo* call;
1645   while ((call = pop_warm_call()) != NULL) {
1646     call->make_cold();
1647   }
1648 }
1649 
1650 //---------------------cleanup_loop_predicates-----------------------
1651 // Remove the opaque nodes that protect the predicates so that all unused
1652 // checks and uncommon_traps will be eliminated from the ideal graph
1653 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1654   if (predicate_count()==0) return;
1655   for (int i = predicate_count(); i > 0; i--) {
1656     Node * n = predicate_opaque1_node(i-1);
1657     assert(n->Opcode() == Op_Opaque1, "must be");
1658     igvn.replace_node(n, n->in(1));
1659   }
1660   assert(predicate_count()==0, "should be clean!");
1661 }
1662 
1663 //------------------------------Optimize---------------------------------------
1664 // Given a graph, optimize it.
1665 void Compile::Optimize() {
1666   TracePhase t1("optimizer", &_t_optimizer, true);
1667 
1668 #ifndef PRODUCT
1669   if (env()->break_at_compile()) {
1670     BREAKPOINT;
1671   }
1672 
1673 #endif
1674 
1675   ResourceMark rm;
1676   int          loop_opts_cnt;
1677 
1678   NOT_PRODUCT( verify_graph_edges(); )
1679 
1680   print_method("After Parsing");
1681 
1682  {
1683   // Iterative Global Value Numbering, including ideal transforms
1684   // Initialize IterGVN with types and values from parse-time GVN
1685   PhaseIterGVN igvn(initial_gvn());
1686   {
1687     NOT_PRODUCT( TracePhase t2("iterGVN", &_t_iterGVN, TimeCompiler); )
1688     igvn.optimize();
1689   }
1690 
1691   print_method("Iter GVN 1", 2);
1692 
1693   if (failing())  return;
1694 
1695   // Perform escape analysis
1696   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
1697     if (has_loops()) {
1698       // Cleanup graph (remove dead nodes).
1699       TracePhase t2("idealLoop", &_t_idealLoop, true);
1700       PhaseIdealLoop ideal_loop( igvn, false, true );
1701       if (major_progress()) print_method("PhaseIdealLoop before EA", 2);
1702       if (failing())  return;
1703     }
1704     ConnectionGraph::do_analysis(this, &igvn);
1705 
1706     if (failing())  return;
1707 
1708     // Optimize out fields loads from scalar replaceable allocations.
1709     igvn.optimize();
1710     print_method("Iter GVN after EA", 2);
1711 
1712     if (failing())  return;
1713 
1714     if (congraph() != NULL && macro_count() > 0) {
1715       NOT_PRODUCT( TracePhase t2("macroEliminate", &_t_macroEliminate, TimeCompiler); )
1716       PhaseMacroExpand mexp(igvn);
1717       mexp.eliminate_macro_nodes();
1718       igvn.set_delay_transform(false);
1719 
1720       igvn.optimize();
1721       print_method("Iter GVN after eliminating allocations and locks", 2);
1722 
1723       if (failing())  return;
1724     }
1725   }
1726 
1727   // Loop transforms on the ideal graph.  Range Check Elimination,
1728   // peeling, unrolling, etc.
1729 
1730   // Set loop opts counter
1731   loop_opts_cnt = num_loop_opts();
1732   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
1733     {
1734       TracePhase t2("idealLoop", &_t_idealLoop, true);
1735       PhaseIdealLoop ideal_loop( igvn, true );
1736       loop_opts_cnt--;
1737       if (major_progress()) print_method("PhaseIdealLoop 1", 2);
1738       if (failing())  return;
1739     }
1740     // Loop opts pass if partial peeling occurred in previous pass
1741     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
1742       TracePhase t3("idealLoop", &_t_idealLoop, true);
1743       PhaseIdealLoop ideal_loop( igvn, false );
1744       loop_opts_cnt--;
1745       if (major_progress()) print_method("PhaseIdealLoop 2", 2);
1746       if (failing())  return;
1747     }
1748     // Loop opts pass for loop-unrolling before CCP
1749     if(major_progress() && (loop_opts_cnt > 0)) {
1750       TracePhase t4("idealLoop", &_t_idealLoop, true);
1751       PhaseIdealLoop ideal_loop( igvn, false );
1752       loop_opts_cnt--;
1753       if (major_progress()) print_method("PhaseIdealLoop 3", 2);
1754     }
1755     if (!failing()) {
1756       // Verify that last round of loop opts produced a valid graph
1757       NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1758       PhaseIdealLoop::verify(igvn);
1759     }
1760   }
1761   if (failing())  return;
1762 
1763   // Conditional Constant Propagation;
1764   PhaseCCP ccp( &igvn );
1765   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
1766   {
1767     TracePhase t2("ccp", &_t_ccp, true);
1768     ccp.do_transform();
1769   }
1770   print_method("PhaseCPP 1", 2);
1771 
1772   assert( true, "Break here to ccp.dump_old2new_map()");
1773 
1774   // Iterative Global Value Numbering, including ideal transforms
1775   {
1776     NOT_PRODUCT( TracePhase t2("iterGVN2", &_t_iterGVN2, TimeCompiler); )
1777     igvn = ccp;
1778     igvn.optimize();
1779   }
1780 
1781   print_method("Iter GVN 2", 2);
1782 
1783   if (failing())  return;
1784 
1785   // Loop transforms on the ideal graph.  Range Check Elimination,
1786   // peeling, unrolling, etc.
1787   if(loop_opts_cnt > 0) {
1788     debug_only( int cnt = 0; );
1789     while(major_progress() && (loop_opts_cnt > 0)) {
1790       TracePhase t2("idealLoop", &_t_idealLoop, true);
1791       assert( cnt++ < 40, "infinite cycle in loop optimization" );
1792       PhaseIdealLoop ideal_loop( igvn, true);
1793       loop_opts_cnt--;
1794       if (major_progress()) print_method("PhaseIdealLoop iterations", 2);
1795       if (failing())  return;
1796     }
1797   }
1798 
1799   {
1800     // Verify that all previous optimizations produced a valid graph
1801     // at least to this point, even if no loop optimizations were done.
1802     NOT_PRODUCT( TracePhase t2("idealLoopVerify", &_t_idealLoopVerify, TimeCompiler); )
1803     PhaseIdealLoop::verify(igvn);
1804   }
1805 
1806   {
1807     NOT_PRODUCT( TracePhase t2("macroExpand", &_t_macroExpand, TimeCompiler); )
1808     PhaseMacroExpand  mex(igvn);
1809     if (mex.expand_macro_nodes()) {
1810       assert(failing(), "must bail out w/ explicit message");
1811       return;
1812     }
1813   }
1814 
1815  } // (End scope of igvn; run destructor if necessary for asserts.)
1816 
1817   // A method with only infinite loops has no edges entering loops from root
1818   {
1819     NOT_PRODUCT( TracePhase t2("graphReshape", &_t_graphReshaping, TimeCompiler); )
1820     if (final_graph_reshaping()) {
1821       assert(failing(), "must bail out w/ explicit message");
1822       return;
1823     }
1824   }
1825 
1826   print_method("Optimize finished", 2);
1827 }
1828 
1829 
1830 //------------------------------Code_Gen---------------------------------------
1831 // Given a graph, generate code for it
1832 void Compile::Code_Gen() {
1833   if (failing())  return;
1834 
1835   // Perform instruction selection.  You might think we could reclaim Matcher
1836   // memory PDQ, but actually the Matcher is used in generating spill code.
1837   // Internals of the Matcher (including some VectorSets) must remain live
1838   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
1839   // set a bit in reclaimed memory.
