1 /*
   2  * Copyright (c) 2000, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_C1_C1_LIR_HPP
  26 #define SHARE_C1_C1_LIR_HPP
  27 
  28 #include "c1/c1_Defs.hpp"
  29 #include "c1/c1_ValueType.hpp"
  30 #include "oops/method.hpp"
  31 #include "utilities/globalDefinitions.hpp"
  32 
  33 class BlockBegin;
  34 class BlockList;
  35 class LIR_Assembler;
  36 class CodeEmitInfo;
  37 class CodeStub;
  38 class CodeStubList;
  39 class ArrayCopyStub;
  40 class LIR_Op;
  41 class ciType;
  42 class ValueType;
  43 class LIR_OpVisitState;
  44 class FpuStackSim;
  45 
  46 //---------------------------------------------------------------------
  47 //                 LIR Operands
  48 //  LIR_OprDesc
  49 //    LIR_OprPtr
  50 //      LIR_Const
  51 //      LIR_Address
  52 //---------------------------------------------------------------------
  53 class LIR_OprDesc;
  54 class LIR_OprPtr;
  55 class LIR_Const;
  56 class LIR_Address;
  57 class LIR_OprVisitor;
  58 
  59 
  60 typedef LIR_OprDesc* LIR_Opr;
  61 typedef int          RegNr;
  62 
  63 typedef GrowableArray<LIR_Opr> LIR_OprList;
  64 typedef GrowableArray<LIR_Op*> LIR_OpArray;
  65 typedef GrowableArray<LIR_Op*> LIR_OpList;
  66 
  67 // define LIR_OprPtr early so LIR_OprDesc can refer to it
  68 class LIR_OprPtr: public CompilationResourceObj {
  69  public:
  70   bool is_oop_pointer() const                    { return (type() == T_OBJECT); }
  71   bool is_float_kind() const                     { BasicType t = type(); return (t == T_FLOAT) || (t == T_DOUBLE); }
  72 
  73   virtual LIR_Const*  as_constant()              { return NULL; }
  74   virtual LIR_Address* as_address()              { return NULL; }
  75   virtual BasicType type() const                 = 0;
  76   virtual void print_value_on(outputStream* out) const = 0;
  77 };
  78 
  79 
  80 
  81 // LIR constants
  82 class LIR_Const: public LIR_OprPtr {
  83  private:
  84   JavaValue _value;
  85 
  86   void type_check(BasicType t) const   { assert(type() == t, "type check"); }
  87   void type_check(BasicType t1, BasicType t2) const   { assert(type() == t1 || type() == t2, "type check"); }
  88   void type_check(BasicType t1, BasicType t2, BasicType t3) const   { assert(type() == t1 || type() == t2 || type() == t3, "type check"); }
  89 
  90  public:
  91   LIR_Const(jint i, bool is_address=false)       { _value.set_type(is_address?T_ADDRESS:T_INT); _value.set_jint(i); }
  92   LIR_Const(jlong l)                             { _value.set_type(T_LONG);    _value.set_jlong(l); }
  93   LIR_Const(jfloat f)                            { _value.set_type(T_FLOAT);   _value.set_jfloat(f); }
  94   LIR_Const(jdouble d)                           { _value.set_type(T_DOUBLE);  _value.set_jdouble(d); }
  95   LIR_Const(jobject o)                           { _value.set_type(T_OBJECT);  _value.set_jobject(o); }
  96   LIR_Const(void* p) {
  97 #ifdef _LP64
  98     assert(sizeof(jlong) >= sizeof(p), "too small");;
  99     _value.set_type(T_LONG);    _value.set_jlong((jlong)p);
 100 #else
 101     assert(sizeof(jint) >= sizeof(p), "too small");;
 102     _value.set_type(T_INT);     _value.set_jint((jint)p);
 103 #endif
 104   }
 105   LIR_Const(Metadata* m) {
 106     _value.set_type(T_METADATA);
 107 #ifdef _LP64
 108     _value.set_jlong((jlong)m);
 109 #else
 110     _value.set_jint((jint)m);
 111 #endif // _LP64
 112   }
 113 
 114   virtual BasicType type()       const { return _value.get_type(); }
 115   virtual LIR_Const* as_constant()     { return this; }
 116 
 117   jint      as_jint()    const         { type_check(T_INT, T_ADDRESS); return _value.get_jint(); }
 118   jlong     as_jlong()   const         { type_check(T_LONG  ); return _value.get_jlong(); }
 119   jfloat    as_jfloat()  const         { type_check(T_FLOAT ); return _value.get_jfloat(); }
 120   jdouble   as_jdouble() const         { type_check(T_DOUBLE); return _value.get_jdouble(); }
 121   jobject   as_jobject() const         { type_check(T_OBJECT); return _value.get_jobject(); }
 122   jint      as_jint_lo() const         { type_check(T_LONG  ); return low(_value.get_jlong()); }
 123   jint      as_jint_hi() const         { type_check(T_LONG  ); return high(_value.get_jlong()); }
 124 
 125 #ifdef _LP64
 126   address   as_pointer() const         { type_check(T_LONG  ); return (address)_value.get_jlong(); }
 127   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jlong(); }
 128 #else
 129   address   as_pointer() const         { type_check(T_INT   ); return (address)_value.get_jint(); }
 130   Metadata* as_metadata() const        { type_check(T_METADATA); return (Metadata*)_value.get_jint(); }
 131 #endif
 132 
 133 
 134   jint      as_jint_bits() const       { type_check(T_FLOAT, T_INT, T_ADDRESS); return _value.get_jint(); }
 135   jint      as_jint_lo_bits() const    {
 136     if (type() == T_DOUBLE) {
 137       return low(jlong_cast(_value.get_jdouble()));
 138     } else {
 139       return as_jint_lo();
 140     }
 141   }
 142   jint      as_jint_hi_bits() const    {
 143     if (type() == T_DOUBLE) {
 144       return high(jlong_cast(_value.get_jdouble()));
 145     } else {
 146       return as_jint_hi();
 147     }
 148   }
 149   jlong      as_jlong_bits() const    {
 150     if (type() == T_DOUBLE) {
 151       return jlong_cast(_value.get_jdouble());
 152     } else {
 153       return as_jlong();
 154     }
 155   }
 156 
 157   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 158 
 159 
 160   bool is_zero_float() {
 161     jfloat f = as_jfloat();
 162     jfloat ok = 0.0f;
 163     return jint_cast(f) == jint_cast(ok);
 164   }
 165 
 166   bool is_one_float() {
 167     jfloat f = as_jfloat();
 168     return !g_isnan(f) && g_isfinite(f) && f == 1.0;
 169   }
 170 
 171   bool is_zero_double() {
 172     jdouble d = as_jdouble();
 173     jdouble ok = 0.0;
 174     return jlong_cast(d) == jlong_cast(ok);
 175   }
 176 
 177   bool is_one_double() {
 178     jdouble d = as_jdouble();
 179     return !g_isnan(d) && g_isfinite(d) && d == 1.0;
 180   }
 181 };
 182 
 183 
 184 //---------------------LIR Operand descriptor------------------------------------
 185 //
 186 // The class LIR_OprDesc represents a LIR instruction operand;
 187 // it can be a register (ALU/FPU), stack location or a constant;
 188 // Constants and addresses are represented as resource area allocated
 189 // structures (see above).
 190 // Registers and stack locations are inlined into the this pointer
 191 // (see value function).
 192 
 193 class LIR_OprDesc: public CompilationResourceObj {
 194  public:
 195   // value structure:
 196   //     data       opr-type opr-kind
 197   // +--------------+-------+-------+
 198   // [max...........|7 6 5 4|3 2 1 0]
 199   //                               ^
 200   //                         is_pointer bit
 201   //
 202   // lowest bit cleared, means it is a structure pointer
 203   // we need  4 bits to represent types
 204 
 205  private:
 206   friend class LIR_OprFact;
 207 
 208   // Conversion
 209   intptr_t value() const                         { return (intptr_t) this; }
 210 
 211   bool check_value_mask(intptr_t mask, intptr_t masked_value) const {
 212     return (value() & mask) == masked_value;
 213   }
 214 
 215   enum OprKind {
 216       pointer_value      = 0
 217     , stack_value        = 1
 218     , cpu_register       = 3
 219     , fpu_register       = 5
 220     , illegal_value      = 7
 221   };
 222 
 223   enum OprBits {
 224       pointer_bits   = 1
 225     , kind_bits      = 3
 226     , type_bits      = 4
 227     , size_bits      = 2
 228     , destroys_bits  = 1
 229     , virtual_bits   = 1
 230     , is_xmm_bits    = 1
 231     , last_use_bits  = 1
 232     , is_fpu_stack_offset_bits = 1        // used in assertion checking on x86 for FPU stack slot allocation
 233     , non_data_bits  = kind_bits + type_bits + size_bits + destroys_bits + last_use_bits +
 234                        is_fpu_stack_offset_bits + virtual_bits + is_xmm_bits
 235     , data_bits      = BitsPerInt - non_data_bits
 236     , reg_bits       = data_bits / 2      // for two registers in one value encoding
 237   };
 238 
 239   enum OprShift {
 240       kind_shift     = 0
 241     , type_shift     = kind_shift     + kind_bits
 242     , size_shift     = type_shift     + type_bits
 243     , destroys_shift = size_shift     + size_bits
 244     , last_use_shift = destroys_shift + destroys_bits
 245     , is_fpu_stack_offset_shift = last_use_shift + last_use_bits
 246     , virtual_shift  = is_fpu_stack_offset_shift + is_fpu_stack_offset_bits
 247     , is_xmm_shift   = virtual_shift + virtual_bits
 248     , data_shift     = is_xmm_shift + is_xmm_bits
 249     , reg1_shift = data_shift
 250     , reg2_shift = data_shift + reg_bits
 251 
 252   };
 253 
 254   enum OprSize {
 255       single_size = 0 << size_shift
 256     , double_size = 1 << size_shift
 257   };
 258 
 259   enum OprMask {
 260       kind_mask      = right_n_bits(kind_bits)
 261     , type_mask      = right_n_bits(type_bits) << type_shift
 262     , size_mask      = right_n_bits(size_bits) << size_shift
 263     , last_use_mask  = right_n_bits(last_use_bits) << last_use_shift
 264     , is_fpu_stack_offset_mask = right_n_bits(is_fpu_stack_offset_bits) << is_fpu_stack_offset_shift
 265     , virtual_mask   = right_n_bits(virtual_bits) << virtual_shift
 266     , is_xmm_mask    = right_n_bits(is_xmm_bits) << is_xmm_shift
 267     , pointer_mask   = right_n_bits(pointer_bits)
 268     , lower_reg_mask = right_n_bits(reg_bits)
 269     , no_type_mask   = (int)(~(type_mask | last_use_mask | is_fpu_stack_offset_mask))
 270   };
 271 
 272   uintptr_t data() const                         { return value() >> data_shift; }
 273   int lo_reg_half() const                        { return data() & lower_reg_mask; }
 274   int hi_reg_half() const                        { return (data() >> reg_bits) & lower_reg_mask; }
 275   OprKind kind_field() const                     { return (OprKind)(value() & kind_mask); }
 276   OprSize size_field() const                     { return (OprSize)(value() & size_mask); }
 277 
 278   static char type_char(BasicType t);
 279 
 280  public:
 281   enum {
 282     vreg_base = ConcreteRegisterImpl::number_of_registers,
 283     vreg_max = (1 << data_bits) - 1
 284   };
 285 
 286   static inline LIR_Opr illegalOpr();
 287 
 288   enum OprType {
 289       unknown_type  = 0 << type_shift    // means: not set (catch uninitialized types)
 290     , int_type      = 1 << type_shift
 291     , long_type     = 2 << type_shift
 292     , object_type   = 3 << type_shift
 293     , address_type  = 4 << type_shift
 294     , float_type    = 5 << type_shift
 295     , double_type   = 6 << type_shift
 296     , metadata_type = 7 << type_shift
 297   };
 298   friend OprType as_OprType(BasicType t);
 299   friend BasicType as_BasicType(OprType t);
 300 
 301   OprType type_field_valid() const               { assert(is_register() || is_stack(), "should not be called otherwise"); return (OprType)(value() & type_mask); }
 302   OprType type_field() const                     { return is_illegal() ? unknown_type : (OprType)(value() & type_mask); }
 303 
 304   static OprSize size_for(BasicType t) {
 305     switch (t) {
 306       case T_LONG:
 307       case T_DOUBLE:
 308         return double_size;
 309         break;
 310 
 311       case T_FLOAT:
 312       case T_BOOLEAN:
 313       case T_CHAR:
 314       case T_BYTE:
 315       case T_SHORT:
 316       case T_INT:
 317       case T_ADDRESS:
 318       case T_OBJECT:
 319       case T_ARRAY:
 320       case T_METADATA:
 321         return single_size;
 322         break;
 323 
 324       default:
 325         ShouldNotReachHere();
 326         return single_size;
 327       }
 328   }
 329 
 330 
 331   void validate_type() const PRODUCT_RETURN;
 332 
 333   BasicType type() const {
 334     if (is_pointer()) {
 335       return pointer()->type();
 336     }
 337     return as_BasicType(type_field());
 338   }
 339 
 340 
 341   ValueType* value_type() const                  { return as_ValueType(type()); }
 342 
 343   char type_char() const                         { return type_char((is_pointer()) ? pointer()->type() : type()); }
 344 
 345   bool is_equal(LIR_Opr opr) const         { return this == opr; }
 346   // checks whether types are same
 347   bool is_same_type(LIR_Opr opr) const     {
 348     assert(type_field() != unknown_type &&
 349            opr->type_field() != unknown_type, "shouldn't see unknown_type");
 350     return type_field() == opr->type_field();
 351   }
 352   bool is_same_register(LIR_Opr opr) {
 353     return (is_register() && opr->is_register() &&
 354             kind_field() == opr->kind_field() &&
 355             (value() & no_type_mask) == (opr->value() & no_type_mask));
 356   }
 357 
 358   bool is_pointer() const      { return check_value_mask(pointer_mask, pointer_value); }
 359   bool is_illegal() const      { return kind_field() == illegal_value; }
