/* * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. */ package org.openjdk.bench.java.util.stream; import org.openjdk.jmh.annotations.Benchmark; import org.openjdk.jmh.annotations.BenchmarkMode; import org.openjdk.jmh.annotations.Level; import org.openjdk.jmh.annotations.Mode; import org.openjdk.jmh.annotations.OutputTimeUnit; import org.openjdk.jmh.annotations.Param; import org.openjdk.jmh.annotations.Scope; import org.openjdk.jmh.annotations.Setup; import org.openjdk.jmh.annotations.State; import java.util.concurrent.TimeUnit; import java.util.stream.LongStream; /** * This benchmark is the golden benchmark for decompositions. * There are at least four parameters to juggle: * - pool parallelism (P), controlled via -Djava.util.concurrent.ForkJoinUtils.pool.parallelism * - problem size (N), controlled as benchmark param * - operation cost (Q), controlled as benchmark param * - number of clients (C), controlled via -t option in harness * * @author Aleksey Shipilev (aleksey.shipilev@oracle.com) */ @BenchmarkMode(Mode.SampleTime) @OutputTimeUnit(TimeUnit.MICROSECONDS) @State(Scope.Thread) public class Decomposition { @Param("1000") private int N; @Param("1000") private int Q; @State(Scope.Thread) public static class Thinktime { @Param("10") private int S; @Setup(Level.Invocation) public void sleep() throws InterruptedException { TimeUnit.MILLISECONDS.sleep(S); } } @Benchmark public long saturated_sequential() throws InterruptedException { return LongStream.range(1, N).filter(k -> doWork(k, Q)).sum(); } @Benchmark public long thinktime_sequential(Thinktime t) throws InterruptedException { return LongStream.range(1, N).filter(k -> doWork(k, Q)).sum(); } @Benchmark public long saturated_parallel() throws InterruptedException { return LongStream.range(1, N).parallel().filter(k -> doWork(k, Q)).sum(); } @Benchmark public long thinktime_parallel(Thinktime t) throws InterruptedException { return LongStream.range(1, N).parallel().filter(k -> doWork(k, Q)).sum(); } /** * Make some work. * This method have a couple of distinguishable properties: * - the run time is linear with Q * - the computation is dependent on input, preventing common reductions * - the returned result is dependent on loop result, preventing dead code elimination * - the returned result is almost always false * * This code uses inlined version of ThreadLocalRandom.next() to mitigate the edge effects * of acquiring TLR every single call. * * @param input input * @return result */ public static boolean doWork(long input, long count) { long t = input; for (int i = 0; i < count; i++) { t += (t * 0x5DEECE66DL + 0xBL) & (0xFFFFFFFFFFFFL); } return (t == 0); } }