1840 
1841   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1842   // nodes.  Mapping is only valid at the root of each matched subtree.
1843   NOT_PRODUCT( verify_graph_edges(); )
1844 
1845   Node_List proj_list;
1846   Matcher m(proj_list);
1847   _matcher = &m;
1848   {
1849     TracePhase t2("matcher", &_t_matcher, true);
1850     m.match();
1851   }
1852   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
1853   // nodes.  Mapping is only valid at the root of each matched subtree.
1854   NOT_PRODUCT( verify_graph_edges(); )
1855 
1856   // If you have too many nodes, or if matching has failed, bail out
1857   check_node_count(0, "out of nodes matching instructions");
1858   if (failing())  return;
1859 
1860   // Build a proper-looking CFG
1861   PhaseCFG cfg(node_arena(), root(), m);
1862   _cfg = &cfg;
1863   {
1864     NOT_PRODUCT( TracePhase t2("scheduler", &_t_scheduler, TimeCompiler); )
1865     cfg.Dominators();
1866     if (failing())  return;
1867 
1868     NOT_PRODUCT( verify_graph_edges(); )
1869 
1870     cfg.Estimate_Block_Frequency();
1871     cfg.GlobalCodeMotion(m,unique(),proj_list);
1872     if (failing())  return;
1873 
1874     print_method("Global code motion", 2);
1875 
1876     NOT_PRODUCT( verify_graph_edges(); )
1877 
1878     debug_only( cfg.verify(); )
1879   }
1880   NOT_PRODUCT( verify_graph_edges(); )
1881 
1882   PhaseChaitin regalloc(unique(),cfg,m);
1883   _regalloc = &regalloc;
1884   {
1885     TracePhase t2("regalloc", &_t_registerAllocation, true);
1886     // Perform any platform dependent preallocation actions.  This is used,
1887     // for example, to avoid taking an implicit null pointer exception
1888     // using the frame pointer on win95.
1889     _regalloc->pd_preallocate_hook();
1890 
1891     // Perform register allocation.  After Chaitin, use-def chains are
1892     // no longer accurate (at spill code) and so must be ignored.
1893     // Node->LRG->reg mappings are still accurate.
1894     _regalloc->Register_Allocate();
1895 
1896     // Bail out if the allocator builds too many nodes
1897     if (failing())  return;
1898   }
1899 
1900   // Prior to register allocation we kept empty basic blocks in case the
1901   // the allocator needed a place to spill.  After register allocation we
1902   // are not adding any new instructions.  If any basic block is empty, we
1903   // can now safely remove it.
1904   {
1905     NOT_PRODUCT( TracePhase t2("blockOrdering", &_t_blockOrdering, TimeCompiler); )
1906     cfg.remove_empty();
1907     if (do_freq_based_layout()) {
1908       PhaseBlockLayout layout(cfg);
1909     } else {
1910       cfg.set_loop_alignment();
1911     }
1912     cfg.fixup_flow();
1913   }
1914 
1915   // Perform any platform dependent postallocation verifications.
1916   debug_only( _regalloc->pd_postallocate_verify_hook(); )
1917 
1918   // Apply peephole optimizations
1919   if( OptoPeephole ) {
1920     NOT_PRODUCT( TracePhase t2("peephole", &_t_peephole, TimeCompiler); )
1921     PhasePeephole peep( _regalloc, cfg);
1922     peep.do_transform();
1923   }
1924 
1925   // Convert Nodes to instruction bits in a buffer
1926   {
1927     // %%%% workspace merge brought two timers together for one job
1928     TracePhase t2a("output", &_t_output, true);
1929     NOT_PRODUCT( TraceTime t2b(NULL, &_t_codeGeneration, TimeCompiler, false); )
1930     Output();
1931   }
1932 
1933   print_method("Final Code");
1934 
1935   // He's dead, Jim.
1936   _cfg     = (PhaseCFG*)0xdeadbeef;
1937   _regalloc = (PhaseChaitin*)0xdeadbeef;
1938 }
1939 
1940 
1941 //------------------------------dump_asm---------------------------------------
1942 // Dump formatted assembly
1943 #ifndef PRODUCT
1944 void Compile::dump_asm(int *pcs, uint pc_limit) {
1945   bool cut_short = false;
1946   tty->print_cr("#");
1947   tty->print("#  ");  _tf->dump();  tty->cr();
1948   tty->print_cr("#");
1949 
1950   // For all blocks
1951   int pc = 0x0;                 // Program counter
1952   char starts_bundle = ' ';
1953   _regalloc->dump_frame();
1954 
1955   Node *n = NULL;
1956   for( uint i=0; i<_cfg->_num_blocks; i++ ) {
1957     if (VMThread::should_terminate()) { cut_short = true; break; }
1958     Block *b = _cfg->_blocks[i];
1959     if (b->is_connector() && !Verbose) continue;
1960     n = b->_nodes[0];
1961     if (pcs && n->_idx < pc_limit)
1962       tty->print("%3.3x   ", pcs[n->_idx]);
1963     else
1964       tty->print("      ");
1965     b->dump_head( &_cfg->_bbs );
1966     if (b->is_connector()) {
1967       tty->print_cr("        # Empty connector block");
1968     } else if (b->num_preds() == 2 && b->pred(1)->is_CatchProj() && b->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
1969       tty->print_cr("        # Block is sole successor of call");
1970     }
1971 
1972     // For all instructions
1973     Node *delay = NULL;
1974     for( uint j = 0; j<b->_nodes.size(); j++ ) {
1975       if (VMThread::should_terminate()) { cut_short = true; break; }
1976       n = b->_nodes[j];
1977       if (valid_bundle_info(n)) {
1978         Bundle *bundle = node_bundling(n);
1979         if (bundle->used_in_unconditional_delay()) {
1980           delay = n;
1981           continue;
1982         }
1983         if (bundle->starts_bundle())
1984           starts_bundle = '+';
1985       }
1986 
1987       if (WizardMode) n->dump();
1988 
1989       if( !n->is_Region() &&    // Dont print in the Assembly
1990           !n->is_Phi() &&       // a few noisely useless nodes
1991           !n->is_Proj() &&
1992           !n->is_MachTemp() &&
1993           !n->is_SafePointScalarObject() &&
1994           !n->is_Catch() &&     // Would be nice to print exception table targets
1995           !n->is_MergeMem() &&  // Not very interesting
1996           !n->is_top() &&       // Debug info table constants
1997           !(n->is_Con() && !n->is_Mach())// Debug info table constants
1998           ) {
1999         if (pcs && n->_idx < pc_limit)
2000           tty->print("%3.3x", pcs[n->_idx]);
2001         else
2002           tty->print("   ");
2003         tty->print(" %c ", starts_bundle);
2004         starts_bundle = ' ';
2005         tty->print("\t");
2006         n->format(_regalloc, tty);
2007         tty->cr();
2008       }
2009 
2010       // If we have an instruction with a delay slot, and have seen a delay,
2011       // then back up and print it
2012       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2013         assert(delay != NULL, "no unconditional delay instruction");
2014         if (WizardMode) delay->dump();
2015 
2016         if (node_bundling(delay)->starts_bundle())
2017           starts_bundle = '+';
2018         if (pcs && n->_idx < pc_limit)
2019           tty->print("%3.3x", pcs[n->_idx]);
2020         else
2021           tty->print("   ");
2022         tty->print(" %c ", starts_bundle);
2023         starts_bundle = ' ';
2024         tty->print("\t");
2025         delay->format(_regalloc, tty);
2026         tty->print_cr("");
2027         delay = NULL;
2028       }
2029 
2030       // Dump the exception table as well
2031       if( n->is_Catch() && (Verbose || WizardMode) ) {
2032         // Print the exception table for this offset
2033         _handler_table.print_subtable_for(pc);
2034       }
2035     }
2036 
2037     if (pcs && n->_idx < pc_limit)
2038       tty->print_cr("%3.3x", pcs[n->_idx]);
2039     else
2040       tty->print_cr("");
2041 
2042     assert(cut_short || delay == NULL, "no unconditional delay branch");
2043 
2044   } // End of per-block dump
2045   tty->print_cr("");
2046 
2047   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2048 }
2049 #endif
2050 
2051 //------------------------------Final_Reshape_Counts---------------------------
2052 // This class defines counters to help identify when a method
2053 // may/must be executed using hardware with only 24-bit precision.