 360   bool is_valid() const        { return kind_field() != illegal_value; }
 361 
 362   bool is_register() const     { return is_cpu_register() || is_fpu_register(); }
 363   bool is_virtual() const      { return is_virtual_cpu()  || is_virtual_fpu();  }
 364 
 365   bool is_constant() const     { return is_pointer() && pointer()->as_constant() != NULL; }
 366   bool is_address() const      { return is_pointer() && pointer()->as_address() != NULL; }
 367 
 368   bool is_float_kind() const   { return is_pointer() ? pointer()->is_float_kind() : (kind_field() == fpu_register); }
 369   bool is_oop() const;
 370 
 371   // semantic for fpu- and xmm-registers:
 372   // * is_float and is_double return true for xmm_registers
 373   //   (so is_single_fpu and is_single_xmm are true)
 374   // * So you must always check for is_???_xmm prior to is_???_fpu to
 375   //   distinguish between fpu- and xmm-registers
 376 
 377   bool is_stack() const        { validate_type(); return check_value_mask(kind_mask,                stack_value);                 }
 378   bool is_single_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | single_size);  }
 379   bool is_double_stack() const { validate_type(); return check_value_mask(kind_mask | size_mask,    stack_value  | double_size);  }
 380 
 381   bool is_cpu_register() const { validate_type(); return check_value_mask(kind_mask,                cpu_register);                }
 382   bool is_virtual_cpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register | virtual_mask); }
 383   bool is_fixed_cpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, cpu_register);                }
 384   bool is_single_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | single_size);  }
 385   bool is_double_cpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    cpu_register | double_size);  }
 386 
 387   bool is_fpu_register() const { validate_type(); return check_value_mask(kind_mask,                fpu_register);                }
 388   bool is_virtual_fpu() const  { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register | virtual_mask); }
 389   bool is_fixed_fpu() const    { validate_type(); return check_value_mask(kind_mask | virtual_mask, fpu_register);                }
 390   bool is_single_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | single_size);  }
 391   bool is_double_fpu() const   { validate_type(); return check_value_mask(kind_mask | size_mask,    fpu_register | double_size);  }
 392 
 393   bool is_xmm_register() const { validate_type(); return check_value_mask(kind_mask | is_xmm_mask,             fpu_register | is_xmm_mask); }
 394   bool is_single_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | single_size | is_xmm_mask); }
 395   bool is_double_xmm() const   { validate_type(); return check_value_mask(kind_mask | size_mask | is_xmm_mask, fpu_register | double_size | is_xmm_mask); }
 396 
 397   // fast accessor functions for special bits that do not work for pointers
 398   // (in this functions, the check for is_pointer() is omitted)
 399   bool is_single_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, single_size); }
 400   bool is_double_word() const      { assert(is_register() || is_stack(), "type check"); return check_value_mask(size_mask, double_size); }
 401   bool is_virtual_register() const { assert(is_register(),               "type check"); return check_value_mask(virtual_mask, virtual_mask); }
 402   bool is_oop_register() const     { assert(is_register() || is_stack(), "type check"); return type_field_valid() == object_type; }
 403   BasicType type_register() const  { assert(is_register() || is_stack(), "type check"); return as_BasicType(type_field_valid());  }
 404 
 405   bool is_last_use() const         { assert(is_register(), "only works for registers"); return (value() & last_use_mask) != 0; }
 406   bool is_fpu_stack_offset() const { assert(is_register(), "only works for registers"); return (value() & is_fpu_stack_offset_mask) != 0; }
 407   LIR_Opr make_last_use()          { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | last_use_mask); }
 408   LIR_Opr make_fpu_stack_offset()  { assert(is_register(), "only works for registers"); return (LIR_Opr)(value() | is_fpu_stack_offset_mask); }
 409 
 410 
 411   int single_stack_ix() const  { assert(is_single_stack() && !is_virtual(), "type check"); return (int)data(); }
 412   int double_stack_ix() const  { assert(is_double_stack() && !is_virtual(), "type check"); return (int)data(); }
 413   RegNr cpu_regnr() const      { assert(is_single_cpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 414   RegNr cpu_regnrLo() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 415   RegNr cpu_regnrHi() const    { assert(is_double_cpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 416   RegNr fpu_regnr() const      { assert(is_single_fpu()   && !is_virtual(), "type check"); return (RegNr)data(); }
 417   RegNr fpu_regnrLo() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 418   RegNr fpu_regnrHi() const    { assert(is_double_fpu()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 419   RegNr xmm_regnr() const      { assert(is_single_xmm()   && !is_virtual(), "type check"); return (RegNr)data(); }
 420   RegNr xmm_regnrLo() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)lo_reg_half(); }
 421   RegNr xmm_regnrHi() const    { assert(is_double_xmm()   && !is_virtual(), "type check"); return (RegNr)hi_reg_half(); }
 422   int   vreg_number() const    { assert(is_virtual(),                       "type check"); return (RegNr)data(); }
 423 
 424   LIR_OprPtr* pointer()  const                   { assert(is_pointer(), "type check");      return (LIR_OprPtr*)this; }
 425   LIR_Const* as_constant_ptr() const             { return pointer()->as_constant(); }
 426   LIR_Address* as_address_ptr() const            { return pointer()->as_address(); }
 427 
 428   Register as_register()    const;
 429   Register as_register_lo() const;
 430   Register as_register_hi() const;
 431 
 432   Register as_pointer_register() {
 433 #ifdef _LP64
 434     if (is_double_cpu()) {
 435       assert(as_register_lo() == as_register_hi(), "should be a single register");
 436       return as_register_lo();
 437     }
 438 #endif
 439     return as_register();
 440   }
 441 
 442   FloatRegister as_float_reg   () const;
 443   FloatRegister as_double_reg  () const;
 444 #ifdef X86
 445   XMMRegister as_xmm_float_reg () const;
 446   XMMRegister as_xmm_double_reg() const;
 447   // for compatibility with RInfo
 448   int fpu() const { return lo_reg_half(); }
 449 #endif
 450 
 451   jint      as_jint()    const { return as_constant_ptr()->as_jint(); }
 452   jlong     as_jlong()   const { return as_constant_ptr()->as_jlong(); }
 453   jfloat    as_jfloat()  const { return as_constant_ptr()->as_jfloat(); }
 454   jdouble   as_jdouble() const { return as_constant_ptr()->as_jdouble(); }
 455   jobject   as_jobject() const { return as_constant_ptr()->as_jobject(); }
 456 
 457   void print() const PRODUCT_RETURN;
 458   void print(outputStream* out) const PRODUCT_RETURN;
 459 };
 460 
 461 
 462 inline LIR_OprDesc::OprType as_OprType(BasicType type) {
 463   switch (type) {
 464   case T_INT:      return LIR_OprDesc::int_type;
 465   case T_LONG:     return LIR_OprDesc::long_type;
 466   case T_FLOAT:    return LIR_OprDesc::float_type;
 467   case T_DOUBLE:   return LIR_OprDesc::double_type;
 468   case T_OBJECT:
 469   case T_ARRAY:    return LIR_OprDesc::object_type;
 470   case T_ADDRESS:  return LIR_OprDesc::address_type;
 471   case T_METADATA: return LIR_OprDesc::metadata_type;
 472   case T_ILLEGAL:  // fall through
 473   default: ShouldNotReachHere(); return LIR_OprDesc::unknown_type;
 474   }
 475 }
 476 
 477 inline BasicType as_BasicType(LIR_OprDesc::OprType t) {
 478   switch (t) {
 479   case LIR_OprDesc::int_type:     return T_INT;
 480   case LIR_OprDesc::long_type:    return T_LONG;
 481   case LIR_OprDesc::float_type:   return T_FLOAT;
 482   case LIR_OprDesc::double_type:  return T_DOUBLE;
 483   case LIR_OprDesc::object_type:  return T_OBJECT;
 484   case LIR_OprDesc::address_type: return T_ADDRESS;
 485   case LIR_OprDesc::metadata_type:return T_METADATA;
 486   case LIR_OprDesc::unknown_type: // fall through
 487   default: ShouldNotReachHere();  return T_ILLEGAL;
 488   }
 489 }
 490 
 491 
 492 // LIR_Address
 493 class LIR_Address: public LIR_OprPtr {
 494  friend class LIR_OpVisitState;
 495 
 496  public:
 497   // NOTE: currently these must be the log2 of the scale factor (and
 498   // must also be equivalent to the ScaleFactor enum in
 499   // assembler_i486.hpp)
 500   enum Scale {
 501     times_1  =  0,
 502     times_2  =  1,
 503     times_4  =  2,
 504     times_8  =  3
 505   };
 506 
 507  private:
 508   LIR_Opr   _base;
 509   LIR_Opr   _index;
 510   Scale     _scale;
 511   intx      _disp;
 512   BasicType _type;
 513 
 514  public:
 515   LIR_Address(LIR_Opr base, LIR_Opr index, BasicType type):
 516        _base(base)
 517      , _index(index)
 518      , _scale(times_1)
 519      , _disp(0)
 520      , _type(type) { verify(); }
 521 
 522   LIR_Address(LIR_Opr base, intx disp, BasicType type):
 523        _base(base)
 524      , _index(LIR_OprDesc::illegalOpr())
 525      , _scale(times_1)
 526      , _disp(disp)
 527      , _type(type) { verify(); }
 528 
 529   LIR_Address(LIR_Opr base, BasicType type):
 530        _base(base)
 531      , _index(LIR_OprDesc::illegalOpr())
 532      , _scale(times_1)
 533      , _disp(0)
 534      , _type(type) { verify(); }
 535 
 536   LIR_Address(LIR_Opr base, LIR_Opr index, intx disp, BasicType type):
 537        _base(base)
 538      , _index(index)
 539      , _scale(times_1)
 540      , _disp(disp)
 541      , _type(type) { verify(); }
 542 
 543   LIR_Address(LIR_Opr base, LIR_Opr index, Scale scale, intx disp, BasicType type):
 544        _base(base)
 545      , _index(index)
 546      , _scale(scale)
 547      , _disp(disp)
 548      , _type(type) { verify(); }
 549 
 550   LIR_Opr base()  const                          { return _base;  }
 551   LIR_Opr index() const                          { return _index; }
 552   Scale   scale() const                          { return _scale; }
 553   intx    disp()  const                          { return _disp;  }
 554 
 555   bool equals(LIR_Address* other) const          { return base() == other->base() && index() == other->index() && disp() == other->disp() && scale() == other->scale(); }
 556 
 557   virtual LIR_Address* as_address()              { return this;   }
 558   virtual BasicType type() const                 { return _type; }
 559   virtual void print_value_on(outputStream* out) const PRODUCT_RETURN;
 560 
 561   void verify() const PRODUCT_RETURN;
 562 
 563   static Scale scale(BasicType type);
 564 };
 565 
 566 
 567 // operand factory
 568 class LIR_OprFact: public AllStatic {
 569  public:
 570 
 571   static LIR_Opr illegalOpr;
 572 
 573   static LIR_Opr single_cpu(int reg) {
 574     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 575                                LIR_OprDesc::int_type             |
 576                                LIR_OprDesc::cpu_register         |
 577                                LIR_OprDesc::single_size);
 578   }
 579   static LIR_Opr single_cpu_oop(int reg) {
 580     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 581                                LIR_OprDesc::object_type          |
 582                                LIR_OprDesc::cpu_register         |
 583                                LIR_OprDesc::single_size);
 584   }
 585   static LIR_Opr single_cpu_address(int reg) {
 586     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 587                                LIR_OprDesc::address_type         |
 588                                LIR_OprDesc::cpu_register         |
 589                                LIR_OprDesc::single_size);
 590   }
 591   static LIR_Opr single_cpu_metadata(int reg) {
 592     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 593                                LIR_OprDesc::metadata_type        |
 594                                LIR_OprDesc::cpu_register         |
 595                                LIR_OprDesc::single_size);
 596   }
 597   static LIR_Opr double_cpu(int reg1, int reg2) {
 598     LP64_ONLY(assert(reg1 == reg2, "must be identical"));
 599     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 600                                (reg2 << LIR_OprDesc::reg2_shift) |
 601                                LIR_OprDesc::long_type            |
 602                                LIR_OprDesc::cpu_register         |
 603                                LIR_OprDesc::double_size);
 604   }
 605 
 606   static LIR_Opr single_fpu(int reg) {
 607     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 608                                LIR_OprDesc::float_type           |
 609                                LIR_OprDesc::fpu_register         |
 610                                LIR_OprDesc::single_size);
 611   }
 612 
 613   // Platform dependant.
