1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  */
  23 package org.openjdk.bench.java.util.stream.tasks.PrimesFilter.t10000;
  24 
  25 import org.openjdk.bench.java.util.stream.tasks.PrimesFilter.PrimesProblem;
  26 import org.openjdk.jmh.annotations.Benchmark;
  27 import org.openjdk.jmh.annotations.BenchmarkMode;
  28 import org.openjdk.jmh.annotations.Mode;
  29 import org.openjdk.jmh.annotations.OutputTimeUnit;
  30 import org.openjdk.jmh.annotations.Scope;
  31 import org.openjdk.jmh.annotations.State;
  32 
  33 import java.util.ArrayList;
  34 import java.util.Collections;
  35 import java.util.List;
  36 import java.util.concurrent.RecursiveTask;
  37 import java.util.concurrent.TimeUnit;
  38 import java.util.function.Predicate;
  39 import java.util.stream.Collectors;
  40 import java.util.stream.LongStream;
  41 
  42 /**
  43  * This benchmark evaluates find all prime numbers in a range.
  44  *
  45  * filter()...into() actions are benchmarked.
  46  */
  47 @BenchmarkMode(Mode.Throughput)
  48 @OutputTimeUnit(TimeUnit.SECONDS)
  49 @State(Scope.Benchmark)
  50 public class Bulk {
  51 
  52     private final long RANGE_START  = 1000_000_000_000_000L;
  53     private final long RANGE_END = RANGE_START + 100;
  54 
  55     @Benchmark
  56     public List<Long> hm_seq() {
  57         List<Long> results = new ArrayList<>();
  58         for (long i = RANGE_START; i < RANGE_END; i++) {
  59             if (PrimesProblem.isPrime(i)) {
  60                 results.add(i);
  61             }
  62         }
  63         return results;
  64     }
  65 
  66     @Benchmark
  67     public List<Long> hm_par() {
  68         return new FactoringTask(RANGE_START, RANGE_END).invoke();
  69     }
  70 
  71     @Benchmark
  72     public List<Long> bulk_seq_inner() {
  73         return LongStream.range(RANGE_START, RANGE_END).parallel()
  74                 .boxed()
  75                 .filter(new Predicate<Long>() {
  76                             @Override
  77                             public boolean test(Long o) {
  78                                 return PrimesProblem.isPrime(o);
  79                             }
  80                         }
  81                 ).collect(Collectors.<Long>toList());
  82     }
  83 
  84     @Benchmark
  85     public List<Long> bulk_par_inner() {
  86         return LongStream.range(RANGE_START, RANGE_END).parallel()
  87                 .boxed()
  88                 .filter(new Predicate<Long>() {
  89                             @Override
  90                             public boolean test(Long o) {
  91                                 return PrimesProblem.isPrime(o);
  92                             }
  93                         }
  94                 ).collect(Collectors.<Long>toList());
  95     }
  96 
  97     @Benchmark
  98     public List<Long> bulk_parseq_inner() {
  99         return LongStream.range(RANGE_START, RANGE_END).parallel()
 100                 .boxed()
 101                 .filter(new Predicate<Long>() {
 102                             @Override
 103                             public boolean test(Long o) {
 104                                 return PrimesProblem.isPrime(o);
 105                             }
 106                         }
 107                 ).sequential().collect(Collectors.<Long>toList());
 108     }
 109 
 110     public static class FactoringTask extends RecursiveTask<List<Long>> {
 111         final long low;
 112         final long high;
 113 
 114         @Override
 115         protected List<Long> compute() {
 116             if (high - low == 1L) {
 117                 if (PrimesProblem.isPrime(low))
 118                     return Collections.singletonList(low);
 119                 else
 120                     return Collections.emptyList();
 121             }
 122 
 123             long mid = (low + high) / 2L;
 124             FactoringTask t1 = new FactoringTask(low, mid);
 125             FactoringTask t2 = new FactoringTask(mid, high);
 126 
 127             List<Long> results;
 128 
 129             // The right way to do it. Forks off one task and
 130             // continues the other task in this thread. I've
 131             // seen up to 8x speed up on 16-way Intel and 32-way
 132             // SPARC boxes (which probably matches the actual number
 133             // of cores they have, as opposed to the number of threads)
 134             t2.fork();
 135             results = new ArrayList<>(t1.compute());
 136             results.addAll(t2.join());
 137 
 138             return results;
 139         }
 140 
 141         FactoringTask(long low, long high) {
 142             this.low = low;
 143             this.high = high;
 144         }
 145     }
 146 
 147 }