2054 struct Final_Reshape_Counts : public StackObj {
2055   int  _call_count;             // count non-inlined 'common' calls
2056   int  _float_count;            // count float ops requiring 24-bit precision
2057   int  _double_count;           // count double ops requiring more precision
2058   int  _java_call_count;        // count non-inlined 'java' calls
2059   int  _inner_loop_count;       // count loops which need alignment
2060   VectorSet _visited;           // Visitation flags
2061   Node_List _tests;             // Set of IfNodes & PCTableNodes
2062 
2063   Final_Reshape_Counts() :
2064     _call_count(0), _float_count(0), _double_count(0),
2065     _java_call_count(0), _inner_loop_count(0),
2066     _visited( Thread::current()->resource_area() ) { }
2067 
2068   void inc_call_count  () { _call_count  ++; }
2069   void inc_float_count () { _float_count ++; }
2070   void inc_double_count() { _double_count++; }
2071   void inc_java_call_count() { _java_call_count++; }
2072   void inc_inner_loop_count() { _inner_loop_count++; }
2073 
2074   int  get_call_count  () const { return _call_count  ; }
2075   int  get_float_count () const { return _float_count ; }
2076   int  get_double_count() const { return _double_count; }
2077   int  get_java_call_count() const { return _java_call_count; }
2078   int  get_inner_loop_count() const { return _inner_loop_count; }
2079 };
2080 
2081 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2082   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2083   // Make sure the offset goes inside the instance layout.
2084   return k->contains_field_offset(tp->offset());
2085   // Note that OffsetBot and OffsetTop are very negative.
2086 }
2087 
2088 // Eliminate trivially redundant StoreCMs and accumulate their
2089 // precedence edges.
2090 static void eliminate_redundant_card_marks(Node* n) {
2091   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2092   if (n->in(MemNode::Address)->outcnt() > 1) {
2093     // There are multiple users of the same address so it might be
2094     // possible to eliminate some of the StoreCMs
2095     Node* mem = n->in(MemNode::Memory);
2096     Node* adr = n->in(MemNode::Address);
2097     Node* val = n->in(MemNode::ValueIn);
2098     Node* prev = n;
2099     bool done = false;
2100     // Walk the chain of StoreCMs eliminating ones that match.  As
2101     // long as it's a chain of single users then the optimization is
2102     // safe.  Eliminating partially redundant StoreCMs would require
2103     // cloning copies down the other paths.
2104     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2105       if (adr == mem->in(MemNode::Address) &&
2106           val == mem->in(MemNode::ValueIn)) {
2107         // redundant StoreCM
2108         if (mem->req() > MemNode::OopStore) {
2109           // Hasn't been processed by this code yet.
2110           n->add_prec(mem->in(MemNode::OopStore));
2111         } else {
2112           // Already converted to precedence edge
2113           for (uint i = mem->req(); i < mem->len(); i++) {
2114             // Accumulate any precedence edges
2115             if (mem->in(i) != NULL) {
2116               n->add_prec(mem->in(i));
2117             }
2118           }
2119           // Everything above this point has been processed.
2120           done = true;
2121         }
2122         // Eliminate the previous StoreCM
2123         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2124         assert(mem->outcnt() == 0, "should be dead");
2125         mem->disconnect_inputs(NULL);
2126       } else {
2127         prev = mem;
2128       }
2129       mem = prev->in(MemNode::Memory);
2130     }
2131   }
2132 }
2133 
2134 //------------------------------final_graph_reshaping_impl----------------------
2135 // Implement items 1-5 from final_graph_reshaping below.
2136 static void final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc ) {
2137 
2138   if ( n->outcnt() == 0 ) return; // dead node
2139   uint nop = n->Opcode();
2140 
2141   // Check for 2-input instruction with "last use" on right input.
2142   // Swap to left input.  Implements item (2).
2143   if( n->req() == 3 &&          // two-input instruction
2144       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2145       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2146       n->in(2)->outcnt() == 1 &&// right use IS a last use
2147       !n->in(2)->is_Con() ) {   // right use is not a constant
2148     // Check for commutative opcode
2149     switch( nop ) {
2150     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2151     case Op_MaxI:  case Op_MinI:
2152     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2153     case Op_AndL:  case Op_XorL:  case Op_OrL:
2154     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2155       // Move "last use" input to left by swapping inputs
2156       n->swap_edges(1, 2);
2157       break;
2158     }
2159     default:
2160       break;
2161     }
2162   }
2163 
2164 #ifdef ASSERT
2165   if( n->is_Mem() ) {
2166     Compile* C = Compile::current();
2167     int alias_idx = C->get_alias_index(n->as_Mem()->adr_type());
2168     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2169             // oop will be recorded in oop map if load crosses safepoint
2170             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2171                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2172             "raw memory operations should have control edge");
2173   }
2174 #endif
2175   // Count FPU ops and common calls, implements item (3)
2176   switch( nop ) {
2177   // Count all float operations that may use FPU
2178   case Op_AddF:
2179   case Op_SubF:
2180   case Op_MulF:
2181   case Op_DivF:
2182   case Op_NegF:
2183   case Op_ModF:
2184   case Op_ConvI2F:
2185   case Op_ConF:
2186   case Op_CmpF:
2187   case Op_CmpF3:
2188   // case Op_ConvL2F: // longs are split into 32-bit halves
2189     frc.inc_float_count();
2190     break;
2191 
2192   case Op_ConvF2D:
2193   case Op_ConvD2F:
2194     frc.inc_float_count();
2195     frc.inc_double_count();
2196     break;
2197 
2198   // Count all double operations that may use FPU
2199   case Op_AddD:
2200   case Op_SubD:
2201   case Op_MulD:
2202   case Op_DivD:
2203   case Op_NegD:
2204   case Op_ModD:
2205   case Op_ConvI2D:
2206   case Op_ConvD2I:
2207   // case Op_ConvL2D: // handled by leaf call
2208   // case Op_ConvD2L: // handled by leaf call
2209   case Op_ConD:
2210   case Op_CmpD:
2211   case Op_CmpD3:
2212     frc.inc_double_count();
2213     break;
2214   case Op_Opaque1:              // Remove Opaque Nodes before matching
2215   case Op_Opaque2:              // Remove Opaque Nodes before matching
2216     n->subsume_by(n->in(1));
2217     break;
2218   case Op_CallStaticJava:
2219   case Op_CallJava:
2220   case Op_CallDynamicJava:
2221     frc.inc_java_call_count(); // Count java call site;
2222   case Op_CallRuntime:
2223   case Op_CallLeaf:
2224   case Op_CallLeafNoFP: {
2225     assert( n->is_Call(), "" );
2226     CallNode *call = n->as_Call();
2227     // Count call sites where the FP mode bit would have to be flipped.