 614   static LIR_Opr double_fpu(int reg1, int reg2 = -1 /*fnoreg*/);
 615 
 616 #ifdef ARM32
 617   static LIR_Opr single_softfp(int reg) {
 618     return (LIR_Opr)(intptr_t)((reg  << LIR_OprDesc::reg1_shift) |
 619                                LIR_OprDesc::float_type           |
 620                                LIR_OprDesc::cpu_register         |
 621                                LIR_OprDesc::single_size);
 622   }
 623   static LIR_Opr double_softfp(int reg1, int reg2) {
 624     return (LIR_Opr)(intptr_t)((reg1 << LIR_OprDesc::reg1_shift) |
 625                                (reg2 << LIR_OprDesc::reg2_shift) |
 626                                LIR_OprDesc::double_type          |
 627                                LIR_OprDesc::cpu_register         |
 628                                LIR_OprDesc::double_size);
 629   }
 630 #endif // ARM32
 631 
 632 #if defined(X86)
 633   static LIR_Opr single_xmm(int reg) {
 634     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 635                                LIR_OprDesc::float_type          |
 636                                LIR_OprDesc::fpu_register        |
 637                                LIR_OprDesc::single_size         |
 638                                LIR_OprDesc::is_xmm_mask);
 639   }
 640   static LIR_Opr double_xmm(int reg) {
 641     return (LIR_Opr)(intptr_t)((reg << LIR_OprDesc::reg1_shift) |
 642                                (reg << LIR_OprDesc::reg2_shift) |
 643                                LIR_OprDesc::double_type         |
 644                                LIR_OprDesc::fpu_register        |
 645                                LIR_OprDesc::double_size         |
 646                                LIR_OprDesc::is_xmm_mask);
 647   }
 648 #endif // X86
 649 
 650   static LIR_Opr virtual_register(int index, BasicType type) {
 651     LIR_Opr res;
 652     switch (type) {
 653       case T_OBJECT: // fall through
 654       case T_ARRAY:
 655         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 656                                             LIR_OprDesc::object_type  |
 657                                             LIR_OprDesc::cpu_register |
 658                                             LIR_OprDesc::single_size  |
 659                                             LIR_OprDesc::virtual_mask);
 660         break;
 661 
 662       case T_METADATA:
 663         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift)  |
 664                                             LIR_OprDesc::metadata_type|
 665                                             LIR_OprDesc::cpu_register |
 666                                             LIR_OprDesc::single_size  |
 667                                             LIR_OprDesc::virtual_mask);
 668         break;
 669 
 670       case T_INT:
 671         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 672                                   LIR_OprDesc::int_type              |
 673                                   LIR_OprDesc::cpu_register          |
 674                                   LIR_OprDesc::single_size           |
 675                                   LIR_OprDesc::virtual_mask);
 676         break;
 677 
 678       case T_ADDRESS:
 679         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 680                                   LIR_OprDesc::address_type          |
 681                                   LIR_OprDesc::cpu_register          |
 682                                   LIR_OprDesc::single_size           |
 683                                   LIR_OprDesc::virtual_mask);
 684         break;
 685 
 686       case T_LONG:
 687         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 688                                   LIR_OprDesc::long_type             |
 689                                   LIR_OprDesc::cpu_register          |
 690                                   LIR_OprDesc::double_size           |
 691                                   LIR_OprDesc::virtual_mask);
 692         break;
 693 
 694 #ifdef __SOFTFP__
 695       case T_FLOAT:
 696         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 697                                   LIR_OprDesc::float_type  |
 698                                   LIR_OprDesc::cpu_register |
 699                                   LIR_OprDesc::single_size |
 700                                   LIR_OprDesc::virtual_mask);
 701         break;
 702       case T_DOUBLE:
 703         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 704                                   LIR_OprDesc::double_type |
 705                                   LIR_OprDesc::cpu_register |
 706                                   LIR_OprDesc::double_size |
 707                                   LIR_OprDesc::virtual_mask);
 708         break;
 709 #else // __SOFTFP__
 710       case T_FLOAT:
 711         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 712                                   LIR_OprDesc::float_type           |
 713                                   LIR_OprDesc::fpu_register         |
 714                                   LIR_OprDesc::single_size          |
 715                                   LIR_OprDesc::virtual_mask);
 716         break;
 717 
 718       case
 719         T_DOUBLE: res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 720                                             LIR_OprDesc::double_type           |
 721                                             LIR_OprDesc::fpu_register          |
 722                                             LIR_OprDesc::double_size           |
 723                                             LIR_OprDesc::virtual_mask);
 724         break;
 725 #endif // __SOFTFP__
 726       default:       ShouldNotReachHere(); res = illegalOpr;
 727     }
 728 
 729 #ifdef ASSERT
 730     res->validate_type();
 731     assert(res->vreg_number() == index, "conversion check");
 732     assert(index >= LIR_OprDesc::vreg_base, "must start at vreg_base");
 733     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 734 
 735     // old-style calculation; check if old and new method are equal
 736     LIR_OprDesc::OprType t = as_OprType(type);
 737 #ifdef __SOFTFP__
 738     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 739                                t |
 740                                LIR_OprDesc::cpu_register |
 741                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 742 #else // __SOFTFP__
 743     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) | t |
 744                                           ((type == T_FLOAT || type == T_DOUBLE) ?  LIR_OprDesc::fpu_register : LIR_OprDesc::cpu_register) |
 745                                LIR_OprDesc::size_for(type) | LIR_OprDesc::virtual_mask);
 746     assert(res == old_res, "old and new method not equal");
 747 #endif // __SOFTFP__
 748 #endif // ASSERT
 749 
 750     return res;
 751   }
 752 
 753   // 'index' is computed by FrameMap::local_stack_pos(index); do not use other parameters as
 754   // the index is platform independent; a double stack useing indeces 2 and 3 has always
 755   // index 2.
 756   static LIR_Opr stack(int index, BasicType type) {
 757     LIR_Opr res;
 758     switch (type) {
 759       case T_OBJECT: // fall through
 760       case T_ARRAY:
 761         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 762                                   LIR_OprDesc::object_type           |
 763                                   LIR_OprDesc::stack_value           |
 764                                   LIR_OprDesc::single_size);
 765         break;
 766 
 767       case T_METADATA:
 768         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 769                                   LIR_OprDesc::metadata_type         |
 770                                   LIR_OprDesc::stack_value           |
 771                                   LIR_OprDesc::single_size);
 772         break;
 773       case T_INT:
 774         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 775                                   LIR_OprDesc::int_type              |
 776                                   LIR_OprDesc::stack_value           |
 777                                   LIR_OprDesc::single_size);
 778         break;
 779 
 780       case T_ADDRESS:
 781         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 782                                   LIR_OprDesc::address_type          |
 783                                   LIR_OprDesc::stack_value           |
 784                                   LIR_OprDesc::single_size);
 785         break;
 786 
 787       case T_LONG:
 788         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 789                                   LIR_OprDesc::long_type             |
 790                                   LIR_OprDesc::stack_value           |
 791                                   LIR_OprDesc::double_size);
 792         break;
 793 
 794       case T_FLOAT:
 795         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 796                                   LIR_OprDesc::float_type            |
 797                                   LIR_OprDesc::stack_value           |
 798                                   LIR_OprDesc::single_size);
 799         break;
 800       case T_DOUBLE:
 801         res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 802                                   LIR_OprDesc::double_type           |
 803                                   LIR_OprDesc::stack_value           |
 804                                   LIR_OprDesc::double_size);
 805         break;
 806 
 807       default:       ShouldNotReachHere(); res = illegalOpr;
 808     }
 809 
 810 #ifdef ASSERT
 811     assert(index >= 0, "index must be positive");
 812     assert(index <= (max_jint >> LIR_OprDesc::data_shift), "index is too big");
 813 
 814     LIR_Opr old_res = (LIR_Opr)(intptr_t)((index << LIR_OprDesc::data_shift) |
 815                                           LIR_OprDesc::stack_value           |
 816                                           as_OprType(type)                   |
 817                                           LIR_OprDesc::size_for(type));
 818     assert(res == old_res, "old and new method not equal");
 819 #endif
 820 
 821     return res;
 822   }
 823 
 824   static LIR_Opr intConst(jint i)                { return (LIR_Opr)(new LIR_Const(i)); }
 825   static LIR_Opr longConst(jlong l)              { return (LIR_Opr)(new LIR_Const(l)); }
 826   static LIR_Opr floatConst(jfloat f)            { return (LIR_Opr)(new LIR_Const(f)); }
 827   static LIR_Opr doubleConst(jdouble d)          { return (LIR_Opr)(new LIR_Const(d)); }
 828   static LIR_Opr oopConst(jobject o)             { return (LIR_Opr)(new LIR_Const(o)); }
 829   static LIR_Opr address(LIR_Address* a)         { return (LIR_Opr)a; }
 830   static LIR_Opr intptrConst(void* p)            { return (LIR_Opr)(new LIR_Const(p)); }
 831   static LIR_Opr intptrConst(intptr_t v)         { return (LIR_Opr)(new LIR_Const((void*)v)); }
 832   static LIR_Opr illegal()                       { return (LIR_Opr)-1; }
 833   static LIR_Opr addressConst(jint i)            { return (LIR_Opr)(new LIR_Const(i, true)); }
 834   static LIR_Opr metadataConst(Metadata* m)      { return (LIR_Opr)(new LIR_Const(m)); }
 835 
 836   static LIR_Opr value_type(ValueType* type);
 837   static LIR_Opr dummy_value_type(ValueType* type);
 838 };
 839 
 840 
 841 //-------------------------------------------------------------------------------
 842 //                   LIR Instructions
 843 //-------------------------------------------------------------------------------
 844 //
 845 // Note:
 846 //  - every instruction has a result operand
 847 //  - every instruction has an CodeEmitInfo operand (can be revisited later)
 848 //  - every instruction has a LIR_OpCode operand
 849 //  - LIR_OpN, means an instruction that has N input operands
 850 //
 851 // class hierarchy:
 852 //
 853 class  LIR_Op;
 854 class    LIR_Op0;
 855 class      LIR_OpLabel;
 856 class    LIR_Op1;
 857 class      LIR_OpBranch;
 858 class      LIR_OpConvert;
 859 class      LIR_OpAllocObj;
 860 class      LIR_OpRoundFP;
 861 class    LIR_Op2;
 862 class    LIR_OpDelay;
 863 class    LIR_Op3;
 864 class      LIR_OpAllocArray;
 865 class    LIR_OpCall;
 866 class      LIR_OpJavaCall;
 867 class      LIR_OpRTCall;
 868 class    LIR_OpArrayCopy;
 869 class    LIR_OpUpdateCRC32;
 870 class    LIR_OpLock;
 871 class    LIR_OpTypeCheck;
 872 class    LIR_OpCompareAndSwap;
 873 class    LIR_OpProfileCall;
 874 class    LIR_OpProfileType;
 875 #ifdef ASSERT
 876 class    LIR_OpAssert;
 877 #endif
 878 
 879 // LIR operation codes
 880 enum LIR_Code {
 881     lir_none
 882   , begin_op0
 883       , lir_word_align
 884       , lir_label
 885       , lir_nop
 886       , lir_backwardbranch_target
 887       , lir_std_entry
 888       , lir_osr_entry
 889       , lir_build_frame
 890       , lir_fpop_raw
 891       , lir_24bit_FPU
 892       , lir_reset_FPU
 893       , lir_breakpoint
 894       , lir_rtcall
 895       , lir_membar
 896       , lir_membar_acquire
 897       , lir_membar_release
 898       , lir_membar_loadload
 899       , lir_membar_storestore
 900       , lir_membar_loadstore
 901       , lir_membar_storeload
 902       , lir_get_thread
 903       , lir_on_spin_wait
 904   , end_op0
 905   , begin_op1
 906       , lir_fxch
 907       , lir_fld
 908       , lir_ffree
 909       , lir_push
 910       , lir_pop
 911       , lir_null_check
 912       , lir_return
 913       , lir_leal
 914       , lir_branch
 915       , lir_cond_float_branch
 916       , lir_move
 917       , lir_convert
 918       , lir_alloc_object
 919       , lir_monaddr
 920       , lir_roundfp
 921       , lir_safepoint
 922       , lir_pack64
 923       , lir_unpack64
 924       , lir_unwind
 925   , end_op1
 926   , begin_op2
 927       , lir_cmp
 928       , lir_cmp_l2i
 929       , lir_ucmp_fd2i
 930       , lir_cmp_fd2i
 931       , lir_cmove
 932       , lir_add
 933       , lir_sub
 934       , lir_mul
 935       , lir_mul_strictfp