2228     // Do not count uncommon runtime calls:
2229     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2230     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2231     if( !call->is_CallStaticJava() || !call->as_CallStaticJava()->_name ) {
2232       frc.inc_call_count();   // Count the call site
2233     } else {                  // See if uncommon argument is shared
2234       Node *n = call->in(TypeFunc::Parms);
2235       int nop = n->Opcode();
2236       // Clone shared simple arguments to uncommon calls, item (1).
2237       if( n->outcnt() > 1 &&
2238           !n->is_Proj() &&
2239           nop != Op_CreateEx &&
2240           nop != Op_CheckCastPP &&
2241           nop != Op_DecodeN &&
2242           nop != Op_DecodeNKlass &&
2243           !n->is_Mem() ) {
2244         Node *x = n->clone();
2245         call->set_req( TypeFunc::Parms, x );
2246       }
2247     }
2248     break;
2249   }
2250 
2251   case Op_StoreD:
2252   case Op_LoadD:
2253   case Op_LoadD_unaligned:
2254     frc.inc_double_count();
2255     goto handle_mem;
2256   case Op_StoreF:
2257   case Op_LoadF:
2258     frc.inc_float_count();
2259     goto handle_mem;
2260 
2261   case Op_StoreCM:
2262     {
2263       // Convert OopStore dependence into precedence edge
2264       Node* prec = n->in(MemNode::OopStore);
2265       n->del_req(MemNode::OopStore);
2266       n->add_prec(prec);
2267       eliminate_redundant_card_marks(n);
2268     }
2269 
2270     // fall through
2271 
2272   case Op_StoreB:
2273   case Op_StoreC:
2274   case Op_StorePConditional:
2275   case Op_StoreI:
2276   case Op_StoreL:
2277   case Op_StoreIConditional:
2278   case Op_StoreLConditional:
2279   case Op_CompareAndSwapI:
2280   case Op_CompareAndSwapL:
2281   case Op_CompareAndSwapP:
2282   case Op_CompareAndSwapN:
2283   case Op_GetAndAddI:
2284   case Op_GetAndAddL:
2285   case Op_GetAndSetI:
2286   case Op_GetAndSetL:
2287   case Op_GetAndSetP:
2288   case Op_GetAndSetN:
2289   case Op_StoreP:
2290   case Op_StoreN:
2291   case Op_StoreNKlass:
2292   case Op_LoadB:
2293   case Op_LoadUB:
2294   case Op_LoadUS:
2295   case Op_LoadI:
2296   case Op_LoadKlass:
2297   case Op_LoadNKlass:
2298   case Op_LoadL:
2299   case Op_LoadL_unaligned:
2300   case Op_LoadPLocked:
2301   case Op_LoadP:
2302   case Op_LoadN:
2303   case Op_LoadRange:
2304   case Op_LoadS: {
2305   handle_mem:
2306 #ifdef ASSERT
2307     if( VerifyOptoOopOffsets ) {
2308       assert( n->is_Mem(), "" );
2309       MemNode *mem  = (MemNode*)n;
2310       // Check to see if address types have grounded out somehow.
2311       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2312       assert( !tp || oop_offset_is_sane(tp), "" );
2313     }
2314 #endif
2315     break;
2316   }
2317 
2318   case Op_AddP: {               // Assert sane base pointers
2319     Node *addp = n->in(AddPNode::Address);
2320     assert( !addp->is_AddP() ||
2321             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
2322             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
2323             "Base pointers must match" );
2324 #ifdef _LP64
2325     if ((UseCompressedOops || UseCompressedKlassPointers) &&
2326         addp->Opcode() == Op_ConP &&
2327         addp == n->in(AddPNode::Base) &&
2328         n->in(AddPNode::Offset)->is_Con()) {
2329       // Use addressing with narrow klass to load with offset on x86.
2330       // On sparc loading 32-bits constant and decoding it have less
2331       // instructions (4) then load 64-bits constant (7).
2332       // Do this transformation here since IGVN will convert ConN back to ConP.
2333       const Type* t = addp->bottom_type();
2334       if (t->isa_oopptr() || t->isa_klassptr()) {
2335         Node* nn = NULL;
2336 
2337         int op = t->isa_oopptr() ? Op_ConN : Op_ConNKlass;
2338 
2339         // Look for existing ConN node of the same exact type.
2340         Compile* C = Compile::current();
2341         Node* r  = C->root();
2342         uint cnt = r->outcnt();
2343         for (uint i = 0; i < cnt; i++) {
2344           Node* m = r->raw_out(i);
2345           if (m!= NULL && m->Opcode() == op &&
2346               m->bottom_type()->make_ptr() == t) {
2347             nn = m;
2348             break;
2349           }
2350         }
2351         if (nn != NULL) {
2352           // Decode a narrow oop to match address
2353           // [R12 + narrow_oop_reg<<3 + offset]
2354           if (t->isa_oopptr()) {
2355             nn = new (C) DecodeNNode(nn, t);
2356           } else {
2357             nn = new (C) DecodeNKlassNode(nn, t);
2358           }
2359           n->set_req(AddPNode::Base, nn);
2360           n->set_req(AddPNode::Address, nn);
2361           if (addp->outcnt() == 0) {
2362             addp->disconnect_inputs(NULL);
2363           }
2364         }
2365       }
2366     }
2367 #endif
2368     break;
2369   }
2370 
2371 #ifdef _LP64
2372   case Op_CastPP:
2373     if (n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
2374       Compile* C = Compile::current();
2375       Node* in1 = n->in(1);
2376       const Type* t = n->bottom_type();
2377       Node* new_in1 = in1->clone();
2378       new_in1->as_DecodeN()->set_type(t);
2379 
2380       if (!Matcher::narrow_oop_use_complex_address()) {
2381         //
2382         // x86, ARM and friends can handle 2 adds in addressing mode
2383         // and Matcher can fold a DecodeN node into address by using
2384         // a narrow oop directly and do implicit NULL check in address:
2385         //
2386         // [R12 + narrow_oop_reg<<3 + offset]
2387         // NullCheck narrow_oop_reg
2388         //
2389         // On other platforms (Sparc) we have to keep new DecodeN node and
2390         // use it to do implicit NULL check in address:
2391         //
2392         // decode_not_null narrow_oop_reg, base_reg
2393         // [base_reg + offset]
2394         // NullCheck base_reg
2395         //
2396         // Pin the new DecodeN node to non-null path on these platform (Sparc)
2397         // to keep the information to which NULL check the new DecodeN node
2398         // corresponds to use it as value in implicit_null_check().
2399         //
2400         new_in1->set_req(0, n->in(0));
2401       }
2402 
2403       n->subsume_by(new_in1);
2404       if (in1->outcnt() == 0) {
2405         in1->disconnect_inputs(NULL);
2406       }
2407     }
2408     break;
2409 
2410   case Op_CmpP:
2411     // Do this transformation here to preserve CmpPNode::sub() and
2412     // other TypePtr related Ideal optimizations (for example, ptr nullness).
2413     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
2414       Node* in1 = n->in(1);
2415       Node* in2 = n->in(2);
2416       if (!in1->is_DecodeNarrowPtr()) {
2417         in2 = in1;
2418         in1 = n->in(2);
2419       }
2420       assert(in1->is_DecodeNarrowPtr(), "sanity");
2421 
2422       Compile* C = Compile::current();
2423       Node* new_in2 = NULL;
2424       if (in2->is_DecodeNarrowPtr()) {
2425         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
2426         new_in2 = in2->in(1);
2427       } else if (in2->Opcode() == Op_ConP) {
2428         const Type* t = in2->bottom_type();
2429         if (t == TypePtr::NULL_PTR) {
2430           assert(in1->is_DecodeN(), "compare klass to null?");
2431           // Don't convert CmpP null check into CmpN if compressed
2432           // oops implicit null check is not generated.
2433           // This will allow to generate normal oop implicit null check.
2434           if (Matcher::gen_narrow_oop_implicit_null_checks())
2435             new_in2 = ConNode::make(C, TypeNarrowOop::NULL_PTR);
2436           //
2437           // This transformation together with CastPP transformation above
2438           // will generated code for implicit NULL checks for compressed oops.
2439           //
2440           // The original code after Optimize()
2441           //
2442           //    LoadN memory, narrow_oop_reg
2443           //    decode narrow_oop_reg, base_reg
2444           //    CmpP base_reg, NULL
2445           //    CastPP base_reg // NotNull
2446           //    Load [base_reg + offset], val_reg
2447           //
2448           // after these transformations will be
2449           //
2450           //    LoadN memory, narrow_oop_reg
2451           //    CmpN narrow_oop_reg, NULL
2452           //    decode_not_null narrow_oop_reg, base_reg
2453           //    Load [base_reg + offset], val_reg
2454           //
2455           // and the uncommon path (== NULL) will use narrow_oop_reg directly
2456           // since narrow oops can be used in debug info now (see the code in
2457           // final_graph_reshaping_walk()).
2458           //
2459           // At the end the code will be matched to
2460           // on x86:
2461           //
2462           //    Load_narrow_oop memory, narrow_oop_reg
2463           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
2464           //    NullCheck narrow_oop_reg
2465           //
2466           // and on sparc:
2467           //
2468           //    Load_narrow_oop memory, narrow_oop_reg
2469           //    decode_not_null narrow_oop_reg, base_reg
2470           //    Load [base_reg + offset], val_reg
2471           //    NullCheck base_reg
2472           //
2473         } else if (t->isa_oopptr()) {
2474           new_in2 = ConNode::make(C, t->make_narrowoop());
2475         } else if (t->isa_klassptr()) {
2476           new_in2 = ConNode::make(C, t->make_narrowklass());
2477         }
2478       }
2479       if (new_in2 != NULL) {
2480         Node* cmpN = new (C) CmpNNode(in1->in(1), new_in2);
2481         n->subsume_by( cmpN );
2482         if (in1->outcnt() == 0) {
2483           in1->disconnect_inputs(NULL);
2484         }
2485         if (in2->outcnt() == 0) {
2486           in2->disconnect_inputs(NULL);
2487         }
2488       }
2489     }
2490     break;
2491 
2492   case Op_DecodeN:
2493   case Op_DecodeNKlass:
2494     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
2495     // DecodeN could be pinned when it can't be fold into
2496     // an address expression, see the code for Op_CastPP above.
2497     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
2498     break;
2499 
2500   case Op_EncodeP:
2501   case Op_EncodePKlass: {
2502     Node* in1 = n->in(1);
2503     if (in1->is_DecodeNarrowPtr()) {
2504       n->subsume_by(in1->in(1));
2505     } else if (in1->Opcode() == Op_ConP) {
2506       Compile* C = Compile::current();
2507       const Type* t = in1->bottom_type();
2508       if (t == TypePtr::NULL_PTR) {
2509         assert(t->isa_oopptr(), "null klass?");
2510         n->subsume_by(ConNode::make(C, TypeNarrowOop::NULL_PTR));
2511       } else if (t->isa_oopptr()) {
2512         n->subsume_by(ConNode::make(C, t->make_narrowoop()));
2513       } else if (t->isa_klassptr()) {
2514         n->subsume_by(ConNode::make(C, t->make_narrowklass()));
2515       }
2516     }
2517     if (in1->outcnt() == 0) {
2518       in1->disconnect_inputs(NULL);
2519     }
2520     break;
2521   }
2522 
2523   case Op_Proj: {
2524     if (OptimizeStringConcat) {
2525       ProjNode* p = n->as_Proj();
2526       if (p->_is_io_use) {
2527         // Separate projections were used for the exception path which
2528         // are normally removed by a late inline.  If it wasn't inlined
2529         // then they will hang around and should just be replaced with
2530         // the original one.
2531         Node* proj = NULL;
2532         // Replace with just one
2533         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
2534           Node *use = i.get();
2535           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
2536             proj = use;
2537             break;
2538           }
2539         }
2540         assert(proj != NULL, "must be found");
2541         p->subsume_by(proj);
2542       }
2543     }
2544     break;
2545   }
2546 
2547   case Op_Phi:
2548     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
2549       // The EncodeP optimization may create Phi with the same edges
2550       // for all paths. It is not handled well by Register Allocator.
2551       Node* unique_in = n->in(1);
2552       assert(unique_in != NULL, "");
2553       uint cnt = n->req();
2554       for (uint i = 2; i < cnt; i++) {
2555         Node* m = n->in(i);
2556         assert(m != NULL, "");
2557         if (unique_in != m)
2558           unique_in = NULL;
2559       }
2560       if (unique_in != NULL) {
2561         n->subsume_by(unique_in);
2562       }
2563     }
2564     break;
2565 
2566 #endif
2567 
2568   case Op_ModI:
2569     if (UseDivMod) {
2570       // Check if a%b and a/b both exist
2571       Node* d = n->find_similar(Op_DivI);
2572       if (d) {
2573         // Replace them with a fused divmod if supported
2574         Compile* C = Compile::current();
2575         if (Matcher::has_match_rule(Op_DivModI)) {
2576           DivModINode* divmod = DivModINode::make(C, n);
2577           d->subsume_by(divmod->div_proj());
2578           n->subsume_by(divmod->mod_proj());
2579         } else {
2580           // replace a%b with a-((a/b)*b)
2581           Node* mult = new (C) MulINode(d, d->in(2));
2582           Node* sub  = new (C) SubINode(d->in(1), mult);
2583           n->subsume_by( sub );
2584         }
2585       }
2586     }
2587     break;
2588 
2589   case Op_ModL:
2590     if (UseDivMod) {
2591       // Check if a%b and a/b both exist
2592       Node* d = n->find_similar(Op_DivL);
2593       if (d) {
2594         // Replace them with a fused divmod if supported
2595         Compile* C = Compile::current();
2596         if (Matcher::has_match_rule(Op_DivModL)) {
2597           DivModLNode* divmod = DivModLNode::make(C, n);
2598           d->subsume_by(divmod->div_proj());
2599           n->subsume_by(divmod->mod_proj());
2600         } else {
2601           // replace a%b with a-((a/b)*b)
2602           Node* mult = new (C) MulLNode(d, d->in(2));
2603           Node* sub  = new (C) SubLNode(d->in(1), mult);
2604           n->subsume_by( sub );
2605         }
2606       }
2607     }
2608     break;
2609 
2610   case Op_LoadVector:
2611   case Op_StoreVector:
2612     break;
2613 
2614   case Op_PackB:
2615   case Op_PackS:
2616   case Op_PackI:
2617   case Op_PackF:
2618   case Op_PackL:
2619   case Op_PackD:
2620     if (n->req()-1 > 2) {
2621       // Replace many operand PackNodes with a binary tree for matching
2622       PackNode* p = (PackNode*) n;
2623       Node* btp = p->binary_tree_pack(Compile::current(), 1, n->req());
2624       n->subsume_by(btp);
2625     }
2626     break;
2627   case Op_Loop:
2628   case Op_CountedLoop:
2629     if (n->as_Loop()->is_inner_loop()) {
2630       frc.inc_inner_loop_count();
2631     }
2632     break;
2633   case Op_LShiftI:
2634   case Op_RShiftI:
2635   case Op_URShiftI:
2636   case Op_LShiftL:
2637   case Op_RShiftL:
2638   case Op_URShiftL:
2639     if (Matcher::need_masked_shift_count) {
2640       // The cpu's shift instructions don't restrict the count to the
2641       // lower 5/6 bits. We need to do the masking ourselves.