 936       , lir_div
 937       , lir_div_strictfp
 938       , lir_rem
 939       , lir_sqrt
 940       , lir_abs
 941       , lir_neg
 942       , lir_tan
 943       , lir_log10
 944       , lir_logic_and
 945       , lir_logic_or
 946       , lir_logic_xor
 947       , lir_shl
 948       , lir_shr
 949       , lir_ushr
 950       , lir_alloc_array
 951       , lir_throw
 952       , lir_xadd
 953       , lir_xchg
 954   , end_op2
 955   , begin_op3
 956       , lir_idiv
 957       , lir_irem
 958       , lir_fmad
 959       , lir_fmaf
 960   , end_op3
 961   , begin_opJavaCall
 962       , lir_static_call
 963       , lir_optvirtual_call
 964       , lir_icvirtual_call
 965       , lir_virtual_call
 966       , lir_dynamic_call
 967   , end_opJavaCall
 968   , begin_opArrayCopy
 969       , lir_arraycopy
 970   , end_opArrayCopy
 971   , begin_opUpdateCRC32
 972       , lir_updatecrc32
 973   , end_opUpdateCRC32
 974   , begin_opLock
 975     , lir_lock
 976     , lir_unlock
 977   , end_opLock
 978   , begin_delay_slot
 979     , lir_delay_slot
 980   , end_delay_slot
 981   , begin_opTypeCheck
 982     , lir_instanceof
 983     , lir_checkcast
 984     , lir_store_check
 985   , end_opTypeCheck
 986   , begin_opCompareAndSwap
 987     , lir_cas_long
 988     , lir_cas_obj
 989     , lir_cas_int
 990   , end_opCompareAndSwap
 991   , begin_opMDOProfile
 992     , lir_profile_call
 993     , lir_profile_type
 994   , end_opMDOProfile
 995   , begin_opAssert
 996     , lir_assert
 997   , end_opAssert
 998 };
 999 
1000 
1001 enum LIR_Condition {
1002     lir_cond_equal
1003   , lir_cond_notEqual
1004   , lir_cond_less
1005   , lir_cond_lessEqual
1006   , lir_cond_greaterEqual
1007   , lir_cond_greater
1008   , lir_cond_belowEqual
1009   , lir_cond_aboveEqual
1010   , lir_cond_always
1011   , lir_cond_unknown = -1
1012 };
1013 
1014 
1015 enum LIR_PatchCode {
1016   lir_patch_none,
1017   lir_patch_low,
1018   lir_patch_high,
1019   lir_patch_normal
1020 };
1021 
1022 
1023 enum LIR_MoveKind {
1024   lir_move_normal,
1025   lir_move_volatile,
1026   lir_move_unaligned,
1027   lir_move_wide,
1028   lir_move_max_flag
1029 };
1030 
1031 
1032 // --------------------------------------------------
1033 // LIR_Op
1034 // --------------------------------------------------
1035 class LIR_Op: public CompilationResourceObj {
1036  friend class LIR_OpVisitState;
1037 
1038 #ifdef ASSERT
1039  private:
1040   const char *  _file;
1041   int           _line;
1042 #endif
1043 
1044  protected:
1045   LIR_Opr       _result;
1046   unsigned short _code;
1047   unsigned short _flags;
1048   CodeEmitInfo* _info;
1049   int           _id;     // value id for register allocation
1050   int           _fpu_pop_count;
1051   Instruction*  _source; // for debugging
1052 
1053   static void print_condition(outputStream* out, LIR_Condition cond) PRODUCT_RETURN;
1054 
1055  protected:
1056   static bool is_in_range(LIR_Code test, LIR_Code start, LIR_Code end)  { return start < test && test < end; }
1057 
1058  public:
1059   LIR_Op()
1060     :
1061 #ifdef ASSERT
1062       _file(NULL)
1063     , _line(0),
1064 #endif
1065       _result(LIR_OprFact::illegalOpr)
1066     , _code(lir_none)
1067     , _flags(0)
1068     , _info(NULL)
1069     , _id(-1)
1070     , _fpu_pop_count(0)
1071     , _source(NULL) {}
1072 
1073   LIR_Op(LIR_Code code, LIR_Opr result, CodeEmitInfo* info)
1074     :
1075 #ifdef ASSERT
1076       _file(NULL)
1077     , _line(0),
1078 #endif
1079       _result(result)
1080     , _code(code)
1081     , _flags(0)
1082     , _info(info)
1083     , _id(-1)
1084     , _fpu_pop_count(0)
1085     , _source(NULL) {}
1086 
1087   CodeEmitInfo* info() const                  { return _info;   }
1088   LIR_Code code()      const                  { return (LIR_Code)_code;   }
1089   LIR_Opr result_opr() const                  { return _result; }
1090   void    set_result_opr(LIR_Opr opr)         { _result = opr;  }
1091 
1092 #ifdef ASSERT
1093   void set_file_and_line(const char * file, int line) {
1094     _file = file;
1095     _line = line;
1096   }
1097 #endif
1098 
1099   virtual const char * name() const PRODUCT_RETURN0;
1100   virtual void visit(LIR_OpVisitState* state);
1101 
1102   int id()             const                  { return _id;     }
1103   void set_id(int id)                         { _id = id; }
1104 
1105   // FPU stack simulation helpers -- only used on Intel
1106   void set_fpu_pop_count(int count)           { assert(count >= 0 && count <= 1, "currently only 0 and 1 are valid"); _fpu_pop_count = count; }
1107   int  fpu_pop_count() const                  { return _fpu_pop_count; }
1108   bool pop_fpu_stack()                        { return _fpu_pop_count > 0; }
1109 
1110   Instruction* source() const                 { return _source; }
1111   void set_source(Instruction* ins)           { _source = ins; }
1112 
1113   virtual void emit_code(LIR_Assembler* masm) = 0;
1114   virtual void print_instr(outputStream* out) const   = 0;
1115   virtual void print_on(outputStream* st) const PRODUCT_RETURN;
1116 
1117   virtual bool is_patching() { return false; }
1118   virtual LIR_OpCall* as_OpCall() { return NULL; }
1119   virtual LIR_OpJavaCall* as_OpJavaCall() { return NULL; }
1120   virtual LIR_OpLabel* as_OpLabel() { return NULL; }
1121   virtual LIR_OpDelay* as_OpDelay() { return NULL; }
1122   virtual LIR_OpLock* as_OpLock() { return NULL; }
1123   virtual LIR_OpAllocArray* as_OpAllocArray() { return NULL; }
1124   virtual LIR_OpAllocObj* as_OpAllocObj() { return NULL; }
1125   virtual LIR_OpRoundFP* as_OpRoundFP() { return NULL; }
1126   virtual LIR_OpBranch* as_OpBranch() { return NULL; }
1127   virtual LIR_OpRTCall* as_OpRTCall() { return NULL; }
1128   virtual LIR_OpConvert* as_OpConvert() { return NULL; }
1129   virtual LIR_Op0* as_Op0() { return NULL; }
1130   virtual LIR_Op1* as_Op1() { return NULL; }
1131   virtual LIR_Op2* as_Op2() { return NULL; }
1132   virtual LIR_Op3* as_Op3() { return NULL; }
1133   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return NULL; }
1134   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32() { return NULL; }
1135   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return NULL; }
1136   virtual LIR_OpCompareAndSwap* as_OpCompareAndSwap() { return NULL; }
1137   virtual LIR_OpProfileCall* as_OpProfileCall() { return NULL; }
1138   virtual LIR_OpProfileType* as_OpProfileType() { return NULL; }
1139 #ifdef ASSERT
1140   virtual LIR_OpAssert* as_OpAssert() { return NULL; }
1141 #endif
1142 
1143   virtual void verify() const {}
1144 };
1145 
1146 // for calls
1147 class LIR_OpCall: public LIR_Op {
1148  friend class LIR_OpVisitState;
1149 
1150  protected:
1151   address      _addr;
1152   LIR_OprList* _arguments;
1153  protected:
1154   LIR_OpCall(LIR_Code code, address addr, LIR_Opr result,
1155              LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1156     : LIR_Op(code, result, info)
1157     , _addr(addr)
1158     , _arguments(arguments) {}
1159 
1160  public:
1161   address addr() const                           { return _addr; }
1162   const LIR_OprList* arguments() const           { return _arguments; }
1163   virtual LIR_OpCall* as_OpCall()                { return this; }
1164 };
1165 
1166 
1167 // --------------------------------------------------
1168 // LIR_OpJavaCall
1169 // --------------------------------------------------
1170 class LIR_OpJavaCall: public LIR_OpCall {
1171  friend class LIR_OpVisitState;
1172 
1173  private:
1174   ciMethod* _method;
1175   LIR_Opr   _receiver;
1176   LIR_Opr   _method_handle_invoke_SP_save_opr;  // Used in LIR_OpVisitState::visit to store the reference to FrameMap::method_handle_invoke_SP_save_opr.
1177 
1178  public:
1179   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1180                  LIR_Opr receiver, LIR_Opr result,
1181                  address addr, LIR_OprList* arguments,
1182                  CodeEmitInfo* info)
1183   : LIR_OpCall(code, addr, result, arguments, info)
1184   , _method(method)
1185   , _receiver(receiver)
1186   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1187   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1188 
1189   LIR_OpJavaCall(LIR_Code code, ciMethod* method,
1190                  LIR_Opr receiver, LIR_Opr result, intptr_t vtable_offset,
1191                  LIR_OprList* arguments, CodeEmitInfo* info)
1192   : LIR_OpCall(code, (address)vtable_offset, result, arguments, info)
1193   , _method(method)
1194   , _receiver(receiver)
1195   , _method_handle_invoke_SP_save_opr(LIR_OprFact::illegalOpr)
1196   { assert(is_in_range(code, begin_opJavaCall, end_opJavaCall), "code check"); }
1197 
1198   LIR_Opr receiver() const                       { return _receiver; }
1199   ciMethod* method() const                       { return _method;   }
1200 
1201   // JSR 292 support.
1202   bool is_invokedynamic() const                  { return code() == lir_dynamic_call; }
1203   bool is_method_handle_invoke() const {
1204     return method()->is_compiled_lambda_form() ||   // Java-generated lambda form
1205            method()->is_method_handle_intrinsic();  // JVM-generated MH intrinsic
1206   }
1207 
1208   intptr_t vtable_offset() const {
1209     assert(_code == lir_virtual_call, "only have vtable for real vcall");
1210     return (intptr_t) addr();
1211   }
1212 
1213   virtual void emit_code(LIR_Assembler* masm);
1214   virtual LIR_OpJavaCall* as_OpJavaCall() { return this; }
1215   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1216 };
1217 
1218 // --------------------------------------------------
1219 // LIR_OpLabel
1220 // --------------------------------------------------
1221 // Location where a branch can continue
1222 class LIR_OpLabel: public LIR_Op {
1223  friend class LIR_OpVisitState;
1224 
1225  private:
1226   Label* _label;
1227  public:
1228   LIR_OpLabel(Label* lbl)
1229    : LIR_Op(lir_label, LIR_OprFact::illegalOpr, NULL)
1230    , _label(lbl)                                 {}
1231   Label* label() const                           { return _label; }
1232 
1233   virtual void emit_code(LIR_Assembler* masm);
1234   virtual LIR_OpLabel* as_OpLabel() { return this; }
1235   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1236 };
1237 
1238 // LIR_OpArrayCopy
1239 class LIR_OpArrayCopy: public LIR_Op {
1240  friend class LIR_OpVisitState;
1241 
1242  private:
1243   ArrayCopyStub*  _stub;
1244   LIR_Opr   _src;
1245   LIR_Opr   _src_pos;
1246   LIR_Opr   _dst;
1247   LIR_Opr   _dst_pos;
1248   LIR_Opr   _length;
1249   LIR_Opr   _tmp;
1250   ciArrayKlass* _expected_type;
1251   int       _flags;
1252 
1253 public:
1254   enum Flags {
1255     src_null_check         = 1 << 0,
1256     dst_null_check         = 1 << 1,
1257     src_pos_positive_check = 1 << 2,
1258     dst_pos_positive_check = 1 << 3,
1259     length_positive_check  = 1 << 4,
1260     src_range_check        = 1 << 5,
1261     dst_range_check        = 1 << 6,
1262     type_check             = 1 << 7,
1263     overlapping            = 1 << 8,
1264     unaligned              = 1 << 9,
1265     src_objarray           = 1 << 10,
1266     dst_objarray           = 1 << 11,
1267     all_flags              = (1 << 12) - 1
1268   };
1269 
1270   LIR_OpArrayCopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp,
1271                   ciArrayKlass* expected_type, int flags, CodeEmitInfo* info);
1272 
1273   LIR_Opr src() const                            { return _src; }
1274   LIR_Opr src_pos() const                        { return _src_pos; }
1275   LIR_Opr dst() const                            { return _dst; }
1276   LIR_Opr dst_pos() const                        { return _dst_pos; }
1277   LIR_Opr length() const                         { return _length; }
1278   LIR_Opr tmp() const                            { return _tmp; }
1279   int flags() const                              { return _flags; }
1280   ciArrayKlass* expected_type() const            { return _expected_type; }
1281   ArrayCopyStub* stub() const                    { return _stub; }
1282 
1283   virtual void emit_code(LIR_Assembler* masm);
1284   virtual LIR_OpArrayCopy* as_OpArrayCopy() { return this; }
1285   void print_instr(outputStream* out) const PRODUCT_RETURN;
1286 };
1287 
1288 // LIR_OpUpdateCRC32
1289 class LIR_OpUpdateCRC32: public LIR_Op {
1290   friend class LIR_OpVisitState;
1291 
1292 private:
1293   LIR_Opr   _crc;
1294   LIR_Opr   _val;
1295 
1296 public:
1297 
1298   LIR_OpUpdateCRC32(LIR_Opr crc, LIR_Opr val, LIR_Opr res);
1299 
1300   LIR_Opr crc() const                            { return _crc; }
1301   LIR_Opr val() const                            { return _val; }
1302 
1303   virtual void emit_code(LIR_Assembler* masm);
1304   virtual LIR_OpUpdateCRC32* as_OpUpdateCRC32()  { return this; }
1305   void print_instr(outputStream* out) const PRODUCT_RETURN;
1306 };
1307 
1308 // --------------------------------------------------
1309 // LIR_Op0
1310 // --------------------------------------------------
1311 class LIR_Op0: public LIR_Op {
1312  friend class LIR_OpVisitState;
1313 
1314  public:
1315   LIR_Op0(LIR_Code code)
1316    : LIR_Op(code, LIR_OprFact::illegalOpr, NULL)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1317   LIR_Op0(LIR_Code code, LIR_Opr result, CodeEmitInfo* info = NULL)
1318    : LIR_Op(code, result, info)  { assert(is_in_range(code, begin_op0, end_op0), "code check"); }
1319 
1320   virtual void emit_code(LIR_Assembler* masm);
1321   virtual LIR_Op0* as_Op0() { return this; }
1322   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1323 };
1324 
1325 
1326 // --------------------------------------------------
1327 // LIR_Op1
1328 // --------------------------------------------------
1329 
1330 class LIR_Op1: public LIR_Op {
1331  friend class LIR_OpVisitState;
1332 
1333  protected:
1334   LIR_Opr         _opr;   // input operand
1335   BasicType       _type;  // Operand types
1336   LIR_PatchCode   _patch; // only required with patchin (NEEDS_CLEANUP: do we want a special instruction for patching?)