2642       Node* in2 = n->in(2);
2643       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
2644       const TypeInt* t = in2->find_int_type();
2645       if (t != NULL && t->is_con()) {
2646         juint shift = t->get_con();
2647         if (shift > mask) { // Unsigned cmp
2648           Compile* C = Compile::current();
2649           n->set_req(2, ConNode::make(C, TypeInt::make(shift & mask)));
2650         }
2651       } else {
2652         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
2653           Compile* C = Compile::current();
2654           Node* shift = new (C) AndINode(in2, ConNode::make(C, TypeInt::make(mask)));
2655           n->set_req(2, shift);
2656         }
2657       }
2658       if (in2->outcnt() == 0) { // Remove dead node
2659         in2->disconnect_inputs(NULL);
2660       }
2661     }
2662     break;
2663   default:
2664     assert( !n->is_Call(), "" );
2665     assert( !n->is_Mem(), "" );
2666     break;
2667   }
2668 
2669   // Collect CFG split points
2670   if (n->is_MultiBranch())
2671     frc._tests.push(n);
2672 }
2673 
2674 //------------------------------final_graph_reshaping_walk---------------------
2675 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
2676 // requires that the walk visits a node's inputs before visiting the node.
2677 static void final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
2678   ResourceArea *area = Thread::current()->resource_area();
2679   Unique_Node_List sfpt(area);
2680 
2681   frc._visited.set(root->_idx); // first, mark node as visited
2682   uint cnt = root->req();
2683   Node *n = root;
2684   uint  i = 0;
2685   while (true) {
2686     if (i < cnt) {
2687       // Place all non-visited non-null inputs onto stack
2688       Node* m = n->in(i);
2689       ++i;
2690       if (m != NULL && !frc._visited.test_set(m->_idx)) {
2691         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL)
2692           sfpt.push(m);
2693         cnt = m->req();
2694         nstack.push(n, i); // put on stack parent and next input's index
2695         n = m;
2696         i = 0;
2697       }
2698     } else {
2699       // Now do post-visit work
2700       final_graph_reshaping_impl( n, frc );
2701       if (nstack.is_empty())
2702         break;             // finished
2703       n = nstack.node();   // Get node from stack
2704       cnt = n->req();
2705       i = nstack.index();
2706       nstack.pop();        // Shift to the next node on stack
2707     }
2708   }
2709 
2710   // Skip next transformation if compressed oops are not used.
2711   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
2712       (!UseCompressedOops && !UseCompressedKlassPointers))
2713     return;
2714 
2715   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
2716   // It could be done for an uncommon traps or any safepoints/calls
2717   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
2718   while (sfpt.size() > 0) {
2719     n = sfpt.pop();
2720     JVMState *jvms = n->as_SafePoint()->jvms();
2721     assert(jvms != NULL, "sanity");
2722     int start = jvms->debug_start();
2723     int end   = n->req();
2724     bool is_uncommon = (n->is_CallStaticJava() &&
2725                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
2726     for (int j = start; j < end; j++) {
2727       Node* in = n->in(j);
2728       if (in->is_DecodeNarrowPtr()) {
2729         bool safe_to_skip = true;
2730         if (!is_uncommon ) {
2731           // Is it safe to skip?
2732           for (uint i = 0; i < in->outcnt(); i++) {
2733             Node* u = in->raw_out(i);
2734             if (!u->is_SafePoint() ||
2735                  u->is_Call() && u->as_Call()->has_non_debug_use(n)) {
2736               safe_to_skip = false;
2737             }
2738           }
2739         }
2740         if (safe_to_skip) {
2741           n->set_req(j, in->in(1));
2742         }
2743         if (in->outcnt() == 0) {
2744           in->disconnect_inputs(NULL);
2745         }
2746       }
2747     }
2748   }
2749 }
2750 
2751 //------------------------------final_graph_reshaping--------------------------
2752 // Final Graph Reshaping.
2753 //
2754 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
2755 //     and not commoned up and forced early.  Must come after regular
2756 //     optimizations to avoid GVN undoing the cloning.  Clone constant
2757 //     inputs to Loop Phis; these will be split by the allocator anyways.
2758 //     Remove Opaque nodes.
2759 // (2) Move last-uses by commutative operations to the left input to encourage
2760 //     Intel update-in-place two-address operations and better register usage
2761 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
2762 //     calls canonicalizing them back.
2763 // (3) Count the number of double-precision FP ops, single-precision FP ops
2764 //     and call sites.  On Intel, we can get correct rounding either by
2765 //     forcing singles to memory (requires extra stores and loads after each
2766 //     FP bytecode) or we can set a rounding mode bit (requires setting and
2767 //     clearing the mode bit around call sites).  The mode bit is only used
2768 //     if the relative frequency of single FP ops to calls is low enough.
2769 //     This is a key transform for SPEC mpeg_audio.
2770 // (4) Detect infinite loops; blobs of code reachable from above but not
2771 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
2772 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
2773 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
2774 //     Detection is by looking for IfNodes where only 1 projection is
2775 //     reachable from below or CatchNodes missing some targets.
2776 // (5) Assert for insane oop offsets in debug mode.
2777 
2778 bool Compile::final_graph_reshaping() {
2779   // an infinite loop may have been eliminated by the optimizer,
2780   // in which case the graph will be empty.
2781   if (root()->req() == 1) {
2782     record_method_not_compilable("trivial infinite loop");
2783     return true;
2784   }
2785 
2786   Final_Reshape_Counts frc;
2787 
2788   // Visit everybody reachable!
2789   // Allocate stack of size C->unique()/2 to avoid frequent realloc
2790   Node_Stack nstack(unique() >> 1);
2791   final_graph_reshaping_walk(nstack, root(), frc);
2792 
2793   // Check for unreachable (from below) code (i.e., infinite loops).
2794   for( uint i = 0; i < frc._tests.size(); i++ ) {
2795     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
2796     // Get number of CFG targets.
2797     // Note that PCTables include exception targets after calls.
2798     uint required_outcnt = n->required_outcnt();
2799     if (n->outcnt() != required_outcnt) {
2800       // Check for a few special cases.  Rethrow Nodes never take the
2801       // 'fall-thru' path, so expected kids is 1 less.
2802       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
2803         if (n->in(0)->in(0)->is_Call()) {
2804           CallNode *call = n->in(0)->in(0)->as_Call();
2805           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2806             required_outcnt--;      // Rethrow always has 1 less kid
2807           } else if (call->req() > TypeFunc::Parms &&
2808                      call->is_CallDynamicJava()) {
2809             // Check for null receiver. In such case, the optimizer has
2810             // detected that the virtual call will always result in a null
2811             // pointer exception. The fall-through projection of this CatchNode
2812             // will not be populated.
2813             Node *arg0 = call->in(TypeFunc::Parms);
2814             if (arg0->is_Type() &&
2815                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
2816               required_outcnt--;
2817             }
2818           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
2819                      call->req() > TypeFunc::Parms+1 &&
2820                      call->is_CallStaticJava()) {
2821             // Check for negative array length. In such case, the optimizer has
2822             // detected that the allocation attempt will always result in an
2823             // exception. There is no fall-through projection of this CatchNode .
2824             Node *arg1 = call->in(TypeFunc::Parms+1);
2825             if (arg1->is_Type() &&
2826                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
2827               required_outcnt--;
2828             }
2829           }
2830         }
2831       }
2832       // Recheck with a better notion of 'required_outcnt'
2833       if (n->outcnt() != required_outcnt) {
2834         record_method_not_compilable("malformed control flow");
2835         return true;            // Not all targets reachable!