1337 
1338   static void print_patch_code(outputStream* out, LIR_PatchCode code);
1339 
1340   void set_kind(LIR_MoveKind kind) {
1341     assert(code() == lir_move, "must be");
1342     _flags = kind;
1343   }
1344 
1345  public:
1346   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result = LIR_OprFact::illegalOpr, BasicType type = T_ILLEGAL, LIR_PatchCode patch = lir_patch_none, CodeEmitInfo* info = NULL)
1347     : LIR_Op(code, result, info)
1348     , _opr(opr)
1349     , _type(type)
1350     , _patch(patch)                    { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1351 
1352   LIR_Op1(LIR_Code code, LIR_Opr opr, LIR_Opr result, BasicType type, LIR_PatchCode patch, CodeEmitInfo* info, LIR_MoveKind kind)
1353     : LIR_Op(code, result, info)
1354     , _opr(opr)
1355     , _type(type)
1356     , _patch(patch)                    {
1357     assert(code == lir_move, "must be");
1358     set_kind(kind);
1359   }
1360 
1361   LIR_Op1(LIR_Code code, LIR_Opr opr, CodeEmitInfo* info)
1362     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1363     , _opr(opr)
1364     , _type(T_ILLEGAL)
1365     , _patch(lir_patch_none)           { assert(is_in_range(code, begin_op1, end_op1), "code check"); }
1366 
1367   LIR_Opr in_opr()           const               { return _opr;   }
1368   LIR_PatchCode patch_code() const               { return _patch; }
1369   BasicType type()           const               { return _type;  }
1370 
1371   LIR_MoveKind move_kind() const {
1372     assert(code() == lir_move, "must be");
1373     return (LIR_MoveKind)_flags;
1374   }
1375 
1376   virtual bool is_patching() { return _patch != lir_patch_none; }
1377   virtual void emit_code(LIR_Assembler* masm);
1378   virtual LIR_Op1* as_Op1() { return this; }
1379   virtual const char * name() const PRODUCT_RETURN0;
1380 
1381   void set_in_opr(LIR_Opr opr) { _opr = opr; }
1382 
1383   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1384   virtual void verify() const;
1385 };
1386 
1387 
1388 // for runtime calls
1389 class LIR_OpRTCall: public LIR_OpCall {
1390  friend class LIR_OpVisitState;
1391 
1392  private:
1393   LIR_Opr _tmp;
1394  public:
1395   LIR_OpRTCall(address addr, LIR_Opr tmp,
1396                LIR_Opr result, LIR_OprList* arguments, CodeEmitInfo* info = NULL)
1397     : LIR_OpCall(lir_rtcall, addr, result, arguments, info)
1398     , _tmp(tmp) {}
1399 
1400   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1401   virtual void emit_code(LIR_Assembler* masm);
1402   virtual LIR_OpRTCall* as_OpRTCall() { return this; }
1403 
1404   LIR_Opr tmp() const                            { return _tmp; }
1405 
1406   virtual void verify() const;
1407 };
1408 
1409 
1410 class LIR_OpBranch: public LIR_Op {
1411  friend class LIR_OpVisitState;
1412 
1413  private:
1414   LIR_Condition _cond;
1415   BasicType     _type;
1416   Label*        _label;
1417   BlockBegin*   _block;  // if this is a branch to a block, this is the block
1418   BlockBegin*   _ublock; // if this is a float-branch, this is the unorderd block
1419   CodeStub*     _stub;   // if this is a branch to a stub, this is the stub
1420 
1421  public:
1422   LIR_OpBranch(LIR_Condition cond, BasicType type, Label* lbl)
1423     : LIR_Op(lir_branch, LIR_OprFact::illegalOpr, (CodeEmitInfo*) NULL)
1424     , _cond(cond)
1425     , _type(type)
1426     , _label(lbl)
1427     , _block(NULL)
1428     , _ublock(NULL)
1429     , _stub(NULL) { }
1430 
1431   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block);
1432   LIR_OpBranch(LIR_Condition cond, BasicType type, CodeStub* stub);
1433 
1434   // for unordered comparisons
1435   LIR_OpBranch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* ublock);
1436 
1437   LIR_Condition cond()        const              { return _cond;        }
1438   BasicType     type()        const              { return _type;        }
1439   Label*        label()       const              { return _label;       }
1440   BlockBegin*   block()       const              { return _block;       }
1441   BlockBegin*   ublock()      const              { return _ublock;      }
1442   CodeStub*     stub()        const              { return _stub;       }
1443 
1444   void          change_block(BlockBegin* b);
1445   void          change_ublock(BlockBegin* b);
1446   void          negate_cond();
1447 
1448   virtual void emit_code(LIR_Assembler* masm);
1449   virtual LIR_OpBranch* as_OpBranch() { return this; }
1450   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1451 };
1452 
1453 
1454 class ConversionStub;
1455 
1456 class LIR_OpConvert: public LIR_Op1 {
1457  friend class LIR_OpVisitState;
1458 
1459  private:
1460    Bytecodes::Code _bytecode;
1461    ConversionStub* _stub;
1462 
1463  public:
1464    LIR_OpConvert(Bytecodes::Code code, LIR_Opr opr, LIR_Opr result, ConversionStub* stub)
1465      : LIR_Op1(lir_convert, opr, result)
1466      , _bytecode(code)
1467      , _stub(stub)                               {}
1468 
1469   Bytecodes::Code bytecode() const               { return _bytecode; }
1470   ConversionStub* stub() const                   { return _stub; }
1471 
1472   virtual void emit_code(LIR_Assembler* masm);
1473   virtual LIR_OpConvert* as_OpConvert() { return this; }
1474   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1475 
1476   static void print_bytecode(outputStream* out, Bytecodes::Code code) PRODUCT_RETURN;
1477 };
1478 
1479 
1480 // LIR_OpAllocObj
1481 class LIR_OpAllocObj : public LIR_Op1 {
1482  friend class LIR_OpVisitState;
1483 
1484  private:
1485   LIR_Opr _tmp1;
1486   LIR_Opr _tmp2;
1487   LIR_Opr _tmp3;
1488   LIR_Opr _tmp4;
1489   int     _hdr_size;
1490   int     _obj_size;
1491   CodeStub* _stub;
1492   bool    _init_check;
1493 
1494  public:
1495   LIR_OpAllocObj(LIR_Opr klass, LIR_Opr result,
1496                  LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4,
1497                  int hdr_size, int obj_size, bool init_check, CodeStub* stub)
1498     : LIR_Op1(lir_alloc_object, klass, result)
1499     , _tmp1(t1)
1500     , _tmp2(t2)
1501     , _tmp3(t3)
1502     , _tmp4(t4)
1503     , _hdr_size(hdr_size)
1504     , _obj_size(obj_size)
1505     , _stub(stub)
1506     , _init_check(init_check)                    { }
1507 
1508   LIR_Opr klass()        const                   { return in_opr();     }
1509   LIR_Opr obj()          const                   { return result_opr(); }
1510   LIR_Opr tmp1()         const                   { return _tmp1;        }
1511   LIR_Opr tmp2()         const                   { return _tmp2;        }
1512   LIR_Opr tmp3()         const                   { return _tmp3;        }
1513   LIR_Opr tmp4()         const                   { return _tmp4;        }
1514   int     header_size()  const                   { return _hdr_size;    }
1515   int     object_size()  const                   { return _obj_size;    }
1516   bool    init_check()   const                   { return _init_check;  }
1517   CodeStub* stub()       const                   { return _stub;        }
1518 
1519   virtual void emit_code(LIR_Assembler* masm);
1520   virtual LIR_OpAllocObj * as_OpAllocObj () { return this; }
1521   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1522 };
1523 
1524 
1525 // LIR_OpRoundFP
1526 class LIR_OpRoundFP : public LIR_Op1 {
1527  friend class LIR_OpVisitState;
1528 
1529  private:
1530   LIR_Opr _tmp;
1531 
1532  public:
1533   LIR_OpRoundFP(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result)
1534     : LIR_Op1(lir_roundfp, reg, result)
1535     , _tmp(stack_loc_temp) {}
1536 
1537   LIR_Opr tmp() const                            { return _tmp; }
1538   virtual LIR_OpRoundFP* as_OpRoundFP()          { return this; }
1539   void print_instr(outputStream* out) const PRODUCT_RETURN;
1540 };
1541 
1542 // LIR_OpTypeCheck
1543 class LIR_OpTypeCheck: public LIR_Op {
1544  friend class LIR_OpVisitState;
1545 
1546  private:
1547   LIR_Opr       _object;
1548   LIR_Opr       _array;
1549   ciKlass*      _klass;
1550   LIR_Opr       _tmp1;
1551   LIR_Opr       _tmp2;
1552   LIR_Opr       _tmp3;
1553   bool          _fast_check;
1554   CodeEmitInfo* _info_for_patch;
1555   CodeEmitInfo* _info_for_exception;
1556   CodeStub*     _stub;
1557   ciMethod*     _profiled_method;
1558   int           _profiled_bci;
1559   bool          _should_profile;
1560 
1561 public:
1562   LIR_OpTypeCheck(LIR_Code code, LIR_Opr result, LIR_Opr object, ciKlass* klass,
1563                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
1564                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub);
1565   LIR_OpTypeCheck(LIR_Code code, LIR_Opr object, LIR_Opr array,
1566                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception);
1567 
1568   LIR_Opr object() const                         { return _object;         }
1569   LIR_Opr array() const                          { assert(code() == lir_store_check, "not valid"); return _array;         }
1570   LIR_Opr tmp1() const                           { return _tmp1;           }
1571   LIR_Opr tmp2() const                           { return _tmp2;           }
1572   LIR_Opr tmp3() const                           { return _tmp3;           }
1573   ciKlass* klass() const                         { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _klass;          }
1574   bool fast_check() const                        { assert(code() == lir_instanceof || code() == lir_checkcast, "not valid"); return _fast_check;     }
1575   CodeEmitInfo* info_for_patch() const           { return _info_for_patch;  }
1576   CodeEmitInfo* info_for_exception() const       { return _info_for_exception; }
1577   CodeStub* stub() const                         { return _stub;           }
1578 
1579   // MethodData* profiling
1580   void set_profiled_method(ciMethod *method)     { _profiled_method = method; }
1581   void set_profiled_bci(int bci)                 { _profiled_bci = bci;       }
1582   void set_should_profile(bool b)                { _should_profile = b;       }
1583   ciMethod* profiled_method() const              { return _profiled_method;   }
1584   int       profiled_bci() const                 { return _profiled_bci;      }
1585   bool      should_profile() const               { return _should_profile;    }
1586 
1587   virtual bool is_patching() { return _info_for_patch != NULL; }
1588   virtual void emit_code(LIR_Assembler* masm);
1589   virtual LIR_OpTypeCheck* as_OpTypeCheck() { return this; }
1590   void print_instr(outputStream* out) const PRODUCT_RETURN;
1591 };
1592 
1593 // LIR_Op2
1594 class LIR_Op2: public LIR_Op {
1595  friend class LIR_OpVisitState;
1596 
1597   int  _fpu_stack_size; // for sin/cos implementation on Intel
1598 
1599  protected:
1600   LIR_Opr   _opr1;
1601   LIR_Opr   _opr2;
1602   BasicType _type;
1603   LIR_Opr   _tmp1;
1604   LIR_Opr   _tmp2;
1605   LIR_Opr   _tmp3;
1606   LIR_Opr   _tmp4;
1607   LIR_Opr   _tmp5;
1608   LIR_Condition _condition;
1609 
1610   void verify() const;
1611 
1612  public:
1613   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, CodeEmitInfo* info = NULL)
1614     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1615     , _fpu_stack_size(0)
1616     , _opr1(opr1)
1617     , _opr2(opr2)
1618     , _type(T_ILLEGAL)
1619     , _tmp1(LIR_OprFact::illegalOpr)
1620     , _tmp2(LIR_OprFact::illegalOpr)
1621     , _tmp3(LIR_OprFact::illegalOpr)
1622     , _tmp4(LIR_OprFact::illegalOpr)
1623     , _tmp5(LIR_OprFact::illegalOpr)
1624     , _condition(condition) {
1625     assert(code == lir_cmp || code == lir_assert, "code check");
1626   }
1627 
1628   LIR_Op2(LIR_Code code, LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, BasicType type)
1629     : LIR_Op(code, result, NULL)
1630     , _fpu_stack_size(0)
1631     , _opr1(opr1)
1632     , _opr2(opr2)
1633     , _type(type)
1634     , _tmp1(LIR_OprFact::illegalOpr)
1635     , _tmp2(LIR_OprFact::illegalOpr)
1636     , _tmp3(LIR_OprFact::illegalOpr)
1637     , _tmp4(LIR_OprFact::illegalOpr)
1638     , _tmp5(LIR_OprFact::illegalOpr)
1639     , _condition(condition) {
1640     assert(code == lir_cmove, "code check");
1641     assert(type != T_ILLEGAL, "cmove should have type");