2836       }
2837     }
2838     // Check that I actually visited all kids.  Unreached kids
2839     // must be infinite loops.
2840     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
2841       if (!frc._visited.test(n->fast_out(j)->_idx)) {
2842         record_method_not_compilable("infinite loop");
2843         return true;            // Found unvisited kid; must be unreach
2844       }
2845   }
2846 
2847   // If original bytecodes contained a mixture of floats and doubles
2848   // check if the optimizer has made it homogenous, item (3).
2849   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
2850       frc.get_float_count() > 32 &&
2851       frc.get_double_count() == 0 &&
2852       (10 * frc.get_call_count() < frc.get_float_count()) ) {
2853     set_24_bit_selection_and_mode( false,  true );
2854   }
2855 
2856   set_java_calls(frc.get_java_call_count());
2857   set_inner_loops(frc.get_inner_loop_count());
2858 
2859   // No infinite loops, no reason to bail out.
2860   return false;
2861 }
2862 
2863 //-----------------------------too_many_traps----------------------------------
2864 // Report if there are too many traps at the current method and bci.
2865 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
2866 bool Compile::too_many_traps(ciMethod* method,
2867                              int bci,
2868                              Deoptimization::DeoptReason reason) {
2869   ciMethodData* md = method->method_data();
2870   if (md->is_empty()) {
2871     // Assume the trap has not occurred, or that it occurred only
2872     // because of a transient condition during start-up in the interpreter.
2873     return false;
2874   }
2875   if (md->has_trap_at(bci, reason) != 0) {
2876     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
2877     // Also, if there are multiple reasons, or if there is no per-BCI record,
2878     // assume the worst.
2879     if (log())
2880       log()->elem("observe trap='%s' count='%d'",
2881                   Deoptimization::trap_reason_name(reason),
2882                   md->trap_count(reason));
2883     return true;
2884   } else {
2885     // Ignore method/bci and see if there have been too many globally.
2886     return too_many_traps(reason, md);
2887   }
2888 }
2889 
2890 // Less-accurate variant which does not require a method and bci.
2891 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
2892                              ciMethodData* logmd) {
2893  if (trap_count(reason) >= (uint)PerMethodTrapLimit) {
2894     // Too many traps globally.
2895     // Note that we use cumulative trap_count, not just md->trap_count.
2896     if (log()) {
2897       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
2898       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
2899                   Deoptimization::trap_reason_name(reason),
2900                   mcount, trap_count(reason));
2901     }
2902     return true;
2903   } else {
2904     // The coast is clear.
2905     return false;
2906   }
2907 }
2908 
2909 //--------------------------too_many_recompiles--------------------------------
2910 // Report if there are too many recompiles at the current method and bci.
2911 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
2912 // Is not eager to return true, since this will cause the compiler to use
2913 // Action_none for a trap point, to avoid too many recompilations.
2914 bool Compile::too_many_recompiles(ciMethod* method,
2915                                   int bci,
2916                                   Deoptimization::DeoptReason reason) {
2917   ciMethodData* md = method->method_data();
2918   if (md->is_empty()) {
2919     // Assume the trap has not occurred, or that it occurred only
2920     // because of a transient condition during start-up in the interpreter.
2921     return false;
2922   }
2923   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
2924   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
2925   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
2926   Deoptimization::DeoptReason per_bc_reason
2927     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
2928   if ((per_bc_reason == Deoptimization::Reason_none
2929        || md->has_trap_at(bci, reason) != 0)
2930       // The trap frequency measure we care about is the recompile count:
2931       && md->trap_recompiled_at(bci)
2932       && md->overflow_recompile_count() >= bc_cutoff) {
2933     // Do not emit a trap here if it has already caused recompilations.
2934     // Also, if there are multiple reasons, or if there is no per-BCI record,
2935     // assume the worst.
2936     if (log())
2937       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
2938                   Deoptimization::trap_reason_name(reason),
2939                   md->trap_count(reason),
2940                   md->overflow_recompile_count());
2941     return true;
2942   } else if (trap_count(reason) != 0
2943              && decompile_count() >= m_cutoff) {
2944     // Too many recompiles globally, and we have seen this sort of trap.
2945     // Use cumulative decompile_count, not just md->decompile_count.
2946     if (log())
2947       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
2948                   Deoptimization::trap_reason_name(reason),
2949                   md->trap_count(reason), trap_count(reason),
2950                   md->decompile_count(), decompile_count());
2951     return true;
2952   } else {
2953     // The coast is clear.
2954     return false;
2955   }
2956 }
2957 
2958 
2959 #ifndef PRODUCT
2960 //------------------------------verify_graph_edges---------------------------
2961 // Walk the Graph and verify that there is a one-to-one correspondence
2962 // between Use-Def edges and Def-Use edges in the graph.
2963 void Compile::verify_graph_edges(bool no_dead_code) {
2964   if (VerifyGraphEdges) {
2965     ResourceArea *area = Thread::current()->resource_area();
2966     Unique_Node_List visited(area);
2967     // Call recursive graph walk to check edges
2968     _root->verify_edges(visited);
2969     if (no_dead_code) {
2970       // Now make sure that no visited node is used by an unvisited node.
2971       bool dead_nodes = 0;
2972       Unique_Node_List checked(area);
2973       while (visited.size() > 0) {
2974         Node* n = visited.pop();
2975         checked.push(n);
2976         for (uint i = 0; i < n->outcnt(); i++) {
2977           Node* use = n->raw_out(i);
2978           if (checked.member(use))  continue;  // already checked
2979           if (visited.member(use))  continue;  // already in the graph
2980           if (use->is_Con())        continue;  // a dead ConNode is OK
2981           // At this point, we have found a dead node which is DU-reachable.
2982           if (dead_nodes++ == 0)
2983             tty->print_cr("*** Dead nodes reachable via DU edges:");
2984           use->dump(2);
2985           tty->print_cr("---");
2986           checked.push(use);  // No repeats; pretend it is now checked.
2987         }
2988       }
2989       assert(dead_nodes == 0, "using nodes must be reachable from root");
2990     }
2991   }
2992 }
2993 #endif
2994 
2995 // The Compile object keeps track of failure reasons separately from the ciEnv.
2996 // This is required because there is not quite a 1-1 relation between the
2997 // ciEnv and its compilation task and the Compile object.  Note that one
2998 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
2999 // to backtrack and retry without subsuming loads.  Other than this backtracking
3000 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3001 // by the logic in C2Compiler.
3002 void Compile::record_failure(const char* reason) {
3003   if (log() != NULL) {
3004     log()->elem("failure reason='%s' phase='compile'", reason);
3005   }
3006   if (_failure_reason == NULL) {
3007     // Record the first failure reason.
3008     _failure_reason = reason;
3009   }
3010   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3011     C->print_method(_failure_reason);
3012   }
3013   _root = NULL;  // flush the graph, too
3014 }
3015 
3016 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator, bool dolog)
3017   : TraceTime(NULL, accumulator, false NOT_PRODUCT( || TimeCompiler ), false)
3018 {
3019   if (dolog) {
3020     C = Compile::current();
3021     _log = C->log();
3022   } else {
3023     C = NULL;
3024     _log = NULL;
3025   }
3026   if (_log != NULL) {
3027     _log->begin_head("phase name='%s' nodes='%d'", name, C->unique());
3028     _log->stamp();
3029     _log->end_head();
3030   }
3031 }
3032 
3033 Compile::TracePhase::~TracePhase() {
3034   if (_log != NULL) {
3035     _log->done("phase nodes='%d'", C->unique());
3036   }
3037 }
3038 
3039 //=============================================================================
3040 // Two Constant's are equal when the type and the value are equal.