1642   }
1643 
1644   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result = LIR_OprFact::illegalOpr,
1645           CodeEmitInfo* info = NULL, BasicType type = T_ILLEGAL)
1646     : LIR_Op(code, result, info)
1647     , _fpu_stack_size(0)
1648     , _opr1(opr1)
1649     , _opr2(opr2)
1650     , _type(type)
1651     , _tmp1(LIR_OprFact::illegalOpr)
1652     , _tmp2(LIR_OprFact::illegalOpr)
1653     , _tmp3(LIR_OprFact::illegalOpr)
1654     , _tmp4(LIR_OprFact::illegalOpr)
1655     , _tmp5(LIR_OprFact::illegalOpr)
1656     , _condition(lir_cond_unknown) {
1657     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1658   }
1659 
1660   LIR_Op2(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr result, LIR_Opr tmp1, LIR_Opr tmp2 = LIR_OprFact::illegalOpr,
1661           LIR_Opr tmp3 = LIR_OprFact::illegalOpr, LIR_Opr tmp4 = LIR_OprFact::illegalOpr, LIR_Opr tmp5 = LIR_OprFact::illegalOpr)
1662     : LIR_Op(code, result, NULL)
1663     , _fpu_stack_size(0)
1664     , _opr1(opr1)
1665     , _opr2(opr2)
1666     , _type(T_ILLEGAL)
1667     , _tmp1(tmp1)
1668     , _tmp2(tmp2)
1669     , _tmp3(tmp3)
1670     , _tmp4(tmp4)
1671     , _tmp5(tmp5)
1672     , _condition(lir_cond_unknown) {
1673     assert(code != lir_cmp && is_in_range(code, begin_op2, end_op2), "code check");
1674   }
1675 
1676   LIR_Opr in_opr1() const                        { return _opr1; }
1677   LIR_Opr in_opr2() const                        { return _opr2; }
1678   BasicType type()  const                        { return _type; }
1679   LIR_Opr tmp1_opr() const                       { return _tmp1; }
1680   LIR_Opr tmp2_opr() const                       { return _tmp2; }
1681   LIR_Opr tmp3_opr() const                       { return _tmp3; }
1682   LIR_Opr tmp4_opr() const                       { return _tmp4; }
1683   LIR_Opr tmp5_opr() const                       { return _tmp5; }
1684   LIR_Condition condition() const  {
1685     assert(code() == lir_cmp || code() == lir_cmove || code() == lir_assert, "only valid for cmp and cmove and assert"); return _condition;
1686   }
1687   void set_condition(LIR_Condition condition) {
1688     assert(code() == lir_cmp || code() == lir_cmove, "only valid for cmp and cmove");  _condition = condition;
1689   }
1690 
1691   void set_fpu_stack_size(int size)              { _fpu_stack_size = size; }
1692   int  fpu_stack_size() const                    { return _fpu_stack_size; }
1693 
1694   void set_in_opr1(LIR_Opr opr)                  { _opr1 = opr; }
1695   void set_in_opr2(LIR_Opr opr)                  { _opr2 = opr; }
1696 
1697   virtual void emit_code(LIR_Assembler* masm);
1698   virtual LIR_Op2* as_Op2() { return this; }
1699   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1700 };
1701 
1702 class LIR_OpAllocArray : public LIR_Op {
1703  friend class LIR_OpVisitState;
1704 
1705  private:
1706   LIR_Opr   _klass;
1707   LIR_Opr   _len;
1708   LIR_Opr   _tmp1;
1709   LIR_Opr   _tmp2;
1710   LIR_Opr   _tmp3;
1711   LIR_Opr   _tmp4;
1712   BasicType _type;
1713   CodeStub* _stub;
1714 
1715  public:
1716   LIR_OpAllocArray(LIR_Opr klass, LIR_Opr len, LIR_Opr result, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, BasicType type, CodeStub* stub)
1717     : LIR_Op(lir_alloc_array, result, NULL)
1718     , _klass(klass)
1719     , _len(len)
1720     , _tmp1(t1)
1721     , _tmp2(t2)
1722     , _tmp3(t3)
1723     , _tmp4(t4)
1724     , _type(type)
1725     , _stub(stub) {}
1726 
1727   LIR_Opr   klass()   const                      { return _klass;       }
1728   LIR_Opr   len()     const                      { return _len;         }
1729   LIR_Opr   obj()     const                      { return result_opr(); }
1730   LIR_Opr   tmp1()    const                      { return _tmp1;        }
1731   LIR_Opr   tmp2()    const                      { return _tmp2;        }
1732   LIR_Opr   tmp3()    const                      { return _tmp3;        }
1733   LIR_Opr   tmp4()    const                      { return _tmp4;        }
1734   BasicType type()    const                      { return _type;        }
1735   CodeStub* stub()    const                      { return _stub;        }
1736 
1737   virtual void emit_code(LIR_Assembler* masm);
1738   virtual LIR_OpAllocArray * as_OpAllocArray () { return this; }
1739   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1740 };
1741 
1742 
1743 class LIR_Op3: public LIR_Op {
1744  friend class LIR_OpVisitState;
1745 
1746  private:
1747   LIR_Opr _opr1;
1748   LIR_Opr _opr2;
1749   LIR_Opr _opr3;
1750  public:
1751   LIR_Op3(LIR_Code code, LIR_Opr opr1, LIR_Opr opr2, LIR_Opr opr3, LIR_Opr result, CodeEmitInfo* info = NULL)
1752     : LIR_Op(code, result, info)
1753     , _opr1(opr1)
1754     , _opr2(opr2)
1755     , _opr3(opr3)                                { assert(is_in_range(code, begin_op3, end_op3), "code check"); }
1756   LIR_Opr in_opr1() const                        { return _opr1; }
1757   LIR_Opr in_opr2() const                        { return _opr2; }
1758   LIR_Opr in_opr3() const                        { return _opr3; }
1759 
1760   virtual void emit_code(LIR_Assembler* masm);
1761   virtual LIR_Op3* as_Op3() { return this; }
1762   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1763 };
1764 
1765 
1766 //--------------------------------
1767 class LabelObj: public CompilationResourceObj {
1768  private:
1769   Label _label;
1770  public:
1771   LabelObj()                                     {}
1772   Label* label()                                 { return &_label; }
1773 };
1774 
1775 
1776 class LIR_OpLock: public LIR_Op {
1777  friend class LIR_OpVisitState;
1778 
1779  private:
1780   LIR_Opr _hdr;
1781   LIR_Opr _obj;
1782   LIR_Opr _lock;
1783   LIR_Opr _scratch;
1784   CodeStub* _stub;
1785  public:
1786   LIR_OpLock(LIR_Code code, LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info)
1787     : LIR_Op(code, LIR_OprFact::illegalOpr, info)
1788     , _hdr(hdr)
1789     , _obj(obj)
1790     , _lock(lock)
1791     , _scratch(scratch)
1792     , _stub(stub)                      {}
1793 
1794   LIR_Opr hdr_opr() const                        { return _hdr; }
1795   LIR_Opr obj_opr() const                        { return _obj; }
1796   LIR_Opr lock_opr() const                       { return _lock; }
1797   LIR_Opr scratch_opr() const                    { return _scratch; }
1798   CodeStub* stub() const                         { return _stub; }
1799 
1800   virtual void emit_code(LIR_Assembler* masm);
1801   virtual LIR_OpLock* as_OpLock() { return this; }
1802   void print_instr(outputStream* out) const PRODUCT_RETURN;
1803 };
1804 
1805 
1806 class LIR_OpDelay: public LIR_Op {
1807  friend class LIR_OpVisitState;
1808 
1809  private:
1810   LIR_Op* _op;
1811 
1812  public:
1813   LIR_OpDelay(LIR_Op* op, CodeEmitInfo* info):
1814     LIR_Op(lir_delay_slot, LIR_OprFact::illegalOpr, info),
1815     _op(op) {
1816     assert(op->code() == lir_nop || LIRFillDelaySlots, "should be filling with nops");
1817   }
1818   virtual void emit_code(LIR_Assembler* masm);
1819   virtual LIR_OpDelay* as_OpDelay() { return this; }
1820   void print_instr(outputStream* out) const PRODUCT_RETURN;
1821   LIR_Op* delay_op() const { return _op; }
1822   CodeEmitInfo* call_info() const { return info(); }
1823 };
1824 
1825 #ifdef ASSERT
1826 // LIR_OpAssert
1827 class LIR_OpAssert : public LIR_Op2 {
1828  friend class LIR_OpVisitState;
1829 
1830  private:
1831   const char* _msg;
1832   bool        _halt;
1833 
1834  public:
1835   LIR_OpAssert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt)
1836     : LIR_Op2(lir_assert, condition, opr1, opr2)
1837     , _msg(msg)
1838     , _halt(halt) {
1839   }
1840 
1841   const char* msg() const                        { return _msg; }
1842   bool        halt() const                       { return _halt; }
1843 
1844   virtual void emit_code(LIR_Assembler* masm);
1845   virtual LIR_OpAssert* as_OpAssert()            { return this; }
1846   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1847 };
1848 #endif
1849 
1850 // LIR_OpCompareAndSwap
1851 class LIR_OpCompareAndSwap : public LIR_Op {
1852  friend class LIR_OpVisitState;
1853 
1854  private:
1855   LIR_Opr _addr;
1856   LIR_Opr _cmp_value;
1857   LIR_Opr _new_value;
1858   LIR_Opr _tmp1;
1859   LIR_Opr _tmp2;
1860 
1861  public:
1862   LIR_OpCompareAndSwap(LIR_Code code, LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
1863                        LIR_Opr t1, LIR_Opr t2, LIR_Opr result)
1864     : LIR_Op(code, result, NULL)  // no result, no info
1865     , _addr(addr)
1866     , _cmp_value(cmp_value)
1867     , _new_value(new_value)
1868     , _tmp1(t1)
1869     , _tmp2(t2)                                  { }
1870 
1871   LIR_Opr addr()        const                    { return _addr;  }
1872   LIR_Opr cmp_value()   const                    { return _cmp_value; }
1873   LIR_Opr new_value()   const                    { return _new_value; }
1874   LIR_Opr tmp1()        const                    { return _tmp1;      }
1875   LIR_Opr tmp2()        const                    { return _tmp2;      }
1876 
1877   virtual void emit_code(LIR_Assembler* masm);
1878   virtual LIR_OpCompareAndSwap * as_OpCompareAndSwap () { return this; }
1879   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1880 };
1881 
1882 // LIR_OpProfileCall
1883 class LIR_OpProfileCall : public LIR_Op {
1884  friend class LIR_OpVisitState;
1885 
1886  private:
1887   ciMethod* _profiled_method;
1888   int       _profiled_bci;
1889   ciMethod* _profiled_callee;
1890   LIR_Opr   _mdo;
1891   LIR_Opr   _recv;
1892   LIR_Opr   _tmp1;
1893   ciKlass*  _known_holder;
1894 
1895  public:
1896   // Destroys recv
1897   LIR_OpProfileCall(ciMethod* profiled_method, int profiled_bci, ciMethod* profiled_callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* known_holder)
1898     : LIR_Op(lir_profile_call, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1899     , _profiled_method(profiled_method)
1900     , _profiled_bci(profiled_bci)
1901     , _profiled_callee(profiled_callee)
1902     , _mdo(mdo)
1903     , _recv(recv)
1904     , _tmp1(t1)
1905     , _known_holder(known_holder)                { }
1906 
1907   ciMethod* profiled_method() const              { return _profiled_method;  }
1908   int       profiled_bci()    const              { return _profiled_bci;     }
1909   ciMethod* profiled_callee() const              { return _profiled_callee;  }
1910   LIR_Opr   mdo()             const              { return _mdo;              }
1911   LIR_Opr   recv()            const              { return _recv;             }
1912   LIR_Opr   tmp1()            const              { return _tmp1;             }
1913   ciKlass*  known_holder()    const              { return _known_holder;     }
1914 
1915   virtual void emit_code(LIR_Assembler* masm);
1916   virtual LIR_OpProfileCall* as_OpProfileCall() { return this; }
1917   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1918   bool should_profile_receiver_type() const {
1919     bool callee_is_static = _profiled_callee->is_loaded() && _profiled_callee->is_static();
1920     Bytecodes::Code bc = _profiled_method->java_code_at_bci(_profiled_bci);
1921     bool call_is_virtual = (bc == Bytecodes::_invokevirtual && !_profiled_callee->can_be_statically_bound()) || bc == Bytecodes::_invokeinterface;
1922     return C1ProfileVirtualCalls && call_is_virtual && !callee_is_static;
1923   }
1924 };
1925 
1926 // LIR_OpProfileType
1927 class LIR_OpProfileType : public LIR_Op {
1928  friend class LIR_OpVisitState;
1929 
1930  private:
1931   LIR_Opr      _mdp;
1932   LIR_Opr      _obj;
1933   LIR_Opr      _tmp;
1934   ciKlass*     _exact_klass;   // non NULL if we know the klass statically (no need to load it from _obj)
1935   intptr_t     _current_klass; // what the profiling currently reports
1936   bool         _not_null;      // true if we know statically that _obj cannot be null
1937   bool         _no_conflict;   // true if we're profling parameters, _exact_klass is not NULL and we know
1938                                // _exact_klass it the only possible type for this parameter in any context.
1939 
1940  public:
1941   // Destroys recv
1942   LIR_OpProfileType(LIR_Opr mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict)
1943     : LIR_Op(lir_profile_type, LIR_OprFact::illegalOpr, NULL)  // no result, no info
1944     , _mdp(mdp)
1945     , _obj(obj)
1946     , _tmp(tmp)
1947     , _exact_klass(exact_klass)
1948     , _current_klass(current_klass)
1949     , _not_null(not_null)
1950     , _no_conflict(no_conflict) { }
1951 
1952   LIR_Opr      mdp()              const             { return _mdp;              }
1953   LIR_Opr      obj()              const             { return _obj;              }
1954   LIR_Opr      tmp()              const             { return _tmp;              }
1955   ciKlass*     exact_klass()      const             { return _exact_klass;      }
1956   intptr_t     current_klass()    const             { return _current_klass;    }
1957   bool         not_null()         const             { return _not_null;         }
1958   bool         no_conflict()      const             { return _no_conflict;      }
1959 
1960   virtual void emit_code(LIR_Assembler* masm);
1961   virtual LIR_OpProfileType* as_OpProfileType() { return this; }
1962   virtual void print_instr(outputStream* out) const PRODUCT_RETURN;
1963 };
1964 
1965 class LIR_InsertionBuffer;
1966 
1967 //--------------------------------LIR_List---------------------------------------------------
1968 // Maintains a list of LIR instructions (one instance of LIR_List per basic block)
1969 // The LIR instructions are appended by the LIR_List class itself;
1970 //
1971 // Notes:
1972 // - all offsets are(should be) in bytes
1973 // - local positions are specified with an offset, with offset 0 being local 0
1974 
1975 class LIR_List: public CompilationResourceObj {
1976  private:
1977   LIR_OpList  _operations;
1978 
1979   Compilation*  _compilation;
1980 #ifndef PRODUCT
1981   BlockBegin*   _block;
1982 #endif
1983 #ifdef ASSERT
1984   const char *  _file;
1985   int           _line;
1986 #endif
1987 
1988  public:
1989   void append(LIR_Op* op) {
1990     if (op->source() == NULL)
1991       op->set_source(_compilation->current_instruction());
1992 #ifndef PRODUCT
1993     if (PrintIRWithLIR) {
1994       _compilation->maybe_print_current_instruction();
1995       op->print(); tty->cr();
1996     }
1997 #endif // PRODUCT
1998 
1999     _operations.append(op);
2000 
2001 #ifdef ASSERT
2002     op->verify();
2003     op->set_file_and_line(_file, _line);
2004     _file = NULL;
2005     _line = 0;
2006 #endif
2007   }
2008 
2009   LIR_List(Compilation* compilation, BlockBegin* block = NULL);
2010 
2011 #ifdef ASSERT
2012   void set_file_and_line(const char * file, int line);
2013 #endif
2014 
2015   //---------- accessors ---------------
2016   LIR_OpList* instructions_list()                { return &_operations; }
2017   int         length() const                     { return _operations.length(); }
2018   LIR_Op*     at(int i) const                    { return _operations.at(i); }
2019 
2020   NOT_PRODUCT(BlockBegin* block() const          { return _block; });
2021 
2022   // insert LIR_Ops in buffer to right places in LIR_List
2023   void append(LIR_InsertionBuffer* buffer);
2024 
2025   //---------- mutators ---------------
2026   void insert_before(int i, LIR_List* op_list)   { _operations.insert_before(i, op_list->instructions_list()); }
2027   void insert_before(int i, LIR_Op* op)          { _operations.insert_before(i, op); }
2028   void remove_at(int i)                          { _operations.remove_at(i); }
2029 
2030   //---------- printing -------------
2031   void print_instructions() PRODUCT_RETURN;
2032 
2033 
2034   //---------- instructions -------------
2035   void call_opt_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2036                         address dest, LIR_OprList* arguments,
2037                         CodeEmitInfo* info) {
2038     append(new LIR_OpJavaCall(lir_optvirtual_call, method, receiver, result, dest, arguments, info));
2039   }
2040   void call_static(ciMethod* method, LIR_Opr result,
2041                    address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2042     append(new LIR_OpJavaCall(lir_static_call, method, LIR_OprFact::illegalOpr, result, dest, arguments, info));
2043   }
2044   void call_icvirtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2045                       address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2046     append(new LIR_OpJavaCall(lir_icvirtual_call, method, receiver, result, dest, arguments, info));
2047   }
2048   void call_virtual(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2049                     intptr_t vtable_offset, LIR_OprList* arguments, CodeEmitInfo* info) {
2050     append(new LIR_OpJavaCall(lir_virtual_call, method, receiver, result, vtable_offset, arguments, info));
2051   }
2052   void call_dynamic(ciMethod* method, LIR_Opr receiver, LIR_Opr result,
2053                     address dest, LIR_OprList* arguments, CodeEmitInfo* info) {
2054     append(new LIR_OpJavaCall(lir_dynamic_call, method, receiver, result, dest, arguments, info));
2055   }
2056 
2057   void get_thread(LIR_Opr result)                { append(new LIR_Op0(lir_get_thread, result)); }
2058   void word_align()                              { append(new LIR_Op0(lir_word_align)); }
2059   void membar()                                  { append(new LIR_Op0(lir_membar)); }
2060   void membar_acquire()                          { append(new LIR_Op0(lir_membar_acquire)); }
2061   void membar_release()                          { append(new LIR_Op0(lir_membar_release)); }
2062   void membar_loadload()                         { append(new LIR_Op0(lir_membar_loadload)); }
2063   void membar_storestore()                       { append(new LIR_Op0(lir_membar_storestore)); }
2064   void membar_loadstore()                        { append(new LIR_Op0(lir_membar_loadstore)); }
2065   void membar_storeload()                        { append(new LIR_Op0(lir_membar_storeload)); }
2066 
2067   void nop()                                     { append(new LIR_Op0(lir_nop)); }
2068   void build_frame()                             { append(new LIR_Op0(lir_build_frame)); }
2069 
2070   void std_entry(LIR_Opr receiver)               { append(new LIR_Op0(lir_std_entry, receiver)); }
2071   void osr_entry(LIR_Opr osrPointer)             { append(new LIR_Op0(lir_osr_entry, osrPointer)); }
2072 
2073   void on_spin_wait()                            { append(new LIR_Op0(lir_on_spin_wait)); }
2074 
2075   void branch_destination(Label* lbl)            { append(new LIR_OpLabel(lbl)); }
2076 
2077   void leal(LIR_Opr from, LIR_Opr result_reg, LIR_PatchCode patch_code = lir_patch_none, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_leal, from, result_reg, T_ILLEGAL, patch_code, info)); }
2078 
2079   // result is a stack location for old backend and vreg for UseLinearScan
2080   // stack_loc_temp is an illegal register for old backend
2081   void roundfp(LIR_Opr reg, LIR_Opr stack_loc_temp, LIR_Opr result) { append(new LIR_OpRoundFP(reg, stack_loc_temp, result)); }
2082   void unaligned_move(LIR_Address* src, LIR_Opr dst) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2083   void unaligned_move(LIR_Opr src, LIR_Address* dst) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), src->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2084   void unaligned_move(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, NULL, lir_move_unaligned)); }
2085   void move(LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2086   void move(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info)); }
2087   void move(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) { append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info)); }
2088   void move_wide(LIR_Address* src, LIR_Opr dst, CodeEmitInfo* info = NULL) {
2089     if (UseCompressedOops) {
2090       append(new LIR_Op1(lir_move, LIR_OprFact::address(src), dst, src->type(), lir_patch_none, info, lir_move_wide));
2091     } else {
2092       move(src, dst, info);
2093     }
2094   }
2095   void move_wide(LIR_Opr src, LIR_Address* dst, CodeEmitInfo* info = NULL) {
2096     if (UseCompressedOops) {
2097       append(new LIR_Op1(lir_move, src, LIR_OprFact::address(dst), dst->type(), lir_patch_none, info, lir_move_wide));
2098     } else {
2099       move(src, dst, info);
2100     }
2101   }
2102   void volatile_move(LIR_Opr src, LIR_Opr dst, BasicType type, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none) { append(new LIR_Op1(lir_move, src, dst, type, patch_code, info, lir_move_volatile)); }
2103 
2104   void oop2reg  (jobject o, LIR_Opr reg)         { assert(reg->type() == T_OBJECT, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::oopConst(o),    reg));   }
2105   void oop2reg_patch(jobject o, LIR_Opr reg, CodeEmitInfo* info);
2106 
2107   void metadata2reg  (Metadata* o, LIR_Opr reg)  { assert(reg->type() == T_METADATA, "bad reg"); append(new LIR_Op1(lir_move, LIR_OprFact::metadataConst(o), reg));   }
2108   void klass2reg_patch(Metadata* o, LIR_Opr reg, CodeEmitInfo* info);
2109 
2110   void return_op(LIR_Opr result)                 { append(new LIR_Op1(lir_return, result)); }
2111 
2112   void safepoint(LIR_Opr tmp, CodeEmitInfo* info)  { append(new LIR_Op1(lir_safepoint, tmp, info)); }
2113 
2114   void convert(Bytecodes::Code code, LIR_Opr left, LIR_Opr dst, ConversionStub* stub = NULL/*, bool is_32bit = false*/) { append(new LIR_OpConvert(code, left, dst, stub)); }
2115 
2116   void logical_and (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_and,  left, right, dst)); }
2117   void logical_or  (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_or,   left, right, dst)); }
2118   void logical_xor (LIR_Opr left, LIR_Opr right, LIR_Opr dst) { append(new LIR_Op2(lir_logic_xor,  left, right, dst)); }
2119 
2120   void   pack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_pack64,   src, dst, T_LONG, lir_patch_none, NULL)); }
2121   void unpack64(LIR_Opr src, LIR_Opr dst) { append(new LIR_Op1(lir_unpack64, src, dst, T_LONG, lir_patch_none, NULL)); }
2122 
2123   void null_check(LIR_Opr opr, CodeEmitInfo* info, bool deoptimize_on_null = false);
2124   void throw_exception(LIR_Opr exceptionPC, LIR_Opr exceptionOop, CodeEmitInfo* info) {
2125     append(new LIR_Op2(lir_throw, exceptionPC, exceptionOop, LIR_OprFact::illegalOpr, info));
2126   }
2127   void unwind_exception(LIR_Opr exceptionOop) {
2128     append(new LIR_Op1(lir_unwind, exceptionOop));
2129   }
2130 
2131   void push(LIR_Opr opr)                                   { append(new LIR_Op1(lir_push, opr)); }
2132   void pop(LIR_Opr reg)                                    { append(new LIR_Op1(lir_pop,  reg)); }
2133 
2134   void cmp(LIR_Condition condition, LIR_Opr left, LIR_Opr right, CodeEmitInfo* info = NULL) {
2135     append(new LIR_Op2(lir_cmp, condition, left, right, info));
2136   }
2137   void cmp(LIR_Condition condition, LIR_Opr left, int right, CodeEmitInfo* info = NULL) {
2138     cmp(condition, left, LIR_OprFact::intConst(right), info);
2139   }
2140 
2141   void cmp_mem_int(LIR_Condition condition, LIR_Opr base, int disp, int c, CodeEmitInfo* info);
2142   void cmp_reg_mem(LIR_Condition condition, LIR_Opr reg, LIR_Address* addr, CodeEmitInfo* info);
2143 
2144   void cmove(LIR_Condition condition, LIR_Opr src1, LIR_Opr src2, LIR_Opr dst, BasicType type) {
2145     append(new LIR_Op2(lir_cmove, condition, src1, src2, dst, type));
2146   }
2147 
2148   void cas_long(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2149                 LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2150   void cas_obj(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2151                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2152   void cas_int(LIR_Opr addr, LIR_Opr cmp_value, LIR_Opr new_value,
2153                LIR_Opr t1, LIR_Opr t2, LIR_Opr result = LIR_OprFact::illegalOpr);
2154 
2155   void abs (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_abs , from, tmp, to)); }
2156   void negate(LIR_Opr from, LIR_Opr to, LIR_Opr tmp = LIR_OprFact::illegalOpr)              { append(new LIR_Op2(lir_neg, from, tmp, to)); }
2157   void sqrt(LIR_Opr from, LIR_Opr to, LIR_Opr tmp)                { append(new LIR_Op2(lir_sqrt, from, tmp, to)); }
2158   void fmad(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmad, from, from1, from2, to)); }
2159   void fmaf(LIR_Opr from, LIR_Opr from1, LIR_Opr from2, LIR_Opr to) { append(new LIR_Op3(lir_fmaf, from, from1, from2, to)); }
2160   void log10 (LIR_Opr from, LIR_Opr to, LIR_Opr tmp)              { append(new LIR_Op2(lir_log10, from, LIR_OprFact::illegalOpr, to, tmp)); }
2161   void tan (LIR_Opr from, LIR_Opr to, LIR_Opr tmp1, LIR_Opr tmp2) { append(new LIR_Op2(lir_tan , from, tmp1, to, tmp2)); }
2162 
2163   void add (LIR_Opr left, LIR_Opr right, LIR_Opr res)      { append(new LIR_Op2(lir_add, left, right, res)); }
2164   void sub (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL) { append(new LIR_Op2(lir_sub, left, right, res, info)); }
2165   void mul (LIR_Opr left, LIR_Opr right, LIR_Opr res) { append(new LIR_Op2(lir_mul, left, right, res)); }
2166   void mul_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_mul_strictfp, left, right, res, tmp)); }
2167   void div (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_div, left, right, res, info)); }
2168   void div_strictfp (LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_div_strictfp, left, right, res, tmp)); }
2169   void rem (LIR_Opr left, LIR_Opr right, LIR_Opr res, CodeEmitInfo* info = NULL)      { append(new LIR_Op2(lir_rem, left, right, res, info)); }
2170 
2171   void volatile_load_mem_reg(LIR_Address* address, LIR_Opr dst, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2172   void volatile_load_unsafe_reg(LIR_Opr base, LIR_Opr offset, LIR_Opr dst, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2173 
2174   void load(LIR_Address* addr, LIR_Opr src, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2175 
2176   void store_mem_int(jint v,    LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2177   void store_mem_oop(jobject o, LIR_Opr base, int offset_in_bytes, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2178   void store(LIR_Opr src, LIR_Address* addr, CodeEmitInfo* info = NULL, LIR_PatchCode patch_code = lir_patch_none);