3041 bool Compile::Constant::operator==(const Constant& other) {
3042   if (type()          != other.type()         )  return false;
3043   if (can_be_reused() != other.can_be_reused())  return false;
3044   // For floating point values we compare the bit pattern.
3045   switch (type()) {
3046   case T_FLOAT:   return (_v._value.i == other._v._value.i);
3047   case T_LONG:
3048   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
3049   case T_OBJECT:
3050   case T_ADDRESS: return (_v._value.l == other._v._value.l);
3051   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
3052   case T_METADATA: return (_v._metadata == other._v._metadata);
3053   default: ShouldNotReachHere();
3054   }
3055   return false;
3056 }
3057 
3058 static int type_to_size_in_bytes(BasicType t) {
3059   switch (t) {
3060   case T_LONG:    return sizeof(jlong  );
3061   case T_FLOAT:   return sizeof(jfloat );
3062   case T_DOUBLE:  return sizeof(jdouble);
3063   case T_METADATA: return sizeof(Metadata*);
3064     // We use T_VOID as marker for jump-table entries (labels) which
3065     // need an internal word relocation.
3066   case T_VOID:
3067   case T_ADDRESS:
3068   case T_OBJECT:  return sizeof(jobject);
3069   }
3070 
3071   ShouldNotReachHere();
3072   return -1;
3073 }
3074 
3075 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
3076   // sort descending
3077   if (a->freq() > b->freq())  return -1;
3078   if (a->freq() < b->freq())  return  1;
3079   return 0;
3080 }
3081 
3082 void Compile::ConstantTable::calculate_offsets_and_size() {
3083   // First, sort the array by frequencies.
3084   _constants.sort(qsort_comparator);
3085 
3086 #ifdef ASSERT
3087   // Make sure all jump-table entries were sorted to the end of the
3088   // array (they have a negative frequency).
3089   bool found_void = false;
3090   for (int i = 0; i < _constants.length(); i++) {
3091     Constant con = _constants.at(i);
3092     if (con.type() == T_VOID)
3093       found_void = true;  // jump-tables
3094     else
3095       assert(!found_void, "wrong sorting");
3096   }
3097 #endif
3098 
3099   int offset = 0;
3100   for (int i = 0; i < _constants.length(); i++) {
3101     Constant* con = _constants.adr_at(i);
3102 
3103     // Align offset for type.
3104     int typesize = type_to_size_in_bytes(con->type());
3105     offset = align_size_up(offset, typesize);
3106     con->set_offset(offset);   // set constant's offset
3107 
3108     if (con->type() == T_VOID) {
3109       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
3110       offset = offset + typesize * n->outcnt();  // expand jump-table
3111     } else {
3112       offset = offset + typesize;
3113     }
3114   }
3115 
3116   // Align size up to the next section start (which is insts; see
3117   // CodeBuffer::align_at_start).
3118   assert(_size == -1, "already set?");
3119   _size = align_size_up(offset, CodeEntryAlignment);
3120 }
3121 
3122 void Compile::ConstantTable::emit(CodeBuffer& cb) {
3123   MacroAssembler _masm(&cb);
3124   for (int i = 0; i < _constants.length(); i++) {
3125     Constant con = _constants.at(i);
3126     address constant_addr;
3127     switch (con.type()) {
3128     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
3129     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
3130     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
3131     case T_OBJECT: {
3132       jobject obj = con.get_jobject();
3133       int oop_index = _masm.oop_recorder()->find_index(obj);
3134       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
3135       break;
3136     }
3137     case T_ADDRESS: {
3138       address addr = (address) con.get_jobject();
3139       constant_addr = _masm.address_constant(addr);
3140       break;
3141     }
3142     // We use T_VOID as marker for jump-table entries (labels) which
3143     // need an internal word relocation.
3144     case T_VOID: {
3145       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
3146       // Fill the jump-table with a dummy word.  The real value is
3147       // filled in later in fill_jump_table.
3148       address dummy = (address) n;
3149       constant_addr = _masm.address_constant(dummy);
3150       // Expand jump-table
3151       for (uint i = 1; i < n->outcnt(); i++) {
3152         address temp_addr = _masm.address_constant(dummy + i);
3153         assert(temp_addr, "consts section too small");
3154       }
3155       break;
3156     }
3157     case T_METADATA: {
3158       Metadata* obj = con.get_metadata();
3159       int metadata_index = _masm.oop_recorder()->find_index(obj);
3160       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
3161       break;
3162     }
3163     default: ShouldNotReachHere();
3164     }
3165     assert(constant_addr, "consts section too small");
3166     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(), err_msg_res("must be: %d == %d", constant_addr - _masm.code()->consts()->start(), con.offset()));
3167   }
3168 }
3169 
3170 int Compile::ConstantTable::find_offset(Constant& con) const {
3171   int idx = _constants.find(con);
3172   assert(idx != -1, "constant must be in constant table");
3173   int offset = _constants.at(idx).offset();
3174   assert(offset != -1, "constant table not emitted yet?");
3175   return offset;
3176 }
3177 
3178 void Compile::ConstantTable::add(Constant& con) {
3179   if (con.can_be_reused()) {
3180     int idx = _constants.find(con);
3181     if (idx != -1 && _constants.at(idx).can_be_reused()) {
3182       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
3183       return;
3184     }
3185   }
3186   (void) _constants.append(con);
3187 }
3188 
3189 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
3190   Block* b = Compile::current()->cfg()->_bbs[n->_idx];
3191   Constant con(type, value, b->_freq);
3192   add(con);
3193   return con;
3194 }
3195 
3196 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
3197   Constant con(metadata);
3198   add(con);
3199   return con;
3200 }
3201 
3202 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
3203   jvalue value;
3204   BasicType type = oper->type()->basic_type();
3205   switch (type) {
3206   case T_LONG:    value.j = oper->constantL(); break;
3207   case T_FLOAT:   value.f = oper->constantF(); break;
3208   case T_DOUBLE:  value.d = oper->constantD(); break;
3209   case T_OBJECT:
3210   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
3211   case T_METADATA: return add((Metadata*)oper->constant()); break;
3212   default: guarantee(false, err_msg_res("unhandled type: %s", type2name(type)));
3213   }
3214   return add(n, type, value);
3215 }
3216 
3217 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
3218   jvalue value;
3219   // We can use the node pointer here to identify the right jump-table
3220   // as this method is called from Compile::Fill_buffer right before
3221   // the MachNodes are emitted and the jump-table is filled (means the
3222   // MachNode pointers do not change anymore).
3223   value.l = (jobject) n;
3224   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
3225   add(con);
3226   return con;
3227 }
3228 
3229 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
3230   // If called from Compile::scratch_emit_size do nothing.
3231   if (Compile::current()->in_scratch_emit_size())  return;
3232 
3233   assert(labels.is_nonempty(), "must be");
3234   assert((uint) labels.length() == n->outcnt(), err_msg_res("must be equal: %d == %d", labels.length(), n->outcnt()));
3235 
3236   // Since MachConstantNode::constant_offset() also contains
3237   // table_base_offset() we need to subtract the table_base_offset()
3238   // to get the plain offset into the constant table.
3239   int offset = n->constant_offset() - table_base_offset();
3240 
3241   MacroAssembler _masm(&cb);
3242   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
3243 
3244   for (uint i = 0; i < n->outcnt(); i++) {
3245     address* constant_addr = &jump_table_base[i];
3246     assert(*constant_addr == (((address) n) + i), err_msg_res("all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, *constant_addr, (((address) n) + i)));
3247     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
3248     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
3249   }
3250 }