2179   void volatile_store_mem_reg(LIR_Opr src, LIR_Address* address, CodeEmitInfo* info, LIR_PatchCode patch_code = lir_patch_none);
2180   void volatile_store_unsafe_reg(LIR_Opr src, LIR_Opr base, LIR_Opr offset, BasicType type, CodeEmitInfo* info, LIR_PatchCode patch_code);
2181 
2182   void idiv(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2183   void idiv(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2184   void irem(LIR_Opr left, LIR_Opr right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2185   void irem(LIR_Opr left, int   right, LIR_Opr res, LIR_Opr tmp, CodeEmitInfo* info);
2186 
2187   void allocate_object(LIR_Opr dst, LIR_Opr t1, LIR_Opr t2, LIR_Opr t3, LIR_Opr t4, int header_size, int object_size, LIR_Opr klass, bool init_check, CodeStub* stub);
2188   void allocate_array(LIR_Opr dst, LIR_Opr len, LIR_Opr t1,LIR_Opr t2, LIR_Opr t3,LIR_Opr t4, BasicType type, LIR_Opr klass, CodeStub* stub);
2189 
2190   // jump is an unconditional branch
2191   void jump(BlockBegin* block) {
2192     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, block));
2193   }
2194   void jump(CodeStub* stub) {
2195     append(new LIR_OpBranch(lir_cond_always, T_ILLEGAL, stub));
2196   }
2197   void branch(LIR_Condition cond, BasicType type, Label* lbl)        { append(new LIR_OpBranch(cond, type, lbl)); }
2198   void branch(LIR_Condition cond, BasicType type, BlockBegin* block) {
2199     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2200     append(new LIR_OpBranch(cond, type, block));
2201   }
2202   void branch(LIR_Condition cond, BasicType type, CodeStub* stub)    {
2203     assert(type != T_FLOAT && type != T_DOUBLE, "no fp comparisons");
2204     append(new LIR_OpBranch(cond, type, stub));
2205   }
2206   void branch(LIR_Condition cond, BasicType type, BlockBegin* block, BlockBegin* unordered) {
2207     assert(type == T_FLOAT || type == T_DOUBLE, "fp comparisons only");
2208     append(new LIR_OpBranch(cond, type, block, unordered));
2209   }
2210 
2211   void shift_left(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2212   void shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2213   void unsigned_shift_right(LIR_Opr value, LIR_Opr count, LIR_Opr dst, LIR_Opr tmp);
2214 
2215   void shift_left(LIR_Opr value, int count, LIR_Opr dst)       { shift_left(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2216   void shift_right(LIR_Opr value, int count, LIR_Opr dst)      { shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2217   void unsigned_shift_right(LIR_Opr value, int count, LIR_Opr dst) { unsigned_shift_right(value, LIR_OprFact::intConst(count), dst, LIR_OprFact::illegalOpr); }
2218 
2219   void lcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst)        { append(new LIR_Op2(lir_cmp_l2i,  left, right, dst)); }
2220   void fcmp2int(LIR_Opr left, LIR_Opr right, LIR_Opr dst, bool is_unordered_less);
2221 
2222   void call_runtime_leaf(address routine, LIR_Opr tmp, LIR_Opr result, LIR_OprList* arguments) {
2223     append(new LIR_OpRTCall(routine, tmp, result, arguments));
2224   }
2225 
2226   void call_runtime(address routine, LIR_Opr tmp, LIR_Opr result,
2227                     LIR_OprList* arguments, CodeEmitInfo* info) {
2228     append(new LIR_OpRTCall(routine, tmp, result, arguments, info));
2229   }
2230 
2231   void load_stack_address_monitor(int monitor_ix, LIR_Opr dst)  { append(new LIR_Op1(lir_monaddr, LIR_OprFact::intConst(monitor_ix), dst)); }
2232   void unlock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub);
2233   void lock_object(LIR_Opr hdr, LIR_Opr obj, LIR_Opr lock, LIR_Opr scratch, CodeStub* stub, CodeEmitInfo* info);
2234 
2235   void set_24bit_fpu()                                               { append(new LIR_Op0(lir_24bit_FPU )); }
2236   void restore_fpu()                                                 { append(new LIR_Op0(lir_reset_FPU )); }
2237   void breakpoint()                                                  { append(new LIR_Op0(lir_breakpoint)); }
2238 
2239   void arraycopy(LIR_Opr src, LIR_Opr src_pos, LIR_Opr dst, LIR_Opr dst_pos, LIR_Opr length, LIR_Opr tmp, ciArrayKlass* expected_type, int flags, CodeEmitInfo* info) { append(new LIR_OpArrayCopy(src, src_pos, dst, dst_pos, length, tmp, expected_type, flags, info)); }
2240 
2241   void update_crc32(LIR_Opr crc, LIR_Opr val, LIR_Opr res)  { append(new LIR_OpUpdateCRC32(crc, val, res)); }
2242 
2243   void fpop_raw()                                { append(new LIR_Op0(lir_fpop_raw)); }
2244 
2245   void instanceof(LIR_Opr result, LIR_Opr object, ciKlass* klass, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check, CodeEmitInfo* info_for_patch, ciMethod* profiled_method, int profiled_bci);
2246   void store_check(LIR_Opr object, LIR_Opr array, LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, CodeEmitInfo* info_for_exception, ciMethod* profiled_method, int profiled_bci);
2247 
2248   void checkcast (LIR_Opr result, LIR_Opr object, ciKlass* klass,
2249                   LIR_Opr tmp1, LIR_Opr tmp2, LIR_Opr tmp3, bool fast_check,
2250                   CodeEmitInfo* info_for_exception, CodeEmitInfo* info_for_patch, CodeStub* stub,
2251                   ciMethod* profiled_method, int profiled_bci);
2252   // MethodData* profiling
2253   void profile_call(ciMethod* method, int bci, ciMethod* callee, LIR_Opr mdo, LIR_Opr recv, LIR_Opr t1, ciKlass* cha_klass) {
2254     append(new LIR_OpProfileCall(method, bci, callee, mdo, recv, t1, cha_klass));
2255   }
2256   void profile_type(LIR_Address* mdp, LIR_Opr obj, ciKlass* exact_klass, intptr_t current_klass, LIR_Opr tmp, bool not_null, bool no_conflict) {
2257     append(new LIR_OpProfileType(LIR_OprFact::address(mdp), obj, exact_klass, current_klass, tmp, not_null, no_conflict));
2258   }
2259 
2260   void xadd(LIR_Opr src, LIR_Opr add, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xadd, src, add, res, tmp)); }
2261   void xchg(LIR_Opr src, LIR_Opr set, LIR_Opr res, LIR_Opr tmp) { append(new LIR_Op2(lir_xchg, src, set, res, tmp)); }
2262 #ifdef ASSERT
2263   void lir_assert(LIR_Condition condition, LIR_Opr opr1, LIR_Opr opr2, const char* msg, bool halt) { append(new LIR_OpAssert(condition, opr1, opr2, msg, halt)); }
2264 #endif
2265 };
2266 
2267 void print_LIR(BlockList* blocks);
2268 
2269 class LIR_InsertionBuffer : public CompilationResourceObj {
2270  private:
2271   LIR_List*   _lir;   // the lir list where ops of this buffer should be inserted later (NULL when uninitialized)
2272 
2273   // list of insertion points. index and count are stored alternately:
2274   // _index_and_count[i * 2]:     the index into lir list where "count" ops should be inserted
2275   // _index_and_count[i * 2 + 1]: the number of ops to be inserted at index
2276   intStack    _index_and_count;
2277 
2278   // the LIR_Ops to be inserted
2279   LIR_OpList  _ops;
2280 
2281   void append_new(int index, int count)  { _index_and_count.append(index); _index_and_count.append(count); }
2282   void set_index_at(int i, int value)    { _index_and_count.at_put((i << 1),     value); }
2283   void set_count_at(int i, int value)    { _index_and_count.at_put((i << 1) + 1, value); }
2284 
2285 #ifdef ASSERT
2286   void verify();
2287 #endif
2288  public:
2289   LIR_InsertionBuffer() : _lir(NULL), _index_and_count(8), _ops(8) { }
2290 
2291   // must be called before using the insertion buffer
2292   void init(LIR_List* lir)  { assert(!initialized(), "already initialized"); _lir = lir; _index_and_count.clear(); _ops.clear(); }
2293   bool initialized() const  { return _lir != NULL; }
2294   // called automatically when the buffer is appended to the LIR_List
2295   void finish()             { _lir = NULL; }
2296 
2297   // accessors
2298   LIR_List*  lir_list() const             { return _lir; }
2299   int number_of_insertion_points() const  { return _index_and_count.length() >> 1; }
2300   int index_at(int i) const               { return _index_and_count.at((i << 1));     }
2301   int count_at(int i) const               { return _index_and_count.at((i << 1) + 1); }
2302 
2303   int number_of_ops() const               { return _ops.length(); }
2304   LIR_Op* op_at(int i) const              { return _ops.at(i); }
2305 
2306   // append an instruction to the buffer
2307   void append(int index, LIR_Op* op);
2308 
2309   // instruction
2310   void move(int index, LIR_Opr src, LIR_Opr dst, CodeEmitInfo* info = NULL) { append(index, new LIR_Op1(lir_move, src, dst, dst->type(), lir_patch_none, info)); }
2311 };
2312 
2313 
2314 //
2315 // LIR_OpVisitState is used for manipulating LIR_Ops in an abstract way.
2316 // Calling a LIR_Op's visit function with a LIR_OpVisitState causes
2317 // information about the input, output and temporaries used by the
2318 // op to be recorded.  It also records whether the op has call semantics
2319 // and also records all the CodeEmitInfos used by this op.
2320 //
2321 
2322 
2323 class LIR_OpVisitState: public StackObj {
2324  public:
2325   typedef enum { inputMode, firstMode = inputMode, tempMode, outputMode, numModes, invalidMode = -1 } OprMode;
2326 
2327   enum {
2328     maxNumberOfOperands = 20,
2329     maxNumberOfInfos = 4
2330   };
2331 
2332  private:
2333   LIR_Op*          _op;
2334 
2335   // optimization: the operands and infos are not stored in a variable-length
2336   //               list, but in a fixed-size array to save time of size checks and resizing
2337   int              _oprs_len[numModes];
2338   LIR_Opr*         _oprs_new[numModes][maxNumberOfOperands];
2339   int _info_len;
2340   CodeEmitInfo*    _info_new[maxNumberOfInfos];
2341 
2342   bool             _has_call;
2343   bool             _has_slow_case;
2344 
2345 
2346   // only include register operands
2347   // addresses are decomposed to the base and index registers
2348   // constants and stack operands are ignored
2349   void append(LIR_Opr& opr, OprMode mode) {
2350     assert(opr->is_valid(), "should not call this otherwise");
2351     assert(mode >= 0 && mode < numModes, "bad mode");
2352 
2353     if (opr->is_register()) {
2354        assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2355       _oprs_new[mode][_oprs_len[mode]++] = &opr;
2356 
2357     } else if (opr->is_pointer()) {
2358       LIR_Address* address = opr->as_address_ptr();
2359       if (address != NULL) {
2360         // special handling for addresses: add base and index register of the address
2361         // both are always input operands or temp if we want to extend
2362         // their liveness!
2363         if (mode == outputMode) {
2364           mode = inputMode;
2365         }
2366         assert (mode == inputMode || mode == tempMode, "input or temp only for addresses");
2367         if (address->_base->is_valid()) {
2368           assert(address->_base->is_register(), "must be");
2369           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2370           _oprs_new[mode][_oprs_len[mode]++] = &address->_base;
2371         }
2372         if (address->_index->is_valid()) {
2373           assert(address->_index->is_register(), "must be");
2374           assert(_oprs_len[mode] < maxNumberOfOperands, "array overflow");
2375           _oprs_new[mode][_oprs_len[mode]++] = &address->_index;
2376         }
2377 
2378       } else {
2379         assert(opr->is_constant(), "constant operands are not processed");
2380       }
2381     } else {
2382       assert(opr->is_stack(), "stack operands are not processed");
2383     }
2384   }
2385 
2386   void append(CodeEmitInfo* info) {
2387     assert(info != NULL, "should not call this otherwise");
2388     assert(_info_len < maxNumberOfInfos, "array overflow");
2389     _info_new[_info_len++] = info;
2390   }
2391 
2392  public:
2393   LIR_OpVisitState()         { reset(); }
2394 
2395   LIR_Op* op() const         { return _op; }
2396   void set_op(LIR_Op* op)    { reset(); _op = op; }
2397 
2398   bool has_call() const      { return _has_call; }
2399   bool has_slow_case() const { return _has_slow_case; }
2400 
2401   void reset() {
2402     _op = NULL;
2403     _has_call = false;
2404     _has_slow_case = false;
2405 
2406     _oprs_len[inputMode] = 0;
2407     _oprs_len[tempMode] = 0;
2408     _oprs_len[outputMode] = 0;
2409     _info_len = 0;
2410   }
2411 
2412 
2413   int opr_count(OprMode mode) const {
2414     assert(mode >= 0 && mode < numModes, "bad mode");
2415     return _oprs_len[mode];
2416   }
2417 
2418   LIR_Opr opr_at(OprMode mode, int index) const {
2419     assert(mode >= 0 && mode < numModes, "bad mode");
2420     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2421     return *_oprs_new[mode][index];
2422   }
2423 
2424   void set_opr_at(OprMode mode, int index, LIR_Opr opr) const {
2425     assert(mode >= 0 && mode < numModes, "bad mode");
2426     assert(index >= 0 && index < _oprs_len[mode], "index out of bound");
2427     *_oprs_new[mode][index] = opr;
2428   }
2429 
2430   int info_count() const {
2431     return _info_len;
2432   }
2433 
2434   CodeEmitInfo* info_at(int index) const {
2435     assert(index < _info_len, "index out of bounds");
2436     return _info_new[index];
2437   }
2438 
2439   XHandlers* all_xhandler();
2440 
2441   // collects all register operands of the instruction
2442   void visit(LIR_Op* op);
2443 
2444 #ifdef ASSERT
2445   // check that an operation has no operands
2446   bool no_operands(LIR_Op* op);
2447 #endif
2448 
2449   // LIR_Op visitor functions use these to fill in the state
2450   void do_input(LIR_Opr& opr)             { append(opr, LIR_OpVisitState::inputMode); }
2451   void do_output(LIR_Opr& opr)            { append(opr, LIR_OpVisitState::outputMode); }
2452   void do_temp(LIR_Opr& opr)              { append(opr, LIR_OpVisitState::tempMode); }
2453   void do_info(CodeEmitInfo* info)        { append(info); }
2454 
2455   void do_stub(CodeStub* stub);
2456   void do_call()                          { _has_call = true; }
2457   void do_slow_case()                     { _has_slow_case = true; }
2458   void do_slow_case(CodeEmitInfo* info) {
2459     _has_slow_case = true;
2460     append(info);
2461   }
2462 };
2463 
2464 
2465 inline LIR_Opr LIR_OprDesc::illegalOpr()   { return LIR_OprFact::illegalOpr; };
2466 
2467 #endif // SHARE_C1_C1_LIR_HPP